]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
mm: remove worrying dead code from find_get_pages()
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4 12#include <linux/module.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
4f98a2fe 36#include <linux/mm_inline.h> /* for page_is_file_cache() */
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
25d9e2d1 61 * ->i_mmap_lock (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
6a46079c
AK
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
107 * ->i_mmap_lock
1da177e4
LT
108 */
109
110/*
e64a782f 111 * Delete a page from the page cache and free it. Caller has to make
1da177e4 112 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 113 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 114 */
e64a782f 115void __delete_from_page_cache(struct page *page)
1da177e4
LT
116{
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
347ce434 122 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
123 if (PageSwapBacked(page))
124 __dec_zone_page_state(page, NR_SHMEM);
45426812 125 BUG_ON(page_mapped(page));
3a692790
LT
126
127 /*
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
130 *
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
133 */
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 }
1da177e4
LT
138}
139
702cfbf9
MK
140/**
141 * delete_from_page_cache - delete page from page cache
142 * @page: the page which the kernel is trying to remove from page cache
143 *
144 * This must be called only on pages that have been verified to be in the page
145 * cache and locked. It will never put the page into the free list, the caller
146 * has a reference on the page.
147 */
148void delete_from_page_cache(struct page *page)
1da177e4
LT
149{
150 struct address_space *mapping = page->mapping;
6072d13c 151 void (*freepage)(struct page *);
1da177e4 152
cd7619d6 153 BUG_ON(!PageLocked(page));
1da177e4 154
6072d13c 155 freepage = mapping->a_ops->freepage;
19fd6231 156 spin_lock_irq(&mapping->tree_lock);
e64a782f 157 __delete_from_page_cache(page);
19fd6231 158 spin_unlock_irq(&mapping->tree_lock);
e767e056 159 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
160
161 if (freepage)
162 freepage(page);
97cecb5a
MK
163 page_cache_release(page);
164}
165EXPORT_SYMBOL(delete_from_page_cache);
166
1da177e4
LT
167static int sync_page(void *word)
168{
169 struct address_space *mapping;
170 struct page *page;
171
07808b74 172 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
173
174 /*
dd1d5afc
WLII
175 * page_mapping() is being called without PG_locked held.
176 * Some knowledge of the state and use of the page is used to
177 * reduce the requirements down to a memory barrier.
178 * The danger here is of a stale page_mapping() return value
179 * indicating a struct address_space different from the one it's
180 * associated with when it is associated with one.
181 * After smp_mb(), it's either the correct page_mapping() for
182 * the page, or an old page_mapping() and the page's own
183 * page_mapping() has gone NULL.
184 * The ->sync_page() address_space operation must tolerate
185 * page_mapping() going NULL. By an amazing coincidence,
186 * this comes about because none of the users of the page
187 * in the ->sync_page() methods make essential use of the
188 * page_mapping(), merely passing the page down to the backing
189 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 190 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
191 * of interest. When page_mapping() does go NULL, the entire
192 * call stack gracefully ignores the page and returns.
193 * -- wli
1da177e4
LT
194 */
195 smp_mb();
196 mapping = page_mapping(page);
197 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
198 mapping->a_ops->sync_page(page);
199 io_schedule();
200 return 0;
201}
202
2687a356
MW
203static int sync_page_killable(void *word)
204{
205 sync_page(word);
206 return fatal_signal_pending(current) ? -EINTR : 0;
207}
208
1da177e4 209/**
485bb99b 210 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
211 * @mapping: address space structure to write
212 * @start: offset in bytes where the range starts
469eb4d0 213 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 214 * @sync_mode: enable synchronous operation
1da177e4 215 *
485bb99b
RD
216 * Start writeback against all of a mapping's dirty pages that lie
217 * within the byte offsets <start, end> inclusive.
218 *
1da177e4 219 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 220 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
221 * these two operations is that if a dirty page/buffer is encountered, it must
222 * be waited upon, and not just skipped over.
223 */
ebcf28e1
AM
224int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
225 loff_t end, int sync_mode)
1da177e4
LT
226{
227 int ret;
228 struct writeback_control wbc = {
229 .sync_mode = sync_mode,
05fe478d 230 .nr_to_write = LONG_MAX,
111ebb6e
OH
231 .range_start = start,
232 .range_end = end,
1da177e4
LT
233 };
234
235 if (!mapping_cap_writeback_dirty(mapping))
236 return 0;
237
238 ret = do_writepages(mapping, &wbc);
239 return ret;
240}
241
242static inline int __filemap_fdatawrite(struct address_space *mapping,
243 int sync_mode)
244{
111ebb6e 245 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
246}
247
248int filemap_fdatawrite(struct address_space *mapping)
249{
250 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
251}
252EXPORT_SYMBOL(filemap_fdatawrite);
253
f4c0a0fd 254int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 255 loff_t end)
1da177e4
LT
256{
257 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
258}
f4c0a0fd 259EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 260
485bb99b
RD
261/**
262 * filemap_flush - mostly a non-blocking flush
263 * @mapping: target address_space
264 *
1da177e4
LT
265 * This is a mostly non-blocking flush. Not suitable for data-integrity
266 * purposes - I/O may not be started against all dirty pages.
267 */
268int filemap_flush(struct address_space *mapping)
269{
270 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
271}
272EXPORT_SYMBOL(filemap_flush);
273
485bb99b 274/**
94004ed7
CH
275 * filemap_fdatawait_range - wait for writeback to complete
276 * @mapping: address space structure to wait for
277 * @start_byte: offset in bytes where the range starts
278 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 279 *
94004ed7
CH
280 * Walk the list of under-writeback pages of the given address space
281 * in the given range and wait for all of them.
1da177e4 282 */
94004ed7
CH
283int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
284 loff_t end_byte)
1da177e4 285{
94004ed7
CH
286 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
287 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
288 struct pagevec pvec;
289 int nr_pages;
290 int ret = 0;
1da177e4 291
94004ed7 292 if (end_byte < start_byte)
1da177e4
LT
293 return 0;
294
295 pagevec_init(&pvec, 0);
1da177e4
LT
296 while ((index <= end) &&
297 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
298 PAGECACHE_TAG_WRITEBACK,
299 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
300 unsigned i;
301
302 for (i = 0; i < nr_pages; i++) {
303 struct page *page = pvec.pages[i];
304
305 /* until radix tree lookup accepts end_index */
306 if (page->index > end)
307 continue;
308
309 wait_on_page_writeback(page);
212260aa 310 if (TestClearPageError(page))
1da177e4
LT
311 ret = -EIO;
312 }
313 pagevec_release(&pvec);
314 cond_resched();
315 }
316
317 /* Check for outstanding write errors */
318 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
319 ret = -ENOSPC;
320 if (test_and_clear_bit(AS_EIO, &mapping->flags))
321 ret = -EIO;
322
323 return ret;
324}
d3bccb6f
JK
325EXPORT_SYMBOL(filemap_fdatawait_range);
326
1da177e4 327/**
485bb99b 328 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 329 * @mapping: address space structure to wait for
485bb99b
RD
330 *
331 * Walk the list of under-writeback pages of the given address space
332 * and wait for all of them.
1da177e4
LT
333 */
334int filemap_fdatawait(struct address_space *mapping)
335{
336 loff_t i_size = i_size_read(mapping->host);
337
338 if (i_size == 0)
339 return 0;
340
94004ed7 341 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
342}
343EXPORT_SYMBOL(filemap_fdatawait);
344
345int filemap_write_and_wait(struct address_space *mapping)
346{
28fd1298 347 int err = 0;
1da177e4
LT
348
349 if (mapping->nrpages) {
28fd1298
OH
350 err = filemap_fdatawrite(mapping);
351 /*
352 * Even if the above returned error, the pages may be
353 * written partially (e.g. -ENOSPC), so we wait for it.
354 * But the -EIO is special case, it may indicate the worst
355 * thing (e.g. bug) happened, so we avoid waiting for it.
356 */
357 if (err != -EIO) {
358 int err2 = filemap_fdatawait(mapping);
359 if (!err)
360 err = err2;
361 }
1da177e4 362 }
28fd1298 363 return err;
1da177e4 364}
28fd1298 365EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 366
485bb99b
RD
367/**
368 * filemap_write_and_wait_range - write out & wait on a file range
369 * @mapping: the address_space for the pages
370 * @lstart: offset in bytes where the range starts
371 * @lend: offset in bytes where the range ends (inclusive)
372 *
469eb4d0
AM
373 * Write out and wait upon file offsets lstart->lend, inclusive.
374 *
375 * Note that `lend' is inclusive (describes the last byte to be written) so
376 * that this function can be used to write to the very end-of-file (end = -1).
377 */
1da177e4
LT
378int filemap_write_and_wait_range(struct address_space *mapping,
379 loff_t lstart, loff_t lend)
380{
28fd1298 381 int err = 0;
1da177e4
LT
382
383 if (mapping->nrpages) {
28fd1298
OH
384 err = __filemap_fdatawrite_range(mapping, lstart, lend,
385 WB_SYNC_ALL);
386 /* See comment of filemap_write_and_wait() */
387 if (err != -EIO) {
94004ed7
CH
388 int err2 = filemap_fdatawait_range(mapping,
389 lstart, lend);
28fd1298
OH
390 if (!err)
391 err = err2;
392 }
1da177e4 393 }
28fd1298 394 return err;
1da177e4 395}
f6995585 396EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 397
ef6a3c63
MS
398/**
399 * replace_page_cache_page - replace a pagecache page with a new one
400 * @old: page to be replaced
401 * @new: page to replace with
402 * @gfp_mask: allocation mode
403 *
404 * This function replaces a page in the pagecache with a new one. On
405 * success it acquires the pagecache reference for the new page and
406 * drops it for the old page. Both the old and new pages must be
407 * locked. This function does not add the new page to the LRU, the
408 * caller must do that.
409 *
410 * The remove + add is atomic. The only way this function can fail is
411 * memory allocation failure.
