]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/filemap.c
mm: tidy vmtruncate_range and related functions
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
c515e1fd 37#include <linux/cleancache.h>
0f8053a5
NP
38#include "internal.h"
39
1da177e4 40/*
1da177e4
LT
41 * FIXME: remove all knowledge of the buffer layer from the core VM
42 */
148f948b 43#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 44
1da177e4
LT
45#include <asm/mman.h>
46
47/*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59/*
60 * Lock ordering:
61 *
3d48ae45 62 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
1da177e4 66 *
1b1dcc1b 67 * ->i_mutex
3d48ae45 68 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
69 *
70 * ->mmap_sem
3d48ae45 71 * ->i_mmap_mutex
b8072f09 72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
82591e6e
NP
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 80 *
a66979ab
DC
81 * inode_wb_list_lock
82 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
83 * ->mapping->tree_lock (__sync_single_inode)
84 *
3d48ae45 85 * ->i_mmap_mutex
1da177e4
LT
86 * ->anon_vma.lock (vma_adjust)
87 *
88 * ->anon_vma.lock
b8072f09 89 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 90 *
b8072f09 91 * ->page_table_lock or pte_lock
5d337b91 92 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
93 * ->private_lock (try_to_unmap_one)
94 * ->tree_lock (try_to_unmap_one)
95 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 96 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
97 * ->private_lock (page_remove_rmap->set_page_dirty)
98 * ->tree_lock (page_remove_rmap->set_page_dirty)
a66979ab 99 * inode_wb_list_lock (page_remove_rmap->set_page_dirty)
250df6ed 100 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
a66979ab 101 * inode_wb_list_lock (zap_pte_range->set_page_dirty)
250df6ed 102 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
6a46079c
AK
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
3d48ae45 107 * ->i_mmap_mutex
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
c515e1fd
DM
119 /*
120 * if we're uptodate, flush out into the cleancache, otherwise
121 * invalidate any existing cleancache entries. We can't leave
122 * stale data around in the cleancache once our page is gone
123 */
124 if (PageUptodate(page) && PageMappedToDisk(page))
125 cleancache_put_page(page);
126 else
127 cleancache_flush_page(mapping, page);
128
1da177e4
LT
129 radix_tree_delete(&mapping->page_tree, page->index);
130 page->mapping = NULL;
131 mapping->nrpages--;
347ce434 132 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
133 if (PageSwapBacked(page))
134 __dec_zone_page_state(page, NR_SHMEM);
45426812 135 BUG_ON(page_mapped(page));
3a692790
LT
136
137 /*
138 * Some filesystems seem to re-dirty the page even after
139 * the VM has canceled the dirty bit (eg ext3 journaling).
140 *
141 * Fix it up by doing a final dirty accounting check after
142 * having removed the page entirely.
143 */
144 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
145 dec_zone_page_state(page, NR_FILE_DIRTY);
146 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
147 }
1da177e4
LT
148}
149
702cfbf9
MK
150/**
151 * delete_from_page_cache - delete page from page cache
152 * @page: the page which the kernel is trying to remove from page cache
153 *
154 * This must be called only on pages that have been verified to be in the page
155 * cache and locked. It will never put the page into the free list, the caller
156 * has a reference on the page.
157 */
158void delete_from_page_cache(struct page *page)
1da177e4
LT
159{
160 struct address_space *mapping = page->mapping;
6072d13c 161 void (*freepage)(struct page *);
1da177e4 162
cd7619d6 163 BUG_ON(!PageLocked(page));
1da177e4 164
6072d13c 165 freepage = mapping->a_ops->freepage;
19fd6231 166 spin_lock_irq(&mapping->tree_lock);
e64a782f 167 __delete_from_page_cache(page);
19fd6231 168 spin_unlock_irq(&mapping->tree_lock);
e767e056 169 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
170
171 if (freepage)
172 freepage(page);
97cecb5a
MK
173 page_cache_release(page);
174}
175EXPORT_SYMBOL(delete_from_page_cache);
176
7eaceacc 177static int sleep_on_page(void *word)
1da177e4 178{
1da177e4
LT
179 io_schedule();
180 return 0;
181}
182
7eaceacc 183static int sleep_on_page_killable(void *word)
2687a356 184{
7eaceacc 185 sleep_on_page(word);
2687a356
MW
186 return fatal_signal_pending(current) ? -EINTR : 0;
187}
188
1da177e4 189/**
485bb99b 190 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
191 * @mapping: address space structure to write
192 * @start: offset in bytes where the range starts
469eb4d0 193 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 194 * @sync_mode: enable synchronous operation
1da177e4 195 *
485bb99b
RD
196 * Start writeback against all of a mapping's dirty pages that lie
197 * within the byte offsets <start, end> inclusive.
198 *
1da177e4 199 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 200 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
201 * these two operations is that if a dirty page/buffer is encountered, it must
202 * be waited upon, and not just skipped over.
203 */
ebcf28e1
AM
204int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
205 loff_t end, int sync_mode)
1da177e4
LT
206{
207 int ret;
208 struct writeback_control wbc = {
209 .sync_mode = sync_mode,
05fe478d 210 .nr_to_write = LONG_MAX,
111ebb6e
OH
211 .range_start = start,
212 .range_end = end,
1da177e4
LT
213 };
214
215 if (!mapping_cap_writeback_dirty(mapping))
216 return 0;
217
218 ret = do_writepages(mapping, &wbc);
219 return ret;
220}
221
222static inline int __filemap_fdatawrite(struct address_space *mapping,
223 int sync_mode)
224{
111ebb6e 225 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
226}
227
228int filemap_fdatawrite(struct address_space *mapping)
229{
230 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
231}
232EXPORT_SYMBOL(filemap_fdatawrite);
233
f4c0a0fd 234int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 235 loff_t end)
1da177e4
LT
236{
237 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
238}
f4c0a0fd 239EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 240
485bb99b
RD
241/**
242 * filemap_flush - mostly a non-blocking flush
243 * @mapping: target address_space
244 *
1da177e4
LT
245 * This is a mostly non-blocking flush. Not suitable for data-integrity
246 * purposes - I/O may not be started against all dirty pages.
247 */
248int filemap_flush(struct address_space *mapping)
249{
250 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
251}
252EXPORT_SYMBOL(filemap_flush);
253
485bb99b 254/**
94004ed7
CH
255 * filemap_fdatawait_range - wait for writeback to complete
256 * @mapping: address space structure to wait for
257 * @start_byte: offset in bytes where the range starts
258 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 259 *
94004ed7
CH
260 * Walk the list of under-writeback pages of the given address space
261 * in the given range and wait for all of them.
1da177e4 262 */
94004ed7
CH
263int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
264 loff_t end_byte)
1da177e4 265{
94004ed7
CH
266 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
267 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
1da177e4 271
94004ed7 272 if (end_byte < start_byte)
1da177e4
LT
273 return 0;
274
275 pagevec_init(&pvec, 0);
1da177e4
LT
276 while ((index <= end) &&
277 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
278 PAGECACHE_TAG_WRITEBACK,
279 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
280 unsigned i;
281
282 for (i = 0; i < nr_pages; i++) {
283 struct page *page = pvec.pages[i];
284
285 /* until radix tree lookup accepts end_index */
286 if (page->index > end)
287 continue;
288
289 wait_on_page_writeback(page);
212260aa 290 if (TestClearPageError(page))
1da177e4
LT
291 ret = -EIO;
292 }
293 pagevec_release(&pvec);
294 cond_resched();
295 }
296
297 /* Check for outstanding write errors */
298 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
299 ret = -ENOSPC;
300 if (test_and_clear_bit(AS_EIO, &mapping->flags))
301 ret = -EIO;
302
303 return ret;
304}
d3bccb6f
JK
305EXPORT_SYMBOL(filemap_fdatawait_range);
306
1da177e4 307/**
485bb99b 308 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 309 * @mapping: address space structure to wait for
485bb99b
RD
310 *
311 * Walk the list of under-writeback pages of the given address space
312 * and wait for all of them.
1da177e4
LT
313 */
314int filemap_fdatawait(struct address_space *mapping)
315{
316 loff_t i_size = i_size_read(mapping->host);
317
318 if (i_size == 0)
319 return 0;
320
94004ed7 321 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
322}
323EXPORT_SYMBOL(filemap_fdatawait);
324
325int filemap_write_and_wait(struct address_space *mapping)
326{
28fd1298 327 int err = 0;
1da177e4
LT
328
329 if (mapping->nrpages) {
28fd1298
OH
330 err = filemap_fdatawrite(mapping);
331 /*
332 * Even if the above returned error, the pages may be
333 * written partially (e.g. -ENOSPC), so we wait for it.
334 * But the -EIO is special case, it may indicate the worst
335 * thing (e.g. bug) happened, so we avoid waiting for it.
336 */
337 if (err != -EIO) {
338 int err2 = filemap_fdatawait(mapping);
339 if (!err)
340 err = err2;
341 }
1da177e4 342 }
28fd1298 343 return err;
1da177e4 344}
28fd1298 345EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 346
485bb99b
RD
347/**
348 * filemap_write_and_wait_range - write out & wait on a file range
349 * @mapping: the address_space for the pages
350 * @lstart: offset in bytes where the range starts
351 * @lend: offset in bytes where the range ends (inclusive)
352 *
469eb4d0
AM
353 * Write out and wait upon file offsets lstart->lend, inclusive.
354 *
355 * Note that `lend' is inclusive (describes the last byte to be written) so
356 * that this function can be used to write to the very end-of-file (end = -1).
357 */
1da177e4
LT
358int filemap_write_and_wait_range(struct address_space *mapping,
359 loff_t lstart, loff_t lend)
360{
28fd1298 361 int err = 0;
1da177e4
LT
362
363 if (mapping->nrpages) {
28fd1298
OH
364 err = __filemap_fdatawrite_range(mapping, lstart, lend,
365 WB_SYNC_ALL);
366 /* See comment of filemap_write_and_wait() */
367 if (err != -EIO) {
94004ed7
CH
368 int err2 = filemap_fdatawait_range(mapping,
369 lstart, lend);
28fd1298
OH
370 if (!err)
371 err = err2;
372 }
1da177e4 373 }
28fd1298 374 return err;
1da177e4 375}
f6995585 376EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 377
ef6a3c63
MS
378/**
379 * replace_page_cache_page - replace a pagecache page with a new one
380 * @old: page to be replaced
381 * @new: page to replace with
382 * @gfp_mask: allocation mode
383 *
384 * This function replaces a page in the pagecache with a new one. On
385 * success it acquires the pagecache reference for the new page and
386 * drops it for the old page. Both the old and new pages must be
387 * locked. This function does not add the new page to the LRU, the
388 * caller must do that.
