]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/filemap.c
mm/filemap: use head pages in generic_file_buffered_read
[mirror_ubuntu-jammy-kernel.git] / mm / filemap.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
1da177e4
LT
2/*
3 * linux/mm/filemap.c
4 *
5 * Copyright (C) 1994-1999 Linus Torvalds
6 */
7
8/*
9 * This file handles the generic file mmap semantics used by
10 * most "normal" filesystems (but you don't /have/ to use this:
11 * the NFS filesystem used to do this differently, for example)
12 */
b95f1b31 13#include <linux/export.h>
1da177e4 14#include <linux/compiler.h>
f9fe48be 15#include <linux/dax.h>
1da177e4 16#include <linux/fs.h>
3f07c014 17#include <linux/sched/signal.h>
c22ce143 18#include <linux/uaccess.h>
c59ede7b 19#include <linux/capability.h>
1da177e4 20#include <linux/kernel_stat.h>
5a0e3ad6 21#include <linux/gfp.h>
1da177e4
LT
22#include <linux/mm.h>
23#include <linux/swap.h>
24#include <linux/mman.h>
25#include <linux/pagemap.h>
26#include <linux/file.h>
27#include <linux/uio.h>
cfcbfb13 28#include <linux/error-injection.h>
1da177e4
LT
29#include <linux/hash.h>
30#include <linux/writeback.h>
53253383 31#include <linux/backing-dev.h>
1da177e4
LT
32#include <linux/pagevec.h>
33#include <linux/blkdev.h>
34#include <linux/security.h>
44110fe3 35#include <linux/cpuset.h>
00501b53 36#include <linux/hugetlb.h>
8a9f3ccd 37#include <linux/memcontrol.h>
c515e1fd 38#include <linux/cleancache.h>
c7df8ad2 39#include <linux/shmem_fs.h>
f1820361 40#include <linux/rmap.h>
b1d29ba8 41#include <linux/delayacct.h>
eb414681 42#include <linux/psi.h>
d0e6a582 43#include <linux/ramfs.h>
b9306a79 44#include <linux/page_idle.h>
f9ce0be7 45#include <asm/pgalloc.h>
de591a82 46#include <asm/tlbflush.h>
0f8053a5
NP
47#include "internal.h"
48
fe0bfaaf
RJ
49#define CREATE_TRACE_POINTS
50#include <trace/events/filemap.h>
51
1da177e4 52/*
1da177e4
LT
53 * FIXME: remove all knowledge of the buffer layer from the core VM
54 */
148f948b 55#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 56
1da177e4
LT
57#include <asm/mman.h>
58
59/*
60 * Shared mappings implemented 30.11.1994. It's not fully working yet,
61 * though.
62 *
63 * Shared mappings now work. 15.8.1995 Bruno.
64 *
65 * finished 'unifying' the page and buffer cache and SMP-threaded the
66 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
67 *
68 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
69 */
70
71/*
72 * Lock ordering:
73 *
c8c06efa 74 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 75 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91 76 * ->swap_lock (exclusive_swap_page, others)
b93b0163 77 * ->i_pages lock
1da177e4 78 *
1b1dcc1b 79 * ->i_mutex
c8c06efa 80 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4 81 *
c1e8d7c6 82 * ->mmap_lock
c8c06efa 83 * ->i_mmap_rwsem
b8072f09 84 * ->page_table_lock or pte_lock (various, mainly in memory.c)
b93b0163 85 * ->i_pages lock (arch-dependent flush_dcache_mmap_lock)
1da177e4 86 *
c1e8d7c6 87 * ->mmap_lock
1da177e4
LT
88 * ->lock_page (access_process_vm)
89 *
ccad2365 90 * ->i_mutex (generic_perform_write)
c1e8d7c6 91 * ->mmap_lock (fault_in_pages_readable->do_page_fault)
1da177e4 92 *
f758eeab 93 * bdi->wb.list_lock
a66979ab 94 * sb_lock (fs/fs-writeback.c)
b93b0163 95 * ->i_pages lock (__sync_single_inode)
1da177e4 96 *
c8c06efa 97 * ->i_mmap_rwsem
1da177e4
LT
98 * ->anon_vma.lock (vma_adjust)
99 *
100 * ->anon_vma.lock
b8072f09 101 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 102 *
b8072f09 103 * ->page_table_lock or pte_lock
5d337b91 104 * ->swap_lock (try_to_unmap_one)
1da177e4 105 * ->private_lock (try_to_unmap_one)
b93b0163 106 * ->i_pages lock (try_to_unmap_one)
15b44736
HD
107 * ->lruvec->lru_lock (follow_page->mark_page_accessed)
108 * ->lruvec->lru_lock (check_pte_range->isolate_lru_page)
1da177e4 109 * ->private_lock (page_remove_rmap->set_page_dirty)
b93b0163 110 * ->i_pages lock (page_remove_rmap->set_page_dirty)
f758eeab 111 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 112 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 113 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 114 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 115 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
116 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
117 *
c8c06efa 118 * ->i_mmap_rwsem
9a3c531d 119 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
120 */
121
5c024e6a 122static void page_cache_delete(struct address_space *mapping,
91b0abe3
JW
123 struct page *page, void *shadow)
124{
5c024e6a
MW
125 XA_STATE(xas, &mapping->i_pages, page->index);
126 unsigned int nr = 1;
c70b647d 127
5c024e6a 128 mapping_set_update(&xas, mapping);
c70b647d 129
5c024e6a
MW
130 /* hugetlb pages are represented by a single entry in the xarray */
131 if (!PageHuge(page)) {
132 xas_set_order(&xas, page->index, compound_order(page));
d8c6546b 133 nr = compound_nr(page);
5c024e6a 134 }
91b0abe3 135
83929372
KS
136 VM_BUG_ON_PAGE(!PageLocked(page), page);
137 VM_BUG_ON_PAGE(PageTail(page), page);
138 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 139
5c024e6a
MW
140 xas_store(&xas, shadow);
141 xas_init_marks(&xas);
d3798ae8 142
2300638b
JK
143 page->mapping = NULL;
144 /* Leave page->index set: truncation lookup relies upon it */
145
d3798ae8
JW
146 if (shadow) {
147 mapping->nrexceptional += nr;
148 /*
149 * Make sure the nrexceptional update is committed before
150 * the nrpages update so that final truncate racing
151 * with reclaim does not see both counters 0 at the
152 * same time and miss a shadow entry.
153 */
154 smp_wmb();
155 }
156 mapping->nrpages -= nr;
91b0abe3
JW
157}
158
5ecc4d85
JK
159static void unaccount_page_cache_page(struct address_space *mapping,
160 struct page *page)
1da177e4 161{
5ecc4d85 162 int nr;
1da177e4 163
c515e1fd
DM
164 /*
165 * if we're uptodate, flush out into the cleancache, otherwise
166 * invalidate any existing cleancache entries. We can't leave
167 * stale data around in the cleancache once our page is gone
168 */
169 if (PageUptodate(page) && PageMappedToDisk(page))
170 cleancache_put_page(page);
171 else
3167760f 172 cleancache_invalidate_page(mapping, page);
c515e1fd 173
83929372 174 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
175 VM_BUG_ON_PAGE(page_mapped(page), page);
176 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
177 int mapcount;
178
179 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
180 current->comm, page_to_pfn(page));
181 dump_page(page, "still mapped when deleted");
182 dump_stack();
183 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
184
185 mapcount = page_mapcount(page);
186 if (mapping_exiting(mapping) &&
187 page_count(page) >= mapcount + 2) {
188 /*
189 * All vmas have already been torn down, so it's
190 * a good bet that actually the page is unmapped,
191 * and we'd prefer not to leak it: if we're wrong,
192 * some other bad page check should catch it later.
193 */
194 page_mapcount_reset(page);
6d061f9f 195 page_ref_sub(page, mapcount);
06b241f3
HD
196 }
197 }
198
4165b9b4 199 /* hugetlb pages do not participate in page cache accounting. */
5ecc4d85
JK
200 if (PageHuge(page))
201 return;
09612fa6 202
6c357848 203 nr = thp_nr_pages(page);
5ecc4d85 204
0d1c2072 205 __mod_lruvec_page_state(page, NR_FILE_PAGES, -nr);
5ecc4d85 206 if (PageSwapBacked(page)) {
0d1c2072 207 __mod_lruvec_page_state(page, NR_SHMEM, -nr);
5ecc4d85 208 if (PageTransHuge(page))
b8eddff8 209 __dec_lruvec_page_state(page, NR_SHMEM_THPS);
99cb0dbd 210 } else if (PageTransHuge(page)) {
b8eddff8 211 __dec_lruvec_page_state(page, NR_FILE_THPS);
09d91cda 212 filemap_nr_thps_dec(mapping);
800d8c63 213 }
5ecc4d85
JK
214
215 /*
216 * At this point page must be either written or cleaned by
217 * truncate. Dirty page here signals a bug and loss of
218 * unwritten data.
219 *
220 * This fixes dirty accounting after removing the page entirely
221 * but leaves PageDirty set: it has no effect for truncated
222 * page and anyway will be cleared before returning page into
223 * buddy allocator.
224 */
225 if (WARN_ON_ONCE(PageDirty(page)))
226 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
227}
228
229/*
230 * Delete a page from the page cache and free it. Caller has to make
231 * sure the page is locked and that nobody else uses it - or that usage
b93b0163 232 * is safe. The caller must hold the i_pages lock.
5ecc4d85
JK
233 */
234void __delete_from_page_cache(struct page *page, void *shadow)
235{
236 struct address_space *mapping = page->mapping;
237
238 trace_mm_filemap_delete_from_page_cache(page);
239
240 unaccount_page_cache_page(mapping, page);
5c024e6a 241 page_cache_delete(mapping, page, shadow);
1da177e4
LT
242}
243
59c66c5f
JK
244static void page_cache_free_page(struct address_space *mapping,
245 struct page *page)
246{
247 void (*freepage)(struct page *);
248
249 freepage = mapping->a_ops->freepage;
250 if (freepage)
251 freepage(page);
252
253 if (PageTransHuge(page) && !PageHuge(page)) {
887b22c6 254 page_ref_sub(page, thp_nr_pages(page));
59c66c5f
JK
255 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
256 } else {
257 put_page(page);
258 }
259}
260
702cfbf9
MK
261/**
262 * delete_from_page_cache - delete page from page cache
263 * @page: the page which the kernel is trying to remove from page cache
264 *
265 * This must be called only on pages that have been verified to be in the page
266 * cache and locked. It will never put the page into the free list, the caller
267 * has a reference on the page.
268 */
269void delete_from_page_cache(struct page *page)
1da177e4 270{
83929372 271 struct address_space *mapping = page_mapping(page);
c4843a75 272 unsigned long flags;
1da177e4 273
cd7619d6 274 BUG_ON(!PageLocked(page));
b93b0163 275 xa_lock_irqsave(&mapping->i_pages, flags);
62cccb8c 276 __delete_from_page_cache(page, NULL);
b93b0163 277 xa_unlock_irqrestore(&mapping->i_pages, flags);
6072d13c 278
59c66c5f 279 page_cache_free_page(mapping, page);
97cecb5a
MK
280}
281EXPORT_SYMBOL(delete_from_page_cache);
282
aa65c29c 283/*
ef8e5717 284 * page_cache_delete_batch - delete several pages from page cache
aa65c29c
JK
285 * @mapping: the mapping to which pages belong
286 * @pvec: pagevec with pages to delete
287 *
b93b0163 288 * The function walks over mapping->i_pages and removes pages passed in @pvec
4101196b
MWO
289 * from the mapping. The function expects @pvec to be sorted by page index
290 * and is optimised for it to be dense.
b93b0163 291 * It tolerates holes in @pvec (mapping entries at those indices are not
aa65c29c 292 * modified). The function expects only THP head pages to be present in the
4101196b 293 * @pvec.
aa65c29c 294 *
b93b0163 295 * The function expects the i_pages lock to be held.
aa65c29c 296 */
ef8e5717 297static void page_cache_delete_batch(struct address_space *mapping,
aa65c29c
JK
298 struct pagevec *pvec)
299{
ef8e5717 300 XA_STATE(xas, &mapping->i_pages, pvec->pages[0]->index);
aa65c29c 301 int total_pages = 0;
4101196b 302 int i = 0;
aa65c29c 303 struct page *page;
aa65c29c 304
ef8e5717
MW
305 mapping_set_update(&xas, mapping);
306 xas_for_each(&xas, page, ULONG_MAX) {
4101196b 307 if (i >= pagevec_count(pvec))
aa65c29c 308 break;
4101196b
MWO
309
310 /* A swap/dax/shadow entry got inserted? Skip it. */
3159f943 311 if (xa_is_value(page))
aa65c29c 312 continue;
4101196b
MWO
313 /*
314 * A page got inserted in our range? Skip it. We have our
315 * pages locked so they are protected from being removed.
316 * If we see a page whose index is higher than ours, it
317 * means our page has been removed, which shouldn't be
318 * possible because we're holding the PageLock.
319 */
320 if (page != pvec->pages[i]) {
321 VM_BUG_ON_PAGE(page->index > pvec->pages[i]->index,
322 page);
323 continue;
324 }
325
326 WARN_ON_ONCE(!PageLocked(page));
327
328 if (page->index == xas.xa_index)
aa65c29c 329 page->mapping = NULL;
4101196b
MWO
330 /* Leave page->index set: truncation lookup relies on it */
331
332 /*
333 * Move to the next page in the vector if this is a regular
334 * page or the index is of the last sub-page of this compound
335 * page.
336 */
337 if (page->index + compound_nr(page) - 1 == xas.xa_index)
aa65c29c 338 i++;
ef8e5717 339 xas_store(&xas, NULL);
aa65c29c
JK
340 total_pages++;
341 }
342 mapping->nrpages -= total_pages;
343}
344
345void delete_from_page_cache_batch(struct address_space *mapping,
346 struct pagevec *pvec)
347{
348 int i;
349 unsigned long flags;
350
351 if (!pagevec_count(pvec))
352 return;
353
b93b0163 354 xa_lock_irqsave(&mapping->i_pages, flags);
aa65c29c
JK
355 for (i = 0; i < pagevec_count(pvec); i++) {
356 trace_mm_filemap_delete_from_page_cache(pvec->pages[i]);
357
358 unaccount_page_cache_page(mapping, pvec->pages[i]);
359 }
ef8e5717 360 page_cache_delete_batch(mapping, pvec);
b93b0163 361 xa_unlock_irqrestore(&mapping->i_pages, flags);
aa65c29c
JK
362
363 for (i = 0; i < pagevec_count(pvec); i++)
364 page_cache_free_page(mapping, pvec->pages[i]);
365}
366
d72d9e2a 367int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
368{
369 int ret = 0;
370 /* Check for outstanding write errors */
7fcbbaf1
JA
371 if (test_bit(AS_ENOSPC, &mapping->flags) &&
372 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 373 ret = -ENOSPC;
7fcbbaf1
JA
374 if (test_bit(AS_EIO, &mapping->flags) &&
375 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
376 ret = -EIO;
377 return ret;
378}
d72d9e2a 379EXPORT_SYMBOL(filemap_check_errors);
865ffef3 380
76341cab
JL
381static int filemap_check_and_keep_errors(struct address_space *mapping)
382{
383 /* Check for outstanding write errors */
384 if (test_bit(AS_EIO, &mapping->flags))
385 return -EIO;
386 if (test_bit(AS_ENOSPC, &mapping->flags))
387 return -ENOSPC;
388 return 0;
389}
390
1da177e4 391/**
485bb99b 392 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
393 * @mapping: address space structure to write
394 * @start: offset in bytes where the range starts
469eb4d0 395 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 396 * @sync_mode: enable synchronous operation
1da177e4 397 *
485bb99b
RD
398 * Start writeback against all of a mapping's dirty pages that lie
399 * within the byte offsets <start, end> inclusive.
400 *
1da177e4 401 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 402 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
403 * these two operations is that if a dirty page/buffer is encountered, it must
404 * be waited upon, and not just skipped over.
a862f68a
MR
405 *
406 * Return: %0 on success, negative error code otherwise.
1da177e4 407 */
ebcf28e1
AM
408int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
409 loff_t end, int sync_mode)
1da177e4
LT
410{
411 int ret;
412 struct writeback_control wbc = {
413 .sync_mode = sync_mode,
05fe478d 414 .nr_to_write = LONG_MAX,
111ebb6e
OH
415 .range_start = start,
416 .range_end = end,
1da177e4
LT
417 };
418
f56753ac 419 if (!mapping_can_writeback(mapping) ||
c3aab9a0 420 !mapping_tagged(mapping, PAGECACHE_TAG_DIRTY))
1da177e4
LT
421 return 0;
422
b16b1deb 423 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 424 ret = do_writepages(mapping, &wbc);
b16b1deb 425 wbc_detach_inode(&wbc);
1da177e4
LT
426 return ret;
427}
428
429static inline int __filemap_fdatawrite(struct address_space *mapping,
430 int sync_mode)
431{
111ebb6e 432 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
433}
434
435int filemap_fdatawrite(struct address_space *mapping)
436{
437 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
438}
439EXPORT_SYMBOL(filemap_fdatawrite);
440
f4c0a0fd 441int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 442 loff_t end)
1da177e4
LT
443{
444 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
445}
f4c0a0fd 446EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 447
485bb99b
RD
448/**
449 * filemap_flush - mostly a non-blocking flush
450 * @mapping: target address_space
451 *
1da177e4
LT
452 * This is a mostly non-blocking flush. Not suitable for data-integrity
453 * purposes - I/O may not be started against all dirty pages.
a862f68a
MR
454 *
455 * Return: %0 on success, negative error code otherwise.
1da177e4
LT
456 */
457int filemap_flush(struct address_space *mapping)
458{
459 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
460}
461EXPORT_SYMBOL(filemap_flush);
462
7fc9e472
GR
463/**
464 * filemap_range_has_page - check if a page exists in range.
465 * @mapping: address space within which to check
466 * @start_byte: offset in bytes where the range starts
467 * @end_byte: offset in bytes where the range ends (inclusive)
468 *
469 * Find at least one page in the range supplied, usually used to check if
470 * direct writing in this range will trigger a writeback.
a862f68a
MR
471 *
472 * Return: %true if at least one page exists in the specified range,
473 * %false otherwise.
