]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
fs: Introduce RWF_NOWAIT and FMODE_AIO_NOWAIT
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4
MH
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (!PageHuge(page))
11fb9989 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 244 if (PageSwapBacked(page)) {
11fb9989 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 246 if (PageTransHuge(page))
11fb9989 247 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
248 } else {
249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 }
3a692790
LT
251
252 /*
b9ea2515
KK
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
3a692790 255 *
b9ea2515
KK
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
3a692790 259 */
b9ea2515 260 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
262}
263
702cfbf9
MK
264/**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
272void delete_from_page_cache(struct page *page)
1da177e4 273{
83929372 274 struct address_space *mapping = page_mapping(page);
c4843a75 275 unsigned long flags;
6072d13c 276 void (*freepage)(struct page *);
1da177e4 277
cd7619d6 278 BUG_ON(!PageLocked(page));
1da177e4 279
6072d13c 280 freepage = mapping->a_ops->freepage;
c4843a75 281
c4843a75 282 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 283 __delete_from_page_cache(page, NULL);
c4843a75 284 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
285
286 if (freepage)
287 freepage(page);
83929372
KS
288
289 if (PageTransHuge(page) && !PageHuge(page)) {
290 page_ref_sub(page, HPAGE_PMD_NR);
291 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 } else {
293 put_page(page);
294 }
97cecb5a
MK
295}
296EXPORT_SYMBOL(delete_from_page_cache);
297
d72d9e2a 298int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
299{
300 int ret = 0;
301 /* Check for outstanding write errors */
7fcbbaf1
JA
302 if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 304 ret = -ENOSPC;
7fcbbaf1
JA
305 if (test_bit(AS_EIO, &mapping->flags) &&
306 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
307 ret = -EIO;
308 return ret;
309}
d72d9e2a 310EXPORT_SYMBOL(filemap_check_errors);
865ffef3 311
1da177e4 312/**
485bb99b 313 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
314 * @mapping: address space structure to write
315 * @start: offset in bytes where the range starts
469eb4d0 316 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 317 * @sync_mode: enable synchronous operation
1da177e4 318 *
485bb99b
RD
319 * Start writeback against all of a mapping's dirty pages that lie
320 * within the byte offsets <start, end> inclusive.
321 *
1da177e4 322 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 323 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
324 * these two operations is that if a dirty page/buffer is encountered, it must
325 * be waited upon, and not just skipped over.
326 */
ebcf28e1
AM
327int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
328 loff_t end, int sync_mode)
1da177e4
LT
329{
330 int ret;
331 struct writeback_control wbc = {
332 .sync_mode = sync_mode,
05fe478d 333 .nr_to_write = LONG_MAX,
111ebb6e
OH
334 .range_start = start,
335 .range_end = end,
1da177e4
LT
336 };
337
338 if (!mapping_cap_writeback_dirty(mapping))
339 return 0;
340
b16b1deb 341 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 342 ret = do_writepages(mapping, &wbc);
b16b1deb 343 wbc_detach_inode(&wbc);
1da177e4
LT
344 return ret;
345}
346
347static inline int __filemap_fdatawrite(struct address_space *mapping,
348 int sync_mode)
349{
111ebb6e 350 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
351}
352
353int filemap_fdatawrite(struct address_space *mapping)
354{
355 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
356}
357EXPORT_SYMBOL(filemap_fdatawrite);
358
f4c0a0fd 359int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 360 loff_t end)
1da177e4
LT
361{
362 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
363}
f4c0a0fd 364EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 365
485bb99b
RD
366/**
367 * filemap_flush - mostly a non-blocking flush
368 * @mapping: target address_space
369 *
1da177e4
LT
370 * This is a mostly non-blocking flush. Not suitable for data-integrity
371 * purposes - I/O may not be started against all dirty pages.
372 */
373int filemap_flush(struct address_space *mapping)
374{
375 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
376}
377EXPORT_SYMBOL(filemap_flush);
378
7fc9e472
GR
379/**
380 * filemap_range_has_page - check if a page exists in range.
381 * @mapping: address space within which to check
382 * @start_byte: offset in bytes where the range starts
383 * @end_byte: offset in bytes where the range ends (inclusive)
384 *
385 * Find at least one page in the range supplied, usually used to check if
386 * direct writing in this range will trigger a writeback.
387 */
388bool filemap_range_has_page(struct address_space *mapping,
389 loff_t start_byte, loff_t end_byte)
390{
391 pgoff_t index = start_byte >> PAGE_SHIFT;
392 pgoff_t end = end_byte >> PAGE_SHIFT;
393 struct pagevec pvec;
394 bool ret;
395
396 if (end_byte < start_byte)
397 return false;
398
399 if (mapping->nrpages == 0)
400 return false;
401
402 pagevec_init(&pvec, 0);
403 if (!pagevec_lookup(&pvec, mapping, index, 1))
404 return false;
405 ret = (pvec.pages[0]->index <= end);
406 pagevec_release(&pvec);
407 return ret;
408}
409EXPORT_SYMBOL(filemap_range_has_page);
410
aa750fd7
JN
411static int __filemap_fdatawait_range(struct address_space *mapping,
412 loff_t start_byte, loff_t end_byte)
1da177e4 413{
09cbfeaf
KS
414 pgoff_t index = start_byte >> PAGE_SHIFT;
415 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
416 struct pagevec pvec;
417 int nr_pages;
aa750fd7 418 int ret = 0;
1da177e4 419
94004ed7 420 if (end_byte < start_byte)
865ffef3 421 goto out;
1da177e4
LT
422
423 pagevec_init(&pvec, 0);
1da177e4
LT
424 while ((index <= end) &&
425 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
426 PAGECACHE_TAG_WRITEBACK,
427 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
428 unsigned i;
429
430 for (i = 0; i < nr_pages; i++) {
431 struct page *page = pvec.pages[i];
432
433 /* until radix tree lookup accepts end_index */
434 if (page->index > end)
435 continue;
436
437 wait_on_page_writeback(page);
212260aa 438 if (TestClearPageError(page))
1da177e4
LT
439 ret = -EIO;
440 }
441 pagevec_release(&pvec);
442 cond_resched();
443 }
865ffef3 444out:
aa750fd7
JN
445 return ret;
446}
447
448/**
449 * filemap_fdatawait_range - wait for writeback to complete
450 * @mapping: address space structure to wait for
451 * @start_byte: offset in bytes where the range starts
452 * @end_byte: offset in bytes where the range ends (inclusive)
453 *
454 * Walk the list of under-writeback pages of the given address space
455 * in the given range and wait for all of them. Check error status of
456 * the address space and return it.
457 *
458 * Since the error status of the address space is cleared by this function,
459 * callers are responsible for checking the return value and handling and/or
460 * reporting the error.
461 */
462int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
463 loff_t end_byte)
464{
465 int ret, ret2;
466
467 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
468 ret2 = filemap_check_errors(mapping);
469 if (!ret)
470 ret = ret2;
1da177e4
LT
471
472 return ret;
473}
d3bccb6f
JK
474EXPORT_SYMBOL(filemap_fdatawait_range);
475
aa750fd7
JN
476/**
477 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
478 * @mapping: address space structure to wait for
479 *
480 * Walk the list of under-writeback pages of the given address space
481 * and wait for all of them. Unlike filemap_fdatawait(), this function
482 * does not clear error status of the address space.
483 *
484 * Use this function if callers don't handle errors themselves. Expected
485 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
486 * fsfreeze(8)
487 */
488void filemap_fdatawait_keep_errors(struct address_space *mapping)
489{
490 loff_t i_size = i_size_read(mapping->host);
491
492 if (i_size == 0)
493 return;
494
495 __filemap_fdatawait_range(mapping, 0, i_size - 1);
496}
497
1da177e4 498/**
485bb99b 499 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 500 * @mapping: address space structure to wait for
485bb99b
RD
501 *
502 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
503 * and wait for all of them. Check error status of the address space
504 * and return it.
505 *
506 * Since the error status of the address space is cleared by this function,
507 * callers are responsible for checking the return value and handling and/or
508 * reporting the error.
1da177e4
LT
509 */
510int filemap_fdatawait(struct address_space *mapping)
511{
512 loff_t i_size = i_size_read(mapping->host);
513
514 if (i_size == 0)
515 return 0;
516
94004ed7 517 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
518}
519EXPORT_SYMBOL(filemap_fdatawait);
520
521int filemap_write_and_wait(struct address_space *mapping)
522{
28fd1298 523 int err = 0;
1da177e4 524
7f6d5b52
RZ
525 if ((!dax_mapping(mapping) && mapping->nrpages) ||
526 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
527 err = filemap_fdatawrite(mapping);
528 /*
529 * Even if the above returned error, the pages may be
530 * written partially (e.g. -ENOSPC), so we wait for it.
531 * But the -EIO is special case, it may indicate the worst
532 * thing (e.g. bug) happened, so we avoid waiting for it.
533 */
534 if (err != -EIO) {
535 int err2 = filemap_fdatawait(mapping);
536 if (!err)
537 err = err2;
538 }
865ffef3
DM
539 } else {
540 err = filemap_check_errors(mapping);
1da177e4 541 }
28fd1298 542 return err;
1da177e4 543}
28fd1298 544EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 545
485bb99b
RD
546/**
547 * filemap_write_and_wait_range - write out & wait on a file range
548 * @mapping: the address_space for the pages
549 * @lstart: offset in bytes where the range starts
550 * @lend: offset in bytes where the range ends (inclusive)
551 *
469eb4d0
AM
552 * Write out and wait upon file offsets lstart->lend, inclusive.
553 *
0e056eb5 554 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
555 * that this function can be used to write to the very end-of-file (end = -1).
556 */
1da177e4
LT
557int filemap_write_and_wait_range(struct address_space *mapping,
558 loff_t lstart, loff_t lend)
559{
28fd1298 560 int err = 0;
1da177e4 561
7f6d5b52
RZ
562 if ((!dax_mapping(mapping) && mapping->nrpages) ||
563 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
564 err = __filemap_fdatawrite_range(mapping, lstart, lend,
565 WB_SYNC_ALL);
566 /* See comment of filemap_write_and_wait() */
567 if (err != -EIO) {
94004ed7
CH
568 int err2 = filemap_fdatawait_range(mapping,
569 lstart, lend);
28fd1298
OH
570 if (!err)
571 err = err2;
572 }
865ffef3
DM
573 } else {
574 err = filemap_check_errors(mapping);
1da177e4 575 }
28fd1298 576 return err;
1da177e4 577}
f6995585 578EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 579
ef6a3c63
MS
580/**
581 * replace_page_cache_page - replace a pagecache page with a new one
582 * @old: page to be replaced
583 * @new: page to replace with
584 * @gfp_mask: allocation mode
585 *
586 * This function replaces a page in the pagecache with a new one. On
587 * success it acquires the pagecache reference for the new page and
588 * drops it for the old page. Both the old and new pages must be
589 * locked. This function does not add the new page to the LRU, the
590 * caller must do that.
591 *
592 * The remove + add is atomic. The only way this function can fail is
593 * memory allocation failure.
594 */
595int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
596{
597 int error;
ef6a3c63 598
309381fe
SL
599 VM_BUG_ON_PAGE(!PageLocked(old), old);
600 VM_BUG_ON_PAGE(!PageLocked(new), new);
601 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 602
ef6a3c63
MS
603 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
604 if (!error) {
605 struct address_space *mapping = old->mapping;
606 void (*freepage)(struct page *);
c4843a75 607 unsigned long flags;
ef6a3c63
MS
608
609 pgoff_t offset = old->index;
610 freepage = mapping->a_ops->freepage;
611
09cbfeaf 612 get_page(new);
ef6a3c63
MS
613 new->mapping = mapping;
614 new->index = offset;
615
c4843a75 616 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 617 __delete_from_page_cache(old, NULL);
22f2ac51 618 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 619 BUG_ON(error);
4165b9b4
MH
620
621 /*
622 * hugetlb pages do not participate in page cache accounting.
