]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
fs/mpage.c: factor clean_buffers() out of __mpage_writepage()
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
3d48ae45 64 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
3d48ae45 70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
3d48ae45 73 * ->i_mmap_mutex
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
3d48ae45 87 * ->i_mmap_mutex
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
9a3c531d
AK
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
109 */
110
91b0abe3
JW
111static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113{
449dd698
JW
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
91b0abe3 119
449dd698
JW
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
91b0abe3
JW
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
449dd698 133 }
91b0abe3 134 mapping->nrpages--;
449dd698
JW
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
91b0abe3
JW
172}
173
1da177e4 174/*
e64a782f 175 * Delete a page from the page cache and free it. Caller has to make
1da177e4 176 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 177 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 178 */
91b0abe3 179void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
180{
181 struct address_space *mapping = page->mapping;
182
fe0bfaaf 183 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
3167760f 192 cleancache_invalidate_page(mapping, page);
c515e1fd 193
91b0abe3
JW
194 page_cache_tree_delete(mapping, page, shadow);
195
1da177e4 196 page->mapping = NULL;
b85e0eff 197 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 198
347ce434 199 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
45426812 202 BUG_ON(page_mapped(page));
3a692790
LT
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
1da177e4
LT
215}
216
702cfbf9
MK
217/**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225void delete_from_page_cache(struct page *page)
1da177e4
LT
226{
227 struct address_space *mapping = page->mapping;
6072d13c 228 void (*freepage)(struct page *);
1da177e4 229
cd7619d6 230 BUG_ON(!PageLocked(page));
1da177e4 231
6072d13c 232 freepage = mapping->a_ops->freepage;
19fd6231 233 spin_lock_irq(&mapping->tree_lock);
91b0abe3 234 __delete_from_page_cache(page, NULL);
19fd6231 235 spin_unlock_irq(&mapping->tree_lock);
e767e056 236 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
237
238 if (freepage)
239 freepage(page);
97cecb5a
MK
240 page_cache_release(page);
241}
242EXPORT_SYMBOL(delete_from_page_cache);
243
7eaceacc 244static int sleep_on_page(void *word)
1da177e4 245{
1da177e4
LT
246 io_schedule();
247 return 0;
248}
249
7eaceacc 250static int sleep_on_page_killable(void *word)
2687a356 251{
7eaceacc 252 sleep_on_page(word);
2687a356
MW
253 return fatal_signal_pending(current) ? -EINTR : 0;
254}
255
865ffef3
DM
256static int filemap_check_errors(struct address_space *mapping)
257{
258 int ret = 0;
259 /* Check for outstanding write errors */
7fcbbaf1
JA
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 262 ret = -ENOSPC;
7fcbbaf1
JA
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
265 ret = -EIO;
266 return ret;
267}
268
1da177e4 269/**
485bb99b 270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
469eb4d0 273 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 274 * @sync_mode: enable synchronous operation
1da177e4 275 *
485bb99b
RD
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
278 *
1da177e4 279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 280 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
283 */
ebcf28e1
AM
284int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
1da177e4
LT
286{
287 int ret;
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
05fe478d 290 .nr_to_write = LONG_MAX,
111ebb6e
OH
291 .range_start = start,
292 .range_end = end,
1da177e4
LT
293 };
294
295 if (!mapping_cap_writeback_dirty(mapping))
296 return 0;
297
298 ret = do_writepages(mapping, &wbc);
299 return ret;
300}
301
302static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
304{
111ebb6e 305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
306}
307
308int filemap_fdatawrite(struct address_space *mapping)
309{
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311}
312EXPORT_SYMBOL(filemap_fdatawrite);
313
f4c0a0fd 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 315 loff_t end)
1da177e4
LT
316{
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318}
f4c0a0fd 319EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 320
485bb99b
RD
321/**
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
324 *
1da177e4
LT
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
327 */
328int filemap_flush(struct address_space *mapping)
329{
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331}
332EXPORT_SYMBOL(filemap_flush);
333
485bb99b 334/**
94004ed7
CH
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 339 *
94004ed7
CH
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
1da177e4 342 */
94004ed7
CH
343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
1da177e4 345{
94004ed7
CH
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
348 struct pagevec pvec;
349 int nr_pages;
865ffef3 350 int ret2, ret = 0;
1da177e4 351
94004ed7 352 if (end_byte < start_byte)
865ffef3 353 goto out;
1da177e4
LT
354
355 pagevec_init(&pvec, 0);
1da177e4
LT
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
364
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
368
369 wait_on_page_writeback(page);
212260aa 370 if (TestClearPageError(page))
1da177e4
LT
371 ret = -EIO;
372 }
373 pagevec_release(&pvec);
374 cond_resched();
375 }
865ffef3
DM
376out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
1da177e4
LT
380
381 return ret;
382}
d3bccb6f
JK
383EXPORT_SYMBOL(filemap_fdatawait_range);
384
1da177e4 385/**
485bb99b 386 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 387 * @mapping: address space structure to wait for
485bb99b
RD
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
1da177e4
LT
391 */
392int filemap_fdatawait(struct address_space *mapping)
393{
394 loff_t i_size = i_size_read(mapping->host);
395
396 if (i_size == 0)
397 return 0;
398
94004ed7 399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
400}
401EXPORT_SYMBOL(filemap_fdatawait);
402
403int filemap_write_and_wait(struct address_space *mapping)
404{
28fd1298 405 int err = 0;
1da177e4
LT
406
407 if (mapping->nrpages) {
28fd1298
OH
408 err = filemap_fdatawrite(mapping);
409 /*
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
414 */
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
419 }
865ffef3
DM
420 } else {
421 err = filemap_check_errors(mapping);
1da177e4 422 }
28fd1298 423 return err;
1da177e4 424}
28fd1298 425EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 426
485bb99b
RD
427/**
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
432 *
469eb4d0
AM
433 * Write out and wait upon file offsets lstart->lend, inclusive.
434 *
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
437 */
1da177e4
LT
438int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
440{
28fd1298 441 int err = 0;
1da177e4
LT
442
443 if (mapping->nrpages) {
28fd1298
OH
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
94004ed7
CH
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
28fd1298
OH
450 if (!err)
451 err = err2;
452 }
865ffef3
DM
453 } else {
454 err = filemap_check_errors(mapping);
1da177e4 455 }
28fd1298 456 return err;
1da177e4 457}
f6995585 458EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 459
ef6a3c63
MS
460/**
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
465 *
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
471 *
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
474 */
475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476{
477 int error;
ef6a3c63 478
309381fe
SL
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 482
ef6a3c63
MS
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
487
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
490
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
494
495 spin_lock_irq(&mapping->tree_lock);
91b0abe3 496 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
ef6a3c63
MS
510 }
511
512 return error;
513}
514EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
0cd6144a 516static int page_cache_tree_insert(struct address_space *mapping,
a528910e 517 struct page *page, void **shadowp)
0cd6144a 518{
449dd698 519 struct radix_tree_node *node;
0cd6144a
JW
520 void **slot;
521 int error;
522
449dd698
JW
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
0cd6144a
JW
528 void *p;
529
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
a528910e
JW
533 if (shadowp)
534 *shadowp = p;
449dd698
JW
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
0cd6144a 538 }
449dd698
JW
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
543 /*
544 * Don't track node that contains actual pages.
545 *
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
550 */
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
554 }
555 return 0;
0cd6144a
JW
556}
557
a528910e
JW
558static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
1da177e4 562{
e286781d
NP
563 int error;
564
309381fe
SL
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 567
d715ae08 568 error = mem_cgroup_charge_file(page, current->mm,
2c26fdd7 569 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 570 if (error)
66a0c8ee 571 return error;
1da177e4 572
5e4c0d97 573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 574 if (error) {
69029cd5 575 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
576 return error;
577 }
578
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
582
583 spin_lock_irq(&mapping->tree_lock);
a528910e 584 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
585 radix_tree_preload_end();
586 if (unlikely(error))
587 goto err_insert;
66a0c8ee
KS
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
591 return 0;
592err_insert:
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
1da177e4
LT
598 return error;
599}
a528910e
JW
600
601/**
602 * add_to_page_cache_locked - add a locked page to the pagecache
603 * @page: page to add
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
607 *
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
610 */
611int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
613{
614 return __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, NULL);
616}
e286781d 617EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
618
619int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 620 pgoff_t offset, gfp_t gfp_mask)
1da177e4 621{
a528910e 622 void *shadow = NULL;
4f98a2fe
RR
623 int ret;
624
a528910e
JW
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
627 gfp_mask, &shadow);
628 if (unlikely(ret))
629 __clear_page_locked(page);
630 else {
631 /*
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
635 */
636 if (shadow && workingset_refault(shadow)) {
637 SetPageActive(page);
638 workingset_activation(page);
639 } else
640 ClearPageActive(page);
641 lru_cache_add(page);
642 }
1da177e4
LT
643 return ret;
644}
18bc0bbd 645EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 646
44110fe3 647#ifdef CONFIG_NUMA
2ae88149 648struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 649{
c0ff7453
MX
650 int n;
651 struct page *page;
652
44110fe3 653 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
654 unsigned int cpuset_mems_cookie;
655 do {
d26914d1 656 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 660
c0ff7453 661 return page;
44110fe3 662 }
2ae88149 663 return alloc_pages(gfp, 0);
44110fe3 664}
2ae88149 665EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
666#endif
667
1da177e4
LT
668/*
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
676 * collisions.