412 */
413int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
414{
415 int error;
416 struct mem_cgroup *memcg = NULL;
417
418 VM_BUG_ON(!PageLocked(old));
419 VM_BUG_ON(!PageLocked(new));
420 VM_BUG_ON(new->mapping);
421
422 /*
423 * This is not page migration, but prepare_migration and
424 * end_migration does enough work for charge replacement.
425 *
426 * In the longer term we probably want a specialized function
427 * for moving the charge from old to new in a more efficient
428 * manner.
429 */
430 error = mem_cgroup_prepare_migration(old, new, &memcg, gfp_mask);
431 if (error)
432 return error;
433
434 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
435 if (!error) {
436 struct address_space *mapping = old->mapping;
437 void (*freepage)(struct page *);
438
439 pgoff_t offset = old->index;
440 freepage = mapping->a_ops->freepage;
441
442 page_cache_get(new);
443 new->mapping = mapping;
444 new->index = offset;
445
446 spin_lock_irq(&mapping->tree_lock);
e64a782f 447 __delete_from_page_cache(old);
ef6a3c63
MS
448 error = radix_tree_insert(&mapping->page_tree, offset, new);
449 BUG_ON(error);
450 mapping->nrpages++;
451 __inc_zone_page_state(new, NR_FILE_PAGES);
452 if (PageSwapBacked(new))
453 __inc_zone_page_state(new, NR_SHMEM);
454 spin_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
456 if (freepage)
457 freepage(old);
458 page_cache_release(old);
459 mem_cgroup_end_migration(memcg, old, new, true);
460 } else {
461 mem_cgroup_end_migration(memcg, old, new, false);
462 }
463
464 return error;
465}
466EXPORT_SYMBOL_GPL(replace_page_cache_page);
467
485bb99b 468/**
e286781d 469 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
470 * @page: page to add
471 * @mapping: the page's address_space
472 * @offset: page index
473 * @gfp_mask: page allocation mode
474 *
e286781d 475 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
476 * This function does not add the page to the LRU. The caller must do that.
477 */
e286781d 478int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 479 pgoff_t offset, gfp_t gfp_mask)
1da177e4 480{
e286781d
NP
481 int error;
482
483 VM_BUG_ON(!PageLocked(page));
484
485 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 486 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
487 if (error)
488 goto out;
1da177e4 489
35c754d7 490 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 491 if (error == 0) {
e286781d
NP
492 page_cache_get(page);
493 page->mapping = mapping;
494 page->index = offset;
495
19fd6231 496 spin_lock_irq(&mapping->tree_lock);
1da177e4 497 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 498 if (likely(!error)) {
1da177e4 499 mapping->nrpages++;
347ce434 500 __inc_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
501 if (PageSwapBacked(page))
502 __inc_zone_page_state(page, NR_SHMEM);
e767e056 503 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
504 } else {
505 page->mapping = NULL;
e767e056 506 spin_unlock_irq(&mapping->tree_lock);
69029cd5 507 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
508 page_cache_release(page);
509 }
1da177e4 510 radix_tree_preload_end();
35c754d7 511 } else
69029cd5 512 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 513out:
1da177e4
LT
514 return error;
515}
e286781d 516EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
517
518int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 519 pgoff_t offset, gfp_t gfp_mask)
1da177e4 520{
4f98a2fe
RR
521 int ret;
522
523 /*
524 * Splice_read and readahead add shmem/tmpfs pages into the page cache
525 * before shmem_readpage has a chance to mark them as SwapBacked: they
e9d6c157 526 * need to go on the anon lru below, and mem_cgroup_cache_charge
4f98a2fe
RR
527 * (called in add_to_page_cache) needs to know where they're going too.
528 */
529 if (mapping_cap_swap_backed(mapping))
530 SetPageSwapBacked(page);
531
532 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
533 if (ret == 0) {
534 if (page_is_file_cache(page))
535 lru_cache_add_file(page);
536 else
e9d6c157 537 lru_cache_add_anon(page);
4f98a2fe 538 }
1da177e4
LT
539 return ret;
540}
18bc0bbd 541EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 542
44110fe3 543#ifdef CONFIG_NUMA
2ae88149 544struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 545{
c0ff7453
MX
546 int n;
547 struct page *page;
548
44110fe3 549 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
550 get_mems_allowed();
551 n = cpuset_mem_spread_node();
552 page = alloc_pages_exact_node(n, gfp, 0);
553 put_mems_allowed();
554 return page;
44110fe3 555 }
2ae88149 556 return alloc_pages(gfp, 0);
44110fe3 557}
2ae88149 558EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
559#endif
560
db37648c
NP
561static int __sleep_on_page_lock(void *word)
562{
563 io_schedule();
564 return 0;
565}
566
1da177e4
LT
567/*
568 * In order to wait for pages to become available there must be
569 * waitqueues associated with pages. By using a hash table of
570 * waitqueues where the bucket discipline is to maintain all
571 * waiters on the same queue and wake all when any of the pages
572 * become available, and for the woken contexts to check to be
573 * sure the appropriate page became available, this saves space
574 * at a cost of "thundering herd" phenomena during rare hash
575 * collisions.
576 */
577static wait_queue_head_t *page_waitqueue(struct page *page)
578{
579 const struct zone *zone = page_zone(page);
580
581 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
582}
583
584static inline void wake_up_page(struct page *page, int bit)
585{
586 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
587}
588
920c7a5d 589void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
590{
591 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
592
593 if (test_bit(bit_nr, &page->flags))
594 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
595 TASK_UNINTERRUPTIBLE);
596}
597EXPORT_SYMBOL(wait_on_page_bit);
598
385e1ca5
DH
599/**
600 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
601 * @page: Page defining the wait queue of interest
602 * @waiter: Waiter to add to the queue
385e1ca5
DH
603 *
604 * Add an arbitrary @waiter to the wait queue for the nominated @page.
605 */
606void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
607{
608 wait_queue_head_t *q = page_waitqueue(page);
609 unsigned long flags;
610
611 spin_lock_irqsave(&q->lock, flags);
612 __add_wait_queue(q, waiter);
613 spin_unlock_irqrestore(&q->lock, flags);
614}
615EXPORT_SYMBOL_GPL(add_page_wait_queue);
616
1da177e4 617/**
485bb99b 618 * unlock_page - unlock a locked page
1da177e4
LT
619 * @page: the page
620 *
621 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
622 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
623 * mechananism between PageLocked pages and PageWriteback pages is shared.
624 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
625 *
8413ac9d
NP
626 * The mb is necessary to enforce ordering between the clear_bit and the read
627 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 628 */
920c7a5d 629void unlock_page(struct page *page)
1da177e4 630{
8413ac9d
NP
631 VM_BUG_ON(!PageLocked(page));
632 clear_bit_unlock(PG_locked, &page->flags);
633 smp_mb__after_clear_bit();
1da177e4
LT
634 wake_up_page(page, PG_locked);
635}
636EXPORT_SYMBOL(unlock_page);
637
485bb99b
RD
638/**
639 * end_page_writeback - end writeback against a page
640 * @page: the page
1da177e4
LT
641 */
642void end_page_writeback(struct page *page)
643{
ac6aadb2
MS
644 if (TestClearPageReclaim(page))
645 rotate_reclaimable_page(page);
646
647 if (!test_clear_page_writeback(page))
648 BUG();
649
1da177e4
LT
650 smp_mb__after_clear_bit();
651 wake_up_page(page, PG_writeback);
652}
653EXPORT_SYMBOL(end_page_writeback);
654
485bb99b
RD
655/**
656 * __lock_page - get a lock on the page, assuming we need to sleep to get it
657 * @page: the page to lock
1da177e4 658 *
485bb99b 659 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
660 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
661 * chances are that on the second loop, the block layer's plug list is empty,
662 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
663 */
920c7a5d 664void __lock_page(struct page *page)
1da177e4
LT
665{
666 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
667
668 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
669 TASK_UNINTERRUPTIBLE);
670}
671EXPORT_SYMBOL(__lock_page);
672
b5606c2d 673int __lock_page_killable(struct page *page)
2687a356
MW
674{
675 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
676
677 return __wait_on_bit_lock(page_waitqueue(page), &wait,
678 sync_page_killable, TASK_KILLABLE);
679}
18bc0bbd 680EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 681
7682486b
RD
682/**
683 * __lock_page_nosync - get a lock on the page, without calling sync_page()
684 * @page: the page to lock
685 *
db37648c
NP
686 * Variant of lock_page that does not require the caller to hold a reference
687 * on the page's mapping.
688 */
920c7a5d 689void __lock_page_nosync(struct page *page)
db37648c
NP
690{
691 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
692 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
693 TASK_UNINTERRUPTIBLE);
694}
695
d065bd81
ML
696int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
697 unsigned int flags)
698{
699 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
700 __lock_page(page);
701 return 1;
702 } else {
318b275f
GN
703 if (!(flags & FAULT_FLAG_RETRY_NOWAIT)) {
704 up_read(&mm->mmap_sem);
705 wait_on_page_locked(page);
706 }
d065bd81
ML
707 return 0;
708 }
709}
710
485bb99b
RD
711/**
712 * find_get_page - find and get a page reference
713 * @mapping: the address_space to search
714 * @offset: the page index
715 *
da6052f7
NP
716 * Is there a pagecache struct page at the given (mapping, offset) tuple?
717 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 718 */
a60637c8 719struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 720{
a60637c8 721 void **pagep;
1da177e4
LT
722 struct page *page;
723
a60637c8
NP
724 rcu_read_lock();
725repeat:
726 page = NULL;
727 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
728 if (pagep) {
729 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
730 if (unlikely(!page))
731 goto out;
732 if (radix_tree_deref_retry(page))
a60637c8
NP
733 goto repeat;
734
735 if (!page_cache_get_speculative(page))
736 goto repeat;
737
738 /*
739 * Has the page moved?
740 * This is part of the lockless pagecache protocol. See
741 * include/linux/pagemap.h for details.
742 */
743 if (unlikely(page != *pagep)) {
744 page_cache_release(page);
745 goto repeat;
746 }
747 }
27d20fdd 748out:
a60637c8
NP
749 rcu_read_unlock();
750
1da177e4
LT
751 return page;
752}
1da177e4
LT
753EXPORT_SYMBOL(find_get_page);
754
1da177e4
LT
755/**
756 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
757 * @mapping: the address_space to search
758 * @offset: the page index
1da177e4
LT
759 *
760 * Locates the desired pagecache page, locks it, increments its reference
761 * count and returns its address.