623 */
624 if (!PageHuge(new))
11fb9989 625 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 626 if (PageSwapBacked(new))
11fb9989 627 __inc_node_page_state(new, NR_SHMEM);
c4843a75 628 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 629 mem_cgroup_migrate(old, new);
ef6a3c63
MS
630 radix_tree_preload_end();
631 if (freepage)
632 freepage(old);
09cbfeaf 633 put_page(old);
ef6a3c63
MS
634 }
635
636 return error;
637}
638EXPORT_SYMBOL_GPL(replace_page_cache_page);
639
a528910e
JW
640static int __add_to_page_cache_locked(struct page *page,
641 struct address_space *mapping,
642 pgoff_t offset, gfp_t gfp_mask,
643 void **shadowp)
1da177e4 644{
00501b53
JW
645 int huge = PageHuge(page);
646 struct mem_cgroup *memcg;
e286781d
NP
647 int error;
648
309381fe
SL
649 VM_BUG_ON_PAGE(!PageLocked(page), page);
650 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 651
00501b53
JW
652 if (!huge) {
653 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 654 gfp_mask, &memcg, false);
00501b53
JW
655 if (error)
656 return error;
657 }
1da177e4 658
5e4c0d97 659 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 660 if (error) {
00501b53 661 if (!huge)
f627c2f5 662 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
663 return error;
664 }
665
09cbfeaf 666 get_page(page);
66a0c8ee
KS
667 page->mapping = mapping;
668 page->index = offset;
669
670 spin_lock_irq(&mapping->tree_lock);
a528910e 671 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
672 radix_tree_preload_end();
673 if (unlikely(error))
674 goto err_insert;
4165b9b4
MH
675
676 /* hugetlb pages do not participate in page cache accounting. */
677 if (!huge)
11fb9989 678 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 679 spin_unlock_irq(&mapping->tree_lock);
00501b53 680 if (!huge)
f627c2f5 681 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
682 trace_mm_filemap_add_to_page_cache(page);
683 return 0;
684err_insert:
685 page->mapping = NULL;
686 /* Leave page->index set: truncation relies upon it */
687 spin_unlock_irq(&mapping->tree_lock);
00501b53 688 if (!huge)
f627c2f5 689 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 690 put_page(page);
1da177e4
LT
691 return error;
692}
a528910e
JW
693
694/**
695 * add_to_page_cache_locked - add a locked page to the pagecache
696 * @page: page to add
697 * @mapping: the page's address_space
698 * @offset: page index
699 * @gfp_mask: page allocation mode
700 *
701 * This function is used to add a page to the pagecache. It must be locked.
702 * This function does not add the page to the LRU. The caller must do that.
703 */
704int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
705 pgoff_t offset, gfp_t gfp_mask)
706{
707 return __add_to_page_cache_locked(page, mapping, offset,
708 gfp_mask, NULL);
709}
e286781d 710EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
711
712int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 713 pgoff_t offset, gfp_t gfp_mask)
1da177e4 714{
a528910e 715 void *shadow = NULL;
4f98a2fe
RR
716 int ret;
717
48c935ad 718 __SetPageLocked(page);
a528910e
JW
719 ret = __add_to_page_cache_locked(page, mapping, offset,
720 gfp_mask, &shadow);
721 if (unlikely(ret))
48c935ad 722 __ClearPageLocked(page);
a528910e
JW
723 else {
724 /*
725 * The page might have been evicted from cache only
726 * recently, in which case it should be activated like
727 * any other repeatedly accessed page.
f0281a00
RR
728 * The exception is pages getting rewritten; evicting other
729 * data from the working set, only to cache data that will
730 * get overwritten with something else, is a waste of memory.
a528910e 731 */
f0281a00
RR
732 if (!(gfp_mask & __GFP_WRITE) &&
733 shadow && workingset_refault(shadow)) {
a528910e
JW
734 SetPageActive(page);
735 workingset_activation(page);
736 } else
737 ClearPageActive(page);
738 lru_cache_add(page);
739 }
1da177e4
LT
740 return ret;
741}
18bc0bbd 742EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 743
44110fe3 744#ifdef CONFIG_NUMA
2ae88149 745struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 746{
c0ff7453
MX
747 int n;
748 struct page *page;
749
44110fe3 750 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
751 unsigned int cpuset_mems_cookie;
752 do {
d26914d1 753 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 754 n = cpuset_mem_spread_node();
96db800f 755 page = __alloc_pages_node(n, gfp, 0);
d26914d1 756 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 757
c0ff7453 758 return page;
44110fe3 759 }
2ae88149 760 return alloc_pages(gfp, 0);
44110fe3 761}
2ae88149 762EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
763#endif
764
1da177e4
LT
765/*
766 * In order to wait for pages to become available there must be
767 * waitqueues associated with pages. By using a hash table of
768 * waitqueues where the bucket discipline is to maintain all
769 * waiters on the same queue and wake all when any of the pages
770 * become available, and for the woken contexts to check to be
771 * sure the appropriate page became available, this saves space
772 * at a cost of "thundering herd" phenomena during rare hash
773 * collisions.
774 */
62906027
NP
775#define PAGE_WAIT_TABLE_BITS 8
776#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
777static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
778
779static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 780{
62906027 781 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 782}
1da177e4 783
62906027 784void __init pagecache_init(void)
1da177e4 785{
62906027 786 int i;
1da177e4 787
62906027
NP
788 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
789 init_waitqueue_head(&page_wait_table[i]);
790
791 page_writeback_init();
1da177e4 792}
1da177e4 793
62906027
NP
794struct wait_page_key {
795 struct page *page;
796 int bit_nr;
797 int page_match;
798};
799
800struct wait_page_queue {
801 struct page *page;
802 int bit_nr;
803 wait_queue_t wait;
804};
805
806static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 807{
62906027
NP
808 struct wait_page_key *key = arg;
809 struct wait_page_queue *wait_page
810 = container_of(wait, struct wait_page_queue, wait);
811
812 if (wait_page->page != key->page)
813 return 0;
814 key->page_match = 1;
f62e00cc 815
62906027
NP
816 if (wait_page->bit_nr != key->bit_nr)
817 return 0;
818 if (test_bit(key->bit_nr, &key->page->flags))
f62e00cc
KM
819 return 0;
820
62906027 821 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
822}
823
74d81bfa 824static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 825{
62906027
NP
826 wait_queue_head_t *q = page_waitqueue(page);
827 struct wait_page_key key;
828 unsigned long flags;
cbbce822 829
62906027
NP
830 key.page = page;
831 key.bit_nr = bit_nr;
832 key.page_match = 0;
833
834 spin_lock_irqsave(&q->lock, flags);
835 __wake_up_locked_key(q, TASK_NORMAL, &key);
836 /*
837 * It is possible for other pages to have collided on the waitqueue
838 * hash, so in that case check for a page match. That prevents a long-
839 * term waiter
840 *
841 * It is still possible to miss a case here, when we woke page waiters
842 * and removed them from the waitqueue, but there are still other
843 * page waiters.
844 */
845 if (!waitqueue_active(q) || !key.page_match) {
846 ClearPageWaiters(page);
847 /*
848 * It's possible to miss clearing Waiters here, when we woke
849 * our page waiters, but the hashed waitqueue has waiters for
850 * other pages on it.
851 *
852 * That's okay, it's a rare case. The next waker will clear it.
853 */
854 }
855 spin_unlock_irqrestore(&q->lock, flags);
856}
74d81bfa
NP
857
858static void wake_up_page(struct page *page, int bit)
859{
860 if (!PageWaiters(page))
861 return;
862 wake_up_page_bit(page, bit);
863}
62906027
NP
864
865static inline int wait_on_page_bit_common(wait_queue_head_t *q,
866 struct page *page, int bit_nr, int state, bool lock)
867{
868 struct wait_page_queue wait_page;
869 wait_queue_t *wait = &wait_page.wait;
870 int ret = 0;
871
872 init_wait(wait);
873 wait->func = wake_page_function;
874 wait_page.page = page;
875 wait_page.bit_nr = bit_nr;
876
877 for (;;) {
878 spin_lock_irq(&q->lock);
879
880 if (likely(list_empty(&wait->task_list))) {
881 if (lock)
882 __add_wait_queue_tail_exclusive(q, wait);
883 else
884 __add_wait_queue(q, wait);
885 SetPageWaiters(page);
886 }
887
888 set_current_state(state);
889
890 spin_unlock_irq(&q->lock);
891
892 if (likely(test_bit(bit_nr, &page->flags))) {
893 io_schedule();
894 if (unlikely(signal_pending_state(state, current))) {
895 ret = -EINTR;
896 break;
897 }
898 }
899
900 if (lock) {
901 if (!test_and_set_bit_lock(bit_nr, &page->flags))
902 break;
903 } else {
904 if (!test_bit(bit_nr, &page->flags))
905 break;
906 }
907 }
908
909 finish_wait(q, wait);
910
911 /*
912 * A signal could leave PageWaiters set. Clearing it here if
913 * !waitqueue_active would be possible (by open-coding finish_wait),
914 * but still fail to catch it in the case of wait hash collision. We
915 * already can fail to clear wait hash collision cases, so don't
916 * bother with signals either.
917 */
918
919 return ret;
920}
921
922void wait_on_page_bit(struct page *page, int bit_nr)
923{
924 wait_queue_head_t *q = page_waitqueue(page);
925 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
926}
927EXPORT_SYMBOL(wait_on_page_bit);
928
929int wait_on_page_bit_killable(struct page *page, int bit_nr)
930{
931 wait_queue_head_t *q = page_waitqueue(page);
932 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 933}
cbbce822 934
385e1ca5
DH
935/**
936 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
937 * @page: Page defining the wait queue of interest
938 * @waiter: Waiter to add to the queue
385e1ca5
DH
939 *
940 * Add an arbitrary @waiter to the wait queue for the nominated @page.
941 */
942void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
943{
944 wait_queue_head_t *q = page_waitqueue(page);
945 unsigned long flags;
946
947 spin_lock_irqsave(&q->lock, flags);
948 __add_wait_queue(q, waiter);
62906027 949 SetPageWaiters(page);
385e1ca5
DH
950 spin_unlock_irqrestore(&q->lock, flags);
951}
952EXPORT_SYMBOL_GPL(add_page_wait_queue);
953
b91e1302
LT
954#ifndef clear_bit_unlock_is_negative_byte
955
956/*
957 * PG_waiters is the high bit in the same byte as PG_lock.
958 *
959 * On x86 (and on many other architectures), we can clear PG_lock and
960 * test the sign bit at the same time. But if the architecture does
961 * not support that special operation, we just do this all by hand
962 * instead.
963 *
964 * The read of PG_waiters has to be after (or concurrently with) PG_locked
965 * being cleared, but a memory barrier should be unneccssary since it is
966 * in the same byte as PG_locked.
967 */
968static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
969{
970 clear_bit_unlock(nr, mem);
971 /* smp_mb__after_atomic(); */
98473f9f 972 return test_bit(PG_waiters, mem);
b91e1302
LT
973}
974
975#endif
976
1da177e4 977/**
485bb99b 978 * unlock_page - unlock a locked page
1da177e4
LT
979 * @page: the page
980 *
981 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
982 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 983 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
984 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
985 *
b91e1302
LT
986 * Note that this depends on PG_waiters being the sign bit in the byte
987 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
988 * clear the PG_locked bit and test PG_waiters at the same time fairly
989 * portably (architectures that do LL/SC can test any bit, while x86 can
990 * test the sign bit).