677 */
678static wait_queue_head_t *page_waitqueue(struct page *page)
679{
680 const struct zone *zone = page_zone(page);
681
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683}
684
685static inline void wake_up_page(struct page *page, int bit)
686{
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688}
689
920c7a5d 690void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
691{
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694 if (test_bit(bit_nr, &page->flags))
7eaceacc 695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
696 TASK_UNINTERRUPTIBLE);
697}
698EXPORT_SYMBOL(wait_on_page_bit);
699
f62e00cc
KM
700int wait_on_page_bit_killable(struct page *page, int bit_nr)
701{
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704 if (!test_bit(bit_nr, &page->flags))
705 return 0;
706
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
709}
710
385e1ca5
DH
711/**
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
385e1ca5
DH
715 *
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
717 */
718void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719{
720 wait_queue_head_t *q = page_waitqueue(page);
721 unsigned long flags;
722
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
726}
727EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
1da177e4 729/**
485bb99b 730 * unlock_page - unlock a locked page
1da177e4
LT
731 * @page: the page
732 *
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737 *
8413ac9d
NP
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 740 */
920c7a5d 741void unlock_page(struct page *page)
1da177e4 742{
309381fe 743 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 744 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 745 smp_mb__after_atomic();
1da177e4
LT
746 wake_up_page(page, PG_locked);
747}
748EXPORT_SYMBOL(unlock_page);
749
485bb99b
RD
750/**
751 * end_page_writeback - end writeback against a page
752 * @page: the page
1da177e4
LT
753 */
754void end_page_writeback(struct page *page)
755{
ac6aadb2
MS
756 if (TestClearPageReclaim(page))
757 rotate_reclaimable_page(page);
758
759 if (!test_clear_page_writeback(page))
760 BUG();
761
4e857c58 762 smp_mb__after_atomic();
1da177e4
LT
763 wake_up_page(page, PG_writeback);
764}
765EXPORT_SYMBOL(end_page_writeback);
766
485bb99b
RD
767/**
768 * __lock_page - get a lock on the page, assuming we need to sleep to get it
769 * @page: the page to lock
1da177e4 770 */
920c7a5d 771void __lock_page(struct page *page)
1da177e4
LT
772{
773 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
774
7eaceacc 775 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
776 TASK_UNINTERRUPTIBLE);
777}
778EXPORT_SYMBOL(__lock_page);
779
b5606c2d 780int __lock_page_killable(struct page *page)
2687a356
MW
781{
782 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
783
784 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 785 sleep_on_page_killable, TASK_KILLABLE);
2687a356 786}
18bc0bbd 787EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 788
d065bd81
ML
789int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
790 unsigned int flags)
791{
37b23e05
KM
792 if (flags & FAULT_FLAG_ALLOW_RETRY) {
793 /*
794 * CAUTION! In this case, mmap_sem is not released
795 * even though return 0.
796 */
797 if (flags & FAULT_FLAG_RETRY_NOWAIT)
798 return 0;
799
800 up_read(&mm->mmap_sem);
801 if (flags & FAULT_FLAG_KILLABLE)
802 wait_on_page_locked_killable(page);
803 else
318b275f 804 wait_on_page_locked(page);
d065bd81 805 return 0;
37b23e05
KM
806 } else {
807 if (flags & FAULT_FLAG_KILLABLE) {
808 int ret;
809
810 ret = __lock_page_killable(page);
811 if (ret) {
812 up_read(&mm->mmap_sem);
813 return 0;
814 }
815 } else
816 __lock_page(page);
817 return 1;
d065bd81
ML
818 }
819}
820
e7b563bb
JW
821/**
822 * page_cache_next_hole - find the next hole (not-present entry)
823 * @mapping: mapping
824 * @index: index
825 * @max_scan: maximum range to search
826 *
827 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
828 * lowest indexed hole.
829 *
830 * Returns: the index of the hole if found, otherwise returns an index
831 * outside of the set specified (in which case 'return - index >=
832 * max_scan' will be true). In rare cases of index wrap-around, 0 will
833 * be returned.
834 *
835 * page_cache_next_hole may be called under rcu_read_lock. However,
836 * like radix_tree_gang_lookup, this will not atomically search a
837 * snapshot of the tree at a single point in time. For example, if a
838 * hole is created at index 5, then subsequently a hole is created at
839 * index 10, page_cache_next_hole covering both indexes may return 10
840 * if called under rcu_read_lock.
841 */
842pgoff_t page_cache_next_hole(struct address_space *mapping,
843 pgoff_t index, unsigned long max_scan)
844{
845 unsigned long i;
846
847 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
848 struct page *page;
849
850 page = radix_tree_lookup(&mapping->page_tree, index);
851 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
852 break;
853 index++;
854 if (index == 0)
855 break;
856 }
857
858 return index;
859}
860EXPORT_SYMBOL(page_cache_next_hole);
861
862/**
863 * page_cache_prev_hole - find the prev hole (not-present entry)
864 * @mapping: mapping
865 * @index: index
866 * @max_scan: maximum range to search
867 *
868 * Search backwards in the range [max(index-max_scan+1, 0), index] for
869 * the first hole.
870 *
871 * Returns: the index of the hole if found, otherwise returns an index
872 * outside of the set specified (in which case 'index - return >=
873 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
874 * will be returned.
875 *
876 * page_cache_prev_hole may be called under rcu_read_lock. However,
877 * like radix_tree_gang_lookup, this will not atomically search a
878 * snapshot of the tree at a single point in time. For example, if a
879 * hole is created at index 10, then subsequently a hole is created at
880 * index 5, page_cache_prev_hole covering both indexes may return 5 if
881 * called under rcu_read_lock.
882 */
883pgoff_t page_cache_prev_hole(struct address_space *mapping,
884 pgoff_t index, unsigned long max_scan)
885{
886 unsigned long i;
887
888 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
889 struct page *page;
890
891 page = radix_tree_lookup(&mapping->page_tree, index);
892 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
893 break;
894 index--;
895 if (index == ULONG_MAX)
896 break;
897 }
898
899 return index;
900}
901EXPORT_SYMBOL(page_cache_prev_hole);
902
485bb99b 903/**
0cd6144a 904 * find_get_entry - find and get a page cache entry
485bb99b 905 * @mapping: the address_space to search
0cd6144a
JW
906 * @offset: the page cache index
907 *
908 * Looks up the page cache slot at @mapping & @offset. If there is a
909 * page cache page, it is returned with an increased refcount.
485bb99b 910 *
139b6a6f
JW
911 * If the slot holds a shadow entry of a previously evicted page, or a
912 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
913 *
914 * Otherwise, %NULL is returned.
1da177e4 915 */
0cd6144a 916struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 917{
a60637c8 918 void **pagep;
1da177e4
LT
919 struct page *page;
920
a60637c8
NP
921 rcu_read_lock();
922repeat:
923 page = NULL;
924 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
925 if (pagep) {
926 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
927 if (unlikely(!page))
928 goto out;
a2c16d6c 929 if (radix_tree_exception(page)) {
8079b1c8
HD
930 if (radix_tree_deref_retry(page))
931 goto repeat;
932 /*
139b6a6f
JW
933 * A shadow entry of a recently evicted page,
934 * or a swap entry from shmem/tmpfs. Return
935 * it without attempting to raise page count.
8079b1c8
HD
936 */
937 goto out;
a2c16d6c 938 }
a60637c8
NP
939 if (!page_cache_get_speculative(page))
940 goto repeat;
941
942 /*
943 * Has the page moved?
944 * This is part of the lockless pagecache protocol. See
945 * include/linux/pagemap.h for details.
946 */
947 if (unlikely(page != *pagep)) {
948 page_cache_release(page);
949 goto repeat;
950 }
951 }
27d20fdd 952out:
a60637c8
NP
953 rcu_read_unlock();
954
1da177e4
LT
955 return page;
956}
0cd6144a 957EXPORT_SYMBOL(find_get_entry);
1da177e4 958
1da177e4 959/**
0cd6144a 960 * find_get_page - find and get a page reference
67be2dd1
MW
961 * @mapping: the address_space to search
962 * @offset: the page index
1da177e4 963 *
0cd6144a
JW
964 * Looks up the page cache slot at @mapping & @offset. If there is a
965 * page cache page, it is returned with an increased refcount.
1da177e4 966 *
0cd6144a 967 * Otherwise, %NULL is returned.
1da177e4 968 */
0cd6144a
JW
969struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
970{
971 struct page *page = find_get_entry(mapping, offset);
972
973 if (radix_tree_exceptional_entry(page))
974 page = NULL;
975 return page;
976}
977EXPORT_SYMBOL(find_get_page);
978
979/**
980 * find_lock_entry - locate, pin and lock a page cache entry
981 * @mapping: the address_space to search
982 * @offset: the page cache index
983 *
984 * Looks up the page cache slot at @mapping & @offset. If there is a
985 * page cache page, it is returned locked and with an increased
986 * refcount.
987 *
139b6a6f
JW
988 * If the slot holds a shadow entry of a previously evicted page, or a
989 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
990 *
991 * Otherwise, %NULL is returned.
992 *
993 * find_lock_entry() may sleep.
994 */
995struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
996{
997 struct page *page;
998
1da177e4 999repeat:
0cd6144a 1000 page = find_get_entry(mapping, offset);
a2c16d6c 1001 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1002 lock_page(page);
1003 /* Has the page been truncated? */
1004 if (unlikely(page->mapping != mapping)) {
1005 unlock_page(page);
1006 page_cache_release(page);
1007 goto repeat;
1da177e4 1008 }
309381fe 1009 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1010 }
1da177e4
LT
1011 return page;
1012}
0cd6144a
JW
1013EXPORT_SYMBOL(find_lock_entry);
1014
1015/**
1016 * find_lock_page - locate, pin and lock a pagecache page
1017 * @mapping: the address_space to search
1018 * @offset: the page index
1019 *
1020 * Looks up the page cache slot at @mapping & @offset. If there is a
1021 * page cache page, it is returned locked and with an increased
1022 * refcount.
1023 *
1024 * Otherwise, %NULL is returned.
1025 *
1026 * find_lock_page() may sleep.
