]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/filemap.c
shmem: get_unmapped_area align huge page
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
c8c06efa 65 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
c8c06efa 71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
c8c06efa 74 * ->i_mmap_rwsem
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
c8c06efa 88 * ->i_mmap_rwsem
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
c8c06efa 109 * ->i_mmap_rwsem
9a3c531d 110 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
111 */
112
91b0abe3
JW
113static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115{
449dd698 116 struct radix_tree_node *node;
83929372 117 int i, nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 118
83929372
KS
119 VM_BUG_ON_PAGE(!PageLocked(page), page);
120 VM_BUG_ON_PAGE(PageTail(page), page);
121 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698
JW
122
123 if (shadow) {
83929372 124 mapping->nrexceptional += nr;
91b0abe3 125 /*
f9fe48be 126 * Make sure the nrexceptional update is committed before
91b0abe3
JW
127 * the nrpages update so that final truncate racing
128 * with reclaim does not see both counters 0 at the
129 * same time and miss a shadow entry.
130 */
131 smp_wmb();
449dd698 132 }
83929372 133 mapping->nrpages -= nr;
449dd698 134
83929372
KS
135 for (i = 0; i < nr; i++) {
136 node = radix_tree_replace_clear_tags(&mapping->page_tree,
137 page->index + i, shadow);
138 if (!node) {
139 VM_BUG_ON_PAGE(nr != 1, page);
449dd698 140 return;
83929372 141 }
449dd698 142
83929372
KS
143 workingset_node_pages_dec(node);
144 if (shadow)
145 workingset_node_shadows_inc(node);
146 else
147 if (__radix_tree_delete_node(&mapping->page_tree, node))
148 continue;
149
150 /*
151 * Track node that only contains shadow entries. DAX mappings
152 * contain no shadow entries and may contain other exceptional
153 * entries so skip those.
154 *
155 * Avoid acquiring the list_lru lock if already tracked.
156 * The list_empty() test is safe as node->private_list is
157 * protected by mapping->tree_lock.
158 */
159 if (!dax_mapping(mapping) && !workingset_node_pages(node) &&
160 list_empty(&node->private_list)) {
161 node->private_data = mapping;
162 list_lru_add(&workingset_shadow_nodes,
163 &node->private_list);
164 }
449dd698 165 }
91b0abe3
JW
166}
167
1da177e4 168/*
e64a782f 169 * Delete a page from the page cache and free it. Caller has to make
1da177e4 170 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 171 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 172 */
62cccb8c 173void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
174{
175 struct address_space *mapping = page->mapping;
83929372 176 int nr = hpage_nr_pages(page);
1da177e4 177
fe0bfaaf 178 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
179 /*
180 * if we're uptodate, flush out into the cleancache, otherwise
181 * invalidate any existing cleancache entries. We can't leave
182 * stale data around in the cleancache once our page is gone
183 */
184 if (PageUptodate(page) && PageMappedToDisk(page))
185 cleancache_put_page(page);
186 else
3167760f 187 cleancache_invalidate_page(mapping, page);
c515e1fd 188
83929372 189 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
190 VM_BUG_ON_PAGE(page_mapped(page), page);
191 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
192 int mapcount;
193
194 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
195 current->comm, page_to_pfn(page));
196 dump_page(page, "still mapped when deleted");
197 dump_stack();
198 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
199
200 mapcount = page_mapcount(page);
201 if (mapping_exiting(mapping) &&
202 page_count(page) >= mapcount + 2) {
203 /*
204 * All vmas have already been torn down, so it's
205 * a good bet that actually the page is unmapped,
206 * and we'd prefer not to leak it: if we're wrong,
207 * some other bad page check should catch it later.
208 */
209 page_mapcount_reset(page);
6d061f9f 210 page_ref_sub(page, mapcount);
06b241f3
HD
211 }
212 }
213
91b0abe3
JW
214 page_cache_tree_delete(mapping, page, shadow);
215
1da177e4 216 page->mapping = NULL;
b85e0eff 217 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 218
4165b9b4
MH
219 /* hugetlb pages do not participate in page cache accounting. */
220 if (!PageHuge(page))
83929372 221 __mod_zone_page_state(page_zone(page), NR_FILE_PAGES, -nr);
4b02108a 222 if (PageSwapBacked(page))
83929372 223 __mod_zone_page_state(page_zone(page), NR_SHMEM, -nr);
3a692790
LT
224
225 /*
b9ea2515
KK
226 * At this point page must be either written or cleaned by truncate.
227 * Dirty page here signals a bug and loss of unwritten data.
3a692790 228 *
b9ea2515
KK
229 * This fixes dirty accounting after removing the page entirely but
230 * leaves PageDirty set: it has no effect for truncated page and
231 * anyway will be cleared before returning page into buddy allocator.
3a692790 232 */
b9ea2515 233 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 234 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
235}
236
702cfbf9
MK
237/**
238 * delete_from_page_cache - delete page from page cache
239 * @page: the page which the kernel is trying to remove from page cache
240 *
241 * This must be called only on pages that have been verified to be in the page
242 * cache and locked. It will never put the page into the free list, the caller
243 * has a reference on the page.
244 */
245void delete_from_page_cache(struct page *page)
1da177e4 246{
83929372 247 struct address_space *mapping = page_mapping(page);
c4843a75 248 unsigned long flags;
6072d13c 249 void (*freepage)(struct page *);
1da177e4 250
cd7619d6 251 BUG_ON(!PageLocked(page));
1da177e4 252
6072d13c 253 freepage = mapping->a_ops->freepage;
c4843a75 254
c4843a75 255 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 256 __delete_from_page_cache(page, NULL);
c4843a75 257 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
258
259 if (freepage)
260 freepage(page);
83929372
KS
261
262 if (PageTransHuge(page) && !PageHuge(page)) {
263 page_ref_sub(page, HPAGE_PMD_NR);
264 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
265 } else {
266 put_page(page);
267 }
97cecb5a
MK
268}
269EXPORT_SYMBOL(delete_from_page_cache);
270
865ffef3
DM
271static int filemap_check_errors(struct address_space *mapping)
272{
273 int ret = 0;
274 /* Check for outstanding write errors */
7fcbbaf1
JA
275 if (test_bit(AS_ENOSPC, &mapping->flags) &&
276 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 277 ret = -ENOSPC;
7fcbbaf1
JA
278 if (test_bit(AS_EIO, &mapping->flags) &&
279 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
280 ret = -EIO;
281 return ret;
282}
283
1da177e4 284/**
485bb99b 285 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
286 * @mapping: address space structure to write
287 * @start: offset in bytes where the range starts
469eb4d0 288 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 289 * @sync_mode: enable synchronous operation
1da177e4 290 *
485bb99b
RD
291 * Start writeback against all of a mapping's dirty pages that lie
292 * within the byte offsets <start, end> inclusive.
293 *
1da177e4 294 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 295 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
296 * these two operations is that if a dirty page/buffer is encountered, it must
297 * be waited upon, and not just skipped over.
298 */
ebcf28e1
AM
299int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
300 loff_t end, int sync_mode)
1da177e4
LT
301{
302 int ret;
303 struct writeback_control wbc = {
304 .sync_mode = sync_mode,
05fe478d 305 .nr_to_write = LONG_MAX,
111ebb6e
OH
306 .range_start = start,
307 .range_end = end,
1da177e4
LT
308 };
309
310 if (!mapping_cap_writeback_dirty(mapping))
311 return 0;
312
b16b1deb 313 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 314 ret = do_writepages(mapping, &wbc);
b16b1deb 315 wbc_detach_inode(&wbc);
1da177e4
LT
316 return ret;
317}
318
319static inline int __filemap_fdatawrite(struct address_space *mapping,
320 int sync_mode)
321{
111ebb6e 322 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
323}
324
325int filemap_fdatawrite(struct address_space *mapping)
326{
327 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
328}
329EXPORT_SYMBOL(filemap_fdatawrite);
330
f4c0a0fd 331int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 332 loff_t end)
1da177e4
LT
333{
334 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
335}
f4c0a0fd 336EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 337
485bb99b
RD
338/**
339 * filemap_flush - mostly a non-blocking flush
340 * @mapping: target address_space
341 *
1da177e4
LT
342 * This is a mostly non-blocking flush. Not suitable for data-integrity
343 * purposes - I/O may not be started against all dirty pages.
344 */
345int filemap_flush(struct address_space *mapping)
346{
347 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
348}
349EXPORT_SYMBOL(filemap_flush);
350
aa750fd7
JN
351static int __filemap_fdatawait_range(struct address_space *mapping,
352 loff_t start_byte, loff_t end_byte)
1da177e4 353{
09cbfeaf
KS
354 pgoff_t index = start_byte >> PAGE_SHIFT;
355 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
356 struct pagevec pvec;
357 int nr_pages;
aa750fd7 358 int ret = 0;
1da177e4 359
94004ed7 360 if (end_byte < start_byte)
865ffef3 361 goto out;
1da177e4
LT
362
363 pagevec_init(&pvec, 0);
1da177e4
LT
364 while ((index <= end) &&
365 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
366 PAGECACHE_TAG_WRITEBACK,
367 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
368 unsigned i;
369
370 for (i = 0; i < nr_pages; i++) {
371 struct page *page = pvec.pages[i];
372
373 /* until radix tree lookup accepts end_index */
374 if (page->index > end)
375 continue;
376
377 wait_on_page_writeback(page);
212260aa 378 if (TestClearPageError(page))
1da177e4
LT
379 ret = -EIO;
380 }
381 pagevec_release(&pvec);
382 cond_resched();
383 }
865ffef3 384out:
aa750fd7
JN
385 return ret;
386}
387
388/**
389 * filemap_fdatawait_range - wait for writeback to complete
390 * @mapping: address space structure to wait for
391 * @start_byte: offset in bytes where the range starts
392 * @end_byte: offset in bytes where the range ends (inclusive)
393 *
394 * Walk the list of under-writeback pages of the given address space
395 * in the given range and wait for all of them. Check error status of
396 * the address space and return it.
397 *
398 * Since the error status of the address space is cleared by this function,
399 * callers are responsible for checking the return value and handling and/or
400 * reporting the error.
401 */
402int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
403 loff_t end_byte)
404{
405 int ret, ret2;
406
407 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
408 ret2 = filemap_check_errors(mapping);
409 if (!ret)
410 ret = ret2;
1da177e4
LT
411
412 return ret;
413}
d3bccb6f
JK
414EXPORT_SYMBOL(filemap_fdatawait_range);
415
aa750fd7
JN
416/**
417 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
418 * @mapping: address space structure to wait for
419 *
420 * Walk the list of under-writeback pages of the given address space
421 * and wait for all of them. Unlike filemap_fdatawait(), this function
422 * does not clear error status of the address space.
423 *
424 * Use this function if callers don't handle errors themselves. Expected
425 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
426 * fsfreeze(8)
427 */
428void filemap_fdatawait_keep_errors(struct address_space *mapping)
429{
430 loff_t i_size = i_size_read(mapping->host);
431
432 if (i_size == 0)
433 return;
434
435 __filemap_fdatawait_range(mapping, 0, i_size - 1);
436}
437
1da177e4 438/**
485bb99b 439 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 440 * @mapping: address space structure to wait for
485bb99b
RD
441 *
442 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
443 * and wait for all of them. Check error status of the address space
444 * and return it.
445 *
446 * Since the error status of the address space is cleared by this function,
447 * callers are responsible for checking the return value and handling and/or
448 * reporting the error.
1da177e4
LT
449 */
450int filemap_fdatawait(struct address_space *mapping)
451{
452 loff_t i_size = i_size_read(mapping->host);
453
454 if (i_size == 0)
455 return 0;
456
94004ed7 457 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
458}
459EXPORT_SYMBOL(filemap_fdatawait);
460
461int filemap_write_and_wait(struct address_space *mapping)
462{
28fd1298 463 int err = 0;
1da177e4 464
7f6d5b52
RZ
465 if ((!dax_mapping(mapping) && mapping->nrpages) ||
466 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
467 err = filemap_fdatawrite(mapping);
468 /*
469 * Even if the above returned error, the pages may be
470 * written partially (e.g. -ENOSPC), so we wait for it.