762 *
763 * Returns zero if the page was not present. find_lock_page() may sleep.
764 */
a60637c8 765struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
766{
767 struct page *page;
768
1da177e4 769repeat:
a60637c8 770 page = find_get_page(mapping, offset);
1da177e4 771 if (page) {
a60637c8
NP
772 lock_page(page);
773 /* Has the page been truncated? */
774 if (unlikely(page->mapping != mapping)) {
775 unlock_page(page);
776 page_cache_release(page);
777 goto repeat;
1da177e4 778 }
a60637c8 779 VM_BUG_ON(page->index != offset);
1da177e4 780 }
1da177e4
LT
781 return page;
782}
1da177e4
LT
783EXPORT_SYMBOL(find_lock_page);
784
785/**
786 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
787 * @mapping: the page's address_space
788 * @index: the page's index into the mapping
789 * @gfp_mask: page allocation mode
1da177e4
LT
790 *
791 * Locates a page in the pagecache. If the page is not present, a new page
792 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
793 * LRU list. The returned page is locked and has its reference count
794 * incremented.
795 *
796 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
797 * allocation!
798 *
799 * find_or_create_page() returns the desired page's address, or zero on
800 * memory exhaustion.
801 */
802struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 803 pgoff_t index, gfp_t gfp_mask)
1da177e4 804{
eb2be189 805 struct page *page;
1da177e4
LT
806 int err;
807repeat:
808 page = find_lock_page(mapping, index);
809 if (!page) {
eb2be189
NP
810 page = __page_cache_alloc(gfp_mask);
811 if (!page)
812 return NULL;
67d58ac4
NP
813 /*
814 * We want a regular kernel memory (not highmem or DMA etc)
815 * allocation for the radix tree nodes, but we need to honour
816 * the context-specific requirements the caller has asked for.
817 * GFP_RECLAIM_MASK collects those requirements.
818 */
819 err = add_to_page_cache_lru(page, mapping, index,
820 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
821 if (unlikely(err)) {
822 page_cache_release(page);
823 page = NULL;
824 if (err == -EEXIST)
825 goto repeat;
1da177e4 826 }
1da177e4 827 }
1da177e4
LT
828 return page;
829}
1da177e4
LT
830EXPORT_SYMBOL(find_or_create_page);
831
832/**
833 * find_get_pages - gang pagecache lookup
834 * @mapping: The address_space to search
835 * @start: The starting page index
836 * @nr_pages: The maximum number of pages
837 * @pages: Where the resulting pages are placed
838 *
839 * find_get_pages() will search for and return a group of up to
840 * @nr_pages pages in the mapping. The pages are placed at @pages.
841 * find_get_pages() takes a reference against the returned pages.
842 *
843 * The search returns a group of mapping-contiguous pages with ascending
844 * indexes. There may be holes in the indices due to not-present pages.
845 *
846 * find_get_pages() returns the number of pages which were found.
847 */
848unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
849 unsigned int nr_pages, struct page **pages)
850{
851 unsigned int i;
852 unsigned int ret;
a60637c8
NP
853 unsigned int nr_found;
854
855 rcu_read_lock();
856restart:
857 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
858 (void ***)pages, start, nr_pages);
859 ret = 0;
860 for (i = 0; i < nr_found; i++) {
861 struct page *page;
862repeat:
863 page = radix_tree_deref_slot((void **)pages[i]);
864 if (unlikely(!page))
865 continue;
9d8aa4ea
HD
866
867 /*
868 * This can only trigger when the entry at index 0 moves out
869 * of or back to the root: none yet gotten, safe to restart.
870 */
27d20fdd 871 if (radix_tree_deref_retry(page)) {
9d8aa4ea 872 WARN_ON(start | i);
a60637c8 873 goto restart;
27d20fdd 874 }
a60637c8
NP
875
876 if (!page_cache_get_speculative(page))
877 goto repeat;
878
879 /* Has the page moved? */
880 if (unlikely(page != *((void **)pages[i]))) {
881 page_cache_release(page);
882 goto repeat;
883 }
1da177e4 884
a60637c8
NP
885 pages[ret] = page;
886 ret++;
887 }
888 rcu_read_unlock();
1da177e4
LT
889 return ret;
890}
891
ebf43500
JA
892/**
893 * find_get_pages_contig - gang contiguous pagecache lookup
894 * @mapping: The address_space to search
895 * @index: The starting page index
896 * @nr_pages: The maximum number of pages
897 * @pages: Where the resulting pages are placed
898 *
899 * find_get_pages_contig() works exactly like find_get_pages(), except
900 * that the returned number of pages are guaranteed to be contiguous.
901 *
902 * find_get_pages_contig() returns the number of pages which were found.
903 */
904unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
905 unsigned int nr_pages, struct page **pages)
906{
907 unsigned int i;
908 unsigned int ret;
a60637c8
NP
909 unsigned int nr_found;
910
911 rcu_read_lock();
912restart:
913 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
914 (void ***)pages, index, nr_pages);
915 ret = 0;
916 for (i = 0; i < nr_found; i++) {
917 struct page *page;
918repeat:
919 page = radix_tree_deref_slot((void **)pages[i]);
920 if (unlikely(!page))
921 continue;
9d8aa4ea
HD
922
923 /*
924 * This can only trigger when the entry at index 0 moves out
925 * of or back to the root: none yet gotten, safe to restart.
926 */
27d20fdd 927 if (radix_tree_deref_retry(page))
a60637c8 928 goto restart;
ebf43500 929
a60637c8
NP
930 if (!page_cache_get_speculative(page))
931 goto repeat;
932
933 /* Has the page moved? */
934 if (unlikely(page != *((void **)pages[i]))) {
935 page_cache_release(page);
936 goto repeat;
937 }
938
9cbb4cb2
NP
939 /*
940 * must check mapping and index after taking the ref.
941 * otherwise we can get both false positives and false
942 * negatives, which is just confusing to the caller.
943 */
944 if (page->mapping == NULL || page->index != index) {
945 page_cache_release(page);
946 break;
947 }
948
a60637c8
NP
949 pages[ret] = page;
950 ret++;
ebf43500
JA
951 index++;
952 }
a60637c8
NP
953 rcu_read_unlock();
954 return ret;
ebf43500 955}
ef71c15c 956EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 957
485bb99b
RD
958/**
959 * find_get_pages_tag - find and return pages that match @tag
960 * @mapping: the address_space to search
961 * @index: the starting page index
962 * @tag: the tag index
963 * @nr_pages: the maximum number of pages
964 * @pages: where the resulting pages are placed
965 *
1da177e4 966 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 967 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
968 */
969unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
970 int tag, unsigned int nr_pages, struct page **pages)
971{
972 unsigned int i;
973 unsigned int ret;
a60637c8
NP
974 unsigned int nr_found;
975
976 rcu_read_lock();
977restart:
978 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
979 (void ***)pages, *index, nr_pages, tag);
980 ret = 0;
981 for (i = 0; i < nr_found; i++) {
982 struct page *page;
983repeat:
984 page = radix_tree_deref_slot((void **)pages[i]);
985 if (unlikely(!page))
986 continue;
9d8aa4ea
HD
987
988 /*
989 * This can only trigger when the entry at index 0 moves out
990 * of or back to the root: none yet gotten, safe to restart.
991 */
27d20fdd 992 if (radix_tree_deref_retry(page))
a60637c8
NP
993 goto restart;
994
995 if (!page_cache_get_speculative(page))
996 goto repeat;
997
998 /* Has the page moved? */
999 if (unlikely(page != *((void **)pages[i]))) {
1000 page_cache_release(page);
1001 goto repeat;
1002 }
1003
1004 pages[ret] = page;
1005 ret++;
1006 }
1007 rcu_read_unlock();
1da177e4 1008
1da177e4
LT
1009 if (ret)
1010 *index = pages[ret - 1]->index + 1;
a60637c8 1011
1da177e4
LT
1012 return ret;
1013}
ef71c15c 1014EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1015
485bb99b
RD
1016/**
1017 * grab_cache_page_nowait - returns locked page at given index in given cache
1018 * @mapping: target address_space
1019 * @index: the page index
1020 *
72fd4a35 1021 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1022 * This is intended for speculative data generators, where the data can
1023 * be regenerated if the page couldn't be grabbed. This routine should
1024 * be safe to call while holding the lock for another page.
1025 *
1026 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1027 * and deadlock against the caller's locked page.
1028 */
1029struct page *
57f6b96c 1030grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1031{
1032 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1033
1034 if (page) {
529ae9aa 1035 if (trylock_page(page))
1da177e4
LT
1036 return page;
1037 page_cache_release(page);
1038 return NULL;
1039 }
2ae88149 1040 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1041 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1042 page_cache_release(page);
1043 page = NULL;
1044 }
1045 return page;
1046}
1da177e4
LT
1047EXPORT_SYMBOL(grab_cache_page_nowait);
1048
76d42bd9
WF
1049/*
1050 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1051 * a _large_ part of the i/o request. Imagine the worst scenario:
1052 *
1053 * ---R__________________________________________B__________
1054 * ^ reading here ^ bad block(assume 4k)
1055 *
1056 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1057 * => failing the whole request => read(R) => read(R+1) =>
1058 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1059 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1060 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1061 *
1062 * It is going insane. Fix it by quickly scaling down the readahead size.
1063 */
1064static void shrink_readahead_size_eio(struct file *filp,
1065 struct file_ra_state *ra)
1066{
76d42bd9 1067 ra->ra_pages /= 4;
76d42bd9
WF
1068}
1069
485bb99b 1070/**
36e78914 1071 * do_generic_file_read - generic file read routine
485bb99b
RD
1072 * @filp: the file to read
1073 * @ppos: current file position
1074 * @desc: read_descriptor
1075 * @actor: read method
1076 *
1da177e4 1077 * This is a generic file read routine, and uses the
485bb99b 1078 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1079 *
1080 * This is really ugly. But the goto's actually try to clarify some
1081 * of the logic when it comes to error handling etc.