1027 */
1028struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1029{
1030 struct page *page = find_lock_entry(mapping, offset);
1031
1032 if (radix_tree_exceptional_entry(page))
1033 page = NULL;
1034 return page;
1035}
1da177e4
LT
1036EXPORT_SYMBOL(find_lock_page);
1037
1038/**
1039 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
1040 * @mapping: the page's address_space
1041 * @index: the page's index into the mapping
1042 * @gfp_mask: page allocation mode
1da177e4 1043 *
0cd6144a
JW
1044 * Looks up the page cache slot at @mapping & @offset. If there is a
1045 * page cache page, it is returned locked and with an increased
1046 * refcount.
1047 *
1048 * If the page is not present, a new page is allocated using @gfp_mask
1049 * and added to the page cache and the VM's LRU list. The page is
1050 * returned locked and with an increased refcount.
1da177e4 1051 *
0cd6144a 1052 * On memory exhaustion, %NULL is returned.
1da177e4 1053 *
0cd6144a
JW
1054 * find_or_create_page() may sleep, even if @gfp_flags specifies an
1055 * atomic allocation!
1da177e4
LT
1056 */
1057struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 1058 pgoff_t index, gfp_t gfp_mask)
1da177e4 1059{
eb2be189 1060 struct page *page;
1da177e4
LT
1061 int err;
1062repeat:
1063 page = find_lock_page(mapping, index);
1064 if (!page) {
eb2be189
NP
1065 page = __page_cache_alloc(gfp_mask);
1066 if (!page)
1067 return NULL;
67d58ac4
NP
1068 /*
1069 * We want a regular kernel memory (not highmem or DMA etc)
1070 * allocation for the radix tree nodes, but we need to honour
1071 * the context-specific requirements the caller has asked for.
1072 * GFP_RECLAIM_MASK collects those requirements.
1073 */
1074 err = add_to_page_cache_lru(page, mapping, index,
1075 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
1076 if (unlikely(err)) {
1077 page_cache_release(page);
1078 page = NULL;
1079 if (err == -EEXIST)
1080 goto repeat;
1da177e4 1081 }
1da177e4 1082 }
1da177e4
LT
1083 return page;
1084}
1da177e4
LT
1085EXPORT_SYMBOL(find_or_create_page);
1086
0cd6144a
JW
1087/**
1088 * find_get_entries - gang pagecache lookup
1089 * @mapping: The address_space to search
1090 * @start: The starting page cache index
1091 * @nr_entries: The maximum number of entries
1092 * @entries: Where the resulting entries are placed
1093 * @indices: The cache indices corresponding to the entries in @entries
1094 *
1095 * find_get_entries() will search for and return a group of up to
1096 * @nr_entries entries in the mapping. The entries are placed at
1097 * @entries. find_get_entries() takes a reference against any actual
1098 * pages it returns.
1099 *
1100 * The search returns a group of mapping-contiguous page cache entries
1101 * with ascending indexes. There may be holes in the indices due to
1102 * not-present pages.
1103 *
139b6a6f
JW
1104 * Any shadow entries of evicted pages, or swap entries from
1105 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1106 *
1107 * find_get_entries() returns the number of pages and shadow entries
1108 * which were found.
1109 */
1110unsigned find_get_entries(struct address_space *mapping,
1111 pgoff_t start, unsigned int nr_entries,
1112 struct page **entries, pgoff_t *indices)
1113{
1114 void **slot;
1115 unsigned int ret = 0;
1116 struct radix_tree_iter iter;
1117
1118 if (!nr_entries)
1119 return 0;
1120
1121 rcu_read_lock();
1122restart:
1123 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1124 struct page *page;
1125repeat:
1126 page = radix_tree_deref_slot(slot);
1127 if (unlikely(!page))
1128 continue;
1129 if (radix_tree_exception(page)) {
1130 if (radix_tree_deref_retry(page))
1131 goto restart;
1132 /*
139b6a6f
JW
1133 * A shadow entry of a recently evicted page,
1134 * or a swap entry from shmem/tmpfs. Return
1135 * it without attempting to raise page count.
0cd6144a
JW
1136 */
1137 goto export;
1138 }
1139 if (!page_cache_get_speculative(page))
1140 goto repeat;
1141
1142 /* Has the page moved? */
1143 if (unlikely(page != *slot)) {
1144 page_cache_release(page);
1145 goto repeat;
1146 }
1147export:
1148 indices[ret] = iter.index;
1149 entries[ret] = page;
1150 if (++ret == nr_entries)
1151 break;
1152 }
1153 rcu_read_unlock();
1154 return ret;
1155}
1156
1da177e4
LT
1157/**
1158 * find_get_pages - gang pagecache lookup
1159 * @mapping: The address_space to search
1160 * @start: The starting page index
1161 * @nr_pages: The maximum number of pages
1162 * @pages: Where the resulting pages are placed
1163 *
1164 * find_get_pages() will search for and return a group of up to
1165 * @nr_pages pages in the mapping. The pages are placed at @pages.
1166 * find_get_pages() takes a reference against the returned pages.
1167 *
1168 * The search returns a group of mapping-contiguous pages with ascending
1169 * indexes. There may be holes in the indices due to not-present pages.
1170 *
1171 * find_get_pages() returns the number of pages which were found.
1172 */
1173unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1174 unsigned int nr_pages, struct page **pages)
1175{
0fc9d104
KK
1176 struct radix_tree_iter iter;
1177 void **slot;
1178 unsigned ret = 0;
1179
1180 if (unlikely(!nr_pages))
1181 return 0;
a60637c8
NP
1182
1183 rcu_read_lock();
1184restart:
0fc9d104 1185 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1186 struct page *page;
1187repeat:
0fc9d104 1188 page = radix_tree_deref_slot(slot);
a60637c8
NP
1189 if (unlikely(!page))
1190 continue;
9d8aa4ea 1191
a2c16d6c 1192 if (radix_tree_exception(page)) {
8079b1c8
HD
1193 if (radix_tree_deref_retry(page)) {
1194 /*
1195 * Transient condition which can only trigger
1196 * when entry at index 0 moves out of or back
1197 * to root: none yet gotten, safe to restart.
1198 */
0fc9d104 1199 WARN_ON(iter.index);
8079b1c8
HD
1200 goto restart;
1201 }
a2c16d6c 1202 /*
139b6a6f
JW
1203 * A shadow entry of a recently evicted page,
1204 * or a swap entry from shmem/tmpfs. Skip
1205 * over it.
a2c16d6c 1206 */
8079b1c8 1207 continue;
27d20fdd 1208 }
a60637c8
NP
1209
1210 if (!page_cache_get_speculative(page))
1211 goto repeat;
1212
1213 /* Has the page moved? */
0fc9d104 1214 if (unlikely(page != *slot)) {
a60637c8
NP
1215 page_cache_release(page);
1216 goto repeat;
1217 }
1da177e4 1218
a60637c8 1219 pages[ret] = page;
0fc9d104
KK
1220 if (++ret == nr_pages)
1221 break;
a60637c8 1222 }
5b280c0c 1223
a60637c8 1224 rcu_read_unlock();
1da177e4
LT
1225 return ret;
1226}
1227
ebf43500
JA
1228/**
1229 * find_get_pages_contig - gang contiguous pagecache lookup
1230 * @mapping: The address_space to search
1231 * @index: The starting page index
1232 * @nr_pages: The maximum number of pages
1233 * @pages: Where the resulting pages are placed
1234 *
1235 * find_get_pages_contig() works exactly like find_get_pages(), except
1236 * that the returned number of pages are guaranteed to be contiguous.
1237 *
1238 * find_get_pages_contig() returns the number of pages which were found.
1239 */
1240unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1241 unsigned int nr_pages, struct page **pages)
1242{
0fc9d104
KK
1243 struct radix_tree_iter iter;
1244 void **slot;
1245 unsigned int ret = 0;
1246
1247 if (unlikely(!nr_pages))
1248 return 0;
a60637c8
NP
1249
1250 rcu_read_lock();
1251restart:
0fc9d104 1252 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1253 struct page *page;
1254repeat:
0fc9d104
KK
1255 page = radix_tree_deref_slot(slot);
1256 /* The hole, there no reason to continue */
a60637c8 1257 if (unlikely(!page))
0fc9d104 1258 break;
9d8aa4ea 1259
a2c16d6c 1260 if (radix_tree_exception(page)) {
8079b1c8
HD
1261 if (radix_tree_deref_retry(page)) {
1262 /*
1263 * Transient condition which can only trigger
1264 * when entry at index 0 moves out of or back
1265 * to root: none yet gotten, safe to restart.
1266 */
1267 goto restart;
1268 }
a2c16d6c 1269 /*
139b6a6f
JW
1270 * A shadow entry of a recently evicted page,
1271 * or a swap entry from shmem/tmpfs. Stop
1272 * looking for contiguous pages.
a2c16d6c 1273 */
8079b1c8 1274 break;
a2c16d6c 1275 }
ebf43500 1276
a60637c8
NP
1277 if (!page_cache_get_speculative(page))
1278 goto repeat;
1279
1280 /* Has the page moved? */
0fc9d104 1281 if (unlikely(page != *slot)) {
a60637c8
NP
1282 page_cache_release(page);
1283 goto repeat;
1284 }
1285
9cbb4cb2
NP
1286 /*
1287 * must check mapping and index after taking the ref.
1288 * otherwise we can get both false positives and false
1289 * negatives, which is just confusing to the caller.
