]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
SCHED: add some "wait..on_bit...timeout()" interfaces.
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 34#include <linux/hugetlb.h>
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
f1820361 37#include <linux/rmap.h>
0f8053a5
NP
38#include "internal.h"
39
fe0bfaaf
RJ
40#define CREATE_TRACE_POINTS
41#include <trace/events/filemap.h>
42
1da177e4 43/*
1da177e4
LT
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
148f948b 46#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 47
1da177e4
LT
48#include <asm/mman.h>
49
50/*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62/*
63 * Lock ordering:
64 *
3d48ae45 65 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
1da177e4 69 *
1b1dcc1b 70 * ->i_mutex
3d48ae45 71 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
72 *
73 * ->mmap_sem
3d48ae45 74 * ->i_mmap_mutex
b8072f09 75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
ccad2365 81 * ->i_mutex (generic_perform_write)
82591e6e 82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 83 *
f758eeab 84 * bdi->wb.list_lock
a66979ab 85 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
3d48ae45 88 * ->i_mmap_mutex
1da177e4
LT
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
b8072f09 92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 93 *
b8072f09 94 * ->page_table_lock or pte_lock
5d337b91 95 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 104 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 105 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
106 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
107 *
9a3c531d
AK
108 * ->i_mmap_mutex
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
110 */
111
91b0abe3
JW
112static void page_cache_tree_delete(struct address_space *mapping,
113 struct page *page, void *shadow)
114{
449dd698
JW
115 struct radix_tree_node *node;
116 unsigned long index;
117 unsigned int offset;
118 unsigned int tag;
119 void **slot;
91b0abe3 120
449dd698
JW
121 VM_BUG_ON(!PageLocked(page));
122
123 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
124
125 if (shadow) {
91b0abe3
JW
126 mapping->nrshadows++;
127 /*
128 * Make sure the nrshadows update is committed before
129 * the nrpages update so that final truncate racing
130 * with reclaim does not see both counters 0 at the
131 * same time and miss a shadow entry.
132 */
133 smp_wmb();
449dd698 134 }
91b0abe3 135 mapping->nrpages--;
449dd698
JW
136
137 if (!node) {
138 /* Clear direct pointer tags in root node */
139 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
140 radix_tree_replace_slot(slot, shadow);
141 return;
142 }
143
144 /* Clear tree tags for the removed page */
145 index = page->index;
146 offset = index & RADIX_TREE_MAP_MASK;
147 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
148 if (test_bit(offset, node->tags[tag]))
149 radix_tree_tag_clear(&mapping->page_tree, index, tag);
150 }
151
152 /* Delete page, swap shadow entry */
153 radix_tree_replace_slot(slot, shadow);
154 workingset_node_pages_dec(node);
155 if (shadow)
156 workingset_node_shadows_inc(node);
157 else
158 if (__radix_tree_delete_node(&mapping->page_tree, node))
159 return;
160
161 /*
162 * Track node that only contains shadow entries.
163 *
164 * Avoid acquiring the list_lru lock if already tracked. The
165 * list_empty() test is safe as node->private_list is
166 * protected by mapping->tree_lock.
167 */
168 if (!workingset_node_pages(node) &&
169 list_empty(&node->private_list)) {
170 node->private_data = mapping;
171 list_lru_add(&workingset_shadow_nodes, &node->private_list);
172 }
91b0abe3
JW
173}
174
1da177e4 175/*
e64a782f 176 * Delete a page from the page cache and free it. Caller has to make
1da177e4 177 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 178 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 179 */
91b0abe3 180void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
181{
182 struct address_space *mapping = page->mapping;
183
fe0bfaaf 184 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
185 /*
186 * if we're uptodate, flush out into the cleancache, otherwise
187 * invalidate any existing cleancache entries. We can't leave
188 * stale data around in the cleancache once our page is gone
189 */
190 if (PageUptodate(page) && PageMappedToDisk(page))
191 cleancache_put_page(page);
192 else
3167760f 193 cleancache_invalidate_page(mapping, page);
c515e1fd 194
91b0abe3
JW
195 page_cache_tree_delete(mapping, page, shadow);
196
1da177e4 197 page->mapping = NULL;
b85e0eff 198 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 199
347ce434 200 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
201 if (PageSwapBacked(page))
202 __dec_zone_page_state(page, NR_SHMEM);
45426812 203 BUG_ON(page_mapped(page));
3a692790
LT
204
205 /*
206 * Some filesystems seem to re-dirty the page even after
207 * the VM has canceled the dirty bit (eg ext3 journaling).
208 *
209 * Fix it up by doing a final dirty accounting check after
210 * having removed the page entirely.
211 */
212 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
213 dec_zone_page_state(page, NR_FILE_DIRTY);
214 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
215 }
1da177e4
LT
216}
217
702cfbf9
MK
218/**
219 * delete_from_page_cache - delete page from page cache
220 * @page: the page which the kernel is trying to remove from page cache
221 *
222 * This must be called only on pages that have been verified to be in the page
223 * cache and locked. It will never put the page into the free list, the caller
224 * has a reference on the page.
225 */
226void delete_from_page_cache(struct page *page)
1da177e4
LT
227{
228 struct address_space *mapping = page->mapping;
6072d13c 229 void (*freepage)(struct page *);
1da177e4 230
cd7619d6 231 BUG_ON(!PageLocked(page));
1da177e4 232
6072d13c 233 freepage = mapping->a_ops->freepage;
19fd6231 234 spin_lock_irq(&mapping->tree_lock);
91b0abe3 235 __delete_from_page_cache(page, NULL);
19fd6231 236 spin_unlock_irq(&mapping->tree_lock);
6072d13c
LT
237
238 if (freepage)
239 freepage(page);
97cecb5a
MK
240 page_cache_release(page);
241}
242EXPORT_SYMBOL(delete_from_page_cache);
243
865ffef3
DM
244static int filemap_check_errors(struct address_space *mapping)
245{
246 int ret = 0;
247 /* Check for outstanding write errors */
7fcbbaf1
JA
248 if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 250 ret = -ENOSPC;
7fcbbaf1
JA
251 if (test_bit(AS_EIO, &mapping->flags) &&
252 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
253 ret = -EIO;
254 return ret;
255}
256
1da177e4 257/**
485bb99b 258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
469eb4d0 261 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 262 * @sync_mode: enable synchronous operation
1da177e4 263 *
485bb99b
RD
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
266 *
1da177e4 267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 268 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
271 */
ebcf28e1
AM
272int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 loff_t end, int sync_mode)
1da177e4
LT
274{
275 int ret;
276 struct writeback_control wbc = {
277 .sync_mode = sync_mode,
05fe478d 278 .nr_to_write = LONG_MAX,
111ebb6e
OH
279 .range_start = start,
280 .range_end = end,
1da177e4
LT
281 };
282
283 if (!mapping_cap_writeback_dirty(mapping))
284 return 0;
285
286 ret = do_writepages(mapping, &wbc);
287 return ret;
288}
289
290static inline int __filemap_fdatawrite(struct address_space *mapping,
291 int sync_mode)
292{
111ebb6e 293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
294}
295
296int filemap_fdatawrite(struct address_space *mapping)
297{
298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299}
300EXPORT_SYMBOL(filemap_fdatawrite);
301
f4c0a0fd 302int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 303 loff_t end)
1da177e4
LT
304{
305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306}
f4c0a0fd 307EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 308
485bb99b
RD
309/**
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
312 *
1da177e4
LT
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
315 */
316int filemap_flush(struct address_space *mapping)
317{
318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319}
320EXPORT_SYMBOL(filemap_flush);
321
485bb99b 322/**
94004ed7
CH
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 327 *
94004ed7
CH
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
1da177e4 330 */
94004ed7
CH
331int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 loff_t end_byte)
1da177e4 333{
94004ed7
CH
334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
336 struct pagevec pvec;
337 int nr_pages;
865ffef3 338 int ret2, ret = 0;
1da177e4 339
94004ed7 340 if (end_byte < start_byte)
865ffef3 341 goto out;
1da177e4
LT
342
343 pagevec_init(&pvec, 0);
1da177e4
LT
344 while ((index <= end) &&
345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 PAGECACHE_TAG_WRITEBACK,
347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 unsigned i;
349
350 for (i = 0; i < nr_pages; i++) {
351 struct page *page = pvec.pages[i];
352
353 /* until radix tree lookup accepts end_index */
354 if (page->index > end)
355 continue;
356
357 wait_on_page_writeback(page);
212260aa 358 if (TestClearPageError(page))
1da177e4
LT
359 ret = -EIO;
360 }
361 pagevec_release(&pvec);
362 cond_resched();
363 }
865ffef3
DM
364out:
365 ret2 = filemap_check_errors(mapping);
366 if (!ret)
367 ret = ret2;
1da177e4
LT
368
369 return ret;
370}
d3bccb6f
JK
371EXPORT_SYMBOL(filemap_fdatawait_range);
372
1da177e4 373/**
485bb99b 374 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 375 * @mapping: address space structure to wait for
485bb99b
RD
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
1da177e4
LT
379 */
380int filemap_fdatawait(struct address_space *mapping)
381{
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
94004ed7 387 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
388}
389EXPORT_SYMBOL(filemap_fdatawait);
390
391int filemap_write_and_wait(struct address_space *mapping)
392{
28fd1298 393 int err = 0;
1da177e4
LT
394
395 if (mapping->nrpages) {
28fd1298
OH
396 err = filemap_fdatawrite(mapping);
397 /*
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
402 */
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
407 }
865ffef3
DM
408 } else {
409 err = filemap_check_errors(mapping);
1da177e4 410 }
28fd1298 411 return err;
1da177e4 412}
28fd1298 413EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 414
485bb99b
RD
415/**
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
420 *
469eb4d0
AM
421 * Write out and wait upon file offsets lstart->lend, inclusive.