7fc9e472
GR
474 */
475bool filemap_range_has_page(struct address_space *mapping,
476 loff_t start_byte, loff_t end_byte)
477{
f7b68046 478 struct page *page;
8fa8e538
MW
479 XA_STATE(xas, &mapping->i_pages, start_byte >> PAGE_SHIFT);
480 pgoff_t max = end_byte >> PAGE_SHIFT;
7fc9e472
GR
481
482 if (end_byte < start_byte)
483 return false;
484
8fa8e538
MW
485 rcu_read_lock();
486 for (;;) {
487 page = xas_find(&xas, max);
488 if (xas_retry(&xas, page))
489 continue;
490 /* Shadow entries don't count */
491 if (xa_is_value(page))
492 continue;
493 /*
494 * We don't need to try to pin this page; we're about to
495 * release the RCU lock anyway. It is enough to know that
496 * there was a page here recently.
497 */
498 break;
499 }
500 rcu_read_unlock();
7fc9e472 501
8fa8e538 502 return page != NULL;
7fc9e472
GR
503}
504EXPORT_SYMBOL(filemap_range_has_page);
505
5e8fcc1a 506static void __filemap_fdatawait_range(struct address_space *mapping,
aa750fd7 507 loff_t start_byte, loff_t end_byte)
1da177e4 508{
09cbfeaf
KS
509 pgoff_t index = start_byte >> PAGE_SHIFT;
510 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
511 struct pagevec pvec;
512 int nr_pages;
1da177e4 513
94004ed7 514 if (end_byte < start_byte)
5e8fcc1a 515 return;
1da177e4 516
86679820 517 pagevec_init(&pvec);
312e9d2f 518 while (index <= end) {
1da177e4
LT
519 unsigned i;
520
312e9d2f 521 nr_pages = pagevec_lookup_range_tag(&pvec, mapping, &index,
67fd707f 522 end, PAGECACHE_TAG_WRITEBACK);
312e9d2f
JK
523 if (!nr_pages)
524 break;
525
1da177e4
LT
526 for (i = 0; i < nr_pages; i++) {
527 struct page *page = pvec.pages[i];
528
1da177e4 529 wait_on_page_writeback(page);
5e8fcc1a 530 ClearPageError(page);
1da177e4
LT
531 }
532 pagevec_release(&pvec);
533 cond_resched();
534 }
aa750fd7
JN
535}
536
537/**
538 * filemap_fdatawait_range - wait for writeback to complete
539 * @mapping: address space structure to wait for
540 * @start_byte: offset in bytes where the range starts
541 * @end_byte: offset in bytes where the range ends (inclusive)
542 *
543 * Walk the list of under-writeback pages of the given address space
544 * in the given range and wait for all of them. Check error status of
545 * the address space and return it.
546 *
547 * Since the error status of the address space is cleared by this function,
548 * callers are responsible for checking the return value and handling and/or
549 * reporting the error.
a862f68a
MR
550 *
551 * Return: error status of the address space.
aa750fd7
JN
552 */
553int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
554 loff_t end_byte)
555{
5e8fcc1a
JL
556 __filemap_fdatawait_range(mapping, start_byte, end_byte);
557 return filemap_check_errors(mapping);
1da177e4 558}
d3bccb6f
JK
559EXPORT_SYMBOL(filemap_fdatawait_range);
560
aa0bfcd9
RZ
561/**
562 * filemap_fdatawait_range_keep_errors - wait for writeback to complete
563 * @mapping: address space structure to wait for
564 * @start_byte: offset in bytes where the range starts
565 * @end_byte: offset in bytes where the range ends (inclusive)
566 *
567 * Walk the list of under-writeback pages of the given address space in the
568 * given range and wait for all of them. Unlike filemap_fdatawait_range(),
569 * this function does not clear error status of the address space.
570 *
571 * Use this function if callers don't handle errors themselves. Expected
572 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
573 * fsfreeze(8)
574 */
575int filemap_fdatawait_range_keep_errors(struct address_space *mapping,
576 loff_t start_byte, loff_t end_byte)
577{
578 __filemap_fdatawait_range(mapping, start_byte, end_byte);
579 return filemap_check_and_keep_errors(mapping);
580}
581EXPORT_SYMBOL(filemap_fdatawait_range_keep_errors);
582
a823e458
JL
583/**
584 * file_fdatawait_range - wait for writeback to complete
585 * @file: file pointing to address space structure to wait for
586 * @start_byte: offset in bytes where the range starts
587 * @end_byte: offset in bytes where the range ends (inclusive)
588 *
589 * Walk the list of under-writeback pages of the address space that file
590 * refers to, in the given range and wait for all of them. Check error
591 * status of the address space vs. the file->f_wb_err cursor and return it.
592 *
593 * Since the error status of the file is advanced by this function,
594 * callers are responsible for checking the return value and handling and/or
595 * reporting the error.
a862f68a
MR
596 *
597 * Return: error status of the address space vs. the file->f_wb_err cursor.
a823e458
JL
598 */
599int file_fdatawait_range(struct file *file, loff_t start_byte, loff_t end_byte)
600{
601 struct address_space *mapping = file->f_mapping;
602
603 __filemap_fdatawait_range(mapping, start_byte, end_byte);
604 return file_check_and_advance_wb_err(file);
605}
606EXPORT_SYMBOL(file_fdatawait_range);
d3bccb6f 607
aa750fd7
JN
608/**
609 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
610 * @mapping: address space structure to wait for
611 *
612 * Walk the list of under-writeback pages of the given address space
613 * and wait for all of them. Unlike filemap_fdatawait(), this function
614 * does not clear error status of the address space.
615 *
616 * Use this function if callers don't handle errors themselves. Expected
617 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
618 * fsfreeze(8)
a862f68a
MR
619 *
620 * Return: error status of the address space.
aa750fd7 621 */
76341cab 622int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7 623{
ffb959bb 624 __filemap_fdatawait_range(mapping, 0, LLONG_MAX);
76341cab 625 return filemap_check_and_keep_errors(mapping);
aa750fd7 626}
76341cab 627EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 628
875d91b1 629/* Returns true if writeback might be needed or already in progress. */
9326c9b2 630static bool mapping_needs_writeback(struct address_space *mapping)
1da177e4 631{
875d91b1
KK
632 if (dax_mapping(mapping))
633 return mapping->nrexceptional;
634
635 return mapping->nrpages;
1da177e4 636}
1da177e4 637
485bb99b
RD
638/**
639 * filemap_write_and_wait_range - write out & wait on a file range
640 * @mapping: the address_space for the pages
641 * @lstart: offset in bytes where the range starts
642 * @lend: offset in bytes where the range ends (inclusive)
643 *
469eb4d0
AM
644 * Write out and wait upon file offsets lstart->lend, inclusive.
645 *
0e056eb5 646 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0 647 * that this function can be used to write to the very end-of-file (end = -1).
a862f68a
MR
648 *
649 * Return: error status of the address space.
469eb4d0 650 */
1da177e4
LT
651int filemap_write_and_wait_range(struct address_space *mapping,
652 loff_t lstart, loff_t lend)
653{
28fd1298 654 int err = 0;
1da177e4 655
9326c9b2 656 if (mapping_needs_writeback(mapping)) {
28fd1298
OH
657 err = __filemap_fdatawrite_range(mapping, lstart, lend,
658 WB_SYNC_ALL);
ddf8f376
IW
659 /*
660 * Even if the above returned error, the pages may be
661 * written partially (e.g. -ENOSPC), so we wait for it.
662 * But the -EIO is special case, it may indicate the worst
663 * thing (e.g. bug) happened, so we avoid waiting for it.
664 */
28fd1298 665 if (err != -EIO) {
94004ed7
CH
666 int err2 = filemap_fdatawait_range(mapping,
667 lstart, lend);
28fd1298
OH
668 if (!err)
669 err = err2;
cbeaf951
JL
670 } else {
671 /* Clear any previously stored errors */
672 filemap_check_errors(mapping);
28fd1298 673 }
865ffef3
DM
674 } else {
675 err = filemap_check_errors(mapping);
1da177e4 676 }
28fd1298 677 return err;
1da177e4 678}
f6995585 679EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 680
5660e13d
JL
681void __filemap_set_wb_err(struct address_space *mapping, int err)
682{
3acdfd28 683 errseq_t eseq = errseq_set(&mapping->wb_err, err);
5660e13d
JL
684
685 trace_filemap_set_wb_err(mapping, eseq);
686}
687EXPORT_SYMBOL(__filemap_set_wb_err);
688
689/**
690 * file_check_and_advance_wb_err - report wb error (if any) that was previously
691 * and advance wb_err to current one
692 * @file: struct file on which the error is being reported
693 *
694 * When userland calls fsync (or something like nfsd does the equivalent), we
695 * want to report any writeback errors that occurred since the last fsync (or
696 * since the file was opened if there haven't been any).
697 *
698 * Grab the wb_err from the mapping. If it matches what we have in the file,
699 * then just quickly return 0. The file is all caught up.
700 *
701 * If it doesn't match, then take the mapping value, set the "seen" flag in
702 * it and try to swap it into place. If it works, or another task beat us
703 * to it with the new value, then update the f_wb_err and return the error
704 * portion. The error at this point must be reported via proper channels
705 * (a'la fsync, or NFS COMMIT operation, etc.).
706 *
707 * While we handle mapping->wb_err with atomic operations, the f_wb_err
708 * value is protected by the f_lock since we must ensure that it reflects
709 * the latest value swapped in for this file descriptor.
a862f68a
MR
710 *
711 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
712 */
713int file_check_and_advance_wb_err(struct file *file)
714{
715 int err = 0;
716 errseq_t old = READ_ONCE(file->f_wb_err);
717 struct address_space *mapping = file->f_mapping;
718
719 /* Locklessly handle the common case where nothing has changed */
720 if (errseq_check(&mapping->wb_err, old)) {
721 /* Something changed, must use slow path */
722 spin_lock(&file->f_lock);
723 old = file->f_wb_err;
724 err = errseq_check_and_advance(&mapping->wb_err,
725 &file->f_wb_err);
726 trace_file_check_and_advance_wb_err(file, old);
727 spin_unlock(&file->f_lock);
728 }
f4e222c5
JL
729
730 /*
731 * We're mostly using this function as a drop in replacement for
732 * filemap_check_errors. Clear AS_EIO/AS_ENOSPC to emulate the effect
733 * that the legacy code would have had on these flags.
734 */
735 clear_bit(AS_EIO, &mapping->flags);
736 clear_bit(AS_ENOSPC, &mapping->flags);
5660e13d
JL
737 return err;
738}
739EXPORT_SYMBOL(file_check_and_advance_wb_err);
740
741/**
742 * file_write_and_wait_range - write out & wait on a file range
743 * @file: file pointing to address_space with pages
744 * @lstart: offset in bytes where the range starts
745 * @lend: offset in bytes where the range ends (inclusive)
746 *
747 * Write out and wait upon file offsets lstart->lend, inclusive.
748 *
749 * Note that @lend is inclusive (describes the last byte to be written) so
750 * that this function can be used to write to the very end-of-file (end = -1).
751 *
752 * After writing out and waiting on the data, we check and advance the
753 * f_wb_err cursor to the latest value, and return any errors detected there.
a862f68a
MR
754 *
755 * Return: %0 on success, negative error code otherwise.
5660e13d
JL
756 */
757int file_write_and_wait_range(struct file *file, loff_t lstart, loff_t lend)
758{
759 int err = 0, err2;
760 struct address_space *mapping = file->f_mapping;
761
9326c9b2 762 if (mapping_needs_writeback(mapping)) {
5660e13d
JL
763 err = __filemap_fdatawrite_range(mapping, lstart, lend,
764 WB_SYNC_ALL);
765 /* See comment of filemap_write_and_wait() */
766 if (err != -EIO)
767 __filemap_fdatawait_range(mapping, lstart, lend);
768 }
769 err2 = file_check_and_advance_wb_err(file);
770 if (!err)
771 err = err2;
772 return err;
773}
774EXPORT_SYMBOL(file_write_and_wait_range);
775
ef6a3c63
MS
776/**
777 * replace_page_cache_page - replace a pagecache page with a new one
778 * @old: page to be replaced
779 * @new: page to replace with
ef6a3c63
MS
780 *
781 * This function replaces a page in the pagecache with a new one. On
782 * success it acquires the pagecache reference for the new page and
783 * drops it for the old page. Both the old and new pages must be
784 * locked. This function does not add the new page to the LRU, the
785 * caller must do that.
786 *
74d60958 787 * The remove + add is atomic. This function cannot fail.
ef6a3c63 788 */
1f7ef657 789void replace_page_cache_page(struct page *old, struct page *new)
ef6a3c63 790{
74d60958
MW
791 struct address_space *mapping = old->mapping;
792 void (*freepage)(struct page *) = mapping->a_ops->freepage;
793 pgoff_t offset = old->index;
794 XA_STATE(xas, &mapping->i_pages, offset);
795 unsigned long flags;
ef6a3c63 796
309381fe
SL
797 VM_BUG_ON_PAGE(!PageLocked(old), old);
798 VM_BUG_ON_PAGE(!PageLocked(new), new);
799 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 800
74d60958
MW
801 get_page(new);
802 new->mapping = mapping;
803 new->index = offset;
ef6a3c63 804
0d1c2072
JW
805 mem_cgroup_migrate(old, new);
806
74d60958
MW
807 xas_lock_irqsave(&xas, flags);
808 xas_store(&xas, new);
4165b9b4 809
74d60958
MW
810 old->mapping = NULL;
811 /* hugetlb pages do not participate in page cache accounting. */
812 if (!PageHuge(old))
0d1c2072 813 __dec_lruvec_page_state(old, NR_FILE_PAGES);
74d60958 814 if (!PageHuge(new))
0d1c2072 815 __inc_lruvec_page_state(new, NR_FILE_PAGES);
74d60958 816 if (PageSwapBacked(old))
0d1c2072 817 __dec_lruvec_page_state(old, NR_SHMEM);
74d60958 818 if (PageSwapBacked(new))
0d1c2072 819 __inc_lruvec_page_state(new, NR_SHMEM);
74d60958 820 xas_unlock_irqrestore(&xas, flags);
74d60958
MW
821 if (freepage)
822 freepage(old);
823 put_page(old);
ef6a3c63
MS
824}
825EXPORT_SYMBOL_GPL(replace_page_cache_page);
826
16c0cc0c 827noinline int __add_to_page_cache_locked(struct page *page,
76cd6173 828 struct address_space *mapping,
c4cf498d 829 pgoff_t offset, gfp_t gfp,
76cd6173 830 void **shadowp)
1da177e4 831{
74d60958 832 XA_STATE(xas, &mapping->i_pages, offset);
00501b53 833 int huge = PageHuge(page);
e286781d 834 int error;
da74240e 835 bool charged = false;
e286781d 836
309381fe
SL
837 VM_BUG_ON_PAGE(!PageLocked(page), page);
838 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
74d60958 839 mapping_set_update(&xas, mapping);
e286781d 840
09cbfeaf 841 get_page(page);
66a0c8ee
KS
842 page->mapping = mapping;
843 page->index = offset;
844
3fea5a49 845 if (!huge) {
198b62f8 846 error = mem_cgroup_charge(page, current->mm, gfp);
3fea5a49
JW
847 if (error)
848 goto error;
da74240e 849 charged = true;
3fea5a49
JW
850 }
851
198b62f8
MWO
852 gfp &= GFP_RECLAIM_MASK;
853
74d60958 854 do {
198b62f8
MWO
855 unsigned int order = xa_get_order(xas.xa, xas.xa_index);
856 void *entry, *old = NULL;
857
858 if (order > thp_order(page))
859 xas_split_alloc(&xas, xa_load(xas.xa, xas.xa_index),
860 order, gfp);
74d60958 861 xas_lock_irq(&xas);
198b62f8
MWO
862 xas_for_each_conflict(&xas, entry) {
863 old = entry;
864 if (!xa_is_value(entry)) {
865 xas_set_err(&xas, -EEXIST);
866 goto unlock;
867 }
868 }
869
870 if (old) {
871 if (shadowp)
872 *shadowp = old;
873 /* entry may have been split before we acquired lock */
874 order = xa_get_order(xas.xa, xas.xa_index);
875 if (order > thp_order(page)) {
876 xas_split(&xas, old, order);
877 xas_reset(&xas);
878 }
879 }
880
74d60958
MW
881 xas_store(&xas, page);
882 if (xas_error(&xas))
883 goto unlock;
884
198b62f8 885 if (old)
74d60958 886 mapping->nrexceptional--;
74d60958
MW
887 mapping->nrpages++;
888
889 /* hugetlb pages do not participate in page cache accounting */
890 if (!huge)
0d1c2072 891 __inc_lruvec_page_state(page, NR_FILE_PAGES);
74d60958
MW
892unlock:
893 xas_unlock_irq(&xas);
198b62f8 894 } while (xas_nomem(&xas, gfp));
74d60958 895
3fea5a49
JW
896 if (xas_error(&xas)) {
897 error = xas_error(&xas);
da74240e
WL
898 if (charged)
899 mem_cgroup_uncharge(page);
74d60958 900 goto error;
3fea5a49 901 }
4165b9b4 902
66a0c8ee
KS
903 trace_mm_filemap_add_to_page_cache(page);
904 return 0;
74d60958 905error:
66a0c8ee
KS
906 page->mapping = NULL;
907 /* Leave page->index set: truncation relies upon it */
09cbfeaf 908 put_page(page);
3fea5a49 909 return error;
1da177e4 910}
cfcbfb13 911ALLOW_ERROR_INJECTION(__add_to_page_cache_locked, ERRNO);
a528910e
JW
912
913/**
914 * add_to_page_cache_locked - add a locked page to the pagecache
915 * @page: page to add
916 * @mapping: the page's address_space
917 * @offset: page index
918 * @gfp_mask: page allocation mode
919 *
920 * This function is used to add a page to the pagecache. It must be locked.
