]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/filemap.c
mm: clear AS_EIO/AS_ENOSPC when writeback initiation fails
[mirror_ubuntu-hirsute-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4 13#include <linux/compiler.h>
f9fe48be 14#include <linux/dax.h>
1da177e4 15#include <linux/fs.h>
3f07c014 16#include <linux/sched/signal.h>
c22ce143 17#include <linux/uaccess.h>
c59ede7b 18#include <linux/capability.h>
1da177e4 19#include <linux/kernel_stat.h>
5a0e3ad6 20#include <linux/gfp.h>
1da177e4
LT
21#include <linux/mm.h>
22#include <linux/swap.h>
23#include <linux/mman.h>
24#include <linux/pagemap.h>
25#include <linux/file.h>
26#include <linux/uio.h>
27#include <linux/hash.h>
28#include <linux/writeback.h>
53253383 29#include <linux/backing-dev.h>
1da177e4
LT
30#include <linux/pagevec.h>
31#include <linux/blkdev.h>
32#include <linux/security.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
00501b53 35#include <linux/hugetlb.h>
8a9f3ccd 36#include <linux/memcontrol.h>
c515e1fd 37#include <linux/cleancache.h>
f1820361 38#include <linux/rmap.h>
0f8053a5
NP
39#include "internal.h"
40
fe0bfaaf
RJ
41#define CREATE_TRACE_POINTS
42#include <trace/events/filemap.h>
43
1da177e4 44/*
1da177e4
LT
45 * FIXME: remove all knowledge of the buffer layer from the core VM
46 */
148f948b 47#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 48
1da177e4
LT
49#include <asm/mman.h>
50
51/*
52 * Shared mappings implemented 30.11.1994. It's not fully working yet,
53 * though.
54 *
55 * Shared mappings now work. 15.8.1995 Bruno.
56 *
57 * finished 'unifying' the page and buffer cache and SMP-threaded the
58 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
59 *
60 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
61 */
62
63/*
64 * Lock ordering:
65 *
c8c06efa 66 * ->i_mmap_rwsem (truncate_pagecache)
1da177e4 67 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
68 * ->swap_lock (exclusive_swap_page, others)
69 * ->mapping->tree_lock
1da177e4 70 *
1b1dcc1b 71 * ->i_mutex
c8c06efa 72 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
1da177e4
LT
73 *
74 * ->mmap_sem
c8c06efa 75 * ->i_mmap_rwsem
b8072f09 76 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
77 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
78 *
79 * ->mmap_sem
80 * ->lock_page (access_process_vm)
81 *
ccad2365 82 * ->i_mutex (generic_perform_write)
82591e6e 83 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 84 *
f758eeab 85 * bdi->wb.list_lock
a66979ab 86 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
c8c06efa 89 * ->i_mmap_rwsem
1da177e4
LT
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
b8072f09 93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 94 *
b8072f09 95 * ->page_table_lock or pte_lock
5d337b91 96 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
a52633d8
MG
99 * ->zone_lru_lock(zone) (follow_page->mark_page_accessed)
100 * ->zone_lru_lock(zone) (check_pte_range->isolate_lru_page)
1da177e4
LT
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 104 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
81f8c3a4 105 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
f758eeab 106 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 107 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
108 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
109 *
c8c06efa 110 * ->i_mmap_rwsem
9a3c531d 111 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
112 */
113
22f2ac51
JW
114static int page_cache_tree_insert(struct address_space *mapping,
115 struct page *page, void **shadowp)
116{
117 struct radix_tree_node *node;
118 void **slot;
119 int error;
120
121 error = __radix_tree_create(&mapping->page_tree, page->index, 0,
122 &node, &slot);
123 if (error)
124 return error;
125 if (*slot) {
126 void *p;
127
128 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
129 if (!radix_tree_exceptional_entry(p))
130 return -EEXIST;
131
132 mapping->nrexceptional--;
133 if (!dax_mapping(mapping)) {
134 if (shadowp)
135 *shadowp = p;
22f2ac51
JW
136 } else {
137 /* DAX can replace empty locked entry with a hole */
138 WARN_ON_ONCE(p !=
642261ac 139 dax_radix_locked_entry(0, RADIX_DAX_EMPTY));
22f2ac51 140 /* Wakeup waiters for exceptional entry lock */
63e95b5c 141 dax_wake_mapping_entry_waiter(mapping, page->index, p,
965d004a 142 true);
22f2ac51
JW
143 }
144 }
14b46879
JW
145 __radix_tree_replace(&mapping->page_tree, node, slot, page,
146 workingset_update_node, mapping);
22f2ac51 147 mapping->nrpages++;
22f2ac51
JW
148 return 0;
149}
150
91b0abe3
JW
151static void page_cache_tree_delete(struct address_space *mapping,
152 struct page *page, void *shadow)
153{
c70b647d
KS
154 int i, nr;
155
156 /* hugetlb pages are represented by one entry in the radix tree */
157 nr = PageHuge(page) ? 1 : hpage_nr_pages(page);
91b0abe3 158
83929372
KS
159 VM_BUG_ON_PAGE(!PageLocked(page), page);
160 VM_BUG_ON_PAGE(PageTail(page), page);
161 VM_BUG_ON_PAGE(nr != 1 && shadow, page);
449dd698 162
83929372 163 for (i = 0; i < nr; i++) {
d3798ae8
JW
164 struct radix_tree_node *node;
165 void **slot;
166
167 __radix_tree_lookup(&mapping->page_tree, page->index + i,
168 &node, &slot);
169
dbc446b8 170 VM_BUG_ON_PAGE(!node && nr != 1, page);
449dd698 171
14b46879
JW
172 radix_tree_clear_tags(&mapping->page_tree, node, slot);
173 __radix_tree_replace(&mapping->page_tree, node, slot, shadow,
174 workingset_update_node, mapping);
449dd698 175 }
d3798ae8
JW
176
177 if (shadow) {
178 mapping->nrexceptional += nr;
179 /*
180 * Make sure the nrexceptional update is committed before
181 * the nrpages update so that final truncate racing
182 * with reclaim does not see both counters 0 at the
183 * same time and miss a shadow entry.
184 */
185 smp_wmb();
186 }
187 mapping->nrpages -= nr;
91b0abe3
JW
188}
189
1da177e4 190/*
e64a782f 191 * Delete a page from the page cache and free it. Caller has to make
1da177e4 192 * sure the page is locked and that nobody else uses it - or that usage
fdf1cdb9 193 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 194 */
62cccb8c 195void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
196{
197 struct address_space *mapping = page->mapping;
83929372 198 int nr = hpage_nr_pages(page);
1da177e4 199
fe0bfaaf 200 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
201 /*
202 * if we're uptodate, flush out into the cleancache, otherwise
203 * invalidate any existing cleancache entries. We can't leave
204 * stale data around in the cleancache once our page is gone
205 */
206 if (PageUptodate(page) && PageMappedToDisk(page))
207 cleancache_put_page(page);
208 else
3167760f 209 cleancache_invalidate_page(mapping, page);
c515e1fd 210
83929372 211 VM_BUG_ON_PAGE(PageTail(page), page);
06b241f3
HD
212 VM_BUG_ON_PAGE(page_mapped(page), page);
213 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
214 int mapcount;
215
216 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
217 current->comm, page_to_pfn(page));
218 dump_page(page, "still mapped when deleted");
219 dump_stack();
220 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
221
222 mapcount = page_mapcount(page);
223 if (mapping_exiting(mapping) &&
224 page_count(page) >= mapcount + 2) {
225 /*
226 * All vmas have already been torn down, so it's
227 * a good bet that actually the page is unmapped,
228 * and we'd prefer not to leak it: if we're wrong,
229 * some other bad page check should catch it later.
230 */
231 page_mapcount_reset(page);
6d061f9f 232 page_ref_sub(page, mapcount);
06b241f3
HD
233 }
234 }
235
91b0abe3
JW
236 page_cache_tree_delete(mapping, page, shadow);
237
1da177e4 238 page->mapping = NULL;
b85e0eff 239 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 240
4165b9b4
MH
241 /* hugetlb pages do not participate in page cache accounting. */
242 if (!PageHuge(page))
11fb9989 243 __mod_node_page_state(page_pgdat(page), NR_FILE_PAGES, -nr);
800d8c63 244 if (PageSwapBacked(page)) {
11fb9989 245 __mod_node_page_state(page_pgdat(page), NR_SHMEM, -nr);
800d8c63 246 if (PageTransHuge(page))
11fb9989 247 __dec_node_page_state(page, NR_SHMEM_THPS);
800d8c63
KS
248 } else {
249 VM_BUG_ON_PAGE(PageTransHuge(page) && !PageHuge(page), page);
250 }
3a692790
LT
251
252 /*
b9ea2515
KK
253 * At this point page must be either written or cleaned by truncate.
254 * Dirty page here signals a bug and loss of unwritten data.
3a692790 255 *
b9ea2515
KK
256 * This fixes dirty accounting after removing the page entirely but
257 * leaves PageDirty set: it has no effect for truncated page and
258 * anyway will be cleared before returning page into buddy allocator.
3a692790 259 */
b9ea2515 260 if (WARN_ON_ONCE(PageDirty(page)))
62cccb8c 261 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
1da177e4
LT
262}
263
702cfbf9
MK
264/**
265 * delete_from_page_cache - delete page from page cache
266 * @page: the page which the kernel is trying to remove from page cache
267 *
268 * This must be called only on pages that have been verified to be in the page
269 * cache and locked. It will never put the page into the free list, the caller
270 * has a reference on the page.
271 */
272void delete_from_page_cache(struct page *page)
1da177e4 273{
83929372 274 struct address_space *mapping = page_mapping(page);
c4843a75 275 unsigned long flags;
6072d13c 276 void (*freepage)(struct page *);
1da177e4 277
cd7619d6 278 BUG_ON(!PageLocked(page));
1da177e4 279
6072d13c 280 freepage = mapping->a_ops->freepage;
c4843a75 281
c4843a75 282 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 283 __delete_from_page_cache(page, NULL);
c4843a75 284 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6072d13c
LT
285
286 if (freepage)
287 freepage(page);
83929372
KS
288
289 if (PageTransHuge(page) && !PageHuge(page)) {
290 page_ref_sub(page, HPAGE_PMD_NR);
291 VM_BUG_ON_PAGE(page_count(page) <= 0, page);
292 } else {
293 put_page(page);
294 }
97cecb5a
MK
295}
296EXPORT_SYMBOL(delete_from_page_cache);
297
d72d9e2a 298int filemap_check_errors(struct address_space *mapping)
865ffef3
DM
299{
300 int ret = 0;
301 /* Check for outstanding write errors */
7fcbbaf1
JA
302 if (test_bit(AS_ENOSPC, &mapping->flags) &&
303 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 304 ret = -ENOSPC;
7fcbbaf1
JA
305 if (test_bit(AS_EIO, &mapping->flags) &&
306 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
307 ret = -EIO;
308 return ret;
309}
d72d9e2a 310EXPORT_SYMBOL(filemap_check_errors);
865ffef3 311
76341cab
JL
312static int filemap_check_and_keep_errors(struct address_space *mapping)
313{
314 /* Check for outstanding write errors */
315 if (test_bit(AS_EIO, &mapping->flags))
316 return -EIO;
317 if (test_bit(AS_ENOSPC, &mapping->flags))
318 return -ENOSPC;
319 return 0;
320}
321
1da177e4 322/**
485bb99b 323 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
324 * @mapping: address space structure to write
325 * @start: offset in bytes where the range starts
469eb4d0 326 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 327 * @sync_mode: enable synchronous operation
1da177e4 328 *
485bb99b
RD
329 * Start writeback against all of a mapping's dirty pages that lie
330 * within the byte offsets <start, end> inclusive.
331 *
1da177e4 332 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 333 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
334 * these two operations is that if a dirty page/buffer is encountered, it must
335 * be waited upon, and not just skipped over.
336 */
ebcf28e1
AM
337int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
338 loff_t end, int sync_mode)
1da177e4
LT
339{
340 int ret;
341 struct writeback_control wbc = {
342 .sync_mode = sync_mode,
05fe478d 343 .nr_to_write = LONG_MAX,
111ebb6e
OH
344 .range_start = start,
345 .range_end = end,
1da177e4
LT
346 };
347
348 if (!mapping_cap_writeback_dirty(mapping))
349 return 0;
350
b16b1deb 351 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
1da177e4 352 ret = do_writepages(mapping, &wbc);
b16b1deb 353 wbc_detach_inode(&wbc);
1da177e4
LT
354 return ret;
355}
356
357static inline int __filemap_fdatawrite(struct address_space *mapping,
358 int sync_mode)
359{
111ebb6e 360 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
361}
362
363int filemap_fdatawrite(struct address_space *mapping)
364{
365 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
366}
367EXPORT_SYMBOL(filemap_fdatawrite);
368
f4c0a0fd 369int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 370 loff_t end)
1da177e4
LT
371{
372 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
373}
f4c0a0fd 374EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 375
485bb99b
RD
376/**
377 * filemap_flush - mostly a non-blocking flush
378 * @mapping: target address_space
379 *
1da177e4
LT
380 * This is a mostly non-blocking flush. Not suitable for data-integrity
381 * purposes - I/O may not be started against all dirty pages.