1290 */
0fc9d104 1291 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1292 page_cache_release(page);
1293 break;
1294 }
1295
a60637c8 1296 pages[ret] = page;
0fc9d104
KK
1297 if (++ret == nr_pages)
1298 break;
ebf43500 1299 }
a60637c8
NP
1300 rcu_read_unlock();
1301 return ret;
ebf43500 1302}
ef71c15c 1303EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1304
485bb99b
RD
1305/**
1306 * find_get_pages_tag - find and return pages that match @tag
1307 * @mapping: the address_space to search
1308 * @index: the starting page index
1309 * @tag: the tag index
1310 * @nr_pages: the maximum number of pages
1311 * @pages: where the resulting pages are placed
1312 *
1da177e4 1313 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1314 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1315 */
1316unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1317 int tag, unsigned int nr_pages, struct page **pages)
1318{
0fc9d104
KK
1319 struct radix_tree_iter iter;
1320 void **slot;
1321 unsigned ret = 0;
1322
1323 if (unlikely(!nr_pages))
1324 return 0;
a60637c8
NP
1325
1326 rcu_read_lock();
1327restart:
0fc9d104
KK
1328 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1329 &iter, *index, tag) {
a60637c8
NP
1330 struct page *page;
1331repeat:
0fc9d104 1332 page = radix_tree_deref_slot(slot);
a60637c8
NP
1333 if (unlikely(!page))
1334 continue;
9d8aa4ea 1335
a2c16d6c 1336 if (radix_tree_exception(page)) {
8079b1c8
HD
1337 if (radix_tree_deref_retry(page)) {
1338 /*
1339 * Transient condition which can only trigger
1340 * when entry at index 0 moves out of or back
1341 * to root: none yet gotten, safe to restart.
1342 */
1343 goto restart;
1344 }
a2c16d6c 1345 /*
139b6a6f
JW
1346 * A shadow entry of a recently evicted page.
1347 *
1348 * Those entries should never be tagged, but
1349 * this tree walk is lockless and the tags are
1350 * looked up in bulk, one radix tree node at a
1351 * time, so there is a sizable window for page
1352 * reclaim to evict a page we saw tagged.
1353 *
1354 * Skip over it.
a2c16d6c 1355 */
139b6a6f 1356 continue;
a2c16d6c 1357 }
a60637c8
NP
1358
1359 if (!page_cache_get_speculative(page))
1360 goto repeat;
1361
1362 /* Has the page moved? */
0fc9d104 1363 if (unlikely(page != *slot)) {
a60637c8
NP
1364 page_cache_release(page);
1365 goto repeat;
1366 }
1367
1368 pages[ret] = page;
0fc9d104
KK
1369 if (++ret == nr_pages)
1370 break;
a60637c8 1371 }
5b280c0c 1372
a60637c8 1373 rcu_read_unlock();
1da177e4 1374
1da177e4
LT
1375 if (ret)
1376 *index = pages[ret - 1]->index + 1;
a60637c8 1377
1da177e4
LT
1378 return ret;
1379}
ef71c15c 1380EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1381
485bb99b
RD
1382/**
1383 * grab_cache_page_nowait - returns locked page at given index in given cache
1384 * @mapping: target address_space
1385 * @index: the page index
1386 *
72fd4a35 1387 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1388 * This is intended for speculative data generators, where the data can
1389 * be regenerated if the page couldn't be grabbed. This routine should
1390 * be safe to call while holding the lock for another page.
1391 *
1392 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1393 * and deadlock against the caller's locked page.
1394 */
1395struct page *
57f6b96c 1396grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1397{
1398 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1399
1400 if (page) {
529ae9aa 1401 if (trylock_page(page))
1da177e4
LT
1402 return page;
1403 page_cache_release(page);
1404 return NULL;
1405 }
2ae88149 1406 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1407 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1408 page_cache_release(page);
1409 page = NULL;
1410 }
1411 return page;
1412}
1da177e4
LT
1413EXPORT_SYMBOL(grab_cache_page_nowait);
1414
76d42bd9
WF
1415/*
1416 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1417 * a _large_ part of the i/o request. Imagine the worst scenario:
1418 *
1419 * ---R__________________________________________B__________
1420 * ^ reading here ^ bad block(assume 4k)
1421 *
1422 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1423 * => failing the whole request => read(R) => read(R+1) =>
1424 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1425 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1426 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1427 *
1428 * It is going insane. Fix it by quickly scaling down the readahead size.
1429 */
1430static void shrink_readahead_size_eio(struct file *filp,
1431 struct file_ra_state *ra)
1432{
76d42bd9 1433 ra->ra_pages /= 4;
76d42bd9
WF
1434}
1435
485bb99b 1436/**
36e78914 1437 * do_generic_file_read - generic file read routine
485bb99b
RD
1438 * @filp: the file to read
1439 * @ppos: current file position
6e58e79d
AV
1440 * @iter: data destination
1441 * @written: already copied
485bb99b 1442 *
1da177e4 1443 * This is a generic file read routine, and uses the
485bb99b 1444 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1445 *
1446 * This is really ugly. But the goto's actually try to clarify some
1447 * of the logic when it comes to error handling etc.
1da177e4 1448 */
6e58e79d
AV
1449static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1450 struct iov_iter *iter, ssize_t written)
1da177e4 1451{
36e78914 1452 struct address_space *mapping = filp->f_mapping;
1da177e4 1453 struct inode *inode = mapping->host;
36e78914 1454 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1455 pgoff_t index;
1456 pgoff_t last_index;
1457 pgoff_t prev_index;
1458 unsigned long offset; /* offset into pagecache page */
ec0f1637 1459 unsigned int prev_offset;
6e58e79d 1460 int error = 0;
1da177e4 1461
1da177e4 1462 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1463 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1464 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1465 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1466 offset = *ppos & ~PAGE_CACHE_MASK;
1467
1da177e4
LT
1468 for (;;) {
1469 struct page *page;
57f6b96c 1470 pgoff_t end_index;
a32ea1e1 1471 loff_t isize;
1da177e4
LT
1472 unsigned long nr, ret;
1473
1da177e4 1474 cond_resched();
1da177e4
LT
1475find_page:
1476 page = find_get_page(mapping, index);
3ea89ee8 1477 if (!page) {
cf914a7d 1478 page_cache_sync_readahead(mapping,
7ff81078 1479 ra, filp,
3ea89ee8
FW
1480 index, last_index - index);
1481 page = find_get_page(mapping, index);
1482 if (unlikely(page == NULL))
1483 goto no_cached_page;
1484 }
1485 if (PageReadahead(page)) {
cf914a7d 1486 page_cache_async_readahead(mapping,
7ff81078 1487 ra, filp, page,
3ea89ee8 1488 index, last_index - index);
1da177e4 1489 }
8ab22b9a
HH
1490 if (!PageUptodate(page)) {
1491 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1492 !mapping->a_ops->is_partially_uptodate)
1493 goto page_not_up_to_date;
529ae9aa 1494 if (!trylock_page(page))
8ab22b9a 1495 goto page_not_up_to_date;
8d056cb9
DH
1496 /* Did it get truncated before we got the lock? */
1497 if (!page->mapping)
1498 goto page_not_up_to_date_locked;
8ab22b9a 1499 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1500 offset, iter->count))
8ab22b9a
HH
1501 goto page_not_up_to_date_locked;
1502 unlock_page(page);
1503 }
1da177e4 1504page_ok:
a32ea1e1
N
1505 /*
1506 * i_size must be checked after we know the page is Uptodate.
1507 *
1508 * Checking i_size after the check allows us to calculate
1509 * the correct value for "nr", which means the zero-filled
1510 * part of the page is not copied back to userspace (unless
1511 * another truncate extends the file - this is desired though).
1512 */
1513
1514 isize = i_size_read(inode);
1515 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1516 if (unlikely(!isize || index > end_index)) {
1517 page_cache_release(page);
1518 goto out;
1519 }
1520
1521 /* nr is the maximum number of bytes to copy from this page */
1522 nr = PAGE_CACHE_SIZE;
1523 if (index == end_index) {
1524 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1525 if (nr <= offset) {
1526 page_cache_release(page);
1527 goto out;
1528 }
1529 }
1530 nr = nr - offset;
1da177e4
LT
1531
1532 /* If users can be writing to this page using arbitrary
1533 * virtual addresses, take care about potential aliasing
1534 * before reading the page on the kernel side.
1535 */
1536 if (mapping_writably_mapped(mapping))
1537 flush_dcache_page(page);
1538
1539 /*
ec0f1637
JK
1540 * When a sequential read accesses a page several times,
1541 * only mark it as accessed the first time.
1da177e4 1542 */
ec0f1637 1543 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1544 mark_page_accessed(page);
1545 prev_index = index;
1546
1547 /*
1548 * Ok, we have the page, and it's up-to-date, so
1549 * now we can copy it to user space...
1da177e4 1550 */
6e58e79d
AV
1551
1552 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1553 offset += ret;
1554 index += offset >> PAGE_CACHE_SHIFT;
1555 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1556 prev_offset = offset;
1da177e4
LT
1557
1558 page_cache_release(page);
6e58e79d
AV
1559 written += ret;
1560 if (!iov_iter_count(iter))
1561 goto out;
1562 if (ret < nr) {
1563 error = -EFAULT;
1564 goto out;
1565 }
1566 continue;
1da177e4
LT
1567
1568page_not_up_to_date:
1569 /* Get exclusive access to the page ... */
85462323
ON
1570 error = lock_page_killable(page);
1571 if (unlikely(error))
1572 goto readpage_error;
1da177e4 1573
8ab22b9a 1574page_not_up_to_date_locked:
da6052f7 1575 /* Did it get truncated before we got the lock? */
1da177e4
LT
1576 if (!page->mapping) {
1577 unlock_page(page);
1578 page_cache_release(page);
1579 continue;
1580 }
1581
1582 /* Did somebody else fill it already? */
1583 if (PageUptodate(page)) {
1584 unlock_page(page);
1585 goto page_ok;
1586 }
1587
1588readpage:
91803b49
JM
1589 /*
1590 * A previous I/O error may have been due to temporary
1591 * failures, eg. multipath errors.
1592 * PG_error will be set again if readpage fails.