1da177e4 991 */
920c7a5d 992void unlock_page(struct page *page)
1da177e4 993{
b91e1302 994 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 995 page = compound_head(page);
309381fe 996 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
997 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
998 wake_up_page_bit(page, PG_locked);
1da177e4
LT
999}
1000EXPORT_SYMBOL(unlock_page);
1001
485bb99b
RD
1002/**
1003 * end_page_writeback - end writeback against a page
1004 * @page: the page
1da177e4
LT
1005 */
1006void end_page_writeback(struct page *page)
1007{
888cf2db
MG
1008 /*
1009 * TestClearPageReclaim could be used here but it is an atomic
1010 * operation and overkill in this particular case. Failing to
1011 * shuffle a page marked for immediate reclaim is too mild to
1012 * justify taking an atomic operation penalty at the end of
1013 * ever page writeback.
1014 */
1015 if (PageReclaim(page)) {
1016 ClearPageReclaim(page);
ac6aadb2 1017 rotate_reclaimable_page(page);
888cf2db 1018 }
ac6aadb2
MS
1019
1020 if (!test_clear_page_writeback(page))
1021 BUG();
1022
4e857c58 1023 smp_mb__after_atomic();
1da177e4
LT
1024 wake_up_page(page, PG_writeback);
1025}
1026EXPORT_SYMBOL(end_page_writeback);
1027
57d99845
MW
1028/*
1029 * After completing I/O on a page, call this routine to update the page
1030 * flags appropriately
1031 */
c11f0c0b 1032void page_endio(struct page *page, bool is_write, int err)
57d99845 1033{
c11f0c0b 1034 if (!is_write) {
57d99845
MW
1035 if (!err) {
1036 SetPageUptodate(page);
1037 } else {
1038 ClearPageUptodate(page);
1039 SetPageError(page);
1040 }
1041 unlock_page(page);
abf54548 1042 } else {
57d99845 1043 if (err) {
dd8416c4
MK
1044 struct address_space *mapping;
1045
57d99845 1046 SetPageError(page);
dd8416c4
MK
1047 mapping = page_mapping(page);
1048 if (mapping)
1049 mapping_set_error(mapping, err);
57d99845
MW
1050 }
1051 end_page_writeback(page);
1052 }
1053}
1054EXPORT_SYMBOL_GPL(page_endio);
1055
485bb99b
RD
1056/**
1057 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1058 * @__page: the page to lock
1da177e4 1059 */
62906027 1060void __lock_page(struct page *__page)
1da177e4 1061{
62906027
NP
1062 struct page *page = compound_head(__page);
1063 wait_queue_head_t *q = page_waitqueue(page);
1064 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1065}
1066EXPORT_SYMBOL(__lock_page);
1067
62906027 1068int __lock_page_killable(struct page *__page)
2687a356 1069{
62906027
NP
1070 struct page *page = compound_head(__page);
1071 wait_queue_head_t *q = page_waitqueue(page);
1072 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1073}
18bc0bbd 1074EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1075
9a95f3cf
PC
1076/*
1077 * Return values:
1078 * 1 - page is locked; mmap_sem is still held.
1079 * 0 - page is not locked.
1080 * mmap_sem has been released (up_read()), unless flags had both
1081 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1082 * which case mmap_sem is still held.
1083 *
1084 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1085 * with the page locked and the mmap_sem unperturbed.
1086 */
d065bd81
ML
1087int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1088 unsigned int flags)
1089{
37b23e05
KM
1090 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1091 /*
1092 * CAUTION! In this case, mmap_sem is not released
1093 * even though return 0.
1094 */
1095 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1096 return 0;
1097
1098 up_read(&mm->mmap_sem);
1099 if (flags & FAULT_FLAG_KILLABLE)
1100 wait_on_page_locked_killable(page);
1101 else
318b275f 1102 wait_on_page_locked(page);
d065bd81 1103 return 0;
37b23e05
KM
1104 } else {
1105 if (flags & FAULT_FLAG_KILLABLE) {
1106 int ret;
1107
1108 ret = __lock_page_killable(page);
1109 if (ret) {
1110 up_read(&mm->mmap_sem);
1111 return 0;
1112 }
1113 } else
1114 __lock_page(page);
1115 return 1;
d065bd81
ML
1116 }
1117}
1118
e7b563bb
JW
1119/**
1120 * page_cache_next_hole - find the next hole (not-present entry)
1121 * @mapping: mapping
1122 * @index: index
1123 * @max_scan: maximum range to search
1124 *
1125 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1126 * lowest indexed hole.
1127 *
1128 * Returns: the index of the hole if found, otherwise returns an index
1129 * outside of the set specified (in which case 'return - index >=
1130 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1131 * be returned.
1132 *
1133 * page_cache_next_hole may be called under rcu_read_lock. However,
1134 * like radix_tree_gang_lookup, this will not atomically search a
1135 * snapshot of the tree at a single point in time. For example, if a
1136 * hole is created at index 5, then subsequently a hole is created at
1137 * index 10, page_cache_next_hole covering both indexes may return 10
1138 * if called under rcu_read_lock.
1139 */
1140pgoff_t page_cache_next_hole(struct address_space *mapping,
1141 pgoff_t index, unsigned long max_scan)
1142{
1143 unsigned long i;
1144
1145 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1146 struct page *page;
1147
1148 page = radix_tree_lookup(&mapping->page_tree, index);
1149 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1150 break;
1151 index++;
1152 if (index == 0)
1153 break;
1154 }
1155
1156 return index;
1157}
1158EXPORT_SYMBOL(page_cache_next_hole);
1159
1160/**
1161 * page_cache_prev_hole - find the prev hole (not-present entry)
1162 * @mapping: mapping
1163 * @index: index
1164 * @max_scan: maximum range to search
1165 *
1166 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1167 * the first hole.
1168 *
1169 * Returns: the index of the hole if found, otherwise returns an index
1170 * outside of the set specified (in which case 'index - return >=
1171 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1172 * will be returned.
1173 *
1174 * page_cache_prev_hole may be called under rcu_read_lock. However,
1175 * like radix_tree_gang_lookup, this will not atomically search a
1176 * snapshot of the tree at a single point in time. For example, if a
1177 * hole is created at index 10, then subsequently a hole is created at
1178 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1179 * called under rcu_read_lock.
1180 */
1181pgoff_t page_cache_prev_hole(struct address_space *mapping,
1182 pgoff_t index, unsigned long max_scan)
1183{
1184 unsigned long i;
1185
1186 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1187 struct page *page;
1188
1189 page = radix_tree_lookup(&mapping->page_tree, index);
1190 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1191 break;
1192 index--;
1193 if (index == ULONG_MAX)
1194 break;
1195 }
1196
1197 return index;
1198}
1199EXPORT_SYMBOL(page_cache_prev_hole);
1200
485bb99b 1201/**
0cd6144a 1202 * find_get_entry - find and get a page cache entry
485bb99b 1203 * @mapping: the address_space to search
0cd6144a
JW
1204 * @offset: the page cache index
1205 *
1206 * Looks up the page cache slot at @mapping & @offset. If there is a
1207 * page cache page, it is returned with an increased refcount.
485bb99b 1208 *
139b6a6f
JW
1209 * If the slot holds a shadow entry of a previously evicted page, or a
1210 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1211 *
1212 * Otherwise, %NULL is returned.
1da177e4 1213 */
0cd6144a 1214struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1215{
a60637c8 1216 void **pagep;
83929372 1217 struct page *head, *page;
1da177e4 1218
a60637c8
NP
1219 rcu_read_lock();
1220repeat:
1221 page = NULL;
1222 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1223 if (pagep) {
1224 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1225 if (unlikely(!page))
1226 goto out;
a2c16d6c 1227 if (radix_tree_exception(page)) {
8079b1c8
HD
1228 if (radix_tree_deref_retry(page))
1229 goto repeat;
1230 /*
139b6a6f
JW
1231 * A shadow entry of a recently evicted page,
1232 * or a swap entry from shmem/tmpfs. Return
1233 * it without attempting to raise page count.
8079b1c8
HD
1234 */
1235 goto out;
a2c16d6c 1236 }
83929372
KS
1237
1238 head = compound_head(page);
1239 if (!page_cache_get_speculative(head))
1240 goto repeat;
1241
1242 /* The page was split under us? */
1243 if (compound_head(page) != head) {
1244 put_page(head);
a60637c8 1245 goto repeat;
83929372 1246 }
a60637c8
NP
1247
1248 /*
1249 * Has the page moved?
1250 * This is part of the lockless pagecache protocol. See
1251 * include/linux/pagemap.h for details.
1252 */
1253 if (unlikely(page != *pagep)) {
83929372 1254 put_page(head);
a60637c8
NP
1255 goto repeat;
1256 }
1257 }
27d20fdd 1258out:
a60637c8
NP
1259 rcu_read_unlock();
1260
1da177e4
LT
1261 return page;
1262}
0cd6144a 1263EXPORT_SYMBOL(find_get_entry);
1da177e4 1264
0cd6144a
JW
1265/**
1266 * find_lock_entry - locate, pin and lock a page cache entry
1267 * @mapping: the address_space to search
1268 * @offset: the page cache index
1269 *
1270 * Looks up the page cache slot at @mapping & @offset. If there is a
1271 * page cache page, it is returned locked and with an increased
1272 * refcount.
1273 *
139b6a6f
JW
1274 * If the slot holds a shadow entry of a previously evicted page, or a
1275 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1276 *
1277 * Otherwise, %NULL is returned.
1278 *
1279 * find_lock_entry() may sleep.
1280 */
1281struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1282{
1283 struct page *page;
1284
1da177e4 1285repeat:
0cd6144a 1286 page = find_get_entry(mapping, offset);
a2c16d6c 1287 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1288 lock_page(page);
1289 /* Has the page been truncated? */
83929372 1290 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1291 unlock_page(page);
09cbfeaf 1292 put_page(page);
a60637c8 1293 goto repeat;
1da177e4 1294 }
83929372 1295 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1296 }
1da177e4
LT
1297 return page;
1298}
0cd6144a
JW
1299EXPORT_SYMBOL(find_lock_entry);
1300
1301/**
2457aec6 1302 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1303 * @mapping: the address_space to search
1304 * @offset: the page index
2457aec6 1305 * @fgp_flags: PCG flags
45f87de5 1306 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1307 *
2457aec6 1308 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1309 *
75325189 1310 * PCG flags modify how the page is returned.
0cd6144a 1311 *
0e056eb5
MCC
1312 * @fgp_flags can be:
1313 *
1314 * - FGP_ACCESSED: the page will be marked accessed
1315 * - FGP_LOCK: Page is return locked
1316 * - FGP_CREAT: If page is not present then a new page is allocated using
1317 * @gfp_mask and added to the page cache and the VM's LRU
1318 * list. The page is returned locked and with an increased
1319 * refcount. Otherwise, NULL is returned.