389 *
390 * The remove + add is atomic. The only way this function can fail is
391 * memory allocation failure.
392 */
393int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
394{
395 int error;
396 struct mem_cgroup *memcg = NULL;
397
398 VM_BUG_ON(!PageLocked(old));
399 VM_BUG_ON(!PageLocked(new));
400 VM_BUG_ON(new->mapping);
401
402 /*
403 * This is not page migration, but prepare_migration and
404 * end_migration does enough work for charge replacement.
405 *
406 * In the longer term we probably want a specialized function
407 * for moving the charge from old to new in a more efficient
408 * manner.
409 */
410 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
411 if (error)
412 return error;
413
414 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
415 if (!error) {
416 struct address_space *mapping = old->mapping;
417 void (*freepage)(struct page *);
418
419 pgoff_t offset = old->index;
420 freepage = mapping->a_ops->freepage;
421
422 page_cache_get(new);
423 new->mapping = mapping;
424 new->index = offset;
425
426 spin_lock_irq(&mapping->tree_lock);
e64a782f 427 __delete_from_page_cache(old);
ef6a3c63
MS
428 error = radix_tree_insert(&mapping->page_tree, offset, new);
429 BUG_ON(error);
430 mapping->nrpages++;
431 __inc_zone_page_state(new, NR_FILE_PAGES);
432 if (PageSwapBacked(new))
433 __inc_zone_page_state(new, NR_SHMEM);
434 spin_unlock_irq(&mapping->tree_lock);
435 radix_tree_preload_end();
436 if (freepage)
437 freepage(old);
438 page_cache_release(old);
439 mem_cgroup_end_migration(memcg, old, new, true);
440 } else {
441 mem_cgroup_end_migration(memcg, old, new, false);
442 }
443
444 return error;
445}
446EXPORT_SYMBOL_GPL(replace_page_cache_page);
447
485bb99b 448/**
e286781d 449 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
450 * @page: page to add
451 * @mapping: the page's address_space
452 * @offset: page index
453 * @gfp_mask: page allocation mode
454 *
e286781d 455 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
456 * This function does not add the page to the LRU. The caller must do that.
457 */
e286781d 458int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 459 pgoff_t offset, gfp_t gfp_mask)
1da177e4 460{
e286781d
NP
461 int error;
462
463 VM_BUG_ON(!PageLocked(page));
464
465 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 466 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
467 if (error)
468 goto out;
1da177e4 469
35c754d7 470 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 471 if (error == 0) {
e286781d
NP
472 page_cache_get(page);
473 page->mapping = mapping;
474 page->index = offset;
475
19fd6231 476 spin_lock_irq(&mapping->tree_lock);
1da177e4 477 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 478 if (likely(!error)) {
1da177e4 479 mapping->nrpages++;
347ce434 480 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
481 if (PageSwapBacked(page))
482 __inc_zone_page_state(page, NR_SHMEM);
e767e056 483 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
484 } else {
485 page->mapping = NULL;
e767e056 486 spin_unlock_irq(&mapping->tree_lock);
69029cd5 487 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
488 page_cache_release(page);
489 }
1da177e4 490 radix_tree_preload_end();
35c754d7 491 } else
69029cd5 492 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 493out:
1da177e4
LT
494 return error;
495}
e286781d 496EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
497
498int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 499 pgoff_t offset, gfp_t gfp_mask)
1da177e4 500{
4f98a2fe
RR
501 int ret;
502
503 /*
504 * Splice_read and readahead add shmem/tmpfs pages into the page cache
505 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 506 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
507 * (called in add_to_page_cache) needs to know where they're going too.
508 */
509 if (mapping_cap_swap_backed(mapping))
510 SetPageSwapBacked(page);
511
512 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
513 if (ret == 0) {
514 if (page_is_file_cache(page))
515 lru_cache_add_file(page);
516 else
e9d6c157 517 lru_cache_add_anon(page);
4f98a2fe 518 }
1da177e4
LT
519 return ret;
520}
18bc0bbd 521EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 522
44110fe3 523#ifdef CONFIG_NUMA
2ae88149 524struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 525{
c0ff7453
MX
526 int n;
527 struct page *page;
528
44110fe3 529 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
530 get_mems_allowed();
531 n = cpuset_mem_spread_node();
532 page = alloc_pages_exact_node(n, gfp, 0);
533 put_mems_allowed();
534 return page;
44110fe3 535 }
2ae88149 536 return alloc_pages(gfp, 0);
44110fe3 537}
2ae88149 538EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
539#endif
540
1da177e4
LT
541/*
542 * In order to wait for pages to become available there must be
543 * waitqueues associated with pages. By using a hash table of
544 * waitqueues where the bucket discipline is to maintain all
545 * waiters on the same queue and wake all when any of the pages
546 * become available, and for the woken contexts to check to be
547 * sure the appropriate page became available, this saves space
548 * at a cost of "thundering herd" phenomena during rare hash
549 * collisions.
550 */
551static wait_queue_head_t *page_waitqueue(struct page *page)
552{
553 const struct zone *zone = page_zone(page);
554
555 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
556}
557
558static inline void wake_up_page(struct page *page, int bit)
559{
560 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
561}
562
920c7a5d 563void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
564{
565 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
566
567 if (test_bit(bit_nr, &page->flags))
7eaceacc 568 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
569 TASK_UNINTERRUPTIBLE);
570}
571EXPORT_SYMBOL(wait_on_page_bit);
572
f62e00cc
KM
573int wait_on_page_bit_killable(struct page *page, int bit_nr)
574{
575 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
576
577 if (!test_bit(bit_nr, &page->flags))
578 return 0;
579
580 return __wait_on_bit(page_waitqueue(page), &wait,
581 sleep_on_page_killable, TASK_KILLABLE);
582}
583
385e1ca5
DH
584/**
585 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
586 * @page: Page defining the wait queue of interest
587 * @waiter: Waiter to add to the queue
385e1ca5
DH
588 *
589 * Add an arbitrary @waiter to the wait queue for the nominated @page.
590 */
591void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
592{
593 wait_queue_head_t *q = page_waitqueue(page);
594 unsigned long flags;
595
596 spin_lock_irqsave(&q->lock, flags);
597 __add_wait_queue(q, waiter);
598 spin_unlock_irqrestore(&q->lock, flags);
599}
600EXPORT_SYMBOL_GPL(add_page_wait_queue);
601
1da177e4 602/**
485bb99b 603 * unlock_page - unlock a locked page
1da177e4
LT
604 * @page: the page
605 *
606 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
607 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
608 * mechananism between PageLocked pages and PageWriteback pages is shared.
609 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
610 *
8413ac9d
NP
611 * The mb is necessary to enforce ordering between the clear_bit and the read
612 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 613 */
920c7a5d 614void unlock_page(struct page *page)
1da177e4 615{
8413ac9d
NP
616 VM_BUG_ON(!PageLocked(page));
617 clear_bit_unlock(PG_locked, &page->flags);
618 smp_mb__after_clear_bit();
1da177e4
LT
619 wake_up_page(page, PG_locked);
620}
621EXPORT_SYMBOL(unlock_page);
622
485bb99b
RD
623/**
624 * end_page_writeback - end writeback against a page
625 * @page: the page
1da177e4
LT
626 */
627void end_page_writeback(struct page *page)
628{
ac6aadb2
MS
629 if (TestClearPageReclaim(page))
630 rotate_reclaimable_page(page);
631
632 if (!test_clear_page_writeback(page))
633 BUG();
634
1da177e4
LT
635 smp_mb__after_clear_bit();
636 wake_up_page(page, PG_writeback);
637}
638EXPORT_SYMBOL(end_page_writeback);
639
485bb99b
RD
640/**
641 * __lock_page - get a lock on the page, assuming we need to sleep to get it
642 * @page: the page to lock
1da177e4 643 */
920c7a5d 644void __lock_page(struct page *page)
1da177e4
LT
645{
646 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
647
7eaceacc 648 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
649 TASK_UNINTERRUPTIBLE);
650}
651EXPORT_SYMBOL(__lock_page);
652
b5606c2d 653int __lock_page_killable(struct page *page)
2687a356
MW
654{
655 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
656
657 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 658 sleep_on_page_killable, TASK_KILLABLE);
2687a356 659}
18bc0bbd 660EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 661
d065bd81
ML
662int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
663 unsigned int flags)
664{
37b23e05
KM
665 if (flags & FAULT_FLAG_ALLOW_RETRY) {
666 /*
667 * CAUTION! In this case, mmap_sem is not released
668 * even though return 0.
669 */
670 if (flags & FAULT_FLAG_RETRY_NOWAIT)
671 return 0;
672
673 up_read(&mm->mmap_sem);
674 if (flags & FAULT_FLAG_KILLABLE)
675 wait_on_page_locked_killable(page);
676 else
318b275f 677 wait_on_page_locked(page);
d065bd81 678 return 0;
37b23e05
KM
679 } else {
680 if (flags & FAULT_FLAG_KILLABLE) {
681 int ret;
682
683 ret = __lock_page_killable(page);
684 if (ret) {
685 up_read(&mm->mmap_sem);
686 return 0;
687 }
688 } else
689 __lock_page(page);
690 return 1;
d065bd81
ML
691 }
692}
693
485bb99b
RD
694/**
695 * find_get_page - find and get a page reference
696 * @mapping: the address_space to search
697 * @offset: the page index
698 *
da6052f7
NP
699 * Is there a pagecache struct page at the given (mapping, offset) tuple?
700 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 701 */
a60637c8 702struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 703{
a60637c8 704 void **pagep;
1da177e4
LT
705 struct page *page;
706
a60637c8
NP
707 rcu_read_lock();
708repeat:
709 page = NULL;
710 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
711 if (pagep) {
712 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
713 if (unlikely(!page))
714 goto out;
715 if (radix_tree_deref_retry(page))
a60637c8
NP
716 goto repeat;
717
718 if (!page_cache_get_speculative(page))
719 goto repeat;
720
721 /*
722 * Has the page moved?
723 * This is part of the lockless pagecache protocol. See
724 * include/linux/pagemap.h for details.