382 */
383int filemap_flush(struct address_space *mapping)
384{
385 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
386}
387EXPORT_SYMBOL(filemap_flush);
388
aa750fd7
JN
389static int __filemap_fdatawait_range(struct address_space *mapping,
390 loff_t start_byte, loff_t end_byte)
1da177e4 391{
09cbfeaf
KS
392 pgoff_t index = start_byte >> PAGE_SHIFT;
393 pgoff_t end = end_byte >> PAGE_SHIFT;
1da177e4
LT
394 struct pagevec pvec;
395 int nr_pages;
aa750fd7 396 int ret = 0;
1da177e4 397
94004ed7 398 if (end_byte < start_byte)
865ffef3 399 goto out;
1da177e4
LT
400
401 pagevec_init(&pvec, 0);
1da177e4
LT
402 while ((index <= end) &&
403 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
404 PAGECACHE_TAG_WRITEBACK,
405 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
406 unsigned i;
407
408 for (i = 0; i < nr_pages; i++) {
409 struct page *page = pvec.pages[i];
410
411 /* until radix tree lookup accepts end_index */
412 if (page->index > end)
413 continue;
414
415 wait_on_page_writeback(page);
212260aa 416 if (TestClearPageError(page))
1da177e4
LT
417 ret = -EIO;
418 }
419 pagevec_release(&pvec);
420 cond_resched();
421 }
865ffef3 422out:
aa750fd7
JN
423 return ret;
424}
425
426/**
427 * filemap_fdatawait_range - wait for writeback to complete
428 * @mapping: address space structure to wait for
429 * @start_byte: offset in bytes where the range starts
430 * @end_byte: offset in bytes where the range ends (inclusive)
431 *
432 * Walk the list of under-writeback pages of the given address space
433 * in the given range and wait for all of them. Check error status of
434 * the address space and return it.
435 *
436 * Since the error status of the address space is cleared by this function,
437 * callers are responsible for checking the return value and handling and/or
438 * reporting the error.
439 */
440int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
441 loff_t end_byte)
442{
443 int ret, ret2;
444
445 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
865ffef3
DM
446 ret2 = filemap_check_errors(mapping);
447 if (!ret)
448 ret = ret2;
1da177e4
LT
449
450 return ret;
451}
d3bccb6f
JK
452EXPORT_SYMBOL(filemap_fdatawait_range);
453
aa750fd7
JN
454/**
455 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
456 * @mapping: address space structure to wait for
457 *
458 * Walk the list of under-writeback pages of the given address space
459 * and wait for all of them. Unlike filemap_fdatawait(), this function
460 * does not clear error status of the address space.
461 *
462 * Use this function if callers don't handle errors themselves. Expected
463 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
464 * fsfreeze(8)
465 */
76341cab 466int filemap_fdatawait_keep_errors(struct address_space *mapping)
aa750fd7
JN
467{
468 loff_t i_size = i_size_read(mapping->host);
469
470 if (i_size == 0)
76341cab 471 return 0;
aa750fd7
JN
472
473 __filemap_fdatawait_range(mapping, 0, i_size - 1);
76341cab 474 return filemap_check_and_keep_errors(mapping);
aa750fd7 475}
76341cab 476EXPORT_SYMBOL(filemap_fdatawait_keep_errors);
aa750fd7 477
1da177e4 478/**
485bb99b 479 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 480 * @mapping: address space structure to wait for
485bb99b
RD
481 *
482 * Walk the list of under-writeback pages of the given address space
aa750fd7
JN
483 * and wait for all of them. Check error status of the address space
484 * and return it.
485 *
486 * Since the error status of the address space is cleared by this function,
487 * callers are responsible for checking the return value and handling and/or
488 * reporting the error.
1da177e4
LT
489 */
490int filemap_fdatawait(struct address_space *mapping)
491{
492 loff_t i_size = i_size_read(mapping->host);
493
494 if (i_size == 0)
495 return 0;
496
94004ed7 497 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
498}
499EXPORT_SYMBOL(filemap_fdatawait);
500
501int filemap_write_and_wait(struct address_space *mapping)
502{
28fd1298 503 int err = 0;
1da177e4 504
7f6d5b52
RZ
505 if ((!dax_mapping(mapping) && mapping->nrpages) ||
506 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
507 err = filemap_fdatawrite(mapping);
508 /*
509 * Even if the above returned error, the pages may be
510 * written partially (e.g. -ENOSPC), so we wait for it.
511 * But the -EIO is special case, it may indicate the worst
512 * thing (e.g. bug) happened, so we avoid waiting for it.
513 */
514 if (err != -EIO) {
515 int err2 = filemap_fdatawait(mapping);
516 if (!err)
517 err = err2;
cbeaf951
JL
518 } else {
519 /* Clear any previously stored errors */
520 filemap_check_errors(mapping);
28fd1298 521 }
865ffef3
DM
522 } else {
523 err = filemap_check_errors(mapping);
1da177e4 524 }
28fd1298 525 return err;
1da177e4 526}
28fd1298 527EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 528
485bb99b
RD
529/**
530 * filemap_write_and_wait_range - write out & wait on a file range
531 * @mapping: the address_space for the pages
532 * @lstart: offset in bytes where the range starts
533 * @lend: offset in bytes where the range ends (inclusive)
534 *
469eb4d0
AM
535 * Write out and wait upon file offsets lstart->lend, inclusive.
536 *
0e056eb5 537 * Note that @lend is inclusive (describes the last byte to be written) so
469eb4d0
AM
538 * that this function can be used to write to the very end-of-file (end = -1).
539 */
1da177e4
LT
540int filemap_write_and_wait_range(struct address_space *mapping,
541 loff_t lstart, loff_t lend)
542{
28fd1298 543 int err = 0;
1da177e4 544
7f6d5b52
RZ
545 if ((!dax_mapping(mapping) && mapping->nrpages) ||
546 (dax_mapping(mapping) && mapping->nrexceptional)) {
28fd1298
OH
547 err = __filemap_fdatawrite_range(mapping, lstart, lend,
548 WB_SYNC_ALL);
549 /* See comment of filemap_write_and_wait() */
550 if (err != -EIO) {
94004ed7
CH
551 int err2 = filemap_fdatawait_range(mapping,
552 lstart, lend);
28fd1298
OH
553 if (!err)
554 err = err2;
cbeaf951
JL
555 } else {
556 /* Clear any previously stored errors */
557 filemap_check_errors(mapping);
28fd1298 558 }
865ffef3
DM
559 } else {
560 err = filemap_check_errors(mapping);
1da177e4 561 }
28fd1298 562 return err;
1da177e4 563}
f6995585 564EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 565
ef6a3c63
MS
566/**
567 * replace_page_cache_page - replace a pagecache page with a new one
568 * @old: page to be replaced
569 * @new: page to replace with
570 * @gfp_mask: allocation mode
571 *
572 * This function replaces a page in the pagecache with a new one. On
573 * success it acquires the pagecache reference for the new page and
574 * drops it for the old page. Both the old and new pages must be
575 * locked. This function does not add the new page to the LRU, the
576 * caller must do that.
577 *
578 * The remove + add is atomic. The only way this function can fail is
579 * memory allocation failure.
580 */
581int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
582{
583 int error;
ef6a3c63 584
309381fe
SL
585 VM_BUG_ON_PAGE(!PageLocked(old), old);
586 VM_BUG_ON_PAGE(!PageLocked(new), new);
587 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 588
ef6a3c63
MS
589 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
590 if (!error) {
591 struct address_space *mapping = old->mapping;
592 void (*freepage)(struct page *);
c4843a75 593 unsigned long flags;
ef6a3c63
MS
594
595 pgoff_t offset = old->index;
596 freepage = mapping->a_ops->freepage;
597
09cbfeaf 598 get_page(new);
ef6a3c63
MS
599 new->mapping = mapping;
600 new->index = offset;
601
c4843a75 602 spin_lock_irqsave(&mapping->tree_lock, flags);
62cccb8c 603 __delete_from_page_cache(old, NULL);
22f2ac51 604 error = page_cache_tree_insert(mapping, new, NULL);
ef6a3c63 605 BUG_ON(error);
4165b9b4
MH
606
607 /*
608 * hugetlb pages do not participate in page cache accounting.
609 */
610 if (!PageHuge(new))
11fb9989 611 __inc_node_page_state(new, NR_FILE_PAGES);
ef6a3c63 612 if (PageSwapBacked(new))
11fb9989 613 __inc_node_page_state(new, NR_SHMEM);
c4843a75 614 spin_unlock_irqrestore(&mapping->tree_lock, flags);
6a93ca8f 615 mem_cgroup_migrate(old, new);
ef6a3c63
MS
616 radix_tree_preload_end();
617 if (freepage)
618 freepage(old);
09cbfeaf 619 put_page(old);
ef6a3c63
MS
620 }
621
622 return error;
623}
624EXPORT_SYMBOL_GPL(replace_page_cache_page);
625
a528910e
JW
626static int __add_to_page_cache_locked(struct page *page,
627 struct address_space *mapping,
628 pgoff_t offset, gfp_t gfp_mask,
629 void **shadowp)
1da177e4 630{
00501b53
JW
631 int huge = PageHuge(page);
632 struct mem_cgroup *memcg;
e286781d
NP
633 int error;
634
309381fe
SL
635 VM_BUG_ON_PAGE(!PageLocked(page), page);
636 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 637
00501b53
JW
638 if (!huge) {
639 error = mem_cgroup_try_charge(page, current->mm,
f627c2f5 640 gfp_mask, &memcg, false);
00501b53
JW
641 if (error)
642 return error;
643 }
1da177e4 644
5e4c0d97 645 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 646 if (error) {
00501b53 647 if (!huge)
f627c2f5 648 mem_cgroup_cancel_charge(page, memcg, false);
66a0c8ee
KS
649 return error;
650 }
651
09cbfeaf 652 get_page(page);
66a0c8ee
KS
653 page->mapping = mapping;
654 page->index = offset;
655
656 spin_lock_irq(&mapping->tree_lock);
a528910e 657 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
658 radix_tree_preload_end();
659 if (unlikely(error))
660 goto err_insert;
4165b9b4
MH
661
662 /* hugetlb pages do not participate in page cache accounting. */
663 if (!huge)
11fb9989 664 __inc_node_page_state(page, NR_FILE_PAGES);
66a0c8ee 665 spin_unlock_irq(&mapping->tree_lock);
00501b53 666 if (!huge)
f627c2f5 667 mem_cgroup_commit_charge(page, memcg, false, false);
66a0c8ee
KS
668 trace_mm_filemap_add_to_page_cache(page);
669 return 0;
670err_insert:
671 page->mapping = NULL;
672 /* Leave page->index set: truncation relies upon it */
673 spin_unlock_irq(&mapping->tree_lock);
00501b53 674 if (!huge)
f627c2f5 675 mem_cgroup_cancel_charge(page, memcg, false);
09cbfeaf 676 put_page(page);
1da177e4
LT
677 return error;
678}
a528910e
JW
679
680/**
681 * add_to_page_cache_locked - add a locked page to the pagecache
682 * @page: page to add
683 * @mapping: the page's address_space
684 * @offset: page index
685 * @gfp_mask: page allocation mode
686 *
687 * This function is used to add a page to the pagecache. It must be locked.
688 * This function does not add the page to the LRU. The caller must do that.
689 */
690int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
691 pgoff_t offset, gfp_t gfp_mask)
692{
693 return __add_to_page_cache_locked(page, mapping, offset,
694 gfp_mask, NULL);
695}
e286781d 696EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
697
698int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 699 pgoff_t offset, gfp_t gfp_mask)
1da177e4 700{
a528910e 701 void *shadow = NULL;
4f98a2fe
RR
702 int ret;
703
48c935ad 704 __SetPageLocked(page);
a528910e
JW
705 ret = __add_to_page_cache_locked(page, mapping, offset,
706 gfp_mask, &shadow);
707 if (unlikely(ret))
48c935ad 708 __ClearPageLocked(page);
a528910e
JW
709 else {
710 /*
711 * The page might have been evicted from cache only
712 * recently, in which case it should be activated like
713 * any other repeatedly accessed page.
f0281a00
RR
714 * The exception is pages getting rewritten; evicting other
715 * data from the working set, only to cache data that will
716 * get overwritten with something else, is a waste of memory.
a528910e 717 */
f0281a00
RR
718 if (!(gfp_mask & __GFP_WRITE) &&
719 shadow && workingset_refault(shadow)) {
a528910e
JW
720 SetPageActive(page);
721 workingset_activation(page);
722 } else
723 ClearPageActive(page);
724 lru_cache_add(page);
725 }
1da177e4
LT
726 return ret;
727}
18bc0bbd 728EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 729
44110fe3 730#ifdef CONFIG_NUMA
2ae88149 731struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 732{
c0ff7453
MX
733 int n;
734 struct page *page;
735
44110fe3 736 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
737 unsigned int cpuset_mems_cookie;
738 do {
d26914d1 739 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 740 n = cpuset_mem_spread_node();
96db800f 741 page = __alloc_pages_node(n, gfp, 0);
d26914d1 742 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 743
c0ff7453 744 return page;
44110fe3 745 }
2ae88149 746 return alloc_pages(gfp, 0);
44110fe3 747}
2ae88149 748EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
749#endif
750
1da177e4
LT
751/*
752 * In order to wait for pages to become available there must be
753 * waitqueues associated with pages. By using a hash table of
754 * waitqueues where the bucket discipline is to maintain all
755 * waiters on the same queue and wake all when any of the pages
756 * become available, and for the woken contexts to check to be
757 * sure the appropriate page became available, this saves space
758 * at a cost of "thundering herd" phenomena during rare hash
759 * collisions.
