]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
writeback: implement [locked_]inode_to_wb_and_lock_list()
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
c59ede7b 16#include <linux/capability.h>
1da177e4 17#include <linux/kernel_stat.h>
5a0e3ad6 18#include <linux/gfp.h>
1da177e4
LT
19#include <linux/mm.h>
20#include <linux/swap.h>
21#include <linux/mman.h>
22#include <linux/pagemap.h>
23#include <linux/file.h>
24#include <linux/uio.h>
25#include <linux/hash.h>
26#include <linux/writeback.h>
53253383 27#include <linux/backing-dev.h>
1da177e4
LT
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/security.h>
44110fe3 31#include <linux/cpuset.h>
2f718ffc 32#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 33#include <linux/hugetlb.h>
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
c8c06efa 64 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
c8c06efa 70 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
c8c06efa 73 * ->i_mmap_rwsem
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
c8c06efa 87 * ->i_mmap_rwsem
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
c4843a75 103 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
f758eeab 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
c8c06efa 108 * ->i_mmap_rwsem
9a3c531d 109 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
110 */
111
91b0abe3
JW
112static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
114{
449dd698
JW
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
91b0abe3 120
449dd698
JW
121 VM_BUG_ON(!PageLocked(page));
122
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125 if (shadow) {
91b0abe3
JW
126 mapping->nrshadows++;
127 /*
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
132 */
133 smp_wmb();
449dd698 134 }
91b0abe3 135 mapping->nrpages--;
449dd698
JW
136
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
142 }
143
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 }
151
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
160
161 /*
162 * Track node that only contains shadow entries.
163 *
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
167 */
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 }
91b0abe3
JW
173}
174
1da177e4 175/*
e64a782f 176 * Delete a page from the page cache and free it. Caller has to make
1da177e4 177 * sure the page is locked and that nobody else uses it - or that usage
c4843a75
GT
178 * is safe. The caller must hold the mapping's tree_lock and
179 * mem_cgroup_begin_page_stat().
1da177e4 180 */
c4843a75
GT
181void __delete_from_page_cache(struct page *page, void *shadow,
182 struct mem_cgroup *memcg)
1da177e4
LT
183{
184 struct address_space *mapping = page->mapping;
185
fe0bfaaf 186 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
187 /*
188 * if we're uptodate, flush out into the cleancache, otherwise
189 * invalidate any existing cleancache entries. We can't leave
190 * stale data around in the cleancache once our page is gone
191 */
192 if (PageUptodate(page) && PageMappedToDisk(page))
193 cleancache_put_page(page);
194 else
3167760f 195 cleancache_invalidate_page(mapping, page);
c515e1fd 196
91b0abe3
JW
197 page_cache_tree_delete(mapping, page, shadow);
198
1da177e4 199 page->mapping = NULL;
b85e0eff 200 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 201
347ce434 202 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
203 if (PageSwapBacked(page))
204 __dec_zone_page_state(page, NR_SHMEM);
45426812 205 BUG_ON(page_mapped(page));
3a692790
LT
206
207 /*
b9ea2515
KK
208 * At this point page must be either written or cleaned by truncate.
209 * Dirty page here signals a bug and loss of unwritten data.
3a692790 210 *
b9ea2515
KK
211 * This fixes dirty accounting after removing the page entirely but
212 * leaves PageDirty set: it has no effect for truncated page and
213 * anyway will be cleared before returning page into buddy allocator.
3a692790 214 */
b9ea2515 215 if (WARN_ON_ONCE(PageDirty(page)))
c4843a75 216 account_page_cleaned(page, mapping, memcg);
1da177e4
LT
217}
218
702cfbf9
MK
219/**
220 * delete_from_page_cache - delete page from page cache
221 * @page: the page which the kernel is trying to remove from page cache
222 *
223 * This must be called only on pages that have been verified to be in the page
224 * cache and locked. It will never put the page into the free list, the caller
225 * has a reference on the page.
226 */
227void delete_from_page_cache(struct page *page)
1da177e4
LT
228{
229 struct address_space *mapping = page->mapping;
c4843a75
GT
230 struct mem_cgroup *memcg;
231 unsigned long flags;
232
6072d13c 233 void (*freepage)(struct page *);
1da177e4 234
cd7619d6 235 BUG_ON(!PageLocked(page));
1da177e4 236
6072d13c 237 freepage = mapping->a_ops->freepage;
c4843a75
GT
238
239 memcg = mem_cgroup_begin_page_stat(page);
240 spin_lock_irqsave(&mapping->tree_lock, flags);
241 __delete_from_page_cache(page, NULL, memcg);
242 spin_unlock_irqrestore(&mapping->tree_lock, flags);
243 mem_cgroup_end_page_stat(memcg);
6072d13c
LT
244
245 if (freepage)
246 freepage(page);
97cecb5a
MK
247 page_cache_release(page);
248}
249EXPORT_SYMBOL(delete_from_page_cache);
250
865ffef3
DM
251static int filemap_check_errors(struct address_space *mapping)
252{
253 int ret = 0;
254 /* Check for outstanding write errors */
7fcbbaf1
JA
255 if (test_bit(AS_ENOSPC, &mapping->flags) &&
256 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 257 ret = -ENOSPC;
7fcbbaf1
JA
258 if (test_bit(AS_EIO, &mapping->flags) &&
259 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
260 ret = -EIO;
261 return ret;
262}
263
1da177e4 264/**
485bb99b 265 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
266 * @mapping: address space structure to write
267 * @start: offset in bytes where the range starts
469eb4d0 268 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 269 * @sync_mode: enable synchronous operation
1da177e4 270 *
485bb99b
RD
271 * Start writeback against all of a mapping's dirty pages that lie
272 * within the byte offsets <start, end> inclusive.
273 *
1da177e4 274 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 275 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
276 * these two operations is that if a dirty page/buffer is encountered, it must
277 * be waited upon, and not just skipped over.
278 */
ebcf28e1
AM
279int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
280 loff_t end, int sync_mode)
1da177e4
LT
281{
282 int ret;
283 struct writeback_control wbc = {
284 .sync_mode = sync_mode,
05fe478d 285 .nr_to_write = LONG_MAX,
111ebb6e
OH
286 .range_start = start,
287 .range_end = end,
1da177e4
LT
288 };
289
290 if (!mapping_cap_writeback_dirty(mapping))
291 return 0;
292
b16b1deb 293 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 294 ret = do_writepages(mapping, &wbc);
b16b1deb 295 wbc_detach_inode(&wbc);
1da177e4
LT
296 return ret;
297}
298
299static inline int __filemap_fdatawrite(struct address_space *mapping,
300 int sync_mode)
301{
111ebb6e 302 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
303}
304
305int filemap_fdatawrite(struct address_space *mapping)
306{
307 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
308}
309EXPORT_SYMBOL(filemap_fdatawrite);
310
f4c0a0fd 311int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 312 loff_t end)
1da177e4
LT
313{
314 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
315}
f4c0a0fd 316EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 317
485bb99b
RD
318/**
319 * filemap_flush - mostly a non-blocking flush
320 * @mapping: target address_space
321 *
1da177e4
LT
322 * This is a mostly non-blocking flush. Not suitable for data-integrity
323 * purposes - I/O may not be started against all dirty pages.
324 */
325int filemap_flush(struct address_space *mapping)
326{
327 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
328}
329EXPORT_SYMBOL(filemap_flush);
330
485bb99b 331/**
94004ed7
CH
332 * filemap_fdatawait_range - wait for writeback to complete
333 * @mapping: address space structure to wait for
334 * @start_byte: offset in bytes where the range starts
335 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 336 *
94004ed7
CH
337 * Walk the list of under-writeback pages of the given address space
338 * in the given range and wait for all of them.
1da177e4 339 */
94004ed7
CH
340int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
341 loff_t end_byte)
1da177e4 342{
94004ed7
CH
343 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
344 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
345 struct pagevec pvec;
346 int nr_pages;
865ffef3 347 int ret2, ret = 0;
1da177e4 348
94004ed7 349 if (end_byte < start_byte)
865ffef3 350 goto out;
1da177e4
LT
351
352 pagevec_init(&pvec, 0);
1da177e4
LT
353 while ((index <= end) &&
354 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
355 PAGECACHE_TAG_WRITEBACK,
356 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
357 unsigned i;
358
359 for (i = 0; i < nr_pages; i++) {
360 struct page *page = pvec.pages[i];
361
362 /* until radix tree lookup accepts end_index */
363 if (page->index > end)
364 continue;
365
366 wait_on_page_writeback(page);
212260aa 367 if (TestClearPageError(page))
1da177e4
LT
368 ret = -EIO;
369 }
370 pagevec_release(&pvec);
371 cond_resched();
372 }
865ffef3
DM
373out:
374 ret2 = filemap_check_errors(mapping);
375 if (!ret)
376 ret = ret2;
1da177e4
LT
377
378 return ret;
379}
d3bccb6f
JK
380EXPORT_SYMBOL(filemap_fdatawait_range);
381
1da177e4 382/**
485bb99b 383 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 384 * @mapping: address space structure to wait for
485bb99b
RD
385 *
386 * Walk the list of under-writeback pages of the given address space
387 * and wait for all of them.
1da177e4
LT
388 */
389int filemap_fdatawait(struct address_space *mapping)
390{
391 loff_t i_size = i_size_read(mapping->host);
392
393 if (i_size == 0)
394 return 0;
395
94004ed7 396 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
397}
398EXPORT_SYMBOL(filemap_fdatawait);
399
400int filemap_write_and_wait(struct address_space *mapping)
401{
28fd1298 402 int err = 0;
1da177e4
LT
403
404 if (mapping->nrpages) {
28fd1298
OH
405 err = filemap_fdatawrite(mapping);
406 /*
407 * Even if the above returned error, the pages may be
408 * written partially (e.g. -ENOSPC), so we wait for it.
409 * But the -EIO is special case, it may indicate the worst
410 * thing (e.g. bug) happened, so we avoid waiting for it.
411 */
412 if (err != -EIO) {
413 int err2 = filemap_fdatawait(mapping);
414 if (!err)
415 err = err2;
416 }
865ffef3
DM
417 } else {
418 err = filemap_check_errors(mapping);
1da177e4 419 }
28fd1298 420 return err;
1da177e4 421}
28fd1298 422EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 423
485bb99b
RD
424/**
425 * filemap_write_and_wait_range - write out & wait on a file range
426 * @mapping: the address_space for the pages
427 * @lstart: offset in bytes where the range starts
428 * @lend: offset in bytes where the range ends (inclusive)
429 *
469eb4d0
AM
430 * Write out and wait upon file offsets lstart->lend, inclusive.