422 *
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
425 */
1da177e4
LT
426int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
428{
28fd1298 429 int err = 0;
1da177e4
LT
430
431 if (mapping->nrpages) {
28fd1298
OH
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
94004ed7
CH
436 int err2 = filemap_fdatawait_range(mapping,
437 lstart, lend);
28fd1298
OH
438 if (!err)
439 err = err2;
440 }
865ffef3
DM
441 } else {
442 err = filemap_check_errors(mapping);
1da177e4 443 }
28fd1298 444 return err;
1da177e4 445}
f6995585 446EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 447
ef6a3c63
MS
448/**
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
453 *
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
459 *
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
462 */
463int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464{
465 int error;
ef6a3c63 466
309381fe
SL
467 VM_BUG_ON_PAGE(!PageLocked(old), old);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 470
ef6a3c63
MS
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (!error) {
473 struct address_space *mapping = old->mapping;
474 void (*freepage)(struct page *);
475
476 pgoff_t offset = old->index;
477 freepage = mapping->a_ops->freepage;
478
479 page_cache_get(new);
480 new->mapping = mapping;
481 new->index = offset;
482
483 spin_lock_irq(&mapping->tree_lock);
91b0abe3 484 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
485 error = radix_tree_insert(&mapping->page_tree, offset, new);
486 BUG_ON(error);
487 mapping->nrpages++;
488 __inc_zone_page_state(new, NR_FILE_PAGES);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM);
491 spin_unlock_irq(&mapping->tree_lock);
0a31bc97 492 mem_cgroup_migrate(old, new, true);
ef6a3c63
MS
493 radix_tree_preload_end();
494 if (freepage)
495 freepage(old);
496 page_cache_release(old);
ef6a3c63
MS
497 }
498
499 return error;
500}
501EXPORT_SYMBOL_GPL(replace_page_cache_page);
502
0cd6144a 503static int page_cache_tree_insert(struct address_space *mapping,
a528910e 504 struct page *page, void **shadowp)
0cd6144a 505{
449dd698 506 struct radix_tree_node *node;
0cd6144a
JW
507 void **slot;
508 int error;
509
449dd698
JW
510 error = __radix_tree_create(&mapping->page_tree, page->index,
511 &node, &slot);
512 if (error)
513 return error;
514 if (*slot) {
0cd6144a
JW
515 void *p;
516
517 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
518 if (!radix_tree_exceptional_entry(p))
519 return -EEXIST;
a528910e
JW
520 if (shadowp)
521 *shadowp = p;
449dd698
JW
522 mapping->nrshadows--;
523 if (node)
524 workingset_node_shadows_dec(node);
0cd6144a 525 }
449dd698
JW
526 radix_tree_replace_slot(slot, page);
527 mapping->nrpages++;
528 if (node) {
529 workingset_node_pages_inc(node);
530 /*
531 * Don't track node that contains actual pages.
532 *
533 * Avoid acquiring the list_lru lock if already
534 * untracked. The list_empty() test is safe as
535 * node->private_list is protected by
536 * mapping->tree_lock.
537 */
538 if (!list_empty(&node->private_list))
539 list_lru_del(&workingset_shadow_nodes,
540 &node->private_list);
541 }
542 return 0;
0cd6144a
JW
543}
544
a528910e
JW
545static int __add_to_page_cache_locked(struct page *page,
546 struct address_space *mapping,
547 pgoff_t offset, gfp_t gfp_mask,
548 void **shadowp)
1da177e4 549{
00501b53
JW
550 int huge = PageHuge(page);
551 struct mem_cgroup *memcg;
e286781d
NP
552 int error;
553
309381fe
SL
554 VM_BUG_ON_PAGE(!PageLocked(page), page);
555 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 556
00501b53
JW
557 if (!huge) {
558 error = mem_cgroup_try_charge(page, current->mm,
559 gfp_mask, &memcg);
560 if (error)
561 return error;
562 }
1da177e4 563
5e4c0d97 564 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 565 if (error) {
00501b53
JW
566 if (!huge)
567 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee
KS
568 return error;
569 }
570
571 page_cache_get(page);
572 page->mapping = mapping;
573 page->index = offset;
574
575 spin_lock_irq(&mapping->tree_lock);
a528910e 576 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
577 radix_tree_preload_end();
578 if (unlikely(error))
579 goto err_insert;
66a0c8ee
KS
580 __inc_zone_page_state(page, NR_FILE_PAGES);
581 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
582 if (!huge)
583 mem_cgroup_commit_charge(page, memcg, false);
66a0c8ee
KS
584 trace_mm_filemap_add_to_page_cache(page);
585 return 0;
586err_insert:
587 page->mapping = NULL;
588 /* Leave page->index set: truncation relies upon it */
589 spin_unlock_irq(&mapping->tree_lock);
00501b53
JW
590 if (!huge)
591 mem_cgroup_cancel_charge(page, memcg);
66a0c8ee 592 page_cache_release(page);
1da177e4
LT
593 return error;
594}
a528910e
JW
595
596/**
597 * add_to_page_cache_locked - add a locked page to the pagecache
598 * @page: page to add
599 * @mapping: the page's address_space
600 * @offset: page index
601 * @gfp_mask: page allocation mode
602 *
603 * This function is used to add a page to the pagecache. It must be locked.
604 * This function does not add the page to the LRU. The caller must do that.
605 */
606int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
607 pgoff_t offset, gfp_t gfp_mask)
608{
609 return __add_to_page_cache_locked(page, mapping, offset,
610 gfp_mask, NULL);
611}
e286781d 612EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
613
614int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 615 pgoff_t offset, gfp_t gfp_mask)
1da177e4 616{
a528910e 617 void *shadow = NULL;
4f98a2fe
RR
618 int ret;
619
a528910e
JW
620 __set_page_locked(page);
621 ret = __add_to_page_cache_locked(page, mapping, offset,
622 gfp_mask, &shadow);
623 if (unlikely(ret))
624 __clear_page_locked(page);
625 else {
626 /*
627 * The page might have been evicted from cache only
628 * recently, in which case it should be activated like
629 * any other repeatedly accessed page.
630 */
631 if (shadow && workingset_refault(shadow)) {
632 SetPageActive(page);
633 workingset_activation(page);
634 } else
635 ClearPageActive(page);
636 lru_cache_add(page);
637 }
1da177e4
LT
638 return ret;
639}
18bc0bbd 640EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 641
44110fe3 642#ifdef CONFIG_NUMA
2ae88149 643struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 644{
c0ff7453
MX
645 int n;
646 struct page *page;
647
44110fe3 648 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
649 unsigned int cpuset_mems_cookie;
650 do {
d26914d1 651 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
652 n = cpuset_mem_spread_node();
653 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 654 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 655
c0ff7453 656 return page;
44110fe3 657 }
2ae88149 658 return alloc_pages(gfp, 0);
44110fe3 659}
2ae88149 660EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
661#endif
662
1da177e4
LT
663/*
664 * In order to wait for pages to become available there must be
665 * waitqueues associated with pages. By using a hash table of
666 * waitqueues where the bucket discipline is to maintain all
667 * waiters on the same queue and wake all when any of the pages
668 * become available, and for the woken contexts to check to be
669 * sure the appropriate page became available, this saves space
670 * at a cost of "thundering herd" phenomena during rare hash
671 * collisions.
672 */
673static wait_queue_head_t *page_waitqueue(struct page *page)
674{
675 const struct zone *zone = page_zone(page);
676
677 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
678}
679
680static inline void wake_up_page(struct page *page, int bit)
681{
682 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
683}
684
920c7a5d 685void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
686{
687 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
688
689 if (test_bit(bit_nr, &page->flags))
74316201 690 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
691 TASK_UNINTERRUPTIBLE);
692}
693EXPORT_SYMBOL(wait_on_page_bit);
694
f62e00cc
KM
695int wait_on_page_bit_killable(struct page *page, int bit_nr)
696{
697 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
698
699 if (!test_bit(bit_nr, &page->flags))
700 return 0;
701
702 return __wait_on_bit(page_waitqueue(page), &wait,
74316201 703 bit_wait_io, TASK_KILLABLE);
f62e00cc
KM
704}
705
cbbce822
N
706int wait_on_page_bit_killable_timeout(struct page *page,
707 int bit_nr, unsigned long timeout)
708{
709 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
710
711 wait.key.timeout = jiffies + timeout;
712 if (!test_bit(bit_nr, &page->flags))
713 return 0;
714 return __wait_on_bit(page_waitqueue(page), &wait,
715 bit_wait_io_timeout, TASK_KILLABLE);
716}
717EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
718
385e1ca5
DH
719/**
720 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
721 * @page: Page defining the wait queue of interest
722 * @waiter: Waiter to add to the queue
385e1ca5
DH
723 *
724 * Add an arbitrary @waiter to the wait queue for the nominated @page.
725 */
726void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
727{
728 wait_queue_head_t *q = page_waitqueue(page);
729 unsigned long flags;
730
731 spin_lock_irqsave(&q->lock, flags);
732 __add_wait_queue(q, waiter);
733 spin_unlock_irqrestore(&q->lock, flags);
734}
735EXPORT_SYMBOL_GPL(add_page_wait_queue);
736
1da177e4 737/**
485bb99b 738 * unlock_page - unlock a locked page
1da177e4
LT
739 * @page: the page
740 *
741 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
742 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
743 * mechananism between PageLocked pages and PageWriteback pages is shared.
744 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
745 *
8413ac9d
NP
746 * The mb is necessary to enforce ordering between the clear_bit and the read
747 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 748 */
920c7a5d 749void unlock_page(struct page *page)
1da177e4 750{
309381fe 751 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 752 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 753 smp_mb__after_atomic();
1da177e4
LT
754 wake_up_page(page, PG_locked);
755}
756EXPORT_SYMBOL(unlock_page);
757
485bb99b
RD
758/**
759 * end_page_writeback - end writeback against a page
760 * @page: the page
1da177e4
LT
761 */
762void end_page_writeback(struct page *page)
763{
888cf2db
MG
764 /*
765 * TestClearPageReclaim could be used here but it is an atomic
766 * operation and overkill in this particular case. Failing to
767 * shuffle a page marked for immediate reclaim is too mild to
768 * justify taking an atomic operation penalty at the end of
769 * ever page writeback.
770 */
771 if (PageReclaim(page)) {
772 ClearPageReclaim(page);
ac6aadb2 773 rotate_reclaimable_page(page);
888cf2db 774 }
ac6aadb2
MS
775
776 if (!test_clear_page_writeback(page))
777 BUG();
778
4e857c58 779 smp_mb__after_atomic();
1da177e4
LT
780 wake_up_page(page, PG_writeback);
781}
782EXPORT_SYMBOL(end_page_writeback);
783
57d99845
MW
784/*
785 * After completing I/O on a page, call this routine to update the page
786 * flags appropriately
787 */
788void page_endio(struct page *page, int rw, int err)
789{
790 if (rw == READ) {
791 if (!err) {
792 SetPageUptodate(page);
793 } else {
794 ClearPageUptodate(page);
795 SetPageError(page);
796 }
797 unlock_page(page);
798 } else { /* rw == WRITE */
799 if (err) {
800 SetPageError(page);
801 if (page->mapping)
802 mapping_set_error(page->mapping, err);
803 }
804 end_page_writeback(page);
805 }
806}
807EXPORT_SYMBOL_GPL(page_endio);
808
485bb99b
RD
809/**
810 * __lock_page - get a lock on the page, assuming we need to sleep to get it
811 * @page: the page to lock
1da177e4 812 */
920c7a5d 813void __lock_page(struct page *page)
1da177e4
LT
814{
815 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
816
74316201 817 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
1da177e4
LT
818 TASK_UNINTERRUPTIBLE);
819}
820EXPORT_SYMBOL(__lock_page);
821
b5606c2d 822int __lock_page_killable(struct page *page)
2687a356
MW
823{
824 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
825
826 return __wait_on_bit_lock(page_waitqueue(page), &wait,
74316201 827 bit_wait_io, TASK_KILLABLE);
2687a356 828}
18bc0bbd 829EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 830
9a95f3cf
PC
831/*
832 * Return values:
833 * 1 - page is locked; mmap_sem is still held.