760 */
62906027
NP
761#define PAGE_WAIT_TABLE_BITS 8
762#define PAGE_WAIT_TABLE_SIZE (1 << PAGE_WAIT_TABLE_BITS)
763static wait_queue_head_t page_wait_table[PAGE_WAIT_TABLE_SIZE] __cacheline_aligned;
764
765static wait_queue_head_t *page_waitqueue(struct page *page)
1da177e4 766{
62906027 767 return &page_wait_table[hash_ptr(page, PAGE_WAIT_TABLE_BITS)];
1da177e4 768}
1da177e4 769
62906027 770void __init pagecache_init(void)
1da177e4 771{
62906027 772 int i;
1da177e4 773
62906027
NP
774 for (i = 0; i < PAGE_WAIT_TABLE_SIZE; i++)
775 init_waitqueue_head(&page_wait_table[i]);
776
777 page_writeback_init();
1da177e4 778}
1da177e4 779
62906027
NP
780struct wait_page_key {
781 struct page *page;
782 int bit_nr;
783 int page_match;
784};
785
786struct wait_page_queue {
787 struct page *page;
788 int bit_nr;
789 wait_queue_t wait;
790};
791
792static int wake_page_function(wait_queue_t *wait, unsigned mode, int sync, void *arg)
f62e00cc 793{
62906027
NP
794 struct wait_page_key *key = arg;
795 struct wait_page_queue *wait_page
796 = container_of(wait, struct wait_page_queue, wait);
797
798 if (wait_page->page != key->page)
799 return 0;
800 key->page_match = 1;
f62e00cc 801
62906027
NP
802 if (wait_page->bit_nr != key->bit_nr)
803 return 0;
804 if (test_bit(key->bit_nr, &key->page->flags))
f62e00cc
KM
805 return 0;
806
62906027 807 return autoremove_wake_function(wait, mode, sync, key);
f62e00cc
KM
808}
809
74d81bfa 810static void wake_up_page_bit(struct page *page, int bit_nr)
cbbce822 811{
62906027
NP
812 wait_queue_head_t *q = page_waitqueue(page);
813 struct wait_page_key key;
814 unsigned long flags;
cbbce822 815
62906027
NP
816 key.page = page;
817 key.bit_nr = bit_nr;
818 key.page_match = 0;
819
820 spin_lock_irqsave(&q->lock, flags);
821 __wake_up_locked_key(q, TASK_NORMAL, &key);
822 /*
823 * It is possible for other pages to have collided on the waitqueue
824 * hash, so in that case check for a page match. That prevents a long-
825 * term waiter
826 *
827 * It is still possible to miss a case here, when we woke page waiters
828 * and removed them from the waitqueue, but there are still other
829 * page waiters.
830 */
831 if (!waitqueue_active(q) || !key.page_match) {
832 ClearPageWaiters(page);
833 /*
834 * It's possible to miss clearing Waiters here, when we woke
835 * our page waiters, but the hashed waitqueue has waiters for
836 * other pages on it.
837 *
838 * That's okay, it's a rare case. The next waker will clear it.
839 */
840 }
841 spin_unlock_irqrestore(&q->lock, flags);
842}
74d81bfa
NP
843
844static void wake_up_page(struct page *page, int bit)
845{
846 if (!PageWaiters(page))
847 return;
848 wake_up_page_bit(page, bit);
849}
62906027
NP
850
851static inline int wait_on_page_bit_common(wait_queue_head_t *q,
852 struct page *page, int bit_nr, int state, bool lock)
853{
854 struct wait_page_queue wait_page;
855 wait_queue_t *wait = &wait_page.wait;
856 int ret = 0;
857
858 init_wait(wait);
859 wait->func = wake_page_function;
860 wait_page.page = page;
861 wait_page.bit_nr = bit_nr;
862
863 for (;;) {
864 spin_lock_irq(&q->lock);
865
866 if (likely(list_empty(&wait->task_list))) {
867 if (lock)
868 __add_wait_queue_tail_exclusive(q, wait);
869 else
870 __add_wait_queue(q, wait);
871 SetPageWaiters(page);
872 }
873
874 set_current_state(state);
875
876 spin_unlock_irq(&q->lock);
877
878 if (likely(test_bit(bit_nr, &page->flags))) {
879 io_schedule();
880 if (unlikely(signal_pending_state(state, current))) {
881 ret = -EINTR;
882 break;
883 }
884 }
885
886 if (lock) {
887 if (!test_and_set_bit_lock(bit_nr, &page->flags))
888 break;
889 } else {
890 if (!test_bit(bit_nr, &page->flags))
891 break;
892 }
893 }
894
895 finish_wait(q, wait);
896
897 /*
898 * A signal could leave PageWaiters set. Clearing it here if
899 * !waitqueue_active would be possible (by open-coding finish_wait),
900 * but still fail to catch it in the case of wait hash collision. We
901 * already can fail to clear wait hash collision cases, so don't
902 * bother with signals either.
903 */
904
905 return ret;
906}
907
908void wait_on_page_bit(struct page *page, int bit_nr)
909{
910 wait_queue_head_t *q = page_waitqueue(page);
911 wait_on_page_bit_common(q, page, bit_nr, TASK_UNINTERRUPTIBLE, false);
912}
913EXPORT_SYMBOL(wait_on_page_bit);
914
915int wait_on_page_bit_killable(struct page *page, int bit_nr)
916{
917 wait_queue_head_t *q = page_waitqueue(page);
918 return wait_on_page_bit_common(q, page, bit_nr, TASK_KILLABLE, false);
cbbce822 919}
cbbce822 920
385e1ca5
DH
921/**
922 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
923 * @page: Page defining the wait queue of interest
924 * @waiter: Waiter to add to the queue
385e1ca5
DH
925 *
926 * Add an arbitrary @waiter to the wait queue for the nominated @page.
927 */
928void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
929{
930 wait_queue_head_t *q = page_waitqueue(page);
931 unsigned long flags;
932
933 spin_lock_irqsave(&q->lock, flags);
934 __add_wait_queue(q, waiter);
62906027 935 SetPageWaiters(page);
385e1ca5
DH
936 spin_unlock_irqrestore(&q->lock, flags);
937}
938EXPORT_SYMBOL_GPL(add_page_wait_queue);
939
b91e1302
LT
940#ifndef clear_bit_unlock_is_negative_byte
941
942/*
943 * PG_waiters is the high bit in the same byte as PG_lock.
944 *
945 * On x86 (and on many other architectures), we can clear PG_lock and
946 * test the sign bit at the same time. But if the architecture does
947 * not support that special operation, we just do this all by hand
948 * instead.
949 *
950 * The read of PG_waiters has to be after (or concurrently with) PG_locked
951 * being cleared, but a memory barrier should be unneccssary since it is
952 * in the same byte as PG_locked.
953 */
954static inline bool clear_bit_unlock_is_negative_byte(long nr, volatile void *mem)
955{
956 clear_bit_unlock(nr, mem);
957 /* smp_mb__after_atomic(); */
98473f9f 958 return test_bit(PG_waiters, mem);
b91e1302
LT
959}
960
961#endif
962
1da177e4 963/**
485bb99b 964 * unlock_page - unlock a locked page
1da177e4
LT
965 * @page: the page
966 *
967 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
968 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
da3dae54 969 * mechanism between PageLocked pages and PageWriteback pages is shared.
1da177e4
LT
970 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
971 *
b91e1302
LT
972 * Note that this depends on PG_waiters being the sign bit in the byte
973 * that contains PG_locked - thus the BUILD_BUG_ON(). That allows us to
974 * clear the PG_locked bit and test PG_waiters at the same time fairly
975 * portably (architectures that do LL/SC can test any bit, while x86 can
976 * test the sign bit).
1da177e4 977 */
920c7a5d 978void unlock_page(struct page *page)
1da177e4 979{
b91e1302 980 BUILD_BUG_ON(PG_waiters != 7);
48c935ad 981 page = compound_head(page);
309381fe 982 VM_BUG_ON_PAGE(!PageLocked(page), page);
b91e1302
LT
983 if (clear_bit_unlock_is_negative_byte(PG_locked, &page->flags))
984 wake_up_page_bit(page, PG_locked);
1da177e4
LT
985}
986EXPORT_SYMBOL(unlock_page);
987
485bb99b
RD
988/**
989 * end_page_writeback - end writeback against a page
990 * @page: the page
1da177e4
LT
991 */
992void end_page_writeback(struct page *page)
993{
888cf2db
MG
994 /*
995 * TestClearPageReclaim could be used here but it is an atomic
996 * operation and overkill in this particular case. Failing to
997 * shuffle a page marked for immediate reclaim is too mild to
998 * justify taking an atomic operation penalty at the end of
999 * ever page writeback.
1000 */
1001 if (PageReclaim(page)) {
1002 ClearPageReclaim(page);
ac6aadb2 1003 rotate_reclaimable_page(page);
888cf2db 1004 }
ac6aadb2
MS
1005
1006 if (!test_clear_page_writeback(page))
1007 BUG();
1008
4e857c58 1009 smp_mb__after_atomic();
1da177e4
LT
1010 wake_up_page(page, PG_writeback);
1011}
1012EXPORT_SYMBOL(end_page_writeback);
1013
57d99845
MW
1014/*
1015 * After completing I/O on a page, call this routine to update the page
1016 * flags appropriately
1017 */
c11f0c0b 1018void page_endio(struct page *page, bool is_write, int err)
57d99845 1019{
c11f0c0b 1020 if (!is_write) {
57d99845
MW
1021 if (!err) {
1022 SetPageUptodate(page);
1023 } else {
1024 ClearPageUptodate(page);
1025 SetPageError(page);
1026 }
1027 unlock_page(page);
abf54548 1028 } else {
57d99845 1029 if (err) {
dd8416c4
MK
1030 struct address_space *mapping;
1031
57d99845 1032 SetPageError(page);
dd8416c4
MK
1033 mapping = page_mapping(page);
1034 if (mapping)
1035 mapping_set_error(mapping, err);
57d99845
MW
1036 }
1037 end_page_writeback(page);
1038 }
1039}
1040EXPORT_SYMBOL_GPL(page_endio);
1041
485bb99b
RD
1042/**
1043 * __lock_page - get a lock on the page, assuming we need to sleep to get it
87066755 1044 * @__page: the page to lock
1da177e4 1045 */
62906027 1046void __lock_page(struct page *__page)
1da177e4 1047{
62906027
NP
1048 struct page *page = compound_head(__page);
1049 wait_queue_head_t *q = page_waitqueue(page);
1050 wait_on_page_bit_common(q, page, PG_locked, TASK_UNINTERRUPTIBLE, true);
1da177e4
LT
1051}
1052EXPORT_SYMBOL(__lock_page);
1053
62906027 1054int __lock_page_killable(struct page *__page)
2687a356 1055{
62906027
NP
1056 struct page *page = compound_head(__page);
1057 wait_queue_head_t *q = page_waitqueue(page);
1058 return wait_on_page_bit_common(q, page, PG_locked, TASK_KILLABLE, true);
2687a356 1059}
18bc0bbd 1060EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 1061
9a95f3cf
PC
1062/*
1063 * Return values:
1064 * 1 - page is locked; mmap_sem is still held.
1065 * 0 - page is not locked.
1066 * mmap_sem has been released (up_read()), unless flags had both
1067 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
1068 * which case mmap_sem is still held.
1069 *
1070 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
1071 * with the page locked and the mmap_sem unperturbed.
1072 */
d065bd81
ML
1073int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
1074 unsigned int flags)
1075{
37b23e05
KM
1076 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1077 /*
1078 * CAUTION! In this case, mmap_sem is not released
1079 * even though return 0.
1080 */
1081 if (flags & FAULT_FLAG_RETRY_NOWAIT)
1082 return 0;
1083
1084 up_read(&mm->mmap_sem);
1085 if (flags & FAULT_FLAG_KILLABLE)
1086 wait_on_page_locked_killable(page);
1087 else
318b275f 1088 wait_on_page_locked(page);
d065bd81 1089 return 0;
37b23e05
KM
1090 } else {
1091 if (flags & FAULT_FLAG_KILLABLE) {
1092 int ret;
1093
1094 ret = __lock_page_killable(page);
1095 if (ret) {
1096 up_read(&mm->mmap_sem);
1097 return 0;
1098 }
1099 } else
1100 __lock_page(page);
1101 return 1;
d065bd81
ML
1102 }
1103}
1104
e7b563bb
JW
1105/**
1106 * page_cache_next_hole - find the next hole (not-present entry)
1107 * @mapping: mapping
1108 * @index: index
1109 * @max_scan: maximum range to search
1110 *
1111 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
1112 * lowest indexed hole.