725 */
726 if (unlikely(page != *pagep)) {
727 page_cache_release(page);
728 goto repeat;
729 }
730 }
27d20fdd 731out:
a60637c8
NP
732 rcu_read_unlock();
733
1da177e4
LT
734 return page;
735}
1da177e4
LT
736EXPORT_SYMBOL(find_get_page);
737
1da177e4
LT
738/**
739 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
740 * @mapping: the address_space to search
741 * @offset: the page index
1da177e4
LT
742 *
743 * Locates the desired pagecache page, locks it, increments its reference
744 * count and returns its address.
745 *
746 * Returns zero if the page was not present. find_lock_page() may sleep.
747 */
a60637c8 748struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
749{
750 struct page *page;
751
1da177e4 752repeat:
a60637c8 753 page = find_get_page(mapping, offset);
1da177e4 754 if (page) {
a60637c8
NP
755 lock_page(page);
756 /* Has the page been truncated? */
757 if (unlikely(page->mapping != mapping)) {
758 unlock_page(page);
759 page_cache_release(page);
760 goto repeat;
1da177e4 761 }
a60637c8 762 VM_BUG_ON(page->index != offset);
1da177e4 763 }
1da177e4
LT
764 return page;
765}
1da177e4
LT
766EXPORT_SYMBOL(find_lock_page);
767
768/**
769 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
770 * @mapping: the page's address_space
771 * @index: the page's index into the mapping
772 * @gfp_mask: page allocation mode
1da177e4
LT
773 *
774 * Locates a page in the pagecache. If the page is not present, a new page
775 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
776 * LRU list. The returned page is locked and has its reference count
777 * incremented.
778 *
779 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
780 * allocation!
781 *
782 * find_or_create_page() returns the desired page's address, or zero on
783 * memory exhaustion.
784 */
785struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 786 pgoff_t index, gfp_t gfp_mask)
1da177e4 787{
eb2be189 788 struct page *page;
1da177e4
LT
789 int err;
790repeat:
791 page = find_lock_page(mapping, index);
792 if (!page) {
eb2be189
NP
793 page = __page_cache_alloc(gfp_mask);
794 if (!page)
795 return NULL;
67d58ac4
NP
796 /*
797 * We want a regular kernel memory (not highmem or DMA etc)
798 * allocation for the radix tree nodes, but we need to honour
799 * the context-specific requirements the caller has asked for.
800 * GFP_RECLAIM_MASK collects those requirements.
801 */
802 err = add_to_page_cache_lru(page, mapping, index,
803 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
804 if (unlikely(err)) {
805 page_cache_release(page);
806 page = NULL;
807 if (err == -EEXIST)
808 goto repeat;
1da177e4 809 }
1da177e4 810 }
1da177e4
LT
811 return page;
812}
1da177e4
LT
813EXPORT_SYMBOL(find_or_create_page);
814
815/**
816 * find_get_pages - gang pagecache lookup
817 * @mapping: The address_space to search
818 * @start: The starting page index
819 * @nr_pages: The maximum number of pages
820 * @pages: Where the resulting pages are placed
821 *
822 * find_get_pages() will search for and return a group of up to
823 * @nr_pages pages in the mapping. The pages are placed at @pages.
824 * find_get_pages() takes a reference against the returned pages.
825 *
826 * The search returns a group of mapping-contiguous pages with ascending
827 * indexes. There may be holes in the indices due to not-present pages.
828 *
829 * find_get_pages() returns the number of pages which were found.
830 */
831unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
832 unsigned int nr_pages, struct page **pages)
833{
834 unsigned int i;
835 unsigned int ret;
a60637c8
NP
836 unsigned int nr_found;
837
838 rcu_read_lock();
839restart:
840 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
841 (void ***)pages, start, nr_pages);
842 ret = 0;
843 for (i = 0; i < nr_found; i++) {
844 struct page *page;
845repeat:
846 page = radix_tree_deref_slot((void **)pages[i]);
847 if (unlikely(!page))
848 continue;
9d8aa4ea
HD
849
850 /*
851 * This can only trigger when the entry at index 0 moves out
852 * of or back to the root: none yet gotten, safe to restart.
853 */
27d20fdd 854 if (radix_tree_deref_retry(page)) {
9d8aa4ea 855 WARN_ON(start | i);
a60637c8 856 goto restart;
27d20fdd 857 }
a60637c8
NP
858
859 if (!page_cache_get_speculative(page))
860 goto repeat;
861
862 /* Has the page moved? */
863 if (unlikely(page != *((void **)pages[i]))) {
864 page_cache_release(page);
865 goto repeat;
866 }
1da177e4 867
a60637c8
NP
868 pages[ret] = page;
869 ret++;
870 }
5b280c0c
HD
871
872 /*
873 * If all entries were removed before we could secure them,
874 * try again, because callers stop trying once 0 is returned.
875 */
876 if (unlikely(!ret && nr_found))
877 goto restart;
a60637c8 878 rcu_read_unlock();
1da177e4
LT
879 return ret;
880}
881
ebf43500
JA
882/**
883 * find_get_pages_contig - gang contiguous pagecache lookup
884 * @mapping: The address_space to search
885 * @index: The starting page index
886 * @nr_pages: The maximum number of pages
887 * @pages: Where the resulting pages are placed
888 *
889 * find_get_pages_contig() works exactly like find_get_pages(), except
890 * that the returned number of pages are guaranteed to be contiguous.
891 *
892 * find_get_pages_contig() returns the number of pages which were found.
893 */
894unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
895 unsigned int nr_pages, struct page **pages)
896{
897 unsigned int i;
898 unsigned int ret;
a60637c8
NP
899 unsigned int nr_found;
900
901 rcu_read_lock();
902restart:
903 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
904 (void ***)pages, index, nr_pages);
905 ret = 0;
906 for (i = 0; i < nr_found; i++) {
907 struct page *page;
908repeat:
909 page = radix_tree_deref_slot((void **)pages[i]);
910 if (unlikely(!page))
911 continue;
9d8aa4ea
HD
912
913 /*
914 * This can only trigger when the entry at index 0 moves out
915 * of or back to the root: none yet gotten, safe to restart.
916 */
27d20fdd 917 if (radix_tree_deref_retry(page))
a60637c8 918 goto restart;
ebf43500 919
a60637c8
NP
920 if (!page_cache_get_speculative(page))
921 goto repeat;
922
923 /* Has the page moved? */
924 if (unlikely(page != *((void **)pages[i]))) {
925 page_cache_release(page);
926 goto repeat;
927 }
928
9cbb4cb2
NP
929 /*
930 * must check mapping and index after taking the ref.
931 * otherwise we can get both false positives and false
932 * negatives, which is just confusing to the caller.
933 */
934 if (page->mapping == NULL || page->index != index) {
935 page_cache_release(page);
936 break;
937 }
938
a60637c8
NP
939 pages[ret] = page;
940 ret++;
ebf43500
JA
941 index++;
942 }
a60637c8
NP
943 rcu_read_unlock();
944 return ret;
ebf43500 945}
ef71c15c 946EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 947
485bb99b
RD
948/**
949 * find_get_pages_tag - find and return pages that match @tag
950 * @mapping: the address_space to search
951 * @index: the starting page index
952 * @tag: the tag index
953 * @nr_pages: the maximum number of pages
954 * @pages: where the resulting pages are placed
955 *
1da177e4 956 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 957 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
958 */
959unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
960 int tag, unsigned int nr_pages, struct page **pages)
961{
962 unsigned int i;
963 unsigned int ret;
a60637c8
NP
964 unsigned int nr_found;
965
966 rcu_read_lock();
967restart:
968 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
969 (void ***)pages, *index, nr_pages, tag);
970 ret = 0;
971 for (i = 0; i < nr_found; i++) {
972 struct page *page;
973repeat:
974 page = radix_tree_deref_slot((void **)pages[i]);
975 if (unlikely(!page))
976 continue;
9d8aa4ea
HD
977
978 /*
979 * This can only trigger when the entry at index 0 moves out
980 * of or back to the root: none yet gotten, safe to restart.
981 */
27d20fdd 982 if (radix_tree_deref_retry(page))
a60637c8
NP
983 goto restart;
984
985 if (!page_cache_get_speculative(page))
986 goto repeat;
987
988 /* Has the page moved? */
989 if (unlikely(page != *((void **)pages[i]))) {
990 page_cache_release(page);
991 goto repeat;
992 }
993
994 pages[ret] = page;
995 ret++;
996 }
5b280c0c
HD
997
998 /*
999 * If all entries were removed before we could secure them,
1000 * try again, because callers stop trying once 0 is returned.
1001 */
1002 if (unlikely(!ret && nr_found))
1003 goto restart;
a60637c8 1004 rcu_read_unlock();
1da177e4 1005
1da177e4
LT
1006 if (ret)
1007 *index = pages[ret - 1]->index + 1;
a60637c8 1008
1da177e4
LT
1009 return ret;
1010}
ef71c15c 1011EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1012
485bb99b
RD
1013/**
1014 * grab_cache_page_nowait - returns locked page at given index in given cache
1015 * @mapping: target address_space
1016 * @index: the page index
1017 *
72fd4a35 1018 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1019 * This is intended for speculative data generators, where the data can
1020 * be regenerated if the page couldn't be grabbed. This routine should
1021 * be safe to call while holding the lock for another page.
1022 *
1023 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1024 * and deadlock against the caller's locked page.
1025 */
1026struct page *
57f6b96c 1027grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1028{
1029 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1030
1031 if (page) {
529ae9aa 1032 if (trylock_page(page))
1da177e4
LT
1033 return page;
1034 page_cache_release(page);
1035 return NULL;
1036 }
2ae88149 1037 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1038 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1039 page_cache_release(page);
1040 page = NULL;
1041 }
1042 return page;
1043}
1da177e4
LT
1044EXPORT_SYMBOL(grab_cache_page_nowait);
1045
76d42bd9
WF
1046/*
1047 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1048 * a _large_ part of the i/o request. Imagine the worst scenario:
1049 *
1050 * ---R__________________________________________B__________
1051 * ^ reading here ^ bad block(assume 4k)
1052 *
1053 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1054 * => failing the whole request => read(R) => read(R+1) =>
1055 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1056 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1057 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1058 *
1059 * It is going insane. Fix it by quickly scaling down the readahead size.
