]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
mm + fs: store shadow entries in page cache
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
0f8053a5
NP
36#include "internal.h"
37
fe0bfaaf
RJ
38#define CREATE_TRACE_POINTS
39#include <trace/events/filemap.h>
40
1da177e4 41/*
1da177e4
LT
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
148f948b 44#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 45
1da177e4
LT
46#include <asm/mman.h>
47
48/*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60/*
61 * Lock ordering:
62 *
3d48ae45 63 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
1da177e4 67 *
1b1dcc1b 68 * ->i_mutex
3d48ae45 69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
70 *
71 * ->mmap_sem
3d48ae45 72 * ->i_mmap_mutex
b8072f09 73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
82591e6e
NP
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 81 *
f758eeab 82 * bdi->wb.list_lock
a66979ab 83 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
3d48ae45 86 * ->i_mmap_mutex
1da177e4
LT
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
b8072f09 90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 91 *
b8072f09 92 * ->page_table_lock or pte_lock
5d337b91 93 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
9a3c531d
AK
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
108 */
109
91b0abe3
JW
110static void page_cache_tree_delete(struct address_space *mapping,
111 struct page *page, void *shadow)
112{
113 if (shadow) {
114 void **slot;
115
116 slot = radix_tree_lookup_slot(&mapping->page_tree, page->index);
117 radix_tree_replace_slot(slot, shadow);
118 mapping->nrshadows++;
119 /*
120 * Make sure the nrshadows update is committed before
121 * the nrpages update so that final truncate racing
122 * with reclaim does not see both counters 0 at the
123 * same time and miss a shadow entry.
124 */
125 smp_wmb();
126 } else
127 radix_tree_delete(&mapping->page_tree, page->index);
128 mapping->nrpages--;
129}
130
1da177e4 131/*
e64a782f 132 * Delete a page from the page cache and free it. Caller has to make
1da177e4 133 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 134 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 135 */
91b0abe3 136void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
137{
138 struct address_space *mapping = page->mapping;
139
fe0bfaaf 140 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
141 /*
142 * if we're uptodate, flush out into the cleancache, otherwise
143 * invalidate any existing cleancache entries. We can't leave
144 * stale data around in the cleancache once our page is gone
145 */
146 if (PageUptodate(page) && PageMappedToDisk(page))
147 cleancache_put_page(page);
148 else
3167760f 149 cleancache_invalidate_page(mapping, page);
c515e1fd 150
91b0abe3
JW
151 page_cache_tree_delete(mapping, page, shadow);
152
1da177e4 153 page->mapping = NULL;
b85e0eff 154 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 155
347ce434 156 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
157 if (PageSwapBacked(page))
158 __dec_zone_page_state(page, NR_SHMEM);
45426812 159 BUG_ON(page_mapped(page));
3a692790
LT
160
161 /*
162 * Some filesystems seem to re-dirty the page even after
163 * the VM has canceled the dirty bit (eg ext3 journaling).
164 *
165 * Fix it up by doing a final dirty accounting check after
166 * having removed the page entirely.
167 */
168 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
169 dec_zone_page_state(page, NR_FILE_DIRTY);
170 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
171 }
1da177e4
LT
172}
173
702cfbf9
MK
174/**
175 * delete_from_page_cache - delete page from page cache
176 * @page: the page which the kernel is trying to remove from page cache
177 *
178 * This must be called only on pages that have been verified to be in the page
179 * cache and locked. It will never put the page into the free list, the caller
180 * has a reference on the page.
181 */
182void delete_from_page_cache(struct page *page)
1da177e4
LT
183{
184 struct address_space *mapping = page->mapping;
6072d13c 185 void (*freepage)(struct page *);
1da177e4 186
cd7619d6 187 BUG_ON(!PageLocked(page));
1da177e4 188
6072d13c 189 freepage = mapping->a_ops->freepage;
19fd6231 190 spin_lock_irq(&mapping->tree_lock);
91b0abe3 191 __delete_from_page_cache(page, NULL);
19fd6231 192 spin_unlock_irq(&mapping->tree_lock);
e767e056 193 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
194
195 if (freepage)
196 freepage(page);
97cecb5a
MK
197 page_cache_release(page);
198}
199EXPORT_SYMBOL(delete_from_page_cache);
200
7eaceacc 201static int sleep_on_page(void *word)
1da177e4 202{
1da177e4
LT
203 io_schedule();
204 return 0;
205}
206
7eaceacc 207static int sleep_on_page_killable(void *word)
2687a356 208{
7eaceacc 209 sleep_on_page(word);
2687a356
MW
210 return fatal_signal_pending(current) ? -EINTR : 0;
211}
212
865ffef3
DM
213static int filemap_check_errors(struct address_space *mapping)
214{
215 int ret = 0;
216 /* Check for outstanding write errors */
217 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
218 ret = -ENOSPC;
219 if (test_and_clear_bit(AS_EIO, &mapping->flags))
220 ret = -EIO;
221 return ret;
222}
223
1da177e4 224/**
485bb99b 225 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
226 * @mapping: address space structure to write
227 * @start: offset in bytes where the range starts
469eb4d0 228 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 229 * @sync_mode: enable synchronous operation
1da177e4 230 *
485bb99b
RD
231 * Start writeback against all of a mapping's dirty pages that lie
232 * within the byte offsets <start, end> inclusive.
233 *
1da177e4 234 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 235 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
236 * these two operations is that if a dirty page/buffer is encountered, it must
237 * be waited upon, and not just skipped over.
238 */
ebcf28e1
AM
239int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
240 loff_t end, int sync_mode)
1da177e4
LT
241{
242 int ret;
243 struct writeback_control wbc = {
244 .sync_mode = sync_mode,
05fe478d 245 .nr_to_write = LONG_MAX,
111ebb6e
OH
246 .range_start = start,
247 .range_end = end,
1da177e4
LT
248 };
249
250 if (!mapping_cap_writeback_dirty(mapping))
251 return 0;
252
253 ret = do_writepages(mapping, &wbc);
254 return ret;
255}
256
257static inline int __filemap_fdatawrite(struct address_space *mapping,
258 int sync_mode)
259{
111ebb6e 260 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
261}
262
263int filemap_fdatawrite(struct address_space *mapping)
264{
265 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
266}
267EXPORT_SYMBOL(filemap_fdatawrite);
268
f4c0a0fd 269int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 270 loff_t end)
1da177e4
LT
271{
272 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
273}
f4c0a0fd 274EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 275
485bb99b
RD
276/**
277 * filemap_flush - mostly a non-blocking flush
278 * @mapping: target address_space
279 *
1da177e4
LT
280 * This is a mostly non-blocking flush. Not suitable for data-integrity
281 * purposes - I/O may not be started against all dirty pages.
282 */
283int filemap_flush(struct address_space *mapping)
284{
285 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
286}
287EXPORT_SYMBOL(filemap_flush);
288
485bb99b 289/**
94004ed7
CH
290 * filemap_fdatawait_range - wait for writeback to complete
291 * @mapping: address space structure to wait for
292 * @start_byte: offset in bytes where the range starts
293 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 294 *
94004ed7
CH
295 * Walk the list of under-writeback pages of the given address space
296 * in the given range and wait for all of them.
1da177e4 297 */
94004ed7
CH
298int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
299 loff_t end_byte)
1da177e4 300{
94004ed7
CH
301 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
302 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
303 struct pagevec pvec;
304 int nr_pages;
865ffef3 305 int ret2, ret = 0;
1da177e4 306
94004ed7 307 if (end_byte < start_byte)
865ffef3 308 goto out;
1da177e4
LT
309
310 pagevec_init(&pvec, 0);
1da177e4
LT
311 while ((index <= end) &&
312 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
313 PAGECACHE_TAG_WRITEBACK,
314 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
315 unsigned i;
316
317 for (i = 0; i < nr_pages; i++) {
318 struct page *page = pvec.pages[i];
319
320 /* until radix tree lookup accepts end_index */
321 if (page->index > end)
322 continue;
323
324 wait_on_page_writeback(page);
212260aa 325 if (TestClearPageError(page))
1da177e4
LT
326 ret = -EIO;
327 }
328 pagevec_release(&pvec);
329 cond_resched();
330 }
865ffef3
DM
331out:
332 ret2 = filemap_check_errors(mapping);
333 if (!ret)
334 ret = ret2;
1da177e4
LT
335
336 return ret;
337}
d3bccb6f
JK
338EXPORT_SYMBOL(filemap_fdatawait_range);
339
1da177e4 340/**
485bb99b 341 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 342 * @mapping: address space structure to wait for
485bb99b
RD
343 *
344 * Walk the list of under-writeback pages of the given address space
345 * and wait for all of them.
1da177e4
LT
346 */
347int filemap_fdatawait(struct address_space *mapping)
348{
349 loff_t i_size = i_size_read(mapping->host);
350
351 if (i_size == 0)
352 return 0;
353
94004ed7 354 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
355}
356EXPORT_SYMBOL(filemap_fdatawait);
357
358int filemap_write_and_wait(struct address_space *mapping)
359{
28fd1298 360 int err = 0;
1da177e4
LT
361
362 if (mapping->nrpages) {
28fd1298
OH
363 err = filemap_fdatawrite(mapping);
364 /*
365 * Even if the above returned error, the pages may be
366 * written partially (e.g. -ENOSPC), so we wait for it.
367 * But the -EIO is special case, it may indicate the worst
368 * thing (e.g. bug) happened, so we avoid waiting for it.
369 */
370 if (err != -EIO) {
371 int err2 = filemap_fdatawait(mapping);
372 if (!err)
373 err = err2;
374 }
865ffef3
DM
375 } else {
376 err = filemap_check_errors(mapping);
1da177e4 377 }
28fd1298 378 return err;
1da177e4 379}
28fd1298 380EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 381
485bb99b
RD
382/**
383 * filemap_write_and_wait_range - write out & wait on a file range
384 * @mapping: the address_space for the pages
385 * @lstart: offset in bytes where the range starts
386 * @lend: offset in bytes where the range ends (inclusive)
387 *
469eb4d0
AM
388 * Write out and wait upon file offsets lstart->lend, inclusive.
389 *
390 * Note that `lend' is inclusive (describes the last byte to be written) so
391 * that this function can be used to write to the very end-of-file (end = -1).
392 */
1da177e4
LT
393int filemap_write_and_wait_range(struct address_space *mapping,
394 loff_t lstart, loff_t lend)
395{
28fd1298 396 int err = 0;
1da177e4
LT
397
398 if (mapping->nrpages) {
28fd1298
OH
399 err = __filemap_fdatawrite_range(mapping, lstart, lend,
400 WB_SYNC_ALL);
401 /* See comment of filemap_write_and_wait() */
402 if (err != -EIO) {
94004ed7
CH
403 int err2 = filemap_fdatawait_range(mapping,
404 lstart, lend);
28fd1298
OH
405 if (!err)
406 err = err2;
407 }
865ffef3
DM
408 } else {
409 err = filemap_check_errors(mapping);
1da177e4 410 }
28fd1298 411 return err;
1da177e4 412}
f6995585 413EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 414
ef6a3c63
MS
415/**
416 * replace_page_cache_page - replace a pagecache page with a new one
417 * @old: page to be replaced
418 * @new: page to replace with
419 * @gfp_mask: allocation mode
420 *
421 * This function replaces a page in the pagecache with a new one. On
422 * success it acquires the pagecache reference for the new page and
423 * drops it for the old page. Both the old and new pages must be
424 * locked. This function does not add the new page to the LRU, the
425 * caller must do that.