431 *
432 * Note that `lend' is inclusive (describes the last byte to be written) so
433 * that this function can be used to write to the very end-of-file (end = -1).
434 */
1da177e4
LT
435int filemap_write_and_wait_range(struct address_space *mapping,
436 loff_t lstart, loff_t lend)
437{
28fd1298 438 int err = 0;
1da177e4
LT
439
440 if (mapping->nrpages) {
28fd1298
OH
441 err = __filemap_fdatawrite_range(mapping, lstart, lend,
442 WB_SYNC_ALL);
443 /* See comment of filemap_write_and_wait() */
444 if (err != -EIO) {
94004ed7
CH
445 int err2 = filemap_fdatawait_range(mapping,
446 lstart, lend);
28fd1298
OH
447 if (!err)
448 err = err2;
449 }
865ffef3
DM
450 } else {
451 err = filemap_check_errors(mapping);
1da177e4 452 }
28fd1298 453 return err;
1da177e4 454}
f6995585 455EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 456
ef6a3c63
MS
457/**
458 * replace_page_cache_page - replace a pagecache page with a new one
459 * @old: page to be replaced
460 * @new: page to replace with
461 * @gfp_mask: allocation mode
462 *
463 * This function replaces a page in the pagecache with a new one. On
464 * success it acquires the pagecache reference for the new page and
465 * drops it for the old page. Both the old and new pages must be
466 * locked. This function does not add the new page to the LRU, the
467 * caller must do that.
468 *
469 * The remove + add is atomic. The only way this function can fail is
470 * memory allocation failure.
471 */
472int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
473{
474 int error;
ef6a3c63 475
309381fe
SL
476 VM_BUG_ON_PAGE(!PageLocked(old), old);
477 VM_BUG_ON_PAGE(!PageLocked(new), new);
478 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 479
ef6a3c63
MS
480 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
481 if (!error) {
482 struct address_space *mapping = old->mapping;
483 void (*freepage)(struct page *);
c4843a75
GT
484 struct mem_cgroup *memcg;
485 unsigned long flags;
ef6a3c63
MS
486
487 pgoff_t offset = old->index;
488 freepage = mapping->a_ops->freepage;
489
490 page_cache_get(new);
491 new->mapping = mapping;
492 new->index = offset;
493
c4843a75
GT
494 memcg = mem_cgroup_begin_page_stat(old);
495 spin_lock_irqsave(&mapping->tree_lock, flags);
496 __delete_from_page_cache(old, NULL, memcg);
ef6a3c63
MS
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
c4843a75
GT
503 spin_unlock_irqrestore(&mapping->tree_lock, flags);
504 mem_cgroup_end_page_stat(memcg);
0a31bc97 505 mem_cgroup_migrate(old, new, true);
ef6a3c63
MS
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
ef6a3c63
MS
510 }
511
512 return error;
513}
514EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
0cd6144a 516static int page_cache_tree_insert(struct address_space *mapping,
a528910e 517 struct page *page, void **shadowp)
0cd6144a 518{
449dd698 519 struct radix_tree_node *node;
0cd6144a
JW
520 void **slot;
521 int error;
522
449dd698
JW
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
0cd6144a
JW
528 void *p;
529
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
a528910e
JW
533 if (shadowp)
534 *shadowp = p;
449dd698
JW
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
0cd6144a 538 }
449dd698
JW
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
543 /*
544 * Don't track node that contains actual pages.
545 *
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
550 */
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
554 }
555 return 0;
0cd6144a
JW
556}
557
a528910e
JW
558static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
1da177e4 562{
00501b53
JW
563 int huge = PageHuge(page);
564 struct mem_cgroup *memcg;
e286781d
NP
565 int error;
566
309381fe
SL
567 VM_BUG_ON_PAGE(!PageLocked(page), page);
568 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 569
00501b53
JW
570 if (!huge) {
571 error = mem_cgroup_try_charge(page, current->mm,
572 gfp_mask, &memcg);
573 if (error)
574 return error;
575 }
1da177e4 576
5e4c0d97 577 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 578 if (error) {
00501b53
JW
579 if (!huge)
580 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee
KS
581 return error;
582 }
583
584 page_cache_get(page);
585 page->mapping = mapping;
586 page->index = offset;
587
588 spin_lock_irq(&mapping->tree_lock);
a528910e 589 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
590 radix_tree_preload_end();
591 if (unlikely(error))
592 goto err_insert;
66a0c8ee
KS
593 __inc_zone_page_state(page, NR_FILE_PAGES);
594 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
595 if (!huge)
596 mem_cgroup_commit_charge(page, memcg, false);
66a0c8ee
KS
597 trace_mm_filemap_add_to_page_cache(page);
598 return 0;
599err_insert:
600 page->mapping = NULL;
601 /* Leave page->index set: truncation relies upon it */
602 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
603 if (!huge)
604 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee 605 page_cache_release(page);
1da177e4
LT
606 return error;
607}
a528910e
JW
608
609/**
610 * add_to_page_cache_locked - add a locked page to the pagecache
611 * @page: page to add
612 * @mapping: the page's address_space
613 * @offset: page index
614 * @gfp_mask: page allocation mode
615 *
616 * This function is used to add a page to the pagecache. It must be locked.
617 * This function does not add the page to the LRU. The caller must do that.
618 */
619int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
620 pgoff_t offset, gfp_t gfp_mask)
621{
622 return __add_to_page_cache_locked(page, mapping, offset,
623 gfp_mask, NULL);
624}
e286781d 625EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
626
627int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 628 pgoff_t offset, gfp_t gfp_mask)
1da177e4 629{
a528910e 630 void *shadow = NULL;
4f98a2fe
RR
631 int ret;
632
a528910e
JW
633 __set_page_locked(page);
634 ret = __add_to_page_cache_locked(page, mapping, offset,
635 gfp_mask, &shadow);
636 if (unlikely(ret))
637 __clear_page_locked(page);
638 else {
639 /*
640 * The page might have been evicted from cache only
641 * recently, in which case it should be activated like
642 * any other repeatedly accessed page.
643 */
644 if (shadow && workingset_refault(shadow)) {
645 SetPageActive(page);
646 workingset_activation(page);
647 } else
648 ClearPageActive(page);
649 lru_cache_add(page);
650 }
1da177e4
LT
651 return ret;
652}
18bc0bbd 653EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 654
44110fe3 655#ifdef CONFIG_NUMA
2ae88149 656struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 657{
c0ff7453
MX
658 int n;
659 struct page *page;
660
44110fe3 661 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
662 unsigned int cpuset_mems_cookie;
663 do {
d26914d1 664 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
665 n = cpuset_mem_spread_node();
666 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 667 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 668
c0ff7453 669 return page;
44110fe3 670 }
2ae88149 671 return alloc_pages(gfp, 0);
44110fe3 672}
2ae88149 673EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
674#endif
675
1da177e4
LT
676/*
677 * In order to wait for pages to become available there must be
678 * waitqueues associated with pages. By using a hash table of
679 * waitqueues where the bucket discipline is to maintain all
680 * waiters on the same queue and wake all when any of the pages
681 * become available, and for the woken contexts to check to be
682 * sure the appropriate page became available, this saves space
683 * at a cost of "thundering herd" phenomena during rare hash
684 * collisions.
685 */
a4796e37 686wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
687{
688 const struct zone *zone = page_zone(page);
689
690 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
691}
a4796e37 692EXPORT_SYMBOL(page_waitqueue);
1da177e4 693
920c7a5d 694void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
695{
696 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
697
698 if (test_bit(bit_nr, &page->flags))
74316201 699 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
700 TASK_UNINTERRUPTIBLE);
701}
702EXPORT_SYMBOL(wait_on_page_bit);
703
f62e00cc
KM
704int wait_on_page_bit_killable(struct page *page, int bit_nr)
705{
706 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
707
708 if (!test_bit(bit_nr, &page->flags))
709 return 0;
710
711 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 712 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
713}
714
cbbce822
N
715int wait_on_page_bit_killable_timeout(struct page *page,
716 int bit_nr, unsigned long timeout)
717{
718 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
719
720 wait.key.timeout = jiffies + timeout;
721 if (!test_bit(bit_nr, &page->flags))
722 return 0;
723 return __wait_on_bit(page_waitqueue(page), &wait,
724 bit_wait_io_timeout, TASK_KILLABLE);
725}
726EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
727
385e1ca5
DH
728/**
729 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
730 * @page: Page defining the wait queue of interest
731 * @waiter: Waiter to add to the queue
385e1ca5
DH
732 *
733 * Add an arbitrary @waiter to the wait queue for the nominated @page.
734 */
735void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
736{
737 wait_queue_head_t *q = page_waitqueue(page);
738 unsigned long flags;
739
740 spin_lock_irqsave(&q->lock, flags);
741 __add_wait_queue(q, waiter);
742 spin_unlock_irqrestore(&q->lock, flags);
743}
744EXPORT_SYMBOL_GPL(add_page_wait_queue);
745
1da177e4 746/**
485bb99b 747 * unlock_page - unlock a locked page
1da177e4
LT
748 * @page: the page
749 *
750 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
751 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 752 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
753 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
754 *
8413ac9d
NP
755 * The mb is necessary to enforce ordering between the clear_bit and the read
756 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 757 */
920c7a5d 758void unlock_page(struct page *page)
1da177e4 759{
309381fe 760 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 761 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 762 smp_mb__after_atomic();
1da177e4
LT
763 wake_up_page(page, PG_locked);
764}
765EXPORT_SYMBOL(unlock_page);
766
485bb99b
RD
767/**
768 * end_page_writeback - end writeback against a page
769 * @page: the page
1da177e4
LT
770 */
771void end_page_writeback(struct page *page)
772{
888cf2db
MG
773 /*
774 * TestClearPageReclaim could be used here but it is an atomic
775 * operation and overkill in this particular case. Failing to
776 * shuffle a page marked for immediate reclaim is too mild to
777 * justify taking an atomic operation penalty at the end of
778 * ever page writeback.