921 * This function does not add the page to the LRU. The caller must do that.
a862f68a
MR
922 *
923 * Return: %0 on success, negative error code otherwise.
a528910e
JW
924 */
925int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
926 pgoff_t offset, gfp_t gfp_mask)
927{
928 return __add_to_page_cache_locked(page, mapping, offset,
929 gfp_mask, NULL);
930}
e286781d 931EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
932
933int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 934 pgoff_t offset, gfp_t gfp_mask)
1da177e4 935{
a528910e 936 void *shadow = NULL;
4f98a2fe
RR
937 int ret;
938
48c935ad 939 __SetPageLocked(page);
a528910e
JW
940 ret = __add_to_page_cache_locked(page, mapping, offset,
941 gfp_mask, &shadow);
942 if (unlikely(ret))
48c935ad 943 __ClearPageLocked(page);
a528910e
JW
944 else {
945 /*
946 * The page might have been evicted from cache only
947 * recently, in which case it should be activated like
948 * any other repeatedly accessed page.
f0281a00
RR
949 * The exception is pages getting rewritten; evicting other
950 * data from the working set, only to cache data that will
951 * get overwritten with something else, is a waste of memory.
a528910e 952 */
1899ad18
JW
953 WARN_ON_ONCE(PageActive(page));
954 if (!(gfp_mask & __GFP_WRITE) && shadow)
955 workingset_refault(page, shadow);
a528910e
JW
956 lru_cache_add(page);
957 }
1da177e4
LT
958 return ret;
959}
18bc0bbd 960EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 961
44110fe3 962#ifdef CONFIG_NUMA
2ae88149 963struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 964{
c0ff7453
MX
965 int n;
966 struct page *page;
967
44110fe3 968 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
969 unsigned int cpuset_mems_cookie;
970 do {
d26914d1 971 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 972 n = cpuset_mem_spread_node();
96db800f 973 page = __alloc_pages_node(n, gfp, 0);
d26914d1 974 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 975
c0ff7453 976 return page;
44110fe3 977 }
2ae88149 978 return alloc_pages(gfp, 0);
44110fe3 979}
2ae88149 980EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
981#endif
982
1da177e4
LT
983/*
984 * In order to wait for pages to become available there must be
985 * waitqueues associated with pages. By using a hash table of
986 * waitqueues where the bucket discipline is to maintain all
987 * waiters on the same queue and wake all when any of the pages
988 * become available, and for the woken contexts to check to be
989 * sure the appropriate page became available, this saves space
990 * at a cost of "thundering herd" phenomena during rare hash
991 * collisions.
992 */
62906027
NP
993#define PAGE_WAIT_TABLE_BITS 8
994#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
995static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
996
997static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 998{
62906027 999 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 1000}
1da177e4 1001
62906027 1002void __init pagecache_init(void)
1da177e4 1003{
62906027 1004 int i;
1da177e4 1005
62906027
NP
1006 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
1007 init_waitqueue_head(&page_wait_table[i]);
1008
1009 page_writeback_init();
1da177e4 1010}
1da177e4 1011
5ef64cc8
LT
1012/*
1013 * The page wait code treats the "wait->flags" somewhat unusually, because
5868ec26 1014 * we have multiple different kinds of waits, not just the usual "exclusive"
5ef64cc8
LT
1015 * one.
1016 *
1017 * We have:
1018 *
1019 * (a) no special bits set:
1020 *
1021 * We're just waiting for the bit to be released, and when a waker
1022 * calls the wakeup function, we set WQ_FLAG_WOKEN and wake it up,
1023 * and remove it from the wait queue.
1024 *
1025 * Simple and straightforward.
1026 *
1027 * (b) WQ_FLAG_EXCLUSIVE:
1028 *
1029 * The waiter is waiting to get the lock, and only one waiter should
1030 * be woken up to avoid any thundering herd behavior. We'll set the
1031 * WQ_FLAG_WOKEN bit, wake it up, and remove it from the wait queue.
1032 *
1033 * This is the traditional exclusive wait.
1034 *
5868ec26 1035 * (c) WQ_FLAG_EXCLUSIVE | WQ_FLAG_CUSTOM:
5ef64cc8
LT
1036 *
1037 * The waiter is waiting to get the bit, and additionally wants the
1038 * lock to be transferred to it for fair lock behavior. If the lock
1039 * cannot be taken, we stop walking the wait queue without waking
1040 * the waiter.
1041 *
1042 * This is the "fair lock handoff" case, and in addition to setting
1043 * WQ_FLAG_WOKEN, we set WQ_FLAG_DONE to let the waiter easily see
1044 * that it now has the lock.
1045 */
ac6424b9 1046static int wake_page_function(wait_queue_entry_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 1047{
5ef64cc8 1048 unsigned int flags;
62906027
NP
1049 struct wait_page_key *key = arg;
1050 struct wait_page_queue *wait_page
1051 = container_of(wait, struct wait_page_queue, wait);
1052
cdc8fcb4 1053 if (!wake_page_match(wait_page, key))
62906027 1054 return 0;
3510ca20 1055
9a1ea439 1056 /*
5ef64cc8
LT
1057 * If it's a lock handoff wait, we get the bit for it, and
1058 * stop walking (and do not wake it up) if we can't.
9a1ea439 1059 */
5ef64cc8
LT
1060 flags = wait->flags;
1061 if (flags & WQ_FLAG_EXCLUSIVE) {
1062 if (test_bit(key->bit_nr, &key->page->flags))
2a9127fc 1063 return -1;
5ef64cc8
LT
1064 if (flags & WQ_FLAG_CUSTOM) {
1065 if (test_and_set_bit(key->bit_nr, &key->page->flags))
1066 return -1;
1067 flags |= WQ_FLAG_DONE;
1068 }
2a9127fc 1069 }
f62e00cc 1070
5ef64cc8
LT
1071 /*
1072 * We are holding the wait-queue lock, but the waiter that
1073 * is waiting for this will be checking the flags without
1074 * any locking.
1075 *
1076 * So update the flags atomically, and wake up the waiter
1077 * afterwards to avoid any races. This store-release pairs
1078 * with the load-acquire in wait_on_page_bit_common().
1079 */
1080 smp_store_release(&wait->flags, flags | WQ_FLAG_WOKEN);
2a9127fc
LT
1081 wake_up_state(wait->private, mode);
1082
1083 /*
1084 * Ok, we have successfully done what we're waiting for,
1085 * and we can unconditionally remove the wait entry.
1086 *
5ef64cc8
LT
1087 * Note that this pairs with the "finish_wait()" in the
1088 * waiter, and has to be the absolute last thing we do.
1089 * After this list_del_init(&wait->entry) the wait entry
2a9127fc
LT
1090 * might be de-allocated and the process might even have
1091 * exited.
2a9127fc 1092 */
c6fe44d9 1093 list_del_init_careful(&wait->entry);
5ef64cc8 1094 return (flags & WQ_FLAG_EXCLUSIVE) != 0;
f62e00cc
KM
1095}
1096
74d81bfa 1097static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 1098{
62906027
NP
1099 wait_queue_head_t *q = page_waitqueue(page);
1100 struct wait_page_key key;
1101 unsigned long flags;
11a19c7b 1102 wait_queue_entry_t bookmark;
cbbce822 1103
62906027
NP
1104 key.page = page;
1105 key.bit_nr = bit_nr;
1106 key.page_match = 0;
1107
11a19c7b
TC
1108 bookmark.flags = 0;
1109 bookmark.private = NULL;
1110 bookmark.func = NULL;
1111 INIT_LIST_HEAD(&bookmark.entry);
1112
62906027 1113 spin_lock_irqsave(&q->lock, flags);
11a19c7b
TC
1114 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1115
1116 while (bookmark.flags & WQ_FLAG_BOOKMARK) {
1117 /*
1118 * Take a breather from holding the lock,
1119 * allow pages that finish wake up asynchronously
1120 * to acquire the lock and remove themselves
1121 * from wait queue
1122 */
1123 spin_unlock_irqrestore(&q->lock, flags);
1124 cpu_relax();
1125 spin_lock_irqsave(&q->lock, flags);
1126 __wake_up_locked_key_bookmark(q, TASK_NORMAL, &key, &bookmark);
1127 }
1128
62906027
NP
1129 /*
1130 * It is possible for other pages to have collided on the waitqueue
1131 * hash, so in that case check for a page match. That prevents a long-
1132 * term waiter
1133 *
1134 * It is still possible to miss a case here, when we woke page waiters
1135 * and removed them from the waitqueue, but there are still other
1136 * page waiters.
1137 */
1138 if (!waitqueue_active(q) || !key.page_match) {
1139 ClearPageWaiters(page);
1140 /*
1141 * It's possible to miss clearing Waiters here, when we woke
1142 * our page waiters, but the hashed waitqueue has waiters for
1143 * other pages on it.
1144 *
1145 * That's okay, it's a rare case. The next waker will clear it.
1146 */
1147 }
1148 spin_unlock_irqrestore(&q->lock, flags);
1149}
74d81bfa
NP
1150
1151static void wake_up_page(struct page *page, int bit)
1152{
1153 if (!PageWaiters(page))
1154 return;
1155 wake_up_page_bit(page, bit);
1156}
62906027 1157
9a1ea439
HD
1158/*
1159 * A choice of three behaviors for wait_on_page_bit_common():
1160 */
1161enum behavior {
1162 EXCLUSIVE, /* Hold ref to page and take the bit when woken, like
1163 * __lock_page() waiting on then setting PG_locked.
1164 */
1165 SHARED, /* Hold ref to page and check the bit when woken, like
1166 * wait_on_page_writeback() waiting on PG_writeback.
1167 */
1168 DROP, /* Drop ref to page before wait, no check when woken,
1169 * like put_and_wait_on_page_locked() on PG_locked.
1170 */
1171};
1172
2a9127fc 1173/*
5ef64cc8
LT
1174 * Attempt to check (or get) the page bit, and mark us done
1175 * if successful.
2a9127fc
LT
1176 */
1177static inline bool trylock_page_bit_common(struct page *page, int bit_nr,
1178 struct wait_queue_entry *wait)
1179{
1180 if (wait->flags & WQ_FLAG_EXCLUSIVE) {
1181 if (test_and_set_bit(bit_nr, &page->flags))
1182 return false;
1183 } else if (test_bit(bit_nr, &page->flags))
1184 return false;
1185
5ef64cc8 1186 wait->flags |= WQ_FLAG_WOKEN | WQ_FLAG_DONE;
2a9127fc
LT
1187 return true;
1188}
1189
5ef64cc8
LT
1190/* How many times do we accept lock stealing from under a waiter? */
1191int sysctl_page_lock_unfairness = 5;
1192
62906027 1193static inline int wait_on_page_bit_common(wait_queue_head_t *q,
9a1ea439 1194 struct page *page, int bit_nr, int state, enum behavior behavior)
62906027 1195{
5ef64cc8 1196 int unfairness = sysctl_page_lock_unfairness;
62906027 1197 struct wait_page_queue wait_page;
ac6424b9 1198 wait_queue_entry_t *wait = &wait_page.wait;
b1d29ba8 1199 bool thrashing = false;
9a1ea439 1200 bool delayacct = false;
eb414681 1201 unsigned long pflags;
62906027 1202
eb414681 1203 if (bit_nr == PG_locked &&
b1d29ba8 1204 !PageUptodate(page) && PageWorkingset(page)) {
9a1ea439 1205 if (!PageSwapBacked(page)) {
eb414681 1206 delayacct_thrashing_start();
9a1ea439
HD
1207 delayacct = true;
1208 }
eb414681 1209 psi_memstall_enter(&pflags);
b1d29ba8
JW
1210 thrashing = true;
1211 }
1212
62906027
NP
1213 init_wait(wait);
1214 wait->func = wake_page_function;
1215 wait_page.page = page;
1216 wait_page.bit_nr = bit_nr;
1217
5ef64cc8
LT
1218repeat:
1219 wait->flags = 0;
1220 if (behavior == EXCLUSIVE) {
1221 wait->flags = WQ_FLAG_EXCLUSIVE;
1222 if (--unfairness < 0)
1223 wait->flags |= WQ_FLAG_CUSTOM;
1224 }
1225
2a9127fc
LT
1226 /*
1227 * Do one last check whether we can get the
1228 * page bit synchronously.
1229 *
1230 * Do the SetPageWaiters() marking before that
1231 * to let any waker we _just_ missed know they
1232 * need to wake us up (otherwise they'll never
1233 * even go to the slow case that looks at the
1234 * page queue), and add ourselves to the wait
1235 * queue if we need to sleep.
1236 *
1237 * This part needs to be done under the queue
1238 * lock to avoid races.
1239 */
1240 spin_lock_irq(&q->lock);
1241 SetPageWaiters(page);
1242 if (!trylock_page_bit_common(page, bit_nr, wait))
1243 __add_wait_queue_entry_tail(q, wait);
1244 spin_unlock_irq(&q->lock);
62906027 1245
2a9127fc
LT
1246 /*
1247 * From now on, all the logic will be based on
5ef64cc8
LT
1248 * the WQ_FLAG_WOKEN and WQ_FLAG_DONE flag, to
1249 * see whether the page bit testing has already
1250 * been done by the wake function.
2a9127fc
LT
1251 *
1252 * We can drop our reference to the page.
1253 */
1254 if (behavior == DROP)
1255 put_page(page);
62906027 1256
5ef64cc8
LT
1257 /*
1258 * Note that until the "finish_wait()", or until
1259 * we see the WQ_FLAG_WOKEN flag, we need to
1260 * be very careful with the 'wait->flags', because
1261 * we may race with a waker that sets them.
1262 */
2a9127fc 1263 for (;;) {
5ef64cc8
LT
1264 unsigned int flags;
1265
62906027
NP
1266 set_current_state(state);
1267
5ef64cc8
LT
1268 /* Loop until we've been woken or interrupted */
1269 flags = smp_load_acquire(&wait->flags);
1270 if (!(flags & WQ_FLAG_WOKEN)) {
1271 if (signal_pending_state(state, current))
1272 break;
1273
1274 io_schedule();
1275 continue;
1276 }
1277
1278 /* If we were non-exclusive, we're done */
1279 if (behavior != EXCLUSIVE)
a8b169af 1280 break;
9a1ea439 1281
5ef64cc8
LT
1282 /* If the waker got the lock for us, we're done */
1283 if (flags & WQ_FLAG_DONE)
9a1ea439 1284 break;
2a9127fc 1285
5ef64cc8
LT
1286 /*
1287 * Otherwise, if we're getting the lock, we need to
1288 * try to get it ourselves.
1289 *
1290 * And if that fails, we'll have to retry this all.
1291 */
1292 if (unlikely(test_and_set_bit(bit_nr, &page->flags)))
1293 goto repeat;
1294
1295 wait->flags |= WQ_FLAG_DONE;
1296 break;
62906027
NP
1297 }
1298
5ef64cc8
LT
1299 /*
1300 * If a signal happened, this 'finish_wait()' may remove the last
1301 * waiter from the wait-queues, but the PageWaiters bit will remain
1302 * set. That's ok. The next wakeup will take care of it, and trying
1303 * to do it here would be difficult and prone to races.
1304 */
62906027
NP
1305 finish_wait(q, wait);
1306
eb414681 1307 if (thrashing) {
9a1ea439 1308 if (delayacct)
eb414681
JW
1309 delayacct_thrashing_end();
1310 psi_memstall_leave(&pflags);
1311 }
b1d29ba8 1312
62906027 1313 /*
5ef64cc8
LT
1314 * NOTE! The wait->flags weren't stable until we've done the
1315 * 'finish_wait()', and we could have exited the loop above due
1316 * to a signal, and had a wakeup event happen after the signal
1317 * test but before the 'finish_wait()'.
1318 *
1319 * So only after the finish_wait() can we reliably determine
1320 * if we got woken up or not, so we can now figure out the final
1321 * return value based on that state without races.
1322 *
1323 * Also note that WQ_FLAG_WOKEN is sufficient for a non-exclusive
1324 * waiter, but an exclusive one requires WQ_FLAG_DONE.
62906027 1325 */
5ef64cc8
LT
1326 if (behavior == EXCLUSIVE)
1327 return wait->flags & WQ_FLAG_DONE ? 0 : -EINTR;
62906027 1328
2a9127fc 1329 return wait->flags & WQ_FLAG_WOKEN ? 0 : -EINTR;
62906027
NP
1330}
1331
1332void wait_on_page_bit(struct page *page, int bit_nr)
1333{
1334 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1335 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, SHARED);
62906027
NP
1336}
1337EXPORT_SYMBOL(wait_on_page_bit);
1338
1339int wait_on_page_bit_killable(struct page *page, int bit_nr)
1340{
1341 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439 1342 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, SHARED);
cbbce822 1343}
4343d008 1344EXPORT_SYMBOL(wait_on_page_bit_killable);
cbbce822 1345
dd3e6d50
JA
1346static int __wait_on_page_locked_async(struct page *page,
1347 struct wait_page_queue *wait, bool set)
1348{
1349 struct wait_queue_head *q = page_waitqueue(page);
1350 int ret = 0;
1351
1352 wait->page = page;
1353 wait->bit_nr = PG_locked;
1354
1355 spin_lock_irq(&q->lock);
1356 __add_wait_queue_entry_tail(q, &wait->wait);
1357 SetPageWaiters(page);
1358 if (set)
1359 ret = !trylock_page(page);
1360 else
1361 ret = PageLocked(page);
1362 /*
8958b249 1363 * If we were successful now, we know we're still on the
dd3e6d50
JA
1364 * waitqueue as we're still under the lock. This means it's
1365 * safe to remove and return success, we know the callback
1366 * isn't going to trigger.
1367 */
1368 if (!ret)
1369 __remove_wait_queue(q, &wait->wait);
1370 else
1371 ret = -EIOCBQUEUED;
1372 spin_unlock_irq(&q->lock);
1373 return ret;
1374}
1375
1a0a7853
JA
1376static int wait_on_page_locked_async(struct page *page,
1377 struct wait_page_queue *wait)
1378{
1379 if (!PageLocked(page))
1380 return 0;
1381 return __wait_on_page_locked_async(compound_head(page), wait, false);
1382}
1383
9a1ea439
HD
1384/**
1385 * put_and_wait_on_page_locked - Drop a reference and wait for it to be unlocked
1386 * @page: The page to wait for.
1387 *
1388 * The caller should hold a reference on @page. They expect the page to
1389 * become unlocked relatively soon, but do not wish to hold up migration
1390 * (for example) by holding the reference while waiting for the page to
1391 * come unlocked. After this function returns, the caller should not
1392 * dereference @page.
1393 */
1394void put_and_wait_on_page_locked(struct page *page)
1395{
1396 wait_queue_head_t *q;
1397
1398 page = compound_head(page);
1399 q = page_waitqueue(page);
1400 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, DROP);
1401}
1402
385e1ca5
DH
1403/**
1404 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
1405 * @page: Page defining the wait queue of interest
1406 * @waiter: Waiter to add to the queue
385e1ca5
DH
1407 *
1408 * Add an arbitrary @waiter to the wait queue for the nominated @page.
1409 */
ac6424b9 1410void add_page_wait_queue(struct page *page, wait_queue_entry_t *waiter)
385e1ca5
DH
1411{
1412 wait_queue_head_t *q = page_waitqueue(page);
1413 unsigned long flags;
1414
1415 spin_lock_irqsave(&q->lock, flags);
9c3a815f 1416 __add_wait_queue_entry_tail(q, waiter);
62906027 1417 SetPageWaiters(page);
385e1ca5
DH
1418 spin_unlock_irqrestore(&q->lock, flags);
1419}
1420EXPORT_SYMBOL_GPL(add_page_wait_queue);
1421
b91e1302
LT
1422#ifndef clear_bit_unlock_is_negative_byte
1423
1424/*
1425 * PG_waiters is the high bit in the same byte as PG_lock.