426 *
427 * The remove + add is atomic. The only way this function can fail is
428 * memory allocation failure.
429 */
430int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
431{
432 int error;
ef6a3c63 433
309381fe
SL
434 VM_BUG_ON_PAGE(!PageLocked(old), old);
435 VM_BUG_ON_PAGE(!PageLocked(new), new);
436 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 437
ef6a3c63
MS
438 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
439 if (!error) {
440 struct address_space *mapping = old->mapping;
441 void (*freepage)(struct page *);
442
443 pgoff_t offset = old->index;
444 freepage = mapping->a_ops->freepage;
445
446 page_cache_get(new);
447 new->mapping = mapping;
448 new->index = offset;
449
450 spin_lock_irq(&mapping->tree_lock);
91b0abe3 451 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
452 error = radix_tree_insert(&mapping->page_tree, offset, new);
453 BUG_ON(error);
454 mapping->nrpages++;
455 __inc_zone_page_state(new, NR_FILE_PAGES);
456 if (PageSwapBacked(new))
457 __inc_zone_page_state(new, NR_SHMEM);
458 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
459 /* mem_cgroup codes must not be called under tree_lock */
460 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
461 radix_tree_preload_end();
462 if (freepage)
463 freepage(old);
464 page_cache_release(old);
ef6a3c63
MS
465 }
466
467 return error;
468}
469EXPORT_SYMBOL_GPL(replace_page_cache_page);
470
0cd6144a
JW
471static int page_cache_tree_insert(struct address_space *mapping,
472 struct page *page)
473{
474 void **slot;
475 int error;
476
477 slot = radix_tree_lookup_slot(&mapping->page_tree, page->index);
478 if (slot) {
479 void *p;
480
481 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
482 if (!radix_tree_exceptional_entry(p))
483 return -EEXIST;
484 radix_tree_replace_slot(slot, page);
91b0abe3 485 mapping->nrshadows--;
0cd6144a
JW
486 mapping->nrpages++;
487 return 0;
488 }
489 error = radix_tree_insert(&mapping->page_tree, page->index, page);
490 if (!error)
491 mapping->nrpages++;
492 return error;
493}
494
485bb99b 495/**
e286781d 496 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
497 * @page: page to add
498 * @mapping: the page's address_space
499 * @offset: page index
500 * @gfp_mask: page allocation mode
501 *
e286781d 502 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
503 * This function does not add the page to the LRU. The caller must do that.
504 */
e286781d 505int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 506 pgoff_t offset, gfp_t gfp_mask)
1da177e4 507{
e286781d
NP
508 int error;
509
309381fe
SL
510 VM_BUG_ON_PAGE(!PageLocked(page), page);
511 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d
NP
512
513 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 514 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 515 if (error)
66a0c8ee 516 return error;
1da177e4 517
5e4c0d97 518 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 519 if (error) {
69029cd5 520 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
521 return error;
522 }
523
524 page_cache_get(page);
525 page->mapping = mapping;
526 page->index = offset;
527
528 spin_lock_irq(&mapping->tree_lock);
0cd6144a 529 error = page_cache_tree_insert(mapping, page);
66a0c8ee
KS
530 radix_tree_preload_end();
531 if (unlikely(error))
532 goto err_insert;
66a0c8ee
KS
533 __inc_zone_page_state(page, NR_FILE_PAGES);
534 spin_unlock_irq(&mapping->tree_lock);
535 trace_mm_filemap_add_to_page_cache(page);
536 return 0;
537err_insert:
538 page->mapping = NULL;
539 /* Leave page->index set: truncation relies upon it */
540 spin_unlock_irq(&mapping->tree_lock);
541 mem_cgroup_uncharge_cache_page(page);
542 page_cache_release(page);
1da177e4
LT
543 return error;
544}
e286781d 545EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
546
547int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 548 pgoff_t offset, gfp_t gfp_mask)
1da177e4 549{
4f98a2fe
RR
550 int ret;
551
4f98a2fe 552 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
553 if (ret == 0)
554 lru_cache_add_file(page);
1da177e4
LT
555 return ret;
556}
18bc0bbd 557EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 558
44110fe3 559#ifdef CONFIG_NUMA
2ae88149 560struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 561{
c0ff7453
MX
562 int n;
563 struct page *page;
564
44110fe3 565 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
566 unsigned int cpuset_mems_cookie;
567 do {
d26914d1 568 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
569 n = cpuset_mem_spread_node();
570 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 571 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 572
c0ff7453 573 return page;
44110fe3 574 }
2ae88149 575 return alloc_pages(gfp, 0);
44110fe3 576}
2ae88149 577EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
578#endif
579
1da177e4
LT
580/*
581 * In order to wait for pages to become available there must be
582 * waitqueues associated with pages. By using a hash table of
583 * waitqueues where the bucket discipline is to maintain all
584 * waiters on the same queue and wake all when any of the pages
585 * become available, and for the woken contexts to check to be
586 * sure the appropriate page became available, this saves space
587 * at a cost of "thundering herd" phenomena during rare hash
588 * collisions.
589 */
590static wait_queue_head_t *page_waitqueue(struct page *page)
591{
592 const struct zone *zone = page_zone(page);
593
594 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
595}
596
597static inline void wake_up_page(struct page *page, int bit)
598{
599 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
600}
601
920c7a5d 602void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
603{
604 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
605
606 if (test_bit(bit_nr, &page->flags))
7eaceacc 607 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
608 TASK_UNINTERRUPTIBLE);
609}
610EXPORT_SYMBOL(wait_on_page_bit);
611
f62e00cc
KM
612int wait_on_page_bit_killable(struct page *page, int bit_nr)
613{
614 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
615
616 if (!test_bit(bit_nr, &page->flags))
617 return 0;
618
619 return __wait_on_bit(page_waitqueue(page), &wait,
620 sleep_on_page_killable, TASK_KILLABLE);
621}
622
385e1ca5
DH
623/**
624 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
625 * @page: Page defining the wait queue of interest
626 * @waiter: Waiter to add to the queue
385e1ca5
DH
627 *
628 * Add an arbitrary @waiter to the wait queue for the nominated @page.
629 */
630void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
631{
632 wait_queue_head_t *q = page_waitqueue(page);
633 unsigned long flags;
634
635 spin_lock_irqsave(&q->lock, flags);
636 __add_wait_queue(q, waiter);
637 spin_unlock_irqrestore(&q->lock, flags);
638}
639EXPORT_SYMBOL_GPL(add_page_wait_queue);
640
1da177e4 641/**
485bb99b 642 * unlock_page - unlock a locked page
1da177e4
LT
643 * @page: the page
644 *
645 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
646 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
647 * mechananism between PageLocked pages and PageWriteback pages is shared.
648 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
649 *
8413ac9d
NP
650 * The mb is necessary to enforce ordering between the clear_bit and the read
651 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 652 */
920c7a5d 653void unlock_page(struct page *page)
1da177e4 654{
309381fe 655 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d
NP
656 clear_bit_unlock(PG_locked, &page->flags);
657 smp_mb__after_clear_bit();
1da177e4
LT
658 wake_up_page(page, PG_locked);
659}
660EXPORT_SYMBOL(unlock_page);
661
485bb99b
RD
662/**
663 * end_page_writeback - end writeback against a page
664 * @page: the page
1da177e4
LT
665 */
666void end_page_writeback(struct page *page)
667{
ac6aadb2
MS
668 if (TestClearPageReclaim(page))
669 rotate_reclaimable_page(page);
670
671 if (!test_clear_page_writeback(page))
672 BUG();
673
1da177e4
LT
674 smp_mb__after_clear_bit();
675 wake_up_page(page, PG_writeback);
676}
677EXPORT_SYMBOL(end_page_writeback);
678
485bb99b
RD
679/**
680 * __lock_page - get a lock on the page, assuming we need to sleep to get it
681 * @page: the page to lock
1da177e4 682 */
920c7a5d 683void __lock_page(struct page *page)
1da177e4
LT
684{
685 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
686
7eaceacc 687 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
688 TASK_UNINTERRUPTIBLE);
689}
690EXPORT_SYMBOL(__lock_page);
691
b5606c2d 692int __lock_page_killable(struct page *page)
2687a356
MW
693{
694 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
695
696 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 697 sleep_on_page_killable, TASK_KILLABLE);
2687a356 698}
18bc0bbd 699EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 700
d065bd81
ML
701int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
702 unsigned int flags)
703{
37b23e05
KM
704 if (flags & FAULT_FLAG_ALLOW_RETRY) {
705 /*
706 * CAUTION! In this case, mmap_sem is not released
707 * even though return 0.
708 */
709 if (flags & FAULT_FLAG_RETRY_NOWAIT)
710 return 0;
711
712 up_read(&mm->mmap_sem);
713 if (flags & FAULT_FLAG_KILLABLE)
714 wait_on_page_locked_killable(page);
715 else
318b275f 716 wait_on_page_locked(page);
d065bd81 717 return 0;
37b23e05
KM
718 } else {
719 if (flags & FAULT_FLAG_KILLABLE) {
720 int ret;
721
722 ret = __lock_page_killable(page);
723 if (ret) {
724 up_read(&mm->mmap_sem);
725 return 0;
726 }
727 } else
728 __lock_page(page);
729 return 1;
d065bd81
ML
730 }
731}
732
e7b563bb
JW
733/**
734 * page_cache_next_hole - find the next hole (not-present entry)
735 * @mapping: mapping
736 * @index: index
737 * @max_scan: maximum range to search
738 *
739 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
740 * lowest indexed hole.
741 *
742 * Returns: the index of the hole if found, otherwise returns an index
743 * outside of the set specified (in which case 'return - index >=
744 * max_scan' will be true). In rare cases of index wrap-around, 0 will
745 * be returned.
746 *
747 * page_cache_next_hole may be called under rcu_read_lock. However,
748 * like radix_tree_gang_lookup, this will not atomically search a
749 * snapshot of the tree at a single point in time. For example, if a
750 * hole is created at index 5, then subsequently a hole is created at
751 * index 10, page_cache_next_hole covering both indexes may return 10
752 * if called under rcu_read_lock.
753 */
754pgoff_t page_cache_next_hole(struct address_space *mapping,
755 pgoff_t index, unsigned long max_scan)
756{
757 unsigned long i;
758
759 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
760 struct page *page;
761
762 page = radix_tree_lookup(&mapping->page_tree, index);
763 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
764 break;
765 index++;
766 if (index == 0)
767 break;
768 }
769
770 return index;
771}
772EXPORT_SYMBOL(page_cache_next_hole);
773
774/**
775 * page_cache_prev_hole - find the prev hole (not-present entry)
776 * @mapping: mapping
777 * @index: index
778 * @max_scan: maximum range to search
779 *
780 * Search backwards in the range [max(index-max_scan+1, 0), index] for
781 * the first hole.
782 *
783 * Returns: the index of the hole if found, otherwise returns an index
784 * outside of the set specified (in which case 'index - return >=
785 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
786 * will be returned.
787 *
788 * page_cache_prev_hole may be called under rcu_read_lock. However,
789 * like radix_tree_gang_lookup, this will not atomically search a
790 * snapshot of the tree at a single point in time. For example, if a
791 * hole is created at index 10, then subsequently a hole is created at
792 * index 5, page_cache_prev_hole covering both indexes may return 5 if
793 * called under rcu_read_lock.