779 */
780 if (PageReclaim(page)) {
781 ClearPageReclaim(page);
ac6aadb2 782 rotate_reclaimable_page(page);
888cf2db 783 }
ac6aadb2
MS
784
785 if (!test_clear_page_writeback(page))
786 BUG();
787
4e857c58 788 smp_mb__after_atomic();
1da177e4
LT
789 wake_up_page(page, PG_writeback);
790}
791EXPORT_SYMBOL(end_page_writeback);
792
57d99845
MW
793/*
794 * After completing I/O on a page, call this routine to update the page
795 * flags appropriately
796 */
797void page_endio(struct page *page, int rw, int err)
798{
799 if (rw == READ) {
800 if (!err) {
801 SetPageUptodate(page);
802 } else {
803 ClearPageUptodate(page);
804 SetPageError(page);
805 }
806 unlock_page(page);
807 } else { /* rw == WRITE */
808 if (err) {
809 SetPageError(page);
810 if (page->mapping)
811 mapping_set_error(page->mapping, err);
812 }
813 end_page_writeback(page);
814 }
815}
816EXPORT_SYMBOL_GPL(page_endio);
817
485bb99b
RD
818/**
819 * __lock_page - get a lock on the page, assuming we need to sleep to get it
820 * @page: the page to lock
1da177e4 821 */
920c7a5d 822void __lock_page(struct page *page)
1da177e4
LT
823{
824 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
825
74316201 826 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
827 TASK_UNINTERRUPTIBLE);
828}
829EXPORT_SYMBOL(__lock_page);
830
b5606c2d 831int __lock_page_killable(struct page *page)
2687a356
MW
832{
833 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
834
835 return __wait_on_bit_lock(page_waitqueue(page), &wait,
74316201 836 bit_wait_io, TASK_KILLABLE);
2687a356 837}
18bc0bbd 838EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 839
9a95f3cf
PC
840/*
841 * Return values:
842 * 1 - page is locked; mmap_sem is still held.
843 * 0 - page is not locked.
844 * mmap_sem has been released (up_read()), unless flags had both
845 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
846 * which case mmap_sem is still held.
847 *
848 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
849 * with the page locked and the mmap_sem unperturbed.
850 */
d065bd81
ML
851int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
852 unsigned int flags)
853{
37b23e05
KM
854 if (flags & FAULT_FLAG_ALLOW_RETRY) {
855 /*
856 * CAUTION! In this case, mmap_sem is not released
857 * even though return 0.
858 */
859 if (flags & FAULT_FLAG_RETRY_NOWAIT)
860 return 0;
861
862 up_read(&mm->mmap_sem);
863 if (flags & FAULT_FLAG_KILLABLE)
864 wait_on_page_locked_killable(page);
865 else
318b275f 866 wait_on_page_locked(page);
d065bd81 867 return 0;
37b23e05
KM
868 } else {
869 if (flags & FAULT_FLAG_KILLABLE) {
870 int ret;
871
872 ret = __lock_page_killable(page);
873 if (ret) {
874 up_read(&mm->mmap_sem);
875 return 0;
876 }
877 } else
878 __lock_page(page);
879 return 1;
d065bd81
ML
880 }
881}
882
e7b563bb
JW
883/**
884 * page_cache_next_hole - find the next hole (not-present entry)
885 * @mapping: mapping
886 * @index: index
887 * @max_scan: maximum range to search
888 *
889 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
890 * lowest indexed hole.
891 *
892 * Returns: the index of the hole if found, otherwise returns an index
893 * outside of the set specified (in which case 'return - index >=
894 * max_scan' will be true). In rare cases of index wrap-around, 0 will
895 * be returned.
896 *
897 * page_cache_next_hole may be called under rcu_read_lock. However,
898 * like radix_tree_gang_lookup, this will not atomically search a
899 * snapshot of the tree at a single point in time. For example, if a
900 * hole is created at index 5, then subsequently a hole is created at
901 * index 10, page_cache_next_hole covering both indexes may return 10
902 * if called under rcu_read_lock.
903 */
904pgoff_t page_cache_next_hole(struct address_space *mapping,
905 pgoff_t index, unsigned long max_scan)
906{
907 unsigned long i;
908
909 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
910 struct page *page;
911
912 page = radix_tree_lookup(&mapping->page_tree, index);
913 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
914 break;
915 index++;
916 if (index == 0)
917 break;
918 }
919
920 return index;
921}
922EXPORT_SYMBOL(page_cache_next_hole);
923
924/**
925 * page_cache_prev_hole - find the prev hole (not-present entry)
926 * @mapping: mapping
927 * @index: index
928 * @max_scan: maximum range to search
929 *
930 * Search backwards in the range [max(index-max_scan+1, 0), index] for
931 * the first hole.
932 *
933 * Returns: the index of the hole if found, otherwise returns an index
934 * outside of the set specified (in which case 'index - return >=
935 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
936 * will be returned.
937 *
938 * page_cache_prev_hole may be called under rcu_read_lock. However,
939 * like radix_tree_gang_lookup, this will not atomically search a
940 * snapshot of the tree at a single point in time. For example, if a
941 * hole is created at index 10, then subsequently a hole is created at
942 * index 5, page_cache_prev_hole covering both indexes may return 5 if
943 * called under rcu_read_lock.
944 */
945pgoff_t page_cache_prev_hole(struct address_space *mapping,
946 pgoff_t index, unsigned long max_scan)
947{
948 unsigned long i;
949
950 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
951 struct page *page;
952
953 page = radix_tree_lookup(&mapping->page_tree, index);
954 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
955 break;
956 index--;
957 if (index == ULONG_MAX)
958 break;
959 }
960
961 return index;
962}
963EXPORT_SYMBOL(page_cache_prev_hole);
964
485bb99b 965/**
0cd6144a 966 * find_get_entry - find and get a page cache entry
485bb99b 967 * @mapping: the address_space to search
0cd6144a
JW
968 * @offset: the page cache index
969 *
970 * Looks up the page cache slot at @mapping & @offset. If there is a
971 * page cache page, it is returned with an increased refcount.
485bb99b 972 *
139b6a6f
JW
973 * If the slot holds a shadow entry of a previously evicted page, or a
974 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
975 *
976 * Otherwise, %NULL is returned.
1da177e4 977 */
0cd6144a 978struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 979{
a60637c8 980 void **pagep;
1da177e4
LT
981 struct page *page;
982
a60637c8
NP
983 rcu_read_lock();
984repeat:
985 page = NULL;
986 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
987 if (pagep) {
988 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
989 if (unlikely(!page))
990 goto out;
a2c16d6c 991 if (radix_tree_exception(page)) {
8079b1c8
HD
992 if (radix_tree_deref_retry(page))
993 goto repeat;
994 /*
139b6a6f
JW
995 * A shadow entry of a recently evicted page,
996 * or a swap entry from shmem/tmpfs. Return
997 * it without attempting to raise page count.
8079b1c8
HD
998 */
999 goto out;
a2c16d6c 1000 }
a60637c8
NP
1001 if (!page_cache_get_speculative(page))
1002 goto repeat;
1003
1004 /*
1005 * Has the page moved?
1006 * This is part of the lockless pagecache protocol. See
1007 * include/linux/pagemap.h for details.
1008 */
1009 if (unlikely(page != *pagep)) {
1010 page_cache_release(page);
1011 goto repeat;
1012 }
1013 }
27d20fdd 1014out:
a60637c8
NP
1015 rcu_read_unlock();
1016
1da177e4
LT
1017 return page;
1018}
0cd6144a 1019EXPORT_SYMBOL(find_get_entry);
1da177e4 1020
0cd6144a
JW
1021/**
1022 * find_lock_entry - locate, pin and lock a page cache entry
1023 * @mapping: the address_space to search
1024 * @offset: the page cache index
1025 *
1026 * Looks up the page cache slot at @mapping & @offset. If there is a
1027 * page cache page, it is returned locked and with an increased
1028 * refcount.
1029 *
139b6a6f
JW
1030 * If the slot holds a shadow entry of a previously evicted page, or a
1031 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1032 *
1033 * Otherwise, %NULL is returned.
1034 *
1035 * find_lock_entry() may sleep.
1036 */
1037struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1038{
1039 struct page *page;
1040
1da177e4 1041repeat:
0cd6144a 1042 page = find_get_entry(mapping, offset);
a2c16d6c 1043 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1044 lock_page(page);
1045 /* Has the page been truncated? */
1046 if (unlikely(page->mapping != mapping)) {
1047 unlock_page(page);
1048 page_cache_release(page);
1049 goto repeat;
1da177e4 1050 }
309381fe 1051 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1052 }
1da177e4
LT
1053 return page;
1054}
0cd6144a
JW
1055EXPORT_SYMBOL(find_lock_entry);
1056
1057/**
2457aec6 1058 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1059 * @mapping: the address_space to search
1060 * @offset: the page index
2457aec6 1061 * @fgp_flags: PCG flags
45f87de5 1062 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1063 *
2457aec6 1064 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1065 *
75325189 1066 * PCG flags modify how the page is returned.
0cd6144a 1067 *
2457aec6
MG
1068 * FGP_ACCESSED: the page will be marked accessed
1069 * FGP_LOCK: Page is return locked
1070 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1071 * @gfp_mask and added to the page cache and the VM's LRU
1072 * list. The page is returned locked and with an increased
1073 * refcount. Otherwise, %NULL is returned.
1da177e4 1074 *
2457aec6
MG
1075 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1076 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1077 *
2457aec6 1078 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1079 */
2457aec6 1080struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1081 int fgp_flags, gfp_t gfp_mask)
1da177e4 1082{
eb2be189 1083 struct page *page;
2457aec6 1084
1da177e4 1085repeat:
2457aec6
MG
1086 page = find_get_entry(mapping, offset);
1087 if (radix_tree_exceptional_entry(page))
1088 page = NULL;
1089 if (!page)
1090 goto no_page;
1091
1092 if (fgp_flags & FGP_LOCK) {
1093 if (fgp_flags & FGP_NOWAIT) {
1094 if (!trylock_page(page)) {
1095 page_cache_release(page);
1096 return NULL;
1097 }
1098 } else {
1099 lock_page(page);
1100 }
1101
1102 /* Has the page been truncated? */
1103 if (unlikely(page->mapping != mapping)) {
1104 unlock_page(page);
1105 page_cache_release(page);
1106 goto repeat;
1107 }
1108 VM_BUG_ON_PAGE(page->index != offset, page);
1109 }
1110
1111 if (page && (fgp_flags & FGP_ACCESSED))
1112 mark_page_accessed(page);
1113
1114no_page:
1115 if (!page && (fgp_flags & FGP_CREAT)) {
1116 int err;
1117 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1118 gfp_mask |= __GFP_WRITE;
1119 if (fgp_flags & FGP_NOFS)
1120 gfp_mask &= ~__GFP_FS;
2457aec6 1121
45f87de5 1122 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1123 if (!page)
1124 return NULL;
2457aec6
MG
1125
1126 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1127 fgp_flags |= FGP_LOCK;
1128
eb39d618 1129 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1130 if (fgp_flags & FGP_ACCESSED)
eb39d618 1131 __SetPageReferenced(page);
2457aec6 1132
45f87de5
MH
1133 err = add_to_page_cache_lru(page, mapping, offset,
1134 gfp_mask & GFP_RECLAIM_MASK);
eb2be189
NP
1135 if (unlikely(err)) {
1136 page_cache_release(page);
1137 page = NULL;
1138 if (err == -EEXIST)
1139 goto repeat;
1da177e4 1140 }
1da177e4 1141 }
2457aec6 1142
1da177e4
LT
1143 return page;
1144}
2457aec6 1145EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1146
0cd6144a
JW
1147/**
1148 * find_get_entries - gang pagecache lookup
1149 * @mapping: The address_space to search
1150 * @start: The starting page cache index
1151 * @nr_entries: The maximum number of entries
1152 * @entries: Where the resulting entries are placed
1153 * @indices: The cache indices corresponding to the entries in @entries
1154 *
1155 * find_get_entries() will search for and return a group of up to
1156 * @nr_entries entries in the mapping. The entries are placed at
1157 * @entries. find_get_entries() takes a reference against any actual
1158 * pages it returns.