1113 *
1114 * Returns: the index of the hole if found, otherwise returns an index
1115 * outside of the set specified (in which case 'return - index >=
1116 * max_scan' will be true). In rare cases of index wrap-around, 0 will
1117 * be returned.
1118 *
1119 * page_cache_next_hole may be called under rcu_read_lock. However,
1120 * like radix_tree_gang_lookup, this will not atomically search a
1121 * snapshot of the tree at a single point in time. For example, if a
1122 * hole is created at index 5, then subsequently a hole is created at
1123 * index 10, page_cache_next_hole covering both indexes may return 10
1124 * if called under rcu_read_lock.
1125 */
1126pgoff_t page_cache_next_hole(struct address_space *mapping,
1127 pgoff_t index, unsigned long max_scan)
1128{
1129 unsigned long i;
1130
1131 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1132 struct page *page;
1133
1134 page = radix_tree_lookup(&mapping->page_tree, index);
1135 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1136 break;
1137 index++;
1138 if (index == 0)
1139 break;
1140 }
1141
1142 return index;
1143}
1144EXPORT_SYMBOL(page_cache_next_hole);
1145
1146/**
1147 * page_cache_prev_hole - find the prev hole (not-present entry)
1148 * @mapping: mapping
1149 * @index: index
1150 * @max_scan: maximum range to search
1151 *
1152 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1153 * the first hole.
1154 *
1155 * Returns: the index of the hole if found, otherwise returns an index
1156 * outside of the set specified (in which case 'index - return >=
1157 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1158 * will be returned.
1159 *
1160 * page_cache_prev_hole may be called under rcu_read_lock. However,
1161 * like radix_tree_gang_lookup, this will not atomically search a
1162 * snapshot of the tree at a single point in time. For example, if a
1163 * hole is created at index 10, then subsequently a hole is created at
1164 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1165 * called under rcu_read_lock.
1166 */
1167pgoff_t page_cache_prev_hole(struct address_space *mapping,
1168 pgoff_t index, unsigned long max_scan)
1169{
1170 unsigned long i;
1171
1172 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
1173 struct page *page;
1174
1175 page = radix_tree_lookup(&mapping->page_tree, index);
1176 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
1177 break;
1178 index--;
1179 if (index == ULONG_MAX)
1180 break;
1181 }
1182
1183 return index;
1184}
1185EXPORT_SYMBOL(page_cache_prev_hole);
1186
485bb99b 1187/**
0cd6144a 1188 * find_get_entry - find and get a page cache entry
485bb99b 1189 * @mapping: the address_space to search
0cd6144a
JW
1190 * @offset: the page cache index
1191 *
1192 * Looks up the page cache slot at @mapping & @offset. If there is a
1193 * page cache page, it is returned with an increased refcount.
485bb99b 1194 *
139b6a6f
JW
1195 * If the slot holds a shadow entry of a previously evicted page, or a
1196 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1197 *
1198 * Otherwise, %NULL is returned.
1da177e4 1199 */
0cd6144a 1200struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 1201{
a60637c8 1202 void **pagep;
83929372 1203 struct page *head, *page;
1da177e4 1204
a60637c8
NP
1205 rcu_read_lock();
1206repeat:
1207 page = NULL;
1208 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1209 if (pagep) {
1210 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
1211 if (unlikely(!page))
1212 goto out;
a2c16d6c 1213 if (radix_tree_exception(page)) {
8079b1c8
HD
1214 if (radix_tree_deref_retry(page))
1215 goto repeat;
1216 /*
139b6a6f
JW
1217 * A shadow entry of a recently evicted page,
1218 * or a swap entry from shmem/tmpfs. Return
1219 * it without attempting to raise page count.
8079b1c8
HD
1220 */
1221 goto out;
a2c16d6c 1222 }
83929372
KS
1223
1224 head = compound_head(page);
1225 if (!page_cache_get_speculative(head))
1226 goto repeat;
1227
1228 /* The page was split under us? */
1229 if (compound_head(page) != head) {
1230 put_page(head);
a60637c8 1231 goto repeat;
83929372 1232 }
a60637c8
NP
1233
1234 /*
1235 * Has the page moved?
1236 * This is part of the lockless pagecache protocol. See
1237 * include/linux/pagemap.h for details.
1238 */
1239 if (unlikely(page != *pagep)) {
83929372 1240 put_page(head);
a60637c8
NP
1241 goto repeat;
1242 }
1243 }
27d20fdd 1244out:
a60637c8
NP
1245 rcu_read_unlock();
1246
1da177e4
LT
1247 return page;
1248}
0cd6144a 1249EXPORT_SYMBOL(find_get_entry);
1da177e4 1250
0cd6144a
JW
1251/**
1252 * find_lock_entry - locate, pin and lock a page cache entry
1253 * @mapping: the address_space to search
1254 * @offset: the page cache index
1255 *
1256 * Looks up the page cache slot at @mapping & @offset. If there is a
1257 * page cache page, it is returned locked and with an increased
1258 * refcount.
1259 *
139b6a6f
JW
1260 * If the slot holds a shadow entry of a previously evicted page, or a
1261 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
1262 *
1263 * Otherwise, %NULL is returned.
1264 *
1265 * find_lock_entry() may sleep.
1266 */
1267struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1268{
1269 struct page *page;
1270
1da177e4 1271repeat:
0cd6144a 1272 page = find_get_entry(mapping, offset);
a2c16d6c 1273 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1274 lock_page(page);
1275 /* Has the page been truncated? */
83929372 1276 if (unlikely(page_mapping(page) != mapping)) {
a60637c8 1277 unlock_page(page);
09cbfeaf 1278 put_page(page);
a60637c8 1279 goto repeat;
1da177e4 1280 }
83929372 1281 VM_BUG_ON_PAGE(page_to_pgoff(page) != offset, page);
1da177e4 1282 }
1da177e4
LT
1283 return page;
1284}
0cd6144a
JW
1285EXPORT_SYMBOL(find_lock_entry);
1286
1287/**
2457aec6 1288 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1289 * @mapping: the address_space to search
1290 * @offset: the page index
2457aec6 1291 * @fgp_flags: PCG flags
45f87de5 1292 * @gfp_mask: gfp mask to use for the page cache data page allocation
0cd6144a 1293 *
2457aec6 1294 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1295 *
75325189 1296 * PCG flags modify how the page is returned.
0cd6144a 1297 *
0e056eb5
MCC
1298 * @fgp_flags can be:
1299 *
1300 * - FGP_ACCESSED: the page will be marked accessed
1301 * - FGP_LOCK: Page is return locked
1302 * - FGP_CREAT: If page is not present then a new page is allocated using
1303 * @gfp_mask and added to the page cache and the VM's LRU
1304 * list. The page is returned locked and with an increased
1305 * refcount. Otherwise, NULL is returned.
1da177e4 1306 *
2457aec6
MG
1307 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1308 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1309 *
2457aec6 1310 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1311 */
2457aec6 1312struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
45f87de5 1313 int fgp_flags, gfp_t gfp_mask)
1da177e4 1314{
eb2be189 1315 struct page *page;
2457aec6 1316
1da177e4 1317repeat:
2457aec6
MG
1318 page = find_get_entry(mapping, offset);
1319 if (radix_tree_exceptional_entry(page))
1320 page = NULL;
1321 if (!page)
1322 goto no_page;
1323
1324 if (fgp_flags & FGP_LOCK) {
1325 if (fgp_flags & FGP_NOWAIT) {
1326 if (!trylock_page(page)) {
09cbfeaf 1327 put_page(page);
2457aec6
MG
1328 return NULL;
1329 }
1330 } else {
1331 lock_page(page);
1332 }
1333
1334 /* Has the page been truncated? */
1335 if (unlikely(page->mapping != mapping)) {
1336 unlock_page(page);
09cbfeaf 1337 put_page(page);
2457aec6
MG
1338 goto repeat;
1339 }
1340 VM_BUG_ON_PAGE(page->index != offset, page);
1341 }
1342
1343 if (page && (fgp_flags & FGP_ACCESSED))
1344 mark_page_accessed(page);
1345
1346no_page:
1347 if (!page && (fgp_flags & FGP_CREAT)) {
1348 int err;
1349 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
45f87de5
MH
1350 gfp_mask |= __GFP_WRITE;
1351 if (fgp_flags & FGP_NOFS)
1352 gfp_mask &= ~__GFP_FS;
2457aec6 1353
45f87de5 1354 page = __page_cache_alloc(gfp_mask);
eb2be189
NP
1355 if (!page)
1356 return NULL;
2457aec6
MG
1357
1358 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1359 fgp_flags |= FGP_LOCK;
1360
eb39d618 1361 /* Init accessed so avoid atomic mark_page_accessed later */
2457aec6 1362 if (fgp_flags & FGP_ACCESSED)
eb39d618 1363 __SetPageReferenced(page);
2457aec6 1364
45f87de5
MH
1365 err = add_to_page_cache_lru(page, mapping, offset,
1366 gfp_mask & GFP_RECLAIM_MASK);
eb2be189 1367 if (unlikely(err)) {
09cbfeaf 1368 put_page(page);
eb2be189
NP
1369 page = NULL;
1370 if (err == -EEXIST)
1371 goto repeat;
1da177e4 1372 }
1da177e4 1373 }
2457aec6 1374
1da177e4
LT
1375 return page;
1376}
2457aec6 1377EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1378
0cd6144a
JW
1379/**
1380 * find_get_entries - gang pagecache lookup
1381 * @mapping: The address_space to search
1382 * @start: The starting page cache index
1383 * @nr_entries: The maximum number of entries
1384 * @entries: Where the resulting entries are placed
1385 * @indices: The cache indices corresponding to the entries in @entries
1386 *
1387 * find_get_entries() will search for and return a group of up to
1388 * @nr_entries entries in the mapping. The entries are placed at
1389 * @entries. find_get_entries() takes a reference against any actual
1390 * pages it returns.
1391 *
1392 * The search returns a group of mapping-contiguous page cache entries
1393 * with ascending indexes. There may be holes in the indices due to
1394 * not-present pages.
1395 *
139b6a6f
JW
1396 * Any shadow entries of evicted pages, or swap entries from
1397 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1398 *
1399 * find_get_entries() returns the number of pages and shadow entries
1400 * which were found.
1401 */
1402unsigned find_get_entries(struct address_space *mapping,
1403 pgoff_t start, unsigned int nr_entries,
1404 struct page **entries, pgoff_t *indices)
1405{
1406 void **slot;
1407 unsigned int ret = 0;
1408 struct radix_tree_iter iter;
1409
1410 if (!nr_entries)
1411 return 0;
1412
1413 rcu_read_lock();
0cd6144a 1414 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1415 struct page *head, *page;
0cd6144a
JW
1416repeat:
1417 page = radix_tree_deref_slot(slot);
1418 if (unlikely(!page))
1419 continue;
1420 if (radix_tree_exception(page)) {
2cf938aa
MW
1421 if (radix_tree_deref_retry(page)) {
1422 slot = radix_tree_iter_retry(&iter);
1423 continue;
1424 }
0cd6144a 1425 /*
f9fe48be
RZ
1426 * A shadow entry of a recently evicted page, a swap
1427 * entry from shmem/tmpfs or a DAX entry. Return it
1428 * without attempting to raise page count.
0cd6144a
JW
1429 */
1430 goto export;
1431 }
83929372
KS
1432
1433 head = compound_head(page);
1434 if (!page_cache_get_speculative(head))
1435 goto repeat;
1436
1437 /* The page was split under us? */
1438 if (compound_head(page) != head) {
1439 put_page(head);
0cd6144a 1440 goto repeat;
83929372 1441 }
0cd6144a
JW
1442
1443 /* Has the page moved? */
1444 if (unlikely(page != *slot)) {
83929372 1445 put_page(head);
0cd6144a
JW
1446 goto repeat;
1447 }
1448export:
1449 indices[ret] = iter.index;
1450 entries[ret] = page;
1451 if (++ret == nr_entries)
1452 break;
1453 }
1454 rcu_read_unlock();
1455 return ret;
1456}
1457
1da177e4
LT
1458/**
1459 * find_get_pages - gang pagecache lookup
1460 * @mapping: The address_space to search
1461 * @start: The starting page index
1462 * @nr_pages: The maximum number of pages
1463 * @pages: Where the resulting pages are placed
1464 *
1465 * find_get_pages() will search for and return a group of up to
1466 * @nr_pages pages in the mapping. The pages are placed at @pages.
1467 * find_get_pages() takes a reference against the returned pages.
1468 *
1469 * The search returns a group of mapping-contiguous pages with ascending
1470 * indexes. There may be holes in the indices due to not-present pages.
1471 *
1472 * find_get_pages() returns the number of pages which were found.