1426 *
1427 * On x86 (and on many other architectures), we can clear PG_lock and
1428 * test the sign bit at the same time. But if the architecture does
1429 * not support that special operation, we just do this all by hand
1430 * instead.
1431 *
1432 * The read of PG_waiters has to be after (or concurrently with) PG_locked
ffceeb62 1433 * being cleared, but a memory barrier should be unnecessary since it is
b91e1302
LT
1434 * in the same byte as PG_locked.
1435 */
1436static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
1437{
1438 clear_bit_unlock(nr, mem);
1439 /* smp_mb__after_atomic(); */
98473f9f 1440 return test_bit(PG_waiters, mem);
b91e1302
LT
1441}
1442
1443#endif
1444
1da177e4 1445/**
485bb99b 1446 * unlock_page - unlock a locked page
1da177e4
LT
1447 * @page: the page
1448 *
0e9aa675 1449 * Unlocks the page and wakes up sleepers in wait_on_page_locked().
1da177e4 1450 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 1451 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
1452 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
1453 *
b91e1302
LT
1454 * Note that this depends on PG_waiters being the sign bit in the byte
1455 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
1456 * clear the PG_locked bit and test PG_waiters at the same time fairly
1457 * portably (architectures that do LL/SC can test any bit, while x86 can
1458 * test the sign bit).
1da177e4 1459 */
920c7a5d 1460void unlock_page(struct page *page)
1da177e4 1461{
b91e1302 1462 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 1463 page = compound_head(page);
309381fe 1464 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
1465 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
1466 wake_up_page_bit(page, PG_locked);
1da177e4
LT
1467}
1468EXPORT_SYMBOL(unlock_page);
1469
485bb99b
RD
1470/**
1471 * end_page_writeback - end writeback against a page
1472 * @page: the page
1da177e4
LT
1473 */
1474void end_page_writeback(struct page *page)
1475{
888cf2db
MG
1476 /*
1477 * TestClearPageReclaim could be used here but it is an atomic
1478 * operation and overkill in this particular case. Failing to
1479 * shuffle a page marked for immediate reclaim is too mild to
1480 * justify taking an atomic operation penalty at the end of
1481 * ever page writeback.
1482 */
1483 if (PageReclaim(page)) {
1484 ClearPageReclaim(page);
ac6aadb2 1485 rotate_reclaimable_page(page);
888cf2db 1486 }
ac6aadb2 1487
073861ed
HD
1488 /*
1489 * Writeback does not hold a page reference of its own, relying
1490 * on truncation to wait for the clearing of PG_writeback.
1491 * But here we must make sure that the page is not freed and
1492 * reused before the wake_up_page().
1493 */
1494 get_page(page);
ac6aadb2
MS
1495 if (!test_clear_page_writeback(page))
1496 BUG();
1497
4e857c58 1498 smp_mb__after_atomic();
1da177e4 1499 wake_up_page(page, PG_writeback);
073861ed 1500 put_page(page);
1da177e4
LT
1501}
1502EXPORT_SYMBOL(end_page_writeback);
1503
57d99845
MW
1504/*
1505 * After completing I/O on a page, call this routine to update the page
1506 * flags appropriately
1507 */
c11f0c0b 1508void page_endio(struct page *page, bool is_write, int err)
57d99845 1509{
c11f0c0b 1510 if (!is_write) {
57d99845
MW
1511 if (!err) {
1512 SetPageUptodate(page);
1513 } else {
1514 ClearPageUptodate(page);
1515 SetPageError(page);
1516 }
1517 unlock_page(page);
abf54548 1518 } else {
57d99845 1519 if (err) {
dd8416c4
MK
1520 struct address_space *mapping;
1521
57d99845 1522 SetPageError(page);
dd8416c4
MK
1523 mapping = page_mapping(page);
1524 if (mapping)
1525 mapping_set_error(mapping, err);
57d99845
MW
1526 }
1527 end_page_writeback(page);
1528 }
1529}
1530EXPORT_SYMBOL_GPL(page_endio);
1531
485bb99b
RD
1532/**
1533 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1534 * @__page: the page to lock
1da177e4 1535 */
62906027 1536void __lock_page(struct page *__page)
1da177e4 1537{
62906027
NP
1538 struct page *page = compound_head(__page);
1539 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1540 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE,
1541 EXCLUSIVE);
1da177e4
LT
1542}
1543EXPORT_SYMBOL(__lock_page);
1544
62906027 1545int __lock_page_killable(struct page *__page)
2687a356 1546{
62906027
NP
1547 struct page *page = compound_head(__page);
1548 wait_queue_head_t *q = page_waitqueue(page);
9a1ea439
HD
1549 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE,
1550 EXCLUSIVE);
2687a356 1551}
18bc0bbd 1552EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1553
dd3e6d50
JA
1554int __lock_page_async(struct page *page, struct wait_page_queue *wait)
1555{
1556 return __wait_on_page_locked_async(page, wait, true);
1557}
1558
9a95f3cf
PC
1559/*
1560 * Return values:
c1e8d7c6 1561 * 1 - page is locked; mmap_lock is still held.
9a95f3cf 1562 * 0 - page is not locked.
3e4e28c5 1563 * mmap_lock has been released (mmap_read_unlock(), unless flags had both
9a95f3cf 1564 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
c1e8d7c6 1565 * which case mmap_lock is still held.
9a95f3cf
PC
1566 *
1567 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
c1e8d7c6 1568 * with the page locked and the mmap_lock unperturbed.
9a95f3cf 1569 */
d065bd81
ML
1570int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1571 unsigned int flags)
1572{
4064b982 1573 if (fault_flag_allow_retry_first(flags)) {
37b23e05 1574 /*
c1e8d7c6 1575 * CAUTION! In this case, mmap_lock is not released
37b23e05
KM
1576 * even though return 0.
1577 */
1578 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1579 return 0;
1580
d8ed45c5 1581 mmap_read_unlock(mm);
37b23e05
KM
1582 if (flags & FAULT_FLAG_KILLABLE)
1583 wait_on_page_locked_killable(page);
1584 else
318b275f 1585 wait_on_page_locked(page);
d065bd81 1586 return 0;
800bca7c
HL
1587 }
1588 if (flags & FAULT_FLAG_KILLABLE) {
1589 int ret;
37b23e05 1590
800bca7c
HL
1591 ret = __lock_page_killable(page);
1592 if (ret) {
1593 mmap_read_unlock(mm);
1594 return 0;
1595 }
1596 } else {
1597 __lock_page(page);
d065bd81 1598 }
800bca7c
HL
1599 return 1;
1600
d065bd81
ML
1601}
1602
e7b563bb 1603/**
0d3f9296
MW
1604 * page_cache_next_miss() - Find the next gap in the page cache.
1605 * @mapping: Mapping.
1606 * @index: Index.
1607 * @max_scan: Maximum range to search.
e7b563bb 1608 *
0d3f9296
MW
1609 * Search the range [index, min(index + max_scan - 1, ULONG_MAX)] for the
1610 * gap with the lowest index.
e7b563bb 1611 *
0d3f9296
MW
1612 * This function may be called under the rcu_read_lock. However, this will
1613 * not atomically search a snapshot of the cache at a single point in time.
1614 * For example, if a gap is created at index 5, then subsequently a gap is
1615 * created at index 10, page_cache_next_miss covering both indices may
1616 * return 10 if called under the rcu_read_lock.
e7b563bb 1617 *
0d3f9296
MW
1618 * Return: The index of the gap if found, otherwise an index outside the
1619 * range specified (in which case 'return - index >= max_scan' will be true).
1620 * In the rare case of index wrap-around, 0 will be returned.
e7b563bb 1621 */
0d3f9296 1622pgoff_t page_cache_next_miss(struct address_space *mapping,
e7b563bb
JW
1623 pgoff_t index, unsigned long max_scan)
1624{
0d3f9296 1625 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1626
0d3f9296
MW
1627 while (max_scan--) {
1628 void *entry = xas_next(&xas);
1629 if (!entry || xa_is_value(entry))
e7b563bb 1630 break;
0d3f9296 1631 if (xas.xa_index == 0)
e7b563bb
JW
1632 break;
1633 }
1634
0d3f9296 1635 return xas.xa_index;
e7b563bb 1636}
0d3f9296 1637EXPORT_SYMBOL(page_cache_next_miss);
e7b563bb
JW
1638
1639/**
2346a560 1640 * page_cache_prev_miss() - Find the previous gap in the page cache.
0d3f9296
MW
1641 * @mapping: Mapping.
1642 * @index: Index.
1643 * @max_scan: Maximum range to search.
e7b563bb 1644 *
0d3f9296
MW
1645 * Search the range [max(index - max_scan + 1, 0), index] for the
1646 * gap with the highest index.
e7b563bb 1647 *
0d3f9296
MW
1648 * This function may be called under the rcu_read_lock. However, this will
1649 * not atomically search a snapshot of the cache at a single point in time.
1650 * For example, if a gap is created at index 10, then subsequently a gap is
1651 * created at index 5, page_cache_prev_miss() covering both indices may
1652 * return 5 if called under the rcu_read_lock.
e7b563bb 1653 *
0d3f9296
MW
1654 * Return: The index of the gap if found, otherwise an index outside the
1655 * range specified (in which case 'index - return >= max_scan' will be true).
1656 * In the rare case of wrap-around, ULONG_MAX will be returned.
e7b563bb 1657 */
0d3f9296 1658pgoff_t page_cache_prev_miss(struct address_space *mapping,
e7b563bb
JW
1659 pgoff_t index, unsigned long max_scan)
1660{
0d3f9296 1661 XA_STATE(xas, &mapping->i_pages, index);
e7b563bb 1662
0d3f9296
MW
1663 while (max_scan--) {
1664 void *entry = xas_prev(&xas);
1665 if (!entry || xa_is_value(entry))
e7b563bb 1666 break;
0d3f9296 1667 if (xas.xa_index == ULONG_MAX)
e7b563bb
JW
1668 break;
1669 }
1670
0d3f9296 1671 return xas.xa_index;
e7b563bb 1672}
0d3f9296 1673EXPORT_SYMBOL(page_cache_prev_miss);
e7b563bb 1674
485bb99b 1675/**
0cd6144a 1676 * find_get_entry - find and get a page cache entry
485bb99b 1677 * @mapping: the address_space to search
a6de4b48 1678 * @index: The page cache index.
0cd6144a
JW
1679 *
1680 * Looks up the page cache slot at @mapping & @offset. If there is a
a6de4b48 1681 * page cache page, the head page is returned with an increased refcount.
485bb99b 1682 *
139b6a6f
JW
1683 * If the slot holds a shadow entry of a previously evicted page, or a
1684 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1685 *
a6de4b48 1686 * Return: The head page or shadow entry, %NULL if nothing is found.
1da177e4 1687 */
a6de4b48 1688struct page *find_get_entry(struct address_space *mapping, pgoff_t index)
1da177e4 1689{
a6de4b48 1690 XA_STATE(xas, &mapping->i_pages, index);
4101196b 1691 struct page *page;
1da177e4 1692
a60637c8
NP
1693 rcu_read_lock();
1694repeat:
4c7472c0
MW
1695 xas_reset(&xas);
1696 page = xas_load(&xas);
1697 if (xas_retry(&xas, page))
1698 goto repeat;
1699 /*
1700 * A shadow entry of a recently evicted page, or a swap entry from
1701 * shmem/tmpfs. Return it without attempting to raise page count.
1702 */
1703 if (!page || xa_is_value(page))
1704 goto out;
83929372 1705
4101196b 1706 if (!page_cache_get_speculative(page))
4c7472c0 1707 goto repeat;
83929372 1708
4c7472c0 1709 /*
4101196b 1710 * Has the page moved or been split?
4c7472c0
MW
1711 * This is part of the lockless pagecache protocol. See
1712 * include/linux/pagemap.h for details.
1713 */
1714 if (unlikely(page != xas_reload(&xas))) {
4101196b 1715 put_page(page);
4c7472c0 1716 goto repeat;
a60637c8 1717 }
27d20fdd 1718out:
a60637c8
NP
1719 rcu_read_unlock();
1720
1da177e4
LT
1721 return page;
1722}
1da177e4 1723
0cd6144a 1724/**
63ec1973
MWO
1725 * find_lock_entry - Locate and lock a page cache entry.
1726 * @mapping: The address_space to search.
1727 * @index: The page cache index.
0cd6144a 1728 *
63ec1973
MWO
1729 * Looks up the page at @mapping & @index. If there is a page in the
1730 * cache, the head page is returned locked and with an increased refcount.
0cd6144a 1731 *
139b6a6f
JW
1732 * If the slot holds a shadow entry of a previously evicted page, or a
1733 * swap entry from shmem/tmpfs, it is returned.
0cd6144a 1734 *
63ec1973
MWO
1735 * Context: May sleep.
1736 * Return: The head page or shadow entry, %NULL if nothing is found.
0cd6144a 1737 */
63ec1973 1738struct page *find_lock_entry(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1739{
1740 struct page *page;
1741
1da177e4 1742repeat:
63ec1973 1743 page = find_get_entry(mapping, index);
4c7472c0 1744 if (page && !xa_is_value(page)) {
a60637c8
NP
1745 lock_page(page);
1746 /* Has the page been truncated? */
63ec1973 1747 if (unlikely(page->mapping != mapping)) {
a60637c8 1748 unlock_page(page);
09cbfeaf 1749 put_page(page);
a60637c8 1750 goto repeat;
1da177e4 1751 }
63ec1973 1752 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
1da177e4 1753 }
1da177e4
LT
1754 return page;
1755}
0cd6144a
JW
1756
1757/**
2294b32e
MWO
1758 * pagecache_get_page - Find and get a reference to a page.
1759 * @mapping: The address_space to search.
1760 * @index: The page index.
1761 * @fgp_flags: %FGP flags modify how the page is returned.
1762 * @gfp_mask: Memory allocation flags to use if %FGP_CREAT is specified.
1da177e4 1763 *
2294b32e 1764 * Looks up the page cache entry at @mapping & @index.
0cd6144a 1765 *
2294b32e 1766 * @fgp_flags can be zero or more of these flags:
0e056eb5 1767 *
2294b32e
MWO
1768 * * %FGP_ACCESSED - The page will be marked accessed.
1769 * * %FGP_LOCK - The page is returned locked.
a8cf7f27
MWO
1770 * * %FGP_HEAD - If the page is present and a THP, return the head page
1771 * rather than the exact page specified by the index.
2294b32e
MWO
1772 * * %FGP_CREAT - If no page is present then a new page is allocated using
1773 * @gfp_mask and added to the page cache and the VM's LRU list.
1774 * The page is returned locked and with an increased refcount.
1775 * * %FGP_FOR_MMAP - The caller wants to do its own locking dance if the
1776 * page is already in cache. If the page was allocated, unlock it before
1777 * returning so the caller can do the same dance.
605cad83
YS
1778 * * %FGP_WRITE - The page will be written
1779 * * %FGP_NOFS - __GFP_FS will get cleared in gfp mask
1780 * * %FGP_NOWAIT - Don't get blocked by page lock
1da177e4 1781 *
2294b32e
MWO
1782 * If %FGP_LOCK or %FGP_CREAT are specified then the function may sleep even
1783 * if the %GFP flags specified for %FGP_CREAT are atomic.
1da177e4 1784 *
2457aec6 1785 * If there is a page cache page, it is returned with an increased refcount.
a862f68a 1786 *
2294b32e 1787 * Return: The found page or %NULL otherwise.
1da177e4 1788 */
2294b32e
MWO
1789struct page *pagecache_get_page(struct address_space *mapping, pgoff_t index,
1790 int fgp_flags, gfp_t gfp_mask)
1da177e4 1791{
eb2be189 1792 struct page *page;
2457aec6 1793
1da177e4 1794repeat:
2294b32e 1795 page = find_get_entry(mapping, index);
3159f943 1796 if (xa_is_value(page))
2457aec6
MG
1797 page = NULL;
1798 if (!page)
1799 goto no_page;
1800
1801 if (fgp_flags & FGP_LOCK) {
1802 if (fgp_flags & FGP_NOWAIT) {
1803 if (!trylock_page(page)) {
09cbfeaf 1804 put_page(page);
2457aec6
MG
1805 return NULL;
1806 }
1807 } else {
1808 lock_page(page);
1809 }
1810
1811 /* Has the page been truncated? */
a8cf7f27 1812 if (unlikely(page->mapping != mapping)) {
2457aec6 1813 unlock_page(page);
09cbfeaf 1814 put_page(page);
2457aec6
MG
1815 goto repeat;
1816 }
a8cf7f27 1817 VM_BUG_ON_PAGE(!thp_contains(page, index), page);
2457aec6
MG
1818 }
1819
c16eb000 1820 if (fgp_flags & FGP_ACCESSED)
2457aec6 1821 mark_page_accessed(page);
b9306a79
YS
1822 else if (fgp_flags & FGP_WRITE) {
1823 /* Clear idle flag for buffer write */
1824 if (page_is_idle(page))
1825 clear_page_idle(page);
1826 }
a8cf7f27
MWO
1827 if (!(fgp_flags & FGP_HEAD))
1828 page = find_subpage(page, index);
2457aec6
MG
1829
1830no_page:
1831 if (!page && (fgp_flags & FGP_CREAT)) {
1832 int err;
f56753ac 1833 if ((fgp_flags & FGP_WRITE) && mapping_can_writeback(mapping))
45f87de5
MH
1834 gfp_mask |= __GFP_WRITE;
1835 if (fgp_flags & FGP_NOFS)
1836 gfp_mask &= ~__GFP_FS;
2457aec6 1837
45f87de5 1838 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1839 if (!page)
1840 return NULL;
2457aec6 1841
a75d4c33 1842 if (WARN_ON_ONCE(!(fgp_flags & (FGP_LOCK | FGP_FOR_MMAP))))
2457aec6
MG
1843 fgp_flags |= FGP_LOCK;
1844
eb39d618 1845 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1846 if (fgp_flags & FGP_ACCESSED)
eb39d618 1847 __SetPageReferenced(page);
2457aec6 1848
2294b32e 1849 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
eb2be189 1850 if (unlikely(err)) {
09cbfeaf 1851 put_page(page);
eb2be189
NP
1852 page = NULL;
1853 if (err == -EEXIST)
1854 goto repeat;
1da177e4 1855 }
a75d4c33
JB
1856
1857 /*
1858 * add_to_page_cache_lru locks the page, and for mmap we expect
1859 * an unlocked page.