794 */
795pgoff_t page_cache_prev_hole(struct address_space *mapping,
796 pgoff_t index, unsigned long max_scan)
797{
798 unsigned long i;
799
800 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
801 struct page *page;
802
803 page = radix_tree_lookup(&mapping->page_tree, index);
804 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
805 break;
806 index--;
807 if (index == ULONG_MAX)
808 break;
809 }
810
811 return index;
812}
813EXPORT_SYMBOL(page_cache_prev_hole);
814
485bb99b 815/**
0cd6144a 816 * find_get_entry - find and get a page cache entry
485bb99b 817 * @mapping: the address_space to search
0cd6144a
JW
818 * @offset: the page cache index
819 *
820 * Looks up the page cache slot at @mapping & @offset. If there is a
821 * page cache page, it is returned with an increased refcount.
485bb99b 822 *
0cd6144a
JW
823 * If the slot holds a shadow entry of a previously evicted page, it
824 * is returned.
825 *
826 * Otherwise, %NULL is returned.
1da177e4 827 */
0cd6144a 828struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 829{
a60637c8 830 void **pagep;
1da177e4
LT
831 struct page *page;
832
a60637c8
NP
833 rcu_read_lock();
834repeat:
835 page = NULL;
836 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
837 if (pagep) {
838 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
839 if (unlikely(!page))
840 goto out;
a2c16d6c 841 if (radix_tree_exception(page)) {
8079b1c8
HD
842 if (radix_tree_deref_retry(page))
843 goto repeat;
844 /*
845 * Otherwise, shmem/tmpfs must be storing a swap entry
846 * here as an exceptional entry: so return it without
847 * attempting to raise page count.
848 */
849 goto out;
a2c16d6c 850 }
a60637c8
NP
851 if (!page_cache_get_speculative(page))
852 goto repeat;
853
854 /*
855 * Has the page moved?
856 * This is part of the lockless pagecache protocol. See
857 * include/linux/pagemap.h for details.
858 */
859 if (unlikely(page != *pagep)) {
860 page_cache_release(page);
861 goto repeat;
862 }
863 }
27d20fdd 864out:
a60637c8
NP
865 rcu_read_unlock();
866
1da177e4
LT
867 return page;
868}
0cd6144a 869EXPORT_SYMBOL(find_get_entry);
1da177e4 870
1da177e4 871/**
0cd6144a 872 * find_get_page - find and get a page reference
67be2dd1
MW
873 * @mapping: the address_space to search
874 * @offset: the page index
1da177e4 875 *
0cd6144a
JW
876 * Looks up the page cache slot at @mapping & @offset. If there is a
877 * page cache page, it is returned with an increased refcount.
1da177e4 878 *
0cd6144a 879 * Otherwise, %NULL is returned.
1da177e4 880 */
0cd6144a
JW
881struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
882{
883 struct page *page = find_get_entry(mapping, offset);
884
885 if (radix_tree_exceptional_entry(page))
886 page = NULL;
887 return page;
888}
889EXPORT_SYMBOL(find_get_page);
890
891/**
892 * find_lock_entry - locate, pin and lock a page cache entry
893 * @mapping: the address_space to search
894 * @offset: the page cache index
895 *
896 * Looks up the page cache slot at @mapping & @offset. If there is a
897 * page cache page, it is returned locked and with an increased
898 * refcount.
899 *
900 * If the slot holds a shadow entry of a previously evicted page, it
901 * is returned.
902 *
903 * Otherwise, %NULL is returned.
904 *
905 * find_lock_entry() may sleep.
906 */
907struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
908{
909 struct page *page;
910
1da177e4 911repeat:
0cd6144a 912 page = find_get_entry(mapping, offset);
a2c16d6c 913 if (page && !radix_tree_exception(page)) {
a60637c8
NP
914 lock_page(page);
915 /* Has the page been truncated? */
916 if (unlikely(page->mapping != mapping)) {
917 unlock_page(page);
918 page_cache_release(page);
919 goto repeat;
1da177e4 920 }
309381fe 921 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 922 }
1da177e4
LT
923 return page;
924}
0cd6144a
JW
925EXPORT_SYMBOL(find_lock_entry);
926
927/**
928 * find_lock_page - locate, pin and lock a pagecache page
929 * @mapping: the address_space to search
930 * @offset: the page index
931 *
932 * Looks up the page cache slot at @mapping & @offset. If there is a
933 * page cache page, it is returned locked and with an increased
934 * refcount.
935 *
936 * Otherwise, %NULL is returned.
937 *
938 * find_lock_page() may sleep.
939 */
940struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
941{
942 struct page *page = find_lock_entry(mapping, offset);
943
944 if (radix_tree_exceptional_entry(page))
945 page = NULL;
946 return page;
947}
1da177e4
LT
948EXPORT_SYMBOL(find_lock_page);
949
950/**
951 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
952 * @mapping: the page's address_space
953 * @index: the page's index into the mapping
954 * @gfp_mask: page allocation mode
1da177e4 955 *
0cd6144a
JW
956 * Looks up the page cache slot at @mapping & @offset. If there is a
957 * page cache page, it is returned locked and with an increased
958 * refcount.
959 *
960 * If the page is not present, a new page is allocated using @gfp_mask
961 * and added to the page cache and the VM's LRU list. The page is
962 * returned locked and with an increased refcount.
1da177e4 963 *
0cd6144a 964 * On memory exhaustion, %NULL is returned.
1da177e4 965 *
0cd6144a
JW
966 * find_or_create_page() may sleep, even if @gfp_flags specifies an
967 * atomic allocation!
1da177e4
LT
968 */
969struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 970 pgoff_t index, gfp_t gfp_mask)
1da177e4 971{
eb2be189 972 struct page *page;
1da177e4
LT
973 int err;
974repeat:
975 page = find_lock_page(mapping, index);
976 if (!page) {
eb2be189
NP
977 page = __page_cache_alloc(gfp_mask);
978 if (!page)
979 return NULL;
67d58ac4
NP
980 /*
981 * We want a regular kernel memory (not highmem or DMA etc)
982 * allocation for the radix tree nodes, but we need to honour
983 * the context-specific requirements the caller has asked for.
984 * GFP_RECLAIM_MASK collects those requirements.
985 */
986 err = add_to_page_cache_lru(page, mapping, index,
987 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
988 if (unlikely(err)) {
989 page_cache_release(page);
990 page = NULL;
991 if (err == -EEXIST)
992 goto repeat;
1da177e4 993 }
1da177e4 994 }
1da177e4
LT
995 return page;
996}
1da177e4
LT
997EXPORT_SYMBOL(find_or_create_page);
998
0cd6144a
JW
999/**
1000 * find_get_entries - gang pagecache lookup
1001 * @mapping: The address_space to search
1002 * @start: The starting page cache index
1003 * @nr_entries: The maximum number of entries
1004 * @entries: Where the resulting entries are placed
1005 * @indices: The cache indices corresponding to the entries in @entries
1006 *
1007 * find_get_entries() will search for and return a group of up to
1008 * @nr_entries entries in the mapping. The entries are placed at
1009 * @entries. find_get_entries() takes a reference against any actual
1010 * pages it returns.
1011 *
1012 * The search returns a group of mapping-contiguous page cache entries
1013 * with ascending indexes. There may be holes in the indices due to
1014 * not-present pages.
1015 *
1016 * Any shadow entries of evicted pages are included in the returned
1017 * array.
1018 *
1019 * find_get_entries() returns the number of pages and shadow entries
1020 * which were found.
1021 */
1022unsigned find_get_entries(struct address_space *mapping,
1023 pgoff_t start, unsigned int nr_entries,
1024 struct page **entries, pgoff_t *indices)
1025{
1026 void **slot;
1027 unsigned int ret = 0;
1028 struct radix_tree_iter iter;
1029
1030 if (!nr_entries)
1031 return 0;
1032
1033 rcu_read_lock();
1034restart:
1035 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1036 struct page *page;
1037repeat:
1038 page = radix_tree_deref_slot(slot);
1039 if (unlikely(!page))
1040 continue;
1041 if (radix_tree_exception(page)) {
1042 if (radix_tree_deref_retry(page))
1043 goto restart;
1044 /*
1045 * Otherwise, we must be storing a swap entry
1046 * here as an exceptional entry: so return it
1047 * without attempting to raise page count.
1048 */
1049 goto export;
1050 }
1051 if (!page_cache_get_speculative(page))
1052 goto repeat;
1053
1054 /* Has the page moved? */
1055 if (unlikely(page != *slot)) {
1056 page_cache_release(page);
1057 goto repeat;
1058 }
1059export:
1060 indices[ret] = iter.index;
1061 entries[ret] = page;
1062 if (++ret == nr_entries)
1063 break;
1064 }
1065 rcu_read_unlock();
1066 return ret;
1067}
1068
1da177e4
LT
1069/**
1070 * find_get_pages - gang pagecache lookup
1071 * @mapping: The address_space to search
1072 * @start: The starting page index
1073 * @nr_pages: The maximum number of pages
1074 * @pages: Where the resulting pages are placed
1075 *
1076 * find_get_pages() will search for and return a group of up to
1077 * @nr_pages pages in the mapping. The pages are placed at @pages.
1078 * find_get_pages() takes a reference against the returned pages.
1079 *
1080 * The search returns a group of mapping-contiguous pages with ascending
1081 * indexes. There may be holes in the indices due to not-present pages.
1082 *
1083 * find_get_pages() returns the number of pages which were found.
1084 */
1085unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1086 unsigned int nr_pages, struct page **pages)
1087{
0fc9d104
KK
1088 struct radix_tree_iter iter;
1089 void **slot;
1090 unsigned ret = 0;
1091
1092 if (unlikely(!nr_pages))
1093 return 0;
a60637c8
NP
1094
1095 rcu_read_lock();
1096restart:
0fc9d104 1097 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1098 struct page *page;
1099repeat:
0fc9d104 1100 page = radix_tree_deref_slot(slot);
a60637c8
NP
1101 if (unlikely(!page))
1102 continue;
9d8aa4ea 1103
a2c16d6c 1104 if (radix_tree_exception(page)) {
8079b1c8
HD
1105 if (radix_tree_deref_retry(page)) {
1106 /*
1107 * Transient condition which can only trigger
1108 * when entry at index 0 moves out of or back
1109 * to root: none yet gotten, safe to restart.
1110 */
0fc9d104 1111 WARN_ON(iter.index);
8079b1c8
HD
1112 goto restart;
1113 }
a2c16d6c 1114 /*
8079b1c8
HD
1115 * Otherwise, shmem/tmpfs must be storing a swap entry
1116 * here as an exceptional entry: so skip over it -
1117 * we only reach this from invalidate_mapping_pages().
a2c16d6c 1118 */
8079b1c8 1119 continue;
27d20fdd 1120 }
a60637c8
NP
1121
1122 if (!page_cache_get_speculative(page))
1123 goto repeat;
1124
1125 /* Has the page moved? */
0fc9d104 1126 if (unlikely(page != *slot)) {
a60637c8
NP
1127 page_cache_release(page);
1128 goto repeat;
1129 }
1da177e4 1130
a60637c8 1131 pages[ret] = page;
0fc9d104
KK
1132 if (++ret == nr_pages)
1133 break;
a60637c8 1134 }
5b280c0c 1135
a60637c8 1136 rcu_read_unlock();
1da177e4
LT
1137 return ret;
1138}
1139
ebf43500
JA
1140/**
1141 * find_get_pages_contig - gang contiguous pagecache lookup
1142 * @mapping: The address_space to search
1143 * @index: The starting page index
1144 * @nr_pages: The maximum number of pages
1145 * @pages: Where the resulting pages are placed
1146 *
1147 * find_get_pages_contig() works exactly like find_get_pages(), except
1148 * that the returned number of pages are guaranteed to be contiguous.