1473 */
1474unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1475 unsigned int nr_pages, struct page **pages)
1476{
0fc9d104
KK
1477 struct radix_tree_iter iter;
1478 void **slot;
1479 unsigned ret = 0;
1480
1481 if (unlikely(!nr_pages))
1482 return 0;
a60637c8
NP
1483
1484 rcu_read_lock();
0fc9d104 1485 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
83929372 1486 struct page *head, *page;
a60637c8 1487repeat:
0fc9d104 1488 page = radix_tree_deref_slot(slot);
a60637c8
NP
1489 if (unlikely(!page))
1490 continue;
9d8aa4ea 1491
a2c16d6c 1492 if (radix_tree_exception(page)) {
8079b1c8 1493 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1494 slot = radix_tree_iter_retry(&iter);
1495 continue;
8079b1c8 1496 }
a2c16d6c 1497 /*
139b6a6f
JW
1498 * A shadow entry of a recently evicted page,
1499 * or a swap entry from shmem/tmpfs. Skip
1500 * over it.
a2c16d6c 1501 */
8079b1c8 1502 continue;
27d20fdd 1503 }
a60637c8 1504
83929372
KS
1505 head = compound_head(page);
1506 if (!page_cache_get_speculative(head))
1507 goto repeat;
1508
1509 /* The page was split under us? */
1510 if (compound_head(page) != head) {
1511 put_page(head);
a60637c8 1512 goto repeat;
83929372 1513 }
a60637c8
NP
1514
1515 /* Has the page moved? */
0fc9d104 1516 if (unlikely(page != *slot)) {
83929372 1517 put_page(head);
a60637c8
NP
1518 goto repeat;
1519 }
1da177e4 1520
a60637c8 1521 pages[ret] = page;
0fc9d104
KK
1522 if (++ret == nr_pages)
1523 break;
a60637c8 1524 }
5b280c0c 1525
a60637c8 1526 rcu_read_unlock();
1da177e4
LT
1527 return ret;
1528}
1529
ebf43500
JA
1530/**
1531 * find_get_pages_contig - gang contiguous pagecache lookup
1532 * @mapping: The address_space to search
1533 * @index: The starting page index
1534 * @nr_pages: The maximum number of pages
1535 * @pages: Where the resulting pages are placed
1536 *
1537 * find_get_pages_contig() works exactly like find_get_pages(), except
1538 * that the returned number of pages are guaranteed to be contiguous.
1539 *
1540 * find_get_pages_contig() returns the number of pages which were found.
1541 */
1542unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1543 unsigned int nr_pages, struct page **pages)
1544{
0fc9d104
KK
1545 struct radix_tree_iter iter;
1546 void **slot;
1547 unsigned int ret = 0;
1548
1549 if (unlikely(!nr_pages))
1550 return 0;
a60637c8
NP
1551
1552 rcu_read_lock();
0fc9d104 1553 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
83929372 1554 struct page *head, *page;
a60637c8 1555repeat:
0fc9d104
KK
1556 page = radix_tree_deref_slot(slot);
1557 /* The hole, there no reason to continue */
a60637c8 1558 if (unlikely(!page))
0fc9d104 1559 break;
9d8aa4ea 1560
a2c16d6c 1561 if (radix_tree_exception(page)) {
8079b1c8 1562 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1563 slot = radix_tree_iter_retry(&iter);
1564 continue;
8079b1c8 1565 }
a2c16d6c 1566 /*
139b6a6f
JW
1567 * A shadow entry of a recently evicted page,
1568 * or a swap entry from shmem/tmpfs. Stop
1569 * looking for contiguous pages.
a2c16d6c 1570 */
8079b1c8 1571 break;
a2c16d6c 1572 }
ebf43500 1573
83929372
KS
1574 head = compound_head(page);
1575 if (!page_cache_get_speculative(head))
1576 goto repeat;
1577
1578 /* The page was split under us? */
1579 if (compound_head(page) != head) {
1580 put_page(head);
a60637c8 1581 goto repeat;
83929372 1582 }
a60637c8
NP
1583
1584 /* Has the page moved? */
0fc9d104 1585 if (unlikely(page != *slot)) {
83929372 1586 put_page(head);
a60637c8
NP
1587 goto repeat;
1588 }
1589
9cbb4cb2
NP
1590 /*
1591 * must check mapping and index after taking the ref.
1592 * otherwise we can get both false positives and false
1593 * negatives, which is just confusing to the caller.
1594 */
83929372 1595 if (page->mapping == NULL || page_to_pgoff(page) != iter.index) {
09cbfeaf 1596 put_page(page);
9cbb4cb2
NP
1597 break;
1598 }
1599
a60637c8 1600 pages[ret] = page;
0fc9d104
KK
1601 if (++ret == nr_pages)
1602 break;
ebf43500 1603 }
a60637c8
NP
1604 rcu_read_unlock();
1605 return ret;
ebf43500 1606}
ef71c15c 1607EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1608
485bb99b
RD
1609/**
1610 * find_get_pages_tag - find and return pages that match @tag
1611 * @mapping: the address_space to search
1612 * @index: the starting page index
1613 * @tag: the tag index
1614 * @nr_pages: the maximum number of pages
1615 * @pages: where the resulting pages are placed
1616 *
1da177e4 1617 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1618 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1619 */
1620unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1621 int tag, unsigned int nr_pages, struct page **pages)
1622{
0fc9d104
KK
1623 struct radix_tree_iter iter;
1624 void **slot;
1625 unsigned ret = 0;
1626
1627 if (unlikely(!nr_pages))
1628 return 0;
a60637c8
NP
1629
1630 rcu_read_lock();
0fc9d104
KK
1631 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1632 &iter, *index, tag) {
83929372 1633 struct page *head, *page;
a60637c8 1634repeat:
0fc9d104 1635 page = radix_tree_deref_slot(slot);
a60637c8
NP
1636 if (unlikely(!page))
1637 continue;
9d8aa4ea 1638
a2c16d6c 1639 if (radix_tree_exception(page)) {
8079b1c8 1640 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1641 slot = radix_tree_iter_retry(&iter);
1642 continue;
8079b1c8 1643 }
a2c16d6c 1644 /*
139b6a6f
JW
1645 * A shadow entry of a recently evicted page.
1646 *
1647 * Those entries should never be tagged, but
1648 * this tree walk is lockless and the tags are
1649 * looked up in bulk, one radix tree node at a
1650 * time, so there is a sizable window for page
1651 * reclaim to evict a page we saw tagged.
1652 *
1653 * Skip over it.
a2c16d6c 1654 */
139b6a6f 1655 continue;
a2c16d6c 1656 }
a60637c8 1657
83929372
KS
1658 head = compound_head(page);
1659 if (!page_cache_get_speculative(head))
a60637c8
NP
1660 goto repeat;
1661
83929372
KS
1662 /* The page was split under us? */
1663 if (compound_head(page) != head) {
1664 put_page(head);
1665 goto repeat;
1666 }
1667
a60637c8 1668 /* Has the page moved? */
0fc9d104 1669 if (unlikely(page != *slot)) {
83929372 1670 put_page(head);
a60637c8
NP
1671 goto repeat;
1672 }
1673
1674 pages[ret] = page;
0fc9d104
KK
1675 if (++ret == nr_pages)
1676 break;
a60637c8 1677 }
5b280c0c 1678
a60637c8 1679 rcu_read_unlock();
1da177e4 1680
1da177e4
LT
1681 if (ret)
1682 *index = pages[ret - 1]->index + 1;
a60637c8 1683
1da177e4
LT
1684 return ret;
1685}
ef71c15c 1686EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1687
7e7f7749
RZ
1688/**
1689 * find_get_entries_tag - find and return entries that match @tag
1690 * @mapping: the address_space to search
1691 * @start: the starting page cache index
1692 * @tag: the tag index
1693 * @nr_entries: the maximum number of entries
1694 * @entries: where the resulting entries are placed
1695 * @indices: the cache indices corresponding to the entries in @entries
1696 *
1697 * Like find_get_entries, except we only return entries which are tagged with
1698 * @tag.
1699 */
1700unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1701 int tag, unsigned int nr_entries,
1702 struct page **entries, pgoff_t *indices)
1703{
1704 void **slot;
1705 unsigned int ret = 0;
1706 struct radix_tree_iter iter;
1707
1708 if (!nr_entries)
1709 return 0;
1710
1711 rcu_read_lock();
7e7f7749
RZ
1712 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1713 &iter, start, tag) {
83929372 1714 struct page *head, *page;
7e7f7749
RZ
1715repeat:
1716 page = radix_tree_deref_slot(slot);
1717 if (unlikely(!page))
1718 continue;
1719 if (radix_tree_exception(page)) {
1720 if (radix_tree_deref_retry(page)) {
2cf938aa
MW
1721 slot = radix_tree_iter_retry(&iter);
1722 continue;
7e7f7749
RZ
1723 }
1724
1725 /*
1726 * A shadow entry of a recently evicted page, a swap
1727 * entry from shmem/tmpfs or a DAX entry. Return it
1728 * without attempting to raise page count.
1729 */
1730 goto export;
1731 }
83929372
KS
1732
1733 head = compound_head(page);
1734 if (!page_cache_get_speculative(head))
7e7f7749
RZ
1735 goto repeat;
1736
83929372
KS
1737 /* The page was split under us? */
1738 if (compound_head(page) != head) {
1739 put_page(head);
1740 goto repeat;
1741 }
1742
7e7f7749
RZ
1743 /* Has the page moved? */
1744 if (unlikely(page != *slot)) {
83929372 1745 put_page(head);
7e7f7749
RZ
1746 goto repeat;
1747 }
1748export:
1749 indices[ret] = iter.index;
1750 entries[ret] = page;
1751 if (++ret == nr_entries)
1752 break;
1753 }
1754 rcu_read_unlock();
1755 return ret;
1756}
1757EXPORT_SYMBOL(find_get_entries_tag);
1758
76d42bd9
WF
1759/*
1760 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1761 * a _large_ part of the i/o request. Imagine the worst scenario:
1762 *
1763 * ---R__________________________________________B__________
1764 * ^ reading here ^ bad block(assume 4k)
1765 *
1766 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1767 * => failing the whole request => read(R) => read(R+1) =>
1768 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1769 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1770 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1771 *
1772 * It is going insane. Fix it by quickly scaling down the readahead size.
1773 */
1774static void shrink_readahead_size_eio(struct file *filp,
1775 struct file_ra_state *ra)
1776{
76d42bd9 1777 ra->ra_pages /= 4;
76d42bd9
WF
1778}
1779
485bb99b 1780/**
36e78914 1781 * do_generic_file_read - generic file read routine
485bb99b
RD
1782 * @filp: the file to read
1783 * @ppos: current file position
6e58e79d
AV
1784 * @iter: data destination
1785 * @written: already copied
485bb99b 1786 *
1da177e4 1787 * This is a generic file read routine, and uses the
485bb99b 1788 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1789 *
1790 * This is really ugly. But the goto's actually try to clarify some
1791 * of the logic when it comes to error handling etc.
1da177e4 1792 */
6e58e79d
AV
1793static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1794 struct iov_iter *iter, ssize_t written)
1da177e4 1795{
36e78914 1796 struct address_space *mapping = filp->f_mapping;
1da177e4 1797 struct inode *inode = mapping->host;
36e78914 1798 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1799 pgoff_t index;
1800 pgoff_t last_index;
1801 pgoff_t prev_index;
1802 unsigned long offset; /* offset into pagecache page */
ec0f1637 1803 unsigned int prev_offset;
6e58e79d 1804 int error = 0;
1da177e4 1805
c2a9737f 1806 if (unlikely(*ppos >= inode->i_sb->s_maxbytes))
d05c5f7b 1807 return 0;
c2a9737f
WF
1808 iov_iter_truncate(iter, inode->i_sb->s_maxbytes);
1809
09cbfeaf
KS
1810 index = *ppos >> PAGE_SHIFT;
1811 prev_index = ra->prev_pos >> PAGE_SHIFT;
1812 prev_offset = ra->prev_pos & (PAGE_SIZE-1);
1813 last_index = (*ppos + iter->count + PAGE_SIZE-1) >> PAGE_SHIFT;
1814 offset = *ppos & ~PAGE_MASK;
1da177e4 1815
1da177e4
LT
1816 for (;;) {
1817 struct page *page;
57f6b96c 1818 pgoff_t end_index;
a32ea1e1 1819 loff_t isize;
1da177e4
LT
1820 unsigned long nr, ret;
1821
1da177e4 1822 cond_resched();
1da177e4 1823find_page:
5abf186a
MH
1824 if (fatal_signal_pending(current)) {
1825 error = -EINTR;
1826 goto out;
1827 }
1828
1da177e4 1829 page = find_get_page(mapping, index);
3ea89ee8 1830 if (!page) {
cf914a7d 1831 page_cache_sync_readahead(mapping,
7ff81078 1832 ra, filp,
3ea89ee8
FW
1833 index, last_index - index);
1834 page = find_get_page(mapping, index);
1835 if (unlikely(page == NULL))
1836 goto no_cached_page;
1837 }
1838 if (PageReadahead(page)) {
cf914a7d 1839 page_cache_async_readahead(mapping,
7ff81078 1840 ra, filp, page,
3ea89ee8 1841 index, last_index - index);
1da177e4 1842 }
8ab22b9a 1843 if (!PageUptodate(page)) {
ebded027
MG
1844 /*
1845 * See comment in do_read_cache_page on why
1846 * wait_on_page_locked is used to avoid unnecessarily
1847 * serialisations and why it's safe.