471 * But the -EIO is special case, it may indicate the worst
472 * thing (e.g. bug) happened, so we avoid waiting for it.
473 */
474 if (err != -EIO) {
475 int err2 = filemap_fdatawait(mapping);
476 if (!err)
477 err = err2;
478 }
865ffef3
DM
479 } else {
480 err = filemap_check_errors(mapping);
1da177e4 481 }
28fd1298 482 return err;
1da177e4 483}
28fd1298 484EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 485
485bb99b
RD
486/**
487 * filemap_write_and_wait_range - write out & wait on a file range
488 * @mapping: the address_space for the pages
489 * @lstart: offset in bytes where the range starts
490 * @lend: offset in bytes where the range ends (inclusive)
491 *
469eb4d0
AM
492 * Write out and wait upon file offsets lstart->lend, inclusive.
493 *
494 * Note that `lend' is inclusive (describes the last byte to be written) so
495 * that this function can be used to write to the very end-of-file (end = -1).
496 */
1da177e4
LT
497int filemap_write_and_wait_range(struct address_space *mapping,
498 loff_t lstart, loff_t lend)
499{
28fd1298 500 int err = 0;
1da177e4 501
7f6d5b52
RZ
502 if ((!dax_mapping(mapping) && mapping->nrpages) ||
503 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
504 err = __filemap_fdatawrite_range(mapping, lstart, lend,
505 WB_SYNC_ALL);
506 /* See comment of filemap_write_and_wait() */
507 if (err != -EIO) {
94004ed7
CH
508 int err2 = filemap_fdatawait_range(mapping,
509 lstart, lend);
28fd1298
OH
510 if (!err)
511 err = err2;
512 }
865ffef3
DM
513 } else {
514 err = filemap_check_errors(mapping);
1da177e4 515 }
28fd1298 516 return err;
1da177e4 517}
f6995585 518EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 519
ef6a3c63
MS
520/**
521 * replace_page_cache_page - replace a pagecache page with a new one
522 * @old: page to be replaced
523 * @new: page to replace with
524 * @gfp_mask: allocation mode
525 *
526 * This function replaces a page in the pagecache with a new one. On
527 * success it acquires the pagecache reference for the new page and
528 * drops it for the old page. Both the old and new pages must be
529 * locked. This function does not add the new page to the LRU, the
530 * caller must do that.
531 *
532 * The remove + add is atomic. The only way this function can fail is
533 * memory allocation failure.
534 */
535int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
536{
537 int error;
ef6a3c63 538
309381fe
SL
539 VM_BUG_ON_PAGE(!PageLocked(old), old);
540 VM_BUG_ON_PAGE(!PageLocked(new), new);
541 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 542
ef6a3c63
MS
543 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
544 if (!error) {
545 struct address_space *mapping = old->mapping;
546 void (*freepage)(struct page *);
c4843a75 547 unsigned long flags;
ef6a3c63
MS
548
549 pgoff_t offset = old->index;
550 freepage = mapping->a_ops->freepage;
551
09cbfeaf 552 get_page(new);
ef6a3c63
MS
553 new->mapping = mapping;
554 new->index = offset;
555
c4843a75 556 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 557 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
558 error = radix_tree_insert(&mapping->page_tree, offset, new);
559 BUG_ON(error);
560 mapping->nrpages++;
4165b9b4
MH
561
562 /*
563 * hugetlb pages do not participate in page cache accounting.
564 */
565 if (!PageHuge(new))
566 __inc_zone_page_state(new, NR_FILE_PAGES);
ef6a3c63
MS
567 if (PageSwapBacked(new))
568 __inc_zone_page_state(new, NR_SHMEM);
c4843a75 569 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 570 mem_cgroup_migrate(old, new);
ef6a3c63
MS
571 radix_tree_preload_end();
572 if (freepage)
573 freepage(old);
09cbfeaf 574 put_page(old);
ef6a3c63
MS
575 }
576
577 return error;
578}
579EXPORT_SYMBOL_GPL(replace_page_cache_page);
580
0cd6144a 581static int page_cache_tree_insert(struct address_space *mapping,
a528910e 582 struct page *page, void **shadowp)
0cd6144a 583{
449dd698 584 struct radix_tree_node *node;
0cd6144a
JW
585 void **slot;
586 int error;
587
e6145236 588 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
449dd698
JW
589 &node, &slot);
590 if (error)
591 return error;
592 if (*slot) {
0cd6144a
JW
593 void *p;
594
595 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
596 if (!radix_tree_exceptional_entry(p))
597 return -EEXIST;
f9fe48be 598
f9fe48be 599 mapping->nrexceptional--;
4f622938
JK
600 if (!dax_mapping(mapping)) {
601 if (shadowp)
602 *shadowp = p;
603 if (node)
604 workingset_node_shadows_dec(node);
605 } else {
606 /* DAX can replace empty locked entry with a hole */
607 WARN_ON_ONCE(p !=
608 (void *)(RADIX_TREE_EXCEPTIONAL_ENTRY |
609 RADIX_DAX_ENTRY_LOCK));
610 /* DAX accounts exceptional entries as normal pages */
611 if (node)
612 workingset_node_pages_dec(node);
ac401cc7
JK
613 /* Wakeup waiters for exceptional entry lock */
614 dax_wake_mapping_entry_waiter(mapping, page->index,
615 false);
4f622938 616 }
0cd6144a 617 }
449dd698
JW
618 radix_tree_replace_slot(slot, page);
619 mapping->nrpages++;
620 if (node) {
621 workingset_node_pages_inc(node);
622 /*
623 * Don't track node that contains actual pages.
624 *
625 * Avoid acquiring the list_lru lock if already
626 * untracked. The list_empty() test is safe as
627 * node->private_list is protected by
628 * mapping->tree_lock.
629 */
630 if (!list_empty(&node->private_list))
631 list_lru_del(&workingset_shadow_nodes,
632 &node->private_list);
633 }
634 return 0;
0cd6144a
JW
635}
636
a528910e
JW
637static int __add_to_page_cache_locked(struct page *page,
638 struct address_space *mapping,
639 pgoff_t offset, gfp_t gfp_mask,
640 void **shadowp)
1da177e4 641{
00501b53
JW
642 int huge = PageHuge(page);
643 struct mem_cgroup *memcg;
e286781d
NP
644 int error;
645
309381fe
SL
646 VM_BUG_ON_PAGE(!PageLocked(page), page);
647 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 648
00501b53
JW
649 if (!huge) {
650 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 651 gfp_mask, &memcg, false);
00501b53
JW
652 if (error)
653 return error;
654 }
1da177e4 655
5e4c0d97 656 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 657 if (error) {
00501b53 658 if (!huge)
f627c2f5 659 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
660 return error;
661 }
662
09cbfeaf 663 get_page(page);
66a0c8ee
KS
664 page->mapping = mapping;
665 page->index = offset;
666
667 spin_lock_irq(&mapping->tree_lock);
a528910e 668 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
669 radix_tree_preload_end();
670 if (unlikely(error))
671 goto err_insert;
4165b9b4
MH
672
673 /* hugetlb pages do not participate in page cache accounting. */
674 if (!huge)
675 __inc_zone_page_state(page, NR_FILE_PAGES);
66a0c8ee 676 spin_unlock_irq(&mapping->tree_lock);
00501b53 677 if (!huge)
f627c2f5 678 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
679 trace_mm_filemap_add_to_page_cache(page);
680 return 0;
681err_insert:
682 page->mapping = NULL;
683 /* Leave page->index set: truncation relies upon it */
684 spin_unlock_irq(&mapping->tree_lock);
00501b53 685 if (!huge)
f627c2f5 686 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 687 put_page(page);
1da177e4
LT
688 return error;
689}
a528910e
JW
690
691/**
692 * add_to_page_cache_locked - add a locked page to the pagecache
693 * @page: page to add
694 * @mapping: the page's address_space
695 * @offset: page index
696 * @gfp_mask: page allocation mode
697 *
698 * This function is used to add a page to the pagecache. It must be locked.
699 * This function does not add the page to the LRU. The caller must do that.
700 */
701int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
702 pgoff_t offset, gfp_t gfp_mask)
703{
704 return __add_to_page_cache_locked(page, mapping, offset,
705 gfp_mask, NULL);
706}
e286781d 707EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
708
709int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 710 pgoff_t offset, gfp_t gfp_mask)
1da177e4 711{
a528910e 712 void *shadow = NULL;
4f98a2fe
RR
713 int ret;
714
48c935ad 715 __SetPageLocked(page);
a528910e
JW
716 ret = __add_to_page_cache_locked(page, mapping, offset,
717 gfp_mask, &shadow);
718 if (unlikely(ret))
48c935ad 719 __ClearPageLocked(page);
a528910e
JW
720 else {
721 /*
722 * The page might have been evicted from cache only
723 * recently, in which case it should be activated like
724 * any other repeatedly accessed page.
f0281a00
RR
725 * The exception is pages getting rewritten; evicting other
726 * data from the working set, only to cache data that will
727 * get overwritten with something else, is a waste of memory.
a528910e 728 */
f0281a00
RR
729 if (!(gfp_mask & __GFP_WRITE) &&
730 shadow && workingset_refault(shadow)) {
a528910e
JW
731 SetPageActive(page);
732 workingset_activation(page);
733 } else
734 ClearPageActive(page);
735 lru_cache_add(page);
736 }
1da177e4
LT
737 return ret;
738}
18bc0bbd 739EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 740
44110fe3 741#ifdef CONFIG_NUMA
2ae88149 742struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 743{
c0ff7453
MX
744 int n;
745 struct page *page;
746
44110fe3 747 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
748 unsigned int cpuset_mems_cookie;
749 do {
d26914d1 750 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 751 n = cpuset_mem_spread_node();
96db800f 752 page = __alloc_pages_node(n, gfp, 0);
d26914d1 753 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 754
c0ff7453 755 return page;
44110fe3 756 }
2ae88149 757 return alloc_pages(gfp, 0);
44110fe3 758}
2ae88149 759EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
760#endif
761
1da177e4
LT
762/*
763 * In order to wait for pages to become available there must be
764 * waitqueues associated with pages. By using a hash table of
765 * waitqueues where the bucket discipline is to maintain all
766 * waiters on the same queue and wake all when any of the pages
767 * become available, and for the woken contexts to check to be
768 * sure the appropriate page became available, this saves space
769 * at a cost of "thundering herd" phenomena during rare hash
770 * collisions.
771 */
a4796e37 772wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4
LT
773{
774 const struct zone *zone = page_zone(page);
775
776 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
777}
a4796e37 778EXPORT_SYMBOL(page_waitqueue);
1da177e4 779
920c7a5d 780void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
781{
782 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
783
784 if (test_bit(bit_nr, &page->flags))
74316201 785 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
786 TASK_UNINTERRUPTIBLE);
787}
788EXPORT_SYMBOL(wait_on_page_bit);
789
f62e00cc
KM
790int wait_on_page_bit_killable(struct page *page, int bit_nr)
791{
792 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
793
794 if (!test_bit(bit_nr, &page->flags))
795 return 0;
796
797 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 798 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
799}
800
cbbce822
N
801int wait_on_page_bit_killable_timeout(struct page *page,
802 int bit_nr, unsigned long timeout)
803{
804 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
805
806 wait.key.timeout = jiffies + timeout;
807 if (!test_bit(bit_nr, &page->flags))
808 return 0;
809 return __wait_on_bit(page_waitqueue(page), &wait,
810 bit_wait_io_timeout, TASK_KILLABLE);
811}
812EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
813
385e1ca5
DH
814/**
815 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
816 * @page: Page defining the wait queue of interest
817 * @waiter: Waiter to add to the queue
385e1ca5
DH
818 *
819 * Add an arbitrary @waiter to the wait queue for the nominated @page.