1da177e4 1082 */
36e78914
CH
1083static void do_generic_file_read(struct file *filp, loff_t *ppos,
1084 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1085{
36e78914 1086 struct address_space *mapping = filp->f_mapping;
1da177e4 1087 struct inode *inode = mapping->host;
36e78914 1088 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1089 pgoff_t index;
1090 pgoff_t last_index;
1091 pgoff_t prev_index;
1092 unsigned long offset; /* offset into pagecache page */
ec0f1637 1093 unsigned int prev_offset;
1da177e4 1094 int error;
1da177e4 1095
1da177e4 1096 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1097 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1098 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1099 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1100 offset = *ppos & ~PAGE_CACHE_MASK;
1101
1da177e4
LT
1102 for (;;) {
1103 struct page *page;
57f6b96c 1104 pgoff_t end_index;
a32ea1e1 1105 loff_t isize;
1da177e4
LT
1106 unsigned long nr, ret;
1107
1da177e4 1108 cond_resched();
1da177e4
LT
1109find_page:
1110 page = find_get_page(mapping, index);
3ea89ee8 1111 if (!page) {
cf914a7d 1112 page_cache_sync_readahead(mapping,
7ff81078 1113 ra, filp,
3ea89ee8
FW
1114 index, last_index - index);
1115 page = find_get_page(mapping, index);
1116 if (unlikely(page == NULL))
1117 goto no_cached_page;
1118 }
1119 if (PageReadahead(page)) {
cf914a7d 1120 page_cache_async_readahead(mapping,
7ff81078 1121 ra, filp, page,
3ea89ee8 1122 index, last_index - index);
1da177e4 1123 }
8ab22b9a
HH
1124 if (!PageUptodate(page)) {
1125 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1126 !mapping->a_ops->is_partially_uptodate)
1127 goto page_not_up_to_date;
529ae9aa 1128 if (!trylock_page(page))
8ab22b9a 1129 goto page_not_up_to_date;
8d056cb9
DH
1130 /* Did it get truncated before we got the lock? */
1131 if (!page->mapping)
1132 goto page_not_up_to_date_locked;
8ab22b9a
HH
1133 if (!mapping->a_ops->is_partially_uptodate(page,
1134 desc, offset))
1135 goto page_not_up_to_date_locked;
1136 unlock_page(page);
1137 }
1da177e4 1138page_ok:
a32ea1e1
N
1139 /*
1140 * i_size must be checked after we know the page is Uptodate.
1141 *
1142 * Checking i_size after the check allows us to calculate
1143 * the correct value for "nr", which means the zero-filled
1144 * part of the page is not copied back to userspace (unless
1145 * another truncate extends the file - this is desired though).
1146 */
1147
1148 isize = i_size_read(inode);
1149 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1150 if (unlikely(!isize || index > end_index)) {
1151 page_cache_release(page);
1152 goto out;
1153 }
1154
1155 /* nr is the maximum number of bytes to copy from this page */
1156 nr = PAGE_CACHE_SIZE;
1157 if (index == end_index) {
1158 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1159 if (nr <= offset) {
1160 page_cache_release(page);
1161 goto out;
1162 }
1163 }
1164 nr = nr - offset;
1da177e4
LT
1165
1166 /* If users can be writing to this page using arbitrary
1167 * virtual addresses, take care about potential aliasing
1168 * before reading the page on the kernel side.
1169 */
1170 if (mapping_writably_mapped(mapping))
1171 flush_dcache_page(page);
1172
1173 /*
ec0f1637
JK
1174 * When a sequential read accesses a page several times,
1175 * only mark it as accessed the first time.
1da177e4 1176 */
ec0f1637 1177 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1178 mark_page_accessed(page);
1179 prev_index = index;
1180
1181 /*
1182 * Ok, we have the page, and it's up-to-date, so
1183 * now we can copy it to user space...
1184 *
1185 * The actor routine returns how many bytes were actually used..
1186 * NOTE! This may not be the same as how much of a user buffer
1187 * we filled up (we may be padding etc), so we can only update
1188 * "pos" here (the actor routine has to update the user buffer
1189 * pointers and the remaining count).
1190 */
1191 ret = actor(desc, page, offset, nr);
1192 offset += ret;
1193 index += offset >> PAGE_CACHE_SHIFT;
1194 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1195 prev_offset = offset;
1da177e4
LT
1196
1197 page_cache_release(page);
1198 if (ret == nr && desc->count)
1199 continue;
1200 goto out;
1201
1202page_not_up_to_date:
1203 /* Get exclusive access to the page ... */
85462323
ON
1204 error = lock_page_killable(page);
1205 if (unlikely(error))
1206 goto readpage_error;
1da177e4 1207
8ab22b9a 1208page_not_up_to_date_locked:
da6052f7 1209 /* Did it get truncated before we got the lock? */
1da177e4
LT
1210 if (!page->mapping) {
1211 unlock_page(page);
1212 page_cache_release(page);
1213 continue;
1214 }
1215
1216 /* Did somebody else fill it already? */
1217 if (PageUptodate(page)) {
1218 unlock_page(page);
1219 goto page_ok;
1220 }
1221
1222readpage:
91803b49
JM
1223 /*
1224 * A previous I/O error may have been due to temporary
1225 * failures, eg. multipath errors.
1226 * PG_error will be set again if readpage fails.
1227 */
1228 ClearPageError(page);
1da177e4
LT
1229 /* Start the actual read. The read will unlock the page. */
1230 error = mapping->a_ops->readpage(filp, page);
1231
994fc28c
ZB
1232 if (unlikely(error)) {
1233 if (error == AOP_TRUNCATED_PAGE) {
1234 page_cache_release(page);
1235 goto find_page;
1236 }
1da177e4 1237 goto readpage_error;
994fc28c 1238 }
1da177e4
LT
1239
1240 if (!PageUptodate(page)) {
85462323
ON
1241 error = lock_page_killable(page);
1242 if (unlikely(error))
1243 goto readpage_error;
1da177e4
LT
1244 if (!PageUptodate(page)) {
1245 if (page->mapping == NULL) {
1246 /*
2ecdc82e 1247 * invalidate_mapping_pages got it
1da177e4
LT
1248 */
1249 unlock_page(page);
1250 page_cache_release(page);
1251 goto find_page;
1252 }
1253 unlock_page(page);
7ff81078 1254 shrink_readahead_size_eio(filp, ra);
85462323
ON
1255 error = -EIO;
1256 goto readpage_error;
1da177e4
LT
1257 }
1258 unlock_page(page);
1259 }
1260
1da177e4
LT
1261 goto page_ok;
1262
1263readpage_error:
1264 /* UHHUH! A synchronous read error occurred. Report it */
1265 desc->error = error;
1266 page_cache_release(page);
1267 goto out;
1268
1269no_cached_page:
1270 /*
1271 * Ok, it wasn't cached, so we need to create a new
1272 * page..
1273 */
eb2be189
NP
1274 page = page_cache_alloc_cold(mapping);
1275 if (!page) {
1276 desc->error = -ENOMEM;
1277 goto out;
1da177e4 1278 }
eb2be189 1279 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1280 index, GFP_KERNEL);
1281 if (error) {
eb2be189 1282 page_cache_release(page);
1da177e4
LT
1283 if (error == -EEXIST)
1284 goto find_page;
1285 desc->error = error;
1286 goto out;
1287 }
1da177e4
LT
1288 goto readpage;
1289 }
1290
1291out:
7ff81078
FW
1292 ra->prev_pos = prev_index;
1293 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1294 ra->prev_pos |= prev_offset;
1da177e4 1295
f4e6b498 1296 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1297 file_accessed(filp);
1da177e4 1298}
1da177e4
LT
1299
1300int file_read_actor(read_descriptor_t *desc, struct page *page,
1301 unsigned long offset, unsigned long size)
1302{
1303 char *kaddr;
1304 unsigned long left, count = desc->count;
1305
1306 if (size > count)
1307 size = count;
1308
1309 /*
1310 * Faults on the destination of a read are common, so do it before
1311 * taking the kmap.
1312 */
1313 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1314 kaddr = kmap_atomic(page, KM_USER0);
1315 left = __copy_to_user_inatomic(desc->arg.buf,
1316 kaddr + offset, size);
1317 kunmap_atomic(kaddr, KM_USER0);
1318 if (left == 0)
1319 goto success;
1320 }
1321
1322 /* Do it the slow way */
1323 kaddr = kmap(page);
1324 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1325 kunmap(page);
1326
1327 if (left) {
1328 size -= left;
1329 desc->error = -EFAULT;
1330 }
1331success:
1332 desc->count = count - size;
1333 desc->written += size;
1334 desc->arg.buf += size;
1335 return size;
1336}
1337
0ceb3314
DM
1338/*
1339 * Performs necessary checks before doing a write
1340 * @iov: io vector request
1341 * @nr_segs: number of segments in the iovec
1342 * @count: number of bytes to write
1343 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1344 *
1345 * Adjust number of segments and amount of bytes to write (nr_segs should be
1346 * properly initialized first). Returns appropriate error code that caller
1347 * should return or zero in case that write should be allowed.
1348 */
1349int generic_segment_checks(const struct iovec *iov,
1350 unsigned long *nr_segs, size_t *count, int access_flags)
1351{
1352 unsigned long seg;
1353 size_t cnt = 0;
1354 for (seg = 0; seg < *nr_segs; seg++) {
1355 const struct iovec *iv = &iov[seg];
1356
1357 /*
1358 * If any segment has a negative length, or the cumulative
1359 * length ever wraps negative then return -EINVAL.
1360 */
1361 cnt += iv->iov_len;
1362 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1363 return -EINVAL;
1364 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1365 continue;
1366 if (seg == 0)
1367 return -EFAULT;
1368 *nr_segs = seg;
1369 cnt -= iv->iov_len; /* This segment is no good */
1370 break;
1371 }
1372 *count = cnt;
1373 return 0;
1374}
1375EXPORT_SYMBOL(generic_segment_checks);
1376
485bb99b 1377/**
b2abacf3 1378 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1379 * @iocb: kernel I/O control block
1380 * @iov: io vector request
1381 * @nr_segs: number of segments in the iovec
b2abacf3 1382 * @pos: current file position
485bb99b 1383 *
1da177e4
LT
1384 * This is the "read()" routine for all filesystems
1385 * that can use the page cache directly.