1848 */
c4b209a4
BVA
1849 error = wait_on_page_locked_killable(page);
1850 if (unlikely(error))
1851 goto readpage_error;
ebded027
MG
1852 if (PageUptodate(page))
1853 goto page_ok;
1854
09cbfeaf 1855 if (inode->i_blkbits == PAGE_SHIFT ||
8ab22b9a
HH
1856 !mapping->a_ops->is_partially_uptodate)
1857 goto page_not_up_to_date;
6d6d36bc
EG
1858 /* pipes can't handle partially uptodate pages */
1859 if (unlikely(iter->type & ITER_PIPE))
1860 goto page_not_up_to_date;
529ae9aa 1861 if (!trylock_page(page))
8ab22b9a 1862 goto page_not_up_to_date;
8d056cb9
DH
1863 /* Did it get truncated before we got the lock? */
1864 if (!page->mapping)
1865 goto page_not_up_to_date_locked;
8ab22b9a 1866 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1867 offset, iter->count))
8ab22b9a
HH
1868 goto page_not_up_to_date_locked;
1869 unlock_page(page);
1870 }
1da177e4 1871page_ok:
a32ea1e1
N
1872 /*
1873 * i_size must be checked after we know the page is Uptodate.
1874 *
1875 * Checking i_size after the check allows us to calculate
1876 * the correct value for "nr", which means the zero-filled
1877 * part of the page is not copied back to userspace (unless
1878 * another truncate extends the file - this is desired though).
1879 */
1880
1881 isize = i_size_read(inode);
09cbfeaf 1882 end_index = (isize - 1) >> PAGE_SHIFT;
a32ea1e1 1883 if (unlikely(!isize || index > end_index)) {
09cbfeaf 1884 put_page(page);
a32ea1e1
N
1885 goto out;
1886 }
1887
1888 /* nr is the maximum number of bytes to copy from this page */
09cbfeaf 1889 nr = PAGE_SIZE;
a32ea1e1 1890 if (index == end_index) {
09cbfeaf 1891 nr = ((isize - 1) & ~PAGE_MASK) + 1;
a32ea1e1 1892 if (nr <= offset) {
09cbfeaf 1893 put_page(page);
a32ea1e1
N
1894 goto out;
1895 }
1896 }
1897 nr = nr - offset;
1da177e4
LT
1898
1899 /* If users can be writing to this page using arbitrary
1900 * virtual addresses, take care about potential aliasing
1901 * before reading the page on the kernel side.
1902 */
1903 if (mapping_writably_mapped(mapping))
1904 flush_dcache_page(page);
1905
1906 /*
ec0f1637
JK
1907 * When a sequential read accesses a page several times,
1908 * only mark it as accessed the first time.
1da177e4 1909 */
ec0f1637 1910 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1911 mark_page_accessed(page);
1912 prev_index = index;
1913
1914 /*
1915 * Ok, we have the page, and it's up-to-date, so
1916 * now we can copy it to user space...
1da177e4 1917 */
6e58e79d
AV
1918
1919 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4 1920 offset += ret;
09cbfeaf
KS
1921 index += offset >> PAGE_SHIFT;
1922 offset &= ~PAGE_MASK;
6ce745ed 1923 prev_offset = offset;
1da177e4 1924
09cbfeaf 1925 put_page(page);
6e58e79d
AV
1926 written += ret;
1927 if (!iov_iter_count(iter))
1928 goto out;
1929 if (ret < nr) {
1930 error = -EFAULT;
1931 goto out;
1932 }
1933 continue;
1da177e4
LT
1934
1935page_not_up_to_date:
1936 /* Get exclusive access to the page ... */
85462323
ON
1937 error = lock_page_killable(page);
1938 if (unlikely(error))
1939 goto readpage_error;
1da177e4 1940
8ab22b9a 1941page_not_up_to_date_locked:
da6052f7 1942 /* Did it get truncated before we got the lock? */
1da177e4
LT
1943 if (!page->mapping) {
1944 unlock_page(page);
09cbfeaf 1945 put_page(page);
1da177e4
LT
1946 continue;
1947 }
1948
1949 /* Did somebody else fill it already? */
1950 if (PageUptodate(page)) {
1951 unlock_page(page);
1952 goto page_ok;
1953 }
1954
1955readpage:
91803b49
JM
1956 /*
1957 * A previous I/O error may have been due to temporary
1958 * failures, eg. multipath errors.
1959 * PG_error will be set again if readpage fails.
1960 */
1961 ClearPageError(page);
1da177e4
LT
1962 /* Start the actual read. The read will unlock the page. */
1963 error = mapping->a_ops->readpage(filp, page);
1964
994fc28c
ZB
1965 if (unlikely(error)) {
1966 if (error == AOP_TRUNCATED_PAGE) {
09cbfeaf 1967 put_page(page);
6e58e79d 1968 error = 0;
994fc28c
ZB
1969 goto find_page;
1970 }
1da177e4 1971 goto readpage_error;
994fc28c 1972 }
1da177e4
LT
1973
1974 if (!PageUptodate(page)) {
85462323
ON
1975 error = lock_page_killable(page);
1976 if (unlikely(error))
1977 goto readpage_error;
1da177e4
LT
1978 if (!PageUptodate(page)) {
1979 if (page->mapping == NULL) {
1980 /*
2ecdc82e 1981 * invalidate_mapping_pages got it
1da177e4
LT
1982 */
1983 unlock_page(page);
09cbfeaf 1984 put_page(page);
1da177e4
LT
1985 goto find_page;
1986 }
1987 unlock_page(page);
7ff81078 1988 shrink_readahead_size_eio(filp, ra);
85462323
ON
1989 error = -EIO;
1990 goto readpage_error;
1da177e4
LT
1991 }
1992 unlock_page(page);
1993 }
1994
1da177e4
LT
1995 goto page_ok;
1996
1997readpage_error:
1998 /* UHHUH! A synchronous read error occurred. Report it */
09cbfeaf 1999 put_page(page);
1da177e4
LT
2000 goto out;
2001
2002no_cached_page:
2003 /*
2004 * Ok, it wasn't cached, so we need to create a new
2005 * page..
2006 */
eb2be189
NP
2007 page = page_cache_alloc_cold(mapping);
2008 if (!page) {
6e58e79d 2009 error = -ENOMEM;
eb2be189 2010 goto out;
1da177e4 2011 }
6afdb859 2012 error = add_to_page_cache_lru(page, mapping, index,
c62d2555 2013 mapping_gfp_constraint(mapping, GFP_KERNEL));
1da177e4 2014 if (error) {
09cbfeaf 2015 put_page(page);
6e58e79d
AV
2016 if (error == -EEXIST) {
2017 error = 0;
1da177e4 2018 goto find_page;
6e58e79d 2019 }
1da177e4
LT
2020 goto out;
2021 }
1da177e4
LT
2022 goto readpage;
2023 }
2024
2025out:
7ff81078 2026 ra->prev_pos = prev_index;
09cbfeaf 2027 ra->prev_pos <<= PAGE_SHIFT;
7ff81078 2028 ra->prev_pos |= prev_offset;
1da177e4 2029
09cbfeaf 2030 *ppos = ((loff_t)index << PAGE_SHIFT) + offset;
0c6aa263 2031 file_accessed(filp);
6e58e79d 2032 return written ? written : error;
1da177e4
LT
2033}
2034
485bb99b 2035/**
6abd2322 2036 * generic_file_read_iter - generic filesystem read routine
485bb99b 2037 * @iocb: kernel I/O control block
6abd2322 2038 * @iter: destination for the data read
485bb99b 2039 *
6abd2322 2040 * This is the "read_iter()" routine for all filesystems
1da177e4
LT
2041 * that can use the page cache directly.
2042 */
2043ssize_t
ed978a81 2044generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1da177e4 2045{
ed978a81 2046 struct file *file = iocb->ki_filp;
cb66a7a1 2047 ssize_t retval = 0;
e7080a43
NS
2048 size_t count = iov_iter_count(iter);
2049
2050 if (!count)
2051 goto out; /* skip atime */
1da177e4 2052
2ba48ce5 2053 if (iocb->ki_flags & IOCB_DIRECT) {
ed978a81
AV
2054 struct address_space *mapping = file->f_mapping;
2055 struct inode *inode = mapping->host;
543ade1f 2056 loff_t size;
1da177e4 2057
1da177e4 2058 size = i_size_read(inode);
c64fb5c7
CH
2059 retval = filemap_write_and_wait_range(mapping, iocb->ki_pos,
2060 iocb->ki_pos + count - 1);
0d5b0cf2
CH
2061 if (retval < 0)
2062 goto out;
d8d3d94b 2063
0d5b0cf2
CH
2064 file_accessed(file);
2065
5ecda137 2066 retval = mapping->a_ops->direct_IO(iocb, iter);
c3a69024 2067 if (retval >= 0) {
c64fb5c7 2068 iocb->ki_pos += retval;
5ecda137 2069 count -= retval;
9fe55eea 2070 }
5b47d59a 2071 iov_iter_revert(iter, count - iov_iter_count(iter));
66f998f6 2072
9fe55eea
SW
2073 /*
2074 * Btrfs can have a short DIO read if we encounter
2075 * compressed extents, so if there was an error, or if
2076 * we've already read everything we wanted to, or if
2077 * there was a short read because we hit EOF, go ahead
2078 * and return. Otherwise fallthrough to buffered io for
fbbbad4b
MW
2079 * the rest of the read. Buffered reads will not work for
2080 * DAX files, so don't bother trying.
9fe55eea 2081 */
5ecda137 2082 if (retval < 0 || !count || iocb->ki_pos >= size ||
0d5b0cf2 2083 IS_DAX(inode))
9fe55eea 2084 goto out;
1da177e4
LT
2085 }
2086
c64fb5c7 2087 retval = do_generic_file_read(file, &iocb->ki_pos, iter, retval);
1da177e4
LT
2088out:
2089 return retval;
2090}
ed978a81 2091EXPORT_SYMBOL(generic_file_read_iter);
1da177e4 2092
1da177e4 2093#ifdef CONFIG_MMU
485bb99b
RD
2094/**
2095 * page_cache_read - adds requested page to the page cache if not already there
2096 * @file: file to read
2097 * @offset: page index
62eb320a 2098 * @gfp_mask: memory allocation flags
485bb99b 2099 *
1da177e4
LT
2100 * This adds the requested page to the page cache if it isn't already there,
2101 * and schedules an I/O to read in its contents from disk.
2102 */
c20cd45e 2103static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
2104{
2105 struct address_space *mapping = file->f_mapping;
99dadfdd 2106 struct page *page;
994fc28c 2107 int ret;
1da177e4 2108
994fc28c 2109 do {
c20cd45e 2110 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
994fc28c
ZB
2111 if (!page)
2112 return -ENOMEM;
2113
c20cd45e 2114 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
994fc28c
ZB
2115 if (ret == 0)
2116 ret = mapping->a_ops->readpage(file, page);
2117 else if (ret == -EEXIST)
2118 ret = 0; /* losing race to add is OK */
1da177e4 2119
09cbfeaf 2120 put_page(page);
1da177e4 2121
994fc28c 2122 } while (ret == AOP_TRUNCATED_PAGE);
99dadfdd 2123
994fc28c 2124 return ret;
1da177e4
LT
2125}
2126
2127#define MMAP_LOTSAMISS (100)
2128
ef00e08e
LT
2129/*
2130 * Synchronous readahead happens when we don't even find
2131 * a page in the page cache at all.
2132 */
2133static void do_sync_mmap_readahead(struct vm_area_struct *vma,
2134 struct file_ra_state *ra,
2135 struct file *file,
2136 pgoff_t offset)
2137{
ef00e08e
LT
2138 struct address_space *mapping = file->f_mapping;
2139
2140 /* If we don't want any read-ahead, don't bother */
64363aad 2141 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 2142 return;
275b12bf
WF
2143 if (!ra->ra_pages)
2144 return;
ef00e08e 2145
64363aad 2146 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
2147 page_cache_sync_readahead(mapping, ra, file, offset,
2148 ra->ra_pages);
ef00e08e
LT
2149 return;
2150 }
2151
207d04ba
AK
2152 /* Avoid banging the cache line if not needed */
2153 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
2154 ra->mmap_miss++;
2155
2156 /*
2157 * Do we miss much more than hit in this file? If so,
2158 * stop bothering with read-ahead. It will only hurt.
2159 */
2160 if (ra->mmap_miss > MMAP_LOTSAMISS)
2161 return;
2162
d30a1100
WF
2163 /*
2164 * mmap read-around
2165 */
600e19af
RG
2166 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
2167 ra->size = ra->ra_pages;
2168 ra->async_size = ra->ra_pages / 4;
275b12bf 2169 ra_submit(ra, mapping, file);
ef00e08e
LT
2170}
2171
2172/*
2173 * Asynchronous readahead happens when we find the page and PG_readahead,
2174 * so we want to possibly extend the readahead further..