820 */
821void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
822{
823 wait_queue_head_t *q = page_waitqueue(page);
824 unsigned long flags;
825
826 spin_lock_irqsave(&q->lock, flags);
827 __add_wait_queue(q, waiter);
828 spin_unlock_irqrestore(&q->lock, flags);
829}
830EXPORT_SYMBOL_GPL(add_page_wait_queue);
831
1da177e4 832/**
485bb99b 833 * unlock_page - unlock a locked page
1da177e4
LT
834 * @page: the page
835 *
836 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
837 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 838 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
839 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
840 *
8413ac9d
NP
841 * The mb is necessary to enforce ordering between the clear_bit and the read
842 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 843 */
920c7a5d 844void unlock_page(struct page *page)
1da177e4 845{
48c935ad 846 page = compound_head(page);
309381fe 847 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 848 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 849 smp_mb__after_atomic();
1da177e4
LT
850 wake_up_page(page, PG_locked);
851}
852EXPORT_SYMBOL(unlock_page);
853
485bb99b
RD
854/**
855 * end_page_writeback - end writeback against a page
856 * @page: the page
1da177e4
LT
857 */
858void end_page_writeback(struct page *page)
859{
888cf2db
MG
860 /*
861 * TestClearPageReclaim could be used here but it is an atomic
862 * operation and overkill in this particular case. Failing to
863 * shuffle a page marked for immediate reclaim is too mild to
864 * justify taking an atomic operation penalty at the end of
865 * ever page writeback.
866 */
867 if (PageReclaim(page)) {
868 ClearPageReclaim(page);
ac6aadb2 869 rotate_reclaimable_page(page);
888cf2db 870 }
ac6aadb2
MS
871
872 if (!test_clear_page_writeback(page))
873 BUG();
874
4e857c58 875 smp_mb__after_atomic();
1da177e4
LT
876 wake_up_page(page, PG_writeback);
877}
878EXPORT_SYMBOL(end_page_writeback);
879
57d99845
MW
880/*
881 * After completing I/O on a page, call this routine to update the page
882 * flags appropriately
883 */
884void page_endio(struct page *page, int rw, int err)
885{
886 if (rw == READ) {
887 if (!err) {
888 SetPageUptodate(page);
889 } else {
890 ClearPageUptodate(page);
891 SetPageError(page);
892 }
893 unlock_page(page);
894 } else { /* rw == WRITE */
895 if (err) {
896 SetPageError(page);
897 if (page->mapping)
898 mapping_set_error(page->mapping, err);
899 }
900 end_page_writeback(page);
901 }
902}
903EXPORT_SYMBOL_GPL(page_endio);
904
485bb99b
RD
905/**
906 * __lock_page - get a lock on the page, assuming we need to sleep to get it
907 * @page: the page to lock
1da177e4 908 */
920c7a5d 909void __lock_page(struct page *page)
1da177e4 910{
48c935ad
KS
911 struct page *page_head = compound_head(page);
912 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
1da177e4 913
48c935ad 914 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
1da177e4
LT
915 TASK_UNINTERRUPTIBLE);
916}
917EXPORT_SYMBOL(__lock_page);
918
b5606c2d 919int __lock_page_killable(struct page *page)
2687a356 920{
48c935ad
KS
921 struct page *page_head = compound_head(page);
922 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
2687a356 923
48c935ad 924 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
74316201 925 bit_wait_io, TASK_KILLABLE);
2687a356 926}
18bc0bbd 927EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 928
9a95f3cf
PC
929/*
930 * Return values:
931 * 1 - page is locked; mmap_sem is still held.
932 * 0 - page is not locked.
933 * mmap_sem has been released (up_read()), unless flags had both
934 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
935 * which case mmap_sem is still held.
936 *
937 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
938 * with the page locked and the mmap_sem unperturbed.
939 */
d065bd81
ML
940int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
941 unsigned int flags)
942{
37b23e05
KM
943 if (flags & FAULT_FLAG_ALLOW_RETRY) {
944 /*
945 * CAUTION! In this case, mmap_sem is not released
946 * even though return 0.
947 */
948 if (flags & FAULT_FLAG_RETRY_NOWAIT)
949 return 0;
950
951 up_read(&mm->mmap_sem);
952 if (flags & FAULT_FLAG_KILLABLE)
953 wait_on_page_locked_killable(page);
954 else
318b275f 955 wait_on_page_locked(page);
d065bd81 956 return 0;
37b23e05
KM
957 } else {
958 if (flags & FAULT_FLAG_KILLABLE) {
959 int ret;
960
961 ret = __lock_page_killable(page);
962 if (ret) {
963 up_read(&mm->mmap_sem);
964 return 0;
965 }
966 } else
967 __lock_page(page);
968 return 1;
d065bd81
ML
969 }
970}
971
e7b563bb
JW
972/**
973 * page_cache_next_hole - find the next hole (not-present entry)
974 * @mapping: mapping
975 * @index: index
976 * @max_scan: maximum range to search
977 *
978 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
979 * lowest indexed hole.
980 *
981 * Returns: the index of the hole if found, otherwise returns an index
982 * outside of the set specified (in which case 'return - index >=
983 * max_scan' will be true). In rare cases of index wrap-around, 0 will
984 * be returned.
985 *
986 * page_cache_next_hole may be called under rcu_read_lock. However,
987 * like radix_tree_gang_lookup, this will not atomically search a
988 * snapshot of the tree at a single point in time. For example, if a
989 * hole is created at index 5, then subsequently a hole is created at
990 * index 10, page_cache_next_hole covering both indexes may return 10
991 * if called under rcu_read_lock.
992 */
993pgoff_t page_cache_next_hole(struct address_space *mapping,
994 pgoff_t index, unsigned long max_scan)
995{
996 unsigned long i;
997
998 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
999 struct page *page;
1000
1001 page = radix_tree_lookup(&mapping->page_tree, index);
1002 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1003 break;
1004 index++;
1005 if (index == 0)
1006 break;
1007 }
1008
1009 return index;
1010}
1011EXPORT_SYMBOL(page_cache_next_hole);
1012
1013/**
1014 * page_cache_prev_hole - find the prev hole (not-present entry)
1015 * @mapping: mapping
1016 * @index: index
1017 * @max_scan: maximum range to search
1018 *
1019 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1020 * the first hole.
1021 *
1022 * Returns: the index of the hole if found, otherwise returns an index
1023 * outside of the set specified (in which case 'index - return >=
1024 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1025 * will be returned.
1026 *
1027 * page_cache_prev_hole may be called under rcu_read_lock. However,
1028 * like radix_tree_gang_lookup, this will not atomically search a
1029 * snapshot of the tree at a single point in time. For example, if a
1030 * hole is created at index 10, then subsequently a hole is created at
1031 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1032 * called under rcu_read_lock.
1033 */
1034pgoff_t page_cache_prev_hole(struct address_space *mapping,
1035 pgoff_t index, unsigned long max_scan)
1036{
1037 unsigned long i;
1038
1039 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1040 struct page *page;
1041
1042 page = radix_tree_lookup(&mapping->page_tree, index);
1043 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1044 break;
1045 index--;
1046 if (index == ULONG_MAX)
1047 break;
1048 }
1049
1050 return index;
1051}
1052EXPORT_SYMBOL(page_cache_prev_hole);
1053
485bb99b 1054/**
0cd6144a 1055 * find_get_entry - find and get a page cache entry
485bb99b 1056 * @mapping: the address_space to search
0cd6144a
JW
1057 * @offset: the page cache index
1058 *
1059 * Looks up the page cache slot at @mapping & @offset. If there is a
1060 * page cache page, it is returned with an increased refcount.
485bb99b 1061 *
139b6a6f
JW
1062 * If the slot holds a shadow entry of a previously evicted page, or a
1063 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1064 *
1065 * Otherwise, %NULL is returned.
1da177e4 1066 */
0cd6144a 1067struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1068{
a60637c8 1069 void **pagep;
83929372 1070 struct page *head, *page;
1da177e4 1071
a60637c8
NP
1072 rcu_read_lock();
1073repeat:
1074 page = NULL;
1075 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1076 if (pagep) {
1077 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1078 if (unlikely(!page))
1079 goto out;
a2c16d6c 1080 if (radix_tree_exception(page)) {
8079b1c8
HD
1081 if (radix_tree_deref_retry(page))
1082 goto repeat;
1083 /*
139b6a6f
JW
1084 * A shadow entry of a recently evicted page,
1085 * or a swap entry from shmem/tmpfs. Return
1086 * it without attempting to raise page count.
8079b1c8
HD
1087 */
1088 goto out;
a2c16d6c 1089 }
83929372
KS
1090
1091 head = compound_head(page);
1092 if (!page_cache_get_speculative(head))
1093 goto repeat;
1094
1095 /* The page was split under us? */
1096 if (compound_head(page) != head) {
1097 put_page(head);
a60637c8 1098 goto repeat;
83929372 1099 }
a60637c8
NP
1100
1101 /*
1102 * Has the page moved?
1103 * This is part of the lockless pagecache protocol. See
1104 * include/linux/pagemap.h for details.
1105 */
1106 if (unlikely(page != *pagep)) {
83929372 1107 put_page(head);
a60637c8
NP
1108 goto repeat;
1109 }
1110 }
27d20fdd 1111out:
a60637c8
NP
1112 rcu_read_unlock();
1113
1da177e4
LT
1114 return page;
1115}
0cd6144a 1116EXPORT_SYMBOL(find_get_entry);
1da177e4 1117
0cd6144a
JW
1118/**
1119 * find_lock_entry - locate, pin and lock a page cache entry
1120 * @mapping: the address_space to search
1121 * @offset: the page cache index
1122 *
1123 * Looks up the page cache slot at @mapping & @offset. If there is a
1124 * page cache page, it is returned locked and with an increased
1125 * refcount.
1126 *
139b6a6f
JW
1127 * If the slot holds a shadow entry of a previously evicted page, or a
1128 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1129 *
1130 * Otherwise, %NULL is returned.
1131 *
1132 * find_lock_entry() may sleep.
1133 */
1134struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1135{
1136 struct page *page;
1137
1da177e4 1138repeat:
0cd6144a 1139 page = find_get_entry(mapping, offset);
a2c16d6c 1140 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1141 lock_page(page);
1142 /* Has the page been truncated? */
83929372 1143 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1144 unlock_page(page);
09cbfeaf 1145 put_page(page);
a60637c8 1146 goto repeat;
1da177e4 1147 }
83929372 1148 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1149 }
1da177e4
LT
1150 return page;
1151}
0cd6144a
JW
1152EXPORT_SYMBOL(find_lock_entry);
1153
1154/**
2457aec6 1155 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1156 * @mapping: the address_space to search
1157 * @offset: the page index
2457aec6 1158 * @fgp_flags: PCG flags
45f87de5 1159 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1160 *
2457aec6 1161 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1162 *
75325189 1163 * PCG flags modify how the page is returned.
0cd6144a 1164 *
2457aec6
MG
1165 * FGP_ACCESSED: the page will be marked accessed
1166 * FGP_LOCK: Page is return locked
1167 * FGP_CREAT: If page is not present then a new page is allocated using
45f87de5
MH
1168 * @gfp_mask and added to the page cache and the VM's LRU
1169 * list. The page is returned locked and with an increased
1170 * refcount. Otherwise, %NULL is returned.