1386 */
1387ssize_t
543ade1f
BP
1388generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1389 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1390{
1391 struct file *filp = iocb->ki_filp;
1392 ssize_t retval;
66f998f6 1393 unsigned long seg = 0;
1da177e4 1394 size_t count;
543ade1f 1395 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1396
1397 count = 0;
0ceb3314
DM
1398 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1399 if (retval)
1400 return retval;
1da177e4
LT
1401
1402 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1403 if (filp->f_flags & O_DIRECT) {
543ade1f 1404 loff_t size;
1da177e4
LT
1405 struct address_space *mapping;
1406 struct inode *inode;
1407
1408 mapping = filp->f_mapping;
1409 inode = mapping->host;
1da177e4
LT
1410 if (!count)
1411 goto out; /* skip atime */
1412 size = i_size_read(inode);
1413 if (pos < size) {
48b47c56
NP
1414 retval = filemap_write_and_wait_range(mapping, pos,
1415 pos + iov_length(iov, nr_segs) - 1);
a969e903
CH
1416 if (!retval) {
1417 retval = mapping->a_ops->direct_IO(READ, iocb,
1418 iov, pos, nr_segs);
1419 }
66f998f6 1420 if (retval > 0) {
1da177e4 1421 *ppos = pos + retval;
66f998f6
JB
1422 count -= retval;
1423 }
1424
1425 /*
1426 * Btrfs can have a short DIO read if we encounter
1427 * compressed extents, so if there was an error, or if
1428 * we've already read everything we wanted to, or if
1429 * there was a short read because we hit EOF, go ahead
1430 * and return. Otherwise fallthrough to buffered io for
1431 * the rest of the read.
1432 */
1433 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1434 file_accessed(filp);
1435 goto out;
1436 }
0e0bcae3 1437 }
1da177e4
LT
1438 }
1439
66f998f6 1440 count = retval;
11fa977e
HD
1441 for (seg = 0; seg < nr_segs; seg++) {
1442 read_descriptor_t desc;
66f998f6
JB
1443 loff_t offset = 0;
1444
1445 /*
1446 * If we did a short DIO read we need to skip the section of the
1447 * iov that we've already read data into.
1448 */
1449 if (count) {
1450 if (count > iov[seg].iov_len) {
1451 count -= iov[seg].iov_len;
1452 continue;
1453 }
1454 offset = count;
1455 count = 0;
1456 }
1da177e4 1457
11fa977e 1458 desc.written = 0;
66f998f6
JB
1459 desc.arg.buf = iov[seg].iov_base + offset;
1460 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1461 if (desc.count == 0)
1462 continue;
1463 desc.error = 0;
1464 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1465 retval += desc.written;
1466 if (desc.error) {
1467 retval = retval ?: desc.error;
1468 break;
1da177e4 1469 }
11fa977e
HD
1470 if (desc.count > 0)
1471 break;
1da177e4
LT
1472 }
1473out:
1474 return retval;
1475}
1da177e4
LT
1476EXPORT_SYMBOL(generic_file_aio_read);
1477
1da177e4
LT
1478static ssize_t
1479do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1480 pgoff_t index, unsigned long nr)
1da177e4
LT
1481{
1482 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1483 return -EINVAL;
1484
f7e839dd 1485 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1486 return 0;
1487}
1488
6673e0c3 1489SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1490{
1491 ssize_t ret;
1492 struct file *file;
1493
1494 ret = -EBADF;
1495 file = fget(fd);
1496 if (file) {
1497 if (file->f_mode & FMODE_READ) {
1498 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1499 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1500 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1501 unsigned long len = end - start + 1;
1502 ret = do_readahead(mapping, file, start, len);
1503 }
1504 fput(file);
1505 }
1506 return ret;
1507}
6673e0c3
HC
1508#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1509asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1510{
1511 return SYSC_readahead((int) fd, offset, (size_t) count);
1512}
1513SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1514#endif
1da177e4
LT
1515
1516#ifdef CONFIG_MMU
485bb99b
RD
1517/**
1518 * page_cache_read - adds requested page to the page cache if not already there
1519 * @file: file to read
1520 * @offset: page index
1521 *
1da177e4
LT
1522 * This adds the requested page to the page cache if it isn't already there,
1523 * and schedules an I/O to read in its contents from disk.
1524 */
920c7a5d 1525static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1526{
1527 struct address_space *mapping = file->f_mapping;
1528 struct page *page;
994fc28c 1529 int ret;
1da177e4 1530
994fc28c
ZB
1531 do {
1532 page = page_cache_alloc_cold(mapping);
1533 if (!page)
1534 return -ENOMEM;
1535
1536 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1537 if (ret == 0)
1538 ret = mapping->a_ops->readpage(file, page);
1539 else if (ret == -EEXIST)
1540 ret = 0; /* losing race to add is OK */
1da177e4 1541
1da177e4 1542 page_cache_release(page);
1da177e4 1543
994fc28c
ZB
1544 } while (ret == AOP_TRUNCATED_PAGE);
1545
1546 return ret;
1da177e4
LT
1547}
1548
1549#define MMAP_LOTSAMISS (100)
1550
ef00e08e
LT
1551/*
1552 * Synchronous readahead happens when we don't even find
1553 * a page in the page cache at all.
1554 */
1555static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1556 struct file_ra_state *ra,
1557 struct file *file,
1558 pgoff_t offset)
1559{
1560 unsigned long ra_pages;
1561 struct address_space *mapping = file->f_mapping;
1562
1563 /* If we don't want any read-ahead, don't bother */
1564 if (VM_RandomReadHint(vma))
1565 return;
1566
70ac23cf
WF
1567 if (VM_SequentialReadHint(vma) ||
1568 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
7ffc59b4
WF
1569 page_cache_sync_readahead(mapping, ra, file, offset,
1570 ra->ra_pages);
ef00e08e
LT
1571 return;
1572 }
1573
1574 if (ra->mmap_miss < INT_MAX)
1575 ra->mmap_miss++;
1576
1577 /*
1578 * Do we miss much more than hit in this file? If so,
1579 * stop bothering with read-ahead. It will only hurt.
1580 */
1581 if (ra->mmap_miss > MMAP_LOTSAMISS)
1582 return;
1583
d30a1100
WF
1584 /*
1585 * mmap read-around
1586 */
ef00e08e
LT
1587 ra_pages = max_sane_readahead(ra->ra_pages);
1588 if (ra_pages) {
d30a1100
WF
1589 ra->start = max_t(long, 0, offset - ra_pages/2);
1590 ra->size = ra_pages;
1591 ra->async_size = 0;
1592 ra_submit(ra, mapping, file);
ef00e08e
LT
1593 }
1594}
1595
1596/*
1597 * Asynchronous readahead happens when we find the page and PG_readahead,
1598 * so we want to possibly extend the readahead further..
1599 */
1600static void do_async_mmap_readahead(struct vm_area_struct *vma,
1601 struct file_ra_state *ra,
1602 struct file *file,
1603 struct page *page,
1604 pgoff_t offset)
1605{
1606 struct address_space *mapping = file->f_mapping;
1607
1608 /* If we don't want any read-ahead, don't bother */
1609 if (VM_RandomReadHint(vma))
1610 return;
1611 if (ra->mmap_miss > 0)
1612 ra->mmap_miss--;
1613 if (PageReadahead(page))
2fad6f5d
WF
1614 page_cache_async_readahead(mapping, ra, file,
1615 page, offset, ra->ra_pages);
ef00e08e
LT
1616}
1617
485bb99b 1618/**
54cb8821 1619 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1620 * @vma: vma in which the fault was taken
1621 * @vmf: struct vm_fault containing details of the fault
485bb99b 1622 *
54cb8821 1623 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1624 * mapped memory region to read in file data during a page fault.
1625 *
1626 * The goto's are kind of ugly, but this streamlines the normal case of having
1627 * it in the page cache, and handles the special cases reasonably without
1628 * having a lot of duplicated code.
1629 */
d0217ac0 1630int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1631{
1632 int error;
54cb8821 1633 struct file *file = vma->vm_file;
1da177e4
LT
1634 struct address_space *mapping = file->f_mapping;
1635 struct file_ra_state *ra = &file->f_ra;
1636 struct inode *inode = mapping->host;
ef00e08e 1637 pgoff_t offset = vmf->pgoff;
1da177e4 1638 struct page *page;
2004dc8e 1639 pgoff_t size;
83c54070 1640 int ret = 0;
1da177e4 1641
1da177e4 1642 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1643 if (offset >= size)
5307cc1a 1644 return VM_FAULT_SIGBUS;
1da177e4 1645
1da177e4
LT
1646 /*
1647 * Do we have something in the page cache already?
1648 */
ef00e08e
LT
1649 page = find_get_page(mapping, offset);
1650 if (likely(page)) {
1da177e4 1651 /*
ef00e08e
LT
1652 * We found the page, so try async readahead before
1653 * waiting for the lock.
1da177e4 1654 */
ef00e08e 1655 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1656 } else {
1657 /* No page in the page cache at all */
1658 do_sync_mmap_readahead(vma, ra, file, offset);
1659 count_vm_event(PGMAJFAULT);
1660 ret = VM_FAULT_MAJOR;
1661retry_find:
b522c94d 1662 page = find_get_page(mapping, offset);
1da177e4
LT
1663 if (!page)
1664 goto no_cached_page;
1665 }
1666
d88c0922
ML
1667 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1668 page_cache_release(page);
d065bd81 1669 return ret | VM_FAULT_RETRY;
d88c0922 1670 }
b522c94d
ML
1671
1672 /* Did it get truncated? */
1673 if (unlikely(page->mapping != mapping)) {
1674 unlock_page(page);
1675 put_page(page);
1676 goto retry_find;
1677 }
1678 VM_BUG_ON(page->index != offset);
1679
1da177e4 1680 /*
d00806b1
NP
1681 * We have a locked page in the page cache, now we need to check
1682 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1683 */
d00806b1 1684 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1685 goto page_not_uptodate;
1686
ef00e08e
LT
1687 /*
1688 * Found the page and have a reference on it.