1860 */
1861 if (page && (fgp_flags & FGP_FOR_MMAP))
1862 unlock_page(page);
1da177e4 1863 }
2457aec6 1864
1da177e4
LT
1865 return page;
1866}
2457aec6 1867EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1868
0cd6144a
JW
1869/**
1870 * find_get_entries - gang pagecache lookup
1871 * @mapping: The address_space to search
1872 * @start: The starting page cache index
1873 * @nr_entries: The maximum number of entries
1874 * @entries: Where the resulting entries are placed
1875 * @indices: The cache indices corresponding to the entries in @entries
1876 *
1877 * find_get_entries() will search for and return a group of up to
1878 * @nr_entries entries in the mapping. The entries are placed at
1879 * @entries. find_get_entries() takes a reference against any actual
1880 * pages it returns.
1881 *
1882 * The search returns a group of mapping-contiguous page cache entries
1883 * with ascending indexes. There may be holes in the indices due to
1884 * not-present pages.
1885 *
139b6a6f
JW
1886 * Any shadow entries of evicted pages, or swap entries from
1887 * shmem/tmpfs, are included in the returned array.
0cd6144a 1888 *
71725ed1
HD
1889 * If it finds a Transparent Huge Page, head or tail, find_get_entries()
1890 * stops at that page: the caller is likely to have a better way to handle
1891 * the compound page as a whole, and then skip its extent, than repeatedly
1892 * calling find_get_entries() to return all its tails.
1893 *
a862f68a 1894 * Return: the number of pages and shadow entries which were found.
0cd6144a
JW
1895 */
1896unsigned find_get_entries(struct address_space *mapping,
1897 pgoff_t start, unsigned int nr_entries,
1898 struct page **entries, pgoff_t *indices)
1899{
f280bf09
MW
1900 XA_STATE(xas, &mapping->i_pages, start);
1901 struct page *page;
0cd6144a 1902 unsigned int ret = 0;
0cd6144a
JW
1903
1904 if (!nr_entries)
1905 return 0;
1906
1907 rcu_read_lock();
f280bf09 1908 xas_for_each(&xas, page, ULONG_MAX) {
f280bf09 1909 if (xas_retry(&xas, page))
0cd6144a 1910 continue;
f280bf09
MW
1911 /*
1912 * A shadow entry of a recently evicted page, a swap
1913 * entry from shmem/tmpfs or a DAX entry. Return it
1914 * without attempting to raise page count.
1915 */
1916 if (xa_is_value(page))
0cd6144a 1917 goto export;
83929372 1918
4101196b 1919 if (!page_cache_get_speculative(page))
f280bf09 1920 goto retry;
83929372 1921
4101196b 1922 /* Has the page moved or been split? */
f280bf09
MW
1923 if (unlikely(page != xas_reload(&xas)))
1924 goto put_page;
1925
71725ed1
HD
1926 /*
1927 * Terminate early on finding a THP, to allow the caller to
1928 * handle it all at once; but continue if this is hugetlbfs.
1929 */
1930 if (PageTransHuge(page) && !PageHuge(page)) {
1931 page = find_subpage(page, xas.xa_index);
1932 nr_entries = ret + 1;
1933 }
0cd6144a 1934export:
f280bf09 1935 indices[ret] = xas.xa_index;
0cd6144a
JW
1936 entries[ret] = page;
1937 if (++ret == nr_entries)
1938 break;
f280bf09
MW
1939 continue;
1940put_page:
4101196b 1941 put_page(page);
f280bf09
MW
1942retry:
1943 xas_reset(&xas);
0cd6144a
JW
1944 }
1945 rcu_read_unlock();
1946 return ret;
1947}
1948
1da177e4 1949/**
b947cee4 1950 * find_get_pages_range - gang pagecache lookup
1da177e4
LT
1951 * @mapping: The address_space to search
1952 * @start: The starting page index
b947cee4 1953 * @end: The final page index (inclusive)
1da177e4
LT
1954 * @nr_pages: The maximum number of pages
1955 * @pages: Where the resulting pages are placed
1956 *
b947cee4
JK
1957 * find_get_pages_range() will search for and return a group of up to @nr_pages
1958 * pages in the mapping starting at index @start and up to index @end
1959 * (inclusive). The pages are placed at @pages. find_get_pages_range() takes
1960 * a reference against the returned pages.
1da177e4
LT
1961 *
1962 * The search returns a group of mapping-contiguous pages with ascending
1963 * indexes. There may be holes in the indices due to not-present pages.
d72dc8a2 1964 * We also update @start to index the next page for the traversal.
1da177e4 1965 *
a862f68a
MR
1966 * Return: the number of pages which were found. If this number is
1967 * smaller than @nr_pages, the end of specified range has been
b947cee4 1968 * reached.
1da177e4 1969 */
b947cee4
JK
1970unsigned find_get_pages_range(struct address_space *mapping, pgoff_t *start,
1971 pgoff_t end, unsigned int nr_pages,
1972 struct page **pages)
1da177e4 1973{
fd1b3cee
MW
1974 XA_STATE(xas, &mapping->i_pages, *start);
1975 struct page *page;
0fc9d104
KK
1976 unsigned ret = 0;
1977
1978 if (unlikely(!nr_pages))
1979 return 0;
a60637c8
NP
1980
1981 rcu_read_lock();
fd1b3cee 1982 xas_for_each(&xas, page, end) {
fd1b3cee 1983 if (xas_retry(&xas, page))
a60637c8 1984 continue;
fd1b3cee
MW
1985 /* Skip over shadow, swap and DAX entries */
1986 if (xa_is_value(page))
8079b1c8 1987 continue;
a60637c8 1988
4101196b 1989 if (!page_cache_get_speculative(page))
fd1b3cee 1990 goto retry;
83929372 1991
4101196b 1992 /* Has the page moved or been split? */
fd1b3cee
MW
1993 if (unlikely(page != xas_reload(&xas)))
1994 goto put_page;
1da177e4 1995
4101196b 1996 pages[ret] = find_subpage(page, xas.xa_index);
b947cee4 1997 if (++ret == nr_pages) {
5d3ee42f 1998 *start = xas.xa_index + 1;
b947cee4
JK
1999 goto out;
2000 }
fd1b3cee
MW
2001 continue;
2002put_page:
4101196b 2003 put_page(page);
fd1b3cee
MW
2004retry:
2005 xas_reset(&xas);
a60637c8 2006 }
5b280c0c 2007
b947cee4
JK
2008 /*
2009 * We come here when there is no page beyond @end. We take care to not
2010 * overflow the index @start as it confuses some of the callers. This
fd1b3cee 2011 * breaks the iteration when there is a page at index -1 but that is
b947cee4
JK
2012 * already broken anyway.
2013 */
2014 if (end == (pgoff_t)-1)
2015 *start = (pgoff_t)-1;
2016 else
2017 *start = end + 1;
2018out:
a60637c8 2019 rcu_read_unlock();
d72dc8a2 2020
1da177e4
LT
2021 return ret;
2022}
2023
ebf43500
JA
2024/**
2025 * find_get_pages_contig - gang contiguous pagecache lookup
2026 * @mapping: The address_space to search
2027 * @index: The starting page index
2028 * @nr_pages: The maximum number of pages
2029 * @pages: Where the resulting pages are placed
2030 *
2031 * find_get_pages_contig() works exactly like find_get_pages(), except
2032 * that the returned number of pages are guaranteed to be contiguous.
2033 *
a862f68a 2034 * Return: the number of pages which were found.
ebf43500
JA
2035 */
2036unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
2037 unsigned int nr_pages, struct page **pages)
2038{
3ece58a2
MW
2039 XA_STATE(xas, &mapping->i_pages, index);
2040 struct page *page;
0fc9d104
KK
2041 unsigned int ret = 0;
2042
2043 if (unlikely(!nr_pages))
2044 return 0;
a60637c8
NP
2045
2046 rcu_read_lock();
3ece58a2 2047 for (page = xas_load(&xas); page; page = xas_next(&xas)) {
3ece58a2
MW
2048 if (xas_retry(&xas, page))
2049 continue;
2050 /*
2051 * If the entry has been swapped out, we can stop looking.
2052 * No current caller is looking for DAX entries.
2053 */
2054 if (xa_is_value(page))
8079b1c8 2055 break;
ebf43500 2056
4101196b 2057 if (!page_cache_get_speculative(page))
3ece58a2 2058 goto retry;
83929372 2059
4101196b 2060 /* Has the page moved or been split? */
3ece58a2
MW
2061 if (unlikely(page != xas_reload(&xas)))
2062 goto put_page;
a60637c8 2063
4101196b 2064 pages[ret] = find_subpage(page, xas.xa_index);
0fc9d104
KK
2065 if (++ret == nr_pages)
2066 break;
3ece58a2
MW
2067 continue;
2068put_page:
4101196b 2069 put_page(page);
3ece58a2
MW
2070retry:
2071 xas_reset(&xas);
ebf43500 2072 }
a60637c8
NP
2073 rcu_read_unlock();
2074 return ret;
ebf43500 2075}
ef71c15c 2076EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 2077
485bb99b 2078/**
72b045ae 2079 * find_get_pages_range_tag - find and return pages in given range matching @tag
485bb99b
RD
2080 * @mapping: the address_space to search
2081 * @index: the starting page index
72b045ae 2082 * @end: The final page index (inclusive)
485bb99b
RD
2083 * @tag: the tag index
2084 * @nr_pages: the maximum number of pages
2085 * @pages: where the resulting pages are placed
2086 *
1da177e4 2087 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 2088 * @tag. We update @index to index the next page for the traversal.
a862f68a
MR
2089 *
2090 * Return: the number of pages which were found.
1da177e4 2091 */
72b045ae 2092unsigned find_get_pages_range_tag(struct address_space *mapping, pgoff_t *index,
a6906972 2093 pgoff_t end, xa_mark_t tag, unsigned int nr_pages,
72b045ae 2094 struct page **pages)
1da177e4 2095{
a6906972
MW
2096 XA_STATE(xas, &mapping->i_pages, *index);
2097 struct page *page;
0fc9d104
KK
2098 unsigned ret = 0;
2099
2100 if (unlikely(!nr_pages))
2101 return 0;
a60637c8
NP
2102
2103 rcu_read_lock();
a6906972 2104 xas_for_each_marked(&xas, page, end, tag) {
a6906972 2105 if (xas_retry(&xas, page))
a60637c8 2106 continue;
a6906972
MW
2107 /*
2108 * Shadow entries should never be tagged, but this iteration
2109 * is lockless so there is a window for page reclaim to evict
2110 * a page we saw tagged. Skip over it.
2111 */
2112 if (xa_is_value(page))
139b6a6f 2113 continue;
a60637c8 2114
4101196b 2115 if (!page_cache_get_speculative(page))
a6906972 2116 goto retry;
a60637c8 2117
4101196b 2118 /* Has the page moved or been split? */
a6906972
MW
2119 if (unlikely(page != xas_reload(&xas)))
2120 goto put_page;
a60637c8 2121
4101196b 2122 pages[ret] = find_subpage(page, xas.xa_index);
72b045ae 2123 if (++ret == nr_pages) {
5d3ee42f 2124 *index = xas.xa_index + 1;
72b045ae
JK
2125 goto out;
2126 }
a6906972
MW
2127 continue;
2128put_page:
4101196b 2129 put_page(page);
a6906972
MW
2130retry:
2131 xas_reset(&xas);
a60637c8 2132 }
5b280c0c 2133
72b045ae 2134 /*
a6906972 2135 * We come here when we got to @end. We take care to not overflow the
72b045ae 2136 * index @index as it confuses some of the callers. This breaks the
a6906972
MW
2137 * iteration when there is a page at index -1 but that is already
2138 * broken anyway.
72b045ae
JK
2139 */
2140 if (end == (pgoff_t)-1)
2141 *index = (pgoff_t)-1;
2142 else
2143 *index = end + 1;
2144out:
a60637c8 2145 rcu_read_unlock();
1da177e4 2146
1da177e4
LT
2147 return ret;
2148}
72b045ae 2149EXPORT_SYMBOL(find_get_pages_range_tag);
1da177e4 2150
76d42bd9
WF
2151/*
2152 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
2153 * a _large_ part of the i/o request. Imagine the worst scenario:
2154 *
2155 * ---R__________________________________________B__________
2156 * ^ reading here ^ bad block(assume 4k)
2157 *
2158 * read(R) => miss => readahead(R...B) => media error => frustrating retries
2159 * => failing the whole request => read(R) => read(R+1) =>
2160 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
2161 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
2162 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
2163 *
2164 * It is going insane. Fix it by quickly scaling down the readahead size.
2165 */
0f8e2db4 2166static void shrink_readahead_size_eio(struct file_ra_state *ra)
76d42bd9 2167{
76d42bd9 2168 ra->ra_pages /= 4;
76d42bd9
WF
2169}
2170
723ef24b
KO
2171static int lock_page_for_iocb(struct kiocb *iocb, struct page *page)
2172{
2173 if (iocb->ki_flags & IOCB_WAITQ)
2174 return lock_page_async(page, iocb->ki_waitq);
2175 else if (iocb->ki_flags & IOCB_NOWAIT)
2176 return trylock_page(page) ? 0 : -EAGAIN;
2177 else
2178 return lock_page_killable(page);
2179}
2180
cbd59c48
MWO
2181/*
2182 * filemap_get_read_batch - Get a batch of pages for read
2183 *
2184 * Get a batch of pages which represent a contiguous range of bytes
2185 * in the file. No tail pages will be returned. If @index is in the
2186 * middle of a THP, the entire THP will be returned. The last page in
2187 * the batch may have Readahead set or be not Uptodate so that the
2188 * caller can take the appropriate action.
2189 */
2190static void filemap_get_read_batch(struct address_space *mapping,
2191 pgoff_t index, pgoff_t max, struct pagevec *pvec)
2192{
2193 XA_STATE(xas, &mapping->i_pages, index);
2194 struct page *head;
2195
2196 rcu_read_lock();
2197 for (head = xas_load(&xas); head; head = xas_next(&xas)) {
2198 if (xas_retry(&xas, head))
2199 continue;
2200 if (xas.xa_index > max || xa_is_value(head))
2201 break;
2202 if (!page_cache_get_speculative(head))
2203 goto retry;
2204
2205 /* Has the page moved or been split? */
2206 if (unlikely(head != xas_reload(&xas)))
2207 goto put_page;
2208
2209 if (!pagevec_add(pvec, head))
2210 break;
2211 if (!PageUptodate(head))
2212 break;
2213 if (PageReadahead(head))
2214 break;
2215 xas.xa_index = head->index + thp_nr_pages(head) - 1;
2216 xas.xa_offset = (xas.xa_index >> xas.xa_shift) & XA_CHUNK_MASK;
2217 continue;
2218put_page:
2219 put_page(head);
2220retry:
2221 xas_reset(&xas);
2222 }
2223 rcu_read_unlock();
2224}
2225
3a6bae48
MWO
2226static struct page *filemap_read_page(struct kiocb *iocb, struct file *filp,
2227 struct address_space *mapping, struct page *page)
723ef24b
KO
2228{
2229 struct file_ra_state *ra = &filp->f_ra;
2230 int error;
2231
2232 if (iocb->ki_flags & (IOCB_NOIO | IOCB_NOWAIT)) {
2233 unlock_page(page);
2234 put_page(page);
2235 return ERR_PTR(-EAGAIN);
2236 }
2237
2238 /*
2239 * A previous I/O error may have been due to temporary
2240 * failures, eg. multipath errors.
2241 * PG_error will be set again if readpage fails.
2242 */
2243 ClearPageError(page);
2244 /* Start the actual read. The read will unlock the page. */
2245 error = mapping->a_ops->readpage(filp, page);
2246
2247 if (unlikely(error)) {
2248 put_page(page);
2249 return error != AOP_TRUNCATED_PAGE ? ERR_PTR(error) : NULL;
2250 }
2251
2252 if (!PageUptodate(page)) {
2253 error = lock_page_for_iocb(iocb, page);
2254 if (unlikely(error)) {
2255 put_page(page);
2256 return ERR_PTR(error);
2257 }
2258 if (!PageUptodate(page)) {
2259 if (page->mapping == NULL) {
2260 /*
2261 * invalidate_mapping_pages got it
2262 */
2263 unlock_page(page);
2264 put_page(page);
2265 return NULL;
2266 }
2267 unlock_page(page);
2268 shrink_readahead_size_eio(ra);
2269 put_page(page);
2270 return ERR_PTR(-EIO);
2271 }
2272 unlock_page(page);
2273 }
2274
2275 return page;
2276}
2277
3a6bae48
MWO
2278static struct page *filemap_update_page(struct kiocb *iocb, struct file *filp,
2279 struct iov_iter *iter, struct page *page, loff_t pos,
2280 loff_t count)
723ef24b
KO
2281{
2282 struct address_space *mapping = filp->f_mapping;
2283 struct inode *inode = mapping->host;
2284 int error;
2285
2286 /*
2287 * See comment in do_read_cache_page on why
2288 * wait_on_page_locked is used to avoid unnecessarily
2289 * serialisations and why it's safe.