2175 */
2176static void do_async_mmap_readahead(struct vm_area_struct *vma,
2177 struct file_ra_state *ra,
2178 struct file *file,
2179 struct page *page,
2180 pgoff_t offset)
2181{
2182 struct address_space *mapping = file->f_mapping;
2183
2184 /* If we don't want any read-ahead, don't bother */
64363aad 2185 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
2186 return;
2187 if (ra->mmap_miss > 0)
2188 ra->mmap_miss--;
2189 if (PageReadahead(page))
2fad6f5d
WF
2190 page_cache_async_readahead(mapping, ra, file,
2191 page, offset, ra->ra_pages);
ef00e08e
LT
2192}
2193
485bb99b 2194/**
54cb8821 2195 * filemap_fault - read in file data for page fault handling
d0217ac0 2196 * @vmf: struct vm_fault containing details of the fault
485bb99b 2197 *
54cb8821 2198 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
2199 * mapped memory region to read in file data during a page fault.
2200 *
2201 * The goto's are kind of ugly, but this streamlines the normal case of having
2202 * it in the page cache, and handles the special cases reasonably without
2203 * having a lot of duplicated code.
9a95f3cf
PC
2204 *
2205 * vma->vm_mm->mmap_sem must be held on entry.
2206 *
2207 * If our return value has VM_FAULT_RETRY set, it's because
2208 * lock_page_or_retry() returned 0.
2209 * The mmap_sem has usually been released in this case.
2210 * See __lock_page_or_retry() for the exception.
2211 *
2212 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2213 * has not been released.
2214 *
2215 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1da177e4 2216 */
11bac800 2217int filemap_fault(struct vm_fault *vmf)
1da177e4
LT
2218{
2219 int error;
11bac800 2220 struct file *file = vmf->vma->vm_file;
1da177e4
LT
2221 struct address_space *mapping = file->f_mapping;
2222 struct file_ra_state *ra = &file->f_ra;
2223 struct inode *inode = mapping->host;
ef00e08e 2224 pgoff_t offset = vmf->pgoff;
9ab2594f 2225 pgoff_t max_off;
1da177e4 2226 struct page *page;
83c54070 2227 int ret = 0;
1da177e4 2228
9ab2594f
MW
2229 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2230 if (unlikely(offset >= max_off))
5307cc1a 2231 return VM_FAULT_SIGBUS;
1da177e4 2232
1da177e4 2233 /*
49426420 2234 * Do we have something in the page cache already?
1da177e4 2235 */
ef00e08e 2236 page = find_get_page(mapping, offset);
45cac65b 2237 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 2238 /*
ef00e08e
LT
2239 * We found the page, so try async readahead before
2240 * waiting for the lock.
1da177e4 2241 */
11bac800 2242 do_async_mmap_readahead(vmf->vma, ra, file, page, offset);
45cac65b 2243 } else if (!page) {
ef00e08e 2244 /* No page in the page cache at all */
11bac800 2245 do_sync_mmap_readahead(vmf->vma, ra, file, offset);
ef00e08e 2246 count_vm_event(PGMAJFAULT);
11bac800 2247 mem_cgroup_count_vm_event(vmf->vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
2248 ret = VM_FAULT_MAJOR;
2249retry_find:
b522c94d 2250 page = find_get_page(mapping, offset);
1da177e4
LT
2251 if (!page)
2252 goto no_cached_page;
2253 }
2254
11bac800 2255 if (!lock_page_or_retry(page, vmf->vma->vm_mm, vmf->flags)) {
09cbfeaf 2256 put_page(page);
d065bd81 2257 return ret | VM_FAULT_RETRY;
d88c0922 2258 }
b522c94d
ML
2259
2260 /* Did it get truncated? */
2261 if (unlikely(page->mapping != mapping)) {
2262 unlock_page(page);
2263 put_page(page);
2264 goto retry_find;
2265 }
309381fe 2266 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 2267
1da177e4 2268 /*
d00806b1
NP
2269 * We have a locked page in the page cache, now we need to check
2270 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 2271 */
d00806b1 2272 if (unlikely(!PageUptodate(page)))
1da177e4
LT
2273 goto page_not_uptodate;
2274
ef00e08e
LT
2275 /*
2276 * Found the page and have a reference on it.
2277 * We must recheck i_size under page lock.
2278 */
9ab2594f
MW
2279 max_off = DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE);
2280 if (unlikely(offset >= max_off)) {
d00806b1 2281 unlock_page(page);
09cbfeaf 2282 put_page(page);
5307cc1a 2283 return VM_FAULT_SIGBUS;
d00806b1
NP
2284 }
2285
d0217ac0 2286 vmf->page = page;
83c54070 2287 return ret | VM_FAULT_LOCKED;
1da177e4 2288
1da177e4
LT
2289no_cached_page:
2290 /*
2291 * We're only likely to ever get here if MADV_RANDOM is in
2292 * effect.
2293 */
c20cd45e 2294 error = page_cache_read(file, offset, vmf->gfp_mask);
1da177e4
LT
2295
2296 /*
2297 * The page we want has now been added to the page cache.
2298 * In the unlikely event that someone removed it in the
2299 * meantime, we'll just come back here and read it again.
2300 */
2301 if (error >= 0)
2302 goto retry_find;
2303
2304 /*
2305 * An error return from page_cache_read can result if the
2306 * system is low on memory, or a problem occurs while trying
2307 * to schedule I/O.
2308 */
2309 if (error == -ENOMEM)
d0217ac0
NP
2310 return VM_FAULT_OOM;
2311 return VM_FAULT_SIGBUS;
1da177e4
LT
2312
2313page_not_uptodate:
1da177e4
LT
2314 /*
2315 * Umm, take care of errors if the page isn't up-to-date.
2316 * Try to re-read it _once_. We do this synchronously,
2317 * because there really aren't any performance issues here
2318 * and we need to check for errors.
2319 */
1da177e4 2320 ClearPageError(page);
994fc28c 2321 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
2322 if (!error) {
2323 wait_on_page_locked(page);
2324 if (!PageUptodate(page))
2325 error = -EIO;
2326 }
09cbfeaf 2327 put_page(page);
d00806b1
NP
2328
2329 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 2330 goto retry_find;
1da177e4 2331
d00806b1 2332 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2333 shrink_readahead_size_eio(file, ra);
d0217ac0 2334 return VM_FAULT_SIGBUS;
54cb8821
NP
2335}
2336EXPORT_SYMBOL(filemap_fault);
2337
82b0f8c3 2338void filemap_map_pages(struct vm_fault *vmf,
bae473a4 2339 pgoff_t start_pgoff, pgoff_t end_pgoff)
f1820361
KS
2340{
2341 struct radix_tree_iter iter;
2342 void **slot;
82b0f8c3 2343 struct file *file = vmf->vma->vm_file;
f1820361 2344 struct address_space *mapping = file->f_mapping;
bae473a4 2345 pgoff_t last_pgoff = start_pgoff;
9ab2594f 2346 unsigned long max_idx;
83929372 2347 struct page *head, *page;
f1820361
KS
2348
2349 rcu_read_lock();
bae473a4
KS
2350 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter,
2351 start_pgoff) {
2352 if (iter.index > end_pgoff)
f1820361
KS
2353 break;
2354repeat:
2355 page = radix_tree_deref_slot(slot);
2356 if (unlikely(!page))
2357 goto next;
2358 if (radix_tree_exception(page)) {
2cf938aa
MW
2359 if (radix_tree_deref_retry(page)) {
2360 slot = radix_tree_iter_retry(&iter);
2361 continue;
2362 }
2363 goto next;
f1820361
KS
2364 }
2365
83929372
KS
2366 head = compound_head(page);
2367 if (!page_cache_get_speculative(head))
f1820361
KS
2368 goto repeat;
2369
83929372
KS
2370 /* The page was split under us? */
2371 if (compound_head(page) != head) {
2372 put_page(head);
2373 goto repeat;
2374 }
2375
f1820361
KS
2376 /* Has the page moved? */
2377 if (unlikely(page != *slot)) {
83929372 2378 put_page(head);
f1820361
KS
2379 goto repeat;
2380 }
2381
2382 if (!PageUptodate(page) ||
2383 PageReadahead(page) ||
2384 PageHWPoison(page))
2385 goto skip;
2386 if (!trylock_page(page))
2387 goto skip;
2388
2389 if (page->mapping != mapping || !PageUptodate(page))
2390 goto unlock;
2391
9ab2594f
MW
2392 max_idx = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
2393 if (page->index >= max_idx)
f1820361
KS
2394 goto unlock;
2395
f1820361
KS
2396 if (file->f_ra.mmap_miss > 0)
2397 file->f_ra.mmap_miss--;
7267ec00 2398
82b0f8c3
JK
2399 vmf->address += (iter.index - last_pgoff) << PAGE_SHIFT;
2400 if (vmf->pte)
2401 vmf->pte += iter.index - last_pgoff;
7267ec00 2402 last_pgoff = iter.index;
82b0f8c3 2403 if (alloc_set_pte(vmf, NULL, page))
7267ec00 2404 goto unlock;
f1820361
KS
2405 unlock_page(page);
2406 goto next;
2407unlock:
2408 unlock_page(page);
2409skip:
09cbfeaf 2410 put_page(page);
f1820361 2411next:
7267ec00 2412 /* Huge page is mapped? No need to proceed. */
82b0f8c3 2413 if (pmd_trans_huge(*vmf->pmd))
7267ec00 2414 break;
bae473a4 2415 if (iter.index == end_pgoff)
f1820361
KS
2416 break;
2417 }
2418 rcu_read_unlock();
2419}
2420EXPORT_SYMBOL(filemap_map_pages);
2421
11bac800 2422int filemap_page_mkwrite(struct vm_fault *vmf)
4fcf1c62
JK
2423{
2424 struct page *page = vmf->page;
11bac800 2425 struct inode *inode = file_inode(vmf->vma->vm_file);
4fcf1c62
JK
2426 int ret = VM_FAULT_LOCKED;
2427
14da9200 2428 sb_start_pagefault(inode->i_sb);
11bac800 2429 file_update_time(vmf->vma->vm_file);
4fcf1c62
JK
2430 lock_page(page);
2431 if (page->mapping != inode->i_mapping) {
2432 unlock_page(page);
2433 ret = VM_FAULT_NOPAGE;
2434 goto out;
2435 }
14da9200
JK
2436 /*
2437 * We mark the page dirty already here so that when freeze is in
2438 * progress, we are guaranteed that writeback during freezing will
2439 * see the dirty page and writeprotect it again.
2440 */
2441 set_page_dirty(page);
1d1d1a76 2442 wait_for_stable_page(page);
4fcf1c62 2443out:
14da9200 2444 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2445 return ret;
2446}
2447EXPORT_SYMBOL(filemap_page_mkwrite);
2448
f0f37e2f 2449const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2450 .fault = filemap_fault,
f1820361 2451 .map_pages = filemap_map_pages,
4fcf1c62 2452 .page_mkwrite = filemap_page_mkwrite,
1da177e4
LT
2453};
2454
2455/* This is used for a general mmap of a disk file */
2456
2457int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2458{
2459 struct address_space *mapping = file->f_mapping;
2460
2461 if (!mapping->a_ops->readpage)
2462 return -ENOEXEC;
2463 file_accessed(file);
2464 vma->vm_ops = &generic_file_vm_ops;
2465 return 0;
2466}
1da177e4
LT
2467
2468/*
2469 * This is for filesystems which do not implement ->writepage.
2470 */
2471int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2472{
2473 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2474 return -EINVAL;
2475 return generic_file_mmap(file, vma);
2476}
2477#else
2478int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2479{
2480 return -ENOSYS;
2481}
2482int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2483{
2484 return -ENOSYS;
2485}
2486#endif /* CONFIG_MMU */
2487
2488EXPORT_SYMBOL(generic_file_mmap);
2489EXPORT_SYMBOL(generic_file_readonly_mmap);
2490
67f9fd91
SL
2491static struct page *wait_on_page_read(struct page *page)
2492{
2493 if (!IS_ERR(page)) {
2494 wait_on_page_locked(page);
2495 if (!PageUptodate(page)) {
09cbfeaf 2496 put_page(page);
67f9fd91
SL
2497 page = ERR_PTR(-EIO);
2498 }
2499 }
2500 return page;
2501}
2502
32b63529 2503static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2504 pgoff_t index,
5e5358e7 2505 int (*filler)(void *, struct page *),
0531b2aa
LT
2506 void *data,
2507 gfp_t gfp)
1da177e4 2508{
eb2be189 2509 struct page *page;
1da177e4
LT
2510 int err;
2511repeat:
2512 page = find_get_page(mapping, index);
2513 if (!page) {
0531b2aa 2514 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2515 if (!page)
2516 return ERR_PTR(-ENOMEM);
e6f67b8c 2517 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189 2518 if (unlikely(err)) {
09cbfeaf 2519 put_page(page);
eb2be189
NP
2520 if (err == -EEXIST)
2521 goto repeat;
1da177e4 2522 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2523 return ERR_PTR(err);
2524 }
32b63529
MG
2525
2526filler:
1da177e4
LT
2527 err = filler(data, page);
2528 if (err < 0) {
09cbfeaf 2529 put_page(page);
32b63529 2530 return ERR_PTR(err);
1da177e4 2531 }
1da177e4 2532
32b63529
MG
2533 page = wait_on_page_read(page);
2534 if (IS_ERR(page))
2535 return page;
2536 goto out;
2537 }
1da177e4
LT
2538 if (PageUptodate(page))
2539 goto out;
2540
ebded027
MG
2541 /*
2542 * Page is not up to date and may be locked due one of the following
2543 * case a: Page is being filled and the page lock is held
2544 * case b: Read/write error clearing the page uptodate status
2545 * case c: Truncation in progress (page locked)
2546 * case d: Reclaim in progress
2547 *
2548 * Case a, the page will be up to date when the page is unlocked.