1060 */
1061static void shrink_readahead_size_eio(struct file *filp,
1062 struct file_ra_state *ra)
1063{
76d42bd9 1064 ra->ra_pages /= 4;
76d42bd9
WF
1065}
1066
485bb99b 1067/**
36e78914 1068 * do_generic_file_read - generic file read routine
485bb99b
RD
1069 * @filp: the file to read
1070 * @ppos: current file position
1071 * @desc: read_descriptor
1072 * @actor: read method
1073 *
1da177e4 1074 * This is a generic file read routine, and uses the
485bb99b 1075 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1076 *
1077 * This is really ugly. But the goto's actually try to clarify some
1078 * of the logic when it comes to error handling etc.
1da177e4 1079 */
36e78914
CH
1080static void do_generic_file_read(struct file *filp, loff_t *ppos,
1081 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1082{
36e78914 1083 struct address_space *mapping = filp->f_mapping;
1da177e4 1084 struct inode *inode = mapping->host;
36e78914 1085 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1086 pgoff_t index;
1087 pgoff_t last_index;
1088 pgoff_t prev_index;
1089 unsigned long offset; /* offset into pagecache page */
ec0f1637 1090 unsigned int prev_offset;
1da177e4 1091 int error;
1da177e4 1092
1da177e4 1093 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1094 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1095 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1096 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1097 offset = *ppos & ~PAGE_CACHE_MASK;
1098
1da177e4
LT
1099 for (;;) {
1100 struct page *page;
57f6b96c 1101 pgoff_t end_index;
a32ea1e1 1102 loff_t isize;
1da177e4
LT
1103 unsigned long nr, ret;
1104
1da177e4 1105 cond_resched();
1da177e4
LT
1106find_page:
1107 page = find_get_page(mapping, index);
3ea89ee8 1108 if (!page) {
cf914a7d 1109 page_cache_sync_readahead(mapping,
7ff81078 1110 ra, filp,
3ea89ee8
FW
1111 index, last_index - index);
1112 page = find_get_page(mapping, index);
1113 if (unlikely(page == NULL))
1114 goto no_cached_page;
1115 }
1116 if (PageReadahead(page)) {
cf914a7d 1117 page_cache_async_readahead(mapping,
7ff81078 1118 ra, filp, page,
3ea89ee8 1119 index, last_index - index);
1da177e4 1120 }
8ab22b9a
HH
1121 if (!PageUptodate(page)) {
1122 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1123 !mapping->a_ops->is_partially_uptodate)
1124 goto page_not_up_to_date;
529ae9aa 1125 if (!trylock_page(page))
8ab22b9a 1126 goto page_not_up_to_date;
8d056cb9
DH
1127 /* Did it get truncated before we got the lock? */
1128 if (!page->mapping)
1129 goto page_not_up_to_date_locked;
8ab22b9a
HH
1130 if (!mapping->a_ops->is_partially_uptodate(page,
1131 desc, offset))
1132 goto page_not_up_to_date_locked;
1133 unlock_page(page);
1134 }
1da177e4 1135page_ok:
a32ea1e1
N
1136 /*
1137 * i_size must be checked after we know the page is Uptodate.
1138 *
1139 * Checking i_size after the check allows us to calculate
1140 * the correct value for "nr", which means the zero-filled
1141 * part of the page is not copied back to userspace (unless
1142 * another truncate extends the file - this is desired though).
1143 */
1144
1145 isize = i_size_read(inode);
1146 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1147 if (unlikely(!isize || index > end_index)) {
1148 page_cache_release(page);
1149 goto out;
1150 }
1151
1152 /* nr is the maximum number of bytes to copy from this page */
1153 nr = PAGE_CACHE_SIZE;
1154 if (index == end_index) {
1155 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1156 if (nr <= offset) {
1157 page_cache_release(page);
1158 goto out;
1159 }
1160 }
1161 nr = nr - offset;
1da177e4
LT
1162
1163 /* If users can be writing to this page using arbitrary
1164 * virtual addresses, take care about potential aliasing
1165 * before reading the page on the kernel side.
1166 */
1167 if (mapping_writably_mapped(mapping))
1168 flush_dcache_page(page);
1169
1170 /*
ec0f1637
JK
1171 * When a sequential read accesses a page several times,
1172 * only mark it as accessed the first time.
1da177e4 1173 */
ec0f1637 1174 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1175 mark_page_accessed(page);
1176 prev_index = index;
1177
1178 /*
1179 * Ok, we have the page, and it's up-to-date, so
1180 * now we can copy it to user space...
1181 *
1182 * The actor routine returns how many bytes were actually used..
1183 * NOTE! This may not be the same as how much of a user buffer
1184 * we filled up (we may be padding etc), so we can only update
1185 * "pos" here (the actor routine has to update the user buffer
1186 * pointers and the remaining count).
1187 */
1188 ret = actor(desc, page, offset, nr);
1189 offset += ret;
1190 index += offset >> PAGE_CACHE_SHIFT;
1191 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1192 prev_offset = offset;
1da177e4
LT
1193
1194 page_cache_release(page);
1195 if (ret == nr && desc->count)
1196 continue;
1197 goto out;
1198
1199page_not_up_to_date:
1200 /* Get exclusive access to the page ... */
85462323
ON
1201 error = lock_page_killable(page);
1202 if (unlikely(error))
1203 goto readpage_error;
1da177e4 1204
8ab22b9a 1205page_not_up_to_date_locked:
da6052f7 1206 /* Did it get truncated before we got the lock? */
1da177e4
LT
1207 if (!page->mapping) {
1208 unlock_page(page);
1209 page_cache_release(page);
1210 continue;
1211 }
1212
1213 /* Did somebody else fill it already? */
1214 if (PageUptodate(page)) {
1215 unlock_page(page);
1216 goto page_ok;
1217 }
1218
1219readpage:
91803b49
JM
1220 /*
1221 * A previous I/O error may have been due to temporary
1222 * failures, eg. multipath errors.
1223 * PG_error will be set again if readpage fails.
1224 */
1225 ClearPageError(page);
1da177e4
LT
1226 /* Start the actual read. The read will unlock the page. */
1227 error = mapping->a_ops->readpage(filp, page);
1228
994fc28c
ZB
1229 if (unlikely(error)) {
1230 if (error == AOP_TRUNCATED_PAGE) {
1231 page_cache_release(page);
1232 goto find_page;
1233 }
1da177e4 1234 goto readpage_error;
994fc28c 1235 }
1da177e4
LT
1236
1237 if (!PageUptodate(page)) {
85462323
ON
1238 error = lock_page_killable(page);
1239 if (unlikely(error))
1240 goto readpage_error;
1da177e4
LT
1241 if (!PageUptodate(page)) {
1242 if (page->mapping == NULL) {
1243 /*
2ecdc82e 1244 * invalidate_mapping_pages got it
1da177e4
LT
1245 */
1246 unlock_page(page);
1247 page_cache_release(page);
1248 goto find_page;
1249 }
1250 unlock_page(page);
7ff81078 1251 shrink_readahead_size_eio(filp, ra);
85462323
ON
1252 error = -EIO;
1253 goto readpage_error;
1da177e4
LT
1254 }
1255 unlock_page(page);
1256 }
1257
1da177e4
LT
1258 goto page_ok;
1259
1260readpage_error:
1261 /* UHHUH! A synchronous read error occurred. Report it */
1262 desc->error = error;
1263 page_cache_release(page);
1264 goto out;
1265
1266no_cached_page:
1267 /*
1268 * Ok, it wasn't cached, so we need to create a new
1269 * page..
1270 */
eb2be189
NP
1271 page = page_cache_alloc_cold(mapping);
1272 if (!page) {
1273 desc->error = -ENOMEM;
1274 goto out;
1da177e4 1275 }
eb2be189 1276 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1277 index, GFP_KERNEL);
1278 if (error) {
eb2be189 1279 page_cache_release(page);
1da177e4
LT
1280 if (error == -EEXIST)
1281 goto find_page;
1282 desc->error = error;
1283 goto out;
1284 }
1da177e4
LT
1285 goto readpage;
1286 }
1287
1288out:
7ff81078
FW
1289 ra->prev_pos = prev_index;
1290 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1291 ra->prev_pos |= prev_offset;
1da177e4 1292
f4e6b498 1293 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1294 file_accessed(filp);
1da177e4 1295}
1da177e4
LT
1296
1297int file_read_actor(read_descriptor_t *desc, struct page *page,
1298 unsigned long offset, unsigned long size)
1299{
1300 char *kaddr;
1301 unsigned long left, count = desc->count;
1302
1303 if (size > count)
1304 size = count;
1305
1306 /*
1307 * Faults on the destination of a read are common, so do it before
1308 * taking the kmap.
1309 */
1310 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1311 kaddr = kmap_atomic(page, KM_USER0);
1312 left = __copy_to_user_inatomic(desc->arg.buf,
1313 kaddr + offset, size);
1314 kunmap_atomic(kaddr, KM_USER0);
1315 if (left == 0)
1316 goto success;
1317 }
1318
1319 /* Do it the slow way */
1320 kaddr = kmap(page);
1321 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1322 kunmap(page);
1323
1324 if (left) {
1325 size -= left;
1326 desc->error = -EFAULT;
1327 }
1328success:
1329 desc->count = count - size;
1330 desc->written += size;
1331 desc->arg.buf += size;
1332 return size;
1333}
1334
0ceb3314
DM
1335/*
1336 * Performs necessary checks before doing a write
1337 * @iov: io vector request
1338 * @nr_segs: number of segments in the iovec
1339 * @count: number of bytes to write
1340 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1341 *
1342 * Adjust number of segments and amount of bytes to write (nr_segs should be
1343 * properly initialized first). Returns appropriate error code that caller
1344 * should return or zero in case that write should be allowed.
1345 */
1346int generic_segment_checks(const struct iovec *iov,
1347 unsigned long *nr_segs, size_t *count, int access_flags)
1348{
1349 unsigned long seg;
1350 size_t cnt = 0;
1351 for (seg = 0; seg < *nr_segs; seg++) {
1352 const struct iovec *iv = &iov[seg];
1353
1354 /*
1355 * If any segment has a negative length, or the cumulative
1356 * length ever wraps negative then return -EINVAL.