834 * 0 - page is not locked.
835 * mmap_sem has been released (up_read()), unless flags had both
836 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
837 * which case mmap_sem is still held.
838 *
839 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
840 * with the page locked and the mmap_sem unperturbed.
841 */
d065bd81
ML
842int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
843 unsigned int flags)
844{
37b23e05
KM
845 if (flags & FAULT_FLAG_ALLOW_RETRY) {
846 /*
847 * CAUTION! In this case, mmap_sem is not released
848 * even though return 0.
849 */
850 if (flags & FAULT_FLAG_RETRY_NOWAIT)
851 return 0;
852
853 up_read(&mm->mmap_sem);
854 if (flags & FAULT_FLAG_KILLABLE)
855 wait_on_page_locked_killable(page);
856 else
318b275f 857 wait_on_page_locked(page);
d065bd81 858 return 0;
37b23e05
KM
859 } else {
860 if (flags & FAULT_FLAG_KILLABLE) {
861 int ret;
862
863 ret = __lock_page_killable(page);
864 if (ret) {
865 up_read(&mm->mmap_sem);
866 return 0;
867 }
868 } else
869 __lock_page(page);
870 return 1;
d065bd81
ML
871 }
872}
873
e7b563bb
JW
874/**
875 * page_cache_next_hole - find the next hole (not-present entry)
876 * @mapping: mapping
877 * @index: index
878 * @max_scan: maximum range to search
879 *
880 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
881 * lowest indexed hole.
882 *
883 * Returns: the index of the hole if found, otherwise returns an index
884 * outside of the set specified (in which case 'return - index >=
885 * max_scan' will be true). In rare cases of index wrap-around, 0 will
886 * be returned.
887 *
888 * page_cache_next_hole may be called under rcu_read_lock. However,
889 * like radix_tree_gang_lookup, this will not atomically search a
890 * snapshot of the tree at a single point in time. For example, if a
891 * hole is created at index 5, then subsequently a hole is created at
892 * index 10, page_cache_next_hole covering both indexes may return 10
893 * if called under rcu_read_lock.
894 */
895pgoff_t page_cache_next_hole(struct address_space *mapping,
896 pgoff_t index, unsigned long max_scan)
897{
898 unsigned long i;
899
900 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
901 struct page *page;
902
903 page = radix_tree_lookup(&mapping->page_tree, index);
904 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
905 break;
906 index++;
907 if (index == 0)
908 break;
909 }
910
911 return index;
912}
913EXPORT_SYMBOL(page_cache_next_hole);
914
915/**
916 * page_cache_prev_hole - find the prev hole (not-present entry)
917 * @mapping: mapping
918 * @index: index
919 * @max_scan: maximum range to search
920 *
921 * Search backwards in the range [max(index-max_scan+1, 0), index] for
922 * the first hole.
923 *
924 * Returns: the index of the hole if found, otherwise returns an index
925 * outside of the set specified (in which case 'index - return >=
926 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
927 * will be returned.
928 *
929 * page_cache_prev_hole may be called under rcu_read_lock. However,
930 * like radix_tree_gang_lookup, this will not atomically search a
931 * snapshot of the tree at a single point in time. For example, if a
932 * hole is created at index 10, then subsequently a hole is created at
933 * index 5, page_cache_prev_hole covering both indexes may return 5 if
934 * called under rcu_read_lock.
935 */
936pgoff_t page_cache_prev_hole(struct address_space *mapping,
937 pgoff_t index, unsigned long max_scan)
938{
939 unsigned long i;
940
941 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
942 struct page *page;
943
944 page = radix_tree_lookup(&mapping->page_tree, index);
945 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
946 break;
947 index--;
948 if (index == ULONG_MAX)
949 break;
950 }
951
952 return index;
953}
954EXPORT_SYMBOL(page_cache_prev_hole);
955
485bb99b 956/**
0cd6144a 957 * find_get_entry - find and get a page cache entry
485bb99b 958 * @mapping: the address_space to search
0cd6144a
JW
959 * @offset: the page cache index
960 *
961 * Looks up the page cache slot at @mapping & @offset. If there is a
962 * page cache page, it is returned with an increased refcount.
485bb99b 963 *
139b6a6f
JW
964 * If the slot holds a shadow entry of a previously evicted page, or a
965 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
966 *
967 * Otherwise, %NULL is returned.
1da177e4 968 */
0cd6144a 969struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 970{
a60637c8 971 void **pagep;
1da177e4
LT
972 struct page *page;
973
a60637c8
NP
974 rcu_read_lock();
975repeat:
976 page = NULL;
977 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
978 if (pagep) {
979 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
980 if (unlikely(!page))
981 goto out;
a2c16d6c 982 if (radix_tree_exception(page)) {
8079b1c8
HD
983 if (radix_tree_deref_retry(page))
984 goto repeat;
985 /*
139b6a6f
JW
986 * A shadow entry of a recently evicted page,
987 * or a swap entry from shmem/tmpfs. Return
988 * it without attempting to raise page count.
8079b1c8
HD
989 */
990 goto out;
a2c16d6c 991 }
a60637c8
NP
992 if (!page_cache_get_speculative(page))
993 goto repeat;
994
995 /*
996 * Has the page moved?
997 * This is part of the lockless pagecache protocol. See
998 * include/linux/pagemap.h for details.
999 */
1000 if (unlikely(page != *pagep)) {
1001 page_cache_release(page);
1002 goto repeat;
1003 }
1004 }
27d20fdd 1005out:
a60637c8
NP
1006 rcu_read_unlock();
1007
1da177e4
LT
1008 return page;
1009}
0cd6144a 1010EXPORT_SYMBOL(find_get_entry);
1da177e4 1011
0cd6144a
JW
1012/**
1013 * find_lock_entry - locate, pin and lock a page cache entry
1014 * @mapping: the address_space to search
1015 * @offset: the page cache index
1016 *
1017 * Looks up the page cache slot at @mapping & @offset. If there is a
1018 * page cache page, it is returned locked and with an increased
1019 * refcount.
1020 *
139b6a6f
JW
1021 * If the slot holds a shadow entry of a previously evicted page, or a
1022 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1023 *
1024 * Otherwise, %NULL is returned.
1025 *
1026 * find_lock_entry() may sleep.
1027 */
1028struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1029{
1030 struct page *page;
1031
1da177e4 1032repeat:
0cd6144a 1033 page = find_get_entry(mapping, offset);
a2c16d6c 1034 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1035 lock_page(page);
1036 /* Has the page been truncated? */
1037 if (unlikely(page->mapping != mapping)) {
1038 unlock_page(page);
1039 page_cache_release(page);
1040 goto repeat;
1da177e4 1041 }
309381fe 1042 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1043 }
1da177e4
LT
1044 return page;
1045}
0cd6144a
JW
1046EXPORT_SYMBOL(find_lock_entry);
1047
1048/**
2457aec6 1049 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1050 * @mapping: the address_space to search
1051 * @offset: the page index
2457aec6 1052 * @fgp_flags: PCG flags
75325189
RD
1053 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1054 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
0cd6144a 1055 *
2457aec6 1056 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1057 *
75325189 1058 * PCG flags modify how the page is returned.
0cd6144a 1059 *
2457aec6
MG
1060 * FGP_ACCESSED: the page will be marked accessed
1061 * FGP_LOCK: Page is return locked
1062 * FGP_CREAT: If page is not present then a new page is allocated using
75325189
RD
1063 * @cache_gfp_mask and added to the page cache and the VM's LRU
1064 * list. If radix tree nodes are allocated during page cache
1065 * insertion then @radix_gfp_mask is used. The page is returned
1066 * locked and with an increased refcount. Otherwise, %NULL is
1067 * returned.
1da177e4 1068 *
2457aec6
MG
1069 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1070 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1071 *
2457aec6 1072 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1073 */
2457aec6
MG
1074struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1075 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1da177e4 1076{
eb2be189 1077 struct page *page;
2457aec6 1078
1da177e4 1079repeat:
2457aec6
MG
1080 page = find_get_entry(mapping, offset);
1081 if (radix_tree_exceptional_entry(page))
1082 page = NULL;
1083 if (!page)
1084 goto no_page;
1085
1086 if (fgp_flags & FGP_LOCK) {
1087 if (fgp_flags & FGP_NOWAIT) {
1088 if (!trylock_page(page)) {
1089 page_cache_release(page);
1090 return NULL;
1091 }
1092 } else {
1093 lock_page(page);
1094 }
1095
1096 /* Has the page been truncated? */
1097 if (unlikely(page->mapping != mapping)) {
1098 unlock_page(page);
1099 page_cache_release(page);
1100 goto repeat;
1101 }
1102 VM_BUG_ON_PAGE(page->index != offset, page);
1103 }
1104
1105 if (page && (fgp_flags & FGP_ACCESSED))
1106 mark_page_accessed(page);
1107
1108no_page:
1109 if (!page && (fgp_flags & FGP_CREAT)) {
1110 int err;
1111 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1112 cache_gfp_mask |= __GFP_WRITE;
1113 if (fgp_flags & FGP_NOFS) {
1114 cache_gfp_mask &= ~__GFP_FS;
1115 radix_gfp_mask &= ~__GFP_FS;
1116 }
1117
1118 page = __page_cache_alloc(cache_gfp_mask);
eb2be189
NP
1119 if (!page)
1120 return NULL;
2457aec6
MG
1121
1122 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1123 fgp_flags |= FGP_LOCK;
1124
eb39d618 1125 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1126 if (fgp_flags & FGP_ACCESSED)
eb39d618 1127 __SetPageReferenced(page);
2457aec6
MG
1128
1129 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
eb2be189
NP
1130 if (unlikely(err)) {
1131 page_cache_release(page);
1132 page = NULL;
1133 if (err == -EEXIST)
1134 goto repeat;
1da177e4 1135 }
1da177e4 1136 }
2457aec6 1137
1da177e4
LT
1138 return page;
1139}
2457aec6 1140EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1141
0cd6144a
JW
1142/**
1143 * find_get_entries - gang pagecache lookup
1144 * @mapping: The address_space to search
1145 * @start: The starting page cache index
1146 * @nr_entries: The maximum number of entries
1147 * @entries: Where the resulting entries are placed
1148 * @indices: The cache indices corresponding to the entries in @entries
1149 *
1150 * find_get_entries() will search for and return a group of up to
1151 * @nr_entries entries in the mapping. The entries are placed at
1152 * @entries. find_get_entries() takes a reference against any actual
1153 * pages it returns.