1da177e4 1320 *
2457aec6
MG
1321 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1322 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1323 *
2457aec6 1324 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1325 */
2457aec6 1326struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1327 int fgp_flags, gfp_t gfp_mask)
1da177e4 1328{
eb2be189 1329 struct page *page;
2457aec6 1330
1da177e4 1331repeat:
2457aec6
MG
1332 page = find_get_entry(mapping, offset);
1333 if (radix_tree_exceptional_entry(page))
1334 page = NULL;
1335 if (!page)
1336 goto no_page;
1337
1338 if (fgp_flags & FGP_LOCK) {
1339 if (fgp_flags & FGP_NOWAIT) {
1340 if (!trylock_page(page)) {
09cbfeaf 1341 put_page(page);
2457aec6
MG
1342 return NULL;
1343 }
1344 } else {
1345 lock_page(page);
1346 }
1347
1348 /* Has the page been truncated? */
1349 if (unlikely(page->mapping != mapping)) {
1350 unlock_page(page);
09cbfeaf 1351 put_page(page);
2457aec6
MG
1352 goto repeat;
1353 }
1354 VM_BUG_ON_PAGE(page->index != offset, page);
1355 }
1356
1357 if (page && (fgp_flags & FGP_ACCESSED))
1358 mark_page_accessed(page);
1359
1360no_page:
1361 if (!page && (fgp_flags & FGP_CREAT)) {
1362 int err;
1363 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1364 gfp_mask |= __GFP_WRITE;
1365 if (fgp_flags & FGP_NOFS)
1366 gfp_mask &= ~__GFP_FS;
2457aec6 1367
45f87de5 1368 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1369 if (!page)
1370 return NULL;
2457aec6
MG
1371
1372 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1373 fgp_flags |= FGP_LOCK;
1374
eb39d618 1375 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1376 if (fgp_flags & FGP_ACCESSED)
eb39d618 1377 __SetPageReferenced(page);
2457aec6 1378
45f87de5
MH
1379 err = add_to_page_cache_lru(page, mapping, offset,
1380 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1381 if (unlikely(err)) {
09cbfeaf 1382 put_page(page);
eb2be189
NP
1383 page = NULL;
1384 if (err == -EEXIST)
1385 goto repeat;
1da177e4 1386 }
1da177e4 1387 }
2457aec6 1388
1da177e4
LT
1389 return page;
1390}
2457aec6 1391EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1392
0cd6144a
JW
1393/**
1394 * find_get_entries - gang pagecache lookup
1395 * @mapping: The address_space to search
1396 * @start: The starting page cache index
1397 * @nr_entries: The maximum number of entries
1398 * @entries: Where the resulting entries are placed
1399 * @indices: The cache indices corresponding to the entries in @entries
1400 *
1401 * find_get_entries() will search for and return a group of up to
1402 * @nr_entries entries in the mapping. The entries are placed at
1403 * @entries. find_get_entries() takes a reference against any actual
1404 * pages it returns.
1405 *
1406 * The search returns a group of mapping-contiguous page cache entries
1407 * with ascending indexes. There may be holes in the indices due to
1408 * not-present pages.
1409 *
139b6a6f
JW
1410 * Any shadow entries of evicted pages, or swap entries from
1411 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1412 *
1413 * find_get_entries() returns the number of pages and shadow entries
1414 * which were found.
1415 */
1416unsigned find_get_entries(struct address_space *mapping,
1417 pgoff_t start, unsigned int nr_entries,
1418 struct page **entries, pgoff_t *indices)
1419{
1420 void **slot;
1421 unsigned int ret = 0;
1422 struct radix_tree_iter iter;
1423
1424 if (!nr_entries)
1425 return 0;
1426
1427 rcu_read_lock();
0cd6144a 1428 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1429 struct page *head, *page;
0cd6144a
JW
1430repeat:
1431 page = radix_tree_deref_slot(slot);
1432 if (unlikely(!page))
1433 continue;
1434 if (radix_tree_exception(page)) {
2cf938aa
MW
1435 if (radix_tree_deref_retry(page)) {
1436 slot = radix_tree_iter_retry(&iter);
1437 continue;
1438 }
0cd6144a 1439 /*
f9fe48be
RZ
1440 * A shadow entry of a recently evicted page, a swap
1441 * entry from shmem/tmpfs or a DAX entry. Return it
1442 * without attempting to raise page count.
0cd6144a
JW
1443 */
1444 goto export;
1445 }
83929372
KS
1446
1447 head = compound_head(page);
1448 if (!page_cache_get_speculative(head))
1449 goto repeat;
1450
1451 /* The page was split under us? */
1452 if (compound_head(page) != head) {
1453 put_page(head);
0cd6144a 1454 goto repeat;
83929372 1455 }
0cd6144a
JW
1456
1457 /* Has the page moved? */
1458 if (unlikely(page != *slot)) {
83929372 1459 put_page(head);
0cd6144a
JW
1460 goto repeat;
1461 }
1462export:
1463 indices[ret] = iter.index;
1464 entries[ret] = page;
1465 if (++ret == nr_entries)
1466 break;
1467 }
1468 rcu_read_unlock();
1469 return ret;
1470}
1471
1da177e4
LT
1472/**
1473 * find_get_pages - gang pagecache lookup
1474 * @mapping: The address_space to search
1475 * @start: The starting page index
1476 * @nr_pages: The maximum number of pages
1477 * @pages: Where the resulting pages are placed
1478 *
1479 * find_get_pages() will search for and return a group of up to
1480 * @nr_pages pages in the mapping. The pages are placed at @pages.
1481 * find_get_pages() takes a reference against the returned pages.
1482 *
1483 * The search returns a group of mapping-contiguous pages with ascending
1484 * indexes. There may be holes in the indices due to not-present pages.
1485 *
1486 * find_get_pages() returns the number of pages which were found.
1487 */
1488unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1489 unsigned int nr_pages, struct page **pages)
1490{
0fc9d104
KK
1491 struct radix_tree_iter iter;
1492 void **slot;
1493 unsigned ret = 0;
1494
1495 if (unlikely(!nr_pages))
1496 return 0;
a60637c8
NP
1497
1498 rcu_read_lock();
0fc9d104 1499 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1500 struct page *head, *page;
a60637c8 1501repeat:
0fc9d104 1502 page = radix_tree_deref_slot(slot);
a60637c8
NP
1503 if (unlikely(!page))
1504 continue;
9d8aa4ea 1505
a2c16d6c 1506 if (radix_tree_exception(page)) {
8079b1c8 1507 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1508 slot = radix_tree_iter_retry(&iter);
1509 continue;
8079b1c8 1510 }
a2c16d6c 1511 /*
139b6a6f
JW
1512 * A shadow entry of a recently evicted page,
1513 * or a swap entry from shmem/tmpfs. Skip
1514 * over it.
a2c16d6c 1515 */
8079b1c8 1516 continue;
27d20fdd 1517 }
a60637c8 1518
83929372
KS
1519 head = compound_head(page);
1520 if (!page_cache_get_speculative(head))
1521 goto repeat;
1522
1523 /* The page was split under us? */
1524 if (compound_head(page) != head) {
1525 put_page(head);
a60637c8 1526 goto repeat;
83929372 1527 }
a60637c8
NP
1528
1529 /* Has the page moved? */
0fc9d104 1530 if (unlikely(page != *slot)) {
83929372 1531 put_page(head);
a60637c8
NP
1532 goto repeat;
1533 }
1da177e4 1534
a60637c8 1535 pages[ret] = page;
0fc9d104
KK
1536 if (++ret == nr_pages)
1537 break;
a60637c8 1538 }
5b280c0c 1539
a60637c8 1540 rcu_read_unlock();
1da177e4
LT
1541 return ret;
1542}
1543
ebf43500
JA
1544/**
1545 * find_get_pages_contig - gang contiguous pagecache lookup
1546 * @mapping: The address_space to search
1547 * @index: The starting page index
1548 * @nr_pages: The maximum number of pages
1549 * @pages: Where the resulting pages are placed
1550 *
1551 * find_get_pages_contig() works exactly like find_get_pages(), except
1552 * that the returned number of pages are guaranteed to be contiguous.
1553 *
1554 * find_get_pages_contig() returns the number of pages which were found.
1555 */
1556unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1557 unsigned int nr_pages, struct page **pages)
1558{
0fc9d104
KK
1559 struct radix_tree_iter iter;
1560 void **slot;
1561 unsigned int ret = 0;
1562
1563 if (unlikely(!nr_pages))
1564 return 0;
a60637c8
NP
1565
1566 rcu_read_lock();
0fc9d104 1567 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1568 struct page *head, *page;
a60637c8 1569repeat:
0fc9d104
KK
1570 page = radix_tree_deref_slot(slot);
1571 /* The hole, there no reason to continue */
a60637c8 1572 if (unlikely(!page))
0fc9d104 1573 break;
9d8aa4ea 1574
a2c16d6c 1575 if (radix_tree_exception(page)) {
8079b1c8 1576 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1577 slot = radix_tree_iter_retry(&iter);
1578 continue;
8079b1c8 1579 }
a2c16d6c 1580 /*
139b6a6f
JW
1581 * A shadow entry of a recently evicted page,
1582 * or a swap entry from shmem/tmpfs. Stop
1583 * looking for contiguous pages.
a2c16d6c 1584 */
8079b1c8 1585 break;
a2c16d6c 1586 }
ebf43500 1587
83929372
KS
1588 head = compound_head(page);
1589 if (!page_cache_get_speculative(head))
1590 goto repeat;
1591
1592 /* The page was split under us? */
1593 if (compound_head(page) != head) {
1594 put_page(head);
a60637c8 1595 goto repeat;
83929372 1596 }
a60637c8
NP
1597
1598 /* Has the page moved? */
0fc9d104 1599 if (unlikely(page != *slot)) {
83929372 1600 put_page(head);
a60637c8
NP
1601 goto repeat;
1602 }
1603
9cbb4cb2
NP
1604 /*
1605 * must check mapping and index after taking the ref.
1606 * otherwise we can get both false positives and false
1607 * negatives, which is just confusing to the caller.
1608 */
83929372 1609 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1610 put_page(page);
9cbb4cb2
NP
1611 break;
1612 }
1613
a60637c8 1614 pages[ret] = page;
0fc9d104
KK
1615 if (++ret == nr_pages)
1616 break;
ebf43500 1617 }
a60637c8
NP
1618 rcu_read_unlock();
1619 return ret;
ebf43500 1620}
ef71c15c 1621EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1622
485bb99b
RD
1623/**
1624 * find_get_pages_tag - find and return pages that match @tag
1625 * @mapping: the address_space to search
1626 * @index: the starting page index
1627 * @tag: the tag index
1628 * @nr_pages: the maximum number of pages
1629 * @pages: where the resulting pages are placed
1630 *
1da177e4 1631 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1632 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1633 */
1634unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1635 int tag, unsigned int nr_pages, struct page **pages)
1636{
0fc9d104
KK
1637 struct radix_tree_iter iter;
1638 void **slot;
1639 unsigned ret = 0;
1640
1641 if (unlikely(!nr_pages))
1642 return 0;
a60637c8
NP
1643
1644 rcu_read_lock();
0fc9d104
KK
1645 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1646 &iter, *index, tag) {
83929372 1647 struct page *head, *page;
a60637c8 1648repeat:
0fc9d104 1649 page = radix_tree_deref_slot(slot);
a60637c8
NP
1650 if (unlikely(!page))
1651 continue;
9d8aa4ea 1652
a2c16d6c 1653 if (radix_tree_exception(page)) {
8079b1c8 1654 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1655 slot = radix_tree_iter_retry(&iter);
1656 continue;
8079b1c8 1657 }
a2c16d6c 1658 /*
139b6a6f
JW
1659 * A shadow entry of a recently evicted page.
1660 *
1661 * Those entries should never be tagged, but
1662 * this tree walk is lockless and the tags are
1663 * looked up in bulk, one radix tree node at a
1664 * time, so there is a sizable window for page
1665 * reclaim to evict a page we saw tagged.