1da177e4 1171 *
2457aec6
MG
1172 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1173 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1174 *
2457aec6 1175 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1176 */
2457aec6 1177struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1178 int fgp_flags, gfp_t gfp_mask)
1da177e4 1179{
eb2be189 1180 struct page *page;
2457aec6 1181
1da177e4 1182repeat:
2457aec6
MG
1183 page = find_get_entry(mapping, offset);
1184 if (radix_tree_exceptional_entry(page))
1185 page = NULL;
1186 if (!page)
1187 goto no_page;
1188
1189 if (fgp_flags & FGP_LOCK) {
1190 if (fgp_flags & FGP_NOWAIT) {
1191 if (!trylock_page(page)) {
09cbfeaf 1192 put_page(page);
2457aec6
MG
1193 return NULL;
1194 }
1195 } else {
1196 lock_page(page);
1197 }
1198
1199 /* Has the page been truncated? */
1200 if (unlikely(page->mapping != mapping)) {
1201 unlock_page(page);
09cbfeaf 1202 put_page(page);
2457aec6
MG
1203 goto repeat;
1204 }
1205 VM_BUG_ON_PAGE(page->index != offset, page);
1206 }
1207
1208 if (page && (fgp_flags & FGP_ACCESSED))
1209 mark_page_accessed(page);
1210
1211no_page:
1212 if (!page && (fgp_flags & FGP_CREAT)) {
1213 int err;
1214 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1215 gfp_mask |= __GFP_WRITE;
1216 if (fgp_flags & FGP_NOFS)
1217 gfp_mask &= ~__GFP_FS;
2457aec6 1218
45f87de5 1219 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1220 if (!page)
1221 return NULL;
2457aec6
MG
1222
1223 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1224 fgp_flags |= FGP_LOCK;
1225
eb39d618 1226 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1227 if (fgp_flags & FGP_ACCESSED)
eb39d618 1228 __SetPageReferenced(page);
2457aec6 1229
45f87de5
MH
1230 err = add_to_page_cache_lru(page, mapping, offset,
1231 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1232 if (unlikely(err)) {
09cbfeaf 1233 put_page(page);
eb2be189
NP
1234 page = NULL;
1235 if (err == -EEXIST)
1236 goto repeat;
1da177e4 1237 }
1da177e4 1238 }
2457aec6 1239
1da177e4
LT
1240 return page;
1241}
2457aec6 1242EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1243
0cd6144a
JW
1244/**
1245 * find_get_entries - gang pagecache lookup
1246 * @mapping: The address_space to search
1247 * @start: The starting page cache index
1248 * @nr_entries: The maximum number of entries
1249 * @entries: Where the resulting entries are placed
1250 * @indices: The cache indices corresponding to the entries in @entries
1251 *
1252 * find_get_entries() will search for and return a group of up to
1253 * @nr_entries entries in the mapping. The entries are placed at
1254 * @entries. find_get_entries() takes a reference against any actual
1255 * pages it returns.
1256 *
1257 * The search returns a group of mapping-contiguous page cache entries
1258 * with ascending indexes. There may be holes in the indices due to
1259 * not-present pages.
1260 *
139b6a6f
JW
1261 * Any shadow entries of evicted pages, or swap entries from
1262 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1263 *
1264 * find_get_entries() returns the number of pages and shadow entries
1265 * which were found.
1266 */
1267unsigned find_get_entries(struct address_space *mapping,
1268 pgoff_t start, unsigned int nr_entries,
1269 struct page **entries, pgoff_t *indices)
1270{
1271 void **slot;
1272 unsigned int ret = 0;
1273 struct radix_tree_iter iter;
1274
1275 if (!nr_entries)
1276 return 0;
1277
1278 rcu_read_lock();
0cd6144a 1279 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1280 struct page *head, *page;
0cd6144a
JW
1281repeat:
1282 page = radix_tree_deref_slot(slot);
1283 if (unlikely(!page))
1284 continue;
1285 if (radix_tree_exception(page)) {
2cf938aa
MW
1286 if (radix_tree_deref_retry(page)) {
1287 slot = radix_tree_iter_retry(&iter);
1288 continue;
1289 }
0cd6144a 1290 /*
f9fe48be
RZ
1291 * A shadow entry of a recently evicted page, a swap
1292 * entry from shmem/tmpfs or a DAX entry. Return it
1293 * without attempting to raise page count.
0cd6144a
JW
1294 */
1295 goto export;
1296 }
83929372
KS
1297
1298 head = compound_head(page);
1299 if (!page_cache_get_speculative(head))
1300 goto repeat;
1301
1302 /* The page was split under us? */
1303 if (compound_head(page) != head) {
1304 put_page(head);
0cd6144a 1305 goto repeat;
83929372 1306 }
0cd6144a
JW
1307
1308 /* Has the page moved? */
1309 if (unlikely(page != *slot)) {
83929372 1310 put_page(head);
0cd6144a
JW
1311 goto repeat;
1312 }
1313export:
1314 indices[ret] = iter.index;
1315 entries[ret] = page;
1316 if (++ret == nr_entries)
1317 break;
1318 }
1319 rcu_read_unlock();
1320 return ret;
1321}
1322
1da177e4
LT
1323/**
1324 * find_get_pages - gang pagecache lookup
1325 * @mapping: The address_space to search
1326 * @start: The starting page index
1327 * @nr_pages: The maximum number of pages
1328 * @pages: Where the resulting pages are placed
1329 *
1330 * find_get_pages() will search for and return a group of up to
1331 * @nr_pages pages in the mapping. The pages are placed at @pages.
1332 * find_get_pages() takes a reference against the returned pages.
1333 *
1334 * The search returns a group of mapping-contiguous pages with ascending
1335 * indexes. There may be holes in the indices due to not-present pages.
1336 *
1337 * find_get_pages() returns the number of pages which were found.
1338 */
1339unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1340 unsigned int nr_pages, struct page **pages)
1341{
0fc9d104
KK
1342 struct radix_tree_iter iter;
1343 void **slot;
1344 unsigned ret = 0;
1345
1346 if (unlikely(!nr_pages))
1347 return 0;
a60637c8
NP
1348
1349 rcu_read_lock();
0fc9d104 1350 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1351 struct page *head, *page;
a60637c8 1352repeat:
0fc9d104 1353 page = radix_tree_deref_slot(slot);
a60637c8
NP
1354 if (unlikely(!page))
1355 continue;
9d8aa4ea 1356
a2c16d6c 1357 if (radix_tree_exception(page)) {
8079b1c8 1358 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1359 slot = radix_tree_iter_retry(&iter);
1360 continue;
8079b1c8 1361 }
a2c16d6c 1362 /*
139b6a6f
JW
1363 * A shadow entry of a recently evicted page,
1364 * or a swap entry from shmem/tmpfs. Skip
1365 * over it.
a2c16d6c 1366 */
8079b1c8 1367 continue;
27d20fdd 1368 }
a60637c8 1369
83929372
KS
1370 head = compound_head(page);
1371 if (!page_cache_get_speculative(head))
1372 goto repeat;
1373
1374 /* The page was split under us? */
1375 if (compound_head(page) != head) {
1376 put_page(head);
a60637c8 1377 goto repeat;
83929372 1378 }
a60637c8
NP
1379
1380 /* Has the page moved? */
0fc9d104 1381 if (unlikely(page != *slot)) {
83929372 1382 put_page(head);
a60637c8
NP
1383 goto repeat;
1384 }
1da177e4 1385
a60637c8 1386 pages[ret] = page;
0fc9d104
KK
1387 if (++ret == nr_pages)
1388 break;
a60637c8 1389 }
5b280c0c 1390
a60637c8 1391 rcu_read_unlock();
1da177e4
LT
1392 return ret;
1393}
1394
ebf43500
JA
1395/**
1396 * find_get_pages_contig - gang contiguous pagecache lookup
1397 * @mapping: The address_space to search
1398 * @index: The starting page index
1399 * @nr_pages: The maximum number of pages
1400 * @pages: Where the resulting pages are placed
1401 *
1402 * find_get_pages_contig() works exactly like find_get_pages(), except
1403 * that the returned number of pages are guaranteed to be contiguous.
1404 *
1405 * find_get_pages_contig() returns the number of pages which were found.
1406 */
1407unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1408 unsigned int nr_pages, struct page **pages)
1409{
0fc9d104
KK
1410 struct radix_tree_iter iter;
1411 void **slot;
1412 unsigned int ret = 0;
1413
1414 if (unlikely(!nr_pages))
1415 return 0;
a60637c8
NP
1416
1417 rcu_read_lock();
0fc9d104 1418 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1419 struct page *head, *page;
a60637c8 1420repeat:
0fc9d104
KK
1421 page = radix_tree_deref_slot(slot);
1422 /* The hole, there no reason to continue */
a60637c8 1423 if (unlikely(!page))
0fc9d104 1424 break;
9d8aa4ea 1425
a2c16d6c 1426 if (radix_tree_exception(page)) {
8079b1c8 1427 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1428 slot = radix_tree_iter_retry(&iter);
1429 continue;
8079b1c8 1430 }
a2c16d6c 1431 /*
139b6a6f
JW
1432 * A shadow entry of a recently evicted page,
1433 * or a swap entry from shmem/tmpfs. Stop
1434 * looking for contiguous pages.
a2c16d6c 1435 */
8079b1c8 1436 break;
a2c16d6c 1437 }
ebf43500 1438
83929372
KS
1439 head = compound_head(page);
1440 if (!page_cache_get_speculative(head))
1441 goto repeat;
1442
1443 /* The page was split under us? */
1444 if (compound_head(page) != head) {
1445 put_page(head);
a60637c8 1446 goto repeat;
83929372 1447 }
a60637c8
NP
1448
1449 /* Has the page moved? */
0fc9d104 1450 if (unlikely(page != *slot)) {
83929372 1451 put_page(head);
a60637c8
NP
1452 goto repeat;
1453 }
1454
9cbb4cb2
NP
1455 /*
1456 * must check mapping and index after taking the ref.
1457 * otherwise we can get both false positives and false
1458 * negatives, which is just confusing to the caller.
1459 */
83929372 1460 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1461 put_page(page);
9cbb4cb2
NP
1462 break;
1463 }
1464
a60637c8 1465 pages[ret] = page;
0fc9d104
KK
1466 if (++ret == nr_pages)
1467 break;
ebf43500 1468 }
a60637c8
NP
1469 rcu_read_unlock();
1470 return ret;
ebf43500 1471}
ef71c15c 1472EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1473
485bb99b
RD
1474/**
1475 * find_get_pages_tag - find and return pages that match @tag
1476 * @mapping: the address_space to search
1477 * @index: the starting page index
1478 * @tag: the tag index
1479 * @nr_pages: the maximum number of pages
1480 * @pages: where the resulting pages are placed
1481 *
1da177e4 1482 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1483 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1484 */
1485unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1486 int tag, unsigned int nr_pages, struct page **pages)
1487{
0fc9d104
KK
1488 struct radix_tree_iter iter;
1489 void **slot;
1490 unsigned ret = 0;
1491
1492 if (unlikely(!nr_pages))
1493 return 0;
a60637c8
NP
1494
1495 rcu_read_lock();
0fc9d104
KK
1496 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1497 &iter, *index, tag) {
83929372 1498 struct page *head, *page;
a60637c8 1499repeat:
0fc9d104 1500 page = radix_tree_deref_slot(slot);
a60637c8
NP
1501 if (unlikely(!page))
1502 continue;
9d8aa4ea 1503
a2c16d6c 1504 if (radix_tree_exception(page)) {
8079b1c8 1505 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1506 slot = radix_tree_iter_retry(&iter);
1507 continue;
8079b1c8 1508 }
a2c16d6c 1509 /*
139b6a6f
JW
1510 * A shadow entry of a recently evicted page.
1511 *
1512 * Those entries should never be tagged, but
1513 * this tree walk is lockless and the tags are
1514 * looked up in bulk, one radix tree node at a
1515 * time, so there is a sizable window for page
1516 * reclaim to evict a page we saw tagged.