1689 * We must recheck i_size under page lock.
1690 */
d00806b1 1691 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1692 if (unlikely(offset >= size)) {
d00806b1 1693 unlock_page(page);
745ad48e 1694 page_cache_release(page);
5307cc1a 1695 return VM_FAULT_SIGBUS;
d00806b1
NP
1696 }
1697
ef00e08e 1698 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
d0217ac0 1699 vmf->page = page;
83c54070 1700 return ret | VM_FAULT_LOCKED;
1da177e4 1701
1da177e4
LT
1702no_cached_page:
1703 /*
1704 * We're only likely to ever get here if MADV_RANDOM is in
1705 * effect.
1706 */
ef00e08e 1707 error = page_cache_read(file, offset);
1da177e4
LT
1708
1709 /*
1710 * The page we want has now been added to the page cache.
1711 * In the unlikely event that someone removed it in the
1712 * meantime, we'll just come back here and read it again.
1713 */
1714 if (error >= 0)
1715 goto retry_find;
1716
1717 /*
1718 * An error return from page_cache_read can result if the
1719 * system is low on memory, or a problem occurs while trying
1720 * to schedule I/O.
1721 */
1722 if (error == -ENOMEM)
d0217ac0
NP
1723 return VM_FAULT_OOM;
1724 return VM_FAULT_SIGBUS;
1da177e4
LT
1725
1726page_not_uptodate:
1da177e4
LT
1727 /*
1728 * Umm, take care of errors if the page isn't up-to-date.
1729 * Try to re-read it _once_. We do this synchronously,
1730 * because there really aren't any performance issues here
1731 * and we need to check for errors.
1732 */
1da177e4 1733 ClearPageError(page);
994fc28c 1734 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1735 if (!error) {
1736 wait_on_page_locked(page);
1737 if (!PageUptodate(page))
1738 error = -EIO;
1739 }
d00806b1
NP
1740 page_cache_release(page);
1741
1742 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1743 goto retry_find;
1da177e4 1744
d00806b1 1745 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1746 shrink_readahead_size_eio(file, ra);
d0217ac0 1747 return VM_FAULT_SIGBUS;
54cb8821
NP
1748}
1749EXPORT_SYMBOL(filemap_fault);
1750
f0f37e2f 1751const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1752 .fault = filemap_fault,
1da177e4
LT
1753};
1754
1755/* This is used for a general mmap of a disk file */
1756
1757int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1758{
1759 struct address_space *mapping = file->f_mapping;
1760
1761 if (!mapping->a_ops->readpage)
1762 return -ENOEXEC;
1763 file_accessed(file);
1764 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1765 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1766 return 0;
1767}
1da177e4
LT
1768
1769/*
1770 * This is for filesystems which do not implement ->writepage.
1771 */
1772int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1773{
1774 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1775 return -EINVAL;
1776 return generic_file_mmap(file, vma);
1777}
1778#else
1779int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1780{
1781 return -ENOSYS;
1782}
1783int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1784{
1785 return -ENOSYS;
1786}
1787#endif /* CONFIG_MMU */
1788
1789EXPORT_SYMBOL(generic_file_mmap);
1790EXPORT_SYMBOL(generic_file_readonly_mmap);
1791
6fe6900e 1792static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1793 pgoff_t index,
1da177e4 1794 int (*filler)(void *,struct page*),
0531b2aa
LT
1795 void *data,
1796 gfp_t gfp)
1da177e4 1797{
eb2be189 1798 struct page *page;
1da177e4
LT
1799 int err;
1800repeat:
1801 page = find_get_page(mapping, index);
1802 if (!page) {
0531b2aa 1803 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1804 if (!page)
1805 return ERR_PTR(-ENOMEM);
1806 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1807 if (unlikely(err)) {
1808 page_cache_release(page);
1809 if (err == -EEXIST)
1810 goto repeat;
1da177e4 1811 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1812 return ERR_PTR(err);
1813 }
1da177e4
LT
1814 err = filler(data, page);
1815 if (err < 0) {
1816 page_cache_release(page);
1817 page = ERR_PTR(err);
1818 }
1819 }
1da177e4
LT
1820 return page;
1821}
1822
0531b2aa 1823static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1824 pgoff_t index,
1da177e4 1825 int (*filler)(void *,struct page*),
0531b2aa
LT
1826 void *data,
1827 gfp_t gfp)
1828
1da177e4
LT
1829{
1830 struct page *page;
1831 int err;
1832
1833retry:
0531b2aa 1834 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1835 if (IS_ERR(page))
c855ff37 1836 return page;
1da177e4
LT
1837 if (PageUptodate(page))
1838 goto out;
1839
1840 lock_page(page);
1841 if (!page->mapping) {
1842 unlock_page(page);
1843 page_cache_release(page);
1844 goto retry;
1845 }
1846 if (PageUptodate(page)) {
1847 unlock_page(page);
1848 goto out;
1849 }
1850 err = filler(data, page);
1851 if (err < 0) {
1852 page_cache_release(page);
c855ff37 1853 return ERR_PTR(err);
1da177e4 1854 }
c855ff37 1855out:
6fe6900e
NP
1856 mark_page_accessed(page);
1857 return page;
1858}
0531b2aa
LT
1859
1860/**
1861 * read_cache_page_async - read into page cache, fill it if needed
1862 * @mapping: the page's address_space
1863 * @index: the page index
1864 * @filler: function to perform the read
1865 * @data: destination for read data
1866 *
1867 * Same as read_cache_page, but don't wait for page to become unlocked
1868 * after submitting it to the filler.
1869 *
1870 * Read into the page cache. If a page already exists, and PageUptodate() is
1871 * not set, try to fill the page but don't wait for it to become unlocked.
1872 *
1873 * If the page does not get brought uptodate, return -EIO.
1874 */
1875struct page *read_cache_page_async(struct address_space *mapping,
1876 pgoff_t index,
1877 int (*filler)(void *,struct page*),
1878 void *data)
1879{
1880 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1881}
6fe6900e
NP
1882EXPORT_SYMBOL(read_cache_page_async);
1883
0531b2aa
LT
1884static struct page *wait_on_page_read(struct page *page)
1885{
1886 if (!IS_ERR(page)) {
1887 wait_on_page_locked(page);
1888 if (!PageUptodate(page)) {
1889 page_cache_release(page);
1890 page = ERR_PTR(-EIO);
1891 }
1892 }
1893 return page;
1894}
1895
1896/**
1897 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1898 * @mapping: the page's address_space
1899 * @index: the page index
1900 * @gfp: the page allocator flags to use if allocating
1901 *
1902 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1903 * any new page allocations done using the specified allocation flags. Note
1904 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1905 * expect to do this atomically or anything like that - but you can pass in
1906 * other page requirements.
1907 *
1908 * If the page does not get brought uptodate, return -EIO.
1909 */
1910struct page *read_cache_page_gfp(struct address_space *mapping,
1911 pgoff_t index,
1912 gfp_t gfp)
1913{
1914 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1915
1916 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1917}
1918EXPORT_SYMBOL(read_cache_page_gfp);
1919
6fe6900e
NP
1920/**
1921 * read_cache_page - read into page cache, fill it if needed
1922 * @mapping: the page's address_space
1923 * @index: the page index
1924 * @filler: function to perform the read
1925 * @data: destination for read data
1926 *
1927 * Read into the page cache. If a page already exists, and PageUptodate() is
1928 * not set, try to fill the page then wait for it to become unlocked.
1929 *
1930 * If the page does not get brought uptodate, return -EIO.
1931 */
1932struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1933 pgoff_t index,
6fe6900e
NP
1934 int (*filler)(void *,struct page*),
1935 void *data)
1936{
0531b2aa 1937 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1938}
1da177e4
LT
1939EXPORT_SYMBOL(read_cache_page);
1940
1da177e4
LT
1941/*
1942 * The logic we want is
1943 *
1944 * if suid or (sgid and xgrp)
1945 * remove privs
1946 */
01de85e0 1947int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1948{
1949 mode_t mode = dentry->d_inode->i_mode;
1950 int kill = 0;
1da177e4
LT
1951
1952 /* suid always must be killed */
1953 if (unlikely(mode & S_ISUID))
1954 kill = ATTR_KILL_SUID;
1955
1956 /*
1957 * sgid without any exec bits is just a mandatory locking mark; leave
1958 * it alone. If some exec bits are set, it's a real sgid; kill it.
1959 */
1960 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1961 kill |= ATTR_KILL_SGID;
1962
7f5ff766 1963 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1964 return kill;
1da177e4 1965
01de85e0
JA
1966 return 0;
1967}
d23a147b 1968EXPORT_SYMBOL(should_remove_suid);
01de85e0 1969
7f3d4ee1 1970static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1971{
1972 struct iattr newattrs;
1973
1974 newattrs.ia_valid = ATTR_FORCE | kill;
1975 return notify_change(dentry, &newattrs);
1976}
1977
2f1936b8 1978int file_remove_suid(struct file *file)
01de85e0 1979{
2f1936b8 1980 struct dentry *dentry = file->f_path.dentry;
b5376771
SH
1981 int killsuid = should_remove_suid(dentry);
1982 int killpriv = security_inode_need_killpriv(dentry);
1983 int error = 0;
01de85e0 1984
b5376771
SH
1985 if (killpriv < 0)
1986 return killpriv;
1987 if (killpriv)
1988 error = security_inode_killpriv(dentry);
1989 if (!error && killsuid)
1990 error = __remove_suid(dentry, killsuid);
01de85e0 1991
b5376771 1992 return error;
1da177e4 1993}
2f1936b8 1994EXPORT_SYMBOL(file_remove_suid);
1da177e4 1995
2f718ffc 1996static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1997 const struct iovec *iov, size_t base, size_t bytes)
1998{
f1800536 1999 size_t copied = 0, left = 0;
1da177e4
LT
2000
2001 while (bytes) {
2002 char __user *buf = iov->iov_base + base;
2003 int copy = min(bytes, iov->iov_len - base);
2004
2005 base = 0;
f1800536 2006 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2007 copied += copy;
2008 bytes -= copy;
2009 vaddr += copy;
2010 iov++;
2011
01408c49 2012 if (unlikely(left))
1da177e4 2013 break;
1da177e4
LT
2014 }
2015 return copied - left;
2016}
2017
2f718ffc
NP
2018/*
2019 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2020 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2021 * bytes which were copied.