1666 *
1667 * Skip over it.
a2c16d6c 1668 */
139b6a6f 1669 continue;
a2c16d6c 1670 }
a60637c8 1671
83929372
KS
1672 head = compound_head(page);
1673 if (!page_cache_get_speculative(head))
a60637c8
NP
1674 goto repeat;
1675
83929372
KS
1676 /* The page was split under us? */
1677 if (compound_head(page) != head) {
1678 put_page(head);
1679 goto repeat;
1680 }
1681
a60637c8 1682 /* Has the page moved? */
0fc9d104 1683 if (unlikely(page != *slot)) {
83929372 1684 put_page(head);
a60637c8
NP
1685 goto repeat;
1686 }
1687
1688 pages[ret] = page;
0fc9d104
KK
1689 if (++ret == nr_pages)
1690 break;
a60637c8 1691 }
5b280c0c 1692
a60637c8 1693 rcu_read_unlock();
1da177e4 1694
1da177e4
LT
1695 if (ret)
1696 *index = pages[ret - 1]->index + 1;
a60637c8 1697
1da177e4
LT
1698 return ret;
1699}
ef71c15c 1700EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1701
7e7f7749
RZ
1702/**
1703 * find_get_entries_tag - find and return entries that match @tag
1704 * @mapping: the address_space to search
1705 * @start: the starting page cache index
1706 * @tag: the tag index
1707 * @nr_entries: the maximum number of entries
1708 * @entries: where the resulting entries are placed
1709 * @indices: the cache indices corresponding to the entries in @entries
1710 *
1711 * Like find_get_entries, except we only return entries which are tagged with
1712 * @tag.
1713 */
1714unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1715 int tag, unsigned int nr_entries,
1716 struct page **entries, pgoff_t *indices)
1717{
1718 void **slot;
1719 unsigned int ret = 0;
1720 struct radix_tree_iter iter;
1721
1722 if (!nr_entries)
1723 return 0;
1724
1725 rcu_read_lock();
7e7f7749
RZ
1726 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1727 &iter, start, tag) {
83929372 1728 struct page *head, *page;
7e7f7749
RZ
1729repeat:
1730 page = radix_tree_deref_slot(slot);
1731 if (unlikely(!page))
1732 continue;
1733 if (radix_tree_exception(page)) {
1734 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1735 slot = radix_tree_iter_retry(&iter);
1736 continue;
7e7f7749
RZ
1737 }
1738
1739 /*
1740 * A shadow entry of a recently evicted page, a swap
1741 * entry from shmem/tmpfs or a DAX entry. Return it
1742 * without attempting to raise page count.
1743 */
1744 goto export;
1745 }
83929372
KS
1746
1747 head = compound_head(page);
1748 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1749 goto repeat;
1750
83929372
KS
1751 /* The page was split under us? */
1752 if (compound_head(page) != head) {
1753 put_page(head);
1754 goto repeat;
1755 }
1756
7e7f7749
RZ
1757 /* Has the page moved? */
1758 if (unlikely(page != *slot)) {
83929372 1759 put_page(head);
7e7f7749
RZ
1760 goto repeat;
1761 }
1762export:
1763 indices[ret] = iter.index;
1764 entries[ret] = page;
1765 if (++ret == nr_entries)
1766 break;
1767 }
1768 rcu_read_unlock();
1769 return ret;
1770}
1771EXPORT_SYMBOL(find_get_entries_tag);
1772
76d42bd9
WF
1773/*
1774 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1775 * a _large_ part of the i/o request. Imagine the worst scenario:
1776 *
1777 * ---R__________________________________________B__________
1778 * ^ reading here ^ bad block(assume 4k)
1779 *
1780 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1781 * => failing the whole request => read(R) => read(R+1) =>
1782 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1783 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1784 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1785 *
1786 * It is going insane. Fix it by quickly scaling down the readahead size.
1787 */
1788static void shrink_readahead_size_eio(struct file *filp,
1789 struct file_ra_state *ra)
1790{
76d42bd9 1791 ra->ra_pages /= 4;
76d42bd9
WF
1792}
1793
485bb99b 1794/**
36e78914 1795 * do_generic_file_read - generic file read routine
485bb99b
RD
1796 * @filp: the file to read
1797 * @ppos: current file position
6e58e79d
AV
1798 * @iter: data destination
1799 * @written: already copied
485bb99b 1800 *
1da177e4 1801 * This is a generic file read routine, and uses the
485bb99b 1802 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1803 *
1804 * This is really ugly. But the goto's actually try to clarify some
1805 * of the logic when it comes to error handling etc.
1da177e4 1806 */
6e58e79d
AV
1807static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1808 struct iov_iter *iter, ssize_t written)
1da177e4 1809{
36e78914 1810 struct address_space *mapping = filp->f_mapping;
1da177e4 1811 struct inode *inode = mapping->host;
36e78914 1812 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1813 pgoff_t index;
1814 pgoff_t last_index;
1815 pgoff_t prev_index;
1816 unsigned long offset; /* offset into pagecache page */
ec0f1637 1817 unsigned int prev_offset;
6e58e79d 1818 int error = 0;
1da177e4 1819
c2a9737f 1820 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1821 return 0;
c2a9737f
WF
1822 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1823
09cbfeaf
KS
1824 index = *ppos >> PAGE_SHIFT;
1825 prev_index = ra->prev_pos >> PAGE_SHIFT;
1826 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1827 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1828 offset = *ppos & ~PAGE_MASK;
1da177e4 1829
1da177e4
LT
1830 for (;;) {
1831 struct page *page;
57f6b96c 1832 pgoff_t end_index;
a32ea1e1 1833 loff_t isize;
1da177e4
LT
1834 unsigned long nr, ret;
1835
1da177e4 1836 cond_resched();
1da177e4 1837find_page:
5abf186a
MH
1838 if (fatal_signal_pending(current)) {
1839 error = -EINTR;
1840 goto out;
1841 }
1842
1da177e4 1843 page = find_get_page(mapping, index);
3ea89ee8 1844 if (!page) {
cf914a7d 1845 page_cache_sync_readahead(mapping,
7ff81078 1846 ra, filp,
3ea89ee8
FW
1847 index, last_index - index);
1848 page = find_get_page(mapping, index);
1849 if (unlikely(page == NULL))
1850 goto no_cached_page;
1851 }
1852 if (PageReadahead(page)) {
cf914a7d 1853 page_cache_async_readahead(mapping,
7ff81078 1854 ra, filp, page,
3ea89ee8 1855 index, last_index - index);
1da177e4 1856 }
8ab22b9a 1857 if (!PageUptodate(page)) {
ebded027
MG
1858 /*
1859 * See comment in do_read_cache_page on why
1860 * wait_on_page_locked is used to avoid unnecessarily
1861 * serialisations and why it's safe.
1862 */
c4b209a4
BVA
1863 error = wait_on_page_locked_killable(page);
1864 if (unlikely(error))
1865 goto readpage_error;
ebded027
MG
1866 if (PageUptodate(page))
1867 goto page_ok;
1868
09cbfeaf 1869 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1870 !mapping->a_ops->is_partially_uptodate)
1871 goto page_not_up_to_date;
6d6d36bc
EG
1872 /* pipes can't handle partially uptodate pages */
1873 if (unlikely(iter->type & ITER_PIPE))
1874 goto page_not_up_to_date;
529ae9aa 1875 if (!trylock_page(page))
8ab22b9a 1876 goto page_not_up_to_date;
8d056cb9
DH
1877 /* Did it get truncated before we got the lock? */
1878 if (!page->mapping)
1879 goto page_not_up_to_date_locked;
8ab22b9a 1880 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1881 offset, iter->count))
8ab22b9a
HH
1882 goto page_not_up_to_date_locked;
1883 unlock_page(page);
1884 }
1da177e4 1885page_ok:
a32ea1e1
N
1886 /*
1887 * i_size must be checked after we know the page is Uptodate.
1888 *
1889 * Checking i_size after the check allows us to calculate
1890 * the correct value for "nr", which means the zero-filled
1891 * part of the page is not copied back to userspace (unless
1892 * another truncate extends the file - this is desired though).
1893 */
1894
1895 isize = i_size_read(inode);
09cbfeaf 1896 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1897 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1898 put_page(page);
a32ea1e1
N
1899 goto out;
1900 }
1901
1902 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1903 nr = PAGE_SIZE;
a32ea1e1 1904 if (index == end_index) {
09cbfeaf 1905 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1906 if (nr <= offset) {
09cbfeaf 1907 put_page(page);
a32ea1e1
N
1908 goto out;
1909 }
1910 }
1911 nr = nr - offset;
1da177e4
LT
1912
1913 /* If users can be writing to this page using arbitrary
1914 * virtual addresses, take care about potential aliasing
1915 * before reading the page on the kernel side.
1916 */
1917 if (mapping_writably_mapped(mapping))
1918 flush_dcache_page(page);
1919
1920 /*
ec0f1637
JK
1921 * When a sequential read accesses a page several times,
1922 * only mark it as accessed the first time.
1da177e4 1923 */
ec0f1637 1924 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1925 mark_page_accessed(page);
1926 prev_index = index;
1927
1928 /*
1929 * Ok, we have the page, and it's up-to-date, so
1930 * now we can copy it to user space...
1da177e4 1931 */
6e58e79d
AV
1932
1933 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1934 offset += ret;
09cbfeaf
KS
1935 index += offset >> PAGE_SHIFT;
1936 offset &= ~PAGE_MASK;
6ce745ed 1937 prev_offset = offset;
1da177e4 1938
09cbfeaf 1939 put_page(page);
6e58e79d
AV
1940 written += ret;
1941 if (!iov_iter_count(iter))
1942 goto out;
1943 if (ret < nr) {
1944 error = -EFAULT;
1945 goto out;
1946 }
1947 continue;
1da177e4
LT
1948
1949page_not_up_to_date:
1950 /* Get exclusive access to the page ... */
85462323
ON
1951 error = lock_page_killable(page);
1952 if (unlikely(error))
1953 goto readpage_error;
1da177e4 1954
8ab22b9a 1955page_not_up_to_date_locked:
da6052f7 1956 /* Did it get truncated before we got the lock? */
1da177e4
LT
1957 if (!page->mapping) {
1958 unlock_page(page);
09cbfeaf 1959 put_page(page);
1da177e4
LT
1960 continue;
1961 }
1962
1963 /* Did somebody else fill it already? */
1964 if (PageUptodate(page)) {
1965 unlock_page(page);
1966 goto page_ok;
1967 }
1968
1969readpage:
91803b49
JM
1970 /*
1971 * A previous I/O error may have been due to temporary
1972 * failures, eg. multipath errors.
1973 * PG_error will be set again if readpage fails.
1974 */
1975 ClearPageError(page);
1da177e4
LT
1976 /* Start the actual read. The read will unlock the page. */
1977 error = mapping->a_ops->readpage(filp, page);
1978
994fc28c
ZB
1979 if (unlikely(error)) {
1980 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1981 put_page(page);
6e58e79d 1982 error = 0;
994fc28c
ZB
1983 goto find_page;
1984 }
1da177e4 1985 goto readpage_error;
994fc28c 1986 }
1da177e4
LT
1987
1988 if (!PageUptodate(page)) {
85462323
ON
1989 error = lock_page_killable(page);
1990 if (unlikely(error))
1991 goto readpage_error;
1da177e4
LT
1992 if (!PageUptodate(page)) {
1993 if (page->mapping == NULL) {
1994 /*
2ecdc82e 1995 * invalidate_mapping_pages got it
1da177e4
LT
1996 */
1997 unlock_page(page);
09cbfeaf 1998 put_page(page);
1da177e4
LT
1999 goto find_page;
2000 }
2001 unlock_page(page);
7ff81078 2002 shrink_readahead_size_eio(filp, ra);
85462323
ON
2003 error = -EIO;
2004 goto readpage_error;
1da177e4
LT
2005 }
2006 unlock_page(page);
2007 }
2008
1da177e4
LT
2009 goto page_ok;
2010
2011readpage_error:
2012 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 2013 put_page(page);
1da177e4
LT
2014 goto out;
2015
2016no_cached_page:
2017 /*
2018 * Ok, it wasn't cached, so we need to create a new
2019 * page..