1517 *
1518 * Skip over it.
a2c16d6c 1519 */
139b6a6f 1520 continue;
a2c16d6c 1521 }
a60637c8 1522
83929372
KS
1523 head = compound_head(page);
1524 if (!page_cache_get_speculative(head))
a60637c8
NP
1525 goto repeat;
1526
83929372
KS
1527 /* The page was split under us? */
1528 if (compound_head(page) != head) {
1529 put_page(head);
1530 goto repeat;
1531 }
1532
a60637c8 1533 /* Has the page moved? */
0fc9d104 1534 if (unlikely(page != *slot)) {
83929372 1535 put_page(head);
a60637c8
NP
1536 goto repeat;
1537 }
1538
1539 pages[ret] = page;
0fc9d104
KK
1540 if (++ret == nr_pages)
1541 break;
a60637c8 1542 }
5b280c0c 1543
a60637c8 1544 rcu_read_unlock();
1da177e4 1545
1da177e4
LT
1546 if (ret)
1547 *index = pages[ret - 1]->index + 1;
a60637c8 1548
1da177e4
LT
1549 return ret;
1550}
ef71c15c 1551EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1552
7e7f7749
RZ
1553/**
1554 * find_get_entries_tag - find and return entries that match @tag
1555 * @mapping: the address_space to search
1556 * @start: the starting page cache index
1557 * @tag: the tag index
1558 * @nr_entries: the maximum number of entries
1559 * @entries: where the resulting entries are placed
1560 * @indices: the cache indices corresponding to the entries in @entries
1561 *
1562 * Like find_get_entries, except we only return entries which are tagged with
1563 * @tag.
1564 */
1565unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1566 int tag, unsigned int nr_entries,
1567 struct page **entries, pgoff_t *indices)
1568{
1569 void **slot;
1570 unsigned int ret = 0;
1571 struct radix_tree_iter iter;
1572
1573 if (!nr_entries)
1574 return 0;
1575
1576 rcu_read_lock();
7e7f7749
RZ
1577 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1578 &iter, start, tag) {
83929372 1579 struct page *head, *page;
7e7f7749
RZ
1580repeat:
1581 page = radix_tree_deref_slot(slot);
1582 if (unlikely(!page))
1583 continue;
1584 if (radix_tree_exception(page)) {
1585 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1586 slot = radix_tree_iter_retry(&iter);
1587 continue;
7e7f7749
RZ
1588 }
1589
1590 /*
1591 * A shadow entry of a recently evicted page, a swap
1592 * entry from shmem/tmpfs or a DAX entry. Return it
1593 * without attempting to raise page count.
1594 */
1595 goto export;
1596 }
83929372
KS
1597
1598 head = compound_head(page);
1599 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1600 goto repeat;
1601
83929372
KS
1602 /* The page was split under us? */
1603 if (compound_head(page) != head) {
1604 put_page(head);
1605 goto repeat;
1606 }
1607
7e7f7749
RZ
1608 /* Has the page moved? */
1609 if (unlikely(page != *slot)) {
83929372 1610 put_page(head);
7e7f7749
RZ
1611 goto repeat;
1612 }
1613export:
1614 indices[ret] = iter.index;
1615 entries[ret] = page;
1616 if (++ret == nr_entries)
1617 break;
1618 }
1619 rcu_read_unlock();
1620 return ret;
1621}
1622EXPORT_SYMBOL(find_get_entries_tag);
1623
76d42bd9
WF
1624/*
1625 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1626 * a _large_ part of the i/o request. Imagine the worst scenario:
1627 *
1628 * ---R__________________________________________B__________
1629 * ^ reading here ^ bad block(assume 4k)
1630 *
1631 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1632 * => failing the whole request => read(R) => read(R+1) =>
1633 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1634 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1635 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1636 *
1637 * It is going insane. Fix it by quickly scaling down the readahead size.
1638 */
1639static void shrink_readahead_size_eio(struct file *filp,
1640 struct file_ra_state *ra)
1641{
76d42bd9 1642 ra->ra_pages /= 4;
76d42bd9
WF
1643}
1644
485bb99b 1645/**
36e78914 1646 * do_generic_file_read - generic file read routine
485bb99b
RD
1647 * @filp: the file to read
1648 * @ppos: current file position
6e58e79d
AV
1649 * @iter: data destination
1650 * @written: already copied
485bb99b 1651 *
1da177e4 1652 * This is a generic file read routine, and uses the
485bb99b 1653 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1654 *
1655 * This is really ugly. But the goto's actually try to clarify some
1656 * of the logic when it comes to error handling etc.
1da177e4 1657 */
6e58e79d
AV
1658static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1659 struct iov_iter *iter, ssize_t written)
1da177e4 1660{
36e78914 1661 struct address_space *mapping = filp->f_mapping;
1da177e4 1662 struct inode *inode = mapping->host;
36e78914 1663 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1664 pgoff_t index;
1665 pgoff_t last_index;
1666 pgoff_t prev_index;
1667 unsigned long offset; /* offset into pagecache page */
ec0f1637 1668 unsigned int prev_offset;
6e58e79d 1669 int error = 0;
1da177e4 1670
09cbfeaf
KS
1671 index = *ppos >> PAGE_SHIFT;
1672 prev_index = ra->prev_pos >> PAGE_SHIFT;
1673 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1674 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1675 offset = *ppos & ~PAGE_MASK;
1da177e4 1676
1da177e4
LT
1677 for (;;) {
1678 struct page *page;
57f6b96c 1679 pgoff_t end_index;
a32ea1e1 1680 loff_t isize;
1da177e4
LT
1681 unsigned long nr, ret;
1682
1da177e4 1683 cond_resched();
1da177e4
LT
1684find_page:
1685 page = find_get_page(mapping, index);
3ea89ee8 1686 if (!page) {
cf914a7d 1687 page_cache_sync_readahead(mapping,
7ff81078 1688 ra, filp,
3ea89ee8
FW
1689 index, last_index - index);
1690 page = find_get_page(mapping, index);
1691 if (unlikely(page == NULL))
1692 goto no_cached_page;
1693 }
1694 if (PageReadahead(page)) {
cf914a7d 1695 page_cache_async_readahead(mapping,
7ff81078 1696 ra, filp, page,
3ea89ee8 1697 index, last_index - index);
1da177e4 1698 }
8ab22b9a 1699 if (!PageUptodate(page)) {
ebded027
MG
1700 /*
1701 * See comment in do_read_cache_page on why
1702 * wait_on_page_locked is used to avoid unnecessarily
1703 * serialisations and why it's safe.
1704 */
1705 wait_on_page_locked_killable(page);
1706 if (PageUptodate(page))
1707 goto page_ok;
1708
09cbfeaf 1709 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1710 !mapping->a_ops->is_partially_uptodate)
1711 goto page_not_up_to_date;
529ae9aa 1712 if (!trylock_page(page))
8ab22b9a 1713 goto page_not_up_to_date;
8d056cb9
DH
1714 /* Did it get truncated before we got the lock? */
1715 if (!page->mapping)
1716 goto page_not_up_to_date_locked;
8ab22b9a 1717 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1718 offset, iter->count))
8ab22b9a
HH
1719 goto page_not_up_to_date_locked;
1720 unlock_page(page);
1721 }
1da177e4 1722page_ok:
a32ea1e1
N
1723 /*
1724 * i_size must be checked after we know the page is Uptodate.
1725 *
1726 * Checking i_size after the check allows us to calculate
1727 * the correct value for "nr", which means the zero-filled
1728 * part of the page is not copied back to userspace (unless
1729 * another truncate extends the file - this is desired though).
1730 */
1731
1732 isize = i_size_read(inode);
09cbfeaf 1733 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1734 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1735 put_page(page);
a32ea1e1
N
1736 goto out;
1737 }
1738
1739 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1740 nr = PAGE_SIZE;
a32ea1e1 1741 if (index == end_index) {
09cbfeaf 1742 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1743 if (nr <= offset) {
09cbfeaf 1744 put_page(page);
a32ea1e1
N
1745 goto out;
1746 }
1747 }
1748 nr = nr - offset;
1da177e4
LT
1749
1750 /* If users can be writing to this page using arbitrary
1751 * virtual addresses, take care about potential aliasing
1752 * before reading the page on the kernel side.
1753 */
1754 if (mapping_writably_mapped(mapping))
1755 flush_dcache_page(page);
1756
1757 /*
ec0f1637
JK
1758 * When a sequential read accesses a page several times,
1759 * only mark it as accessed the first time.
1da177e4 1760 */
ec0f1637 1761 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1762 mark_page_accessed(page);
1763 prev_index = index;
1764
1765 /*
1766 * Ok, we have the page, and it's up-to-date, so
1767 * now we can copy it to user space...
1da177e4 1768 */
6e58e79d
AV
1769
1770 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1771 offset += ret;
09cbfeaf
KS
1772 index += offset >> PAGE_SHIFT;
1773 offset &= ~PAGE_MASK;
6ce745ed 1774 prev_offset = offset;
1da177e4 1775
09cbfeaf 1776 put_page(page);
6e58e79d
AV
1777 written += ret;
1778 if (!iov_iter_count(iter))
1779 goto out;
1780 if (ret < nr) {
1781 error = -EFAULT;
1782 goto out;
1783 }
1784 continue;
1da177e4
LT
1785
1786page_not_up_to_date:
1787 /* Get exclusive access to the page ... */
85462323
ON
1788 error = lock_page_killable(page);
1789 if (unlikely(error))
1790 goto readpage_error;
1da177e4 1791
8ab22b9a 1792page_not_up_to_date_locked:
da6052f7 1793 /* Did it get truncated before we got the lock? */
1da177e4
LT
1794 if (!page->mapping) {
1795 unlock_page(page);
09cbfeaf 1796 put_page(page);
1da177e4
LT
1797 continue;
1798 }
1799
1800 /* Did somebody else fill it already? */
1801 if (PageUptodate(page)) {
1802 unlock_page(page);
1803 goto page_ok;
1804 }
1805
1806readpage:
91803b49
JM
1807 /*
1808 * A previous I/O error may have been due to temporary
1809 * failures, eg. multipath errors.
1810 * PG_error will be set again if readpage fails.
1811 */
1812 ClearPageError(page);
1da177e4
LT
1813 /* Start the actual read. The read will unlock the page. */
1814 error = mapping->a_ops->readpage(filp, page);
1815
994fc28c
ZB
1816 if (unlikely(error)) {
1817 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1818 put_page(page);
6e58e79d 1819 error = 0;
994fc28c
ZB
1820 goto find_page;
1821 }
1da177e4 1822 goto readpage_error;
994fc28c 1823 }
1da177e4
LT
1824
1825 if (!PageUptodate(page)) {
85462323
ON
1826 error = lock_page_killable(page);
1827 if (unlikely(error))
1828 goto readpage_error;
1da177e4
LT
1829 if (!PageUptodate(page)) {
1830 if (page->mapping == NULL) {
1831 /*
2ecdc82e 1832 * invalidate_mapping_pages got it
1da177e4
LT
1833 */
1834 unlock_page(page);
09cbfeaf 1835 put_page(page);
1da177e4
LT
1836 goto find_page;
1837 }
1838 unlock_page(page);
7ff81078 1839 shrink_readahead_size_eio(filp, ra);
85462323
ON
1840 error = -EIO;
1841 goto readpage_error;
1da177e4
LT
1842 }
1843 unlock_page(page);
1844 }
1845
1da177e4
LT
1846 goto page_ok;
1847
1848readpage_error:
1849 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1850 put_page(page);
1da177e4
LT
1851 goto out;
1852
1853no_cached_page:
1854 /*
1855 * Ok, it wasn't cached, so we need to create a new
1856 * page..