1154 *
1155 * The search returns a group of mapping-contiguous page cache entries
1156 * with ascending indexes. There may be holes in the indices due to
1157 * not-present pages.
1158 *
139b6a6f
JW
1159 * Any shadow entries of evicted pages, or swap entries from
1160 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1161 *
1162 * find_get_entries() returns the number of pages and shadow entries
1163 * which were found.
1164 */
1165unsigned find_get_entries(struct address_space *mapping,
1166 pgoff_t start, unsigned int nr_entries,
1167 struct page **entries, pgoff_t *indices)
1168{
1169 void **slot;
1170 unsigned int ret = 0;
1171 struct radix_tree_iter iter;
1172
1173 if (!nr_entries)
1174 return 0;
1175
1176 rcu_read_lock();
1177restart:
1178 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1179 struct page *page;
1180repeat:
1181 page = radix_tree_deref_slot(slot);
1182 if (unlikely(!page))
1183 continue;
1184 if (radix_tree_exception(page)) {
1185 if (radix_tree_deref_retry(page))
1186 goto restart;
1187 /*
139b6a6f
JW
1188 * A shadow entry of a recently evicted page,
1189 * or a swap entry from shmem/tmpfs. Return
1190 * it without attempting to raise page count.
0cd6144a
JW
1191 */
1192 goto export;
1193 }
1194 if (!page_cache_get_speculative(page))
1195 goto repeat;
1196
1197 /* Has the page moved? */
1198 if (unlikely(page != *slot)) {
1199 page_cache_release(page);
1200 goto repeat;
1201 }
1202export:
1203 indices[ret] = iter.index;
1204 entries[ret] = page;
1205 if (++ret == nr_entries)
1206 break;
1207 }
1208 rcu_read_unlock();
1209 return ret;
1210}
1211
1da177e4
LT
1212/**
1213 * find_get_pages - gang pagecache lookup
1214 * @mapping: The address_space to search
1215 * @start: The starting page index
1216 * @nr_pages: The maximum number of pages
1217 * @pages: Where the resulting pages are placed
1218 *
1219 * find_get_pages() will search for and return a group of up to
1220 * @nr_pages pages in the mapping. The pages are placed at @pages.
1221 * find_get_pages() takes a reference against the returned pages.
1222 *
1223 * The search returns a group of mapping-contiguous pages with ascending
1224 * indexes. There may be holes in the indices due to not-present pages.
1225 *
1226 * find_get_pages() returns the number of pages which were found.
1227 */
1228unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1229 unsigned int nr_pages, struct page **pages)
1230{
0fc9d104
KK
1231 struct radix_tree_iter iter;
1232 void **slot;
1233 unsigned ret = 0;
1234
1235 if (unlikely(!nr_pages))
1236 return 0;
a60637c8
NP
1237
1238 rcu_read_lock();
1239restart:
0fc9d104 1240 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1241 struct page *page;
1242repeat:
0fc9d104 1243 page = radix_tree_deref_slot(slot);
a60637c8
NP
1244 if (unlikely(!page))
1245 continue;
9d8aa4ea 1246
a2c16d6c 1247 if (radix_tree_exception(page)) {
8079b1c8
HD
1248 if (radix_tree_deref_retry(page)) {
1249 /*
1250 * Transient condition which can only trigger
1251 * when entry at index 0 moves out of or back
1252 * to root: none yet gotten, safe to restart.
1253 */
0fc9d104 1254 WARN_ON(iter.index);
8079b1c8
HD
1255 goto restart;
1256 }
a2c16d6c 1257 /*
139b6a6f
JW
1258 * A shadow entry of a recently evicted page,
1259 * or a swap entry from shmem/tmpfs. Skip
1260 * over it.
a2c16d6c 1261 */
8079b1c8 1262 continue;
27d20fdd 1263 }
a60637c8
NP
1264
1265 if (!page_cache_get_speculative(page))
1266 goto repeat;
1267
1268 /* Has the page moved? */
0fc9d104 1269 if (unlikely(page != *slot)) {
a60637c8
NP
1270 page_cache_release(page);
1271 goto repeat;
1272 }
1da177e4 1273
a60637c8 1274 pages[ret] = page;
0fc9d104
KK
1275 if (++ret == nr_pages)
1276 break;
a60637c8 1277 }
5b280c0c 1278
a60637c8 1279 rcu_read_unlock();
1da177e4
LT
1280 return ret;
1281}
1282
ebf43500
JA
1283/**
1284 * find_get_pages_contig - gang contiguous pagecache lookup
1285 * @mapping: The address_space to search
1286 * @index: The starting page index
1287 * @nr_pages: The maximum number of pages
1288 * @pages: Where the resulting pages are placed
1289 *
1290 * find_get_pages_contig() works exactly like find_get_pages(), except
1291 * that the returned number of pages are guaranteed to be contiguous.
1292 *
1293 * find_get_pages_contig() returns the number of pages which were found.
1294 */
1295unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1296 unsigned int nr_pages, struct page **pages)
1297{
0fc9d104
KK
1298 struct radix_tree_iter iter;
1299 void **slot;
1300 unsigned int ret = 0;
1301
1302 if (unlikely(!nr_pages))
1303 return 0;
a60637c8
NP
1304
1305 rcu_read_lock();
1306restart:
0fc9d104 1307 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1308 struct page *page;
1309repeat:
0fc9d104
KK
1310 page = radix_tree_deref_slot(slot);
1311 /* The hole, there no reason to continue */
a60637c8 1312 if (unlikely(!page))
0fc9d104 1313 break;
9d8aa4ea 1314
a2c16d6c 1315 if (radix_tree_exception(page)) {
8079b1c8
HD
1316 if (radix_tree_deref_retry(page)) {
1317 /*
1318 * Transient condition which can only trigger
1319 * when entry at index 0 moves out of or back
1320 * to root: none yet gotten, safe to restart.
1321 */
1322 goto restart;
1323 }
a2c16d6c 1324 /*
139b6a6f
JW
1325 * A shadow entry of a recently evicted page,
1326 * or a swap entry from shmem/tmpfs. Stop
1327 * looking for contiguous pages.
a2c16d6c 1328 */
8079b1c8 1329 break;
a2c16d6c 1330 }
ebf43500 1331
a60637c8
NP
1332 if (!page_cache_get_speculative(page))
1333 goto repeat;
1334
1335 /* Has the page moved? */
0fc9d104 1336 if (unlikely(page != *slot)) {
a60637c8
NP
1337 page_cache_release(page);
1338 goto repeat;
1339 }
1340
9cbb4cb2
NP
1341 /*
1342 * must check mapping and index after taking the ref.
1343 * otherwise we can get both false positives and false
1344 * negatives, which is just confusing to the caller.
1345 */
0fc9d104 1346 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1347 page_cache_release(page);
1348 break;
1349 }
1350
a60637c8 1351 pages[ret] = page;
0fc9d104
KK
1352 if (++ret == nr_pages)
1353 break;
ebf43500 1354 }
a60637c8
NP
1355 rcu_read_unlock();
1356 return ret;
ebf43500 1357}
ef71c15c 1358EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1359
485bb99b
RD
1360/**
1361 * find_get_pages_tag - find and return pages that match @tag
1362 * @mapping: the address_space to search
1363 * @index: the starting page index
1364 * @tag: the tag index
1365 * @nr_pages: the maximum number of pages
1366 * @pages: where the resulting pages are placed
1367 *
1da177e4 1368 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1369 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1370 */
1371unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1372 int tag, unsigned int nr_pages, struct page **pages)
1373{
0fc9d104
KK
1374 struct radix_tree_iter iter;
1375 void **slot;
1376 unsigned ret = 0;
1377
1378 if (unlikely(!nr_pages))
1379 return 0;
a60637c8
NP
1380
1381 rcu_read_lock();
1382restart:
0fc9d104
KK
1383 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1384 &iter, *index, tag) {
a60637c8
NP
1385 struct page *page;
1386repeat:
0fc9d104 1387 page = radix_tree_deref_slot(slot);
a60637c8
NP
1388 if (unlikely(!page))
1389 continue;
9d8aa4ea 1390
a2c16d6c 1391 if (radix_tree_exception(page)) {
8079b1c8
HD
1392 if (radix_tree_deref_retry(page)) {
1393 /*
1394 * Transient condition which can only trigger
1395 * when entry at index 0 moves out of or back
1396 * to root: none yet gotten, safe to restart.
1397 */
1398 goto restart;
1399 }
a2c16d6c 1400 /*
139b6a6f
JW
1401 * A shadow entry of a recently evicted page.
1402 *
1403 * Those entries should never be tagged, but
1404 * this tree walk is lockless and the tags are
1405 * looked up in bulk, one radix tree node at a
1406 * time, so there is a sizable window for page
1407 * reclaim to evict a page we saw tagged.
1408 *
1409 * Skip over it.
a2c16d6c 1410 */
139b6a6f 1411 continue;
a2c16d6c 1412 }
a60637c8
NP
1413
1414 if (!page_cache_get_speculative(page))
1415 goto repeat;
1416
1417 /* Has the page moved? */
0fc9d104 1418 if (unlikely(page != *slot)) {
a60637c8
NP
1419 page_cache_release(page);
1420 goto repeat;
1421 }
1422
1423 pages[ret] = page;
0fc9d104
KK
1424 if (++ret == nr_pages)
1425 break;
a60637c8 1426 }
5b280c0c 1427
a60637c8 1428 rcu_read_unlock();
1da177e4 1429
1da177e4
LT
1430 if (ret)
1431 *index = pages[ret - 1]->index + 1;
a60637c8 1432
1da177e4
LT
1433 return ret;
1434}
ef71c15c 1435EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1436
76d42bd9
WF
1437/*
1438 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1439 * a _large_ part of the i/o request. Imagine the worst scenario:
1440 *
1441 * ---R__________________________________________B__________
1442 * ^ reading here ^ bad block(assume 4k)
1443 *
1444 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1445 * => failing the whole request => read(R) => read(R+1) =>
1446 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1447 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1448 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1449 *
1450 * It is going insane. Fix it by quickly scaling down the readahead size.