1357 */
1358 cnt += iv->iov_len;
1359 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1360 return -EINVAL;
1361 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1362 continue;
1363 if (seg == 0)
1364 return -EFAULT;
1365 *nr_segs = seg;
1366 cnt -= iv->iov_len; /* This segment is no good */
1367 break;
1368 }
1369 *count = cnt;
1370 return 0;
1371}
1372EXPORT_SYMBOL(generic_segment_checks);
1373
485bb99b 1374/**
b2abacf3 1375 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1376 * @iocb: kernel I/O control block
1377 * @iov: io vector request
1378 * @nr_segs: number of segments in the iovec
b2abacf3 1379 * @pos: current file position
485bb99b 1380 *
1da177e4
LT
1381 * This is the "read()" routine for all filesystems
1382 * that can use the page cache directly.
1383 */
1384ssize_t
543ade1f
BP
1385generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1386 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1387{
1388 struct file *filp = iocb->ki_filp;
1389 ssize_t retval;
66f998f6 1390 unsigned long seg = 0;
1da177e4 1391 size_t count;
543ade1f 1392 loff_t *ppos = &iocb->ki_pos;
55602dd6 1393 struct blk_plug plug;
1da177e4
LT
1394
1395 count = 0;
0ceb3314
DM
1396 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1397 if (retval)
1398 return retval;
1da177e4 1399
55602dd6
JA
1400 blk_start_plug(&plug);
1401
1da177e4
LT
1402 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1403 if (filp->f_flags & O_DIRECT) {
543ade1f 1404 loff_t size;
1da177e4
LT
1405 struct address_space *mapping;
1406 struct inode *inode;
1407
1408 mapping = filp->f_mapping;
1409 inode = mapping->host;
1da177e4
LT
1410 if (!count)
1411 goto out; /* skip atime */
1412 size = i_size_read(inode);
1413 if (pos < size) {
48b47c56
NP
1414 retval = filemap_write_and_wait_range(mapping, pos,
1415 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1416 if (!retval) {
1417 retval = mapping->a_ops->direct_IO(READ, iocb,
1418 iov, pos, nr_segs);
1419 }
66f998f6 1420 if (retval > 0) {
1da177e4 1421 *ppos = pos + retval;
66f998f6
JB
1422 count -= retval;
1423 }
1424
1425 /*
1426 * Btrfs can have a short DIO read if we encounter
1427 * compressed extents, so if there was an error, or if
1428 * we've already read everything we wanted to, or if
1429 * there was a short read because we hit EOF, go ahead
1430 * and return. Otherwise fallthrough to buffered io for
1431 * the rest of the read.
1432 */
1433 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1434 file_accessed(filp);
1435 goto out;
1436 }
0e0bcae3 1437 }
1da177e4
LT
1438 }
1439
66f998f6 1440 count = retval;
11fa977e
HD
1441 for (seg = 0; seg < nr_segs; seg++) {
1442 read_descriptor_t desc;
66f998f6
JB
1443 loff_t offset = 0;
1444
1445 /*
1446 * If we did a short DIO read we need to skip the section of the
1447 * iov that we've already read data into.
1448 */
1449 if (count) {
1450 if (count > iov[seg].iov_len) {
1451 count -= iov[seg].iov_len;
1452 continue;
1453 }
1454 offset = count;
1455 count = 0;
1456 }
1da177e4 1457
11fa977e 1458 desc.written = 0;
66f998f6
JB
1459 desc.arg.buf = iov[seg].iov_base + offset;
1460 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1461 if (desc.count == 0)
1462 continue;
1463 desc.error = 0;
1464 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1465 retval += desc.written;
1466 if (desc.error) {
1467 retval = retval ?: desc.error;
1468 break;
1da177e4 1469 }
11fa977e
HD
1470 if (desc.count > 0)
1471 break;
1da177e4
LT
1472 }
1473out:
55602dd6 1474 blk_finish_plug(&plug);
1da177e4
LT
1475 return retval;
1476}
1da177e4
LT
1477EXPORT_SYMBOL(generic_file_aio_read);
1478
1da177e4
LT
1479static ssize_t
1480do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1481 pgoff_t index, unsigned long nr)
1da177e4
LT
1482{
1483 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1484 return -EINVAL;
1485
f7e839dd 1486 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1487 return 0;
1488}
1489
6673e0c3 1490SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1491{
1492 ssize_t ret;
1493 struct file *file;
1494
1495 ret = -EBADF;
1496 file = fget(fd);
1497 if (file) {
1498 if (file->f_mode & FMODE_READ) {
1499 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1500 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1501 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1502 unsigned long len = end - start + 1;
1503 ret = do_readahead(mapping, file, start, len);
1504 }
1505 fput(file);
1506 }
1507 return ret;
1508}
6673e0c3
HC
1509#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1510asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1511{
1512 return SYSC_readahead((int) fd, offset, (size_t) count);
1513}
1514SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1515#endif
1da177e4
LT
1516
1517#ifdef CONFIG_MMU
485bb99b
RD
1518/**
1519 * page_cache_read - adds requested page to the page cache if not already there
1520 * @file: file to read
1521 * @offset: page index
1522 *
1da177e4
LT
1523 * This adds the requested page to the page cache if it isn't already there,
1524 * and schedules an I/O to read in its contents from disk.
1525 */
920c7a5d 1526static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1527{
1528 struct address_space *mapping = file->f_mapping;
1529 struct page *page;
994fc28c 1530 int ret;
1da177e4 1531
994fc28c
ZB
1532 do {
1533 page = page_cache_alloc_cold(mapping);
1534 if (!page)
1535 return -ENOMEM;
1536
1537 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1538 if (ret == 0)
1539 ret = mapping->a_ops->readpage(file, page);
1540 else if (ret == -EEXIST)
1541 ret = 0; /* losing race to add is OK */
1da177e4 1542
1da177e4 1543 page_cache_release(page);
1da177e4 1544
994fc28c
ZB
1545 } while (ret == AOP_TRUNCATED_PAGE);
1546
1547 return ret;
1da177e4
LT
1548}
1549
1550#define MMAP_LOTSAMISS (100)
1551
ef00e08e
LT
1552/*
1553 * Synchronous readahead happens when we don't even find
1554 * a page in the page cache at all.
1555 */
1556static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1557 struct file_ra_state *ra,
1558 struct file *file,
1559 pgoff_t offset)
1560{
1561 unsigned long ra_pages;
1562 struct address_space *mapping = file->f_mapping;
1563
1564 /* If we don't want any read-ahead, don't bother */
1565 if (VM_RandomReadHint(vma))
1566 return;
275b12bf
WF
1567 if (!ra->ra_pages)
1568 return;
ef00e08e 1569
2cbea1d3 1570 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1571 page_cache_sync_readahead(mapping, ra, file, offset,
1572 ra->ra_pages);
ef00e08e
LT
1573 return;
1574 }
1575
207d04ba
AK
1576 /* Avoid banging the cache line if not needed */
1577 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1578 ra->mmap_miss++;
1579
1580 /*
1581 * Do we miss much more than hit in this file? If so,
1582 * stop bothering with read-ahead. It will only hurt.
1583 */
1584 if (ra->mmap_miss > MMAP_LOTSAMISS)
1585 return;
1586
d30a1100
WF
1587 /*
1588 * mmap read-around
1589 */
ef00e08e 1590 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1591 ra->start = max_t(long, 0, offset - ra_pages / 2);
1592 ra->size = ra_pages;
2cbea1d3 1593 ra->async_size = ra_pages / 4;
275b12bf 1594 ra_submit(ra, mapping, file);
ef00e08e
LT
1595}
1596
1597/*
1598 * Asynchronous readahead happens when we find the page and PG_readahead,
1599 * so we want to possibly extend the readahead further..
1600 */
1601static void do_async_mmap_readahead(struct vm_area_struct *vma,
1602 struct file_ra_state *ra,
1603 struct file *file,
1604 struct page *page,
1605 pgoff_t offset)
1606{
1607 struct address_space *mapping = file->f_mapping;
1608
1609 /* If we don't want any read-ahead, don't bother */
1610 if (VM_RandomReadHint(vma))
1611 return;
1612 if (ra->mmap_miss > 0)
1613 ra->mmap_miss--;
1614 if (PageReadahead(page))
2fad6f5d
WF
1615 page_cache_async_readahead(mapping, ra, file,
1616 page, offset, ra->ra_pages);
ef00e08e
LT
1617}
1618
485bb99b 1619/**
54cb8821 1620 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1621 * @vma: vma in which the fault was taken
1622 * @vmf: struct vm_fault containing details of the fault
485bb99b 1623 *
54cb8821 1624 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1625 * mapped memory region to read in file data during a page fault.
1626 *
1627 * The goto's are kind of ugly, but this streamlines the normal case of having
1628 * it in the page cache, and handles the special cases reasonably without
1629 * having a lot of duplicated code.
1630 */
d0217ac0 1631int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1632{
1633 int error;
54cb8821 1634 struct file *file = vma->vm_file;
1da177e4
LT
1635 struct address_space *mapping = file->f_mapping;
1636 struct file_ra_state *ra = &file->f_ra;
1637 struct inode *inode = mapping->host;
ef00e08e 1638 pgoff_t offset = vmf->pgoff;
1da177e4 1639 struct page *page;
2004dc8e 1640 pgoff_t size;
83c54070 1641 int ret = 0;
1da177e4 1642
1da177e4 1643 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1644 if (offset >= size)
5307cc1a 1645 return VM_FAULT_SIGBUS;
1da177e4 1646
1da177e4
LT
1647 /*
1648 * Do we have something in the page cache already?
1649 */
ef00e08e
LT
1650 page = find_get_page(mapping, offset);
1651 if (likely(page)) {
1da177e4 1652 /*
ef00e08e
LT
1653 * We found the page, so try async readahead before
1654 * waiting for the lock.
1da177e4 1655 */
ef00e08e 1656 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1657 } else {
1658 /* No page in the page cache at all */
1659 do_sync_mmap_readahead(vma, ra, file, offset);
1660 count_vm_event(PGMAJFAULT);
456f998e 1661 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1662 ret = VM_FAULT_MAJOR;
1663retry_find:
b522c94d 1664 page = find_get_page(mapping, offset);
1da177e4
LT
1665 if (!page)
1666 goto no_cached_page;
1667 }
1668
d88c0922
ML
1669 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1670 page_cache_release(page);
d065bd81 1671 return ret | VM_FAULT_RETRY;
d88c0922 1672 }
b522c94d
ML
1673
1674 /* Did it get truncated? */
1675 if (unlikely(page->mapping != mapping)) {
1676 unlock_page(page);
1677 put_page(page);
1678 goto retry_find;
1679 }
1680 VM_BUG_ON(page->index != offset);
1681
1da177e4 1682 /*
d00806b1
NP
1683 * We have a locked page in the page cache, now we need to check
1684 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1685 */
d00806b1 1686 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1687 goto page_not_uptodate;
1688
ef00e08e
LT
1689 /*
1690 * Found the page and have a reference on it.