1857 */
eb2be189
NP
1858 page = page_cache_alloc_cold(mapping);
1859 if (!page) {
6e58e79d 1860 error = -ENOMEM;
eb2be189 1861 goto out;
1da177e4 1862 }
6afdb859 1863 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 1864 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 1865 if (error) {
09cbfeaf 1866 put_page(page);
6e58e79d
AV
1867 if (error == -EEXIST) {
1868 error = 0;
1da177e4 1869 goto find_page;
6e58e79d 1870 }
1da177e4
LT
1871 goto out;
1872 }
1da177e4
LT
1873 goto readpage;
1874 }
1875
1876out:
7ff81078 1877 ra->prev_pos = prev_index;
09cbfeaf 1878 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 1879 ra->prev_pos |= prev_offset;
1da177e4 1880
09cbfeaf 1881 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 1882 file_accessed(filp);
6e58e79d 1883 return written ? written : error;
1da177e4
LT
1884}
1885
485bb99b 1886/**
6abd2322 1887 * generic_file_read_iter - generic filesystem read routine
485bb99b 1888 * @iocb: kernel I/O control block
6abd2322 1889 * @iter: destination for the data read
485bb99b 1890 *
6abd2322 1891 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1892 * that can use the page cache directly.
1893 */
1894ssize_t
ed978a81 1895generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1896{
ed978a81 1897 struct file *file = iocb->ki_filp;
cb66a7a1 1898 ssize_t retval = 0;
e7080a43
NS
1899 size_t count = iov_iter_count(iter);
1900
1901 if (!count)
1902 goto out; /* skip atime */
1da177e4 1903
2ba48ce5 1904 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
1905 struct address_space *mapping = file->f_mapping;
1906 struct inode *inode = mapping->host;
543ade1f 1907 loff_t size;
1da177e4 1908
1da177e4 1909 size = i_size_read(inode);
c64fb5c7
CH
1910 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
1911 iocb->ki_pos + count - 1);
9fe55eea 1912 if (!retval) {
ed978a81 1913 struct iov_iter data = *iter;
c8b8e32d 1914 retval = mapping->a_ops->direct_IO(iocb, &data);
9fe55eea 1915 }
d8d3d94b 1916
9fe55eea 1917 if (retval > 0) {
c64fb5c7 1918 iocb->ki_pos += retval;
ed978a81 1919 iov_iter_advance(iter, retval);
9fe55eea 1920 }
66f998f6 1921
9fe55eea
SW
1922 /*
1923 * Btrfs can have a short DIO read if we encounter
1924 * compressed extents, so if there was an error, or if
1925 * we've already read everything we wanted to, or if
1926 * there was a short read because we hit EOF, go ahead
1927 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
1928 * the rest of the read. Buffered reads will not work for
1929 * DAX files, so don't bother trying.
9fe55eea 1930 */
c64fb5c7 1931 if (retval < 0 || !iov_iter_count(iter) || iocb->ki_pos >= size ||
fbbbad4b 1932 IS_DAX(inode)) {
ed978a81 1933 file_accessed(file);
9fe55eea 1934 goto out;
0e0bcae3 1935 }
1da177e4
LT
1936 }
1937
c64fb5c7 1938 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
1939out:
1940 return retval;
1941}
ed978a81 1942EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1943
1da177e4 1944#ifdef CONFIG_MMU
485bb99b
RD
1945/**
1946 * page_cache_read - adds requested page to the page cache if not already there
1947 * @file: file to read
1948 * @offset: page index
62eb320a 1949 * @gfp_mask: memory allocation flags
485bb99b 1950 *
1da177e4
LT
1951 * This adds the requested page to the page cache if it isn't already there,
1952 * and schedules an I/O to read in its contents from disk.
1953 */
c20cd45e 1954static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
1955{
1956 struct address_space *mapping = file->f_mapping;
99dadfdd 1957 struct page *page;
994fc28c 1958 int ret;
1da177e4 1959
994fc28c 1960 do {
c20cd45e 1961 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
1962 if (!page)
1963 return -ENOMEM;
1964
c20cd45e 1965 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
1966 if (ret == 0)
1967 ret = mapping->a_ops->readpage(file, page);
1968 else if (ret == -EEXIST)
1969 ret = 0; /* losing race to add is OK */
1da177e4 1970
09cbfeaf 1971 put_page(page);
1da177e4 1972
994fc28c 1973 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 1974
994fc28c 1975 return ret;
1da177e4
LT
1976}
1977
1978#define MMAP_LOTSAMISS (100)
1979
ef00e08e
LT
1980/*
1981 * Synchronous readahead happens when we don't even find
1982 * a page in the page cache at all.
1983 */
1984static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1985 struct file_ra_state *ra,
1986 struct file *file,
1987 pgoff_t offset)
1988{
ef00e08e
LT
1989 struct address_space *mapping = file->f_mapping;
1990
1991 /* If we don't want any read-ahead, don't bother */
64363aad 1992 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1993 return;
275b12bf
WF
1994 if (!ra->ra_pages)
1995 return;
ef00e08e 1996
64363aad 1997 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1998 page_cache_sync_readahead(mapping, ra, file, offset,
1999 ra->ra_pages);
ef00e08e
LT
2000 return;
2001 }
2002
207d04ba
AK
2003 /* Avoid banging the cache line if not needed */
2004 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2005 ra->mmap_miss++;
2006
2007 /*
2008 * Do we miss much more than hit in this file? If so,
2009 * stop bothering with read-ahead. It will only hurt.
2010 */
2011 if (ra->mmap_miss > MMAP_LOTSAMISS)
2012 return;
2013
d30a1100
WF
2014 /*
2015 * mmap read-around
2016 */
600e19af
RG
2017 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2018 ra->size = ra->ra_pages;
2019 ra->async_size = ra->ra_pages / 4;
275b12bf 2020 ra_submit(ra, mapping, file);
ef00e08e
LT
2021}
2022
2023/*
2024 * Asynchronous readahead happens when we find the page and PG_readahead,
2025 * so we want to possibly extend the readahead further..
2026 */
2027static void do_async_mmap_readahead(struct vm_area_struct *vma,
2028 struct file_ra_state *ra,
2029 struct file *file,
2030 struct page *page,
2031 pgoff_t offset)
2032{
2033 struct address_space *mapping = file->f_mapping;
2034
2035 /* If we don't want any read-ahead, don't bother */
64363aad 2036 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2037 return;
2038 if (ra->mmap_miss > 0)
2039 ra->mmap_miss--;
2040 if (PageReadahead(page))
2fad6f5d
WF
2041 page_cache_async_readahead(mapping, ra, file,
2042 page, offset, ra->ra_pages);
ef00e08e
LT
2043}
2044
485bb99b 2045/**
54cb8821 2046 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
2047 * @vma: vma in which the fault was taken
2048 * @vmf: struct vm_fault containing details of the fault
485bb99b 2049 *
54cb8821 2050 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2051 * mapped memory region to read in file data during a page fault.
2052 *
2053 * The goto's are kind of ugly, but this streamlines the normal case of having
2054 * it in the page cache, and handles the special cases reasonably without
2055 * having a lot of duplicated code.
9a95f3cf
PC
2056 *
2057 * vma->vm_mm->mmap_sem must be held on entry.
2058 *
2059 * If our return value has VM_FAULT_RETRY set, it's because
2060 * lock_page_or_retry() returned 0.
2061 * The mmap_sem has usually been released in this case.
2062 * See __lock_page_or_retry() for the exception.
2063 *
2064 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2065 * has not been released.
2066 *
2067 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2068 */
d0217ac0 2069int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2070{
2071 int error;
54cb8821 2072 struct file *file = vma->vm_file;
1da177e4
LT
2073 struct address_space *mapping = file->f_mapping;
2074 struct file_ra_state *ra = &file->f_ra;
2075 struct inode *inode = mapping->host;
ef00e08e 2076 pgoff_t offset = vmf->pgoff;
1da177e4 2077 struct page *page;
99e3e53f 2078 loff_t size;
83c54070 2079 int ret = 0;
1da177e4 2080
09cbfeaf
KS
2081 size = round_up(i_size_read(inode), PAGE_SIZE);
2082 if (offset >= size >> PAGE_SHIFT)
5307cc1a 2083 return VM_FAULT_SIGBUS;
1da177e4 2084
1da177e4 2085 /*
49426420 2086 * Do we have something in the page cache already?
1da177e4 2087 */
ef00e08e 2088 page = find_get_page(mapping, offset);
45cac65b 2089 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2090 /*
ef00e08e
LT
2091 * We found the page, so try async readahead before
2092 * waiting for the lock.
1da177e4 2093 */
ef00e08e 2094 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 2095 } else if (!page) {
ef00e08e
LT
2096 /* No page in the page cache at all */
2097 do_sync_mmap_readahead(vma, ra, file, offset);
2098 count_vm_event(PGMAJFAULT);
456f998e 2099 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2100 ret = VM_FAULT_MAJOR;
2101retry_find:
b522c94d 2102 page = find_get_page(mapping, offset);
1da177e4
LT
2103 if (!page)
2104 goto no_cached_page;
2105 }
2106
d88c0922 2107 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
09cbfeaf 2108 put_page(page);
d065bd81 2109 return ret | VM_FAULT_RETRY;
d88c0922 2110 }
b522c94d
ML
2111
2112 /* Did it get truncated? */
2113 if (unlikely(page->mapping != mapping)) {
2114 unlock_page(page);
2115 put_page(page);
2116 goto retry_find;
2117 }
309381fe 2118 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2119
1da177e4 2120 /*
d00806b1
NP
2121 * We have a locked page in the page cache, now we need to check
2122 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2123 */
d00806b1 2124 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2125 goto page_not_uptodate;
2126
ef00e08e
LT
2127 /*
2128 * Found the page and have a reference on it.
2129 * We must recheck i_size under page lock.
2130 */
09cbfeaf
KS
2131 size = round_up(i_size_read(inode), PAGE_SIZE);
2132 if (unlikely(offset >= size >> PAGE_SHIFT)) {
d00806b1 2133 unlock_page(page);
09cbfeaf 2134 put_page(page);
5307cc1a 2135 return VM_FAULT_SIGBUS;
d00806b1
NP
2136 }
2137
d0217ac0 2138 vmf->page = page;
83c54070 2139 return ret | VM_FAULT_LOCKED;
1da177e4 2140
1da177e4
LT
2141no_cached_page:
2142 /*
2143 * We're only likely to ever get here if MADV_RANDOM is in
2144 * effect.
2145 */
c20cd45e 2146 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2147
2148 /*
2149 * The page we want has now been added to the page cache.
2150 * In the unlikely event that someone removed it in the
2151 * meantime, we'll just come back here and read it again.
2152 */
2153 if (error >= 0)
2154 goto retry_find;
2155
2156 /*
2157 * An error return from page_cache_read can result if the
2158 * system is low on memory, or a problem occurs while trying
2159 * to schedule I/O.
2160 */
2161 if (error == -ENOMEM)
d0217ac0
NP
2162 return VM_FAULT_OOM;
2163 return VM_FAULT_SIGBUS;
1da177e4
LT
2164
2165page_not_uptodate:
1da177e4
LT
2166 /*
2167 * Umm, take care of errors if the page isn't up-to-date.
2168 * Try to re-read it _once_. We do this synchronously,
2169 * because there really aren't any performance issues here
2170 * and we need to check for errors.