1149 *
1150 * find_get_pages_contig() returns the number of pages which were found.
1151 */
1152unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1153 unsigned int nr_pages, struct page **pages)
1154{
0fc9d104
KK
1155 struct radix_tree_iter iter;
1156 void **slot;
1157 unsigned int ret = 0;
1158
1159 if (unlikely(!nr_pages))
1160 return 0;
a60637c8
NP
1161
1162 rcu_read_lock();
1163restart:
0fc9d104 1164 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1165 struct page *page;
1166repeat:
0fc9d104
KK
1167 page = radix_tree_deref_slot(slot);
1168 /* The hole, there no reason to continue */
a60637c8 1169 if (unlikely(!page))
0fc9d104 1170 break;
9d8aa4ea 1171
a2c16d6c 1172 if (radix_tree_exception(page)) {
8079b1c8
HD
1173 if (radix_tree_deref_retry(page)) {
1174 /*
1175 * Transient condition which can only trigger
1176 * when entry at index 0 moves out of or back
1177 * to root: none yet gotten, safe to restart.
1178 */
1179 goto restart;
1180 }
a2c16d6c 1181 /*
8079b1c8
HD
1182 * Otherwise, shmem/tmpfs must be storing a swap entry
1183 * here as an exceptional entry: so stop looking for
1184 * contiguous pages.
a2c16d6c 1185 */
8079b1c8 1186 break;
a2c16d6c 1187 }
ebf43500 1188
a60637c8
NP
1189 if (!page_cache_get_speculative(page))
1190 goto repeat;
1191
1192 /* Has the page moved? */
0fc9d104 1193 if (unlikely(page != *slot)) {
a60637c8
NP
1194 page_cache_release(page);
1195 goto repeat;
1196 }
1197
9cbb4cb2
NP
1198 /*
1199 * must check mapping and index after taking the ref.
1200 * otherwise we can get both false positives and false
1201 * negatives, which is just confusing to the caller.
1202 */
0fc9d104 1203 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1204 page_cache_release(page);
1205 break;
1206 }
1207
a60637c8 1208 pages[ret] = page;
0fc9d104
KK
1209 if (++ret == nr_pages)
1210 break;
ebf43500 1211 }
a60637c8
NP
1212 rcu_read_unlock();
1213 return ret;
ebf43500 1214}
ef71c15c 1215EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1216
485bb99b
RD
1217/**
1218 * find_get_pages_tag - find and return pages that match @tag
1219 * @mapping: the address_space to search
1220 * @index: the starting page index
1221 * @tag: the tag index
1222 * @nr_pages: the maximum number of pages
1223 * @pages: where the resulting pages are placed
1224 *
1da177e4 1225 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1226 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1227 */
1228unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1229 int tag, unsigned int nr_pages, struct page **pages)
1230{
0fc9d104
KK
1231 struct radix_tree_iter iter;
1232 void **slot;
1233 unsigned ret = 0;
1234
1235 if (unlikely(!nr_pages))
1236 return 0;
a60637c8
NP
1237
1238 rcu_read_lock();
1239restart:
0fc9d104
KK
1240 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1241 &iter, *index, tag) {
a60637c8
NP
1242 struct page *page;
1243repeat:
0fc9d104 1244 page = radix_tree_deref_slot(slot);
a60637c8
NP
1245 if (unlikely(!page))
1246 continue;
9d8aa4ea 1247
a2c16d6c 1248 if (radix_tree_exception(page)) {
8079b1c8
HD
1249 if (radix_tree_deref_retry(page)) {
1250 /*
1251 * Transient condition which can only trigger
1252 * when entry at index 0 moves out of or back
1253 * to root: none yet gotten, safe to restart.
1254 */
1255 goto restart;
1256 }
a2c16d6c 1257 /*
8079b1c8
HD
1258 * This function is never used on a shmem/tmpfs
1259 * mapping, so a swap entry won't be found here.
a2c16d6c 1260 */
8079b1c8 1261 BUG();
a2c16d6c 1262 }
a60637c8
NP
1263
1264 if (!page_cache_get_speculative(page))
1265 goto repeat;
1266
1267 /* Has the page moved? */
0fc9d104 1268 if (unlikely(page != *slot)) {
a60637c8
NP
1269 page_cache_release(page);
1270 goto repeat;
1271 }
1272
1273 pages[ret] = page;
0fc9d104
KK
1274 if (++ret == nr_pages)
1275 break;
a60637c8 1276 }
5b280c0c 1277
a60637c8 1278 rcu_read_unlock();
1da177e4 1279
1da177e4
LT
1280 if (ret)
1281 *index = pages[ret - 1]->index + 1;
a60637c8 1282
1da177e4
LT
1283 return ret;
1284}
ef71c15c 1285EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1286
485bb99b
RD
1287/**
1288 * grab_cache_page_nowait - returns locked page at given index in given cache
1289 * @mapping: target address_space
1290 * @index: the page index
1291 *
72fd4a35 1292 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1293 * This is intended for speculative data generators, where the data can
1294 * be regenerated if the page couldn't be grabbed. This routine should
1295 * be safe to call while holding the lock for another page.
1296 *
1297 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1298 * and deadlock against the caller's locked page.
1299 */
1300struct page *
57f6b96c 1301grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1302{
1303 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1304
1305 if (page) {
529ae9aa 1306 if (trylock_page(page))
1da177e4
LT
1307 return page;
1308 page_cache_release(page);
1309 return NULL;
1310 }
2ae88149 1311 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1312 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1313 page_cache_release(page);
1314 page = NULL;
1315 }
1316 return page;
1317}
1da177e4
LT
1318EXPORT_SYMBOL(grab_cache_page_nowait);
1319
76d42bd9
WF
1320/*
1321 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1322 * a _large_ part of the i/o request. Imagine the worst scenario:
1323 *
1324 * ---R__________________________________________B__________
1325 * ^ reading here ^ bad block(assume 4k)
1326 *
1327 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1328 * => failing the whole request => read(R) => read(R+1) =>
1329 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1330 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1331 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1332 *
1333 * It is going insane. Fix it by quickly scaling down the readahead size.
1334 */
1335static void shrink_readahead_size_eio(struct file *filp,
1336 struct file_ra_state *ra)
1337{
76d42bd9 1338 ra->ra_pages /= 4;
76d42bd9
WF
1339}
1340
485bb99b 1341/**
36e78914 1342 * do_generic_file_read - generic file read routine
485bb99b
RD
1343 * @filp: the file to read
1344 * @ppos: current file position
1345 * @desc: read_descriptor
485bb99b 1346 *
1da177e4 1347 * This is a generic file read routine, and uses the
485bb99b 1348 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1349 *
1350 * This is really ugly. But the goto's actually try to clarify some
1351 * of the logic when it comes to error handling etc.
1da177e4 1352 */
36e78914 1353static void do_generic_file_read(struct file *filp, loff_t *ppos,
b77d88d4 1354 read_descriptor_t *desc)
1da177e4 1355{
36e78914 1356 struct address_space *mapping = filp->f_mapping;
1da177e4 1357 struct inode *inode = mapping->host;
36e78914 1358 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1359 pgoff_t index;
1360 pgoff_t last_index;
1361 pgoff_t prev_index;
1362 unsigned long offset; /* offset into pagecache page */
ec0f1637 1363 unsigned int prev_offset;
1da177e4 1364 int error;
1da177e4 1365
1da177e4 1366 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1367 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1368 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1369 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1370 offset = *ppos & ~PAGE_CACHE_MASK;
1371
1da177e4
LT
1372 for (;;) {
1373 struct page *page;
57f6b96c 1374 pgoff_t end_index;
a32ea1e1 1375 loff_t isize;
1da177e4
LT
1376 unsigned long nr, ret;
1377
1da177e4 1378 cond_resched();
1da177e4
LT
1379find_page:
1380 page = find_get_page(mapping, index);
3ea89ee8 1381 if (!page) {
cf914a7d 1382 page_cache_sync_readahead(mapping,
7ff81078 1383 ra, filp,
3ea89ee8
FW
1384 index, last_index - index);
1385 page = find_get_page(mapping, index);
1386 if (unlikely(page == NULL))
1387 goto no_cached_page;
1388 }
1389 if (PageReadahead(page)) {
cf914a7d 1390 page_cache_async_readahead(mapping,
7ff81078 1391 ra, filp, page,
3ea89ee8 1392 index, last_index - index);
1da177e4 1393 }
8ab22b9a
HH
1394 if (!PageUptodate(page)) {
1395 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1396 !mapping->a_ops->is_partially_uptodate)
1397 goto page_not_up_to_date;
529ae9aa 1398 if (!trylock_page(page))
8ab22b9a 1399 goto page_not_up_to_date;
8d056cb9
DH
1400 /* Did it get truncated before we got the lock? */
1401 if (!page->mapping)
1402 goto page_not_up_to_date_locked;
8ab22b9a
HH
1403 if (!mapping->a_ops->is_partially_uptodate(page,
1404 desc, offset))
1405 goto page_not_up_to_date_locked;
1406 unlock_page(page);
1407 }
1da177e4 1408page_ok:
a32ea1e1
N
1409 /*
1410 * i_size must be checked after we know the page is Uptodate.
1411 *
1412 * Checking i_size after the check allows us to calculate
1413 * the correct value for "nr", which means the zero-filled
1414 * part of the page is not copied back to userspace (unless
1415 * another truncate extends the file - this is desired though).
1416 */
1417
1418 isize = i_size_read(inode);
1419 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1420 if (unlikely(!isize || index > end_index)) {
1421 page_cache_release(page);
1422 goto out;
1423 }
1424
1425 /* nr is the maximum number of bytes to copy from this page */
1426 nr = PAGE_CACHE_SIZE;
1427 if (index == end_index) {
1428 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1429 if (nr <= offset) {
1430 page_cache_release(page);
1431 goto out;
1432 }
1433 }
1434 nr = nr - offset;
1da177e4
LT
1435
1436 /* If users can be writing to this page using arbitrary
1437 * virtual addresses, take care about potential aliasing
1438 * before reading the page on the kernel side.
1439 */
1440 if (mapping_writably_mapped(mapping))
1441 flush_dcache_page(page);
1442
1443 /*
ec0f1637
JK
1444 * When a sequential read accesses a page several times,
1445 * only mark it as accessed the first time.
1da177e4 1446 */
ec0f1637 1447 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1448 mark_page_accessed(page);
1449 prev_index = index;
1450
1451 /*
1452 * Ok, we have the page, and it's up-to-date, so
1453 * now we can copy it to user space...
1454 *
b77d88d4
KS
1455 * The file_read_actor routine returns how many bytes were
1456 * actually used..