1159 *
1160 * The search returns a group of mapping-contiguous page cache entries
1161 * with ascending indexes. There may be holes in the indices due to
1162 * not-present pages.
1163 *
139b6a6f
JW
1164 * Any shadow entries of evicted pages, or swap entries from
1165 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1166 *
1167 * find_get_entries() returns the number of pages and shadow entries
1168 * which were found.
1169 */
1170unsigned find_get_entries(struct address_space *mapping,
1171 pgoff_t start, unsigned int nr_entries,
1172 struct page **entries, pgoff_t *indices)
1173{
1174 void **slot;
1175 unsigned int ret = 0;
1176 struct radix_tree_iter iter;
1177
1178 if (!nr_entries)
1179 return 0;
1180
1181 rcu_read_lock();
1182restart:
1183 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1184 struct page *page;
1185repeat:
1186 page = radix_tree_deref_slot(slot);
1187 if (unlikely(!page))
1188 continue;
1189 if (radix_tree_exception(page)) {
1190 if (radix_tree_deref_retry(page))
1191 goto restart;
1192 /*
139b6a6f
JW
1193 * A shadow entry of a recently evicted page,
1194 * or a swap entry from shmem/tmpfs. Return
1195 * it without attempting to raise page count.
0cd6144a
JW
1196 */
1197 goto export;
1198 }
1199 if (!page_cache_get_speculative(page))
1200 goto repeat;
1201
1202 /* Has the page moved? */
1203 if (unlikely(page != *slot)) {
1204 page_cache_release(page);
1205 goto repeat;
1206 }
1207export:
1208 indices[ret] = iter.index;
1209 entries[ret] = page;
1210 if (++ret == nr_entries)
1211 break;
1212 }
1213 rcu_read_unlock();
1214 return ret;
1215}
1216
1da177e4
LT
1217/**
1218 * find_get_pages - gang pagecache lookup
1219 * @mapping: The address_space to search
1220 * @start: The starting page index
1221 * @nr_pages: The maximum number of pages
1222 * @pages: Where the resulting pages are placed
1223 *
1224 * find_get_pages() will search for and return a group of up to
1225 * @nr_pages pages in the mapping. The pages are placed at @pages.
1226 * find_get_pages() takes a reference against the returned pages.
1227 *
1228 * The search returns a group of mapping-contiguous pages with ascending
1229 * indexes. There may be holes in the indices due to not-present pages.
1230 *
1231 * find_get_pages() returns the number of pages which were found.
1232 */
1233unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1234 unsigned int nr_pages, struct page **pages)
1235{
0fc9d104
KK
1236 struct radix_tree_iter iter;
1237 void **slot;
1238 unsigned ret = 0;
1239
1240 if (unlikely(!nr_pages))
1241 return 0;
a60637c8
NP
1242
1243 rcu_read_lock();
1244restart:
0fc9d104 1245 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1246 struct page *page;
1247repeat:
0fc9d104 1248 page = radix_tree_deref_slot(slot);
a60637c8
NP
1249 if (unlikely(!page))
1250 continue;
9d8aa4ea 1251
a2c16d6c 1252 if (radix_tree_exception(page)) {
8079b1c8
HD
1253 if (radix_tree_deref_retry(page)) {
1254 /*
1255 * Transient condition which can only trigger
1256 * when entry at index 0 moves out of or back
1257 * to root: none yet gotten, safe to restart.
1258 */
0fc9d104 1259 WARN_ON(iter.index);
8079b1c8
HD
1260 goto restart;
1261 }
a2c16d6c 1262 /*
139b6a6f
JW
1263 * A shadow entry of a recently evicted page,
1264 * or a swap entry from shmem/tmpfs. Skip
1265 * over it.
a2c16d6c 1266 */
8079b1c8 1267 continue;
27d20fdd 1268 }
a60637c8
NP
1269
1270 if (!page_cache_get_speculative(page))
1271 goto repeat;
1272
1273 /* Has the page moved? */
0fc9d104 1274 if (unlikely(page != *slot)) {
a60637c8
NP
1275 page_cache_release(page);
1276 goto repeat;
1277 }
1da177e4 1278
a60637c8 1279 pages[ret] = page;
0fc9d104
KK
1280 if (++ret == nr_pages)
1281 break;
a60637c8 1282 }
5b280c0c 1283
a60637c8 1284 rcu_read_unlock();
1da177e4
LT
1285 return ret;
1286}
1287
ebf43500
JA
1288/**
1289 * find_get_pages_contig - gang contiguous pagecache lookup
1290 * @mapping: The address_space to search
1291 * @index: The starting page index
1292 * @nr_pages: The maximum number of pages
1293 * @pages: Where the resulting pages are placed
1294 *
1295 * find_get_pages_contig() works exactly like find_get_pages(), except
1296 * that the returned number of pages are guaranteed to be contiguous.
1297 *
1298 * find_get_pages_contig() returns the number of pages which were found.
1299 */
1300unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1301 unsigned int nr_pages, struct page **pages)
1302{
0fc9d104
KK
1303 struct radix_tree_iter iter;
1304 void **slot;
1305 unsigned int ret = 0;
1306
1307 if (unlikely(!nr_pages))
1308 return 0;
a60637c8
NP
1309
1310 rcu_read_lock();
1311restart:
0fc9d104 1312 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1313 struct page *page;
1314repeat:
0fc9d104
KK
1315 page = radix_tree_deref_slot(slot);
1316 /* The hole, there no reason to continue */
a60637c8 1317 if (unlikely(!page))
0fc9d104 1318 break;
9d8aa4ea 1319
a2c16d6c 1320 if (radix_tree_exception(page)) {
8079b1c8
HD
1321 if (radix_tree_deref_retry(page)) {
1322 /*
1323 * Transient condition which can only trigger
1324 * when entry at index 0 moves out of or back
1325 * to root: none yet gotten, safe to restart.
1326 */
1327 goto restart;
1328 }
a2c16d6c 1329 /*
139b6a6f
JW
1330 * A shadow entry of a recently evicted page,
1331 * or a swap entry from shmem/tmpfs. Stop
1332 * looking for contiguous pages.
a2c16d6c 1333 */
8079b1c8 1334 break;
a2c16d6c 1335 }
ebf43500 1336
a60637c8
NP
1337 if (!page_cache_get_speculative(page))
1338 goto repeat;
1339
1340 /* Has the page moved? */
0fc9d104 1341 if (unlikely(page != *slot)) {
a60637c8
NP
1342 page_cache_release(page);
1343 goto repeat;
1344 }
1345
9cbb4cb2
NP
1346 /*
1347 * must check mapping and index after taking the ref.
1348 * otherwise we can get both false positives and false
1349 * negatives, which is just confusing to the caller.
1350 */
0fc9d104 1351 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1352 page_cache_release(page);
1353 break;
1354 }
1355
a60637c8 1356 pages[ret] = page;
0fc9d104
KK
1357 if (++ret == nr_pages)
1358 break;
ebf43500 1359 }
a60637c8
NP
1360 rcu_read_unlock();
1361 return ret;
ebf43500 1362}
ef71c15c 1363EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1364
485bb99b
RD
1365/**
1366 * find_get_pages_tag - find and return pages that match @tag
1367 * @mapping: the address_space to search
1368 * @index: the starting page index
1369 * @tag: the tag index
1370 * @nr_pages: the maximum number of pages
1371 * @pages: where the resulting pages are placed
1372 *
1da177e4 1373 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1374 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1375 */
1376unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1377 int tag, unsigned int nr_pages, struct page **pages)
1378{
0fc9d104
KK
1379 struct radix_tree_iter iter;
1380 void **slot;
1381 unsigned ret = 0;
1382
1383 if (unlikely(!nr_pages))
1384 return 0;
a60637c8
NP
1385
1386 rcu_read_lock();
1387restart:
0fc9d104
KK
1388 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1389 &iter, *index, tag) {
a60637c8
NP
1390 struct page *page;
1391repeat:
0fc9d104 1392 page = radix_tree_deref_slot(slot);
a60637c8
NP
1393 if (unlikely(!page))
1394 continue;
9d8aa4ea 1395
a2c16d6c 1396 if (radix_tree_exception(page)) {
8079b1c8
HD
1397 if (radix_tree_deref_retry(page)) {
1398 /*
1399 * Transient condition which can only trigger
1400 * when entry at index 0 moves out of or back
1401 * to root: none yet gotten, safe to restart.
1402 */
1403 goto restart;
1404 }
a2c16d6c 1405 /*
139b6a6f
JW
1406 * A shadow entry of a recently evicted page.
1407 *
1408 * Those entries should never be tagged, but
1409 * this tree walk is lockless and the tags are
1410 * looked up in bulk, one radix tree node at a
1411 * time, so there is a sizable window for page
1412 * reclaim to evict a page we saw tagged.