2171 */
1da177e4 2172 ClearPageError(page);
994fc28c 2173 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2174 if (!error) {
2175 wait_on_page_locked(page);
2176 if (!PageUptodate(page))
2177 error = -EIO;
2178 }
09cbfeaf 2179 put_page(page);
d00806b1
NP
2180
2181 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2182 goto retry_find;
1da177e4 2183
d00806b1 2184 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2185 shrink_readahead_size_eio(file, ra);
d0217ac0 2186 return VM_FAULT_SIGBUS;
54cb8821
NP
2187}
2188EXPORT_SYMBOL(filemap_fault);
2189
bae473a4
KS
2190void filemap_map_pages(struct fault_env *fe,
2191 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2192{
2193 struct radix_tree_iter iter;
2194 void **slot;
bae473a4 2195 struct file *file = fe->vma->vm_file;
f1820361 2196 struct address_space *mapping = file->f_mapping;
bae473a4 2197 pgoff_t last_pgoff = start_pgoff;
f1820361 2198 loff_t size;
83929372 2199 struct page *head, *page;
f1820361
KS
2200
2201 rcu_read_lock();
bae473a4
KS
2202 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2203 start_pgoff) {
2204 if (iter.index > end_pgoff)
f1820361
KS
2205 break;
2206repeat:
2207 page = radix_tree_deref_slot(slot);
2208 if (unlikely(!page))
2209 goto next;
2210 if (radix_tree_exception(page)) {
2cf938aa
MW
2211 if (radix_tree_deref_retry(page)) {
2212 slot = radix_tree_iter_retry(&iter);
2213 continue;
2214 }
2215 goto next;
f1820361
KS
2216 }
2217
83929372
KS
2218 head = compound_head(page);
2219 if (!page_cache_get_speculative(head))
f1820361
KS
2220 goto repeat;
2221
83929372
KS
2222 /* The page was split under us? */
2223 if (compound_head(page) != head) {
2224 put_page(head);
2225 goto repeat;
2226 }
2227
f1820361
KS
2228 /* Has the page moved? */
2229 if (unlikely(page != *slot)) {
83929372 2230 put_page(head);
f1820361
KS
2231 goto repeat;
2232 }
2233
2234 if (!PageUptodate(page) ||
2235 PageReadahead(page) ||
2236 PageHWPoison(page))
2237 goto skip;
2238 if (!trylock_page(page))
2239 goto skip;
2240
2241 if (page->mapping != mapping || !PageUptodate(page))
2242 goto unlock;
2243
09cbfeaf
KS
2244 size = round_up(i_size_read(mapping->host), PAGE_SIZE);
2245 if (page->index >= size >> PAGE_SHIFT)
f1820361
KS
2246 goto unlock;
2247
f1820361
KS
2248 if (file->f_ra.mmap_miss > 0)
2249 file->f_ra.mmap_miss--;
7267ec00
KS
2250
2251 fe->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2252 if (fe->pte)
2253 fe->pte += iter.index - last_pgoff;
2254 last_pgoff = iter.index;
2255 if (alloc_set_pte(fe, NULL, page))
2256 goto unlock;
f1820361
KS
2257 unlock_page(page);
2258 goto next;
2259unlock:
2260 unlock_page(page);
2261skip:
09cbfeaf 2262 put_page(page);
f1820361 2263next:
7267ec00
KS
2264 /* Huge page is mapped? No need to proceed. */
2265 if (pmd_trans_huge(*fe->pmd))
2266 break;
bae473a4 2267 if (iter.index == end_pgoff)
f1820361
KS
2268 break;
2269 }
2270 rcu_read_unlock();
2271}
2272EXPORT_SYMBOL(filemap_map_pages);
2273
4fcf1c62
JK
2274int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2275{
2276 struct page *page = vmf->page;
496ad9aa 2277 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2278 int ret = VM_FAULT_LOCKED;
2279
14da9200 2280 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2281 file_update_time(vma->vm_file);
2282 lock_page(page);
2283 if (page->mapping != inode->i_mapping) {
2284 unlock_page(page);
2285 ret = VM_FAULT_NOPAGE;
2286 goto out;
2287 }
14da9200
JK
2288 /*
2289 * We mark the page dirty already here so that when freeze is in
2290 * progress, we are guaranteed that writeback during freezing will
2291 * see the dirty page and writeprotect it again.
2292 */
2293 set_page_dirty(page);
1d1d1a76 2294 wait_for_stable_page(page);
4fcf1c62 2295out:
14da9200 2296 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2297 return ret;
2298}
2299EXPORT_SYMBOL(filemap_page_mkwrite);
2300
f0f37e2f 2301const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2302 .fault = filemap_fault,
f1820361 2303 .map_pages = filemap_map_pages,
4fcf1c62 2304 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2305};
2306
2307/* This is used for a general mmap of a disk file */
2308
2309int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2310{
2311 struct address_space *mapping = file->f_mapping;
2312
2313 if (!mapping->a_ops->readpage)
2314 return -ENOEXEC;
2315 file_accessed(file);
2316 vma->vm_ops = &generic_file_vm_ops;
2317 return 0;
2318}
1da177e4
LT
2319
2320/*
2321 * This is for filesystems which do not implement ->writepage.
2322 */
2323int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2324{
2325 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2326 return -EINVAL;
2327 return generic_file_mmap(file, vma);
2328}
2329#else
2330int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2331{
2332 return -ENOSYS;
2333}
2334int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2335{
2336 return -ENOSYS;
2337}
2338#endif /* CONFIG_MMU */
2339
2340EXPORT_SYMBOL(generic_file_mmap);
2341EXPORT_SYMBOL(generic_file_readonly_mmap);
2342
67f9fd91
SL
2343static struct page *wait_on_page_read(struct page *page)
2344{
2345 if (!IS_ERR(page)) {
2346 wait_on_page_locked(page);
2347 if (!PageUptodate(page)) {
09cbfeaf 2348 put_page(page);
67f9fd91
SL
2349 page = ERR_PTR(-EIO);
2350 }
2351 }
2352 return page;
2353}
2354
32b63529 2355static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2356 pgoff_t index,
5e5358e7 2357 int (*filler)(void *, struct page *),
0531b2aa
LT
2358 void *data,
2359 gfp_t gfp)
1da177e4 2360{
eb2be189 2361 struct page *page;
1da177e4
LT
2362 int err;
2363repeat:
2364 page = find_get_page(mapping, index);
2365 if (!page) {
0531b2aa 2366 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2367 if (!page)
2368 return ERR_PTR(-ENOMEM);
e6f67b8c 2369 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2370 if (unlikely(err)) {
09cbfeaf 2371 put_page(page);
eb2be189
NP
2372 if (err == -EEXIST)
2373 goto repeat;
1da177e4 2374 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2375 return ERR_PTR(err);
2376 }
32b63529
MG
2377
2378filler:
1da177e4
LT
2379 err = filler(data, page);
2380 if (err < 0) {
09cbfeaf 2381 put_page(page);
32b63529 2382 return ERR_PTR(err);
1da177e4 2383 }
1da177e4 2384
32b63529
MG
2385 page = wait_on_page_read(page);
2386 if (IS_ERR(page))
2387 return page;
2388 goto out;
2389 }
1da177e4
LT
2390 if (PageUptodate(page))
2391 goto out;
2392
ebded027
MG
2393 /*
2394 * Page is not up to date and may be locked due one of the following
2395 * case a: Page is being filled and the page lock is held
2396 * case b: Read/write error clearing the page uptodate status
2397 * case c: Truncation in progress (page locked)
2398 * case d: Reclaim in progress
2399 *
2400 * Case a, the page will be up to date when the page is unlocked.
2401 * There is no need to serialise on the page lock here as the page
2402 * is pinned so the lock gives no additional protection. Even if the
2403 * the page is truncated, the data is still valid if PageUptodate as
2404 * it's a race vs truncate race.
2405 * Case b, the page will not be up to date
2406 * Case c, the page may be truncated but in itself, the data may still
2407 * be valid after IO completes as it's a read vs truncate race. The
2408 * operation must restart if the page is not uptodate on unlock but
2409 * otherwise serialising on page lock to stabilise the mapping gives
2410 * no additional guarantees to the caller as the page lock is
2411 * released before return.
2412 * Case d, similar to truncation. If reclaim holds the page lock, it
2413 * will be a race with remove_mapping that determines if the mapping
2414 * is valid on unlock but otherwise the data is valid and there is
2415 * no need to serialise with page lock.
2416 *
2417 * As the page lock gives no additional guarantee, we optimistically
2418 * wait on the page to be unlocked and check if it's up to date and
2419 * use the page if it is. Otherwise, the page lock is required to
2420 * distinguish between the different cases. The motivation is that we
2421 * avoid spurious serialisations and wakeups when multiple processes
2422 * wait on the same page for IO to complete.
2423 */
2424 wait_on_page_locked(page);
2425 if (PageUptodate(page))
2426 goto out;
2427
2428 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2429 lock_page(page);
ebded027
MG
2430
2431 /* Case c or d, restart the operation */
1da177e4
LT
2432 if (!page->mapping) {
2433 unlock_page(page);
09cbfeaf 2434 put_page(page);
32b63529 2435 goto repeat;
1da177e4 2436 }
ebded027
MG
2437
2438 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2439 if (PageUptodate(page)) {
2440 unlock_page(page);
2441 goto out;
2442 }
32b63529
MG
2443 goto filler;
2444
c855ff37 2445out:
6fe6900e
NP
2446 mark_page_accessed(page);
2447 return page;
2448}
0531b2aa
LT
2449
2450/**
67f9fd91 2451 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2452 * @mapping: the page's address_space
2453 * @index: the page index
2454 * @filler: function to perform the read
5e5358e7 2455 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2456 *
0531b2aa 2457 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2458 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2459 *
2460 * If the page does not get brought uptodate, return -EIO.
2461 */
67f9fd91 2462struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2463 pgoff_t index,
5e5358e7 2464 int (*filler)(void *, struct page *),
0531b2aa
LT
2465 void *data)
2466{
2467 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2468}
67f9fd91 2469EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2470
2471/**
2472 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2473 * @mapping: the page's address_space
2474 * @index: the page index
2475 * @gfp: the page allocator flags to use if allocating
2476 *
2477 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2478 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2479 *
2480 * If the page does not get brought uptodate, return -EIO.
2481 */
2482struct page *read_cache_page_gfp(struct address_space *mapping,
2483 pgoff_t index,
2484 gfp_t gfp)
2485{
2486 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2487
67f9fd91 2488 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2489}
2490EXPORT_SYMBOL(read_cache_page_gfp);
2491
1da177e4
LT
2492/*
2493 * Performs necessary checks before doing a write
2494 *
485bb99b 2495 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2496 * Returns appropriate error code that caller should return or
2497 * zero in case that write should be allowed.
2498 */
3309dd04 2499inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2500{
3309dd04 2501 struct file *file = iocb->ki_filp;
1da177e4 2502 struct inode *inode = file->f_mapping->host;
59e99e5b 2503 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2504 loff_t pos;
1da177e4 2505
3309dd04
AV
2506 if (!iov_iter_count(from))
2507 return 0;
1da177e4 2508
0fa6b005 2509 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2510 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2511 iocb->ki_pos = i_size_read(inode);
1da177e4 2512
3309dd04 2513 pos = iocb->ki_pos;
1da177e4 2514
0fa6b005 2515 if (limit != RLIM_INFINITY) {
3309dd04 2516 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2517 send_sig(SIGXFSZ, current, 0);
2518 return -EFBIG;
1da177e4 2519 }
3309dd04 2520 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2521 }
2522
2523 /*
2524 * LFS rule
2525 */
3309dd04 2526 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2527 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2528 if (pos >= MAX_NON_LFS)
1da177e4 2529 return -EFBIG;
3309dd04 2530 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2531 }
2532
2533 /*
2534 * Are we about to exceed the fs block limit ?
2535 *
2536 * If we have written data it becomes a short write. If we have
2537 * exceeded without writing data we send a signal and return EFBIG.
2538 * Linus frestrict idea will clean these up nicely..