1451 */
1452static void shrink_readahead_size_eio(struct file *filp,
1453 struct file_ra_state *ra)
1454{
76d42bd9 1455 ra->ra_pages /= 4;
76d42bd9
WF
1456}
1457
485bb99b 1458/**
36e78914 1459 * do_generic_file_read - generic file read routine
485bb99b
RD
1460 * @filp: the file to read
1461 * @ppos: current file position
6e58e79d
AV
1462 * @iter: data destination
1463 * @written: already copied
485bb99b 1464 *
1da177e4 1465 * This is a generic file read routine, and uses the
485bb99b 1466 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1467 *
1468 * This is really ugly. But the goto's actually try to clarify some
1469 * of the logic when it comes to error handling etc.
1da177e4 1470 */
6e58e79d
AV
1471static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1472 struct iov_iter *iter, ssize_t written)
1da177e4 1473{
36e78914 1474 struct address_space *mapping = filp->f_mapping;
1da177e4 1475 struct inode *inode = mapping->host;
36e78914 1476 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1477 pgoff_t index;
1478 pgoff_t last_index;
1479 pgoff_t prev_index;
1480 unsigned long offset; /* offset into pagecache page */
ec0f1637 1481 unsigned int prev_offset;
6e58e79d 1482 int error = 0;
1da177e4 1483
1da177e4 1484 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1485 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1486 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1487 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1488 offset = *ppos & ~PAGE_CACHE_MASK;
1489
1da177e4
LT
1490 for (;;) {
1491 struct page *page;
57f6b96c 1492 pgoff_t end_index;
a32ea1e1 1493 loff_t isize;
1da177e4
LT
1494 unsigned long nr, ret;
1495
1da177e4 1496 cond_resched();
1da177e4
LT
1497find_page:
1498 page = find_get_page(mapping, index);
3ea89ee8 1499 if (!page) {
cf914a7d 1500 page_cache_sync_readahead(mapping,
7ff81078 1501 ra, filp,
3ea89ee8
FW
1502 index, last_index - index);
1503 page = find_get_page(mapping, index);
1504 if (unlikely(page == NULL))
1505 goto no_cached_page;
1506 }
1507 if (PageReadahead(page)) {
cf914a7d 1508 page_cache_async_readahead(mapping,
7ff81078 1509 ra, filp, page,
3ea89ee8 1510 index, last_index - index);
1da177e4 1511 }
8ab22b9a
HH
1512 if (!PageUptodate(page)) {
1513 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1514 !mapping->a_ops->is_partially_uptodate)
1515 goto page_not_up_to_date;
529ae9aa 1516 if (!trylock_page(page))
8ab22b9a 1517 goto page_not_up_to_date;
8d056cb9
DH
1518 /* Did it get truncated before we got the lock? */
1519 if (!page->mapping)
1520 goto page_not_up_to_date_locked;
8ab22b9a 1521 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1522 offset, iter->count))
8ab22b9a
HH
1523 goto page_not_up_to_date_locked;
1524 unlock_page(page);
1525 }
1da177e4 1526page_ok:
a32ea1e1
N
1527 /*
1528 * i_size must be checked after we know the page is Uptodate.
1529 *
1530 * Checking i_size after the check allows us to calculate
1531 * the correct value for "nr", which means the zero-filled
1532 * part of the page is not copied back to userspace (unless
1533 * another truncate extends the file - this is desired though).
1534 */
1535
1536 isize = i_size_read(inode);
1537 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1538 if (unlikely(!isize || index > end_index)) {
1539 page_cache_release(page);
1540 goto out;
1541 }
1542
1543 /* nr is the maximum number of bytes to copy from this page */
1544 nr = PAGE_CACHE_SIZE;
1545 if (index == end_index) {
1546 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1547 if (nr <= offset) {
1548 page_cache_release(page);
1549 goto out;
1550 }
1551 }
1552 nr = nr - offset;
1da177e4
LT
1553
1554 /* If users can be writing to this page using arbitrary
1555 * virtual addresses, take care about potential aliasing
1556 * before reading the page on the kernel side.
1557 */
1558 if (mapping_writably_mapped(mapping))
1559 flush_dcache_page(page);
1560
1561 /*
ec0f1637
JK
1562 * When a sequential read accesses a page several times,
1563 * only mark it as accessed the first time.
1da177e4 1564 */
ec0f1637 1565 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1566 mark_page_accessed(page);
1567 prev_index = index;
1568
1569 /*
1570 * Ok, we have the page, and it's up-to-date, so
1571 * now we can copy it to user space...
1da177e4 1572 */
6e58e79d
AV
1573
1574 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1575 offset += ret;
1576 index += offset >> PAGE_CACHE_SHIFT;
1577 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1578 prev_offset = offset;
1da177e4
LT
1579
1580 page_cache_release(page);
6e58e79d
AV
1581 written += ret;
1582 if (!iov_iter_count(iter))
1583 goto out;
1584 if (ret < nr) {
1585 error = -EFAULT;
1586 goto out;
1587 }
1588 continue;
1da177e4
LT
1589
1590page_not_up_to_date:
1591 /* Get exclusive access to the page ... */
85462323
ON
1592 error = lock_page_killable(page);
1593 if (unlikely(error))
1594 goto readpage_error;
1da177e4 1595
8ab22b9a 1596page_not_up_to_date_locked:
da6052f7 1597 /* Did it get truncated before we got the lock? */
1da177e4
LT
1598 if (!page->mapping) {
1599 unlock_page(page);
1600 page_cache_release(page);
1601 continue;
1602 }
1603
1604 /* Did somebody else fill it already? */
1605 if (PageUptodate(page)) {
1606 unlock_page(page);
1607 goto page_ok;
1608 }
1609
1610readpage:
91803b49
JM
1611 /*
1612 * A previous I/O error may have been due to temporary
1613 * failures, eg. multipath errors.
1614 * PG_error will be set again if readpage fails.
1615 */
1616 ClearPageError(page);
1da177e4
LT
1617 /* Start the actual read. The read will unlock the page. */
1618 error = mapping->a_ops->readpage(filp, page);
1619
994fc28c
ZB
1620 if (unlikely(error)) {
1621 if (error == AOP_TRUNCATED_PAGE) {
1622 page_cache_release(page);
6e58e79d 1623 error = 0;
994fc28c
ZB
1624 goto find_page;
1625 }
1da177e4 1626 goto readpage_error;
994fc28c 1627 }
1da177e4
LT
1628
1629 if (!PageUptodate(page)) {
85462323
ON
1630 error = lock_page_killable(page);
1631 if (unlikely(error))
1632 goto readpage_error;
1da177e4
LT
1633 if (!PageUptodate(page)) {
1634 if (page->mapping == NULL) {
1635 /*
2ecdc82e 1636 * invalidate_mapping_pages got it
1da177e4
LT
1637 */
1638 unlock_page(page);
1639 page_cache_release(page);
1640 goto find_page;
1641 }
1642 unlock_page(page);
7ff81078 1643 shrink_readahead_size_eio(filp, ra);
85462323
ON
1644 error = -EIO;
1645 goto readpage_error;
1da177e4
LT
1646 }
1647 unlock_page(page);
1648 }
1649
1da177e4
LT
1650 goto page_ok;
1651
1652readpage_error:
1653 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1654 page_cache_release(page);
1655 goto out;
1656
1657no_cached_page:
1658 /*
1659 * Ok, it wasn't cached, so we need to create a new
1660 * page..
1661 */
eb2be189
NP
1662 page = page_cache_alloc_cold(mapping);
1663 if (!page) {
6e58e79d 1664 error = -ENOMEM;
eb2be189 1665 goto out;
1da177e4 1666 }
eb2be189 1667 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1668 index, GFP_KERNEL);
1669 if (error) {
eb2be189 1670 page_cache_release(page);
6e58e79d
AV
1671 if (error == -EEXIST) {
1672 error = 0;
1da177e4 1673 goto find_page;
6e58e79d 1674 }
1da177e4
LT
1675 goto out;
1676 }
1da177e4
LT
1677 goto readpage;
1678 }
1679
1680out:
7ff81078
FW
1681 ra->prev_pos = prev_index;
1682 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1683 ra->prev_pos |= prev_offset;
1da177e4 1684
f4e6b498 1685 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1686 file_accessed(filp);
6e58e79d 1687 return written ? written : error;
1da177e4
LT
1688}
1689
485bb99b 1690/**
6abd2322 1691 * generic_file_read_iter - generic filesystem read routine
485bb99b 1692 * @iocb: kernel I/O control block
6abd2322 1693 * @iter: destination for the data read
485bb99b 1694 *
6abd2322 1695 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
1696 * that can use the page cache directly.
1697 */
1698ssize_t
ed978a81 1699generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 1700{
ed978a81 1701 struct file *file = iocb->ki_filp;
cb66a7a1 1702 ssize_t retval = 0;
543ade1f 1703 loff_t *ppos = &iocb->ki_pos;
ed978a81 1704 loff_t pos = *ppos;
1da177e4
LT
1705
1706 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
ed978a81
AV
1707 if (file->f_flags & O_DIRECT) {
1708 struct address_space *mapping = file->f_mapping;
1709 struct inode *inode = mapping->host;
1710 size_t count = iov_iter_count(iter);
543ade1f 1711 loff_t size;
1da177e4 1712
1da177e4
LT
1713 if (!count)
1714 goto out; /* skip atime */
1715 size = i_size_read(inode);
9fe55eea 1716 retval = filemap_write_and_wait_range(mapping, pos,
a6cbcd4a 1717 pos + count - 1);
9fe55eea 1718 if (!retval) {
ed978a81 1719 struct iov_iter data = *iter;
26978b8b 1720 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
9fe55eea 1721 }
d8d3d94b 1722
9fe55eea
SW
1723 if (retval > 0) {
1724 *ppos = pos + retval;
ed978a81 1725 iov_iter_advance(iter, retval);
9fe55eea 1726 }
66f998f6 1727
9fe55eea
SW
1728 /*
1729 * Btrfs can have a short DIO read if we encounter
1730 * compressed extents, so if there was an error, or if
1731 * we've already read everything we wanted to, or if
1732 * there was a short read because we hit EOF, go ahead
1733 * and return. Otherwise fallthrough to buffered io for
1734 * the rest of the read.