1413 *
1414 * Skip over it.
a2c16d6c 1415 */
139b6a6f 1416 continue;
a2c16d6c 1417 }
a60637c8
NP
1418
1419 if (!page_cache_get_speculative(page))
1420 goto repeat;
1421
1422 /* Has the page moved? */
0fc9d104 1423 if (unlikely(page != *slot)) {
a60637c8
NP
1424 page_cache_release(page);
1425 goto repeat;
1426 }
1427
1428 pages[ret] = page;
0fc9d104
KK
1429 if (++ret == nr_pages)
1430 break;
a60637c8 1431 }
5b280c0c 1432
a60637c8 1433 rcu_read_unlock();
1da177e4 1434
1da177e4
LT
1435 if (ret)
1436 *index = pages[ret - 1]->index + 1;
a60637c8 1437
1da177e4
LT
1438 return ret;
1439}
ef71c15c 1440EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1441
76d42bd9
WF
1442/*
1443 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1444 * a _large_ part of the i/o request. Imagine the worst scenario:
1445 *
1446 * ---R__________________________________________B__________
1447 * ^ reading here ^ bad block(assume 4k)
1448 *
1449 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1450 * => failing the whole request => read(R) => read(R+1) =>
1451 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1452 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1453 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1454 *
1455 * It is going insane. Fix it by quickly scaling down the readahead size.
1456 */
1457static void shrink_readahead_size_eio(struct file *filp,
1458 struct file_ra_state *ra)
1459{
76d42bd9 1460 ra->ra_pages /= 4;
76d42bd9
WF
1461}
1462
485bb99b 1463/**
36e78914 1464 * do_generic_file_read - generic file read routine
485bb99b
RD
1465 * @filp: the file to read
1466 * @ppos: current file position
6e58e79d
AV
1467 * @iter: data destination
1468 * @written: already copied
485bb99b 1469 *
1da177e4 1470 * This is a generic file read routine, and uses the
485bb99b 1471 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1472 *
1473 * This is really ugly. But the goto's actually try to clarify some
1474 * of the logic when it comes to error handling etc.
1da177e4 1475 */
6e58e79d
AV
1476static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1477 struct iov_iter *iter, ssize_t written)
1da177e4 1478{
36e78914 1479 struct address_space *mapping = filp->f_mapping;
1da177e4 1480 struct inode *inode = mapping->host;
36e78914 1481 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1482 pgoff_t index;
1483 pgoff_t last_index;
1484 pgoff_t prev_index;
1485 unsigned long offset; /* offset into pagecache page */
ec0f1637 1486 unsigned int prev_offset;
6e58e79d 1487 int error = 0;
1da177e4 1488
1da177e4 1489 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1490 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1491 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1492 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1493 offset = *ppos & ~PAGE_CACHE_MASK;
1494
1da177e4
LT
1495 for (;;) {
1496 struct page *page;
57f6b96c 1497 pgoff_t end_index;
a32ea1e1 1498 loff_t isize;
1da177e4
LT
1499 unsigned long nr, ret;
1500
1da177e4 1501 cond_resched();
1da177e4
LT
1502find_page:
1503 page = find_get_page(mapping, index);
3ea89ee8 1504 if (!page) {
cf914a7d 1505 page_cache_sync_readahead(mapping,
7ff81078 1506 ra, filp,
3ea89ee8
FW
1507 index, last_index - index);
1508 page = find_get_page(mapping, index);
1509 if (unlikely(page == NULL))
1510 goto no_cached_page;
1511 }
1512 if (PageReadahead(page)) {
cf914a7d 1513 page_cache_async_readahead(mapping,
7ff81078 1514 ra, filp, page,
3ea89ee8 1515 index, last_index - index);
1da177e4 1516 }
8ab22b9a
HH
1517 if (!PageUptodate(page)) {
1518 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1519 !mapping->a_ops->is_partially_uptodate)
1520 goto page_not_up_to_date;
529ae9aa 1521 if (!trylock_page(page))
8ab22b9a 1522 goto page_not_up_to_date;
8d056cb9
DH
1523 /* Did it get truncated before we got the lock? */
1524 if (!page->mapping)
1525 goto page_not_up_to_date_locked;
8ab22b9a 1526 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1527 offset, iter->count))
8ab22b9a
HH
1528 goto page_not_up_to_date_locked;
1529 unlock_page(page);
1530 }
1da177e4 1531page_ok:
a32ea1e1
N
1532 /*
1533 * i_size must be checked after we know the page is Uptodate.
1534 *
1535 * Checking i_size after the check allows us to calculate
1536 * the correct value for "nr", which means the zero-filled
1537 * part of the page is not copied back to userspace (unless
1538 * another truncate extends the file - this is desired though).
1539 */
1540
1541 isize = i_size_read(inode);
1542 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1543 if (unlikely(!isize || index > end_index)) {
1544 page_cache_release(page);
1545 goto out;
1546 }
1547
1548 /* nr is the maximum number of bytes to copy from this page */
1549 nr = PAGE_CACHE_SIZE;
1550 if (index == end_index) {
1551 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1552 if (nr <= offset) {
1553 page_cache_release(page);
1554 goto out;
1555 }
1556 }
1557 nr = nr - offset;
1da177e4
LT
1558
1559 /* If users can be writing to this page using arbitrary
1560 * virtual addresses, take care about potential aliasing
1561 * before reading the page on the kernel side.
1562 */
1563 if (mapping_writably_mapped(mapping))
1564 flush_dcache_page(page);
1565
1566 /*
ec0f1637
JK
1567 * When a sequential read accesses a page several times,
1568 * only mark it as accessed the first time.
1da177e4 1569 */
ec0f1637 1570 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1571 mark_page_accessed(page);
1572 prev_index = index;
1573
1574 /*
1575 * Ok, we have the page, and it's up-to-date, so
1576 * now we can copy it to user space...
1da177e4 1577 */
6e58e79d
AV
1578
1579 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1580 offset += ret;
1581 index += offset >> PAGE_CACHE_SHIFT;
1582 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1583 prev_offset = offset;
1da177e4
LT
1584
1585 page_cache_release(page);
6e58e79d
AV
1586 written += ret;
1587 if (!iov_iter_count(iter))
1588 goto out;
1589 if (ret < nr) {
1590 error = -EFAULT;
1591 goto out;
1592 }
1593 continue;
1da177e4
LT
1594
1595page_not_up_to_date:
1596 /* Get exclusive access to the page ... */
85462323
ON
1597 error = lock_page_killable(page);
1598 if (unlikely(error))
1599 goto readpage_error;
1da177e4 1600
8ab22b9a 1601page_not_up_to_date_locked:
da6052f7 1602 /* Did it get truncated before we got the lock? */
1da177e4
LT
1603 if (!page->mapping) {
1604 unlock_page(page);
1605 page_cache_release(page);
1606 continue;
1607 }
1608
1609 /* Did somebody else fill it already? */
1610 if (PageUptodate(page)) {
1611 unlock_page(page);
1612 goto page_ok;
1613 }
1614
1615readpage:
91803b49
JM
1616 /*
1617 * A previous I/O error may have been due to temporary
1618 * failures, eg. multipath errors.
1619 * PG_error will be set again if readpage fails.
1620 */
1621 ClearPageError(page);
1da177e4
LT
1622 /* Start the actual read. The read will unlock the page. */
1623 error = mapping->a_ops->readpage(filp, page);
1624
994fc28c
ZB
1625 if (unlikely(error)) {
1626 if (error == AOP_TRUNCATED_PAGE) {
1627 page_cache_release(page);
6e58e79d 1628 error = 0;
994fc28c
ZB
1629 goto find_page;
1630 }
1da177e4 1631 goto readpage_error;
994fc28c 1632 }
1da177e4
LT
1633
1634 if (!PageUptodate(page)) {
85462323
ON
1635 error = lock_page_killable(page);
1636 if (unlikely(error))
1637 goto readpage_error;
1da177e4
LT
1638 if (!PageUptodate(page)) {
1639 if (page->mapping == NULL) {
1640 /*
2ecdc82e 1641 * invalidate_mapping_pages got it
1da177e4
LT
1642 */
1643 unlock_page(page);
1644 page_cache_release(page);
1645 goto find_page;
1646 }
1647 unlock_page(page);
7ff81078 1648 shrink_readahead_size_eio(filp, ra);
85462323
ON
1649 error = -EIO;
1650 goto readpage_error;
1da177e4
LT
1651 }
1652 unlock_page(page);
1653 }
1654
1da177e4
LT
1655 goto page_ok;
1656
1657readpage_error:
1658 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1659 page_cache_release(page);
1660 goto out;
1661
1662no_cached_page:
1663 /*
1664 * Ok, it wasn't cached, so we need to create a new
1665 * page..
1666 */
eb2be189
NP
1667 page = page_cache_alloc_cold(mapping);
1668 if (!page) {
6e58e79d 1669 error = -ENOMEM;
eb2be189 1670 goto out;
1da177e4 1671 }
eb2be189 1672 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1673 index, GFP_KERNEL);
1674 if (error) {
eb2be189 1675 page_cache_release(page);
6e58e79d
AV
1676 if (error == -EEXIST) {
1677 error = 0;
1da177e4 1678 goto find_page;
6e58e79d 1679 }
1da177e4
LT
1680 goto out;
1681 }
1da177e4
LT
1682 goto readpage;
1683 }
1684
1685out:
7ff81078
FW
1686 ra->prev_pos = prev_index;
1687 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1688 ra->prev_pos |= prev_offset;
1da177e4 1689
f4e6b498 1690 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1691 file_accessed(filp);
6e58e79d 1692 return written ? written : error;
1da177e4
LT
1693}
1694
485bb99b 1695/**
6abd2322 1696 * generic_file_read_iter - generic filesystem read routine
485bb99b 1697 * @iocb: kernel I/O control block
6abd2322 1698 * @iter: destination for the data read
485bb99b 1699 *
6abd2322 1700 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1701 * that can use the page cache directly.
1702 */
1703ssize_t
ed978a81 1704generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1705{
ed978a81 1706 struct file *file = iocb->ki_filp;
cb66a7a1 1707 ssize_t retval = 0;
543ade1f 1708 loff_t *ppos = &iocb->ki_pos;
ed978a81 1709 loff_t pos = *ppos;
1da177e4 1710
2ba48ce5 1711 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1712 struct address_space *mapping = file->f_mapping;
1713 struct inode *inode = mapping->host;
1714 size_t count = iov_iter_count(iter);
543ade1f 1715 loff_t size;
1da177e4 1716
1da177e4
LT
1717 if (!count)
1718 goto out; /* skip atime */
1719 size = i_size_read(inode);
9fe55eea 1720 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1721 pos + count - 1);
9fe55eea 1722 if (!retval) {
ed978a81 1723 struct iov_iter data = *iter;
22c6186e 1724 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
9fe55eea 1725 }
d8d3d94b 1726
9fe55eea
SW
1727 if (retval > 0) {
1728 *ppos = pos + retval;
ed978a81 1729 iov_iter_advance(iter, retval);
9fe55eea 1730 }
66f998f6 1731
9fe55eea
SW
1732 /*
1733 * Btrfs can have a short DIO read if we encounter
1734 * compressed extents, so if there was an error, or if
1735 * we've already read everything we wanted to, or if
1736 * there was a short read because we hit EOF, go ahead
1737 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1738 * the rest of the read. Buffered reads will not work for
1739 * DAX files, so don't bother trying.