2539 */
3309dd04
AV
2540 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2541 return -EFBIG;
1da177e4 2542
3309dd04
AV
2543 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2544 return iov_iter_count(from);
1da177e4
LT
2545}
2546EXPORT_SYMBOL(generic_write_checks);
2547
afddba49
NP
2548int pagecache_write_begin(struct file *file, struct address_space *mapping,
2549 loff_t pos, unsigned len, unsigned flags,
2550 struct page **pagep, void **fsdata)
2551{
2552 const struct address_space_operations *aops = mapping->a_ops;
2553
4e02ed4b 2554 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2555 pagep, fsdata);
afddba49
NP
2556}
2557EXPORT_SYMBOL(pagecache_write_begin);
2558
2559int pagecache_write_end(struct file *file, struct address_space *mapping,
2560 loff_t pos, unsigned len, unsigned copied,
2561 struct page *page, void *fsdata)
2562{
2563 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2564
4e02ed4b 2565 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2566}
2567EXPORT_SYMBOL(pagecache_write_end);
2568
1da177e4 2569ssize_t
1af5bb49 2570generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2571{
2572 struct file *file = iocb->ki_filp;
2573 struct address_space *mapping = file->f_mapping;
2574 struct inode *inode = mapping->host;
1af5bb49 2575 loff_t pos = iocb->ki_pos;
1da177e4 2576 ssize_t written;
a969e903
CH
2577 size_t write_len;
2578 pgoff_t end;
26978b8b 2579 struct iov_iter data;
1da177e4 2580
0c949334 2581 write_len = iov_iter_count(from);
09cbfeaf 2582 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2583
48b47c56 2584 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2585 if (written)
2586 goto out;
2587
2588 /*
2589 * After a write we want buffered reads to be sure to go to disk to get
2590 * the new data. We invalidate clean cached page from the region we're
2591 * about to write. We do this *before* the write so that we can return
6ccfa806 2592 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2593 */
2594 if (mapping->nrpages) {
2595 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2596 pos >> PAGE_SHIFT, end);
6ccfa806
HH
2597 /*
2598 * If a page can not be invalidated, return 0 to fall back
2599 * to buffered write.
2600 */
2601 if (written) {
2602 if (written == -EBUSY)
2603 return 0;
a969e903 2604 goto out;
6ccfa806 2605 }
a969e903
CH
2606 }
2607
26978b8b 2608 data = *from;
c8b8e32d 2609 written = mapping->a_ops->direct_IO(iocb, &data);
a969e903
CH
2610
2611 /*
2612 * Finally, try again to invalidate clean pages which might have been
2613 * cached by non-direct readahead, or faulted in by get_user_pages()
2614 * if the source of the write was an mmap'ed region of the file
2615 * we're writing. Either one is a pretty crazy thing to do,
2616 * so we don't support it 100%. If this invalidation
2617 * fails, tough, the write still worked...
2618 */
2619 if (mapping->nrpages) {
2620 invalidate_inode_pages2_range(mapping,
09cbfeaf 2621 pos >> PAGE_SHIFT, end);
a969e903
CH
2622 }
2623
1da177e4 2624 if (written > 0) {
0116651c 2625 pos += written;
f8579f86 2626 iov_iter_advance(from, written);
0116651c
NK
2627 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2628 i_size_write(inode, pos);
1da177e4
LT
2629 mark_inode_dirty(inode);
2630 }
5cb6c6c7 2631 iocb->ki_pos = pos;
1da177e4 2632 }
a969e903 2633out:
1da177e4
LT
2634 return written;
2635}
2636EXPORT_SYMBOL(generic_file_direct_write);
2637
eb2be189
NP
2638/*
2639 * Find or create a page at the given pagecache position. Return the locked
2640 * page. This function is specifically for buffered writes.
2641 */
54566b2c
NP
2642struct page *grab_cache_page_write_begin(struct address_space *mapping,
2643 pgoff_t index, unsigned flags)
eb2be189 2644{
eb2be189 2645 struct page *page;
bbddabe2 2646 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2647
54566b2c 2648 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2649 fgp_flags |= FGP_NOFS;
2650
2651 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2652 mapping_gfp_mask(mapping));
c585a267 2653 if (page)
2457aec6 2654 wait_for_stable_page(page);
eb2be189 2655
eb2be189
NP
2656 return page;
2657}
54566b2c 2658EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2659
3b93f911 2660ssize_t generic_perform_write(struct file *file,
afddba49
NP
2661 struct iov_iter *i, loff_t pos)
2662{
2663 struct address_space *mapping = file->f_mapping;
2664 const struct address_space_operations *a_ops = mapping->a_ops;
2665 long status = 0;
2666 ssize_t written = 0;
674b892e
NP
2667 unsigned int flags = 0;
2668
2669 /*
2670 * Copies from kernel address space cannot fail (NFSD is a big user).
2671 */
777eda2c 2672 if (!iter_is_iovec(i))
674b892e 2673 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2674
2675 do {
2676 struct page *page;
afddba49
NP
2677 unsigned long offset; /* Offset into pagecache page */
2678 unsigned long bytes; /* Bytes to write to page */
2679 size_t copied; /* Bytes copied from user */
2680 void *fsdata;
2681
09cbfeaf
KS
2682 offset = (pos & (PAGE_SIZE - 1));
2683 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2684 iov_iter_count(i));
2685
2686again:
00a3d660
LT
2687 /*
2688 * Bring in the user page that we will copy from _first_.
2689 * Otherwise there's a nasty deadlock on copying from the
2690 * same page as we're writing to, without it being marked
2691 * up-to-date.
2692 *
2693 * Not only is this an optimisation, but it is also required
2694 * to check that the address is actually valid, when atomic
2695 * usercopies are used, below.
2696 */
2697 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2698 status = -EFAULT;
2699 break;
2700 }
2701
296291cd
JK
2702 if (fatal_signal_pending(current)) {
2703 status = -EINTR;
2704 break;
2705 }
2706
674b892e 2707 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2708 &page, &fsdata);
2457aec6 2709 if (unlikely(status < 0))
afddba49
NP
2710 break;
2711
931e80e4 2712 if (mapping_writably_mapped(mapping))
2713 flush_dcache_page(page);
00a3d660 2714
afddba49 2715 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2716 flush_dcache_page(page);
2717
2718 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2719 page, fsdata);
2720 if (unlikely(status < 0))
2721 break;
2722 copied = status;
2723
2724 cond_resched();
2725
124d3b70 2726 iov_iter_advance(i, copied);
afddba49
NP
2727 if (unlikely(copied == 0)) {
2728 /*
2729 * If we were unable to copy any data at all, we must
2730 * fall back to a single segment length write.
2731 *
2732 * If we didn't fallback here, we could livelock
2733 * because not all segments in the iov can be copied at
2734 * once without a pagefault.
2735 */
09cbfeaf 2736 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2737 iov_iter_single_seg_count(i));
2738 goto again;
2739 }
afddba49
NP
2740 pos += copied;
2741 written += copied;
2742
2743 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2744 } while (iov_iter_count(i));
2745
2746 return written ? written : status;
2747}
3b93f911 2748EXPORT_SYMBOL(generic_perform_write);
1da177e4 2749
e4dd9de3 2750/**
8174202b 2751 * __generic_file_write_iter - write data to a file
e4dd9de3 2752 * @iocb: IO state structure (file, offset, etc.)
8174202b 2753 * @from: iov_iter with data to write
e4dd9de3
JK
2754 *
2755 * This function does all the work needed for actually writing data to a
2756 * file. It does all basic checks, removes SUID from the file, updates
2757 * modification times and calls proper subroutines depending on whether we
2758 * do direct IO or a standard buffered write.
2759 *
2760 * It expects i_mutex to be grabbed unless we work on a block device or similar
2761 * object which does not need locking at all.
2762 *
2763 * This function does *not* take care of syncing data in case of O_SYNC write.
2764 * A caller has to handle it. This is mainly due to the fact that we want to
2765 * avoid syncing under i_mutex.
2766 */
8174202b 2767ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2768{
2769 struct file *file = iocb->ki_filp;
fb5527e6 2770 struct address_space * mapping = file->f_mapping;
1da177e4 2771 struct inode *inode = mapping->host;
3b93f911 2772 ssize_t written = 0;
1da177e4 2773 ssize_t err;
3b93f911 2774 ssize_t status;
1da177e4 2775
1da177e4 2776 /* We can write back this queue in page reclaim */
de1414a6 2777 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2778 err = file_remove_privs(file);
1da177e4
LT
2779 if (err)
2780 goto out;
2781
c3b2da31
JB
2782 err = file_update_time(file);
2783 if (err)
2784 goto out;
1da177e4 2785
2ba48ce5 2786 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2787 loff_t pos, endbyte;
fb5527e6 2788
1af5bb49 2789 written = generic_file_direct_write(iocb, from);
1da177e4 2790 /*
fbbbad4b
MW
2791 * If the write stopped short of completing, fall back to
2792 * buffered writes. Some filesystems do this for writes to
2793 * holes, for example. For DAX files, a buffered write will
2794 * not succeed (even if it did, DAX does not handle dirty
2795 * page-cache pages correctly).
1da177e4 2796 */
0b8def9d 2797 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2798 goto out;
2799
0b8def9d 2800 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2801 /*
3b93f911 2802 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2803 * then we want to return the number of bytes which were
2804 * direct-written, or the error code if that was zero. Note
2805 * that this differs from normal direct-io semantics, which
2806 * will return -EFOO even if some bytes were written.
2807 */
60bb4529 2808 if (unlikely(status < 0)) {
3b93f911 2809 err = status;
fb5527e6
JM
2810 goto out;
2811 }
fb5527e6
JM
2812 /*
2813 * We need to ensure that the page cache pages are written to
2814 * disk and invalidated to preserve the expected O_DIRECT
2815 * semantics.
2816 */
3b93f911 2817 endbyte = pos + status - 1;
0b8def9d 2818 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2819 if (err == 0) {
0b8def9d 2820 iocb->ki_pos = endbyte + 1;
3b93f911 2821 written += status;
fb5527e6 2822 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2823 pos >> PAGE_SHIFT,
2824 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2825 } else {
2826 /*
2827 * We don't know how much we wrote, so just return
2828 * the number of bytes which were direct-written
2829 */
2830 }
2831 } else {
0b8def9d
AV
2832 written = generic_perform_write(file, from, iocb->ki_pos);
2833 if (likely(written > 0))
2834 iocb->ki_pos += written;
fb5527e6 2835 }
1da177e4
LT
2836out:
2837 current->backing_dev_info = NULL;
2838 return written ? written : err;
2839}
8174202b 2840EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2841
e4dd9de3 2842/**
8174202b 2843 * generic_file_write_iter - write data to a file
e4dd9de3 2844 * @iocb: IO state structure
8174202b 2845 * @from: iov_iter with data to write
e4dd9de3 2846 *
8174202b 2847 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2848 * filesystems. It takes care of syncing the file in case of O_SYNC file
2849 * and acquires i_mutex as needed.
2850 */
8174202b 2851ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2852{
2853 struct file *file = iocb->ki_filp;
148f948b 2854 struct inode *inode = file->f_mapping->host;
1da177e4 2855 ssize_t ret;
1da177e4 2856
5955102c 2857 inode_lock(inode);
3309dd04
AV
2858 ret = generic_write_checks(iocb, from);
2859 if (ret > 0)
5f380c7f 2860 ret = __generic_file_write_iter(iocb, from);
5955102c 2861 inode_unlock(inode);
1da177e4 2862
e2592217
CH
2863 if (ret > 0)
2864 ret = generic_write_sync(iocb, ret);
1da177e4
LT
2865 return ret;
2866}
8174202b 2867EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2868
cf9a2ae8
DH
2869/**
2870 * try_to_release_page() - release old fs-specific metadata on a page
2871 *
2872 * @page: the page which the kernel is trying to free
2873 * @gfp_mask: memory allocation flags (and I/O mode)
2874 *
2875 * The address_space is to try to release any data against the page
2876 * (presumably at page->private). If the release was successful, return `1'.
2877 * Otherwise return zero.
2878 *
266cf658
DH
2879 * This may also be called if PG_fscache is set on a page, indicating that the
2880 * page is known to the local caching routines.
2881 *
cf9a2ae8 2882 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 2883 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 2884 *
cf9a2ae8
DH
2885 */
2886int try_to_release_page(struct page *page, gfp_t gfp_mask)
2887{
2888 struct address_space * const mapping = page->mapping;
2889
2890 BUG_ON(!PageLocked(page));
2891 if (PageWriteback(page))
2892 return 0;
2893
2894 if (mapping && mapping->a_ops->releasepage)
2895 return mapping->a_ops->releasepage(page, gfp_mask);
2896 return try_to_free_buffers(page);
2897}
2898
2899EXPORT_SYMBOL(try_to_release_page);