1691 * We must recheck i_size under page lock.
1692 */
d00806b1 1693 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1694 if (unlikely(offset >= size)) {
d00806b1 1695 unlock_page(page);
745ad48e 1696 page_cache_release(page);
5307cc1a 1697 return VM_FAULT_SIGBUS;
d00806b1
NP
1698 }
1699
d0217ac0 1700 vmf->page = page;
83c54070 1701 return ret | VM_FAULT_LOCKED;
1da177e4 1702
1da177e4
LT
1703no_cached_page:
1704 /*
1705 * We're only likely to ever get here if MADV_RANDOM is in
1706 * effect.
1707 */
ef00e08e 1708 error = page_cache_read(file, offset);
1da177e4
LT
1709
1710 /*
1711 * The page we want has now been added to the page cache.
1712 * In the unlikely event that someone removed it in the
1713 * meantime, we'll just come back here and read it again.
1714 */
1715 if (error >= 0)
1716 goto retry_find;
1717
1718 /*
1719 * An error return from page_cache_read can result if the
1720 * system is low on memory, or a problem occurs while trying
1721 * to schedule I/O.
1722 */
1723 if (error == -ENOMEM)
d0217ac0
NP
1724 return VM_FAULT_OOM;
1725 return VM_FAULT_SIGBUS;
1da177e4
LT
1726
1727page_not_uptodate:
1da177e4
LT
1728 /*
1729 * Umm, take care of errors if the page isn't up-to-date.
1730 * Try to re-read it _once_. We do this synchronously,
1731 * because there really aren't any performance issues here
1732 * and we need to check for errors.
1733 */
1da177e4 1734 ClearPageError(page);
994fc28c 1735 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1736 if (!error) {
1737 wait_on_page_locked(page);
1738 if (!PageUptodate(page))
1739 error = -EIO;
1740 }
d00806b1
NP
1741 page_cache_release(page);
1742
1743 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1744 goto retry_find;
1da177e4 1745
d00806b1 1746 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1747 shrink_readahead_size_eio(file, ra);
d0217ac0 1748 return VM_FAULT_SIGBUS;
54cb8821
NP
1749}
1750EXPORT_SYMBOL(filemap_fault);
1751
f0f37e2f 1752const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1753 .fault = filemap_fault,
1da177e4
LT
1754};
1755
1756/* This is used for a general mmap of a disk file */
1757
1758int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1759{
1760 struct address_space *mapping = file->f_mapping;
1761
1762 if (!mapping->a_ops->readpage)
1763 return -ENOEXEC;
1764 file_accessed(file);
1765 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1766 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1767 return 0;
1768}
1da177e4
LT
1769
1770/*
1771 * This is for filesystems which do not implement ->writepage.
1772 */
1773int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1774{
1775 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1776 return -EINVAL;
1777 return generic_file_mmap(file, vma);
1778}
1779#else
1780int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1781{
1782 return -ENOSYS;
1783}
1784int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1785{
1786 return -ENOSYS;
1787}
1788#endif /* CONFIG_MMU */
1789
1790EXPORT_SYMBOL(generic_file_mmap);
1791EXPORT_SYMBOL(generic_file_readonly_mmap);
1792
6fe6900e 1793static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1794 pgoff_t index,
5e5358e7 1795 int (*filler)(void *, struct page *),
0531b2aa
LT
1796 void *data,
1797 gfp_t gfp)
1da177e4 1798{
eb2be189 1799 struct page *page;
1da177e4
LT
1800 int err;
1801repeat:
1802 page = find_get_page(mapping, index);
1803 if (!page) {
0531b2aa 1804 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1805 if (!page)
1806 return ERR_PTR(-ENOMEM);
1807 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1808 if (unlikely(err)) {
1809 page_cache_release(page);
1810 if (err == -EEXIST)
1811 goto repeat;
1da177e4 1812 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1813 return ERR_PTR(err);
1814 }
1da177e4
LT
1815 err = filler(data, page);
1816 if (err < 0) {
1817 page_cache_release(page);
1818 page = ERR_PTR(err);
1819 }
1820 }
1da177e4
LT
1821 return page;
1822}
1823
0531b2aa 1824static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1825 pgoff_t index,
5e5358e7 1826 int (*filler)(void *, struct page *),
0531b2aa
LT
1827 void *data,
1828 gfp_t gfp)
1829
1da177e4
LT
1830{
1831 struct page *page;
1832 int err;
1833
1834retry:
0531b2aa 1835 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1836 if (IS_ERR(page))
c855ff37 1837 return page;
1da177e4
LT
1838 if (PageUptodate(page))
1839 goto out;
1840
1841 lock_page(page);
1842 if (!page->mapping) {
1843 unlock_page(page);
1844 page_cache_release(page);
1845 goto retry;
1846 }
1847 if (PageUptodate(page)) {
1848 unlock_page(page);
1849 goto out;
1850 }
1851 err = filler(data, page);
1852 if (err < 0) {
1853 page_cache_release(page);
c855ff37 1854 return ERR_PTR(err);
1da177e4 1855 }
c855ff37 1856out:
6fe6900e
NP
1857 mark_page_accessed(page);
1858 return page;
1859}
0531b2aa
LT
1860
1861/**
1862 * read_cache_page_async - read into page cache, fill it if needed
1863 * @mapping: the page's address_space
1864 * @index: the page index
1865 * @filler: function to perform the read
5e5358e7 1866 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1867 *
1868 * Same as read_cache_page, but don't wait for page to become unlocked
1869 * after submitting it to the filler.
1870 *
1871 * Read into the page cache. If a page already exists, and PageUptodate() is
1872 * not set, try to fill the page but don't wait for it to become unlocked.
1873 *
1874 * If the page does not get brought uptodate, return -EIO.
1875 */
1876struct page *read_cache_page_async(struct address_space *mapping,
1877 pgoff_t index,
5e5358e7 1878 int (*filler)(void *, struct page *),
0531b2aa
LT
1879 void *data)
1880{
1881 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1882}
6fe6900e
NP
1883EXPORT_SYMBOL(read_cache_page_async);
1884
0531b2aa
LT
1885static struct page *wait_on_page_read(struct page *page)
1886{
1887 if (!IS_ERR(page)) {
1888 wait_on_page_locked(page);
1889 if (!PageUptodate(page)) {
1890 page_cache_release(page);
1891 page = ERR_PTR(-EIO);
1892 }
1893 }
1894 return page;
1895}
1896
1897/**
1898 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1899 * @mapping: the page's address_space
1900 * @index: the page index
1901 * @gfp: the page allocator flags to use if allocating
1902 *
1903 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1904 * any new page allocations done using the specified allocation flags. Note
1905 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1906 * expect to do this atomically or anything like that - but you can pass in
1907 * other page requirements.
1908 *
1909 * If the page does not get brought uptodate, return -EIO.
1910 */
1911struct page *read_cache_page_gfp(struct address_space *mapping,
1912 pgoff_t index,
1913 gfp_t gfp)
1914{
1915 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1916
1917 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1918}
1919EXPORT_SYMBOL(read_cache_page_gfp);
1920
6fe6900e
NP
1921/**
1922 * read_cache_page - read into page cache, fill it if needed
1923 * @mapping: the page's address_space
1924 * @index: the page index
1925 * @filler: function to perform the read
5e5358e7 1926 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1927 *
1928 * Read into the page cache. If a page already exists, and PageUptodate() is
1929 * not set, try to fill the page then wait for it to become unlocked.
1930 *
1931 * If the page does not get brought uptodate, return -EIO.
1932 */
1933struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1934 pgoff_t index,
5e5358e7 1935 int (*filler)(void *, struct page *),
6fe6900e
NP
1936 void *data)
1937{
0531b2aa 1938 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1939}
1da177e4
LT
1940EXPORT_SYMBOL(read_cache_page);
1941
1da177e4
LT
1942/*
1943 * The logic we want is
1944 *
1945 * if suid or (sgid and xgrp)
1946 * remove privs
1947 */
01de85e0 1948int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1949{
1950 mode_t mode = dentry->d_inode->i_mode;
1951 int kill = 0;
1da177e4
LT
1952
1953 /* suid always must be killed */
1954 if (unlikely(mode & S_ISUID))
1955 kill = ATTR_KILL_SUID;
1956
1957 /*
1958 * sgid without any exec bits is just a mandatory locking mark; leave
1959 * it alone. If some exec bits are set, it's a real sgid; kill it.
1960 */
1961 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1962 kill |= ATTR_KILL_SGID;
1963
7f5ff766 1964 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1965 return kill;
1da177e4 1966
01de85e0
JA
1967 return 0;
1968}
d23a147b 1969EXPORT_SYMBOL(should_remove_suid);
01de85e0 1970
7f3d4ee1 1971static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1972{
1973 struct iattr newattrs;
1974
1975 newattrs.ia_valid = ATTR_FORCE | kill;
1976 return notify_change(dentry, &newattrs);
1977}
1978
2f1936b8 1979int file_remove_suid(struct file *file)
01de85e0 1980{
2f1936b8 1981 struct dentry *dentry = file->f_path.dentry;
69b45732
AK
1982 struct inode *inode = dentry->d_inode;
1983 int killsuid;
1984 int killpriv;
b5376771 1985 int error = 0;
01de85e0 1986
69b45732
AK
1987 /* Fast path for nothing security related */
1988 if (IS_NOSEC(inode))
1989 return 0;
1990
1991 killsuid = should_remove_suid(dentry);
1992 killpriv = security_inode_need_killpriv(dentry);
1993
b5376771
SH
1994 if (killpriv < 0)
1995 return killpriv;
1996 if (killpriv)
1997 error = security_inode_killpriv(dentry);
1998 if (!error && killsuid)
1999 error = __remove_suid(dentry, killsuid);
9e1f1de0 2000 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
69b45732 2001 inode->i_flags |= S_NOSEC;
01de85e0 2002
b5376771 2003 return error;
1da177e4 2004}
2f1936b8 2005EXPORT_SYMBOL(file_remove_suid);
1da177e4 2006
2f718ffc 2007static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2008 const struct iovec *iov, size_t base, size_t bytes)
2009{
f1800536 2010 size_t copied = 0, left = 0;
1da177e4
LT
2011
2012 while (bytes) {
2013 char __user *buf = iov->iov_base + base;
2014 int copy = min(bytes, iov->iov_len - base);
2015
2016 base = 0;
f1800536 2017 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2018 copied += copy;
2019 bytes -= copy;
2020 vaddr += copy;
2021 iov++;
2022
01408c49 2023 if (unlikely(left))
1da177e4 2024 break;
1da177e4
LT
2025 }
2026 return copied - left;
2027}
2028
2f718ffc
NP
2029/*
2030 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2031 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2032 * bytes which were copied.