2020 */
eb2be189
NP
2021 page = page_cache_alloc_cold(mapping);
2022 if (!page) {
6e58e79d 2023 error = -ENOMEM;
eb2be189 2024 goto out;
1da177e4 2025 }
6afdb859 2026 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2027 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2028 if (error) {
09cbfeaf 2029 put_page(page);
6e58e79d
AV
2030 if (error == -EEXIST) {
2031 error = 0;
1da177e4 2032 goto find_page;
6e58e79d 2033 }
1da177e4
LT
2034 goto out;
2035 }
1da177e4
LT
2036 goto readpage;
2037 }
2038
2039out:
7ff81078 2040 ra->prev_pos = prev_index;
09cbfeaf 2041 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2042 ra->prev_pos |= prev_offset;
1da177e4 2043
09cbfeaf 2044 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2045 file_accessed(filp);
6e58e79d 2046 return written ? written : error;
1da177e4
LT
2047}
2048
485bb99b 2049/**
6abd2322 2050 * generic_file_read_iter - generic filesystem read routine
485bb99b 2051 * @iocb: kernel I/O control block
6abd2322 2052 * @iter: destination for the data read
485bb99b 2053 *
6abd2322 2054 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2055 * that can use the page cache directly.
2056 */
2057ssize_t
ed978a81 2058generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2059{
ed978a81 2060 struct file *file = iocb->ki_filp;
cb66a7a1 2061 ssize_t retval = 0;
e7080a43
NS
2062 size_t count = iov_iter_count(iter);
2063
2064 if (!count)
2065 goto out; /* skip atime */
1da177e4 2066
2ba48ce5 2067 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2068 struct address_space *mapping = file->f_mapping;
2069 struct inode *inode = mapping->host;
543ade1f 2070 loff_t size;
1da177e4 2071
1da177e4 2072 size = i_size_read(inode);
c64fb5c7
CH
2073 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2074 iocb->ki_pos + count - 1);
0d5b0cf2
CH
2075 if (retval < 0)
2076 goto out;
d8d3d94b 2077
0d5b0cf2
CH
2078 file_accessed(file);
2079
5ecda137 2080 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2081 if (retval >= 0) {
c64fb5c7 2082 iocb->ki_pos += retval;
5ecda137 2083 count -= retval;
9fe55eea 2084 }
5b47d59a 2085 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2086
9fe55eea
SW
2087 /*
2088 * Btrfs can have a short DIO read if we encounter
2089 * compressed extents, so if there was an error, or if
2090 * we've already read everything we wanted to, or if
2091 * there was a short read because we hit EOF, go ahead
2092 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2093 * the rest of the read. Buffered reads will not work for
2094 * DAX files, so don't bother trying.
9fe55eea 2095 */
5ecda137 2096 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2097 IS_DAX(inode))
9fe55eea 2098 goto out;
1da177e4
LT
2099 }
2100
c64fb5c7 2101 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2102out:
2103 return retval;
2104}
ed978a81 2105EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2106
1da177e4 2107#ifdef CONFIG_MMU
485bb99b
RD
2108/**
2109 * page_cache_read - adds requested page to the page cache if not already there
2110 * @file: file to read
2111 * @offset: page index
62eb320a 2112 * @gfp_mask: memory allocation flags
485bb99b 2113 *
1da177e4
LT
2114 * This adds the requested page to the page cache if it isn't already there,
2115 * and schedules an I/O to read in its contents from disk.
2116 */
c20cd45e 2117static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2118{
2119 struct address_space *mapping = file->f_mapping;
99dadfdd 2120 struct page *page;
994fc28c 2121 int ret;
1da177e4 2122
994fc28c 2123 do {
c20cd45e 2124 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2125 if (!page)
2126 return -ENOMEM;
2127
c20cd45e 2128 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2129 if (ret == 0)
2130 ret = mapping->a_ops->readpage(file, page);
2131 else if (ret == -EEXIST)
2132 ret = 0; /* losing race to add is OK */
1da177e4 2133
09cbfeaf 2134 put_page(page);
1da177e4 2135
994fc28c 2136 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2137
994fc28c 2138 return ret;
1da177e4
LT
2139}
2140
2141#define MMAP_LOTSAMISS (100)
2142
ef00e08e
LT
2143/*
2144 * Synchronous readahead happens when we don't even find
2145 * a page in the page cache at all.
2146 */
2147static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2148 struct file_ra_state *ra,
2149 struct file *file,
2150 pgoff_t offset)
2151{
ef00e08e
LT
2152 struct address_space *mapping = file->f_mapping;
2153
2154 /* If we don't want any read-ahead, don't bother */
64363aad 2155 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2156 return;
275b12bf
WF
2157 if (!ra->ra_pages)
2158 return;
ef00e08e 2159
64363aad 2160 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2161 page_cache_sync_readahead(mapping, ra, file, offset,
2162 ra->ra_pages);
ef00e08e
LT
2163 return;
2164 }
2165
207d04ba
AK
2166 /* Avoid banging the cache line if not needed */
2167 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2168 ra->mmap_miss++;
2169
2170 /*
2171 * Do we miss much more than hit in this file? If so,
2172 * stop bothering with read-ahead. It will only hurt.
2173 */
2174 if (ra->mmap_miss > MMAP_LOTSAMISS)
2175 return;
2176
d30a1100
WF
2177 /*
2178 * mmap read-around
2179 */
600e19af
RG
2180 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2181 ra->size = ra->ra_pages;
2182 ra->async_size = ra->ra_pages / 4;
275b12bf 2183 ra_submit(ra, mapping, file);
ef00e08e
LT
2184}
2185
2186/*
2187 * Asynchronous readahead happens when we find the page and PG_readahead,
2188 * so we want to possibly extend the readahead further..
2189 */
2190static void do_async_mmap_readahead(struct vm_area_struct *vma,
2191 struct file_ra_state *ra,
2192 struct file *file,
2193 struct page *page,
2194 pgoff_t offset)
2195{
2196 struct address_space *mapping = file->f_mapping;
2197
2198 /* If we don't want any read-ahead, don't bother */
64363aad 2199 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2200 return;
2201 if (ra->mmap_miss > 0)
2202 ra->mmap_miss--;
2203 if (PageReadahead(page))
2fad6f5d
WF
2204 page_cache_async_readahead(mapping, ra, file,
2205 page, offset, ra->ra_pages);
ef00e08e
LT
2206}
2207
485bb99b 2208/**
54cb8821 2209 * filemap_fault - read in file data for page fault handling
d0217ac0 2210 * @vmf: struct vm_fault containing details of the fault
485bb99b 2211 *
54cb8821 2212 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2213 * mapped memory region to read in file data during a page fault.
2214 *
2215 * The goto's are kind of ugly, but this streamlines the normal case of having
2216 * it in the page cache, and handles the special cases reasonably without
2217 * having a lot of duplicated code.
9a95f3cf
PC
2218 *
2219 * vma->vm_mm->mmap_sem must be held on entry.
2220 *
2221 * If our return value has VM_FAULT_RETRY set, it's because
2222 * lock_page_or_retry() returned 0.
2223 * The mmap_sem has usually been released in this case.
2224 * See __lock_page_or_retry() for the exception.
2225 *
2226 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2227 * has not been released.
2228 *
2229 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2230 */
11bac800 2231int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2232{
2233 int error;
11bac800 2234 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2235 struct address_space *mapping = file->f_mapping;
2236 struct file_ra_state *ra = &file->f_ra;
2237 struct inode *inode = mapping->host;
ef00e08e 2238 pgoff_t offset = vmf->pgoff;
9ab2594f 2239 pgoff_t max_off;
1da177e4 2240 struct page *page;
83c54070 2241 int ret = 0;
1da177e4 2242
9ab2594f
MW
2243 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2244 if (unlikely(offset >= max_off))
5307cc1a 2245 return VM_FAULT_SIGBUS;
1da177e4 2246
1da177e4 2247 /*
49426420 2248 * Do we have something in the page cache already?
1da177e4 2249 */
ef00e08e 2250 page = find_get_page(mapping, offset);
45cac65b 2251 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2252 /*
ef00e08e
LT
2253 * We found the page, so try async readahead before
2254 * waiting for the lock.
1da177e4 2255 */
11bac800 2256 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2257 } else if (!page) {
ef00e08e 2258 /* No page in the page cache at all */
11bac800 2259 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2260 count_vm_event(PGMAJFAULT);
11bac800 2261 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2262 ret = VM_FAULT_MAJOR;
2263retry_find:
b522c94d 2264 page = find_get_page(mapping, offset);
1da177e4
LT
2265 if (!page)
2266 goto no_cached_page;
2267 }
2268
11bac800 2269 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2270 put_page(page);
d065bd81 2271 return ret | VM_FAULT_RETRY;
d88c0922 2272 }
b522c94d
ML
2273
2274 /* Did it get truncated? */
2275 if (unlikely(page->mapping != mapping)) {
2276 unlock_page(page);
2277 put_page(page);
2278 goto retry_find;
2279 }
309381fe 2280 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2281
1da177e4 2282 /*
d00806b1
NP
2283 * We have a locked page in the page cache, now we need to check
2284 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2285 */
d00806b1 2286 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2287 goto page_not_uptodate;
2288
ef00e08e
LT
2289 /*
2290 * Found the page and have a reference on it.
2291 * We must recheck i_size under page lock.
2292 */
9ab2594f
MW
2293 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2294 if (unlikely(offset >= max_off)) {
d00806b1 2295 unlock_page(page);
09cbfeaf 2296 put_page(page);
5307cc1a 2297 return VM_FAULT_SIGBUS;
d00806b1
NP
2298 }
2299
d0217ac0 2300 vmf->page = page;
83c54070 2301 return ret | VM_FAULT_LOCKED;
1da177e4 2302
1da177e4
LT
2303no_cached_page:
2304 /*
2305 * We're only likely to ever get here if MADV_RANDOM is in
2306 * effect.
2307 */
c20cd45e 2308 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2309
2310 /*
2311 * The page we want has now been added to the page cache.
2312 * In the unlikely event that someone removed it in the
2313 * meantime, we'll just come back here and read it again.
2314 */
2315 if (error >= 0)
2316 goto retry_find;
2317
2318 /*
2319 * An error return from page_cache_read can result if the
2320 * system is low on memory, or a problem occurs while trying
2321 * to schedule I/O.
2322 */
2323 if (error == -ENOMEM)
d0217ac0
NP
2324 return VM_FAULT_OOM;
2325 return VM_FAULT_SIGBUS;
1da177e4
LT
2326
2327page_not_uptodate:
1da177e4
LT
2328 /*
2329 * Umm, take care of errors if the page isn't up-to-date.
2330 * Try to re-read it _once_. We do this synchronously,
2331 * because there really aren't any performance issues here
2332 * and we need to check for errors.