2290 */
2291 if (iocb->ki_flags & IOCB_WAITQ) {
2292 error = wait_on_page_locked_async(page,
2293 iocb->ki_waitq);
2294 } else {
2295 error = wait_on_page_locked_killable(page);
2296 }
2297 if (unlikely(error)) {
2298 put_page(page);
2299 return ERR_PTR(error);
2300 }
2301 if (PageUptodate(page))
2302 return page;
2303
2304 if (inode->i_blkbits == PAGE_SHIFT ||
2305 !mapping->a_ops->is_partially_uptodate)
2306 goto page_not_up_to_date;
2307 /* pipes can't handle partially uptodate pages */
2308 if (unlikely(iov_iter_is_pipe(iter)))
2309 goto page_not_up_to_date;
2310 if (!trylock_page(page))
2311 goto page_not_up_to_date;
2312 /* Did it get truncated before we got the lock? */
2313 if (!page->mapping)
2314 goto page_not_up_to_date_locked;
2315 if (!mapping->a_ops->is_partially_uptodate(page,
2316 pos & ~PAGE_MASK, count))
2317 goto page_not_up_to_date_locked;
2318 unlock_page(page);
2319 return page;
2320
2321page_not_up_to_date:
2322 /* Get exclusive access to the page ... */
2323 error = lock_page_for_iocb(iocb, page);
2324 if (unlikely(error)) {
2325 put_page(page);
2326 return ERR_PTR(error);
2327 }
2328
2329page_not_up_to_date_locked:
2330 /* Did it get truncated before we got the lock? */
2331 if (!page->mapping) {
2332 unlock_page(page);
2333 put_page(page);
2334 return NULL;
2335 }
2336
2337 /* Did somebody else fill it already? */
2338 if (PageUptodate(page)) {
2339 unlock_page(page);
2340 return page;
2341 }
2342
3a6bae48 2343 return filemap_read_page(iocb, filp, mapping, page);
723ef24b
KO
2344}
2345
3a6bae48
MWO
2346static struct page *filemap_create_page(struct kiocb *iocb,
2347 struct iov_iter *iter)
723ef24b
KO
2348{
2349 struct file *filp = iocb->ki_filp;
2350 struct address_space *mapping = filp->f_mapping;
2351 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
2352 struct page *page;
2353 int error;
2354
2355 if (iocb->ki_flags & IOCB_NOIO)
2356 return ERR_PTR(-EAGAIN);
2357
723ef24b
KO
2358 page = page_cache_alloc(mapping);
2359 if (!page)
2360 return ERR_PTR(-ENOMEM);
2361
2362 error = add_to_page_cache_lru(page, mapping, index,
2363 mapping_gfp_constraint(mapping, GFP_KERNEL));
2364 if (error) {
2365 put_page(page);
2366 return error != -EEXIST ? ERR_PTR(error) : NULL;
2367 }
2368
3a6bae48 2369 return filemap_read_page(iocb, filp, mapping, page);
723ef24b
KO
2370}
2371
3a6bae48 2372static int filemap_get_pages(struct kiocb *iocb, struct iov_iter *iter,
ff993ba1 2373 struct pagevec *pvec)
06c04442
KO
2374{
2375 struct file *filp = iocb->ki_filp;
2376 struct address_space *mapping = filp->f_mapping;
2377 struct file_ra_state *ra = &filp->f_ra;
2378 pgoff_t index = iocb->ki_pos >> PAGE_SHIFT;
cbd59c48
MWO
2379 pgoff_t last_index;
2380 int err = 0;
06c04442 2381
cbd59c48 2382 last_index = DIV_ROUND_UP(iocb->ki_pos + iter->count, PAGE_SIZE);
06c04442
KO
2383find_page:
2384 if (fatal_signal_pending(current))
2385 return -EINTR;
2386
cbd59c48 2387 filemap_get_read_batch(mapping, index, last_index, pvec);
ff993ba1 2388 if (pvec->nr)
06c04442
KO
2389 goto got_pages;
2390
2391 if (iocb->ki_flags & IOCB_NOIO)
2392 return -EAGAIN;
2393
2394 page_cache_sync_readahead(mapping, ra, filp, index, last_index - index);
2395
cbd59c48 2396 filemap_get_read_batch(mapping, index, last_index, pvec);
ff993ba1 2397 if (pvec->nr)
06c04442
KO
2398 goto got_pages;
2399
ff993ba1
MWO
2400 pvec->pages[0] = filemap_create_page(iocb, iter);
2401 err = PTR_ERR_OR_ZERO(pvec->pages[0]);
cbd59c48
MWO
2402 if (IS_ERR_OR_NULL(pvec->pages[0]))
2403 goto err;
2404 pvec->nr = 1;
2405 return 0;
06c04442 2406got_pages:
cbd59c48
MWO
2407 {
2408 struct page *page = pvec->pages[pvec->nr - 1];
2409 pgoff_t pg_index = page->index;
06c04442
KO
2410 loff_t pg_pos = max(iocb->ki_pos,
2411 (loff_t) pg_index << PAGE_SHIFT);
2412 loff_t pg_count = iocb->ki_pos + iter->count - pg_pos;
2413
2414 if (PageReadahead(page)) {
2415 if (iocb->ki_flags & IOCB_NOIO) {
cbd59c48
MWO
2416 put_page(page);
2417 pvec->nr--;
06c04442 2418 err = -EAGAIN;
cbd59c48 2419 goto err;
06c04442
KO
2420 }
2421 page_cache_async_readahead(mapping, ra, filp, page,
2422 pg_index, last_index - pg_index);
2423 }
2424
2425 if (!PageUptodate(page)) {
2426 if ((iocb->ki_flags & IOCB_NOWAIT) ||
cbd59c48
MWO
2427 ((iocb->ki_flags & IOCB_WAITQ) && pvec->nr > 1)) {
2428 put_page(page);
2429 pvec->nr--;
06c04442 2430 err = -EAGAIN;
cbd59c48 2431 goto err;
06c04442
KO
2432 }
2433
3a6bae48
MWO
2434 page = filemap_update_page(iocb, filp, iter, page,
2435 pg_pos, pg_count);
06c04442 2436 if (IS_ERR_OR_NULL(page)) {
cbd59c48 2437 pvec->nr--;
06c04442 2438 err = PTR_ERR_OR_ZERO(page);
06c04442
KO
2439 }
2440 }
2441 }
2442
cbd59c48 2443err:
ff993ba1
MWO
2444 if (likely(pvec->nr))
2445 return 0;
06c04442
KO
2446 if (err)
2447 return err;
2448 /*
2449 * No pages and no error means we raced and should retry:
2450 */
2451 goto find_page;
2452}
2453
485bb99b 2454/**
47c27bc4
CH
2455 * generic_file_buffered_read - generic file read routine
2456 * @iocb: the iocb to read
6e58e79d
AV
2457 * @iter: data destination
2458 * @written: already copied
485bb99b 2459 *
1da177e4 2460 * This is a generic file read routine, and uses the
485bb99b 2461 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
2462 *
2463 * This is really ugly. But the goto's actually try to clarify some
2464 * of the logic when it comes to error handling etc.
a862f68a
MR
2465 *
2466 * Return:
2467 * * total number of bytes copied, including those the were already @written
2468 * * negative error code if nothing was copied
1da177e4 2469 */
d85dc2e1 2470ssize_t generic_file_buffered_read(struct kiocb *iocb,
6e58e79d 2471 struct iov_iter *iter, ssize_t written)
1da177e4 2472{
47c27bc4 2473 struct file *filp = iocb->ki_filp;
06c04442 2474 struct file_ra_state *ra = &filp->f_ra;
36e78914 2475 struct address_space *mapping = filp->f_mapping;
1da177e4 2476 struct inode *inode = mapping->host;
ff993ba1
MWO
2477 struct pagevec pvec;
2478 int i, error = 0;
06c04442
KO
2479 bool writably_mapped;
2480 loff_t isize, end_offset;
1da177e4 2481
723ef24b 2482 if (unlikely(iocb->ki_pos >= inode->i_sb->s_maxbytes))
d05c5f7b 2483 return 0;
3644e2d2
KO
2484 if (unlikely(!iov_iter_count(iter)))
2485 return 0;
2486
c2a9737f 2487 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
cbd59c48 2488 pagevec_init(&pvec);
c2a9737f 2489
06c04442 2490 do {
1da177e4 2491 cond_resched();
5abf186a 2492
723ef24b 2493 /*
06c04442
KO
2494 * If we've already successfully copied some data, then we
2495 * can no longer safely return -EIOCBQUEUED. Hence mark
2496 * an async read NOWAIT at that point.
723ef24b 2497 */
06c04442 2498 if ((iocb->ki_flags & IOCB_WAITQ) && written)
723ef24b
KO
2499 iocb->ki_flags |= IOCB_NOWAIT;
2500
ff993ba1
MWO
2501 error = filemap_get_pages(iocb, iter, &pvec);
2502 if (error < 0)
06c04442 2503 break;
1da177e4 2504
06c04442
KO
2505 /*
2506 * i_size must be checked after we know the pages are Uptodate.
2507 *
2508 * Checking i_size after the check allows us to calculate
2509 * the correct value for "nr", which means the zero-filled
2510 * part of the page is not copied back to userspace (unless
2511 * another truncate extends the file - this is desired though).
2512 */
2513 isize = i_size_read(inode);
2514 if (unlikely(iocb->ki_pos >= isize))
2515 goto put_pages;
06c04442
KO
2516 end_offset = min_t(loff_t, isize, iocb->ki_pos + iter->count);
2517
06c04442
KO
2518 /*
2519 * Once we start copying data, we don't want to be touching any
2520 * cachelines that might be contended:
2521 */
2522 writably_mapped = mapping_writably_mapped(mapping);
2523
2524 /*
2525 * When a sequential read accesses a page several times, only
2526 * mark it as accessed the first time.
2527 */
2528 if (iocb->ki_pos >> PAGE_SHIFT !=
2529 ra->prev_pos >> PAGE_SHIFT)
ff993ba1 2530 mark_page_accessed(pvec.pages[0]);
06c04442 2531
ff993ba1 2532 for (i = 0; i < pagevec_count(&pvec); i++) {
cbd59c48
MWO
2533 struct page *page = pvec.pages[i];
2534 size_t page_size = thp_size(page);
2535 size_t offset = iocb->ki_pos & (page_size - 1);
2536 size_t bytes = min_t(loff_t, end_offset - iocb->ki_pos,
2537 page_size - offset);
2538 size_t copied;
06c04442 2539
cbd59c48
MWO
2540 if (end_offset < page_offset(page))
2541 break;
2542 if (i > 0)
2543 mark_page_accessed(page);
06c04442
KO
2544 /*
2545 * If users can be writing to this page using arbitrary
2546 * virtual addresses, take care about potential aliasing
2547 * before reading the page on the kernel side.
2548 */
cbd59c48
MWO
2549 if (writably_mapped) {
2550 int j;
2551
2552 for (j = 0; j < thp_nr_pages(page); j++)
2553 flush_dcache_page(page + j);
2554 }
06c04442 2555
cbd59c48 2556 copied = copy_page_to_iter(page, offset, bytes, iter);
06c04442
KO
2557
2558 written += copied;
2559 iocb->ki_pos += copied;
2560 ra->prev_pos = iocb->ki_pos;
2561
2562 if (copied < bytes) {
2563 error = -EFAULT;
2564 break;
2565 }
1da177e4 2566 }
06c04442 2567put_pages:
ff993ba1
MWO
2568 for (i = 0; i < pagevec_count(&pvec); i++)
2569 put_page(pvec.pages[i]);
cbd59c48 2570 pagevec_reinit(&pvec);
06c04442 2571 } while (iov_iter_count(iter) && iocb->ki_pos < isize && !error);
1da177e4 2572
0c6aa263 2573 file_accessed(filp);
06c04442 2574
6e58e79d 2575 return written ? written : error;
1da177e4 2576}
d85dc2e1 2577EXPORT_SYMBOL_GPL(generic_file_buffered_read);
1da177e4 2578
485bb99b 2579/**
6abd2322 2580 * generic_file_read_iter - generic filesystem read routine
485bb99b 2581 * @iocb: kernel I/O control block
6abd2322 2582 * @iter: destination for the data read
485bb99b 2583 *
6abd2322 2584 * This is the "read_iter()" routine for all filesystems
1da177e4 2585 * that can use the page cache directly.
41da51bc
AG
2586 *
2587 * The IOCB_NOWAIT flag in iocb->ki_flags indicates that -EAGAIN shall
2588 * be returned when no data can be read without waiting for I/O requests
2589 * to complete; it doesn't prevent readahead.
2590 *
2591 * The IOCB_NOIO flag in iocb->ki_flags indicates that no new I/O
2592 * requests shall be made for the read or for readahead. When no data
2593 * can be read, -EAGAIN shall be returned. When readahead would be
2594 * triggered, a partial, possibly empty read shall be returned.
2595 *
a862f68a
MR
2596 * Return:
2597 * * number of bytes copied, even for partial reads
41da51bc 2598 * * negative error code (or 0 if IOCB_NOIO) if nothing was read
1da177e4
LT
2599 */
2600ssize_t
ed978a81 2601generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2602{
e7080a43 2603 size_t count = iov_iter_count(iter);
47c27bc4 2604 ssize_t retval = 0;
e7080a43
NS
2605
2606 if (!count)
2607 goto out; /* skip atime */
1da177e4 2608
2ba48ce5 2609 if (iocb->ki_flags & IOCB_DIRECT) {
47c27bc4 2610 struct file *file = iocb->ki_filp;
ed978a81
AV
2611 struct address_space *mapping = file->f_mapping;
2612 struct inode *inode = mapping->host;
543ade1f 2613 loff_t size;
1da177e4 2614
1da177e4 2615 size = i_size_read(inode);
6be96d3a
GR
2616 if (iocb->ki_flags & IOCB_NOWAIT) {
2617 if (filemap_range_has_page(mapping, iocb->ki_pos,
2618 iocb->ki_pos + count - 1))
2619 return -EAGAIN;
2620 } else {
2621 retval = filemap_write_and_wait_range(mapping,
2622 iocb->ki_pos,
2623 iocb->ki_pos + count - 1);
2624 if (retval < 0)
2625 goto out;
2626 }
d8d3d94b 2627
0d5b0cf2
CH
2628 file_accessed(file);
2629
5ecda137 2630 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2631 if (retval >= 0) {
c64fb5c7 2632 iocb->ki_pos += retval;
5ecda137 2633 count -= retval;
9fe55eea 2634 }
ab2125df
PB
2635 if (retval != -EIOCBQUEUED)
2636 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2637
9fe55eea
SW
2638 /*
2639 * Btrfs can have a short DIO read if we encounter
2640 * compressed extents, so if there was an error, or if
2641 * we've already read everything we wanted to, or if
2642 * there was a short read because we hit EOF, go ahead
2643 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2644 * the rest of the read. Buffered reads will not work for
2645 * DAX files, so don't bother trying.
9fe55eea 2646 */
5ecda137 2647 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2648 IS_DAX(inode))
9fe55eea 2649 goto out;
1da177e4
LT
2650 }
2651
47c27bc4 2652 retval = generic_file_buffered_read(iocb, iter, retval);
1da177e4
LT
2653out:
2654 return retval;
2655}
ed978a81 2656EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2657
1da177e4 2658#ifdef CONFIG_MMU
1da177e4 2659#define MMAP_LOTSAMISS (100)
6b4c9f44 2660/*
c1e8d7c6 2661 * lock_page_maybe_drop_mmap - lock the page, possibly dropping the mmap_lock
6b4c9f44
JB
2662 * @vmf - the vm_fault for this fault.
2663 * @page - the page to lock.
2664 * @fpin - the pointer to the file we may pin (or is already pinned).
2665 *
c1e8d7c6 2666 * This works similar to lock_page_or_retry in that it can drop the mmap_lock.
6b4c9f44 2667 * It differs in that it actually returns the page locked if it returns 1 and 0
c1e8d7c6 2668 * if it couldn't lock the page. If we did have to drop the mmap_lock then fpin
6b4c9f44
JB
2669 * will point to the pinned file and needs to be fput()'ed at a later point.
2670 */
2671static int lock_page_maybe_drop_mmap(struct vm_fault *vmf, struct page *page,
2672 struct file **fpin)
2673{
2674 if (trylock_page(page))
2675 return 1;
2676
8b0f9fa2
LT
2677 /*
2678 * NOTE! This will make us return with VM_FAULT_RETRY, but with
c1e8d7c6 2679 * the mmap_lock still held. That's how FAULT_FLAG_RETRY_NOWAIT
8b0f9fa2
LT
2680 * is supposed to work. We have way too many special cases..
2681 */
6b4c9f44
JB
2682 if (vmf->flags & FAULT_FLAG_RETRY_NOWAIT)
2683 return 0;
2684
2685 *fpin = maybe_unlock_mmap_for_io(vmf, *fpin);
2686 if (vmf->flags & FAULT_FLAG_KILLABLE) {
2687 if (__lock_page_killable(page)) {
2688 /*
c1e8d7c6 2689 * We didn't have the right flags to drop the mmap_lock,
6b4c9f44
JB
2690 * but all fault_handlers only check for fatal signals
2691 * if we return VM_FAULT_RETRY, so we need to drop the
c1e8d7c6 2692 * mmap_lock here and return 0 if we don't have a fpin.
6b4c9f44
JB
2693 */
2694 if (*fpin == NULL)
d8ed45c5 2695 mmap_read_unlock(vmf->vma->vm_mm);
6b4c9f44
JB
2696 return 0;
2697 }
2698 } else
2699 __lock_page(page);
2700 return 1;
2701}
2702
1da177e4 2703
ef00e08e 2704/*
6b4c9f44
JB
2705 * Synchronous readahead happens when we don't even find a page in the page
2706 * cache at all. We don't want to perform IO under the mmap sem, so if we have
2707 * to drop the mmap sem we return the file that was pinned in order for us to do
2708 * that. If we didn't pin a file then we return NULL. The file that is
2709 * returned needs to be fput()'ed when we're done with it.
ef00e08e 2710 */
6b4c9f44 2711static struct file *do_sync_mmap_readahead(struct vm_fault *vmf)
ef00e08e 2712{
2a1180f1
JB
2713 struct file *file = vmf->vma->vm_file;
2714 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2715 struct address_space *mapping = file->f_mapping;
db660d46 2716 DEFINE_READAHEAD(ractl, file, mapping, vmf->pgoff);
6b4c9f44 2717 struct file *fpin = NULL;
e630bfac 2718 unsigned int mmap_miss;
ef00e08e
LT
2719
2720 /* If we don't want any read-ahead, don't bother */
2a1180f1 2721 if (vmf->vma->vm_flags & VM_RAND_READ)
6b4c9f44 2722 return fpin;
275b12bf 2723 if (!ra->ra_pages)
6b4c9f44 2724 return fpin;
ef00e08e 2725
2a1180f1 2726 if (vmf->vma->vm_flags & VM_SEQ_READ) {
6b4c9f44 2727 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2728 page_cache_sync_ra(&ractl, ra, ra->ra_pages);
6b4c9f44 2729 return fpin;
ef00e08e
LT
2730 }
2731
207d04ba 2732 /* Avoid banging the cache line if not needed */
e630bfac
KS
2733 mmap_miss = READ_ONCE(ra->mmap_miss);
2734 if (mmap_miss < MMAP_LOTSAMISS * 10)
2735 WRITE_ONCE(ra->mmap_miss, ++mmap_miss);
ef00e08e
LT
2736
2737 /*
2738 * Do we miss much more than hit in this file? If so,
2739 * stop bothering with read-ahead. It will only hurt.