1593 */
1594 ClearPageError(page);
1da177e4
LT
1595 /* Start the actual read. The read will unlock the page. */
1596 error = mapping->a_ops->readpage(filp, page);
1597
994fc28c
ZB
1598 if (unlikely(error)) {
1599 if (error == AOP_TRUNCATED_PAGE) {
1600 page_cache_release(page);
6e58e79d 1601 error = 0;
994fc28c
ZB
1602 goto find_page;
1603 }
1da177e4 1604 goto readpage_error;
994fc28c 1605 }
1da177e4
LT
1606
1607 if (!PageUptodate(page)) {
85462323
ON
1608 error = lock_page_killable(page);
1609 if (unlikely(error))
1610 goto readpage_error;
1da177e4
LT
1611 if (!PageUptodate(page)) {
1612 if (page->mapping == NULL) {
1613 /*
2ecdc82e 1614 * invalidate_mapping_pages got it
1da177e4
LT
1615 */
1616 unlock_page(page);
1617 page_cache_release(page);
1618 goto find_page;
1619 }
1620 unlock_page(page);
7ff81078 1621 shrink_readahead_size_eio(filp, ra);
85462323
ON
1622 error = -EIO;
1623 goto readpage_error;
1da177e4
LT
1624 }
1625 unlock_page(page);
1626 }
1627
1da177e4
LT
1628 goto page_ok;
1629
1630readpage_error:
1631 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1632 page_cache_release(page);
1633 goto out;
1634
1635no_cached_page:
1636 /*
1637 * Ok, it wasn't cached, so we need to create a new
1638 * page..
1639 */
eb2be189
NP
1640 page = page_cache_alloc_cold(mapping);
1641 if (!page) {
6e58e79d 1642 error = -ENOMEM;
eb2be189 1643 goto out;
1da177e4 1644 }
eb2be189 1645 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1646 index, GFP_KERNEL);
1647 if (error) {
eb2be189 1648 page_cache_release(page);
6e58e79d
AV
1649 if (error == -EEXIST) {
1650 error = 0;
1da177e4 1651 goto find_page;
6e58e79d 1652 }
1da177e4
LT
1653 goto out;
1654 }
1da177e4
LT
1655 goto readpage;
1656 }
1657
1658out:
7ff81078
FW
1659 ra->prev_pos = prev_index;
1660 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1661 ra->prev_pos |= prev_offset;
1da177e4 1662
f4e6b498 1663 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1664 file_accessed(filp);
6e58e79d 1665 return written ? written : error;
1da177e4
LT
1666}
1667
0ceb3314
DM
1668/*
1669 * Performs necessary checks before doing a write
1670 * @iov: io vector request
1671 * @nr_segs: number of segments in the iovec
1672 * @count: number of bytes to write
1673 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1674 *
1675 * Adjust number of segments and amount of bytes to write (nr_segs should be
1676 * properly initialized first). Returns appropriate error code that caller
1677 * should return or zero in case that write should be allowed.
1678 */
1679int generic_segment_checks(const struct iovec *iov,
1680 unsigned long *nr_segs, size_t *count, int access_flags)
1681{
1682 unsigned long seg;
1683 size_t cnt = 0;
1684 for (seg = 0; seg < *nr_segs; seg++) {
1685 const struct iovec *iv = &iov[seg];
1686
1687 /*
1688 * If any segment has a negative length, or the cumulative
1689 * length ever wraps negative then return -EINVAL.
1690 */
1691 cnt += iv->iov_len;
1692 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1693 return -EINVAL;
1694 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1695 continue;
1696 if (seg == 0)
1697 return -EFAULT;
1698 *nr_segs = seg;
1699 cnt -= iv->iov_len; /* This segment is no good */
1700 break;
1701 }
1702 *count = cnt;
1703 return 0;
1704}
1705EXPORT_SYMBOL(generic_segment_checks);
1706
485bb99b 1707/**
b2abacf3 1708 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1709 * @iocb: kernel I/O control block
1710 * @iov: io vector request
1711 * @nr_segs: number of segments in the iovec
b2abacf3 1712 * @pos: current file position
485bb99b 1713 *
1da177e4
LT
1714 * This is the "read()" routine for all filesystems
1715 * that can use the page cache directly.
1716 */
1717ssize_t
543ade1f
BP
1718generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1719 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1720{
1721 struct file *filp = iocb->ki_filp;
1722 ssize_t retval;
1da177e4 1723 size_t count;
543ade1f 1724 loff_t *ppos = &iocb->ki_pos;
6e58e79d 1725 struct iov_iter i;
1da177e4
LT
1726
1727 count = 0;
0ceb3314
DM
1728 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1729 if (retval)
1730 return retval;
6e58e79d 1731 iov_iter_init(&i, iov, nr_segs, count, 0);
1da177e4
LT
1732
1733 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1734 if (filp->f_flags & O_DIRECT) {
543ade1f 1735 loff_t size;
1da177e4
LT
1736 struct address_space *mapping;
1737 struct inode *inode;
1738
1739 mapping = filp->f_mapping;
1740 inode = mapping->host;
1da177e4
LT
1741 if (!count)
1742 goto out; /* skip atime */
1743 size = i_size_read(inode);
9fe55eea 1744 retval = filemap_write_and_wait_range(mapping, pos,
48b47c56 1745 pos + iov_length(iov, nr_segs) - 1);
9fe55eea
SW
1746 if (!retval) {
1747 retval = mapping->a_ops->direct_IO(READ, iocb,
1748 iov, pos, nr_segs);
1749 }
1750 if (retval > 0) {
1751 *ppos = pos + retval;
1752 count -= retval;
6e58e79d
AV
1753 /*
1754 * If we did a short DIO read we need to skip the
1755 * section of the iov that we've already read data into.
1756 */
1757 iov_iter_advance(&i, retval);
9fe55eea 1758 }
66f998f6 1759
9fe55eea
SW
1760 /*
1761 * Btrfs can have a short DIO read if we encounter
1762 * compressed extents, so if there was an error, or if
1763 * we've already read everything we wanted to, or if
1764 * there was a short read because we hit EOF, go ahead
1765 * and return. Otherwise fallthrough to buffered io for
1766 * the rest of the read.
1767 */
1768 if (retval < 0 || !count || *ppos >= size) {
1769 file_accessed(filp);
1770 goto out;
0e0bcae3 1771 }
1da177e4
LT
1772 }
1773
6e58e79d 1774 retval = do_generic_file_read(filp, ppos, &i, retval);
1da177e4
LT
1775out:
1776 return retval;
1777}
1da177e4
LT
1778EXPORT_SYMBOL(generic_file_aio_read);
1779
1da177e4 1780#ifdef CONFIG_MMU
485bb99b
RD
1781/**
1782 * page_cache_read - adds requested page to the page cache if not already there
1783 * @file: file to read
1784 * @offset: page index
1785 *
1da177e4
LT
1786 * This adds the requested page to the page cache if it isn't already there,
1787 * and schedules an I/O to read in its contents from disk.
1788 */
920c7a5d 1789static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1790{
1791 struct address_space *mapping = file->f_mapping;
1792 struct page *page;
994fc28c 1793 int ret;
1da177e4 1794
994fc28c
ZB
1795 do {
1796 page = page_cache_alloc_cold(mapping);
1797 if (!page)
1798 return -ENOMEM;
1799
1800 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1801 if (ret == 0)
1802 ret = mapping->a_ops->readpage(file, page);
1803 else if (ret == -EEXIST)
1804 ret = 0; /* losing race to add is OK */
1da177e4 1805
1da177e4 1806 page_cache_release(page);
1da177e4 1807
994fc28c
ZB
1808 } while (ret == AOP_TRUNCATED_PAGE);
1809
1810 return ret;
1da177e4
LT
1811}
1812
1813#define MMAP_LOTSAMISS (100)
1814
ef00e08e
LT
1815/*
1816 * Synchronous readahead happens when we don't even find
1817 * a page in the page cache at all.
1818 */
1819static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1820 struct file_ra_state *ra,
1821 struct file *file,
1822 pgoff_t offset)
1823{
1824 unsigned long ra_pages;
1825 struct address_space *mapping = file->f_mapping;
1826
1827 /* If we don't want any read-ahead, don't bother */
64363aad 1828 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1829 return;
275b12bf
WF
1830 if (!ra->ra_pages)
1831 return;
ef00e08e 1832
64363aad 1833 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1834 page_cache_sync_readahead(mapping, ra, file, offset,
1835 ra->ra_pages);
ef00e08e
LT
1836 return;
1837 }
1838
207d04ba
AK
1839 /* Avoid banging the cache line if not needed */
1840 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1841 ra->mmap_miss++;
1842
1843 /*
1844 * Do we miss much more than hit in this file? If so,
1845 * stop bothering with read-ahead. It will only hurt.
1846 */
1847 if (ra->mmap_miss > MMAP_LOTSAMISS)
1848 return;
1849
d30a1100
WF
1850 /*
1851 * mmap read-around
1852 */
ef00e08e 1853 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1854 ra->start = max_t(long, 0, offset - ra_pages / 2);
1855 ra->size = ra_pages;
2cbea1d3 1856 ra->async_size = ra_pages / 4;
275b12bf 1857 ra_submit(ra, mapping, file);
ef00e08e
LT
1858}
1859
1860/*
1861 * Asynchronous readahead happens when we find the page and PG_readahead,
1862 * so we want to possibly extend the readahead further..
1863 */
1864static void do_async_mmap_readahead(struct vm_area_struct *vma,
1865 struct file_ra_state *ra,
1866 struct file *file,
1867 struct page *page,
1868 pgoff_t offset)
1869{
1870 struct address_space *mapping = file->f_mapping;
1871
1872 /* If we don't want any read-ahead, don't bother */
64363aad 1873 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1874 return;
1875 if (ra->mmap_miss > 0)
1876 ra->mmap_miss--;
1877 if (PageReadahead(page))
2fad6f5d
WF
1878 page_cache_async_readahead(mapping, ra, file,
1879 page, offset, ra->ra_pages);
ef00e08e
LT
1880}
1881
485bb99b 1882/**
54cb8821 1883 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1884 * @vma: vma in which the fault was taken
1885 * @vmf: struct vm_fault containing details of the fault
485bb99b 1886 *
54cb8821 1887 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1888 * mapped memory region to read in file data during a page fault.