9fe55eea 1740 */
fbbbad4b
MW
1741 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1742 IS_DAX(inode)) {
ed978a81 1743 file_accessed(file);
9fe55eea 1744 goto out;
0e0bcae3 1745 }
1da177e4
LT
1746 }
1747
ed978a81 1748 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1749out:
1750 return retval;
1751}
ed978a81 1752EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1753
1da177e4 1754#ifdef CONFIG_MMU
485bb99b
RD
1755/**
1756 * page_cache_read - adds requested page to the page cache if not already there
1757 * @file: file to read
1758 * @offset: page index
1759 *
1da177e4
LT
1760 * This adds the requested page to the page cache if it isn't already there,
1761 * and schedules an I/O to read in its contents from disk.
1762 */
920c7a5d 1763static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1764{
1765 struct address_space *mapping = file->f_mapping;
99dadfdd 1766 struct page *page;
994fc28c 1767 int ret;
1da177e4 1768
994fc28c
ZB
1769 do {
1770 page = page_cache_alloc_cold(mapping);
1771 if (!page)
1772 return -ENOMEM;
1773
1774 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1775 if (ret == 0)
1776 ret = mapping->a_ops->readpage(file, page);
1777 else if (ret == -EEXIST)
1778 ret = 0; /* losing race to add is OK */
1da177e4 1779
1da177e4 1780 page_cache_release(page);
1da177e4 1781
994fc28c 1782 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1783
994fc28c 1784 return ret;
1da177e4
LT
1785}
1786
1787#define MMAP_LOTSAMISS (100)
1788
ef00e08e
LT
1789/*
1790 * Synchronous readahead happens when we don't even find
1791 * a page in the page cache at all.
1792 */
1793static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1794 struct file_ra_state *ra,
1795 struct file *file,
1796 pgoff_t offset)
1797{
1798 unsigned long ra_pages;
1799 struct address_space *mapping = file->f_mapping;
1800
1801 /* If we don't want any read-ahead, don't bother */
64363aad 1802 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1803 return;
275b12bf
WF
1804 if (!ra->ra_pages)
1805 return;
ef00e08e 1806
64363aad 1807 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1808 page_cache_sync_readahead(mapping, ra, file, offset,
1809 ra->ra_pages);
ef00e08e
LT
1810 return;
1811 }
1812
207d04ba
AK
1813 /* Avoid banging the cache line if not needed */
1814 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1815 ra->mmap_miss++;
1816
1817 /*
1818 * Do we miss much more than hit in this file? If so,
1819 * stop bothering with read-ahead. It will only hurt.
1820 */
1821 if (ra->mmap_miss > MMAP_LOTSAMISS)
1822 return;
1823
d30a1100
WF
1824 /*
1825 * mmap read-around
1826 */
ef00e08e 1827 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1828 ra->start = max_t(long, 0, offset - ra_pages / 2);
1829 ra->size = ra_pages;
2cbea1d3 1830 ra->async_size = ra_pages / 4;
275b12bf 1831 ra_submit(ra, mapping, file);
ef00e08e
LT
1832}
1833
1834/*
1835 * Asynchronous readahead happens when we find the page and PG_readahead,
1836 * so we want to possibly extend the readahead further..
1837 */
1838static void do_async_mmap_readahead(struct vm_area_struct *vma,
1839 struct file_ra_state *ra,
1840 struct file *file,
1841 struct page *page,
1842 pgoff_t offset)
1843{
1844 struct address_space *mapping = file->f_mapping;
1845
1846 /* If we don't want any read-ahead, don't bother */
64363aad 1847 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1848 return;
1849 if (ra->mmap_miss > 0)
1850 ra->mmap_miss--;
1851 if (PageReadahead(page))
2fad6f5d
WF
1852 page_cache_async_readahead(mapping, ra, file,
1853 page, offset, ra->ra_pages);
ef00e08e
LT
1854}
1855
485bb99b 1856/**
54cb8821 1857 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1858 * @vma: vma in which the fault was taken
1859 * @vmf: struct vm_fault containing details of the fault
485bb99b 1860 *
54cb8821 1861 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1862 * mapped memory region to read in file data during a page fault.
1863 *
1864 * The goto's are kind of ugly, but this streamlines the normal case of having
1865 * it in the page cache, and handles the special cases reasonably without
1866 * having a lot of duplicated code.
9a95f3cf
PC
1867 *
1868 * vma->vm_mm->mmap_sem must be held on entry.
1869 *
1870 * If our return value has VM_FAULT_RETRY set, it's because
1871 * lock_page_or_retry() returned 0.
1872 * The mmap_sem has usually been released in this case.
1873 * See __lock_page_or_retry() for the exception.
1874 *
1875 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1876 * has not been released.
1877 *
1878 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 1879 */
d0217ac0 1880int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1881{
1882 int error;
54cb8821 1883 struct file *file = vma->vm_file;
1da177e4
LT
1884 struct address_space *mapping = file->f_mapping;
1885 struct file_ra_state *ra = &file->f_ra;
1886 struct inode *inode = mapping->host;
ef00e08e 1887 pgoff_t offset = vmf->pgoff;
1da177e4 1888 struct page *page;
99e3e53f 1889 loff_t size;
83c54070 1890 int ret = 0;
1da177e4 1891
99e3e53f
KS
1892 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1893 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1894 return VM_FAULT_SIGBUS;
1da177e4 1895
1da177e4 1896 /*
49426420 1897 * Do we have something in the page cache already?
1da177e4 1898 */
ef00e08e 1899 page = find_get_page(mapping, offset);
45cac65b 1900 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1901 /*
ef00e08e
LT
1902 * We found the page, so try async readahead before
1903 * waiting for the lock.
1da177e4 1904 */
ef00e08e 1905 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1906 } else if (!page) {
ef00e08e
LT
1907 /* No page in the page cache at all */
1908 do_sync_mmap_readahead(vma, ra, file, offset);
1909 count_vm_event(PGMAJFAULT);
456f998e 1910 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1911 ret = VM_FAULT_MAJOR;
1912retry_find:
b522c94d 1913 page = find_get_page(mapping, offset);
1da177e4
LT
1914 if (!page)
1915 goto no_cached_page;
1916 }
1917
d88c0922
ML
1918 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1919 page_cache_release(page);
d065bd81 1920 return ret | VM_FAULT_RETRY;
d88c0922 1921 }
b522c94d
ML
1922
1923 /* Did it get truncated? */
1924 if (unlikely(page->mapping != mapping)) {
1925 unlock_page(page);
1926 put_page(page);
1927 goto retry_find;
1928 }
309381fe 1929 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1930
1da177e4 1931 /*
d00806b1
NP
1932 * We have a locked page in the page cache, now we need to check
1933 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1934 */
d00806b1 1935 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1936 goto page_not_uptodate;
1937
ef00e08e
LT
1938 /*
1939 * Found the page and have a reference on it.
1940 * We must recheck i_size under page lock.
1941 */
99e3e53f
KS
1942 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1943 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1944 unlock_page(page);
745ad48e 1945 page_cache_release(page);
5307cc1a 1946 return VM_FAULT_SIGBUS;
d00806b1
NP
1947 }
1948
d0217ac0 1949 vmf->page = page;
83c54070 1950 return ret | VM_FAULT_LOCKED;
1da177e4 1951
1da177e4
LT
1952no_cached_page:
1953 /*
1954 * We're only likely to ever get here if MADV_RANDOM is in
1955 * effect.
1956 */
ef00e08e 1957 error = page_cache_read(file, offset);
1da177e4
LT
1958
1959 /*
1960 * The page we want has now been added to the page cache.
1961 * In the unlikely event that someone removed it in the
1962 * meantime, we'll just come back here and read it again.
1963 */
1964 if (error >= 0)
1965 goto retry_find;
1966
1967 /*
1968 * An error return from page_cache_read can result if the
1969 * system is low on memory, or a problem occurs while trying
1970 * to schedule I/O.
1971 */
1972 if (error == -ENOMEM)
d0217ac0
NP
1973 return VM_FAULT_OOM;
1974 return VM_FAULT_SIGBUS;
1da177e4
LT
1975
1976page_not_uptodate:
1da177e4
LT
1977 /*
1978 * Umm, take care of errors if the page isn't up-to-date.
1979 * Try to re-read it _once_. We do this synchronously,
1980 * because there really aren't any performance issues here
1981 * and we need to check for errors.
1982 */
1da177e4 1983 ClearPageError(page);
994fc28c 1984 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1985 if (!error) {
1986 wait_on_page_locked(page);
1987 if (!PageUptodate(page))
1988 error = -EIO;
1989 }
d00806b1
NP
1990 page_cache_release(page);
1991
1992 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1993 goto retry_find;
1da177e4 1994
d00806b1 1995 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1996 shrink_readahead_size_eio(file, ra);
d0217ac0 1997 return VM_FAULT_SIGBUS;
54cb8821
NP
1998}
1999EXPORT_SYMBOL(filemap_fault);
2000
f1820361
KS
2001void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2002{
2003 struct radix_tree_iter iter;
2004 void **slot;
2005 struct file *file = vma->vm_file;
2006 struct address_space *mapping = file->f_mapping;
2007 loff_t size;
2008 struct page *page;
2009 unsigned long address = (unsigned long) vmf->virtual_address;
2010 unsigned long addr;
2011 pte_t *pte;
2012
2013 rcu_read_lock();
2014 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2015 if (iter.index > vmf->max_pgoff)
2016 break;
2017repeat:
2018 page = radix_tree_deref_slot(slot);
2019 if (unlikely(!page))
2020 goto next;
2021 if (radix_tree_exception(page)) {
2022 if (radix_tree_deref_retry(page))
2023 break;
2024 else
2025 goto next;
2026 }
2027
2028 if (!page_cache_get_speculative(page))
2029 goto repeat;
2030
2031 /* Has the page moved? */
2032 if (unlikely(page != *slot)) {
2033 page_cache_release(page);
2034 goto repeat;
2035 }
2036
2037 if (!PageUptodate(page) ||
2038 PageReadahead(page) ||
2039 PageHWPoison(page))
2040 goto skip;
2041 if (!trylock_page(page))
2042 goto skip;
2043
2044 if (page->mapping != mapping || !PageUptodate(page))
2045 goto unlock;
2046
99e3e53f
KS
2047 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2048 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2049 goto unlock;
2050
2051 pte = vmf->pte + page->index - vmf->pgoff;
2052 if (!pte_none(*pte))
2053 goto unlock;
2054
2055 if (file->f_ra.mmap_miss > 0)
2056 file->f_ra.mmap_miss--;
2057 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2058 do_set_pte(vma, addr, page, pte, false, false);
2059 unlock_page(page);
2060 goto next;
2061unlock:
2062 unlock_page(page);
2063skip:
2064 page_cache_release(page);
2065next:
2066 if (iter.index == vmf->max_pgoff)
2067 break;
2068 }
2069 rcu_read_unlock();
2070}
2071EXPORT_SYMBOL(filemap_map_pages);
2072
4fcf1c62
JK
2073int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2074{
2075 struct page *page = vmf->page;
496ad9aa 2076 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2077 int ret = VM_FAULT_LOCKED;
2078
14da9200 2079 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2080 file_update_time(vma->vm_file);
2081 lock_page(page);
2082 if (page->mapping != inode->i_mapping) {
2083 unlock_page(page);
2084 ret = VM_FAULT_NOPAGE;
2085 goto out;
2086 }
14da9200
JK
2087 /*
2088 * We mark the page dirty already here so that when freeze is in
2089 * progress, we are guaranteed that writeback during freezing will
2090 * see the dirty page and writeprotect it again.