1da177e4
LT
1457 * NOTE! This may not be the same as how much of a user buffer
1458 * we filled up (we may be padding etc), so we can only update
1459 * "pos" here (the actor routine has to update the user buffer
1460 * pointers and the remaining count).
1461 */
b77d88d4 1462 ret = file_read_actor(desc, page, offset, nr);
1da177e4
LT
1463 offset += ret;
1464 index += offset >> PAGE_CACHE_SHIFT;
1465 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1466 prev_offset = offset;
1da177e4
LT
1467
1468 page_cache_release(page);
1469 if (ret == nr && desc->count)
1470 continue;
1471 goto out;
1472
1473page_not_up_to_date:
1474 /* Get exclusive access to the page ... */
85462323
ON
1475 error = lock_page_killable(page);
1476 if (unlikely(error))
1477 goto readpage_error;
1da177e4 1478
8ab22b9a 1479page_not_up_to_date_locked:
da6052f7 1480 /* Did it get truncated before we got the lock? */
1da177e4
LT
1481 if (!page->mapping) {
1482 unlock_page(page);
1483 page_cache_release(page);
1484 continue;
1485 }
1486
1487 /* Did somebody else fill it already? */
1488 if (PageUptodate(page)) {
1489 unlock_page(page);
1490 goto page_ok;
1491 }
1492
1493readpage:
91803b49
JM
1494 /*
1495 * A previous I/O error may have been due to temporary
1496 * failures, eg. multipath errors.
1497 * PG_error will be set again if readpage fails.
1498 */
1499 ClearPageError(page);
1da177e4
LT
1500 /* Start the actual read. The read will unlock the page. */
1501 error = mapping->a_ops->readpage(filp, page);
1502
994fc28c
ZB
1503 if (unlikely(error)) {
1504 if (error == AOP_TRUNCATED_PAGE) {
1505 page_cache_release(page);
1506 goto find_page;
1507 }
1da177e4 1508 goto readpage_error;
994fc28c 1509 }
1da177e4
LT
1510
1511 if (!PageUptodate(page)) {
85462323
ON
1512 error = lock_page_killable(page);
1513 if (unlikely(error))
1514 goto readpage_error;
1da177e4
LT
1515 if (!PageUptodate(page)) {
1516 if (page->mapping == NULL) {
1517 /*
2ecdc82e 1518 * invalidate_mapping_pages got it
1da177e4
LT
1519 */
1520 unlock_page(page);
1521 page_cache_release(page);
1522 goto find_page;
1523 }
1524 unlock_page(page);
7ff81078 1525 shrink_readahead_size_eio(filp, ra);
85462323
ON
1526 error = -EIO;
1527 goto readpage_error;
1da177e4
LT
1528 }
1529 unlock_page(page);
1530 }
1531
1da177e4
LT
1532 goto page_ok;
1533
1534readpage_error:
1535 /* UHHUH! A synchronous read error occurred. Report it */
1536 desc->error = error;
1537 page_cache_release(page);
1538 goto out;
1539
1540no_cached_page:
1541 /*
1542 * Ok, it wasn't cached, so we need to create a new
1543 * page..
1544 */
eb2be189
NP
1545 page = page_cache_alloc_cold(mapping);
1546 if (!page) {
1547 desc->error = -ENOMEM;
1548 goto out;
1da177e4 1549 }
eb2be189 1550 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1551 index, GFP_KERNEL);
1552 if (error) {
eb2be189 1553 page_cache_release(page);
1da177e4
LT
1554 if (error == -EEXIST)
1555 goto find_page;
1556 desc->error = error;
1557 goto out;
1558 }
1da177e4
LT
1559 goto readpage;
1560 }
1561
1562out:
7ff81078
FW
1563 ra->prev_pos = prev_index;
1564 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1565 ra->prev_pos |= prev_offset;
1da177e4 1566
f4e6b498 1567 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1568 file_accessed(filp);
1da177e4 1569}
1da177e4
LT
1570
1571int file_read_actor(read_descriptor_t *desc, struct page *page,
1572 unsigned long offset, unsigned long size)
1573{
1574 char *kaddr;
1575 unsigned long left, count = desc->count;
1576
1577 if (size > count)
1578 size = count;
1579
1580 /*
1581 * Faults on the destination of a read are common, so do it before
1582 * taking the kmap.
1583 */
1584 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1585 kaddr = kmap_atomic(page);
1da177e4
LT
1586 left = __copy_to_user_inatomic(desc->arg.buf,
1587 kaddr + offset, size);
9b04c5fe 1588 kunmap_atomic(kaddr);
1da177e4
LT
1589 if (left == 0)
1590 goto success;
1591 }
1592
1593 /* Do it the slow way */
1594 kaddr = kmap(page);
1595 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1596 kunmap(page);
1597
1598 if (left) {
1599 size -= left;
1600 desc->error = -EFAULT;
1601 }
1602success:
1603 desc->count = count - size;
1604 desc->written += size;
1605 desc->arg.buf += size;
1606 return size;
1607}
1608
0ceb3314
DM
1609/*
1610 * Performs necessary checks before doing a write
1611 * @iov: io vector request
1612 * @nr_segs: number of segments in the iovec
1613 * @count: number of bytes to write
1614 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1615 *
1616 * Adjust number of segments and amount of bytes to write (nr_segs should be
1617 * properly initialized first). Returns appropriate error code that caller
1618 * should return or zero in case that write should be allowed.
1619 */
1620int generic_segment_checks(const struct iovec *iov,
1621 unsigned long *nr_segs, size_t *count, int access_flags)
1622{
1623 unsigned long seg;
1624 size_t cnt = 0;
1625 for (seg = 0; seg < *nr_segs; seg++) {
1626 const struct iovec *iv = &iov[seg];
1627
1628 /*
1629 * If any segment has a negative length, or the cumulative
1630 * length ever wraps negative then return -EINVAL.
1631 */
1632 cnt += iv->iov_len;
1633 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1634 return -EINVAL;
1635 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1636 continue;
1637 if (seg == 0)
1638 return -EFAULT;
1639 *nr_segs = seg;
1640 cnt -= iv->iov_len; /* This segment is no good */
1641 break;
1642 }
1643 *count = cnt;
1644 return 0;
1645}
1646EXPORT_SYMBOL(generic_segment_checks);
1647
485bb99b 1648/**
b2abacf3 1649 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1650 * @iocb: kernel I/O control block
1651 * @iov: io vector request
1652 * @nr_segs: number of segments in the iovec
b2abacf3 1653 * @pos: current file position
485bb99b 1654 *
1da177e4
LT
1655 * This is the "read()" routine for all filesystems
1656 * that can use the page cache directly.
1657 */
1658ssize_t
543ade1f
BP
1659generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1660 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1661{
1662 struct file *filp = iocb->ki_filp;
1663 ssize_t retval;
66f998f6 1664 unsigned long seg = 0;
1da177e4 1665 size_t count;
543ade1f 1666 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1667
1668 count = 0;
0ceb3314
DM
1669 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1670 if (retval)
1671 return retval;
1da177e4
LT
1672
1673 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1674 if (filp->f_flags & O_DIRECT) {
543ade1f 1675 loff_t size;
1da177e4
LT
1676 struct address_space *mapping;
1677 struct inode *inode;
1678
1679 mapping = filp->f_mapping;
1680 inode = mapping->host;
1da177e4
LT
1681 if (!count)
1682 goto out; /* skip atime */
1683 size = i_size_read(inode);
9fe55eea 1684 retval = filemap_write_and_wait_range(mapping, pos,
48b47c56 1685 pos + iov_length(iov, nr_segs) - 1);
9fe55eea
SW
1686 if (!retval) {
1687 retval = mapping->a_ops->direct_IO(READ, iocb,
1688 iov, pos, nr_segs);
1689 }
1690 if (retval > 0) {
1691 *ppos = pos + retval;
1692 count -= retval;
1693 }
66f998f6 1694
9fe55eea
SW
1695 /*
1696 * Btrfs can have a short DIO read if we encounter
1697 * compressed extents, so if there was an error, or if
1698 * we've already read everything we wanted to, or if
1699 * there was a short read because we hit EOF, go ahead
1700 * and return. Otherwise fallthrough to buffered io for
1701 * the rest of the read.
1702 */
1703 if (retval < 0 || !count || *ppos >= size) {
1704 file_accessed(filp);
1705 goto out;
0e0bcae3 1706 }
1da177e4
LT
1707 }
1708
66f998f6 1709 count = retval;
11fa977e
HD
1710 for (seg = 0; seg < nr_segs; seg++) {
1711 read_descriptor_t desc;
66f998f6
JB
1712 loff_t offset = 0;
1713
1714 /*
1715 * If we did a short DIO read we need to skip the section of the
1716 * iov that we've already read data into.
1717 */
1718 if (count) {
1719 if (count > iov[seg].iov_len) {
1720 count -= iov[seg].iov_len;
1721 continue;
1722 }
1723 offset = count;
1724 count = 0;
1725 }
1da177e4 1726
11fa977e 1727 desc.written = 0;
66f998f6
JB
1728 desc.arg.buf = iov[seg].iov_base + offset;
1729 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1730 if (desc.count == 0)
1731 continue;
1732 desc.error = 0;
b77d88d4 1733 do_generic_file_read(filp, ppos, &desc);
11fa977e
HD
1734 retval += desc.written;
1735 if (desc.error) {
1736 retval = retval ?: desc.error;
1737 break;
1da177e4 1738 }
11fa977e
HD
1739 if (desc.count > 0)
1740 break;
1da177e4
LT
1741 }
1742out:
1743 return retval;
1744}
1da177e4
LT
1745EXPORT_SYMBOL(generic_file_aio_read);
1746
1da177e4 1747#ifdef CONFIG_MMU
485bb99b
RD
1748/**
1749 * page_cache_read - adds requested page to the page cache if not already there
1750 * @file: file to read
1751 * @offset: page index
1752 *
1da177e4
LT
1753 * This adds the requested page to the page cache if it isn't already there,
1754 * and schedules an I/O to read in its contents from disk.
1755 */
920c7a5d 1756static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1757{
1758 struct address_space *mapping = file->f_mapping;
1759 struct page *page;
994fc28c 1760 int ret;
1da177e4 1761
994fc28c
ZB
1762 do {
1763 page = page_cache_alloc_cold(mapping);
1764 if (!page)
1765 return -ENOMEM;
1766
1767 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1768 if (ret == 0)
1769 ret = mapping->a_ops->readpage(file, page);
1770 else if (ret == -EEXIST)
1771 ret = 0; /* losing race to add is OK */
1da177e4 1772
1da177e4 1773 page_cache_release(page);
1da177e4 1774
994fc28c
ZB
1775 } while (ret == AOP_TRUNCATED_PAGE);
1776
1777 return ret;
1da177e4
LT
1778}
1779
1780#define MMAP_LOTSAMISS (100)
1781
ef00e08e
LT
1782/*
1783 * Synchronous readahead happens when we don't even find
1784 * a page in the page cache at all.
1785 */
1786static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1787 struct file_ra_state *ra,
1788 struct file *file,
1789 pgoff_t offset)
1790{
1791 unsigned long ra_pages;
1792 struct address_space *mapping = file->f_mapping;
1793
1794 /* If we don't want any read-ahead, don't bother */
64363aad 1795 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1796 return;
275b12bf
WF
1797 if (!ra->ra_pages)
1798 return;
ef00e08e 1799
64363aad 1800 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1801 page_cache_sync_readahead(mapping, ra, file, offset,
1802 ra->ra_pages);
ef00e08e
LT
1803 return;
1804 }
1805
207d04ba
AK
1806 /* Avoid banging the cache line if not needed */
1807 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1808 ra->mmap_miss++;
1809
1810 /*
1811 * Do we miss much more than hit in this file? If so,
1812 * stop bothering with read-ahead. It will only hurt.