1889 *
1890 * The goto's are kind of ugly, but this streamlines the normal case of having
1891 * it in the page cache, and handles the special cases reasonably without
1892 * having a lot of duplicated code.
1893 */
d0217ac0 1894int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1895{
1896 int error;
54cb8821 1897 struct file *file = vma->vm_file;
1da177e4
LT
1898 struct address_space *mapping = file->f_mapping;
1899 struct file_ra_state *ra = &file->f_ra;
1900 struct inode *inode = mapping->host;
ef00e08e 1901 pgoff_t offset = vmf->pgoff;
1da177e4 1902 struct page *page;
99e3e53f 1903 loff_t size;
83c54070 1904 int ret = 0;
1da177e4 1905
99e3e53f
KS
1906 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1907 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1908 return VM_FAULT_SIGBUS;
1da177e4 1909
1da177e4 1910 /*
49426420 1911 * Do we have something in the page cache already?
1da177e4 1912 */
ef00e08e 1913 page = find_get_page(mapping, offset);
45cac65b 1914 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1915 /*
ef00e08e
LT
1916 * We found the page, so try async readahead before
1917 * waiting for the lock.
1da177e4 1918 */
ef00e08e 1919 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1920 } else if (!page) {
ef00e08e
LT
1921 /* No page in the page cache at all */
1922 do_sync_mmap_readahead(vma, ra, file, offset);
1923 count_vm_event(PGMAJFAULT);
456f998e 1924 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1925 ret = VM_FAULT_MAJOR;
1926retry_find:
b522c94d 1927 page = find_get_page(mapping, offset);
1da177e4
LT
1928 if (!page)
1929 goto no_cached_page;
1930 }
1931
d88c0922
ML
1932 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1933 page_cache_release(page);
d065bd81 1934 return ret | VM_FAULT_RETRY;
d88c0922 1935 }
b522c94d
ML
1936
1937 /* Did it get truncated? */
1938 if (unlikely(page->mapping != mapping)) {
1939 unlock_page(page);
1940 put_page(page);
1941 goto retry_find;
1942 }
309381fe 1943 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1944
1da177e4 1945 /*
d00806b1
NP
1946 * We have a locked page in the page cache, now we need to check
1947 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1948 */
d00806b1 1949 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1950 goto page_not_uptodate;
1951
ef00e08e
LT
1952 /*
1953 * Found the page and have a reference on it.
1954 * We must recheck i_size under page lock.
1955 */
99e3e53f
KS
1956 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1957 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1958 unlock_page(page);
745ad48e 1959 page_cache_release(page);
5307cc1a 1960 return VM_FAULT_SIGBUS;
d00806b1
NP
1961 }
1962
d0217ac0 1963 vmf->page = page;
83c54070 1964 return ret | VM_FAULT_LOCKED;
1da177e4 1965
1da177e4
LT
1966no_cached_page:
1967 /*
1968 * We're only likely to ever get here if MADV_RANDOM is in
1969 * effect.
1970 */
ef00e08e 1971 error = page_cache_read(file, offset);
1da177e4
LT
1972
1973 /*
1974 * The page we want has now been added to the page cache.
1975 * In the unlikely event that someone removed it in the
1976 * meantime, we'll just come back here and read it again.
1977 */
1978 if (error >= 0)
1979 goto retry_find;
1980
1981 /*
1982 * An error return from page_cache_read can result if the
1983 * system is low on memory, or a problem occurs while trying
1984 * to schedule I/O.
1985 */
1986 if (error == -ENOMEM)
d0217ac0
NP
1987 return VM_FAULT_OOM;
1988 return VM_FAULT_SIGBUS;
1da177e4
LT
1989
1990page_not_uptodate:
1da177e4
LT
1991 /*
1992 * Umm, take care of errors if the page isn't up-to-date.
1993 * Try to re-read it _once_. We do this synchronously,
1994 * because there really aren't any performance issues here
1995 * and we need to check for errors.
1996 */
1da177e4 1997 ClearPageError(page);
994fc28c 1998 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1999 if (!error) {
2000 wait_on_page_locked(page);
2001 if (!PageUptodate(page))
2002 error = -EIO;
2003 }
d00806b1
NP
2004 page_cache_release(page);
2005
2006 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2007 goto retry_find;
1da177e4 2008
d00806b1 2009 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2010 shrink_readahead_size_eio(file, ra);
d0217ac0 2011 return VM_FAULT_SIGBUS;
54cb8821
NP
2012}
2013EXPORT_SYMBOL(filemap_fault);
2014
f1820361
KS
2015void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2016{
2017 struct radix_tree_iter iter;
2018 void **slot;
2019 struct file *file = vma->vm_file;
2020 struct address_space *mapping = file->f_mapping;
2021 loff_t size;
2022 struct page *page;
2023 unsigned long address = (unsigned long) vmf->virtual_address;
2024 unsigned long addr;
2025 pte_t *pte;
2026
2027 rcu_read_lock();
2028 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2029 if (iter.index > vmf->max_pgoff)
2030 break;
2031repeat:
2032 page = radix_tree_deref_slot(slot);
2033 if (unlikely(!page))
2034 goto next;
2035 if (radix_tree_exception(page)) {
2036 if (radix_tree_deref_retry(page))
2037 break;
2038 else
2039 goto next;
2040 }
2041
2042 if (!page_cache_get_speculative(page))
2043 goto repeat;
2044
2045 /* Has the page moved? */
2046 if (unlikely(page != *slot)) {
2047 page_cache_release(page);
2048 goto repeat;
2049 }
2050
2051 if (!PageUptodate(page) ||
2052 PageReadahead(page) ||
2053 PageHWPoison(page))
2054 goto skip;
2055 if (!trylock_page(page))
2056 goto skip;
2057
2058 if (page->mapping != mapping || !PageUptodate(page))
2059 goto unlock;
2060
99e3e53f
KS
2061 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2062 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2063 goto unlock;
2064
2065 pte = vmf->pte + page->index - vmf->pgoff;
2066 if (!pte_none(*pte))
2067 goto unlock;
2068
2069 if (file->f_ra.mmap_miss > 0)
2070 file->f_ra.mmap_miss--;
2071 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2072 do_set_pte(vma, addr, page, pte, false, false);
2073 unlock_page(page);
2074 goto next;
2075unlock:
2076 unlock_page(page);
2077skip:
2078 page_cache_release(page);
2079next:
2080 if (iter.index == vmf->max_pgoff)
2081 break;
2082 }
2083 rcu_read_unlock();
2084}
2085EXPORT_SYMBOL(filemap_map_pages);
2086
4fcf1c62
JK
2087int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2088{
2089 struct page *page = vmf->page;
496ad9aa 2090 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2091 int ret = VM_FAULT_LOCKED;
2092
14da9200 2093 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2094 file_update_time(vma->vm_file);
2095 lock_page(page);
2096 if (page->mapping != inode->i_mapping) {
2097 unlock_page(page);
2098 ret = VM_FAULT_NOPAGE;
2099 goto out;
2100 }
14da9200
JK
2101 /*
2102 * We mark the page dirty already here so that when freeze is in
2103 * progress, we are guaranteed that writeback during freezing will
2104 * see the dirty page and writeprotect it again.
2105 */
2106 set_page_dirty(page);
1d1d1a76 2107 wait_for_stable_page(page);
4fcf1c62 2108out:
14da9200 2109 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2110 return ret;
2111}
2112EXPORT_SYMBOL(filemap_page_mkwrite);
2113
f0f37e2f 2114const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2115 .fault = filemap_fault,
f1820361 2116 .map_pages = filemap_map_pages,
4fcf1c62 2117 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 2118 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2119};
2120
2121/* This is used for a general mmap of a disk file */
2122
2123int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2124{
2125 struct address_space *mapping = file->f_mapping;
2126
2127 if (!mapping->a_ops->readpage)
2128 return -ENOEXEC;
2129 file_accessed(file);
2130 vma->vm_ops = &generic_file_vm_ops;
2131 return 0;
2132}
1da177e4
LT
2133
2134/*
2135 * This is for filesystems which do not implement ->writepage.