2022 */
2023size_t iov_iter_copy_from_user_atomic(struct page *page,
2024 struct iov_iter *i, unsigned long offset, size_t bytes)
2025{
2026 char *kaddr;
2027 size_t copied;
2028
2029 BUG_ON(!in_atomic());
2030 kaddr = kmap_atomic(page, KM_USER0);
2031 if (likely(i->nr_segs == 1)) {
2032 int left;
2033 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2034 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2035 copied = bytes - left;
2036 } else {
2037 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2038 i->iov, i->iov_offset, bytes);
2039 }
2040 kunmap_atomic(kaddr, KM_USER0);
2041
2042 return copied;
2043}
89e10787 2044EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2045
2046/*
2047 * This has the same sideeffects and return value as
2048 * iov_iter_copy_from_user_atomic().
2049 * The difference is that it attempts to resolve faults.
2050 * Page must not be locked.
2051 */
2052size_t iov_iter_copy_from_user(struct page *page,
2053 struct iov_iter *i, unsigned long offset, size_t bytes)
2054{
2055 char *kaddr;
2056 size_t copied;
2057
2058 kaddr = kmap(page);
2059 if (likely(i->nr_segs == 1)) {
2060 int left;
2061 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2062 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2063 copied = bytes - left;
2064 } else {
2065 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2066 i->iov, i->iov_offset, bytes);
2067 }
2068 kunmap(page);
2069 return copied;
2070}
89e10787 2071EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2072
f7009264 2073void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2074{
f7009264
NP
2075 BUG_ON(i->count < bytes);
2076
2f718ffc
NP
2077 if (likely(i->nr_segs == 1)) {
2078 i->iov_offset += bytes;
f7009264 2079 i->count -= bytes;
2f718ffc
NP
2080 } else {
2081 const struct iovec *iov = i->iov;
2082 size_t base = i->iov_offset;
2083
124d3b70
NP
2084 /*
2085 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2086 * zero-length segments (without overruning the iovec).
124d3b70 2087 */
94ad374a 2088 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2089 int copy;
2f718ffc 2090
f7009264
NP
2091 copy = min(bytes, iov->iov_len - base);
2092 BUG_ON(!i->count || i->count < copy);
2093 i->count -= copy;
2f718ffc
NP
2094 bytes -= copy;
2095 base += copy;
2096 if (iov->iov_len == base) {
2097 iov++;
2098 base = 0;
2099 }
2100 }
2101 i->iov = iov;
2102 i->iov_offset = base;
2103 }
2104}
89e10787 2105EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2106
afddba49
NP
2107/*
2108 * Fault in the first iovec of the given iov_iter, to a maximum length
2109 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2110 * accessed (ie. because it is an invalid address).
2111 *
2112 * writev-intensive code may want this to prefault several iovecs -- that
2113 * would be possible (callers must not rely on the fact that _only_ the
2114 * first iovec will be faulted with the current implementation).
2115 */
2116int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2117{
2f718ffc 2118 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2119 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2120 return fault_in_pages_readable(buf, bytes);
2f718ffc 2121}
89e10787 2122EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2123
2124/*
2125 * Return the count of just the current iov_iter segment.
2126 */
2127size_t iov_iter_single_seg_count(struct iov_iter *i)
2128{
2129 const struct iovec *iov = i->iov;
2130 if (i->nr_segs == 1)
2131 return i->count;
2132 else
2133 return min(i->count, iov->iov_len - i->iov_offset);
2134}
89e10787 2135EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2136
1da177e4
LT
2137/*
2138 * Performs necessary checks before doing a write
2139 *
485bb99b 2140 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2141 * Returns appropriate error code that caller should return or
2142 * zero in case that write should be allowed.
2143 */
2144inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2145{
2146 struct inode *inode = file->f_mapping->host;
59e99e5b 2147 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2148
2149 if (unlikely(*pos < 0))
2150 return -EINVAL;
2151
1da177e4
LT
2152 if (!isblk) {
2153 /* FIXME: this is for backwards compatibility with 2.4 */
2154 if (file->f_flags & O_APPEND)
2155 *pos = i_size_read(inode);
2156
2157 if (limit != RLIM_INFINITY) {
2158 if (*pos >= limit) {
2159 send_sig(SIGXFSZ, current, 0);
2160 return -EFBIG;
2161 }
2162 if (*count > limit - (typeof(limit))*pos) {
2163 *count = limit - (typeof(limit))*pos;
2164 }
2165 }
2166 }
2167
2168 /*
2169 * LFS rule
2170 */
2171 if (unlikely(*pos + *count > MAX_NON_LFS &&
2172 !(file->f_flags & O_LARGEFILE))) {
2173 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2174 return -EFBIG;
2175 }
2176 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2177 *count = MAX_NON_LFS - (unsigned long)*pos;
2178 }
2179 }
2180
2181 /*
2182 * Are we about to exceed the fs block limit ?
2183 *
2184 * If we have written data it becomes a short write. If we have
2185 * exceeded without writing data we send a signal and return EFBIG.
2186 * Linus frestrict idea will clean these up nicely..
2187 */
2188 if (likely(!isblk)) {
2189 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2190 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2191 return -EFBIG;
2192 }
2193 /* zero-length writes at ->s_maxbytes are OK */
2194 }
2195
2196 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2197 *count = inode->i_sb->s_maxbytes - *pos;
2198 } else {
9361401e 2199#ifdef CONFIG_BLOCK
1da177e4
LT
2200 loff_t isize;
2201 if (bdev_read_only(I_BDEV(inode)))
2202 return -EPERM;
2203 isize = i_size_read(inode);
2204 if (*pos >= isize) {
2205 if (*count || *pos > isize)
2206 return -ENOSPC;
2207 }
2208
2209 if (*pos + *count > isize)
2210 *count = isize - *pos;
9361401e
DH
2211#else
2212 return -EPERM;
2213#endif
1da177e4
LT
2214 }
2215 return 0;
2216}
2217EXPORT_SYMBOL(generic_write_checks);
2218
afddba49
NP
2219int pagecache_write_begin(struct file *file, struct address_space *mapping,
2220 loff_t pos, unsigned len, unsigned flags,
2221 struct page **pagep, void **fsdata)
2222{
2223 const struct address_space_operations *aops = mapping->a_ops;
2224
4e02ed4b 2225 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2226 pagep, fsdata);
afddba49
NP
2227}
2228EXPORT_SYMBOL(pagecache_write_begin);
2229
2230int pagecache_write_end(struct file *file, struct address_space *mapping,
2231 loff_t pos, unsigned len, unsigned copied,
2232 struct page *page, void *fsdata)
2233{
2234 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2235
4e02ed4b
NP
2236 mark_page_accessed(page);
2237 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2238}
2239EXPORT_SYMBOL(pagecache_write_end);
2240
1da177e4
LT
2241ssize_t
2242generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2243 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2244 size_t count, size_t ocount)
2245{
2246 struct file *file = iocb->ki_filp;
2247 struct address_space *mapping = file->f_mapping;
2248 struct inode *inode = mapping->host;
2249 ssize_t written;
a969e903
CH
2250 size_t write_len;
2251 pgoff_t end;
1da177e4
LT
2252
2253 if (count != ocount)
2254 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2255
a969e903
CH
2256 write_len = iov_length(iov, *nr_segs);
2257 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2258
48b47c56 2259 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2260 if (written)
2261 goto out;
2262
2263 /*
2264 * After a write we want buffered reads to be sure to go to disk to get
2265 * the new data. We invalidate clean cached page from the region we're
2266 * about to write. We do this *before* the write so that we can return
6ccfa806 2267 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2268 */
2269 if (mapping->nrpages) {
2270 written = invalidate_inode_pages2_range(mapping,
2271 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2272 /*
2273 * If a page can not be invalidated, return 0 to fall back
2274 * to buffered write.
2275 */
2276 if (written) {
2277 if (written == -EBUSY)
2278 return 0;
a969e903 2279 goto out;
6ccfa806 2280 }
a969e903
CH
2281 }
2282
2283 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2284
2285 /*
2286 * Finally, try again to invalidate clean pages which might have been
2287 * cached by non-direct readahead, or faulted in by get_user_pages()
2288 * if the source of the write was an mmap'ed region of the file
2289 * we're writing. Either one is a pretty crazy thing to do,
2290 * so we don't support it 100%. If this invalidation
2291 * fails, tough, the write still worked...
2292 */
2293 if (mapping->nrpages) {
2294 invalidate_inode_pages2_range(mapping,
2295 pos >> PAGE_CACHE_SHIFT, end);
2296 }
2297
1da177e4 2298 if (written > 0) {
0116651c
NK
2299 pos += written;
2300 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2301 i_size_write(inode, pos);
1da177e4
LT
2302 mark_inode_dirty(inode);
2303 }
0116651c 2304 *ppos = pos;
1da177e4 2305 }
a969e903 2306out:
1da177e4
LT
2307 return written;
2308}
2309EXPORT_SYMBOL(generic_file_direct_write);
2310
eb2be189
NP
2311/*
2312 * Find or create a page at the given pagecache position. Return the locked
2313 * page. This function is specifically for buffered writes.