2740 */
e630bfac 2741 if (mmap_miss > MMAP_LOTSAMISS)
6b4c9f44 2742 return fpin;
ef00e08e 2743
d30a1100
WF
2744 /*
2745 * mmap read-around
2746 */
6b4c9f44 2747 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
db660d46 2748 ra->start = max_t(long, 0, vmf->pgoff - ra->ra_pages / 2);
600e19af
RG
2749 ra->size = ra->ra_pages;
2750 ra->async_size = ra->ra_pages / 4;
db660d46
DH
2751 ractl._index = ra->start;
2752 do_page_cache_ra(&ractl, ra->size, ra->async_size);
6b4c9f44 2753 return fpin;
ef00e08e
LT
2754}
2755
2756/*
2757 * Asynchronous readahead happens when we find the page and PG_readahead,
6b4c9f44 2758 * so we want to possibly extend the readahead further. We return the file that
c1e8d7c6 2759 * was pinned if we have to drop the mmap_lock in order to do IO.
ef00e08e 2760 */
6b4c9f44
JB
2761static struct file *do_async_mmap_readahead(struct vm_fault *vmf,
2762 struct page *page)
ef00e08e 2763{
2a1180f1
JB
2764 struct file *file = vmf->vma->vm_file;
2765 struct file_ra_state *ra = &file->f_ra;
ef00e08e 2766 struct address_space *mapping = file->f_mapping;
6b4c9f44 2767 struct file *fpin = NULL;
e630bfac 2768 unsigned int mmap_miss;
2a1180f1 2769 pgoff_t offset = vmf->pgoff;
ef00e08e
LT
2770
2771 /* If we don't want any read-ahead, don't bother */
5c72feee 2772 if (vmf->vma->vm_flags & VM_RAND_READ || !ra->ra_pages)
6b4c9f44 2773 return fpin;
e630bfac
KS
2774 mmap_miss = READ_ONCE(ra->mmap_miss);
2775 if (mmap_miss)
2776 WRITE_ONCE(ra->mmap_miss, --mmap_miss);
6b4c9f44
JB
2777 if (PageReadahead(page)) {
2778 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
2fad6f5d
WF
2779 page_cache_async_readahead(mapping, ra, file,
2780 page, offset, ra->ra_pages);
6b4c9f44
JB
2781 }
2782 return fpin;
ef00e08e
LT
2783}
2784
485bb99b 2785/**
54cb8821 2786 * filemap_fault - read in file data for page fault handling
d0217ac0 2787 * @vmf: struct vm_fault containing details of the fault
485bb99b 2788 *
54cb8821 2789 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2790 * mapped memory region to read in file data during a page fault.
2791 *
2792 * The goto's are kind of ugly, but this streamlines the normal case of having
2793 * it in the page cache, and handles the special cases reasonably without
2794 * having a lot of duplicated code.
9a95f3cf 2795 *
c1e8d7c6 2796 * vma->vm_mm->mmap_lock must be held on entry.
9a95f3cf 2797 *
c1e8d7c6 2798 * If our return value has VM_FAULT_RETRY set, it's because the mmap_lock
a4985833 2799 * may be dropped before doing I/O or by lock_page_maybe_drop_mmap().
9a95f3cf 2800 *
c1e8d7c6 2801 * If our return value does not have VM_FAULT_RETRY set, the mmap_lock
9a95f3cf
PC
2802 * has not been released.
2803 *
2804 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
a862f68a
MR
2805 *
2806 * Return: bitwise-OR of %VM_FAULT_ codes.
1da177e4 2807 */
2bcd6454 2808vm_fault_t filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2809{
2810 int error;
11bac800 2811 struct file *file = vmf->vma->vm_file;
6b4c9f44 2812 struct file *fpin = NULL;
1da177e4
LT
2813 struct address_space *mapping = file->f_mapping;
2814 struct file_ra_state *ra = &file->f_ra;
2815 struct inode *inode = mapping->host;
ef00e08e 2816 pgoff_t offset = vmf->pgoff;
9ab2594f 2817 pgoff_t max_off;
1da177e4 2818 struct page *page;
2bcd6454 2819 vm_fault_t ret = 0;
1da177e4 2820
9ab2594f
MW
2821 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2822 if (unlikely(offset >= max_off))
5307cc1a 2823 return VM_FAULT_SIGBUS;
1da177e4 2824
1da177e4 2825 /*
49426420 2826 * Do we have something in the page cache already?
1da177e4 2827 */
ef00e08e 2828 page = find_get_page(mapping, offset);
45cac65b 2829 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2830 /*
ef00e08e
LT
2831 * We found the page, so try async readahead before
2832 * waiting for the lock.
1da177e4 2833 */
6b4c9f44 2834 fpin = do_async_mmap_readahead(vmf, page);
45cac65b 2835 } else if (!page) {
ef00e08e 2836 /* No page in the page cache at all */
ef00e08e 2837 count_vm_event(PGMAJFAULT);
2262185c 2838 count_memcg_event_mm(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e 2839 ret = VM_FAULT_MAJOR;
6b4c9f44 2840 fpin = do_sync_mmap_readahead(vmf);
ef00e08e 2841retry_find:
a75d4c33
JB
2842 page = pagecache_get_page(mapping, offset,
2843 FGP_CREAT|FGP_FOR_MMAP,
2844 vmf->gfp_mask);
6b4c9f44
JB
2845 if (!page) {
2846 if (fpin)
2847 goto out_retry;
e520e932 2848 return VM_FAULT_OOM;
6b4c9f44 2849 }
1da177e4
LT
2850 }
2851
6b4c9f44
JB
2852 if (!lock_page_maybe_drop_mmap(vmf, page, &fpin))
2853 goto out_retry;
b522c94d
ML
2854
2855 /* Did it get truncated? */
585e5a7b 2856 if (unlikely(compound_head(page)->mapping != mapping)) {
b522c94d
ML
2857 unlock_page(page);
2858 put_page(page);
2859 goto retry_find;
2860 }
520e5ba4 2861 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
b522c94d 2862
1da177e4 2863 /*
d00806b1
NP
2864 * We have a locked page in the page cache, now we need to check
2865 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2866 */
d00806b1 2867 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2868 goto page_not_uptodate;
2869
6b4c9f44 2870 /*
c1e8d7c6 2871 * We've made it this far and we had to drop our mmap_lock, now is the
6b4c9f44
JB
2872 * time to return to the upper layer and have it re-find the vma and
2873 * redo the fault.
2874 */
2875 if (fpin) {
2876 unlock_page(page);
2877 goto out_retry;
2878 }
2879
ef00e08e
LT
2880 /*
2881 * Found the page and have a reference on it.
2882 * We must recheck i_size under page lock.
2883 */
9ab2594f
MW
2884 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2885 if (unlikely(offset >= max_off)) {
d00806b1 2886 unlock_page(page);
09cbfeaf 2887 put_page(page);
5307cc1a 2888 return VM_FAULT_SIGBUS;
d00806b1
NP
2889 }
2890
d0217ac0 2891 vmf->page = page;
83c54070 2892 return ret | VM_FAULT_LOCKED;
1da177e4 2893
1da177e4 2894page_not_uptodate:
1da177e4
LT
2895 /*
2896 * Umm, take care of errors if the page isn't up-to-date.
2897 * Try to re-read it _once_. We do this synchronously,
2898 * because there really aren't any performance issues here
2899 * and we need to check for errors.
2900 */
1da177e4 2901 ClearPageError(page);
6b4c9f44 2902 fpin = maybe_unlock_mmap_for_io(vmf, fpin);
994fc28c 2903 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2904 if (!error) {
2905 wait_on_page_locked(page);
2906 if (!PageUptodate(page))
2907 error = -EIO;
2908 }
6b4c9f44
JB
2909 if (fpin)
2910 goto out_retry;
09cbfeaf 2911 put_page(page);
d00806b1
NP
2912
2913 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2914 goto retry_find;
1da177e4 2915
0f8e2db4 2916 shrink_readahead_size_eio(ra);
d0217ac0 2917 return VM_FAULT_SIGBUS;
6b4c9f44
JB
2918
2919out_retry:
2920 /*
c1e8d7c6 2921 * We dropped the mmap_lock, we need to return to the fault handler to
6b4c9f44
JB
2922 * re-find the vma and come back and find our hopefully still populated
2923 * page.
2924 */
2925 if (page)
2926 put_page(page);
2927 if (fpin)
2928 fput(fpin);
2929 return ret | VM_FAULT_RETRY;
54cb8821
NP
2930}
2931EXPORT_SYMBOL(filemap_fault);
2932
f9ce0be7 2933static bool filemap_map_pmd(struct vm_fault *vmf, struct page *page)
f1820361 2934{
f9ce0be7
KS
2935 struct mm_struct *mm = vmf->vma->vm_mm;
2936
2937 /* Huge page is mapped? No need to proceed. */
2938 if (pmd_trans_huge(*vmf->pmd)) {
2939 unlock_page(page);
2940 put_page(page);
2941 return true;
2942 }
2943
2944 if (pmd_none(*vmf->pmd) && PageTransHuge(page)) {
2945 vm_fault_t ret = do_set_pmd(vmf, page);
2946 if (!ret) {
2947 /* The page is mapped successfully, reference consumed. */
2948 unlock_page(page);
2949 return true;
2950 }
2951 }
2952
2953 if (pmd_none(*vmf->pmd)) {
2954 vmf->ptl = pmd_lock(mm, vmf->pmd);
2955 if (likely(pmd_none(*vmf->pmd))) {
2956 mm_inc_nr_ptes(mm);
2957 pmd_populate(mm, vmf->pmd, vmf->prealloc_pte);
2958 vmf->prealloc_pte = NULL;
2959 }
2960 spin_unlock(vmf->ptl);
2961 }
2962
2963 /* See comment in handle_pte_fault() */
2964 if (pmd_devmap_trans_unstable(vmf->pmd)) {
2965 unlock_page(page);
2966 put_page(page);
2967 return true;
2968 }
2969
2970 return false;
2971}
2972
2973static struct page *next_uptodate_page(struct page *page,
2974 struct address_space *mapping,
2975 struct xa_state *xas, pgoff_t end_pgoff)
2976{
2977 unsigned long max_idx;
2978
2979 do {
2980 if (!page)
2981 return NULL;
2982 if (xas_retry(xas, page))
2983 continue;
2984 if (xa_is_value(page))
2985 continue;
2986 if (PageLocked(page))
2987 continue;
2988 if (!page_cache_get_speculative(page))
2989 continue;
2990 /* Has the page moved or been split? */
2991 if (unlikely(page != xas_reload(xas)))
2992 goto skip;
2993 if (!PageUptodate(page) || PageReadahead(page))
2994 goto skip;
2995 if (PageHWPoison(page))
2996 goto skip;
2997 if (!trylock_page(page))
2998 goto skip;
2999 if (page->mapping != mapping)
3000 goto unlock;
3001 if (!PageUptodate(page))
3002 goto unlock;
3003 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
3004 if (xas->xa_index >= max_idx)
3005 goto unlock;
3006 return page;
3007unlock:
3008 unlock_page(page);
3009skip:
3010 put_page(page);
3011 } while ((page = xas_next_entry(xas, end_pgoff)) != NULL);
3012
3013 return NULL;
3014}
3015
3016static inline struct page *first_map_page(struct address_space *mapping,
3017 struct xa_state *xas,
3018 pgoff_t end_pgoff)
3019{
3020 return next_uptodate_page(xas_find(xas, end_pgoff),
3021 mapping, xas, end_pgoff);
3022}
3023
3024static inline struct page *next_map_page(struct address_space *mapping,
3025 struct xa_state *xas,
3026 pgoff_t end_pgoff)
3027{
3028 return next_uptodate_page(xas_next_entry(xas, end_pgoff),
3029 mapping, xas, end_pgoff);
3030}
3031
3032vm_fault_t filemap_map_pages(struct vm_fault *vmf,
3033 pgoff_t start_pgoff, pgoff_t end_pgoff)
3034{
3035 struct vm_area_struct *vma = vmf->vma;
3036 struct file *file = vma->vm_file;
f1820361 3037 struct address_space *mapping = file->f_mapping;
bae473a4 3038 pgoff_t last_pgoff = start_pgoff;
9d3af4b4 3039 unsigned long addr;
070e807c 3040 XA_STATE(xas, &mapping->i_pages, start_pgoff);
27a83a60 3041 struct page *head, *page;
e630bfac 3042 unsigned int mmap_miss = READ_ONCE(file->f_ra.mmap_miss);
f9ce0be7 3043 vm_fault_t ret = 0;
f1820361
KS
3044
3045 rcu_read_lock();
f9ce0be7
KS
3046 head = first_map_page(mapping, &xas, end_pgoff);
3047 if (!head)
3048 goto out;
f1820361 3049
f9ce0be7
KS
3050 if (filemap_map_pmd(vmf, head)) {
3051 ret = VM_FAULT_NOPAGE;
3052 goto out;
3053 }
f1820361 3054
9d3af4b4
WD
3055 addr = vma->vm_start + ((start_pgoff - vma->vm_pgoff) << PAGE_SHIFT);
3056 vmf->pte = pte_offset_map_lock(vma->vm_mm, vmf->pmd, addr, &vmf->ptl);
f9ce0be7 3057 do {
27a83a60 3058 page = find_subpage(head, xas.xa_index);
f9ce0be7 3059 if (PageHWPoison(page))
f1820361
KS
3060 goto unlock;
3061
e630bfac
KS
3062 if (mmap_miss > 0)
3063 mmap_miss--;
7267ec00 3064
9d3af4b4 3065 addr += (xas.xa_index - last_pgoff) << PAGE_SHIFT;
f9ce0be7 3066 vmf->pte += xas.xa_index - last_pgoff;
070e807c 3067 last_pgoff = xas.xa_index;
f9ce0be7
KS
3068
3069 if (!pte_none(*vmf->pte))
7267ec00 3070 goto unlock;
f9ce0be7 3071
46bdb427 3072 /* We're about to handle the fault */
9d3af4b4 3073 if (vmf->address == addr)
46bdb427 3074 ret = VM_FAULT_NOPAGE;
46bdb427 3075
9d3af4b4 3076 do_set_pte(vmf, page, addr);
f9ce0be7 3077 /* no need to invalidate: a not-present page won't be cached */
9d3af4b4 3078 update_mmu_cache(vma, addr, vmf->pte);
27a83a60 3079 unlock_page(head);
f9ce0be7 3080 continue;
f1820361 3081unlock:
27a83a60 3082 unlock_page(head);
27a83a60 3083 put_page(head);
f9ce0be7
KS
3084 } while ((head = next_map_page(mapping, &xas, end_pgoff)) != NULL);
3085 pte_unmap_unlock(vmf->pte, vmf->ptl);
3086out:
f1820361 3087 rcu_read_unlock();
e630bfac 3088 WRITE_ONCE(file->f_ra.mmap_miss, mmap_miss);
f9ce0be7 3089 return ret;
f1820361
KS
3090}
3091EXPORT_SYMBOL(filemap_map_pages);
3092
2bcd6454 3093vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62 3094{
5df1a672 3095 struct address_space *mapping = vmf->vma->vm_file->f_mapping;
4fcf1c62 3096 struct page *page = vmf->page;
2bcd6454 3097 vm_fault_t ret = VM_FAULT_LOCKED;
4fcf1c62 3098
5df1a672 3099 sb_start_pagefault(mapping->host->i_sb);
11bac800 3100 file_update_time(vmf->vma->vm_file);
4fcf1c62 3101 lock_page(page);
5df1a672 3102 if (page->mapping != mapping) {
4fcf1c62
JK
3103 unlock_page(page);
3104 ret = VM_FAULT_NOPAGE;
3105 goto out;
3106 }
14da9200
JK
3107 /*
3108 * We mark the page dirty already here so that when freeze is in
3109 * progress, we are guaranteed that writeback during freezing will
3110 * see the dirty page and writeprotect it again.
3111 */
3112 set_page_dirty(page);
1d1d1a76 3113 wait_for_stable_page(page);
4fcf1c62 3114out:
5df1a672 3115 sb_end_pagefault(mapping->host->i_sb);
4fcf1c62
JK
3116 return ret;
3117}
4fcf1c62 3118
f0f37e2f 3119const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 3120 .fault = filemap_fault,
f1820361 3121 .map_pages = filemap_map_pages,
4fcf1c62 3122 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
3123};
3124
3125/* This is used for a general mmap of a disk file */
3126
3127int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3128{
3129 struct address_space *mapping = file->f_mapping;
3130
3131 if (!mapping->a_ops->readpage)
3132 return -ENOEXEC;
3133 file_accessed(file);
3134 vma->vm_ops = &generic_file_vm_ops;
3135 return 0;
3136}
1da177e4
LT
3137
3138/*
3139 * This is for filesystems which do not implement ->writepage.
3140 */
3141int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
3142{
3143 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
3144 return -EINVAL;
3145 return generic_file_mmap(file, vma);
3146}
3147#else
4b96a37d 3148vm_fault_t filemap_page_mkwrite(struct vm_fault *vmf)
45397228 3149{
4b96a37d 3150 return VM_FAULT_SIGBUS;
45397228 3151}
1da177e4
LT
3152int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
3153{
3154 return -ENOSYS;
3155}
3156int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
3157{
3158 return -ENOSYS;
3159}
3160#endif /* CONFIG_MMU */
3161
45397228 3162EXPORT_SYMBOL(filemap_page_mkwrite);
1da177e4
LT
3163EXPORT_SYMBOL(generic_file_mmap);
3164EXPORT_SYMBOL(generic_file_readonly_mmap);
3165
67f9fd91
SL
3166static struct page *wait_on_page_read(struct page *page)
3167{
3168 if (!IS_ERR(page)) {
3169 wait_on_page_locked(page);
3170 if (!PageUptodate(page)) {
09cbfeaf 3171 put_page(page);
67f9fd91
SL
3172 page = ERR_PTR(-EIO);
3173 }
3174 }
3175 return page;
3176}
3177
32b63529 3178static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 3179 pgoff_t index,
5e5358e7 3180 int (*filler)(void *, struct page *),
0531b2aa
LT
3181 void *data,
3182 gfp_t gfp)
1da177e4 3183{
eb2be189 3184 struct page *page;
1da177e4
LT
3185 int err;
3186repeat:
3187 page = find_get_page(mapping, index);
3188 if (!page) {
453f85d4 3189 page = __page_cache_alloc(gfp);
eb2be189
NP
3190 if (!page)
3191 return ERR_PTR(-ENOMEM);
e6f67b8c 3192 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 3193 if (unlikely(err)) {
09cbfeaf 3194 put_page(page);
eb2be189
NP
3195 if (err == -EEXIST)
3196 goto repeat;
22ecdb4f 3197 /* Presumably ENOMEM for xarray node */
1da177e4
LT
3198 return ERR_PTR(err);
3199 }
32b63529
MG
3200
3201filler:
6c45b454
CH
3202 if (filler)
3203 err = filler(data, page);
3204 else
3205 err = mapping->a_ops->readpage(data, page);
3206
1da177e4 3207 if (err < 0) {
09cbfeaf 3208 put_page(page);
32b63529 3209 return ERR_PTR(err);
1da177e4 3210 }
1da177e4 3211
32b63529
MG
3212 page = wait_on_page_read(page);
3213 if (IS_ERR(page))
3214 return page;
3215 goto out;
3216 }
1da177e4
LT
3217 if (PageUptodate(page))
3218 goto out;
3219
ebded027 3220 /*
0e9aa675 3221 * Page is not up to date and may be locked due to one of the following
ebded027
MG
3222 * case a: Page is being filled and the page lock is held
3223 * case b: Read/write error clearing the page uptodate status
3224 * case c: Truncation in progress (page locked)
3225 * case d: Reclaim in progress
3226 *
3227 * Case a, the page will be up to date when the page is unlocked.