2033 */
2034size_t iov_iter_copy_from_user_atomic(struct page *page,
2035 struct iov_iter *i, unsigned long offset, size_t bytes)
2036{
2037 char *kaddr;
2038 size_t copied;
2039
2040 BUG_ON(!in_atomic());
2041 kaddr = kmap_atomic(page, KM_USER0);
2042 if (likely(i->nr_segs == 1)) {
2043 int left;
2044 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2045 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2046 copied = bytes - left;
2047 } else {
2048 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2049 i->iov, i->iov_offset, bytes);
2050 }
2051 kunmap_atomic(kaddr, KM_USER0);
2052
2053 return copied;
2054}
89e10787 2055EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2056
2057/*
2058 * This has the same sideeffects and return value as
2059 * iov_iter_copy_from_user_atomic().
2060 * The difference is that it attempts to resolve faults.
2061 * Page must not be locked.
2062 */
2063size_t iov_iter_copy_from_user(struct page *page,
2064 struct iov_iter *i, unsigned long offset, size_t bytes)
2065{
2066 char *kaddr;
2067 size_t copied;
2068
2069 kaddr = kmap(page);
2070 if (likely(i->nr_segs == 1)) {
2071 int left;
2072 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2073 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2074 copied = bytes - left;
2075 } else {
2076 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2077 i->iov, i->iov_offset, bytes);
2078 }
2079 kunmap(page);
2080 return copied;
2081}
89e10787 2082EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2083
f7009264 2084void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2085{
f7009264
NP
2086 BUG_ON(i->count < bytes);
2087
2f718ffc
NP
2088 if (likely(i->nr_segs == 1)) {
2089 i->iov_offset += bytes;
f7009264 2090 i->count -= bytes;
2f718ffc
NP
2091 } else {
2092 const struct iovec *iov = i->iov;
2093 size_t base = i->iov_offset;
2094
124d3b70
NP
2095 /*
2096 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2097 * zero-length segments (without overruning the iovec).
124d3b70 2098 */
94ad374a 2099 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2100 int copy;
2f718ffc 2101
f7009264
NP
2102 copy = min(bytes, iov->iov_len - base);
2103 BUG_ON(!i->count || i->count < copy);
2104 i->count -= copy;
2f718ffc
NP
2105 bytes -= copy;
2106 base += copy;
2107 if (iov->iov_len == base) {
2108 iov++;
2109 base = 0;
2110 }
2111 }
2112 i->iov = iov;
2113 i->iov_offset = base;
2114 }
2115}
89e10787 2116EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2117
afddba49
NP
2118/*
2119 * Fault in the first iovec of the given iov_iter, to a maximum length
2120 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2121 * accessed (ie. because it is an invalid address).
2122 *
2123 * writev-intensive code may want this to prefault several iovecs -- that
2124 * would be possible (callers must not rely on the fact that _only_ the
2125 * first iovec will be faulted with the current implementation).
2126 */
2127int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2128{
2f718ffc 2129 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2130 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2131 return fault_in_pages_readable(buf, bytes);
2f718ffc 2132}
89e10787 2133EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2134
2135/*
2136 * Return the count of just the current iov_iter segment.
2137 */
2138size_t iov_iter_single_seg_count(struct iov_iter *i)
2139{
2140 const struct iovec *iov = i->iov;
2141 if (i->nr_segs == 1)
2142 return i->count;
2143 else
2144 return min(i->count, iov->iov_len - i->iov_offset);
2145}
89e10787 2146EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2147
1da177e4
LT
2148/*
2149 * Performs necessary checks before doing a write
2150 *
485bb99b 2151 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2152 * Returns appropriate error code that caller should return or
2153 * zero in case that write should be allowed.
2154 */
2155inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2156{
2157 struct inode *inode = file->f_mapping->host;
59e99e5b 2158 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2159
2160 if (unlikely(*pos < 0))
2161 return -EINVAL;
2162
1da177e4
LT
2163 if (!isblk) {
2164 /* FIXME: this is for backwards compatibility with 2.4 */
2165 if (file->f_flags & O_APPEND)
2166 *pos = i_size_read(inode);
2167
2168 if (limit != RLIM_INFINITY) {
2169 if (*pos >= limit) {
2170 send_sig(SIGXFSZ, current, 0);
2171 return -EFBIG;
2172 }
2173 if (*count > limit - (typeof(limit))*pos) {
2174 *count = limit - (typeof(limit))*pos;
2175 }
2176 }
2177 }
2178
2179 /*
2180 * LFS rule
2181 */
2182 if (unlikely(*pos + *count > MAX_NON_LFS &&
2183 !(file->f_flags & O_LARGEFILE))) {
2184 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2185 return -EFBIG;
2186 }
2187 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2188 *count = MAX_NON_LFS - (unsigned long)*pos;
2189 }
2190 }
2191
2192 /*
2193 * Are we about to exceed the fs block limit ?
2194 *
2195 * If we have written data it becomes a short write. If we have
2196 * exceeded without writing data we send a signal and return EFBIG.
2197 * Linus frestrict idea will clean these up nicely..
2198 */
2199 if (likely(!isblk)) {
2200 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2201 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2202 return -EFBIG;
2203 }
2204 /* zero-length writes at ->s_maxbytes are OK */
2205 }
2206
2207 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2208 *count = inode->i_sb->s_maxbytes - *pos;
2209 } else {
9361401e 2210#ifdef CONFIG_BLOCK
1da177e4
LT
2211 loff_t isize;
2212 if (bdev_read_only(I_BDEV(inode)))
2213 return -EPERM;
2214 isize = i_size_read(inode);
2215 if (*pos >= isize) {
2216 if (*count || *pos > isize)
2217 return -ENOSPC;
2218 }
2219
2220 if (*pos + *count > isize)
2221 *count = isize - *pos;
9361401e
DH
2222#else
2223 return -EPERM;
2224#endif
1da177e4
LT
2225 }
2226 return 0;
2227}
2228EXPORT_SYMBOL(generic_write_checks);
2229
afddba49
NP
2230int pagecache_write_begin(struct file *file, struct address_space *mapping,
2231 loff_t pos, unsigned len, unsigned flags,
2232 struct page **pagep, void **fsdata)
2233{
2234 const struct address_space_operations *aops = mapping->a_ops;
2235
4e02ed4b 2236 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2237 pagep, fsdata);
afddba49
NP
2238}
2239EXPORT_SYMBOL(pagecache_write_begin);
2240
2241int pagecache_write_end(struct file *file, struct address_space *mapping,
2242 loff_t pos, unsigned len, unsigned copied,
2243 struct page *page, void *fsdata)
2244{
2245 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2246
4e02ed4b
NP
2247 mark_page_accessed(page);
2248 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2249}
2250EXPORT_SYMBOL(pagecache_write_end);
2251
1da177e4
LT
2252ssize_t
2253generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2254 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2255 size_t count, size_t ocount)
2256{
2257 struct file *file = iocb->ki_filp;
2258 struct address_space *mapping = file->f_mapping;
2259 struct inode *inode = mapping->host;
2260 ssize_t written;
a969e903
CH
2261 size_t write_len;
2262 pgoff_t end;
1da177e4
LT
2263
2264 if (count != ocount)
2265 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2266
a969e903
CH
2267 write_len = iov_length(iov, *nr_segs);
2268 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2269
48b47c56 2270 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2271 if (written)
2272 goto out;
2273
2274 /*
2275 * After a write we want buffered reads to be sure to go to disk to get
2276 * the new data. We invalidate clean cached page from the region we're
2277 * about to write. We do this *before* the write so that we can return
6ccfa806 2278 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2279 */
2280 if (mapping->nrpages) {
2281 written = invalidate_inode_pages2_range(mapping,
2282 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2283 /*
2284 * If a page can not be invalidated, return 0 to fall back
2285 * to buffered write.
2286 */
2287 if (written) {
2288 if (written == -EBUSY)
2289 return 0;
a969e903 2290 goto out;
6ccfa806 2291 }
a969e903
CH
2292 }
2293
2294 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2295
2296 /*
2297 * Finally, try again to invalidate clean pages which might have been
2298 * cached by non-direct readahead, or faulted in by get_user_pages()
2299 * if the source of the write was an mmap'ed region of the file
2300 * we're writing. Either one is a pretty crazy thing to do,
2301 * so we don't support it 100%. If this invalidation
2302 * fails, tough, the write still worked...
2303 */
2304 if (mapping->nrpages) {
2305 invalidate_inode_pages2_range(mapping,
2306 pos >> PAGE_CACHE_SHIFT, end);
2307 }
2308
1da177e4 2309 if (written > 0) {
0116651c
NK
2310 pos += written;
2311 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2312 i_size_write(inode, pos);
1da177e4
LT
2313 mark_inode_dirty(inode);
2314 }
0116651c 2315 *ppos = pos;
1da177e4 2316 }
a969e903 2317out:
1da177e4
LT
2318 return written;
2319}
2320EXPORT_SYMBOL(generic_file_direct_write);
2321
eb2be189
NP
2322/*
2323 * Find or create a page at the given pagecache position. Return the locked
2324 * page. This function is specifically for buffered writes.