2333 */
1da177e4 2334 ClearPageError(page);
994fc28c 2335 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2336 if (!error) {
2337 wait_on_page_locked(page);
2338 if (!PageUptodate(page))
2339 error = -EIO;
2340 }
09cbfeaf 2341 put_page(page);
d00806b1
NP
2342
2343 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2344 goto retry_find;
1da177e4 2345
d00806b1 2346 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2347 shrink_readahead_size_eio(file, ra);
d0217ac0 2348 return VM_FAULT_SIGBUS;
54cb8821
NP
2349}
2350EXPORT_SYMBOL(filemap_fault);
2351
82b0f8c3 2352void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2353 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2354{
2355 struct radix_tree_iter iter;
2356 void **slot;
82b0f8c3 2357 struct file *file = vmf->vma->vm_file;
f1820361 2358 struct address_space *mapping = file->f_mapping;
bae473a4 2359 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2360 unsigned long max_idx;
83929372 2361 struct page *head, *page;
f1820361
KS
2362
2363 rcu_read_lock();
bae473a4
KS
2364 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2365 start_pgoff) {
2366 if (iter.index > end_pgoff)
f1820361
KS
2367 break;
2368repeat:
2369 page = radix_tree_deref_slot(slot);
2370 if (unlikely(!page))
2371 goto next;
2372 if (radix_tree_exception(page)) {
2cf938aa
MW
2373 if (radix_tree_deref_retry(page)) {
2374 slot = radix_tree_iter_retry(&iter);
2375 continue;
2376 }
2377 goto next;
f1820361
KS
2378 }
2379
83929372
KS
2380 head = compound_head(page);
2381 if (!page_cache_get_speculative(head))
f1820361
KS
2382 goto repeat;
2383
83929372
KS
2384 /* The page was split under us? */
2385 if (compound_head(page) != head) {
2386 put_page(head);
2387 goto repeat;
2388 }
2389
f1820361
KS
2390 /* Has the page moved? */
2391 if (unlikely(page != *slot)) {
83929372 2392 put_page(head);
f1820361
KS
2393 goto repeat;
2394 }
2395
2396 if (!PageUptodate(page) ||
2397 PageReadahead(page) ||
2398 PageHWPoison(page))
2399 goto skip;
2400 if (!trylock_page(page))
2401 goto skip;
2402
2403 if (page->mapping != mapping || !PageUptodate(page))
2404 goto unlock;
2405
9ab2594f
MW
2406 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2407 if (page->index >= max_idx)
f1820361
KS
2408 goto unlock;
2409
f1820361
KS
2410 if (file->f_ra.mmap_miss > 0)
2411 file->f_ra.mmap_miss--;
7267ec00 2412
82b0f8c3
JK
2413 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2414 if (vmf->pte)
2415 vmf->pte += iter.index - last_pgoff;
7267ec00 2416 last_pgoff = iter.index;
82b0f8c3 2417 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2418 goto unlock;
f1820361
KS
2419 unlock_page(page);
2420 goto next;
2421unlock:
2422 unlock_page(page);
2423skip:
09cbfeaf 2424 put_page(page);
f1820361 2425next:
7267ec00 2426 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2427 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2428 break;
bae473a4 2429 if (iter.index == end_pgoff)
f1820361
KS
2430 break;
2431 }
2432 rcu_read_unlock();
2433}
2434EXPORT_SYMBOL(filemap_map_pages);
2435
11bac800 2436int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2437{
2438 struct page *page = vmf->page;
11bac800 2439 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2440 int ret = VM_FAULT_LOCKED;
2441
14da9200 2442 sb_start_pagefault(inode->i_sb);
11bac800 2443 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2444 lock_page(page);
2445 if (page->mapping != inode->i_mapping) {
2446 unlock_page(page);
2447 ret = VM_FAULT_NOPAGE;
2448 goto out;
2449 }
14da9200
JK
2450 /*
2451 * We mark the page dirty already here so that when freeze is in
2452 * progress, we are guaranteed that writeback during freezing will
2453 * see the dirty page and writeprotect it again.
2454 */
2455 set_page_dirty(page);
1d1d1a76 2456 wait_for_stable_page(page);
4fcf1c62 2457out:
14da9200 2458 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2459 return ret;
2460}
2461EXPORT_SYMBOL(filemap_page_mkwrite);
2462
f0f37e2f 2463const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2464 .fault = filemap_fault,
f1820361 2465 .map_pages = filemap_map_pages,
4fcf1c62 2466 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2467};
2468
2469/* This is used for a general mmap of a disk file */
2470
2471int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2472{
2473 struct address_space *mapping = file->f_mapping;
2474
2475 if (!mapping->a_ops->readpage)
2476 return -ENOEXEC;
2477 file_accessed(file);
2478 vma->vm_ops = &generic_file_vm_ops;
2479 return 0;
2480}
1da177e4
LT
2481
2482/*
2483 * This is for filesystems which do not implement ->writepage.
2484 */
2485int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2486{
2487 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2488 return -EINVAL;
2489 return generic_file_mmap(file, vma);
2490}
2491#else
2492int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2493{
2494 return -ENOSYS;
2495}
2496int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2497{
2498 return -ENOSYS;
2499}
2500#endif /* CONFIG_MMU */
2501
2502EXPORT_SYMBOL(generic_file_mmap);
2503EXPORT_SYMBOL(generic_file_readonly_mmap);
2504
67f9fd91
SL
2505static struct page *wait_on_page_read(struct page *page)
2506{
2507 if (!IS_ERR(page)) {
2508 wait_on_page_locked(page);
2509 if (!PageUptodate(page)) {
09cbfeaf 2510 put_page(page);
67f9fd91
SL
2511 page = ERR_PTR(-EIO);
2512 }
2513 }
2514 return page;
2515}
2516
32b63529 2517static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2518 pgoff_t index,
5e5358e7 2519 int (*filler)(void *, struct page *),
0531b2aa
LT
2520 void *data,
2521 gfp_t gfp)
1da177e4 2522{
eb2be189 2523 struct page *page;
1da177e4
LT
2524 int err;
2525repeat:
2526 page = find_get_page(mapping, index);
2527 if (!page) {
0531b2aa 2528 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2529 if (!page)
2530 return ERR_PTR(-ENOMEM);
e6f67b8c 2531 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2532 if (unlikely(err)) {
09cbfeaf 2533 put_page(page);
eb2be189
NP
2534 if (err == -EEXIST)
2535 goto repeat;
1da177e4 2536 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2537 return ERR_PTR(err);
2538 }
32b63529
MG
2539
2540filler:
1da177e4
LT
2541 err = filler(data, page);
2542 if (err < 0) {
09cbfeaf 2543 put_page(page);
32b63529 2544 return ERR_PTR(err);
1da177e4 2545 }
1da177e4 2546
32b63529
MG
2547 page = wait_on_page_read(page);
2548 if (IS_ERR(page))
2549 return page;
2550 goto out;
2551 }
1da177e4
LT
2552 if (PageUptodate(page))
2553 goto out;
2554
ebded027
MG
2555 /*
2556 * Page is not up to date and may be locked due one of the following
2557 * case a: Page is being filled and the page lock is held
2558 * case b: Read/write error clearing the page uptodate status
2559 * case c: Truncation in progress (page locked)
2560 * case d: Reclaim in progress
2561 *
2562 * Case a, the page will be up to date when the page is unlocked.
2563 * There is no need to serialise on the page lock here as the page
2564 * is pinned so the lock gives no additional protection. Even if the
2565 * the page is truncated, the data is still valid if PageUptodate as
2566 * it's a race vs truncate race.
2567 * Case b, the page will not be up to date
2568 * Case c, the page may be truncated but in itself, the data may still
2569 * be valid after IO completes as it's a read vs truncate race. The
2570 * operation must restart if the page is not uptodate on unlock but
2571 * otherwise serialising on page lock to stabilise the mapping gives
2572 * no additional guarantees to the caller as the page lock is
2573 * released before return.
2574 * Case d, similar to truncation. If reclaim holds the page lock, it
2575 * will be a race with remove_mapping that determines if the mapping
2576 * is valid on unlock but otherwise the data is valid and there is
2577 * no need to serialise with page lock.
2578 *
2579 * As the page lock gives no additional guarantee, we optimistically
2580 * wait on the page to be unlocked and check if it's up to date and
2581 * use the page if it is. Otherwise, the page lock is required to
2582 * distinguish between the different cases. The motivation is that we
2583 * avoid spurious serialisations and wakeups when multiple processes
2584 * wait on the same page for IO to complete.
2585 */
2586 wait_on_page_locked(page);
2587 if (PageUptodate(page))
2588 goto out;
2589
2590 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2591 lock_page(page);
ebded027
MG
2592
2593 /* Case c or d, restart the operation */
1da177e4
LT
2594 if (!page->mapping) {
2595 unlock_page(page);
09cbfeaf 2596 put_page(page);
32b63529 2597 goto repeat;
1da177e4 2598 }
ebded027
MG
2599
2600 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2601 if (PageUptodate(page)) {
2602 unlock_page(page);
2603 goto out;
2604 }
32b63529
MG
2605 goto filler;
2606
c855ff37 2607out:
6fe6900e
NP
2608 mark_page_accessed(page);
2609 return page;
2610}
0531b2aa
LT
2611
2612/**
67f9fd91 2613 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2614 * @mapping: the page's address_space
2615 * @index: the page index
2616 * @filler: function to perform the read
5e5358e7 2617 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2618 *
0531b2aa 2619 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2620 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2621 *
2622 * If the page does not get brought uptodate, return -EIO.
2623 */
67f9fd91 2624struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2625 pgoff_t index,
5e5358e7 2626 int (*filler)(void *, struct page *),
0531b2aa
LT
2627 void *data)
2628{
2629 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2630}
67f9fd91 2631EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2632
2633/**
2634 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2635 * @mapping: the page's address_space
2636 * @index: the page index
2637 * @gfp: the page allocator flags to use if allocating
2638 *
2639 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2640 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2641 *
2642 * If the page does not get brought uptodate, return -EIO.
2643 */
2644struct page *read_cache_page_gfp(struct address_space *mapping,
2645 pgoff_t index,
2646 gfp_t gfp)
2647{
2648 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2649
67f9fd91 2650 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2651}
2652EXPORT_SYMBOL(read_cache_page_gfp);
2653
1da177e4
LT
2654/*
2655 * Performs necessary checks before doing a write
2656 *
485bb99b 2657 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2658 * Returns appropriate error code that caller should return or
2659 * zero in case that write should be allowed.
2660 */
3309dd04 2661inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2662{
3309dd04 2663 struct file *file = iocb->ki_filp;
1da177e4 2664 struct inode *inode = file->f_mapping->host;
59e99e5b 2665 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2666 loff_t pos;
1da177e4 2667
3309dd04
AV
2668 if (!iov_iter_count(from))
2669 return 0;
1da177e4 2670
0fa6b005 2671 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2672 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2673 iocb->ki_pos = i_size_read(inode);
1da177e4 2674
3309dd04 2675 pos = iocb->ki_pos;
1da177e4 2676
0fa6b005 2677 if (limit != RLIM_INFINITY) {
3309dd04 2678 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2679 send_sig(SIGXFSZ, current, 0);
2680 return -EFBIG;
1da177e4 2681 }
3309dd04 2682 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2683 }
2684
2685 /*
2686 * LFS rule
2687 */
3309dd04 2688 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2689 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2690 if (pos >= MAX_NON_LFS)
1da177e4 2691 return -EFBIG;
3309dd04 2692 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2693 }
2694
2695 /*
2696 * Are we about to exceed the fs block limit ?
2697 *
2698 * If we have written data it becomes a short write. If we have
2699 * exceeded without writing data we send a signal and return EFBIG.
2700 * Linus frestrict idea will clean these up nicely..