2091 */
2092 set_page_dirty(page);
1d1d1a76 2093 wait_for_stable_page(page);
4fcf1c62 2094out:
14da9200 2095 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2096 return ret;
2097}
2098EXPORT_SYMBOL(filemap_page_mkwrite);
2099
f0f37e2f 2100const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2101 .fault = filemap_fault,
f1820361 2102 .map_pages = filemap_map_pages,
4fcf1c62 2103 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2104};
2105
2106/* This is used for a general mmap of a disk file */
2107
2108int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2109{
2110 struct address_space *mapping = file->f_mapping;
2111
2112 if (!mapping->a_ops->readpage)
2113 return -ENOEXEC;
2114 file_accessed(file);
2115 vma->vm_ops = &generic_file_vm_ops;
2116 return 0;
2117}
1da177e4
LT
2118
2119/*
2120 * This is for filesystems which do not implement ->writepage.
2121 */
2122int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2123{
2124 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2125 return -EINVAL;
2126 return generic_file_mmap(file, vma);
2127}
2128#else
2129int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2130{
2131 return -ENOSYS;
2132}
2133int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2134{
2135 return -ENOSYS;
2136}
2137#endif /* CONFIG_MMU */
2138
2139EXPORT_SYMBOL(generic_file_mmap);
2140EXPORT_SYMBOL(generic_file_readonly_mmap);
2141
67f9fd91
SL
2142static struct page *wait_on_page_read(struct page *page)
2143{
2144 if (!IS_ERR(page)) {
2145 wait_on_page_locked(page);
2146 if (!PageUptodate(page)) {
2147 page_cache_release(page);
2148 page = ERR_PTR(-EIO);
2149 }
2150 }
2151 return page;
2152}
2153
6fe6900e 2154static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2155 pgoff_t index,
5e5358e7 2156 int (*filler)(void *, struct page *),
0531b2aa
LT
2157 void *data,
2158 gfp_t gfp)
1da177e4 2159{
eb2be189 2160 struct page *page;
1da177e4
LT
2161 int err;
2162repeat:
2163 page = find_get_page(mapping, index);
2164 if (!page) {
0531b2aa 2165 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2166 if (!page)
2167 return ERR_PTR(-ENOMEM);
e6f67b8c 2168 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2169 if (unlikely(err)) {
2170 page_cache_release(page);
2171 if (err == -EEXIST)
2172 goto repeat;
1da177e4 2173 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2174 return ERR_PTR(err);
2175 }
1da177e4
LT
2176 err = filler(data, page);
2177 if (err < 0) {
2178 page_cache_release(page);
2179 page = ERR_PTR(err);
67f9fd91
SL
2180 } else {
2181 page = wait_on_page_read(page);
1da177e4
LT
2182 }
2183 }
1da177e4
LT
2184 return page;
2185}
2186
0531b2aa 2187static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2188 pgoff_t index,
5e5358e7 2189 int (*filler)(void *, struct page *),
0531b2aa
LT
2190 void *data,
2191 gfp_t gfp)
2192
1da177e4
LT
2193{
2194 struct page *page;
2195 int err;
2196
2197retry:
0531b2aa 2198 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2199 if (IS_ERR(page))
c855ff37 2200 return page;
1da177e4
LT
2201 if (PageUptodate(page))
2202 goto out;
2203
2204 lock_page(page);
2205 if (!page->mapping) {
2206 unlock_page(page);
2207 page_cache_release(page);
2208 goto retry;
2209 }
2210 if (PageUptodate(page)) {
2211 unlock_page(page);
2212 goto out;
2213 }
2214 err = filler(data, page);
2215 if (err < 0) {
2216 page_cache_release(page);
c855ff37 2217 return ERR_PTR(err);
67f9fd91
SL
2218 } else {
2219 page = wait_on_page_read(page);
2220 if (IS_ERR(page))
2221 return page;
1da177e4 2222 }
c855ff37 2223out:
6fe6900e
NP
2224 mark_page_accessed(page);
2225 return page;
2226}
0531b2aa
LT
2227
2228/**
67f9fd91 2229 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2230 * @mapping: the page's address_space
2231 * @index: the page index
2232 * @filler: function to perform the read
5e5358e7 2233 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2234 *
0531b2aa 2235 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2236 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2237 *
2238 * If the page does not get brought uptodate, return -EIO.
2239 */
67f9fd91 2240struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2241 pgoff_t index,
5e5358e7 2242 int (*filler)(void *, struct page *),
0531b2aa
LT
2243 void *data)
2244{
2245 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2246}
67f9fd91 2247EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2248
2249/**
2250 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2251 * @mapping: the page's address_space
2252 * @index: the page index
2253 * @gfp: the page allocator flags to use if allocating
2254 *
2255 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2256 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2257 *
2258 * If the page does not get brought uptodate, return -EIO.
2259 */
2260struct page *read_cache_page_gfp(struct address_space *mapping,
2261 pgoff_t index,
2262 gfp_t gfp)
2263{
2264 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2265
67f9fd91 2266 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2267}
2268EXPORT_SYMBOL(read_cache_page_gfp);
2269
1da177e4
LT
2270/*
2271 * Performs necessary checks before doing a write
2272 *
485bb99b 2273 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2274 * Returns appropriate error code that caller should return or
2275 * zero in case that write should be allowed.
2276 */
3309dd04 2277inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2278{
3309dd04 2279 struct file *file = iocb->ki_filp;
1da177e4 2280 struct inode *inode = file->f_mapping->host;
59e99e5b 2281 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2282 loff_t pos;
1da177e4 2283
3309dd04
AV
2284 if (!iov_iter_count(from))
2285 return 0;
1da177e4 2286
0fa6b005 2287 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2288 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2289 iocb->ki_pos = i_size_read(inode);
1da177e4 2290
3309dd04 2291 pos = iocb->ki_pos;
1da177e4 2292
0fa6b005 2293 if (limit != RLIM_INFINITY) {
3309dd04 2294 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2295 send_sig(SIGXFSZ, current, 0);
2296 return -EFBIG;
1da177e4 2297 }
3309dd04 2298 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2299 }
2300
2301 /*
2302 * LFS rule
2303 */
3309dd04 2304 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2305 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2306 if (pos >= MAX_NON_LFS)
1da177e4 2307 return -EFBIG;
3309dd04 2308 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2309 }
2310
2311 /*
2312 * Are we about to exceed the fs block limit ?
2313 *
2314 * If we have written data it becomes a short write. If we have
2315 * exceeded without writing data we send a signal and return EFBIG.
2316 * Linus frestrict idea will clean these up nicely..
2317 */
3309dd04
AV
2318 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2319 return -EFBIG;
1da177e4 2320
3309dd04
AV
2321 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2322 return iov_iter_count(from);
1da177e4
LT
2323}
2324EXPORT_SYMBOL(generic_write_checks);
2325
afddba49
NP
2326int pagecache_write_begin(struct file *file, struct address_space *mapping,
2327 loff_t pos, unsigned len, unsigned flags,
2328 struct page **pagep, void **fsdata)
2329{
2330 const struct address_space_operations *aops = mapping->a_ops;
2331
4e02ed4b 2332 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2333 pagep, fsdata);
afddba49
NP
2334}
2335EXPORT_SYMBOL(pagecache_write_begin);
2336
2337int pagecache_write_end(struct file *file, struct address_space *mapping,
2338 loff_t pos, unsigned len, unsigned copied,
2339 struct page *page, void *fsdata)
2340{
2341 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2342
4e02ed4b 2343 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2344}
2345EXPORT_SYMBOL(pagecache_write_end);
2346
1da177e4 2347ssize_t
0c949334 2348generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2349{
2350 struct file *file = iocb->ki_filp;
2351 struct address_space *mapping = file->f_mapping;
2352 struct inode *inode = mapping->host;
2353 ssize_t written;
a969e903
CH
2354 size_t write_len;
2355 pgoff_t end;
26978b8b 2356 struct iov_iter data;
1da177e4 2357
0c949334 2358 write_len = iov_iter_count(from);
a969e903 2359 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2360
48b47c56 2361 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2362 if (written)
2363 goto out;
2364
2365 /*
2366 * After a write we want buffered reads to be sure to go to disk to get
2367 * the new data. We invalidate clean cached page from the region we're
2368 * about to write. We do this *before* the write so that we can return
6ccfa806 2369 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2370 */
2371 if (mapping->nrpages) {
2372 written = invalidate_inode_pages2_range(mapping,
2373 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2374 /*
2375 * If a page can not be invalidated, return 0 to fall back
2376 * to buffered write.
2377 */
2378 if (written) {
2379 if (written == -EBUSY)
2380 return 0;
a969e903 2381 goto out;
6ccfa806 2382 }
a969e903
CH
2383 }
2384
26978b8b 2385 data = *from;
22c6186e 2386 written = mapping->a_ops->direct_IO(iocb, &data, pos);
a969e903
CH
2387
2388 /*
2389 * Finally, try again to invalidate clean pages which might have been
2390 * cached by non-direct readahead, or faulted in by get_user_pages()
2391 * if the source of the write was an mmap'ed region of the file
2392 * we're writing. Either one is a pretty crazy thing to do,
2393 * so we don't support it 100%. If this invalidation
2394 * fails, tough, the write still worked...