2136 */
2137int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2138{
2139 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2140 return -EINVAL;
2141 return generic_file_mmap(file, vma);
2142}
2143#else
2144int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2145{
2146 return -ENOSYS;
2147}
2148int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2149{
2150 return -ENOSYS;
2151}
2152#endif /* CONFIG_MMU */
2153
2154EXPORT_SYMBOL(generic_file_mmap);
2155EXPORT_SYMBOL(generic_file_readonly_mmap);
2156
67f9fd91
SL
2157static struct page *wait_on_page_read(struct page *page)
2158{
2159 if (!IS_ERR(page)) {
2160 wait_on_page_locked(page);
2161 if (!PageUptodate(page)) {
2162 page_cache_release(page);
2163 page = ERR_PTR(-EIO);
2164 }
2165 }
2166 return page;
2167}
2168
6fe6900e 2169static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2170 pgoff_t index,
5e5358e7 2171 int (*filler)(void *, struct page *),
0531b2aa
LT
2172 void *data,
2173 gfp_t gfp)
1da177e4 2174{
eb2be189 2175 struct page *page;
1da177e4
LT
2176 int err;
2177repeat:
2178 page = find_get_page(mapping, index);
2179 if (!page) {
0531b2aa 2180 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2181 if (!page)
2182 return ERR_PTR(-ENOMEM);
e6f67b8c 2183 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2184 if (unlikely(err)) {
2185 page_cache_release(page);
2186 if (err == -EEXIST)
2187 goto repeat;
1da177e4 2188 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2189 return ERR_PTR(err);
2190 }
1da177e4
LT
2191 err = filler(data, page);
2192 if (err < 0) {
2193 page_cache_release(page);
2194 page = ERR_PTR(err);
67f9fd91
SL
2195 } else {
2196 page = wait_on_page_read(page);
1da177e4
LT
2197 }
2198 }
1da177e4
LT
2199 return page;
2200}
2201
0531b2aa 2202static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2203 pgoff_t index,
5e5358e7 2204 int (*filler)(void *, struct page *),
0531b2aa
LT
2205 void *data,
2206 gfp_t gfp)
2207
1da177e4
LT
2208{
2209 struct page *page;
2210 int err;
2211
2212retry:
0531b2aa 2213 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2214 if (IS_ERR(page))
c855ff37 2215 return page;
1da177e4
LT
2216 if (PageUptodate(page))
2217 goto out;
2218
2219 lock_page(page);
2220 if (!page->mapping) {
2221 unlock_page(page);
2222 page_cache_release(page);
2223 goto retry;
2224 }
2225 if (PageUptodate(page)) {
2226 unlock_page(page);
2227 goto out;
2228 }
2229 err = filler(data, page);
2230 if (err < 0) {
2231 page_cache_release(page);
c855ff37 2232 return ERR_PTR(err);
67f9fd91
SL
2233 } else {
2234 page = wait_on_page_read(page);
2235 if (IS_ERR(page))
2236 return page;
1da177e4 2237 }
c855ff37 2238out:
6fe6900e
NP
2239 mark_page_accessed(page);
2240 return page;
2241}
0531b2aa
LT
2242
2243/**
67f9fd91 2244 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2245 * @mapping: the page's address_space
2246 * @index: the page index
2247 * @filler: function to perform the read
5e5358e7 2248 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2249 *
0531b2aa 2250 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2251 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2252 *
2253 * If the page does not get brought uptodate, return -EIO.
2254 */
67f9fd91 2255struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2256 pgoff_t index,
5e5358e7 2257 int (*filler)(void *, struct page *),
0531b2aa
LT
2258 void *data)
2259{
2260 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2261}
67f9fd91 2262EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2263
2264/**
2265 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2266 * @mapping: the page's address_space
2267 * @index: the page index
2268 * @gfp: the page allocator flags to use if allocating
2269 *
2270 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2271 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2272 *
2273 * If the page does not get brought uptodate, return -EIO.
2274 */
2275struct page *read_cache_page_gfp(struct address_space *mapping,
2276 pgoff_t index,
2277 gfp_t gfp)
2278{
2279 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2280
67f9fd91 2281 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2282}
2283EXPORT_SYMBOL(read_cache_page_gfp);
2284
1da177e4
LT
2285/*
2286 * Performs necessary checks before doing a write
2287 *
485bb99b 2288 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2289 * Returns appropriate error code that caller should return or
2290 * zero in case that write should be allowed.
2291 */
2292inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2293{
2294 struct inode *inode = file->f_mapping->host;
59e99e5b 2295 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2296
2297 if (unlikely(*pos < 0))
2298 return -EINVAL;
2299
1da177e4
LT
2300 if (!isblk) {
2301 /* FIXME: this is for backwards compatibility with 2.4 */
2302 if (file->f_flags & O_APPEND)
2303 *pos = i_size_read(inode);
2304
2305 if (limit != RLIM_INFINITY) {
2306 if (*pos >= limit) {
2307 send_sig(SIGXFSZ, current, 0);
2308 return -EFBIG;
2309 }
2310 if (*count > limit - (typeof(limit))*pos) {
2311 *count = limit - (typeof(limit))*pos;
2312 }
2313 }
2314 }
2315
2316 /*
2317 * LFS rule
2318 */
2319 if (unlikely(*pos + *count > MAX_NON_LFS &&
2320 !(file->f_flags & O_LARGEFILE))) {
2321 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2322 return -EFBIG;
2323 }
2324 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2325 *count = MAX_NON_LFS - (unsigned long)*pos;
2326 }
2327 }
2328
2329 /*
2330 * Are we about to exceed the fs block limit ?
2331 *
2332 * If we have written data it becomes a short write. If we have
2333 * exceeded without writing data we send a signal and return EFBIG.
2334 * Linus frestrict idea will clean these up nicely..
2335 */
2336 if (likely(!isblk)) {
2337 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2338 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2339 return -EFBIG;
2340 }
2341 /* zero-length writes at ->s_maxbytes are OK */
2342 }
2343
2344 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2345 *count = inode->i_sb->s_maxbytes - *pos;
2346 } else {
9361401e 2347#ifdef CONFIG_BLOCK
1da177e4
LT
2348 loff_t isize;
2349 if (bdev_read_only(I_BDEV(inode)))
2350 return -EPERM;
2351 isize = i_size_read(inode);
2352 if (*pos >= isize) {
2353 if (*count || *pos > isize)
2354 return -ENOSPC;
2355 }
2356
2357 if (*pos + *count > isize)
2358 *count = isize - *pos;
9361401e
DH
2359#else
2360 return -EPERM;
2361#endif
1da177e4
LT
2362 }
2363 return 0;
2364}
2365EXPORT_SYMBOL(generic_write_checks);
2366
afddba49
NP
2367int pagecache_write_begin(struct file *file, struct address_space *mapping,
2368 loff_t pos, unsigned len, unsigned flags,
2369 struct page **pagep, void **fsdata)
2370{
2371 const struct address_space_operations *aops = mapping->a_ops;
2372
4e02ed4b 2373 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2374 pagep, fsdata);
afddba49
NP
2375}
2376EXPORT_SYMBOL(pagecache_write_begin);
2377
2378int pagecache_write_end(struct file *file, struct address_space *mapping,
2379 loff_t pos, unsigned len, unsigned copied,
2380 struct page *page, void *fsdata)
2381{
2382 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2383
4e02ed4b
NP
2384 mark_page_accessed(page);
2385 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2386}
2387EXPORT_SYMBOL(pagecache_write_end);
2388
1da177e4
LT
2389ssize_t
2390generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
5cb6c6c7 2391 unsigned long *nr_segs, loff_t pos,
1da177e4
LT
2392 size_t count, size_t ocount)
2393{
2394 struct file *file = iocb->ki_filp;
2395 struct address_space *mapping = file->f_mapping;
2396 struct inode *inode = mapping->host;
2397 ssize_t written;
a969e903
CH
2398 size_t write_len;
2399 pgoff_t end;
1da177e4
LT
2400
2401 if (count != ocount)
2402 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2403
a969e903
CH
2404 write_len = iov_length(iov, *nr_segs);
2405 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2406
48b47c56 2407 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2408 if (written)
2409 goto out;
2410
2411 /*
2412 * After a write we want buffered reads to be sure to go to disk to get
2413 * the new data. We invalidate clean cached page from the region we're
2414 * about to write. We do this *before* the write so that we can return
6ccfa806 2415 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2416 */
2417 if (mapping->nrpages) {
2418 written = invalidate_inode_pages2_range(mapping,
2419 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2420 /*
2421 * If a page can not be invalidated, return 0 to fall back
2422 * to buffered write.
2423 */
2424 if (written) {
2425 if (written == -EBUSY)
2426 return 0;
a969e903 2427 goto out;
6ccfa806 2428 }
a969e903
CH
2429 }
2430
2431 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2432
2433 /*
2434 * Finally, try again to invalidate clean pages which might have been
2435 * cached by non-direct readahead, or faulted in by get_user_pages()
2436 * if the source of the write was an mmap'ed region of the file
2437 * we're writing. Either one is a pretty crazy thing to do,
2438 * so we don't support it 100%. If this invalidation
2439 * fails, tough, the write still worked...
2440 */
2441 if (mapping->nrpages) {
2442 invalidate_inode_pages2_range(mapping,
2443 pos >> PAGE_CACHE_SHIFT, end);
2444 }
2445
1da177e4 2446 if (written > 0) {
0116651c
NK
2447 pos += written;
2448 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2449 i_size_write(inode, pos);
1da177e4
LT
2450 mark_inode_dirty(inode);
2451 }
5cb6c6c7 2452 iocb->ki_pos = pos;
1da177e4 2453 }
a969e903 2454out:
1da177e4
LT
2455 return written;
2456}
2457EXPORT_SYMBOL(generic_file_direct_write);
2458
eb2be189
NP
2459/*
2460 * Find or create a page at the given pagecache position. Return the locked
2461 * page. This function is specifically for buffered writes.
2462 */
54566b2c
NP
2463struct page *grab_cache_page_write_begin(struct address_space *mapping,
2464 pgoff_t index, unsigned flags)
eb2be189
NP
2465{
2466 int status;
0faa70cb 2467 gfp_t gfp_mask;
eb2be189 2468 struct page *page;
54566b2c 2469 gfp_t gfp_notmask = 0;
0faa70cb 2470
1010bb1b
FW
2471 gfp_mask = mapping_gfp_mask(mapping);
2472 if (mapping_cap_account_dirty(mapping))
2473 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2474 if (flags & AOP_FLAG_NOFS)
2475 gfp_notmask = __GFP_FS;
eb2be189
NP
2476repeat:
2477 page = find_lock_page(mapping, index);
c585a267 2478 if (page)
3d08bcc8 2479 goto found;
eb2be189 2480
0faa70cb 2481 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2482 if (!page)
2483 return NULL;
54566b2c
NP
2484 status = add_to_page_cache_lru(page, mapping, index,
2485 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2486 if (unlikely(status)) {
2487 page_cache_release(page);
2488 if (status == -EEXIST)
2489 goto repeat;
2490 return NULL;
2491 }
3d08bcc8 2492found:
1d1d1a76 2493 wait_for_stable_page(page);
eb2be189
NP
2494 return page;
2495}
54566b2c 2496EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2497
3b93f911 2498ssize_t generic_perform_write(struct file *file,
afddba49
NP
2499 struct iov_iter *i, loff_t pos)
2500{
2501 struct address_space *mapping = file->f_mapping;
2502 const struct address_space_operations *a_ops = mapping->a_ops;
2503 long status = 0;
2504 ssize_t written = 0;
674b892e
NP
2505 unsigned int flags = 0;
2506
2507 /*
2508 * Copies from kernel address space cannot fail (NFSD is a big user).