2701 */
3309dd04
AV
2702 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2703 return -EFBIG;
1da177e4 2704
3309dd04
AV
2705 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2706 return iov_iter_count(from);
1da177e4
LT
2707}
2708EXPORT_SYMBOL(generic_write_checks);
2709
afddba49
NP
2710int pagecache_write_begin(struct file *file, struct address_space *mapping,
2711 loff_t pos, unsigned len, unsigned flags,
2712 struct page **pagep, void **fsdata)
2713{
2714 const struct address_space_operations *aops = mapping->a_ops;
2715
4e02ed4b 2716 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2717 pagep, fsdata);
afddba49
NP
2718}
2719EXPORT_SYMBOL(pagecache_write_begin);
2720
2721int pagecache_write_end(struct file *file, struct address_space *mapping,
2722 loff_t pos, unsigned len, unsigned copied,
2723 struct page *page, void *fsdata)
2724{
2725 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2726
4e02ed4b 2727 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2728}
2729EXPORT_SYMBOL(pagecache_write_end);
2730
1da177e4 2731ssize_t
1af5bb49 2732generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2733{
2734 struct file *file = iocb->ki_filp;
2735 struct address_space *mapping = file->f_mapping;
2736 struct inode *inode = mapping->host;
1af5bb49 2737 loff_t pos = iocb->ki_pos;
1da177e4 2738 ssize_t written;
a969e903
CH
2739 size_t write_len;
2740 pgoff_t end;
1da177e4 2741
0c949334 2742 write_len = iov_iter_count(from);
09cbfeaf 2743 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2744
48b47c56 2745 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2746 if (written)
2747 goto out;
2748
2749 /*
2750 * After a write we want buffered reads to be sure to go to disk to get
2751 * the new data. We invalidate clean cached page from the region we're
2752 * about to write. We do this *before* the write so that we can return
6ccfa806 2753 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2754 */
55635ba7 2755 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2756 pos >> PAGE_SHIFT, end);
55635ba7
AR
2757 /*
2758 * If a page can not be invalidated, return 0 to fall back
2759 * to buffered write.
2760 */
2761 if (written) {
2762 if (written == -EBUSY)
2763 return 0;
2764 goto out;
a969e903
CH
2765 }
2766
639a93a5 2767 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2768
2769 /*
2770 * Finally, try again to invalidate clean pages which might have been
2771 * cached by non-direct readahead, or faulted in by get_user_pages()
2772 * if the source of the write was an mmap'ed region of the file
2773 * we're writing. Either one is a pretty crazy thing to do,
2774 * so we don't support it 100%. If this invalidation
2775 * fails, tough, the write still worked...
2776 */
55635ba7
AR
2777 invalidate_inode_pages2_range(mapping,
2778 pos >> PAGE_SHIFT, end);
a969e903 2779
1da177e4 2780 if (written > 0) {
0116651c 2781 pos += written;
639a93a5 2782 write_len -= written;
0116651c
NK
2783 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2784 i_size_write(inode, pos);
1da177e4
LT
2785 mark_inode_dirty(inode);
2786 }
5cb6c6c7 2787 iocb->ki_pos = pos;
1da177e4 2788 }
639a93a5 2789 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2790out:
1da177e4
LT
2791 return written;
2792}
2793EXPORT_SYMBOL(generic_file_direct_write);
2794
eb2be189
NP
2795/*
2796 * Find or create a page at the given pagecache position. Return the locked
2797 * page. This function is specifically for buffered writes.
2798 */
54566b2c
NP
2799struct page *grab_cache_page_write_begin(struct address_space *mapping,
2800 pgoff_t index, unsigned flags)
eb2be189 2801{
eb2be189 2802 struct page *page;
bbddabe2 2803 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2804
54566b2c 2805 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2806 fgp_flags |= FGP_NOFS;
2807
2808 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2809 mapping_gfp_mask(mapping));
c585a267 2810 if (page)
2457aec6 2811 wait_for_stable_page(page);
eb2be189 2812
eb2be189
NP
2813 return page;
2814}
54566b2c 2815EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2816
3b93f911 2817ssize_t generic_perform_write(struct file *file,
afddba49
NP
2818 struct iov_iter *i, loff_t pos)
2819{
2820 struct address_space *mapping = file->f_mapping;
2821 const struct address_space_operations *a_ops = mapping->a_ops;
2822 long status = 0;
2823 ssize_t written = 0;
674b892e
NP
2824 unsigned int flags = 0;
2825
afddba49
NP
2826 do {
2827 struct page *page;
afddba49
NP
2828 unsigned long offset; /* Offset into pagecache page */
2829 unsigned long bytes; /* Bytes to write to page */
2830 size_t copied; /* Bytes copied from user */
2831 void *fsdata;
2832
09cbfeaf
KS
2833 offset = (pos & (PAGE_SIZE - 1));
2834 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2835 iov_iter_count(i));
2836
2837again:
00a3d660
LT
2838 /*
2839 * Bring in the user page that we will copy from _first_.
2840 * Otherwise there's a nasty deadlock on copying from the
2841 * same page as we're writing to, without it being marked
2842 * up-to-date.
2843 *
2844 * Not only is this an optimisation, but it is also required
2845 * to check that the address is actually valid, when atomic
2846 * usercopies are used, below.
2847 */
2848 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2849 status = -EFAULT;
2850 break;
2851 }
2852
296291cd
JK
2853 if (fatal_signal_pending(current)) {
2854 status = -EINTR;
2855 break;
2856 }
2857
674b892e 2858 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2859 &page, &fsdata);
2457aec6 2860 if (unlikely(status < 0))
afddba49
NP
2861 break;
2862
931e80e4 2863 if (mapping_writably_mapped(mapping))
2864 flush_dcache_page(page);
00a3d660 2865
afddba49 2866 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2867 flush_dcache_page(page);
2868
2869 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2870 page, fsdata);
2871 if (unlikely(status < 0))
2872 break;
2873 copied = status;
2874
2875 cond_resched();
2876
124d3b70 2877 iov_iter_advance(i, copied);
afddba49
NP
2878 if (unlikely(copied == 0)) {
2879 /*
2880 * If we were unable to copy any data at all, we must
2881 * fall back to a single segment length write.
2882 *
2883 * If we didn't fallback here, we could livelock
2884 * because not all segments in the iov can be copied at
2885 * once without a pagefault.
2886 */
09cbfeaf 2887 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2888 iov_iter_single_seg_count(i));
2889 goto again;
2890 }
afddba49
NP
2891 pos += copied;
2892 written += copied;
2893
2894 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2895 } while (iov_iter_count(i));
2896
2897 return written ? written : status;
2898}
3b93f911 2899EXPORT_SYMBOL(generic_perform_write);
1da177e4 2900
e4dd9de3 2901/**
8174202b 2902 * __generic_file_write_iter - write data to a file
e4dd9de3 2903 * @iocb: IO state structure (file, offset, etc.)
8174202b 2904 * @from: iov_iter with data to write
e4dd9de3
JK
2905 *
2906 * This function does all the work needed for actually writing data to a
2907 * file. It does all basic checks, removes SUID from the file, updates
2908 * modification times and calls proper subroutines depending on whether we
2909 * do direct IO or a standard buffered write.
2910 *
2911 * It expects i_mutex to be grabbed unless we work on a block device or similar
2912 * object which does not need locking at all.
2913 *
2914 * This function does *not* take care of syncing data in case of O_SYNC write.
2915 * A caller has to handle it. This is mainly due to the fact that we want to
2916 * avoid syncing under i_mutex.
2917 */
8174202b 2918ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2919{
2920 struct file *file = iocb->ki_filp;
fb5527e6 2921 struct address_space * mapping = file->f_mapping;
1da177e4 2922 struct inode *inode = mapping->host;
3b93f911 2923 ssize_t written = 0;
1da177e4 2924 ssize_t err;
3b93f911 2925 ssize_t status;
1da177e4 2926
1da177e4 2927 /* We can write back this queue in page reclaim */
de1414a6 2928 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2929 err = file_remove_privs(file);
1da177e4
LT
2930 if (err)
2931 goto out;
2932
c3b2da31
JB
2933 err = file_update_time(file);
2934 if (err)
2935 goto out;
1da177e4 2936
2ba48ce5 2937 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2938 loff_t pos, endbyte;
fb5527e6 2939
1af5bb49 2940 written = generic_file_direct_write(iocb, from);
1da177e4 2941 /*
fbbbad4b
MW
2942 * If the write stopped short of completing, fall back to
2943 * buffered writes. Some filesystems do this for writes to
2944 * holes, for example. For DAX files, a buffered write will
2945 * not succeed (even if it did, DAX does not handle dirty
2946 * page-cache pages correctly).
1da177e4 2947 */
0b8def9d 2948 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2949 goto out;
2950
0b8def9d 2951 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2952 /*
3b93f911 2953 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2954 * then we want to return the number of bytes which were
2955 * direct-written, or the error code if that was zero. Note
2956 * that this differs from normal direct-io semantics, which
2957 * will return -EFOO even if some bytes were written.
2958 */
60bb4529 2959 if (unlikely(status < 0)) {
3b93f911 2960 err = status;
fb5527e6
JM
2961 goto out;
2962 }
fb5527e6
JM
2963 /*
2964 * We need to ensure that the page cache pages are written to
2965 * disk and invalidated to preserve the expected O_DIRECT
2966 * semantics.
2967 */
3b93f911 2968 endbyte = pos + status - 1;
0b8def9d 2969 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2970 if (err == 0) {
0b8def9d 2971 iocb->ki_pos = endbyte + 1;
3b93f911 2972 written += status;
fb5527e6 2973 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2974 pos >> PAGE_SHIFT,
2975 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2976 } else {
2977 /*
2978 * We don't know how much we wrote, so just return
2979 * the number of bytes which were direct-written
2980 */
2981 }
2982 } else {
0b8def9d
AV
2983 written = generic_perform_write(file, from, iocb->ki_pos);
2984 if (likely(written > 0))
2985 iocb->ki_pos += written;
fb5527e6 2986 }
1da177e4
LT
2987out:
2988 current->backing_dev_info = NULL;
2989 return written ? written : err;
2990}
8174202b 2991EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2992
e4dd9de3 2993/**
8174202b 2994 * generic_file_write_iter - write data to a file
e4dd9de3 2995 * @iocb: IO state structure
8174202b 2996 * @from: iov_iter with data to write
e4dd9de3 2997 *
8174202b 2998 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2999 * filesystems. It takes care of syncing the file in case of O_SYNC file
3000 * and acquires i_mutex as needed.
3001 */
8174202b 3002ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3003{
3004 struct file *file = iocb->ki_filp;
148f948b 3005 struct inode *inode = file->f_mapping->host;
1da177e4 3006 ssize_t ret;
1da177e4 3007
5955102c 3008 inode_lock(inode);
3309dd04
AV
3009 ret = generic_write_checks(iocb, from);
3010 if (ret > 0)
5f380c7f 3011 ret = __generic_file_write_iter(iocb, from);
5955102c 3012 inode_unlock(inode);
1da177e4 3013
e2592217
CH
3014 if (ret > 0)
3015 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3016 return ret;
3017}
8174202b 3018EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3019
cf9a2ae8
DH
3020/**
3021 * try_to_release_page() - release old fs-specific metadata on a page
3022 *
3023 * @page: the page which the kernel is trying to free
3024 * @gfp_mask: memory allocation flags (and I/O mode)
3025 *
3026 * The address_space is to try to release any data against the page
0e056eb5 3027 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3028 * Otherwise return zero.
3029 *
266cf658
DH
3030 * This may also be called if PG_fscache is set on a page, indicating that the
3031 * page is known to the local caching routines.
3032 *
cf9a2ae8 3033 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3034 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3035 *
cf9a2ae8
DH
3036 */
3037int try_to_release_page(struct page *page, gfp_t gfp_mask)
3038{
3039 struct address_space * const mapping = page->mapping;
3040
3041 BUG_ON(!PageLocked(page));
3042 if (PageWriteback(page))
3043 return 0;
3044
3045 if (mapping && mapping->a_ops->releasepage)
3046 return mapping->a_ops->releasepage(page, gfp_mask);
3047 return try_to_free_buffers(page);
3048}
3049
3050EXPORT_SYMBOL(try_to_release_page);