2395 */
2396 if (mapping->nrpages) {
2397 invalidate_inode_pages2_range(mapping,
2398 pos >> PAGE_CACHE_SHIFT, end);
2399 }
2400
1da177e4 2401 if (written > 0) {
0116651c 2402 pos += written;
f8579f86 2403 iov_iter_advance(from, written);
0116651c
NK
2404 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2405 i_size_write(inode, pos);
1da177e4
LT
2406 mark_inode_dirty(inode);
2407 }
5cb6c6c7 2408 iocb->ki_pos = pos;
1da177e4 2409 }
a969e903 2410out:
1da177e4
LT
2411 return written;
2412}
2413EXPORT_SYMBOL(generic_file_direct_write);
2414
eb2be189
NP
2415/*
2416 * Find or create a page at the given pagecache position. Return the locked
2417 * page. This function is specifically for buffered writes.
2418 */
54566b2c
NP
2419struct page *grab_cache_page_write_begin(struct address_space *mapping,
2420 pgoff_t index, unsigned flags)
eb2be189 2421{
eb2be189 2422 struct page *page;
2457aec6 2423 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2424
54566b2c 2425 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2426 fgp_flags |= FGP_NOFS;
2427
2428 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2429 mapping_gfp_mask(mapping));
c585a267 2430 if (page)
2457aec6 2431 wait_for_stable_page(page);
eb2be189 2432
eb2be189
NP
2433 return page;
2434}
54566b2c 2435EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2436
3b93f911 2437ssize_t generic_perform_write(struct file *file,
afddba49
NP
2438 struct iov_iter *i, loff_t pos)
2439{
2440 struct address_space *mapping = file->f_mapping;
2441 const struct address_space_operations *a_ops = mapping->a_ops;
2442 long status = 0;
2443 ssize_t written = 0;
674b892e
NP
2444 unsigned int flags = 0;
2445
2446 /*
2447 * Copies from kernel address space cannot fail (NFSD is a big user).
2448 */
777eda2c 2449 if (!iter_is_iovec(i))
674b892e 2450 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2451
2452 do {
2453 struct page *page;
afddba49
NP
2454 unsigned long offset; /* Offset into pagecache page */
2455 unsigned long bytes; /* Bytes to write to page */
2456 size_t copied; /* Bytes copied from user */
2457 void *fsdata;
2458
2459 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2460 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2461 iov_iter_count(i));
2462
2463again:
afddba49
NP
2464 /*
2465 * Bring in the user page that we will copy from _first_.
2466 * Otherwise there's a nasty deadlock on copying from the
2467 * same page as we're writing to, without it being marked
2468 * up-to-date.
2469 *
2470 * Not only is this an optimisation, but it is also required
2471 * to check that the address is actually valid, when atomic
2472 * usercopies are used, below.
2473 */
2474 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2475 status = -EFAULT;
2476 break;
2477 }
2478
674b892e 2479 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2480 &page, &fsdata);
2457aec6 2481 if (unlikely(status < 0))
afddba49
NP
2482 break;
2483
931e80e4 2484 if (mapping_writably_mapped(mapping))
2485 flush_dcache_page(page);
2486
afddba49 2487 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2488 flush_dcache_page(page);
2489
2490 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2491 page, fsdata);
2492 if (unlikely(status < 0))
2493 break;
2494 copied = status;
2495
2496 cond_resched();
2497
124d3b70 2498 iov_iter_advance(i, copied);
afddba49
NP
2499 if (unlikely(copied == 0)) {
2500 /*
2501 * If we were unable to copy any data at all, we must
2502 * fall back to a single segment length write.
2503 *
2504 * If we didn't fallback here, we could livelock
2505 * because not all segments in the iov can be copied at
2506 * once without a pagefault.
2507 */
2508 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2509 iov_iter_single_seg_count(i));
2510 goto again;
2511 }
afddba49
NP
2512 pos += copied;
2513 written += copied;
2514
2515 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2516 if (fatal_signal_pending(current)) {
2517 status = -EINTR;
2518 break;
2519 }
afddba49
NP
2520 } while (iov_iter_count(i));
2521
2522 return written ? written : status;
2523}
3b93f911 2524EXPORT_SYMBOL(generic_perform_write);
1da177e4 2525
e4dd9de3 2526/**
8174202b 2527 * __generic_file_write_iter - write data to a file
e4dd9de3 2528 * @iocb: IO state structure (file, offset, etc.)
8174202b 2529 * @from: iov_iter with data to write
e4dd9de3
JK
2530 *
2531 * This function does all the work needed for actually writing data to a
2532 * file. It does all basic checks, removes SUID from the file, updates
2533 * modification times and calls proper subroutines depending on whether we
2534 * do direct IO or a standard buffered write.
2535 *
2536 * It expects i_mutex to be grabbed unless we work on a block device or similar
2537 * object which does not need locking at all.
2538 *
2539 * This function does *not* take care of syncing data in case of O_SYNC write.
2540 * A caller has to handle it. This is mainly due to the fact that we want to
2541 * avoid syncing under i_mutex.
2542 */
8174202b 2543ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2544{
2545 struct file *file = iocb->ki_filp;
fb5527e6 2546 struct address_space * mapping = file->f_mapping;
1da177e4 2547 struct inode *inode = mapping->host;
3b93f911 2548 ssize_t written = 0;
1da177e4 2549 ssize_t err;
3b93f911 2550 ssize_t status;
1da177e4 2551
1da177e4 2552 /* We can write back this queue in page reclaim */
de1414a6 2553 current->backing_dev_info = inode_to_bdi(inode);
2f1936b8 2554 err = file_remove_suid(file);
1da177e4
LT
2555 if (err)
2556 goto out;
2557
c3b2da31
JB
2558 err = file_update_time(file);
2559 if (err)
2560 goto out;
1da177e4 2561
2ba48ce5 2562 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2563 loff_t pos, endbyte;
fb5527e6 2564
0b8def9d 2565 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
1da177e4 2566 /*
fbbbad4b
MW
2567 * If the write stopped short of completing, fall back to
2568 * buffered writes. Some filesystems do this for writes to
2569 * holes, for example. For DAX files, a buffered write will
2570 * not succeed (even if it did, DAX does not handle dirty
2571 * page-cache pages correctly).
1da177e4 2572 */
0b8def9d 2573 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2574 goto out;
2575
0b8def9d 2576 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2577 /*
3b93f911 2578 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2579 * then we want to return the number of bytes which were
2580 * direct-written, or the error code if that was zero. Note
2581 * that this differs from normal direct-io semantics, which
2582 * will return -EFOO even if some bytes were written.
2583 */
60bb4529 2584 if (unlikely(status < 0)) {
3b93f911 2585 err = status;
fb5527e6
JM
2586 goto out;
2587 }
fb5527e6
JM
2588 /*
2589 * We need to ensure that the page cache pages are written to
2590 * disk and invalidated to preserve the expected O_DIRECT
2591 * semantics.
2592 */
3b93f911 2593 endbyte = pos + status - 1;
0b8def9d 2594 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2595 if (err == 0) {
0b8def9d 2596 iocb->ki_pos = endbyte + 1;
3b93f911 2597 written += status;
fb5527e6
JM
2598 invalidate_mapping_pages(mapping,
2599 pos >> PAGE_CACHE_SHIFT,
2600 endbyte >> PAGE_CACHE_SHIFT);
2601 } else {
2602 /*
2603 * We don't know how much we wrote, so just return
2604 * the number of bytes which were direct-written
2605 */
2606 }
2607 } else {
0b8def9d
AV
2608 written = generic_perform_write(file, from, iocb->ki_pos);
2609 if (likely(written > 0))
2610 iocb->ki_pos += written;
fb5527e6 2611 }
1da177e4
LT
2612out:
2613 current->backing_dev_info = NULL;
2614 return written ? written : err;
2615}
8174202b 2616EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2617
e4dd9de3 2618/**
8174202b 2619 * generic_file_write_iter - write data to a file
e4dd9de3 2620 * @iocb: IO state structure
8174202b 2621 * @from: iov_iter with data to write
e4dd9de3 2622 *
8174202b 2623 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2624 * filesystems. It takes care of syncing the file in case of O_SYNC file
2625 * and acquires i_mutex as needed.
2626 */
8174202b 2627ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2628{
2629 struct file *file = iocb->ki_filp;
148f948b 2630 struct inode *inode = file->f_mapping->host;
1da177e4 2631 ssize_t ret;
1da177e4 2632
1b1dcc1b 2633 mutex_lock(&inode->i_mutex);
3309dd04
AV
2634 ret = generic_write_checks(iocb, from);
2635 if (ret > 0)
5f380c7f 2636 ret = __generic_file_write_iter(iocb, from);
1b1dcc1b 2637 mutex_unlock(&inode->i_mutex);
1da177e4 2638
02afc27f 2639 if (ret > 0) {
1da177e4
LT
2640 ssize_t err;
2641
d311d79d
AV
2642 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2643 if (err < 0)
1da177e4
LT
2644 ret = err;
2645 }
2646 return ret;
2647}
8174202b 2648EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2649
cf9a2ae8
DH
2650/**
2651 * try_to_release_page() - release old fs-specific metadata on a page
2652 *
2653 * @page: the page which the kernel is trying to free
2654 * @gfp_mask: memory allocation flags (and I/O mode)
2655 *
2656 * The address_space is to try to release any data against the page
2657 * (presumably at page->private). If the release was successful, return `1'.
2658 * Otherwise return zero.
2659 *
266cf658
DH
2660 * This may also be called if PG_fscache is set on a page, indicating that the
2661 * page is known to the local caching routines.
2662 *
cf9a2ae8 2663 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2664 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2665 *
cf9a2ae8
DH
2666 */
2667int try_to_release_page(struct page *page, gfp_t gfp_mask)
2668{
2669 struct address_space * const mapping = page->mapping;
2670
2671 BUG_ON(!PageLocked(page));
2672 if (PageWriteback(page))
2673 return 0;
2674
2675 if (mapping && mapping->a_ops->releasepage)
2676 return mapping->a_ops->releasepage(page, gfp_mask);
2677 return try_to_free_buffers(page);
2678}
2679
2680EXPORT_SYMBOL(try_to_release_page);