2325 */
54566b2c
NP
2326struct page *grab_cache_page_write_begin(struct address_space *mapping,
2327 pgoff_t index, unsigned flags)
eb2be189
NP
2328{
2329 int status;
2330 struct page *page;
54566b2c
NP
2331 gfp_t gfp_notmask = 0;
2332 if (flags & AOP_FLAG_NOFS)
2333 gfp_notmask = __GFP_FS;
eb2be189
NP
2334repeat:
2335 page = find_lock_page(mapping, index);
c585a267 2336 if (page)
3d08bcc8 2337 goto found;
eb2be189 2338
54566b2c 2339 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2340 if (!page)
2341 return NULL;
54566b2c
NP
2342 status = add_to_page_cache_lru(page, mapping, index,
2343 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2344 if (unlikely(status)) {
2345 page_cache_release(page);
2346 if (status == -EEXIST)
2347 goto repeat;
2348 return NULL;
2349 }
3d08bcc8
DW
2350found:
2351 wait_on_page_writeback(page);
eb2be189
NP
2352 return page;
2353}
54566b2c 2354EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2355
afddba49
NP
2356static ssize_t generic_perform_write(struct file *file,
2357 struct iov_iter *i, loff_t pos)
2358{
2359 struct address_space *mapping = file->f_mapping;
2360 const struct address_space_operations *a_ops = mapping->a_ops;
2361 long status = 0;
2362 ssize_t written = 0;
674b892e
NP
2363 unsigned int flags = 0;
2364
2365 /*
2366 * Copies from kernel address space cannot fail (NFSD is a big user).
2367 */
2368 if (segment_eq(get_fs(), KERNEL_DS))
2369 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2370
2371 do {
2372 struct page *page;
afddba49
NP
2373 unsigned long offset; /* Offset into pagecache page */
2374 unsigned long bytes; /* Bytes to write to page */
2375 size_t copied; /* Bytes copied from user */
2376 void *fsdata;
2377
2378 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2379 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2380 iov_iter_count(i));
2381
2382again:
2383
2384 /*
2385 * Bring in the user page that we will copy from _first_.
2386 * Otherwise there's a nasty deadlock on copying from the
2387 * same page as we're writing to, without it being marked
2388 * up-to-date.
2389 *
2390 * Not only is this an optimisation, but it is also required
2391 * to check that the address is actually valid, when atomic
2392 * usercopies are used, below.
2393 */
2394 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2395 status = -EFAULT;
2396 break;
2397 }
2398
674b892e 2399 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2400 &page, &fsdata);
2401 if (unlikely(status))
2402 break;
2403
931e80e4 2404 if (mapping_writably_mapped(mapping))
2405 flush_dcache_page(page);
2406
afddba49
NP
2407 pagefault_disable();
2408 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2409 pagefault_enable();
2410 flush_dcache_page(page);
2411
c8236db9 2412 mark_page_accessed(page);
afddba49
NP
2413 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2414 page, fsdata);
2415 if (unlikely(status < 0))
2416 break;
2417 copied = status;
2418
2419 cond_resched();
2420
124d3b70 2421 iov_iter_advance(i, copied);
afddba49
NP
2422 if (unlikely(copied == 0)) {
2423 /*
2424 * If we were unable to copy any data at all, we must
2425 * fall back to a single segment length write.
2426 *
2427 * If we didn't fallback here, we could livelock
2428 * because not all segments in the iov can be copied at
2429 * once without a pagefault.
2430 */
2431 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2432 iov_iter_single_seg_count(i));
2433 goto again;
2434 }
afddba49
NP
2435 pos += copied;
2436 written += copied;
2437
2438 balance_dirty_pages_ratelimited(mapping);
2439
2440 } while (iov_iter_count(i));
2441
2442 return written ? written : status;
2443}
2444
2445ssize_t
2446generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2447 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2448 size_t count, ssize_t written)
2449{
2450 struct file *file = iocb->ki_filp;
afddba49
NP
2451 ssize_t status;
2452 struct iov_iter i;
2453
2454 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2455 status = generic_perform_write(file, &i, pos);
1da177e4 2456
1da177e4 2457 if (likely(status >= 0)) {
afddba49
NP
2458 written += status;
2459 *ppos = pos + status;
1da177e4
LT
2460 }
2461
1da177e4
LT
2462 return written ? written : status;
2463}
2464EXPORT_SYMBOL(generic_file_buffered_write);
2465
e4dd9de3
JK
2466/**
2467 * __generic_file_aio_write - write data to a file
2468 * @iocb: IO state structure (file, offset, etc.)
2469 * @iov: vector with data to write
2470 * @nr_segs: number of segments in the vector
2471 * @ppos: position where to write
2472 *
2473 * This function does all the work needed for actually writing data to a
2474 * file. It does all basic checks, removes SUID from the file, updates
2475 * modification times and calls proper subroutines depending on whether we
2476 * do direct IO or a standard buffered write.
2477 *
2478 * It expects i_mutex to be grabbed unless we work on a block device or similar
2479 * object which does not need locking at all.
2480 *
2481 * This function does *not* take care of syncing data in case of O_SYNC write.
2482 * A caller has to handle it. This is mainly due to the fact that we want to
2483 * avoid syncing under i_mutex.
2484 */
2485ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2486 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2487{
2488 struct file *file = iocb->ki_filp;
fb5527e6 2489 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2490 size_t ocount; /* original count */
2491 size_t count; /* after file limit checks */
2492 struct inode *inode = mapping->host;
1da177e4
LT
2493 loff_t pos;
2494 ssize_t written;
2495 ssize_t err;
2496
2497 ocount = 0;
0ceb3314
DM
2498 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2499 if (err)
2500 return err;
1da177e4
LT
2501
2502 count = ocount;
2503 pos = *ppos;
2504
2505 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2506
2507 /* We can write back this queue in page reclaim */
2508 current->backing_dev_info = mapping->backing_dev_info;
2509 written = 0;
2510
2511 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2512 if (err)
2513 goto out;
2514
2515 if (count == 0)
2516 goto out;
2517
2f1936b8 2518 err = file_remove_suid(file);
1da177e4
LT
2519 if (err)
2520 goto out;
2521
870f4817 2522 file_update_time(file);
1da177e4
LT
2523
2524 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2525 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2526 loff_t endbyte;
2527 ssize_t written_buffered;
2528
2529 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2530 ppos, count, ocount);
1da177e4
LT
2531 if (written < 0 || written == count)
2532 goto out;
2533 /*
2534 * direct-io write to a hole: fall through to buffered I/O
2535 * for completing the rest of the request.
2536 */
2537 pos += written;
2538 count -= written;
fb5527e6
JM
2539 written_buffered = generic_file_buffered_write(iocb, iov,
2540 nr_segs, pos, ppos, count,
2541 written);
2542 /*
2543 * If generic_file_buffered_write() retuned a synchronous error
2544 * then we want to return the number of bytes which were
2545 * direct-written, or the error code if that was zero. Note
2546 * that this differs from normal direct-io semantics, which
2547 * will return -EFOO even if some bytes were written.
2548 */
2549 if (written_buffered < 0) {
2550 err = written_buffered;
2551 goto out;
2552 }
1da177e4 2553
fb5527e6
JM
2554 /*
2555 * We need to ensure that the page cache pages are written to
2556 * disk and invalidated to preserve the expected O_DIRECT
2557 * semantics.
2558 */
2559 endbyte = pos + written_buffered - written - 1;
c05c4edd 2560 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2561 if (err == 0) {
2562 written = written_buffered;
2563 invalidate_mapping_pages(mapping,
2564 pos >> PAGE_CACHE_SHIFT,
2565 endbyte >> PAGE_CACHE_SHIFT);
2566 } else {
2567 /*
2568 * We don't know how much we wrote, so just return
2569 * the number of bytes which were direct-written
2570 */
2571 }
2572 } else {
2573 written = generic_file_buffered_write(iocb, iov, nr_segs,
2574 pos, ppos, count, written);
2575 }
1da177e4
LT
2576out:
2577 current->backing_dev_info = NULL;
2578 return written ? written : err;
2579}
e4dd9de3
JK
2580EXPORT_SYMBOL(__generic_file_aio_write);
2581
e4dd9de3
JK
2582/**
2583 * generic_file_aio_write - write data to a file
2584 * @iocb: IO state structure
2585 * @iov: vector with data to write
2586 * @nr_segs: number of segments in the vector
2587 * @pos: position in file where to write
2588 *
2589 * This is a wrapper around __generic_file_aio_write() to be used by most
2590 * filesystems. It takes care of syncing the file in case of O_SYNC file
2591 * and acquires i_mutex as needed.
2592 */
027445c3
BP
2593ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2594 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2595{
2596 struct file *file = iocb->ki_filp;
148f948b 2597 struct inode *inode = file->f_mapping->host;
55602dd6 2598 struct blk_plug plug;
1da177e4 2599 ssize_t ret;
1da177e4
LT
2600
2601 BUG_ON(iocb->ki_pos != pos);
2602
1b1dcc1b 2603 mutex_lock(&inode->i_mutex);
55602dd6 2604 blk_start_plug(&plug);
e4dd9de3 2605 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2606 mutex_unlock(&inode->i_mutex);
1da177e4 2607
148f948b 2608 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2609 ssize_t err;
2610
148f948b 2611 err = generic_write_sync(file, pos, ret);
c7b50db2 2612 if (err < 0 && ret > 0)
1da177e4
LT
2613 ret = err;
2614 }
55602dd6 2615 blk_finish_plug(&plug);
1da177e4
LT
2616 return ret;
2617}
2618EXPORT_SYMBOL(generic_file_aio_write);
2619
cf9a2ae8
DH
2620/**
2621 * try_to_release_page() - release old fs-specific metadata on a page
2622 *
2623 * @page: the page which the kernel is trying to free
2624 * @gfp_mask: memory allocation flags (and I/O mode)
2625 *
2626 * The address_space is to try to release any data against the page
2627 * (presumably at page->private). If the release was successful, return `1'.
2628 * Otherwise return zero.
2629 *
266cf658
DH
2630 * This may also be called if PG_fscache is set on a page, indicating that the
2631 * page is known to the local caching routines.
2632 *
cf9a2ae8 2633 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2634 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2635 *
cf9a2ae8
DH
2636 */
2637int try_to_release_page(struct page *page, gfp_t gfp_mask)
2638{
2639 struct address_space * const mapping = page->mapping;
2640
2641 BUG_ON(!PageLocked(page));
2642 if (PageWriteback(page))
2643 return 0;
2644
2645 if (mapping && mapping->a_ops->releasepage)
2646 return mapping->a_ops->releasepage(page, gfp_mask);
2647 return try_to_free_buffers(page);
2648}
2649
2650EXPORT_SYMBOL(try_to_release_page);