1813 */
1814 if (ra->mmap_miss > MMAP_LOTSAMISS)
1815 return;
1816
d30a1100
WF
1817 /*
1818 * mmap read-around
1819 */
ef00e08e 1820 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1821 ra->start = max_t(long, 0, offset - ra_pages / 2);
1822 ra->size = ra_pages;
2cbea1d3 1823 ra->async_size = ra_pages / 4;
275b12bf 1824 ra_submit(ra, mapping, file);
ef00e08e
LT
1825}
1826
1827/*
1828 * Asynchronous readahead happens when we find the page and PG_readahead,
1829 * so we want to possibly extend the readahead further..
1830 */
1831static void do_async_mmap_readahead(struct vm_area_struct *vma,
1832 struct file_ra_state *ra,
1833 struct file *file,
1834 struct page *page,
1835 pgoff_t offset)
1836{
1837 struct address_space *mapping = file->f_mapping;
1838
1839 /* If we don't want any read-ahead, don't bother */
64363aad 1840 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1841 return;
1842 if (ra->mmap_miss > 0)
1843 ra->mmap_miss--;
1844 if (PageReadahead(page))
2fad6f5d
WF
1845 page_cache_async_readahead(mapping, ra, file,
1846 page, offset, ra->ra_pages);
ef00e08e
LT
1847}
1848
485bb99b 1849/**
54cb8821 1850 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1851 * @vma: vma in which the fault was taken
1852 * @vmf: struct vm_fault containing details of the fault
485bb99b 1853 *
54cb8821 1854 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1855 * mapped memory region to read in file data during a page fault.
1856 *
1857 * The goto's are kind of ugly, but this streamlines the normal case of having
1858 * it in the page cache, and handles the special cases reasonably without
1859 * having a lot of duplicated code.
1860 */
d0217ac0 1861int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1862{
1863 int error;
54cb8821 1864 struct file *file = vma->vm_file;
1da177e4
LT
1865 struct address_space *mapping = file->f_mapping;
1866 struct file_ra_state *ra = &file->f_ra;
1867 struct inode *inode = mapping->host;
ef00e08e 1868 pgoff_t offset = vmf->pgoff;
1da177e4 1869 struct page *page;
2004dc8e 1870 pgoff_t size;
83c54070 1871 int ret = 0;
1da177e4 1872
1da177e4 1873 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1874 if (offset >= size)
5307cc1a 1875 return VM_FAULT_SIGBUS;
1da177e4 1876
1da177e4 1877 /*
49426420 1878 * Do we have something in the page cache already?
1da177e4 1879 */
ef00e08e 1880 page = find_get_page(mapping, offset);
45cac65b 1881 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1882 /*
ef00e08e
LT
1883 * We found the page, so try async readahead before
1884 * waiting for the lock.
1da177e4 1885 */
ef00e08e 1886 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1887 } else if (!page) {
ef00e08e
LT
1888 /* No page in the page cache at all */
1889 do_sync_mmap_readahead(vma, ra, file, offset);
1890 count_vm_event(PGMAJFAULT);
456f998e 1891 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1892 ret = VM_FAULT_MAJOR;
1893retry_find:
b522c94d 1894 page = find_get_page(mapping, offset);
1da177e4
LT
1895 if (!page)
1896 goto no_cached_page;
1897 }
1898
d88c0922
ML
1899 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1900 page_cache_release(page);
d065bd81 1901 return ret | VM_FAULT_RETRY;
d88c0922 1902 }
b522c94d
ML
1903
1904 /* Did it get truncated? */
1905 if (unlikely(page->mapping != mapping)) {
1906 unlock_page(page);
1907 put_page(page);
1908 goto retry_find;
1909 }
309381fe 1910 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1911
1da177e4 1912 /*
d00806b1
NP
1913 * We have a locked page in the page cache, now we need to check
1914 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1915 */
d00806b1 1916 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1917 goto page_not_uptodate;
1918
ef00e08e
LT
1919 /*
1920 * Found the page and have a reference on it.
1921 * We must recheck i_size under page lock.
1922 */
d00806b1 1923 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1924 if (unlikely(offset >= size)) {
d00806b1 1925 unlock_page(page);
745ad48e 1926 page_cache_release(page);
5307cc1a 1927 return VM_FAULT_SIGBUS;
d00806b1
NP
1928 }
1929
d0217ac0 1930 vmf->page = page;
83c54070 1931 return ret | VM_FAULT_LOCKED;
1da177e4 1932
1da177e4
LT
1933no_cached_page:
1934 /*
1935 * We're only likely to ever get here if MADV_RANDOM is in
1936 * effect.
1937 */
ef00e08e 1938 error = page_cache_read(file, offset);
1da177e4
LT
1939
1940 /*
1941 * The page we want has now been added to the page cache.
1942 * In the unlikely event that someone removed it in the
1943 * meantime, we'll just come back here and read it again.
1944 */
1945 if (error >= 0)
1946 goto retry_find;
1947
1948 /*
1949 * An error return from page_cache_read can result if the
1950 * system is low on memory, or a problem occurs while trying
1951 * to schedule I/O.
1952 */
1953 if (error == -ENOMEM)
d0217ac0
NP
1954 return VM_FAULT_OOM;
1955 return VM_FAULT_SIGBUS;
1da177e4
LT
1956
1957page_not_uptodate:
1da177e4
LT
1958 /*
1959 * Umm, take care of errors if the page isn't up-to-date.
1960 * Try to re-read it _once_. We do this synchronously,
1961 * because there really aren't any performance issues here
1962 * and we need to check for errors.
1963 */
1da177e4 1964 ClearPageError(page);
994fc28c 1965 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1966 if (!error) {
1967 wait_on_page_locked(page);
1968 if (!PageUptodate(page))
1969 error = -EIO;
1970 }
d00806b1
NP
1971 page_cache_release(page);
1972
1973 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1974 goto retry_find;
1da177e4 1975
d00806b1 1976 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1977 shrink_readahead_size_eio(file, ra);
d0217ac0 1978 return VM_FAULT_SIGBUS;
54cb8821
NP
1979}
1980EXPORT_SYMBOL(filemap_fault);
1981
4fcf1c62
JK
1982int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1983{
1984 struct page *page = vmf->page;
496ad9aa 1985 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
1986 int ret = VM_FAULT_LOCKED;
1987
14da9200 1988 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
1989 file_update_time(vma->vm_file);
1990 lock_page(page);
1991 if (page->mapping != inode->i_mapping) {
1992 unlock_page(page);
1993 ret = VM_FAULT_NOPAGE;
1994 goto out;
1995 }
14da9200
JK
1996 /*
1997 * We mark the page dirty already here so that when freeze is in
1998 * progress, we are guaranteed that writeback during freezing will
1999 * see the dirty page and writeprotect it again.
2000 */
2001 set_page_dirty(page);
1d1d1a76 2002 wait_for_stable_page(page);
4fcf1c62 2003out:
14da9200 2004 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2005 return ret;
2006}
2007EXPORT_SYMBOL(filemap_page_mkwrite);
2008
f0f37e2f 2009const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2010 .fault = filemap_fault,
4fcf1c62 2011 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 2012 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2013};
2014
2015/* This is used for a general mmap of a disk file */
2016
2017int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2018{
2019 struct address_space *mapping = file->f_mapping;
2020
2021 if (!mapping->a_ops->readpage)
2022 return -ENOEXEC;
2023 file_accessed(file);
2024 vma->vm_ops = &generic_file_vm_ops;
2025 return 0;
2026}
1da177e4
LT
2027
2028/*
2029 * This is for filesystems which do not implement ->writepage.
2030 */
2031int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2032{
2033 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2034 return -EINVAL;
2035 return generic_file_mmap(file, vma);
2036}
2037#else
2038int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2039{
2040 return -ENOSYS;
2041}
2042int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2043{
2044 return -ENOSYS;
2045}
2046#endif /* CONFIG_MMU */
2047
2048EXPORT_SYMBOL(generic_file_mmap);
2049EXPORT_SYMBOL(generic_file_readonly_mmap);
2050
6fe6900e 2051static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2052 pgoff_t index,
5e5358e7 2053 int (*filler)(void *, struct page *),
0531b2aa
LT
2054 void *data,
2055 gfp_t gfp)
1da177e4 2056{
eb2be189 2057 struct page *page;
1da177e4
LT
2058 int err;
2059repeat:
2060 page = find_get_page(mapping, index);
2061 if (!page) {
0531b2aa 2062 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2063 if (!page)
2064 return ERR_PTR(-ENOMEM);
e6f67b8c 2065 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2066 if (unlikely(err)) {
2067 page_cache_release(page);
2068 if (err == -EEXIST)
2069 goto repeat;
1da177e4 2070 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2071 return ERR_PTR(err);
2072 }
1da177e4
LT
2073 err = filler(data, page);
2074 if (err < 0) {
2075 page_cache_release(page);
2076 page = ERR_PTR(err);
2077 }
2078 }
1da177e4
LT
2079 return page;
2080}
2081
0531b2aa 2082static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2083 pgoff_t index,
5e5358e7 2084 int (*filler)(void *, struct page *),
0531b2aa
LT
2085 void *data,
2086 gfp_t gfp)
2087
1da177e4
LT
2088{
2089 struct page *page;
2090 int err;
2091
2092retry:
0531b2aa 2093 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2094 if (IS_ERR(page))
c855ff37 2095 return page;
1da177e4
LT
2096 if (PageUptodate(page))
2097 goto out;
2098
2099 lock_page(page);
2100 if (!page->mapping) {
2101 unlock_page(page);
2102 page_cache_release(page);
2103 goto retry;
2104 }
2105 if (PageUptodate(page)) {
2106 unlock_page(page);
2107 goto out;
2108 }
2109 err = filler(data, page);
2110 if (err < 0) {
2111 page_cache_release(page);
c855ff37 2112 return ERR_PTR(err);
1da177e4 2113 }
c855ff37 2114out:
6fe6900e
NP
2115 mark_page_accessed(page);
2116 return page;
2117}
0531b2aa
LT
2118
2119/**
2120 * read_cache_page_async - read into page cache, fill it if needed
2121 * @mapping: the page's address_space
2122 * @index: the page index
2123 * @filler: function to perform the read
5e5358e7 2124 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
2125 *
2126 * Same as read_cache_page, but don't wait for page to become unlocked
2127 * after submitting it to the filler.
2128 *
2129 * Read into the page cache. If a page already exists, and PageUptodate() is
2130 * not set, try to fill the page but don't wait for it to become unlocked.
2131 *
2132 * If the page does not get brought uptodate, return -EIO.