2509 */
2510 if (segment_eq(get_fs(), KERNEL_DS))
2511 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2512
2513 do {
2514 struct page *page;
afddba49
NP
2515 unsigned long offset; /* Offset into pagecache page */
2516 unsigned long bytes; /* Bytes to write to page */
2517 size_t copied; /* Bytes copied from user */
2518 void *fsdata;
2519
2520 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2521 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2522 iov_iter_count(i));
2523
2524again:
afddba49
NP
2525 /*
2526 * Bring in the user page that we will copy from _first_.
2527 * Otherwise there's a nasty deadlock on copying from the
2528 * same page as we're writing to, without it being marked
2529 * up-to-date.
2530 *
2531 * Not only is this an optimisation, but it is also required
2532 * to check that the address is actually valid, when atomic
2533 * usercopies are used, below.
2534 */
2535 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2536 status = -EFAULT;
2537 break;
2538 }
2539
674b892e 2540 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2541 &page, &fsdata);
2542 if (unlikely(status))
2543 break;
2544
931e80e4 2545 if (mapping_writably_mapped(mapping))
2546 flush_dcache_page(page);
2547
afddba49 2548 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2549 flush_dcache_page(page);
2550
c8236db9 2551 mark_page_accessed(page);
afddba49
NP
2552 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2553 page, fsdata);
2554 if (unlikely(status < 0))
2555 break;
2556 copied = status;
2557
2558 cond_resched();
2559
124d3b70 2560 iov_iter_advance(i, copied);
afddba49
NP
2561 if (unlikely(copied == 0)) {
2562 /*
2563 * If we were unable to copy any data at all, we must
2564 * fall back to a single segment length write.
2565 *
2566 * If we didn't fallback here, we could livelock
2567 * because not all segments in the iov can be copied at
2568 * once without a pagefault.
2569 */
2570 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2571 iov_iter_single_seg_count(i));
2572 goto again;
2573 }
afddba49
NP
2574 pos += copied;
2575 written += copied;
2576
2577 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2578 if (fatal_signal_pending(current)) {
2579 status = -EINTR;
2580 break;
2581 }
afddba49
NP
2582 } while (iov_iter_count(i));
2583
2584 return written ? written : status;
2585}
3b93f911 2586EXPORT_SYMBOL(generic_perform_write);
1da177e4 2587
e4dd9de3
JK
2588/**
2589 * __generic_file_aio_write - write data to a file
2590 * @iocb: IO state structure (file, offset, etc.)
2591 * @iov: vector with data to write
2592 * @nr_segs: number of segments in the vector
e4dd9de3
JK
2593 *
2594 * This function does all the work needed for actually writing data to a
2595 * file. It does all basic checks, removes SUID from the file, updates
2596 * modification times and calls proper subroutines depending on whether we
2597 * do direct IO or a standard buffered write.
2598 *
2599 * It expects i_mutex to be grabbed unless we work on a block device or similar
2600 * object which does not need locking at all.
2601 *
2602 * This function does *not* take care of syncing data in case of O_SYNC write.
2603 * A caller has to handle it. This is mainly due to the fact that we want to
2604 * avoid syncing under i_mutex.
2605 */
2606ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
41fc56d5 2607 unsigned long nr_segs)
1da177e4
LT
2608{
2609 struct file *file = iocb->ki_filp;
fb5527e6 2610 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2611 size_t ocount; /* original count */
2612 size_t count; /* after file limit checks */
2613 struct inode *inode = mapping->host;
41fc56d5 2614 loff_t pos = iocb->ki_pos;
3b93f911 2615 ssize_t written = 0;
1da177e4 2616 ssize_t err;
3b93f911
AV
2617 ssize_t status;
2618 struct iov_iter from;
1da177e4
LT
2619
2620 ocount = 0;
0ceb3314
DM
2621 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2622 if (err)
2623 return err;
1da177e4
LT
2624
2625 count = ocount;
1da177e4 2626
1da177e4
LT
2627 /* We can write back this queue in page reclaim */
2628 current->backing_dev_info = mapping->backing_dev_info;
1da177e4
LT
2629 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2630 if (err)
2631 goto out;
2632
2633 if (count == 0)
2634 goto out;
2635
2f1936b8 2636 err = file_remove_suid(file);
1da177e4
LT
2637 if (err)
2638 goto out;
2639
c3b2da31
JB
2640 err = file_update_time(file);
2641 if (err)
2642 goto out;
1da177e4 2643
3b93f911
AV
2644 iov_iter_init(&from, iov, nr_segs, count, 0);
2645
1da177e4
LT
2646 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2647 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6 2648 loff_t endbyte;
fb5527e6 2649
3b93f911 2650 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
5cb6c6c7 2651 count, ocount);
1da177e4
LT
2652 if (written < 0 || written == count)
2653 goto out;
3b93f911
AV
2654 iov_iter_advance(&from, written);
2655
1da177e4
LT
2656 /*
2657 * direct-io write to a hole: fall through to buffered I/O
2658 * for completing the rest of the request.
2659 */
2660 pos += written;
2661 count -= written;
3b93f911
AV
2662
2663 status = generic_perform_write(file, &from, pos);
fb5527e6 2664 /*
3b93f911 2665 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2666 * then we want to return the number of bytes which were
2667 * direct-written, or the error code if that was zero. Note
2668 * that this differs from normal direct-io semantics, which
2669 * will return -EFOO even if some bytes were written.
2670 */
3b93f911
AV
2671 if (unlikely(status < 0) && !written) {
2672 err = status;
fb5527e6
JM
2673 goto out;
2674 }
3b93f911 2675 iocb->ki_pos = pos + status;
fb5527e6
JM
2676 /*
2677 * We need to ensure that the page cache pages are written to
2678 * disk and invalidated to preserve the expected O_DIRECT
2679 * semantics.
2680 */
3b93f911 2681 endbyte = pos + status - 1;
c05c4edd 2682 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6 2683 if (err == 0) {
3b93f911 2684 written += status;
fb5527e6
JM
2685 invalidate_mapping_pages(mapping,
2686 pos >> PAGE_CACHE_SHIFT,
2687 endbyte >> PAGE_CACHE_SHIFT);
2688 } else {
2689 /*
2690 * We don't know how much we wrote, so just return
2691 * the number of bytes which were direct-written
2692 */
2693 }
2694 } else {
3b93f911
AV
2695 written = generic_perform_write(file, &from, pos);
2696 if (likely(written >= 0))
2697 iocb->ki_pos = pos + written;
fb5527e6 2698 }
1da177e4
LT
2699out:
2700 current->backing_dev_info = NULL;
2701 return written ? written : err;
2702}
e4dd9de3
JK
2703EXPORT_SYMBOL(__generic_file_aio_write);
2704
e4dd9de3
JK
2705/**
2706 * generic_file_aio_write - write data to a file
2707 * @iocb: IO state structure
2708 * @iov: vector with data to write
2709 * @nr_segs: number of segments in the vector
2710 * @pos: position in file where to write
2711 *
2712 * This is a wrapper around __generic_file_aio_write() to be used by most
2713 * filesystems. It takes care of syncing the file in case of O_SYNC file
2714 * and acquires i_mutex as needed.
2715 */
027445c3
BP
2716ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2717 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2718{
2719 struct file *file = iocb->ki_filp;
148f948b 2720 struct inode *inode = file->f_mapping->host;
1da177e4 2721 ssize_t ret;
1da177e4
LT
2722
2723 BUG_ON(iocb->ki_pos != pos);
2724
1b1dcc1b 2725 mutex_lock(&inode->i_mutex);
41fc56d5 2726 ret = __generic_file_aio_write(iocb, iov, nr_segs);
1b1dcc1b 2727 mutex_unlock(&inode->i_mutex);
1da177e4 2728
02afc27f 2729 if (ret > 0) {
1da177e4
LT
2730 ssize_t err;
2731
d311d79d
AV
2732 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2733 if (err < 0)
1da177e4
LT
2734 ret = err;
2735 }
2736 return ret;
2737}
2738EXPORT_SYMBOL(generic_file_aio_write);
2739
cf9a2ae8
DH
2740/**
2741 * try_to_release_page() - release old fs-specific metadata on a page
2742 *
2743 * @page: the page which the kernel is trying to free
2744 * @gfp_mask: memory allocation flags (and I/O mode)
2745 *
2746 * The address_space is to try to release any data against the page
2747 * (presumably at page->private). If the release was successful, return `1'.
2748 * Otherwise return zero.
2749 *
266cf658
DH
2750 * This may also be called if PG_fscache is set on a page, indicating that the
2751 * page is known to the local caching routines.
2752 *
cf9a2ae8 2753 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2754 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2755 *
cf9a2ae8
DH
2756 */
2757int try_to_release_page(struct page *page, gfp_t gfp_mask)
2758{
2759 struct address_space * const mapping = page->mapping;
2760
2761 BUG_ON(!PageLocked(page));
2762 if (PageWriteback(page))
2763 return 0;
2764
2765 if (mapping && mapping->a_ops->releasepage)
2766 return mapping->a_ops->releasepage(page, gfp_mask);
2767 return try_to_free_buffers(page);
2768}
2769
2770EXPORT_SYMBOL(try_to_release_page);