1735 */
ed978a81
AV
1736 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1737 file_accessed(file);
9fe55eea 1738 goto out;
0e0bcae3 1739 }
1da177e4
LT
1740 }
1741
ed978a81 1742 retval = do_generic_file_read(file, ppos, iter, retval);
1da177e4
LT
1743out:
1744 return retval;
1745}
ed978a81 1746EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 1747
1da177e4 1748#ifdef CONFIG_MMU
485bb99b
RD
1749/**
1750 * page_cache_read - adds requested page to the page cache if not already there
1751 * @file: file to read
1752 * @offset: page index
1753 *
1da177e4
LT
1754 * This adds the requested page to the page cache if it isn't already there,
1755 * and schedules an I/O to read in its contents from disk.
1756 */
920c7a5d 1757static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1758{
1759 struct address_space *mapping = file->f_mapping;
1760 struct page *page;
994fc28c 1761 int ret;
1da177e4 1762
994fc28c
ZB
1763 do {
1764 page = page_cache_alloc_cold(mapping);
1765 if (!page)
1766 return -ENOMEM;
1767
1768 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1769 if (ret == 0)
1770 ret = mapping->a_ops->readpage(file, page);
1771 else if (ret == -EEXIST)
1772 ret = 0; /* losing race to add is OK */
1da177e4 1773
1da177e4 1774 page_cache_release(page);
1da177e4 1775
994fc28c
ZB
1776 } while (ret == AOP_TRUNCATED_PAGE);
1777
1778 return ret;
1da177e4
LT
1779}
1780
1781#define MMAP_LOTSAMISS (100)
1782
ef00e08e
LT
1783/*
1784 * Synchronous readahead happens when we don't even find
1785 * a page in the page cache at all.
1786 */
1787static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1788 struct file_ra_state *ra,
1789 struct file *file,
1790 pgoff_t offset)
1791{
1792 unsigned long ra_pages;
1793 struct address_space *mapping = file->f_mapping;
1794
1795 /* If we don't want any read-ahead, don't bother */
64363aad 1796 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1797 return;
275b12bf
WF
1798 if (!ra->ra_pages)
1799 return;
ef00e08e 1800
64363aad 1801 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1802 page_cache_sync_readahead(mapping, ra, file, offset,
1803 ra->ra_pages);
ef00e08e
LT
1804 return;
1805 }
1806
207d04ba
AK
1807 /* Avoid banging the cache line if not needed */
1808 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1809 ra->mmap_miss++;
1810
1811 /*
1812 * Do we miss much more than hit in this file? If so,
1813 * stop bothering with read-ahead. It will only hurt.
1814 */
1815 if (ra->mmap_miss > MMAP_LOTSAMISS)
1816 return;
1817
d30a1100
WF
1818 /*
1819 * mmap read-around
1820 */
ef00e08e 1821 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1822 ra->start = max_t(long, 0, offset - ra_pages / 2);
1823 ra->size = ra_pages;
2cbea1d3 1824 ra->async_size = ra_pages / 4;
275b12bf 1825 ra_submit(ra, mapping, file);
ef00e08e
LT
1826}
1827
1828/*
1829 * Asynchronous readahead happens when we find the page and PG_readahead,
1830 * so we want to possibly extend the readahead further..
1831 */
1832static void do_async_mmap_readahead(struct vm_area_struct *vma,
1833 struct file_ra_state *ra,
1834 struct file *file,
1835 struct page *page,
1836 pgoff_t offset)
1837{
1838 struct address_space *mapping = file->f_mapping;
1839
1840 /* If we don't want any read-ahead, don't bother */
64363aad 1841 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1842 return;
1843 if (ra->mmap_miss > 0)
1844 ra->mmap_miss--;
1845 if (PageReadahead(page))
2fad6f5d
WF
1846 page_cache_async_readahead(mapping, ra, file,
1847 page, offset, ra->ra_pages);
ef00e08e
LT
1848}
1849
485bb99b 1850/**
54cb8821 1851 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1852 * @vma: vma in which the fault was taken
1853 * @vmf: struct vm_fault containing details of the fault
485bb99b 1854 *
54cb8821 1855 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1856 * mapped memory region to read in file data during a page fault.
1857 *
1858 * The goto's are kind of ugly, but this streamlines the normal case of having
1859 * it in the page cache, and handles the special cases reasonably without
1860 * having a lot of duplicated code.
9a95f3cf
PC
1861 *
1862 * vma->vm_mm->mmap_sem must be held on entry.
1863 *
1864 * If our return value has VM_FAULT_RETRY set, it's because
1865 * lock_page_or_retry() returned 0.
1866 * The mmap_sem has usually been released in this case.
1867 * See __lock_page_or_retry() for the exception.
1868 *
1869 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1870 * has not been released.
1871 *
1872 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 1873 */
d0217ac0 1874int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1875{
1876 int error;
54cb8821 1877 struct file *file = vma->vm_file;
1da177e4
LT
1878 struct address_space *mapping = file->f_mapping;
1879 struct file_ra_state *ra = &file->f_ra;
1880 struct inode *inode = mapping->host;
ef00e08e 1881 pgoff_t offset = vmf->pgoff;
1da177e4 1882 struct page *page;
99e3e53f 1883 loff_t size;
83c54070 1884 int ret = 0;
1da177e4 1885
99e3e53f
KS
1886 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1887 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1888 return VM_FAULT_SIGBUS;
1da177e4 1889
1da177e4 1890 /*
49426420 1891 * Do we have something in the page cache already?
1da177e4 1892 */
ef00e08e 1893 page = find_get_page(mapping, offset);
45cac65b 1894 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1895 /*
ef00e08e
LT
1896 * We found the page, so try async readahead before
1897 * waiting for the lock.
1da177e4 1898 */
ef00e08e 1899 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1900 } else if (!page) {
ef00e08e
LT
1901 /* No page in the page cache at all */
1902 do_sync_mmap_readahead(vma, ra, file, offset);
1903 count_vm_event(PGMAJFAULT);
456f998e 1904 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1905 ret = VM_FAULT_MAJOR;
1906retry_find:
b522c94d 1907 page = find_get_page(mapping, offset);
1da177e4
LT
1908 if (!page)
1909 goto no_cached_page;
1910 }
1911
d88c0922
ML
1912 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1913 page_cache_release(page);
d065bd81 1914 return ret | VM_FAULT_RETRY;
d88c0922 1915 }
b522c94d
ML
1916
1917 /* Did it get truncated? */
1918 if (unlikely(page->mapping != mapping)) {
1919 unlock_page(page);
1920 put_page(page);
1921 goto retry_find;
1922 }
309381fe 1923 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1924
1da177e4 1925 /*
d00806b1
NP
1926 * We have a locked page in the page cache, now we need to check
1927 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1928 */
d00806b1 1929 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1930 goto page_not_uptodate;
1931
ef00e08e
LT
1932 /*
1933 * Found the page and have a reference on it.
1934 * We must recheck i_size under page lock.
1935 */
99e3e53f
KS
1936 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1937 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1938 unlock_page(page);
745ad48e 1939 page_cache_release(page);
5307cc1a 1940 return VM_FAULT_SIGBUS;
d00806b1
NP
1941 }
1942
d0217ac0 1943 vmf->page = page;
83c54070 1944 return ret | VM_FAULT_LOCKED;
1da177e4 1945
1da177e4
LT
1946no_cached_page:
1947 /*
1948 * We're only likely to ever get here if MADV_RANDOM is in
1949 * effect.
1950 */
ef00e08e 1951 error = page_cache_read(file, offset);
1da177e4
LT
1952
1953 /*
1954 * The page we want has now been added to the page cache.
1955 * In the unlikely event that someone removed it in the
1956 * meantime, we'll just come back here and read it again.
1957 */
1958 if (error >= 0)
1959 goto retry_find;
1960
1961 /*
1962 * An error return from page_cache_read can result if the
1963 * system is low on memory, or a problem occurs while trying
1964 * to schedule I/O.
1965 */
1966 if (error == -ENOMEM)
d0217ac0
NP
1967 return VM_FAULT_OOM;
1968 return VM_FAULT_SIGBUS;
1da177e4
LT
1969
1970page_not_uptodate:
1da177e4
LT
1971 /*
1972 * Umm, take care of errors if the page isn't up-to-date.
1973 * Try to re-read it _once_. We do this synchronously,
1974 * because there really aren't any performance issues here
1975 * and we need to check for errors.
1976 */
1da177e4 1977 ClearPageError(page);
994fc28c 1978 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1979 if (!error) {
1980 wait_on_page_locked(page);
1981 if (!PageUptodate(page))
1982 error = -EIO;
1983 }
d00806b1
NP
1984 page_cache_release(page);
1985
1986 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1987 goto retry_find;
1da177e4 1988
d00806b1 1989 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1990 shrink_readahead_size_eio(file, ra);
d0217ac0 1991 return VM_FAULT_SIGBUS;
54cb8821
NP
1992}
1993EXPORT_SYMBOL(filemap_fault);
1994
f1820361
KS
1995void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1996{
1997 struct radix_tree_iter iter;
1998 void **slot;
1999 struct file *file = vma->vm_file;
2000 struct address_space *mapping = file->f_mapping;
2001 loff_t size;
2002 struct page *page;
2003 unsigned long address = (unsigned long) vmf->virtual_address;
2004 unsigned long addr;
2005 pte_t *pte;
2006
2007 rcu_read_lock();
2008 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2009 if (iter.index > vmf->max_pgoff)
2010 break;
2011repeat:
2012 page = radix_tree_deref_slot(slot);
2013 if (unlikely(!page))
2014 goto next;
2015 if (radix_tree_exception(page)) {
2016 if (radix_tree_deref_retry(page))
2017 break;
2018 else
2019 goto next;
2020 }
2021
2022 if (!page_cache_get_speculative(page))
2023 goto repeat;
2024
2025 /* Has the page moved? */
2026 if (unlikely(page != *slot)) {
2027 page_cache_release(page);
2028 goto repeat;
2029 }
2030
2031 if (!PageUptodate(page) ||
2032 PageReadahead(page) ||
2033 PageHWPoison(page))
2034 goto skip;
2035 if (!trylock_page(page))
2036 goto skip;
2037
2038 if (page->mapping != mapping || !PageUptodate(page))
2039 goto unlock;
2040
99e3e53f
KS
2041 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2042 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2043 goto unlock;
2044
2045 pte = vmf->pte + page->index - vmf->pgoff;
2046 if (!pte_none(*pte))
2047 goto unlock;
2048
2049 if (file->f_ra.mmap_miss > 0)
2050 file->f_ra.mmap_miss--;
2051 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2052 do_set_pte(vma, addr, page, pte, false, false);
2053 unlock_page(page);
2054 goto next;
2055unlock:
2056 unlock_page(page);
2057skip:
2058 page_cache_release(page);
2059next:
2060 if (iter.index == vmf->max_pgoff)
2061 break;
2062 }
2063 rcu_read_unlock();
2064}
2065EXPORT_SYMBOL(filemap_map_pages);
2066
4fcf1c62
JK
2067int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2068{
2069 struct page *page = vmf->page;
496ad9aa 2070 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2071 int ret = VM_FAULT_LOCKED;
2072
14da9200 2073 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2074 file_update_time(vma->vm_file);
2075 lock_page(page);
2076 if (page->mapping != inode->i_mapping) {
2077 unlock_page(page);
2078 ret = VM_FAULT_NOPAGE;
2079 goto out;
2080 }
14da9200
JK
2081 /*
2082 * We mark the page dirty already here so that when freeze is in
2083 * progress, we are guaranteed that writeback during freezing will
2084 * see the dirty page and writeprotect it again.