2133 */
2134struct page *read_cache_page_async(struct address_space *mapping,
2135 pgoff_t index,
5e5358e7 2136 int (*filler)(void *, struct page *),
0531b2aa
LT
2137 void *data)
2138{
2139 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2140}
6fe6900e
NP
2141EXPORT_SYMBOL(read_cache_page_async);
2142
0531b2aa
LT
2143static struct page *wait_on_page_read(struct page *page)
2144{
2145 if (!IS_ERR(page)) {
2146 wait_on_page_locked(page);
2147 if (!PageUptodate(page)) {
2148 page_cache_release(page);
2149 page = ERR_PTR(-EIO);
2150 }
2151 }
2152 return page;
2153}
2154
2155/**
2156 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2157 * @mapping: the page's address_space
2158 * @index: the page index
2159 * @gfp: the page allocator flags to use if allocating
2160 *
2161 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2162 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2163 *
2164 * If the page does not get brought uptodate, return -EIO.
2165 */
2166struct page *read_cache_page_gfp(struct address_space *mapping,
2167 pgoff_t index,
2168 gfp_t gfp)
2169{
2170 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2171
2172 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
2173}
2174EXPORT_SYMBOL(read_cache_page_gfp);
2175
6fe6900e
NP
2176/**
2177 * read_cache_page - read into page cache, fill it if needed
2178 * @mapping: the page's address_space
2179 * @index: the page index
2180 * @filler: function to perform the read
5e5358e7 2181 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
2182 *
2183 * Read into the page cache. If a page already exists, and PageUptodate() is
2184 * not set, try to fill the page then wait for it to become unlocked.
2185 *
2186 * If the page does not get brought uptodate, return -EIO.
2187 */
2188struct page *read_cache_page(struct address_space *mapping,
57f6b96c 2189 pgoff_t index,
5e5358e7 2190 int (*filler)(void *, struct page *),
6fe6900e
NP
2191 void *data)
2192{
0531b2aa 2193 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 2194}
1da177e4
LT
2195EXPORT_SYMBOL(read_cache_page);
2196
2f718ffc 2197static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2198 const struct iovec *iov, size_t base, size_t bytes)
2199{
f1800536 2200 size_t copied = 0, left = 0;
1da177e4
LT
2201
2202 while (bytes) {
2203 char __user *buf = iov->iov_base + base;
2204 int copy = min(bytes, iov->iov_len - base);
2205
2206 base = 0;
f1800536 2207 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2208 copied += copy;
2209 bytes -= copy;
2210 vaddr += copy;
2211 iov++;
2212
01408c49 2213 if (unlikely(left))
1da177e4 2214 break;
1da177e4
LT
2215 }
2216 return copied - left;
2217}
2218
2f718ffc
NP
2219/*
2220 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2221 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2222 * bytes which were copied.
2223 */
2224size_t iov_iter_copy_from_user_atomic(struct page *page,
2225 struct iov_iter *i, unsigned long offset, size_t bytes)
2226{
2227 char *kaddr;
2228 size_t copied;
2229
2230 BUG_ON(!in_atomic());
9b04c5fe 2231 kaddr = kmap_atomic(page);
2f718ffc
NP
2232 if (likely(i->nr_segs == 1)) {
2233 int left;
2234 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2235 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2236 copied = bytes - left;
2237 } else {
2238 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2239 i->iov, i->iov_offset, bytes);
2240 }
9b04c5fe 2241 kunmap_atomic(kaddr);
2f718ffc
NP
2242
2243 return copied;
2244}
89e10787 2245EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2246
2247/*
2248 * This has the same sideeffects and return value as
2249 * iov_iter_copy_from_user_atomic().
2250 * The difference is that it attempts to resolve faults.
2251 * Page must not be locked.
2252 */
2253size_t iov_iter_copy_from_user(struct page *page,
2254 struct iov_iter *i, unsigned long offset, size_t bytes)
2255{
2256 char *kaddr;
2257 size_t copied;
2258
2259 kaddr = kmap(page);
2260 if (likely(i->nr_segs == 1)) {
2261 int left;
2262 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2263 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2264 copied = bytes - left;
2265 } else {
2266 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2267 i->iov, i->iov_offset, bytes);
2268 }
2269 kunmap(page);
2270 return copied;
2271}
89e10787 2272EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2273
f7009264 2274void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2275{
f7009264
NP
2276 BUG_ON(i->count < bytes);
2277
2f718ffc
NP
2278 if (likely(i->nr_segs == 1)) {
2279 i->iov_offset += bytes;
f7009264 2280 i->count -= bytes;
2f718ffc
NP
2281 } else {
2282 const struct iovec *iov = i->iov;
2283 size_t base = i->iov_offset;
39be79c1 2284 unsigned long nr_segs = i->nr_segs;
2f718ffc 2285
124d3b70
NP
2286 /*
2287 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2288 * zero-length segments (without overruning the iovec).
124d3b70 2289 */
94ad374a 2290 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2291 int copy;
2f718ffc 2292
f7009264
NP
2293 copy = min(bytes, iov->iov_len - base);
2294 BUG_ON(!i->count || i->count < copy);
2295 i->count -= copy;
2f718ffc
NP
2296 bytes -= copy;
2297 base += copy;
2298 if (iov->iov_len == base) {
2299 iov++;
39be79c1 2300 nr_segs--;
2f718ffc
NP
2301 base = 0;
2302 }
2303 }
2304 i->iov = iov;
2305 i->iov_offset = base;
39be79c1 2306 i->nr_segs = nr_segs;
2f718ffc
NP
2307 }
2308}
89e10787 2309EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2310
afddba49
NP
2311/*
2312 * Fault in the first iovec of the given iov_iter, to a maximum length
2313 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2314 * accessed (ie. because it is an invalid address).
2315 *
2316 * writev-intensive code may want this to prefault several iovecs -- that
2317 * would be possible (callers must not rely on the fact that _only_ the
2318 * first iovec will be faulted with the current implementation).
2319 */
2320int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2321{
2f718ffc 2322 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2323 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2324 return fault_in_pages_readable(buf, bytes);
2f718ffc 2325}
89e10787 2326EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2327
2328/*
2329 * Return the count of just the current iov_iter segment.
2330 */
d28574e0 2331size_t iov_iter_single_seg_count(const struct iov_iter *i)
2f718ffc
NP
2332{
2333 const struct iovec *iov = i->iov;
2334 if (i->nr_segs == 1)
2335 return i->count;
2336 else
2337 return min(i->count, iov->iov_len - i->iov_offset);
2338}
89e10787 2339EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2340
1da177e4
LT
2341/*
2342 * Performs necessary checks before doing a write
2343 *
485bb99b 2344 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2345 * Returns appropriate error code that caller should return or
2346 * zero in case that write should be allowed.
2347 */
2348inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2349{
2350 struct inode *inode = file->f_mapping->host;
59e99e5b 2351 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2352
2353 if (unlikely(*pos < 0))
2354 return -EINVAL;
2355
1da177e4
LT
2356 if (!isblk) {
2357 /* FIXME: this is for backwards compatibility with 2.4 */
2358 if (file->f_flags & O_APPEND)
2359 *pos = i_size_read(inode);
2360
2361 if (limit != RLIM_INFINITY) {
2362 if (*pos >= limit) {
2363 send_sig(SIGXFSZ, current, 0);
2364 return -EFBIG;
2365 }
2366 if (*count > limit - (typeof(limit))*pos) {
2367 *count = limit - (typeof(limit))*pos;
2368 }
2369 }
2370 }
2371
2372 /*
2373 * LFS rule
2374 */
2375 if (unlikely(*pos + *count > MAX_NON_LFS &&
2376 !(file->f_flags & O_LARGEFILE))) {
2377 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2378 return -EFBIG;
2379 }
2380 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2381 *count = MAX_NON_LFS - (unsigned long)*pos;
2382 }
2383 }
2384
2385 /*
2386 * Are we about to exceed the fs block limit ?
2387 *
2388 * If we have written data it becomes a short write. If we have
2389 * exceeded without writing data we send a signal and return EFBIG.
2390 * Linus frestrict idea will clean these up nicely..
2391 */
2392 if (likely(!isblk)) {
2393 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2394 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2395 return -EFBIG;
2396 }
2397 /* zero-length writes at ->s_maxbytes are OK */
2398 }
2399
2400 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2401 *count = inode->i_sb->s_maxbytes - *pos;
2402 } else {
9361401e 2403#ifdef CONFIG_BLOCK
1da177e4
LT
2404 loff_t isize;
2405 if (bdev_read_only(I_BDEV(inode)))
2406 return -EPERM;
2407 isize = i_size_read(inode);
2408 if (*pos >= isize) {
2409 if (*count || *pos > isize)
2410 return -ENOSPC;
2411 }
2412
2413 if (*pos + *count > isize)
2414 *count = isize - *pos;
9361401e
DH
2415#else
2416 return -EPERM;
2417#endif
1da177e4
LT
2418 }
2419 return 0;
2420}
2421EXPORT_SYMBOL(generic_write_checks);
2422
afddba49
NP
2423int pagecache_write_begin(struct file *file, struct address_space *mapping,
2424 loff_t pos, unsigned len, unsigned flags,
2425 struct page **pagep, void **fsdata)
2426{
2427 const struct address_space_operations *aops = mapping->a_ops;
2428
4e02ed4b 2429 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2430 pagep, fsdata);
afddba49
NP
2431}
2432EXPORT_SYMBOL(pagecache_write_begin);
2433
2434int pagecache_write_end(struct file *file, struct address_space *mapping,
2435 loff_t pos, unsigned len, unsigned copied,
2436 struct page *page, void *fsdata)
2437{
2438 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2439
4e02ed4b
NP
2440 mark_page_accessed(page);
2441 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2442}
2443EXPORT_SYMBOL(pagecache_write_end);
2444
1da177e4
LT
2445ssize_t
2446generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2447 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2448 size_t count, size_t ocount)
2449{
2450 struct file *file = iocb->ki_filp;
2451 struct address_space *mapping = file->f_mapping;
2452 struct inode *inode = mapping->host;
2453 ssize_t written;
a969e903
CH
2454 size_t write_len;
2455 pgoff_t end;
1da177e4
LT
2456
2457 if (count != ocount)
2458 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2459
a969e903
CH
2460 write_len = iov_length(iov, *nr_segs);
2461 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2462
48b47c56 2463 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2464 if (written)
2465 goto out;
2466
2467 /*
2468 * After a write we want buffered reads to be sure to go to disk to get
2469 * the new data. We invalidate clean cached page from the region we're
2470 * about to write. We do this *before* the write so that we can return
6ccfa806 2471 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2472 */
2473 if (mapping->nrpages) {
2474 written = invalidate_inode_pages2_range(mapping,
2475 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2476 /*
2477 * If a page can not be invalidated, return 0 to fall back
2478 * to buffered write.
2479 */
2480 if (written) {
2481 if (written == -EBUSY)
2482 return 0;
a969e903 2483 goto out;
6ccfa806 2484 }
a969e903
CH
2485 }
2486
2487 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2488
2489 /*
2490 * Finally, try again to invalidate clean pages which might have been
2491 * cached by non-direct readahead, or faulted in by get_user_pages()
2492 * if the source of the write was an mmap'ed region of the file
2493 * we're writing. Either one is a pretty crazy thing to do,
2494 * so we don't support it 100%. If this invalidation
2495 * fails, tough, the write still worked...