3228 * There is no need to serialise on the page lock here as the page
3229 * is pinned so the lock gives no additional protection. Even if the
ce89fddf 3230 * page is truncated, the data is still valid if PageUptodate as
ebded027
MG
3231 * it's a race vs truncate race.
3232 * Case b, the page will not be up to date
3233 * Case c, the page may be truncated but in itself, the data may still
3234 * be valid after IO completes as it's a read vs truncate race. The
3235 * operation must restart if the page is not uptodate on unlock but
3236 * otherwise serialising on page lock to stabilise the mapping gives
3237 * no additional guarantees to the caller as the page lock is
3238 * released before return.
3239 * Case d, similar to truncation. If reclaim holds the page lock, it
3240 * will be a race with remove_mapping that determines if the mapping
3241 * is valid on unlock but otherwise the data is valid and there is
3242 * no need to serialise with page lock.
3243 *
3244 * As the page lock gives no additional guarantee, we optimistically
3245 * wait on the page to be unlocked and check if it's up to date and
3246 * use the page if it is. Otherwise, the page lock is required to
3247 * distinguish between the different cases. The motivation is that we
3248 * avoid spurious serialisations and wakeups when multiple processes
3249 * wait on the same page for IO to complete.
3250 */
3251 wait_on_page_locked(page);
3252 if (PageUptodate(page))
3253 goto out;
3254
3255 /* Distinguish between all the cases under the safety of the lock */
1da177e4 3256 lock_page(page);
ebded027
MG
3257
3258 /* Case c or d, restart the operation */
1da177e4
LT
3259 if (!page->mapping) {
3260 unlock_page(page);
09cbfeaf 3261 put_page(page);
32b63529 3262 goto repeat;
1da177e4 3263 }
ebded027
MG
3264
3265 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
3266 if (PageUptodate(page)) {
3267 unlock_page(page);
3268 goto out;
3269 }
faffdfa0
XT
3270
3271 /*
3272 * A previous I/O error may have been due to temporary
3273 * failures.
3274 * Clear page error before actual read, PG_error will be
3275 * set again if read page fails.
3276 */
3277 ClearPageError(page);
32b63529
MG
3278 goto filler;
3279
c855ff37 3280out:
6fe6900e
NP
3281 mark_page_accessed(page);
3282 return page;
3283}
0531b2aa
LT
3284
3285/**
67f9fd91 3286 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
3287 * @mapping: the page's address_space
3288 * @index: the page index
3289 * @filler: function to perform the read
5e5358e7 3290 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 3291 *
0531b2aa 3292 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 3293 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
3294 *
3295 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3296 *
3297 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa 3298 */
67f9fd91 3299struct page *read_cache_page(struct address_space *mapping,
0531b2aa 3300 pgoff_t index,
5e5358e7 3301 int (*filler)(void *, struct page *),
0531b2aa
LT
3302 void *data)
3303{
d322a8e5
CH
3304 return do_read_cache_page(mapping, index, filler, data,
3305 mapping_gfp_mask(mapping));
0531b2aa 3306}
67f9fd91 3307EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
3308
3309/**
3310 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
3311 * @mapping: the page's address_space
3312 * @index: the page index
3313 * @gfp: the page allocator flags to use if allocating
3314 *
3315 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 3316 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
3317 *
3318 * If the page does not get brought uptodate, return -EIO.
a862f68a
MR
3319 *
3320 * Return: up to date page on success, ERR_PTR() on failure.
0531b2aa
LT
3321 */
3322struct page *read_cache_page_gfp(struct address_space *mapping,
3323 pgoff_t index,
3324 gfp_t gfp)
3325{
6c45b454 3326 return do_read_cache_page(mapping, index, NULL, NULL, gfp);
0531b2aa
LT
3327}
3328EXPORT_SYMBOL(read_cache_page_gfp);
3329
afddba49
NP
3330int pagecache_write_begin(struct file *file, struct address_space *mapping,
3331 loff_t pos, unsigned len, unsigned flags,
3332 struct page **pagep, void **fsdata)
3333{
3334 const struct address_space_operations *aops = mapping->a_ops;
3335
4e02ed4b 3336 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 3337 pagep, fsdata);
afddba49
NP
3338}
3339EXPORT_SYMBOL(pagecache_write_begin);
3340
3341int pagecache_write_end(struct file *file, struct address_space *mapping,
3342 loff_t pos, unsigned len, unsigned copied,
3343 struct page *page, void *fsdata)
3344{
3345 const struct address_space_operations *aops = mapping->a_ops;
afddba49 3346
4e02ed4b 3347 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
3348}
3349EXPORT_SYMBOL(pagecache_write_end);
3350
a92853b6
KK
3351/*
3352 * Warn about a page cache invalidation failure during a direct I/O write.
3353 */
3354void dio_warn_stale_pagecache(struct file *filp)
3355{
3356 static DEFINE_RATELIMIT_STATE(_rs, 86400 * HZ, DEFAULT_RATELIMIT_BURST);
3357 char pathname[128];
a92853b6
KK
3358 char *path;
3359
5df1a672 3360 errseq_set(&filp->f_mapping->wb_err, -EIO);
a92853b6
KK
3361 if (__ratelimit(&_rs)) {
3362 path = file_path(filp, pathname, sizeof(pathname));
3363 if (IS_ERR(path))
3364 path = "(unknown)";
3365 pr_crit("Page cache invalidation failure on direct I/O. Possible data corruption due to collision with buffered I/O!\n");
3366 pr_crit("File: %s PID: %d Comm: %.20s\n", path, current->pid,
3367 current->comm);
3368 }
3369}
3370
1da177e4 3371ssize_t
1af5bb49 3372generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3373{
3374 struct file *file = iocb->ki_filp;
3375 struct address_space *mapping = file->f_mapping;
3376 struct inode *inode = mapping->host;
1af5bb49 3377 loff_t pos = iocb->ki_pos;
1da177e4 3378 ssize_t written;
a969e903
CH
3379 size_t write_len;
3380 pgoff_t end;
1da177e4 3381
0c949334 3382 write_len = iov_iter_count(from);
09cbfeaf 3383 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 3384
6be96d3a
GR
3385 if (iocb->ki_flags & IOCB_NOWAIT) {
3386 /* If there are pages to writeback, return */
5df1a672 3387 if (filemap_range_has_page(file->f_mapping, pos,
35f12f0f 3388 pos + write_len - 1))
6be96d3a
GR
3389 return -EAGAIN;
3390 } else {
3391 written = filemap_write_and_wait_range(mapping, pos,
3392 pos + write_len - 1);
3393 if (written)
3394 goto out;
3395 }
a969e903
CH
3396
3397 /*
3398 * After a write we want buffered reads to be sure to go to disk to get
3399 * the new data. We invalidate clean cached page from the region we're
3400 * about to write. We do this *before* the write so that we can return
6ccfa806 3401 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 3402 */
55635ba7 3403 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 3404 pos >> PAGE_SHIFT, end);
55635ba7
AR
3405 /*
3406 * If a page can not be invalidated, return 0 to fall back
3407 * to buffered write.
3408 */
3409 if (written) {
3410 if (written == -EBUSY)
3411 return 0;
3412 goto out;
a969e903
CH
3413 }
3414
639a93a5 3415 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
3416
3417 /*
3418 * Finally, try again to invalidate clean pages which might have been
3419 * cached by non-direct readahead, or faulted in by get_user_pages()
3420 * if the source of the write was an mmap'ed region of the file
3421 * we're writing. Either one is a pretty crazy thing to do,
3422 * so we don't support it 100%. If this invalidation
3423 * fails, tough, the write still worked...
332391a9
LC
3424 *
3425 * Most of the time we do not need this since dio_complete() will do
3426 * the invalidation for us. However there are some file systems that
3427 * do not end up with dio_complete() being called, so let's not break
80c1fe90
KK
3428 * them by removing it completely.
3429 *
9266a140
KK
3430 * Noticeable example is a blkdev_direct_IO().
3431 *
80c1fe90 3432 * Skip invalidation for async writes or if mapping has no pages.
a969e903 3433 */
9266a140
KK
3434 if (written > 0 && mapping->nrpages &&
3435 invalidate_inode_pages2_range(mapping, pos >> PAGE_SHIFT, end))
3436 dio_warn_stale_pagecache(file);
a969e903 3437
1da177e4 3438 if (written > 0) {
0116651c 3439 pos += written;
639a93a5 3440 write_len -= written;
0116651c
NK
3441 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
3442 i_size_write(inode, pos);
1da177e4
LT
3443 mark_inode_dirty(inode);
3444 }
5cb6c6c7 3445 iocb->ki_pos = pos;
1da177e4 3446 }
ab2125df
PB
3447 if (written != -EIOCBQUEUED)
3448 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 3449out:
1da177e4
LT
3450 return written;
3451}
3452EXPORT_SYMBOL(generic_file_direct_write);
3453
eb2be189
NP
3454/*
3455 * Find or create a page at the given pagecache position. Return the locked
3456 * page. This function is specifically for buffered writes.
3457 */
54566b2c
NP
3458struct page *grab_cache_page_write_begin(struct address_space *mapping,
3459 pgoff_t index, unsigned flags)
eb2be189 3460{
eb2be189 3461 struct page *page;
bbddabe2 3462 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 3463
54566b2c 3464 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
3465 fgp_flags |= FGP_NOFS;
3466
3467 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 3468 mapping_gfp_mask(mapping));
c585a267 3469 if (page)
2457aec6 3470 wait_for_stable_page(page);
eb2be189 3471
eb2be189
NP
3472 return page;
3473}
54566b2c 3474EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 3475
3b93f911 3476ssize_t generic_perform_write(struct file *file,
afddba49
NP
3477 struct iov_iter *i, loff_t pos)
3478{
3479 struct address_space *mapping = file->f_mapping;
3480 const struct address_space_operations *a_ops = mapping->a_ops;
3481 long status = 0;
3482 ssize_t written = 0;
674b892e
NP
3483 unsigned int flags = 0;
3484
afddba49
NP
3485 do {
3486 struct page *page;
afddba49
NP
3487 unsigned long offset; /* Offset into pagecache page */
3488 unsigned long bytes; /* Bytes to write to page */
3489 size_t copied; /* Bytes copied from user */
3490 void *fsdata;
3491
09cbfeaf
KS
3492 offset = (pos & (PAGE_SIZE - 1));
3493 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3494 iov_iter_count(i));
3495
3496again:
00a3d660
LT
3497 /*
3498 * Bring in the user page that we will copy from _first_.
3499 * Otherwise there's a nasty deadlock on copying from the
3500 * same page as we're writing to, without it being marked
3501 * up-to-date.
3502 *
3503 * Not only is this an optimisation, but it is also required
3504 * to check that the address is actually valid, when atomic
3505 * usercopies are used, below.
3506 */
3507 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
3508 status = -EFAULT;
3509 break;
3510 }
3511
296291cd
JK
3512 if (fatal_signal_pending(current)) {
3513 status = -EINTR;
3514 break;
3515 }
3516
674b892e 3517 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 3518 &page, &fsdata);
2457aec6 3519 if (unlikely(status < 0))
afddba49
NP
3520 break;
3521
931e80e4 3522 if (mapping_writably_mapped(mapping))
3523 flush_dcache_page(page);
00a3d660 3524
afddba49 3525 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
3526 flush_dcache_page(page);
3527
3528 status = a_ops->write_end(file, mapping, pos, bytes, copied,
3529 page, fsdata);
3530 if (unlikely(status < 0))
3531 break;
3532 copied = status;
3533
3534 cond_resched();
3535
124d3b70 3536 iov_iter_advance(i, copied);
afddba49
NP
3537 if (unlikely(copied == 0)) {
3538 /*
3539 * If we were unable to copy any data at all, we must
3540 * fall back to a single segment length write.
3541 *
3542 * If we didn't fallback here, we could livelock
3543 * because not all segments in the iov can be copied at
3544 * once without a pagefault.
3545 */
09cbfeaf 3546 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
3547 iov_iter_single_seg_count(i));
3548 goto again;
3549 }
afddba49
NP
3550 pos += copied;
3551 written += copied;
3552
3553 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
3554 } while (iov_iter_count(i));
3555
3556 return written ? written : status;
3557}
3b93f911 3558EXPORT_SYMBOL(generic_perform_write);
1da177e4 3559
e4dd9de3 3560/**
8174202b 3561 * __generic_file_write_iter - write data to a file
e4dd9de3 3562 * @iocb: IO state structure (file, offset, etc.)
8174202b 3563 * @from: iov_iter with data to write
e4dd9de3
JK
3564 *
3565 * This function does all the work needed for actually writing data to a
3566 * file. It does all basic checks, removes SUID from the file, updates
3567 * modification times and calls proper subroutines depending on whether we
3568 * do direct IO or a standard buffered write.
3569 *
3570 * It expects i_mutex to be grabbed unless we work on a block device or similar
3571 * object which does not need locking at all.
3572 *
3573 * This function does *not* take care of syncing data in case of O_SYNC write.
3574 * A caller has to handle it. This is mainly due to the fact that we want to
3575 * avoid syncing under i_mutex.
a862f68a
MR
3576 *
3577 * Return:
3578 * * number of bytes written, even for truncated writes
3579 * * negative error code if no data has been written at all
e4dd9de3 3580 */
8174202b 3581ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3582{
3583 struct file *file = iocb->ki_filp;
fb5527e6 3584 struct address_space * mapping = file->f_mapping;
1da177e4 3585 struct inode *inode = mapping->host;
3b93f911 3586 ssize_t written = 0;
1da177e4 3587 ssize_t err;
3b93f911 3588 ssize_t status;
1da177e4 3589
1da177e4 3590 /* We can write back this queue in page reclaim */
de1414a6 3591 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 3592 err = file_remove_privs(file);
1da177e4
LT
3593 if (err)
3594 goto out;
3595
c3b2da31
JB
3596 err = file_update_time(file);
3597 if (err)
3598 goto out;
1da177e4 3599
2ba48ce5 3600 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 3601 loff_t pos, endbyte;
fb5527e6 3602
1af5bb49 3603 written = generic_file_direct_write(iocb, from);
1da177e4 3604 /*
fbbbad4b
MW
3605 * If the write stopped short of completing, fall back to
3606 * buffered writes. Some filesystems do this for writes to
3607 * holes, for example. For DAX files, a buffered write will
3608 * not succeed (even if it did, DAX does not handle dirty
3609 * page-cache pages correctly).
1da177e4 3610 */
0b8def9d 3611 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
3612 goto out;
3613
0b8def9d 3614 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 3615 /*
3b93f911 3616 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
3617 * then we want to return the number of bytes which were
3618 * direct-written, or the error code if that was zero. Note
3619 * that this differs from normal direct-io semantics, which
3620 * will return -EFOO even if some bytes were written.
3621 */
60bb4529 3622 if (unlikely(status < 0)) {
3b93f911 3623 err = status;
fb5527e6
JM
3624 goto out;
3625 }
fb5527e6
JM
3626 /*
3627 * We need to ensure that the page cache pages are written to
3628 * disk and invalidated to preserve the expected O_DIRECT
3629 * semantics.
3630 */
3b93f911 3631 endbyte = pos + status - 1;
0b8def9d 3632 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 3633 if (err == 0) {
0b8def9d 3634 iocb->ki_pos = endbyte + 1;
3b93f911 3635 written += status;
fb5527e6 3636 invalidate_mapping_pages(mapping,
09cbfeaf
KS
3637 pos >> PAGE_SHIFT,
3638 endbyte >> PAGE_SHIFT);
fb5527e6
JM
3639 } else {
3640 /*
3641 * We don't know how much we wrote, so just return
3642 * the number of bytes which were direct-written
3643 */
3644 }
3645 } else {
0b8def9d
AV
3646 written = generic_perform_write(file, from, iocb->ki_pos);
3647 if (likely(written > 0))
3648 iocb->ki_pos += written;
fb5527e6 3649 }
1da177e4
LT
3650out:
3651 current->backing_dev_info = NULL;
3652 return written ? written : err;
3653}
8174202b 3654EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 3655
e4dd9de3 3656/**
8174202b 3657 * generic_file_write_iter - write data to a file
e4dd9de3 3658 * @iocb: IO state structure
8174202b 3659 * @from: iov_iter with data to write
e4dd9de3 3660 *
8174202b 3661 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
3662 * filesystems. It takes care of syncing the file in case of O_SYNC file
3663 * and acquires i_mutex as needed.
a862f68a
MR
3664 * Return:
3665 * * negative error code if no data has been written at all of
3666 * vfs_fsync_range() failed for a synchronous write
3667 * * number of bytes written, even for truncated writes
e4dd9de3 3668 */
8174202b 3669ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
3670{
3671 struct file *file = iocb->ki_filp;
148f948b 3672 struct inode *inode = file->f_mapping->host;
1da177e4 3673 ssize_t ret;
1da177e4 3674
5955102c 3675 inode_lock(inode);
3309dd04
AV
3676 ret = generic_write_checks(iocb, from);
3677 if (ret > 0)
5f380c7f 3678 ret = __generic_file_write_iter(iocb, from);
5955102c 3679 inode_unlock(inode);
1da177e4 3680
e2592217
CH
3681 if (ret > 0)
3682 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3683 return ret;
3684}
8174202b 3685EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3686
cf9a2ae8
DH
3687/**
3688 * try_to_release_page() - release old fs-specific metadata on a page
3689 *
3690 * @page: the page which the kernel is trying to free
3691 * @gfp_mask: memory allocation flags (and I/O mode)
3692 *
3693 * The address_space is to try to release any data against the page
a862f68a 3694 * (presumably at page->private).
cf9a2ae8 3695 *
266cf658
DH
3696 * This may also be called if PG_fscache is set on a page, indicating that the
3697 * page is known to the local caching routines.
3698 *
cf9a2ae8 3699 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3700 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3701 *
a862f68a 3702 * Return: %1 if the release was successful, otherwise return zero.
cf9a2ae8
DH
3703 */
3704int try_to_release_page(struct page *page, gfp_t gfp_mask)
3705{
3706 struct address_space * const mapping = page->mapping;
3707
3708 BUG_ON(!PageLocked(page));
3709 if (PageWriteback(page))
3710 return 0;
3711
3712 if (mapping && mapping->a_ops->releasepage)
3713 return mapping->a_ops->releasepage(page, gfp_mask);
3714 return try_to_free_buffers(page);
3715}
3716
3717EXPORT_SYMBOL(try_to_release_page);