2085 */
2086 set_page_dirty(page);
1d1d1a76 2087 wait_for_stable_page(page);
4fcf1c62 2088out:
14da9200 2089 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2090 return ret;
2091}
2092EXPORT_SYMBOL(filemap_page_mkwrite);
2093
f0f37e2f 2094const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2095 .fault = filemap_fault,
f1820361 2096 .map_pages = filemap_map_pages,
4fcf1c62 2097 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 2098 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2099};
2100
2101/* This is used for a general mmap of a disk file */
2102
2103int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2104{
2105 struct address_space *mapping = file->f_mapping;
2106
2107 if (!mapping->a_ops->readpage)
2108 return -ENOEXEC;
2109 file_accessed(file);
2110 vma->vm_ops = &generic_file_vm_ops;
2111 return 0;
2112}
1da177e4
LT
2113
2114/*
2115 * This is for filesystems which do not implement ->writepage.
2116 */
2117int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2118{
2119 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2120 return -EINVAL;
2121 return generic_file_mmap(file, vma);
2122}
2123#else
2124int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2125{
2126 return -ENOSYS;
2127}
2128int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2129{
2130 return -ENOSYS;
2131}
2132#endif /* CONFIG_MMU */
2133
2134EXPORT_SYMBOL(generic_file_mmap);
2135EXPORT_SYMBOL(generic_file_readonly_mmap);
2136
67f9fd91
SL
2137static struct page *wait_on_page_read(struct page *page)
2138{
2139 if (!IS_ERR(page)) {
2140 wait_on_page_locked(page);
2141 if (!PageUptodate(page)) {
2142 page_cache_release(page);
2143 page = ERR_PTR(-EIO);
2144 }
2145 }
2146 return page;
2147}
2148
6fe6900e 2149static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2150 pgoff_t index,
5e5358e7 2151 int (*filler)(void *, struct page *),
0531b2aa
LT
2152 void *data,
2153 gfp_t gfp)
1da177e4 2154{
eb2be189 2155 struct page *page;
1da177e4
LT
2156 int err;
2157repeat:
2158 page = find_get_page(mapping, index);
2159 if (!page) {
0531b2aa 2160 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2161 if (!page)
2162 return ERR_PTR(-ENOMEM);
e6f67b8c 2163 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2164 if (unlikely(err)) {
2165 page_cache_release(page);
2166 if (err == -EEXIST)
2167 goto repeat;
1da177e4 2168 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2169 return ERR_PTR(err);
2170 }
1da177e4
LT
2171 err = filler(data, page);
2172 if (err < 0) {
2173 page_cache_release(page);
2174 page = ERR_PTR(err);
67f9fd91
SL
2175 } else {
2176 page = wait_on_page_read(page);
1da177e4
LT
2177 }
2178 }
1da177e4
LT
2179 return page;
2180}
2181
0531b2aa 2182static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2183 pgoff_t index,
5e5358e7 2184 int (*filler)(void *, struct page *),
0531b2aa
LT
2185 void *data,
2186 gfp_t gfp)
2187
1da177e4
LT
2188{
2189 struct page *page;
2190 int err;
2191
2192retry:
0531b2aa 2193 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2194 if (IS_ERR(page))
c855ff37 2195 return page;
1da177e4
LT
2196 if (PageUptodate(page))
2197 goto out;
2198
2199 lock_page(page);
2200 if (!page->mapping) {
2201 unlock_page(page);
2202 page_cache_release(page);
2203 goto retry;
2204 }
2205 if (PageUptodate(page)) {
2206 unlock_page(page);
2207 goto out;
2208 }
2209 err = filler(data, page);
2210 if (err < 0) {
2211 page_cache_release(page);
c855ff37 2212 return ERR_PTR(err);
67f9fd91
SL
2213 } else {
2214 page = wait_on_page_read(page);
2215 if (IS_ERR(page))
2216 return page;
1da177e4 2217 }
c855ff37 2218out:
6fe6900e
NP
2219 mark_page_accessed(page);
2220 return page;
2221}
0531b2aa
LT
2222
2223/**
67f9fd91 2224 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2225 * @mapping: the page's address_space
2226 * @index: the page index
2227 * @filler: function to perform the read
5e5358e7 2228 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2229 *
0531b2aa 2230 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2231 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2232 *
2233 * If the page does not get brought uptodate, return -EIO.
2234 */
67f9fd91 2235struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2236 pgoff_t index,
5e5358e7 2237 int (*filler)(void *, struct page *),
0531b2aa
LT
2238 void *data)
2239{
2240 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2241}
67f9fd91 2242EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2243
2244/**
2245 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2246 * @mapping: the page's address_space
2247 * @index: the page index
2248 * @gfp: the page allocator flags to use if allocating
2249 *
2250 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2251 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2252 *
2253 * If the page does not get brought uptodate, return -EIO.
2254 */
2255struct page *read_cache_page_gfp(struct address_space *mapping,
2256 pgoff_t index,
2257 gfp_t gfp)
2258{
2259 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2260
67f9fd91 2261 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2262}
2263EXPORT_SYMBOL(read_cache_page_gfp);
2264
1da177e4
LT
2265/*
2266 * Performs necessary checks before doing a write
2267 *
485bb99b 2268 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2269 * Returns appropriate error code that caller should return or
2270 * zero in case that write should be allowed.
2271 */
2272inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2273{
2274 struct inode *inode = file->f_mapping->host;
59e99e5b 2275 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2276
2277 if (unlikely(*pos < 0))
2278 return -EINVAL;
2279
1da177e4
LT
2280 if (!isblk) {
2281 /* FIXME: this is for backwards compatibility with 2.4 */
2282 if (file->f_flags & O_APPEND)
2283 *pos = i_size_read(inode);
2284
2285 if (limit != RLIM_INFINITY) {
2286 if (*pos >= limit) {
2287 send_sig(SIGXFSZ, current, 0);
2288 return -EFBIG;
2289 }
2290 if (*count > limit - (typeof(limit))*pos) {
2291 *count = limit - (typeof(limit))*pos;
2292 }
2293 }
2294 }
2295
2296 /*
2297 * LFS rule
2298 */
2299 if (unlikely(*pos + *count > MAX_NON_LFS &&
2300 !(file->f_flags & O_LARGEFILE))) {
2301 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2302 return -EFBIG;
2303 }
2304 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2305 *count = MAX_NON_LFS - (unsigned long)*pos;
2306 }
2307 }
2308
2309 /*
2310 * Are we about to exceed the fs block limit ?
2311 *
2312 * If we have written data it becomes a short write. If we have
2313 * exceeded without writing data we send a signal and return EFBIG.
2314 * Linus frestrict idea will clean these up nicely..
2315 */
2316 if (likely(!isblk)) {
2317 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2318 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2319 return -EFBIG;
2320 }
2321 /* zero-length writes at ->s_maxbytes are OK */
2322 }
2323
2324 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2325 *count = inode->i_sb->s_maxbytes - *pos;
2326 } else {
9361401e 2327#ifdef CONFIG_BLOCK
1da177e4
LT
2328 loff_t isize;
2329 if (bdev_read_only(I_BDEV(inode)))
2330 return -EPERM;
2331 isize = i_size_read(inode);
2332 if (*pos >= isize) {
2333 if (*count || *pos > isize)
2334 return -ENOSPC;
2335 }
2336
2337 if (*pos + *count > isize)
2338 *count = isize - *pos;
9361401e
DH
2339#else
2340 return -EPERM;
2341#endif
1da177e4
LT
2342 }
2343 return 0;
2344}
2345EXPORT_SYMBOL(generic_write_checks);
2346
afddba49
NP
2347int pagecache_write_begin(struct file *file, struct address_space *mapping,
2348 loff_t pos, unsigned len, unsigned flags,
2349 struct page **pagep, void **fsdata)
2350{
2351 const struct address_space_operations *aops = mapping->a_ops;
2352
4e02ed4b 2353 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2354 pagep, fsdata);
afddba49
NP
2355}
2356EXPORT_SYMBOL(pagecache_write_begin);
2357
2358int pagecache_write_end(struct file *file, struct address_space *mapping,
2359 loff_t pos, unsigned len, unsigned copied,
2360 struct page *page, void *fsdata)
2361{
2362 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2363
4e02ed4b 2364 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2365}
2366EXPORT_SYMBOL(pagecache_write_end);
2367
1da177e4 2368ssize_t
0c949334 2369generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
1da177e4
LT
2370{
2371 struct file *file = iocb->ki_filp;
2372 struct address_space *mapping = file->f_mapping;
2373 struct inode *inode = mapping->host;
2374 ssize_t written;
a969e903
CH
2375 size_t write_len;
2376 pgoff_t end;
26978b8b 2377 struct iov_iter data;
1da177e4 2378
0c949334 2379 write_len = iov_iter_count(from);
a969e903 2380 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2381
48b47c56 2382 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2383 if (written)
2384 goto out;
2385
2386 /*
2387 * After a write we want buffered reads to be sure to go to disk to get
2388 * the new data. We invalidate clean cached page from the region we're
2389 * about to write. We do this *before* the write so that we can return
6ccfa806 2390 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2391 */
2392 if (mapping->nrpages) {
2393 written = invalidate_inode_pages2_range(mapping,
2394 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2395 /*
2396 * If a page can not be invalidated, return 0 to fall back
2397 * to buffered write.
2398 */
2399 if (written) {
2400 if (written == -EBUSY)
2401 return 0;
a969e903 2402 goto out;
6ccfa806 2403 }
a969e903
CH
2404 }
2405
26978b8b
AV
2406 data = *from;
2407 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
a969e903
CH
2408
2409 /*
2410 * Finally, try again to invalidate clean pages which might have been
2411 * cached by non-direct readahead, or faulted in by get_user_pages()
2412 * if the source of the write was an mmap'ed region of the file
2413 * we're writing. Either one is a pretty crazy thing to do,
2414 * so we don't support it 100%. If this invalidation
2415 * fails, tough, the write still worked...