2496 */
2497 if (mapping->nrpages) {
2498 invalidate_inode_pages2_range(mapping,
2499 pos >> PAGE_CACHE_SHIFT, end);
2500 }
2501
1da177e4 2502 if (written > 0) {
0116651c
NK
2503 pos += written;
2504 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2505 i_size_write(inode, pos);
1da177e4
LT
2506 mark_inode_dirty(inode);
2507 }
0116651c 2508 *ppos = pos;
1da177e4 2509 }
a969e903 2510out:
1da177e4
LT
2511 return written;
2512}
2513EXPORT_SYMBOL(generic_file_direct_write);
2514
eb2be189
NP
2515/*
2516 * Find or create a page at the given pagecache position. Return the locked
2517 * page. This function is specifically for buffered writes.
2518 */
54566b2c
NP
2519struct page *grab_cache_page_write_begin(struct address_space *mapping,
2520 pgoff_t index, unsigned flags)
eb2be189
NP
2521{
2522 int status;
0faa70cb 2523 gfp_t gfp_mask;
eb2be189 2524 struct page *page;
54566b2c 2525 gfp_t gfp_notmask = 0;
0faa70cb 2526
1010bb1b
FW
2527 gfp_mask = mapping_gfp_mask(mapping);
2528 if (mapping_cap_account_dirty(mapping))
2529 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2530 if (flags & AOP_FLAG_NOFS)
2531 gfp_notmask = __GFP_FS;
eb2be189
NP
2532repeat:
2533 page = find_lock_page(mapping, index);
c585a267 2534 if (page)
3d08bcc8 2535 goto found;
eb2be189 2536
0faa70cb 2537 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2538 if (!page)
2539 return NULL;
54566b2c
NP
2540 status = add_to_page_cache_lru(page, mapping, index,
2541 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2542 if (unlikely(status)) {
2543 page_cache_release(page);
2544 if (status == -EEXIST)
2545 goto repeat;
2546 return NULL;
2547 }
3d08bcc8 2548found:
1d1d1a76 2549 wait_for_stable_page(page);
eb2be189
NP
2550 return page;
2551}
54566b2c 2552EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2553
afddba49
NP
2554static ssize_t generic_perform_write(struct file *file,
2555 struct iov_iter *i, loff_t pos)
2556{
2557 struct address_space *mapping = file->f_mapping;
2558 const struct address_space_operations *a_ops = mapping->a_ops;
2559 long status = 0;
2560 ssize_t written = 0;
674b892e
NP
2561 unsigned int flags = 0;
2562
2563 /*
2564 * Copies from kernel address space cannot fail (NFSD is a big user).
2565 */
2566 if (segment_eq(get_fs(), KERNEL_DS))
2567 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2568
2569 do {
2570 struct page *page;
afddba49
NP
2571 unsigned long offset; /* Offset into pagecache page */
2572 unsigned long bytes; /* Bytes to write to page */
2573 size_t copied; /* Bytes copied from user */
2574 void *fsdata;
2575
2576 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2577 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2578 iov_iter_count(i));
2579
2580again:
afddba49
NP
2581 /*
2582 * Bring in the user page that we will copy from _first_.
2583 * Otherwise there's a nasty deadlock on copying from the
2584 * same page as we're writing to, without it being marked
2585 * up-to-date.
2586 *
2587 * Not only is this an optimisation, but it is also required
2588 * to check that the address is actually valid, when atomic
2589 * usercopies are used, below.
2590 */
2591 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2592 status = -EFAULT;
2593 break;
2594 }
2595
674b892e 2596 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2597 &page, &fsdata);
2598 if (unlikely(status))
2599 break;
2600
931e80e4 2601 if (mapping_writably_mapped(mapping))
2602 flush_dcache_page(page);
2603
afddba49
NP
2604 pagefault_disable();
2605 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2606 pagefault_enable();
2607 flush_dcache_page(page);
2608
c8236db9 2609 mark_page_accessed(page);
afddba49
NP
2610 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2611 page, fsdata);
2612 if (unlikely(status < 0))
2613 break;
2614 copied = status;
2615
2616 cond_resched();
2617
124d3b70 2618 iov_iter_advance(i, copied);
afddba49
NP
2619 if (unlikely(copied == 0)) {
2620 /*
2621 * If we were unable to copy any data at all, we must
2622 * fall back to a single segment length write.
2623 *
2624 * If we didn't fallback here, we could livelock
2625 * because not all segments in the iov can be copied at
2626 * once without a pagefault.
2627 */
2628 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2629 iov_iter_single_seg_count(i));
2630 goto again;
2631 }
afddba49
NP
2632 pos += copied;
2633 written += copied;
2634
2635 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2636 if (fatal_signal_pending(current)) {
2637 status = -EINTR;
2638 break;
2639 }
afddba49
NP
2640 } while (iov_iter_count(i));
2641
2642 return written ? written : status;
2643}
2644
2645ssize_t
2646generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2647 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2648 size_t count, ssize_t written)
2649{
2650 struct file *file = iocb->ki_filp;
afddba49
NP
2651 ssize_t status;
2652 struct iov_iter i;
2653
2654 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2655 status = generic_perform_write(file, &i, pos);
1da177e4 2656
1da177e4 2657 if (likely(status >= 0)) {
afddba49
NP
2658 written += status;
2659 *ppos = pos + status;
1da177e4
LT
2660 }
2661
1da177e4
LT
2662 return written ? written : status;
2663}
2664EXPORT_SYMBOL(generic_file_buffered_write);
2665
e4dd9de3
JK
2666/**
2667 * __generic_file_aio_write - write data to a file
2668 * @iocb: IO state structure (file, offset, etc.)
2669 * @iov: vector with data to write
2670 * @nr_segs: number of segments in the vector
2671 * @ppos: position where to write
2672 *
2673 * This function does all the work needed for actually writing data to a
2674 * file. It does all basic checks, removes SUID from the file, updates
2675 * modification times and calls proper subroutines depending on whether we
2676 * do direct IO or a standard buffered write.
2677 *
2678 * It expects i_mutex to be grabbed unless we work on a block device or similar
2679 * object which does not need locking at all.
2680 *
2681 * This function does *not* take care of syncing data in case of O_SYNC write.
2682 * A caller has to handle it. This is mainly due to the fact that we want to
2683 * avoid syncing under i_mutex.
2684 */
2685ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2686 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2687{
2688 struct file *file = iocb->ki_filp;
fb5527e6 2689 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2690 size_t ocount; /* original count */
2691 size_t count; /* after file limit checks */
2692 struct inode *inode = mapping->host;
1da177e4
LT
2693 loff_t pos;
2694 ssize_t written;
2695 ssize_t err;
2696
2697 ocount = 0;
0ceb3314
DM
2698 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2699 if (err)
2700 return err;
1da177e4
LT
2701
2702 count = ocount;
2703 pos = *ppos;
2704
1da177e4
LT
2705 /* We can write back this queue in page reclaim */
2706 current->backing_dev_info = mapping->backing_dev_info;
2707 written = 0;
2708
2709 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2710 if (err)
2711 goto out;
2712
2713 if (count == 0)
2714 goto out;
2715
2f1936b8 2716 err = file_remove_suid(file);
1da177e4
LT
2717 if (err)
2718 goto out;
2719
c3b2da31
JB
2720 err = file_update_time(file);
2721 if (err)
2722 goto out;
1da177e4
LT
2723
2724 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2725 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2726 loff_t endbyte;
2727 ssize_t written_buffered;
2728
2729 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2730 ppos, count, ocount);
1da177e4
LT
2731 if (written < 0 || written == count)
2732 goto out;
2733 /*
2734 * direct-io write to a hole: fall through to buffered I/O
2735 * for completing the rest of the request.
2736 */
2737 pos += written;
2738 count -= written;
fb5527e6
JM
2739 written_buffered = generic_file_buffered_write(iocb, iov,
2740 nr_segs, pos, ppos, count,
2741 written);
2742 /*
2743 * If generic_file_buffered_write() retuned a synchronous error
2744 * then we want to return the number of bytes which were
2745 * direct-written, or the error code if that was zero. Note
2746 * that this differs from normal direct-io semantics, which
2747 * will return -EFOO even if some bytes were written.
2748 */
2749 if (written_buffered < 0) {
2750 err = written_buffered;
2751 goto out;
2752 }
1da177e4 2753
fb5527e6
JM
2754 /*
2755 * We need to ensure that the page cache pages are written to
2756 * disk and invalidated to preserve the expected O_DIRECT
2757 * semantics.
2758 */
2759 endbyte = pos + written_buffered - written - 1;
c05c4edd 2760 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2761 if (err == 0) {
2762 written = written_buffered;
2763 invalidate_mapping_pages(mapping,
2764 pos >> PAGE_CACHE_SHIFT,
2765 endbyte >> PAGE_CACHE_SHIFT);
2766 } else {
2767 /*
2768 * We don't know how much we wrote, so just return
2769 * the number of bytes which were direct-written
2770 */
2771 }
2772 } else {
2773 written = generic_file_buffered_write(iocb, iov, nr_segs,
2774 pos, ppos, count, written);
2775 }
1da177e4
LT
2776out:
2777 current->backing_dev_info = NULL;
2778 return written ? written : err;
2779}
e4dd9de3
JK
2780EXPORT_SYMBOL(__generic_file_aio_write);
2781
e4dd9de3
JK
2782/**
2783 * generic_file_aio_write - write data to a file
2784 * @iocb: IO state structure
2785 * @iov: vector with data to write
2786 * @nr_segs: number of segments in the vector
2787 * @pos: position in file where to write
2788 *
2789 * This is a wrapper around __generic_file_aio_write() to be used by most
2790 * filesystems. It takes care of syncing the file in case of O_SYNC file
2791 * and acquires i_mutex as needed.
2792 */
027445c3
BP
2793ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2794 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2795{
2796 struct file *file = iocb->ki_filp;
148f948b 2797 struct inode *inode = file->f_mapping->host;
1da177e4 2798 ssize_t ret;
1da177e4
LT
2799
2800 BUG_ON(iocb->ki_pos != pos);
2801
1b1dcc1b 2802 mutex_lock(&inode->i_mutex);
e4dd9de3 2803 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2804 mutex_unlock(&inode->i_mutex);
1da177e4 2805
02afc27f 2806 if (ret > 0) {
1da177e4
LT
2807 ssize_t err;
2808
d311d79d
AV
2809 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2810 if (err < 0)
1da177e4
LT
2811 ret = err;
2812 }
2813 return ret;
2814}
2815EXPORT_SYMBOL(generic_file_aio_write);
2816
cf9a2ae8
DH
2817/**
2818 * try_to_release_page() - release old fs-specific metadata on a page
2819 *
2820 * @page: the page which the kernel is trying to free
2821 * @gfp_mask: memory allocation flags (and I/O mode)
2822 *
2823 * The address_space is to try to release any data against the page
2824 * (presumably at page->private). If the release was successful, return `1'.
2825 * Otherwise return zero.
2826 *
266cf658
DH
2827 * This may also be called if PG_fscache is set on a page, indicating that the
2828 * page is known to the local caching routines.
2829 *
cf9a2ae8 2830 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2831 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2832 *
cf9a2ae8
DH
2833 */
2834int try_to_release_page(struct page *page, gfp_t gfp_mask)
2835{
2836 struct address_space * const mapping = page->mapping;
2837
2838 BUG_ON(!PageLocked(page));
2839 if (PageWriteback(page))
2840 return 0;
2841
2842 if (mapping && mapping->a_ops->releasepage)
2843 return mapping->a_ops->releasepage(page, gfp_mask);
2844 return try_to_free_buffers(page);
2845}
2846
2847EXPORT_SYMBOL(try_to_release_page);