2314 */
54566b2c
NP
2315struct page *grab_cache_page_write_begin(struct address_space *mapping,
2316 pgoff_t index, unsigned flags)
eb2be189
NP
2317{
2318 int status;
2319 struct page *page;
54566b2c
NP
2320 gfp_t gfp_notmask = 0;
2321 if (flags & AOP_FLAG_NOFS)
2322 gfp_notmask = __GFP_FS;
eb2be189
NP
2323repeat:
2324 page = find_lock_page(mapping, index);
c585a267 2325 if (page)
eb2be189
NP
2326 return page;
2327
54566b2c 2328 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
eb2be189
NP
2329 if (!page)
2330 return NULL;
54566b2c
NP
2331 status = add_to_page_cache_lru(page, mapping, index,
2332 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2333 if (unlikely(status)) {
2334 page_cache_release(page);
2335 if (status == -EEXIST)
2336 goto repeat;
2337 return NULL;
2338 }
2339 return page;
2340}
54566b2c 2341EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2342
afddba49
NP
2343static ssize_t generic_perform_write(struct file *file,
2344 struct iov_iter *i, loff_t pos)
2345{
2346 struct address_space *mapping = file->f_mapping;
2347 const struct address_space_operations *a_ops = mapping->a_ops;
2348 long status = 0;
2349 ssize_t written = 0;
674b892e
NP
2350 unsigned int flags = 0;
2351
2352 /*
2353 * Copies from kernel address space cannot fail (NFSD is a big user).
2354 */
2355 if (segment_eq(get_fs(), KERNEL_DS))
2356 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2357
2358 do {
2359 struct page *page;
afddba49
NP
2360 unsigned long offset; /* Offset into pagecache page */
2361 unsigned long bytes; /* Bytes to write to page */
2362 size_t copied; /* Bytes copied from user */
2363 void *fsdata;
2364
2365 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2366 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2367 iov_iter_count(i));
2368
2369again:
2370
2371 /*
2372 * Bring in the user page that we will copy from _first_.
2373 * Otherwise there's a nasty deadlock on copying from the
2374 * same page as we're writing to, without it being marked
2375 * up-to-date.
2376 *
2377 * Not only is this an optimisation, but it is also required
2378 * to check that the address is actually valid, when atomic
2379 * usercopies are used, below.
2380 */
2381 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2382 status = -EFAULT;
2383 break;
2384 }
2385
674b892e 2386 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2387 &page, &fsdata);
2388 if (unlikely(status))
2389 break;
2390
931e80e4 2391 if (mapping_writably_mapped(mapping))
2392 flush_dcache_page(page);
2393
afddba49
NP
2394 pagefault_disable();
2395 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2396 pagefault_enable();
2397 flush_dcache_page(page);
2398
c8236db9 2399 mark_page_accessed(page);
afddba49
NP
2400 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2401 page, fsdata);
2402 if (unlikely(status < 0))
2403 break;
2404 copied = status;
2405
2406 cond_resched();
2407
124d3b70 2408 iov_iter_advance(i, copied);
afddba49
NP
2409 if (unlikely(copied == 0)) {
2410 /*
2411 * If we were unable to copy any data at all, we must
2412 * fall back to a single segment length write.
2413 *
2414 * If we didn't fallback here, we could livelock
2415 * because not all segments in the iov can be copied at
2416 * once without a pagefault.
2417 */
2418 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2419 iov_iter_single_seg_count(i));
2420 goto again;
2421 }
afddba49
NP
2422 pos += copied;
2423 written += copied;
2424
2425 balance_dirty_pages_ratelimited(mapping);
2426
2427 } while (iov_iter_count(i));
2428
2429 return written ? written : status;
2430}
2431
2432ssize_t
2433generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2434 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2435 size_t count, ssize_t written)
2436{
2437 struct file *file = iocb->ki_filp;
afddba49
NP
2438 ssize_t status;
2439 struct iov_iter i;
2440
2441 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2442 status = generic_perform_write(file, &i, pos);
1da177e4 2443
1da177e4 2444 if (likely(status >= 0)) {
afddba49
NP
2445 written += status;
2446 *ppos = pos + status;
1da177e4
LT
2447 }
2448
1da177e4
LT
2449 return written ? written : status;
2450}
2451EXPORT_SYMBOL(generic_file_buffered_write);
2452
e4dd9de3
JK
2453/**
2454 * __generic_file_aio_write - write data to a file
2455 * @iocb: IO state structure (file, offset, etc.)
2456 * @iov: vector with data to write
2457 * @nr_segs: number of segments in the vector
2458 * @ppos: position where to write
2459 *
2460 * This function does all the work needed for actually writing data to a
2461 * file. It does all basic checks, removes SUID from the file, updates
2462 * modification times and calls proper subroutines depending on whether we
2463 * do direct IO or a standard buffered write.
2464 *
2465 * It expects i_mutex to be grabbed unless we work on a block device or similar
2466 * object which does not need locking at all.
2467 *
2468 * This function does *not* take care of syncing data in case of O_SYNC write.
2469 * A caller has to handle it. This is mainly due to the fact that we want to
2470 * avoid syncing under i_mutex.
2471 */
2472ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2473 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2474{
2475 struct file *file = iocb->ki_filp;
fb5527e6 2476 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2477 size_t ocount; /* original count */
2478 size_t count; /* after file limit checks */
2479 struct inode *inode = mapping->host;
1da177e4
LT
2480 loff_t pos;
2481 ssize_t written;
2482 ssize_t err;
2483
2484 ocount = 0;
0ceb3314
DM
2485 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2486 if (err)
2487 return err;
1da177e4
LT
2488
2489 count = ocount;
2490 pos = *ppos;
2491
2492 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2493
2494 /* We can write back this queue in page reclaim */
2495 current->backing_dev_info = mapping->backing_dev_info;
2496 written = 0;
2497
2498 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2499 if (err)
2500 goto out;
2501
2502 if (count == 0)
2503 goto out;
2504
2f1936b8 2505 err = file_remove_suid(file);
1da177e4
LT
2506 if (err)
2507 goto out;
2508
870f4817 2509 file_update_time(file);
1da177e4
LT
2510
2511 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2512 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2513 loff_t endbyte;
2514 ssize_t written_buffered;
2515
2516 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2517 ppos, count, ocount);
1da177e4
LT
2518 if (written < 0 || written == count)
2519 goto out;
2520 /*
2521 * direct-io write to a hole: fall through to buffered I/O
2522 * for completing the rest of the request.
2523 */
2524 pos += written;
2525 count -= written;
fb5527e6
JM
2526 written_buffered = generic_file_buffered_write(iocb, iov,
2527 nr_segs, pos, ppos, count,
2528 written);
2529 /*
2530 * If generic_file_buffered_write() retuned a synchronous error
2531 * then we want to return the number of bytes which were
2532 * direct-written, or the error code if that was zero. Note
2533 * that this differs from normal direct-io semantics, which
2534 * will return -EFOO even if some bytes were written.
2535 */
2536 if (written_buffered < 0) {
2537 err = written_buffered;
2538 goto out;
2539 }
1da177e4 2540
fb5527e6
JM
2541 /*
2542 * We need to ensure that the page cache pages are written to
2543 * disk and invalidated to preserve the expected O_DIRECT
2544 * semantics.
2545 */
2546 endbyte = pos + written_buffered - written - 1;
c05c4edd 2547 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2548 if (err == 0) {
2549 written = written_buffered;
2550 invalidate_mapping_pages(mapping,
2551 pos >> PAGE_CACHE_SHIFT,
2552 endbyte >> PAGE_CACHE_SHIFT);
2553 } else {
2554 /*
2555 * We don't know how much we wrote, so just return
2556 * the number of bytes which were direct-written
2557 */
2558 }
2559 } else {
2560 written = generic_file_buffered_write(iocb, iov, nr_segs,
2561 pos, ppos, count, written);
2562 }
1da177e4
LT
2563out:
2564 current->backing_dev_info = NULL;
2565 return written ? written : err;
2566}
e4dd9de3
JK
2567EXPORT_SYMBOL(__generic_file_aio_write);
2568
e4dd9de3
JK
2569/**
2570 * generic_file_aio_write - write data to a file
2571 * @iocb: IO state structure
2572 * @iov: vector with data to write
2573 * @nr_segs: number of segments in the vector
2574 * @pos: position in file where to write
2575 *
2576 * This is a wrapper around __generic_file_aio_write() to be used by most
2577 * filesystems. It takes care of syncing the file in case of O_SYNC file
2578 * and acquires i_mutex as needed.
2579 */
027445c3
BP
2580ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2581 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2582{
2583 struct file *file = iocb->ki_filp;
148f948b 2584 struct inode *inode = file->f_mapping->host;
1da177e4 2585 ssize_t ret;
1da177e4
LT
2586
2587 BUG_ON(iocb->ki_pos != pos);
2588
1b1dcc1b 2589 mutex_lock(&inode->i_mutex);
e4dd9de3 2590 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2591 mutex_unlock(&inode->i_mutex);
1da177e4 2592
148f948b 2593 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2594 ssize_t err;
2595
148f948b 2596 err = generic_write_sync(file, pos, ret);
c7b50db2 2597 if (err < 0 && ret > 0)
1da177e4
LT
2598 ret = err;
2599 }
2600 return ret;
2601}
2602EXPORT_SYMBOL(generic_file_aio_write);
2603
cf9a2ae8
DH
2604/**
2605 * try_to_release_page() - release old fs-specific metadata on a page
2606 *
2607 * @page: the page which the kernel is trying to free
2608 * @gfp_mask: memory allocation flags (and I/O mode)
2609 *
2610 * The address_space is to try to release any data against the page
2611 * (presumably at page->private). If the release was successful, return `1'.
2612 * Otherwise return zero.
2613 *
266cf658
DH
2614 * This may also be called if PG_fscache is set on a page, indicating that the
2615 * page is known to the local caching routines.
2616 *
cf9a2ae8 2617 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2618 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2619 *
cf9a2ae8
DH
2620 */
2621int try_to_release_page(struct page *page, gfp_t gfp_mask)
2622{
2623 struct address_space * const mapping = page->mapping;
2624
2625 BUG_ON(!PageLocked(page));
2626 if (PageWriteback(page))
2627 return 0;
2628
2629 if (mapping && mapping->a_ops->releasepage)
2630 return mapping->a_ops->releasepage(page, gfp_mask);
2631 return try_to_free_buffers(page);
2632}
2633
2634EXPORT_SYMBOL(try_to_release_page);