2416 */
2417 if (mapping->nrpages) {
2418 invalidate_inode_pages2_range(mapping,
2419 pos >> PAGE_CACHE_SHIFT, end);
2420 }
2421
1da177e4 2422 if (written > 0) {
0116651c 2423 pos += written;
f8579f86 2424 iov_iter_advance(from, written);
0116651c
NK
2425 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2426 i_size_write(inode, pos);
1da177e4
LT
2427 mark_inode_dirty(inode);
2428 }
5cb6c6c7 2429 iocb->ki_pos = pos;
1da177e4 2430 }
a969e903 2431out:
1da177e4
LT
2432 return written;
2433}
2434EXPORT_SYMBOL(generic_file_direct_write);
2435
eb2be189
NP
2436/*
2437 * Find or create a page at the given pagecache position. Return the locked
2438 * page. This function is specifically for buffered writes.
2439 */
54566b2c
NP
2440struct page *grab_cache_page_write_begin(struct address_space *mapping,
2441 pgoff_t index, unsigned flags)
eb2be189 2442{
eb2be189 2443 struct page *page;
2457aec6 2444 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2445
54566b2c 2446 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2447 fgp_flags |= FGP_NOFS;
2448
2449 page = pagecache_get_page(mapping, index, fgp_flags,
2450 mapping_gfp_mask(mapping),
2451 GFP_KERNEL);
c585a267 2452 if (page)
2457aec6 2453 wait_for_stable_page(page);
eb2be189 2454
eb2be189
NP
2455 return page;
2456}
54566b2c 2457EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2458
3b93f911 2459ssize_t generic_perform_write(struct file *file,
afddba49
NP
2460 struct iov_iter *i, loff_t pos)
2461{
2462 struct address_space *mapping = file->f_mapping;
2463 const struct address_space_operations *a_ops = mapping->a_ops;
2464 long status = 0;
2465 ssize_t written = 0;
674b892e
NP
2466 unsigned int flags = 0;
2467
2468 /*
2469 * Copies from kernel address space cannot fail (NFSD is a big user).
2470 */
2471 if (segment_eq(get_fs(), KERNEL_DS))
2472 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2473
2474 do {
2475 struct page *page;
afddba49
NP
2476 unsigned long offset; /* Offset into pagecache page */
2477 unsigned long bytes; /* Bytes to write to page */
2478 size_t copied; /* Bytes copied from user */
2479 void *fsdata;
2480
2481 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2482 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2483 iov_iter_count(i));
2484
2485again:
afddba49
NP
2486 /*
2487 * Bring in the user page that we will copy from _first_.
2488 * Otherwise there's a nasty deadlock on copying from the
2489 * same page as we're writing to, without it being marked
2490 * up-to-date.
2491 *
2492 * Not only is this an optimisation, but it is also required
2493 * to check that the address is actually valid, when atomic
2494 * usercopies are used, below.
2495 */
2496 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2497 status = -EFAULT;
2498 break;
2499 }
2500
674b892e 2501 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2502 &page, &fsdata);
2457aec6 2503 if (unlikely(status < 0))
afddba49
NP
2504 break;
2505
931e80e4 2506 if (mapping_writably_mapped(mapping))
2507 flush_dcache_page(page);
2508
afddba49 2509 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2510 flush_dcache_page(page);
2511
2512 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2513 page, fsdata);
2514 if (unlikely(status < 0))
2515 break;
2516 copied = status;
2517
2518 cond_resched();
2519
124d3b70 2520 iov_iter_advance(i, copied);
afddba49
NP
2521 if (unlikely(copied == 0)) {
2522 /*
2523 * If we were unable to copy any data at all, we must
2524 * fall back to a single segment length write.
2525 *
2526 * If we didn't fallback here, we could livelock
2527 * because not all segments in the iov can be copied at
2528 * once without a pagefault.
2529 */
2530 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2531 iov_iter_single_seg_count(i));
2532 goto again;
2533 }
afddba49
NP
2534 pos += copied;
2535 written += copied;
2536
2537 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2538 if (fatal_signal_pending(current)) {
2539 status = -EINTR;
2540 break;
2541 }
afddba49
NP
2542 } while (iov_iter_count(i));
2543
2544 return written ? written : status;
2545}
3b93f911 2546EXPORT_SYMBOL(generic_perform_write);
1da177e4 2547
e4dd9de3 2548/**
8174202b 2549 * __generic_file_write_iter - write data to a file
e4dd9de3 2550 * @iocb: IO state structure (file, offset, etc.)
8174202b 2551 * @from: iov_iter with data to write
e4dd9de3
JK
2552 *
2553 * This function does all the work needed for actually writing data to a
2554 * file. It does all basic checks, removes SUID from the file, updates
2555 * modification times and calls proper subroutines depending on whether we
2556 * do direct IO or a standard buffered write.
2557 *
2558 * It expects i_mutex to be grabbed unless we work on a block device or similar
2559 * object which does not need locking at all.
2560 *
2561 * This function does *not* take care of syncing data in case of O_SYNC write.
2562 * A caller has to handle it. This is mainly due to the fact that we want to
2563 * avoid syncing under i_mutex.
2564 */
8174202b 2565ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2566{
2567 struct file *file = iocb->ki_filp;
fb5527e6 2568 struct address_space * mapping = file->f_mapping;
1da177e4 2569 struct inode *inode = mapping->host;
41fc56d5 2570 loff_t pos = iocb->ki_pos;
3b93f911 2571 ssize_t written = 0;
1da177e4 2572 ssize_t err;
3b93f911 2573 ssize_t status;
8174202b 2574 size_t count = iov_iter_count(from);
1da177e4 2575
1da177e4
LT
2576 /* We can write back this queue in page reclaim */
2577 current->backing_dev_info = mapping->backing_dev_info;
1da177e4
LT
2578 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2579 if (err)
2580 goto out;
2581
2582 if (count == 0)
2583 goto out;
2584
8174202b 2585 iov_iter_truncate(from, count);
0c949334 2586
2f1936b8 2587 err = file_remove_suid(file);
1da177e4
LT
2588 if (err)
2589 goto out;
2590
c3b2da31
JB
2591 err = file_update_time(file);
2592 if (err)
2593 goto out;
1da177e4
LT
2594
2595 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2596 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6 2597 loff_t endbyte;
fb5527e6 2598
8174202b 2599 written = generic_file_direct_write(iocb, from, pos);
1da177e4
LT
2600 if (written < 0 || written == count)
2601 goto out;
3b93f911 2602
1da177e4
LT
2603 /*
2604 * direct-io write to a hole: fall through to buffered I/O
2605 * for completing the rest of the request.
2606 */
2607 pos += written;
2608 count -= written;
3b93f911 2609
8174202b 2610 status = generic_perform_write(file, from, pos);
fb5527e6 2611 /*
3b93f911 2612 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2613 * then we want to return the number of bytes which were
2614 * direct-written, or the error code if that was zero. Note
2615 * that this differs from normal direct-io semantics, which
2616 * will return -EFOO even if some bytes were written.
2617 */
60bb4529 2618 if (unlikely(status < 0)) {
3b93f911 2619 err = status;
fb5527e6
JM
2620 goto out;
2621 }
3b93f911 2622 iocb->ki_pos = pos + status;
fb5527e6
JM
2623 /*
2624 * We need to ensure that the page cache pages are written to
2625 * disk and invalidated to preserve the expected O_DIRECT
2626 * semantics.
2627 */
3b93f911 2628 endbyte = pos + status - 1;
c05c4edd 2629 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6 2630 if (err == 0) {
3b93f911 2631 written += status;
fb5527e6
JM
2632 invalidate_mapping_pages(mapping,
2633 pos >> PAGE_CACHE_SHIFT,
2634 endbyte >> PAGE_CACHE_SHIFT);
2635 } else {
2636 /*
2637 * We don't know how much we wrote, so just return
2638 * the number of bytes which were direct-written
2639 */
2640 }
2641 } else {
8174202b 2642 written = generic_perform_write(file, from, pos);
3b93f911
AV
2643 if (likely(written >= 0))
2644 iocb->ki_pos = pos + written;
fb5527e6 2645 }
1da177e4
LT
2646out:
2647 current->backing_dev_info = NULL;
2648 return written ? written : err;
2649}
8174202b 2650EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2651
e4dd9de3 2652/**
8174202b 2653 * generic_file_write_iter - write data to a file
e4dd9de3 2654 * @iocb: IO state structure
8174202b 2655 * @from: iov_iter with data to write
e4dd9de3 2656 *
8174202b 2657 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2658 * filesystems. It takes care of syncing the file in case of O_SYNC file
2659 * and acquires i_mutex as needed.
2660 */
8174202b 2661ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2662{
2663 struct file *file = iocb->ki_filp;
148f948b 2664 struct inode *inode = file->f_mapping->host;
1da177e4 2665 ssize_t ret;
1da177e4 2666
1b1dcc1b 2667 mutex_lock(&inode->i_mutex);
8174202b 2668 ret = __generic_file_write_iter(iocb, from);
1b1dcc1b 2669 mutex_unlock(&inode->i_mutex);
1da177e4 2670
02afc27f 2671 if (ret > 0) {
1da177e4
LT
2672 ssize_t err;
2673
d311d79d
AV
2674 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2675 if (err < 0)
1da177e4
LT
2676 ret = err;
2677 }
2678 return ret;
2679}
8174202b 2680EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 2681
cf9a2ae8
DH
2682/**
2683 * try_to_release_page() - release old fs-specific metadata on a page
2684 *
2685 * @page: the page which the kernel is trying to free
2686 * @gfp_mask: memory allocation flags (and I/O mode)
2687 *
2688 * The address_space is to try to release any data against the page
2689 * (presumably at page->private). If the release was successful, return `1'.
2690 * Otherwise return zero.
2691 *
266cf658
DH
2692 * This may also be called if PG_fscache is set on a page, indicating that the
2693 * page is known to the local caching routines.
2694 *
cf9a2ae8 2695 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2696 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2697 *
cf9a2ae8
DH
2698 */
2699int try_to_release_page(struct page *page, gfp_t gfp_mask)
2700{
2701 struct address_space * const mapping = page->mapping;
2702
2703 BUG_ON(!PageLocked(page));
2704 if (PageWriteback(page))
2705 return 0;
2706
2707 if (mapping && mapping->a_ops->releasepage)
2708 return mapping->a_ops->releasepage(page, gfp_mask);
2709 return try_to_free_buffers(page);
2710}
2711
2712EXPORT_SYMBOL(try_to_release_page);