2549 * There is no need to serialise on the page lock here as the page
2550 * is pinned so the lock gives no additional protection. Even if the
2551 * the page is truncated, the data is still valid if PageUptodate as
2552 * it's a race vs truncate race.
2553 * Case b, the page will not be up to date
2554 * Case c, the page may be truncated but in itself, the data may still
2555 * be valid after IO completes as it's a read vs truncate race. The
2556 * operation must restart if the page is not uptodate on unlock but
2557 * otherwise serialising on page lock to stabilise the mapping gives
2558 * no additional guarantees to the caller as the page lock is
2559 * released before return.
2560 * Case d, similar to truncation. If reclaim holds the page lock, it
2561 * will be a race with remove_mapping that determines if the mapping
2562 * is valid on unlock but otherwise the data is valid and there is
2563 * no need to serialise with page lock.
2564 *
2565 * As the page lock gives no additional guarantee, we optimistically
2566 * wait on the page to be unlocked and check if it's up to date and
2567 * use the page if it is. Otherwise, the page lock is required to
2568 * distinguish between the different cases. The motivation is that we
2569 * avoid spurious serialisations and wakeups when multiple processes
2570 * wait on the same page for IO to complete.
2571 */
2572 wait_on_page_locked(page);
2573 if (PageUptodate(page))
2574 goto out;
2575
2576 /* Distinguish between all the cases under the safety of the lock */
1da177e4 2577 lock_page(page);
ebded027
MG
2578
2579 /* Case c or d, restart the operation */
1da177e4
LT
2580 if (!page->mapping) {
2581 unlock_page(page);
09cbfeaf 2582 put_page(page);
32b63529 2583 goto repeat;
1da177e4 2584 }
ebded027
MG
2585
2586 /* Someone else locked and filled the page in a very small window */
1da177e4
LT
2587 if (PageUptodate(page)) {
2588 unlock_page(page);
2589 goto out;
2590 }
32b63529
MG
2591 goto filler;
2592
c855ff37 2593out:
6fe6900e
NP
2594 mark_page_accessed(page);
2595 return page;
2596}
0531b2aa
LT
2597
2598/**
67f9fd91 2599 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2600 * @mapping: the page's address_space
2601 * @index: the page index
2602 * @filler: function to perform the read
5e5358e7 2603 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2604 *
0531b2aa 2605 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2606 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2607 *
2608 * If the page does not get brought uptodate, return -EIO.
2609 */
67f9fd91 2610struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2611 pgoff_t index,
5e5358e7 2612 int (*filler)(void *, struct page *),
0531b2aa
LT
2613 void *data)
2614{
2615 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2616}
67f9fd91 2617EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2618
2619/**
2620 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2621 * @mapping: the page's address_space
2622 * @index: the page index
2623 * @gfp: the page allocator flags to use if allocating
2624 *
2625 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2626 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2627 *
2628 * If the page does not get brought uptodate, return -EIO.
2629 */
2630struct page *read_cache_page_gfp(struct address_space *mapping,
2631 pgoff_t index,
2632 gfp_t gfp)
2633{
2634 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2635
67f9fd91 2636 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2637}
2638EXPORT_SYMBOL(read_cache_page_gfp);
2639
1da177e4
LT
2640/*
2641 * Performs necessary checks before doing a write
2642 *
485bb99b 2643 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2644 * Returns appropriate error code that caller should return or
2645 * zero in case that write should be allowed.
2646 */
3309dd04 2647inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
1da177e4 2648{
3309dd04 2649 struct file *file = iocb->ki_filp;
1da177e4 2650 struct inode *inode = file->f_mapping->host;
59e99e5b 2651 unsigned long limit = rlimit(RLIMIT_FSIZE);
3309dd04 2652 loff_t pos;
1da177e4 2653
3309dd04
AV
2654 if (!iov_iter_count(from))
2655 return 0;
1da177e4 2656
0fa6b005 2657 /* FIXME: this is for backwards compatibility with 2.4 */
2ba48ce5 2658 if (iocb->ki_flags & IOCB_APPEND)
3309dd04 2659 iocb->ki_pos = i_size_read(inode);
1da177e4 2660
3309dd04 2661 pos = iocb->ki_pos;
1da177e4 2662
0fa6b005 2663 if (limit != RLIM_INFINITY) {
3309dd04 2664 if (iocb->ki_pos >= limit) {
0fa6b005
AV
2665 send_sig(SIGXFSZ, current, 0);
2666 return -EFBIG;
1da177e4 2667 }
3309dd04 2668 iov_iter_truncate(from, limit - (unsigned long)pos);
1da177e4
LT
2669 }
2670
2671 /*
2672 * LFS rule
2673 */
3309dd04 2674 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
1da177e4 2675 !(file->f_flags & O_LARGEFILE))) {
3309dd04 2676 if (pos >= MAX_NON_LFS)
1da177e4 2677 return -EFBIG;
3309dd04 2678 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
1da177e4
LT
2679 }
2680
2681 /*
2682 * Are we about to exceed the fs block limit ?
2683 *
2684 * If we have written data it becomes a short write. If we have
2685 * exceeded without writing data we send a signal and return EFBIG.
2686 * Linus frestrict idea will clean these up nicely..
2687 */
3309dd04
AV
2688 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2689 return -EFBIG;
1da177e4 2690
3309dd04
AV
2691 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2692 return iov_iter_count(from);
1da177e4
LT
2693}
2694EXPORT_SYMBOL(generic_write_checks);
2695
afddba49
NP
2696int pagecache_write_begin(struct file *file, struct address_space *mapping,
2697 loff_t pos, unsigned len, unsigned flags,
2698 struct page **pagep, void **fsdata)
2699{
2700 const struct address_space_operations *aops = mapping->a_ops;
2701
4e02ed4b 2702 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2703 pagep, fsdata);
afddba49
NP
2704}
2705EXPORT_SYMBOL(pagecache_write_begin);
2706
2707int pagecache_write_end(struct file *file, struct address_space *mapping,
2708 loff_t pos, unsigned len, unsigned copied,
2709 struct page *page, void *fsdata)
2710{
2711 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2712
4e02ed4b 2713 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2714}
2715EXPORT_SYMBOL(pagecache_write_end);
2716
1da177e4 2717ssize_t
1af5bb49 2718generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2719{
2720 struct file *file = iocb->ki_filp;
2721 struct address_space *mapping = file->f_mapping;
2722 struct inode *inode = mapping->host;
1af5bb49 2723 loff_t pos = iocb->ki_pos;
1da177e4 2724 ssize_t written;
a969e903
CH
2725 size_t write_len;
2726 pgoff_t end;
1da177e4 2727
0c949334 2728 write_len = iov_iter_count(from);
09cbfeaf 2729 end = (pos + write_len - 1) >> PAGE_SHIFT;
a969e903 2730
48b47c56 2731 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2732 if (written)
2733 goto out;
2734
2735 /*
2736 * After a write we want buffered reads to be sure to go to disk to get
2737 * the new data. We invalidate clean cached page from the region we're
2738 * about to write. We do this *before* the write so that we can return
6ccfa806 2739 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903 2740 */
55635ba7 2741 written = invalidate_inode_pages2_range(mapping,
09cbfeaf 2742 pos >> PAGE_SHIFT, end);
55635ba7
AR
2743 /*
2744 * If a page can not be invalidated, return 0 to fall back
2745 * to buffered write.
2746 */
2747 if (written) {
2748 if (written == -EBUSY)
2749 return 0;
2750 goto out;
a969e903
CH
2751 }
2752
639a93a5 2753 written = mapping->a_ops->direct_IO(iocb, from);
a969e903
CH
2754
2755 /*
2756 * Finally, try again to invalidate clean pages which might have been
2757 * cached by non-direct readahead, or faulted in by get_user_pages()
2758 * if the source of the write was an mmap'ed region of the file
2759 * we're writing. Either one is a pretty crazy thing to do,
2760 * so we don't support it 100%. If this invalidation
2761 * fails, tough, the write still worked...
2762 */
55635ba7
AR
2763 invalidate_inode_pages2_range(mapping,
2764 pos >> PAGE_SHIFT, end);
a969e903 2765
1da177e4 2766 if (written > 0) {
0116651c 2767 pos += written;
639a93a5 2768 write_len -= written;
0116651c
NK
2769 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2770 i_size_write(inode, pos);
1da177e4
LT
2771 mark_inode_dirty(inode);
2772 }
5cb6c6c7 2773 iocb->ki_pos = pos;
1da177e4 2774 }
639a93a5 2775 iov_iter_revert(from, write_len - iov_iter_count(from));
a969e903 2776out:
1da177e4
LT
2777 return written;
2778}
2779EXPORT_SYMBOL(generic_file_direct_write);
2780
eb2be189
NP
2781/*
2782 * Find or create a page at the given pagecache position. Return the locked
2783 * page. This function is specifically for buffered writes.
2784 */
54566b2c
NP
2785struct page *grab_cache_page_write_begin(struct address_space *mapping,
2786 pgoff_t index, unsigned flags)
eb2be189 2787{
eb2be189 2788 struct page *page;
bbddabe2 2789 int fgp_flags = FGP_LOCK|FGP_WRITE|FGP_CREAT;
0faa70cb 2790
54566b2c 2791 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2792 fgp_flags |= FGP_NOFS;
2793
2794 page = pagecache_get_page(mapping, index, fgp_flags,
45f87de5 2795 mapping_gfp_mask(mapping));
c585a267 2796 if (page)
2457aec6 2797 wait_for_stable_page(page);
eb2be189 2798
eb2be189
NP
2799 return page;
2800}
54566b2c 2801EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2802
3b93f911 2803ssize_t generic_perform_write(struct file *file,
afddba49
NP
2804 struct iov_iter *i, loff_t pos)
2805{
2806 struct address_space *mapping = file->f_mapping;
2807 const struct address_space_operations *a_ops = mapping->a_ops;
2808 long status = 0;
2809 ssize_t written = 0;
674b892e
NP
2810 unsigned int flags = 0;
2811
afddba49
NP
2812 do {
2813 struct page *page;
afddba49
NP
2814 unsigned long offset; /* Offset into pagecache page */
2815 unsigned long bytes; /* Bytes to write to page */
2816 size_t copied; /* Bytes copied from user */
2817 void *fsdata;
2818
09cbfeaf
KS
2819 offset = (pos & (PAGE_SIZE - 1));
2820 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2821 iov_iter_count(i));
2822
2823again:
00a3d660
LT
2824 /*
2825 * Bring in the user page that we will copy from _first_.
2826 * Otherwise there's a nasty deadlock on copying from the
2827 * same page as we're writing to, without it being marked
2828 * up-to-date.
2829 *
2830 * Not only is this an optimisation, but it is also required
2831 * to check that the address is actually valid, when atomic
2832 * usercopies are used, below.
2833 */
2834 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2835 status = -EFAULT;
2836 break;
2837 }
2838
296291cd
JK
2839 if (fatal_signal_pending(current)) {
2840 status = -EINTR;
2841 break;
2842 }
2843
674b892e 2844 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2845 &page, &fsdata);
2457aec6 2846 if (unlikely(status < 0))
afddba49
NP
2847 break;
2848
931e80e4 2849 if (mapping_writably_mapped(mapping))
2850 flush_dcache_page(page);
00a3d660 2851
afddba49 2852 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2853 flush_dcache_page(page);
2854
2855 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2856 page, fsdata);
2857 if (unlikely(status < 0))
2858 break;
2859 copied = status;
2860
2861 cond_resched();
2862
124d3b70 2863 iov_iter_advance(i, copied);
afddba49
NP
2864 if (unlikely(copied == 0)) {
2865 /*
2866 * If we were unable to copy any data at all, we must
2867 * fall back to a single segment length write.
2868 *
2869 * If we didn't fallback here, we could livelock
2870 * because not all segments in the iov can be copied at
2871 * once without a pagefault.
2872 */
09cbfeaf 2873 bytes = min_t(unsigned long, PAGE_SIZE - offset,
afddba49
NP
2874 iov_iter_single_seg_count(i));
2875 goto again;
2876 }
afddba49
NP
2877 pos += copied;
2878 written += copied;
2879
2880 balance_dirty_pages_ratelimited(mapping);
afddba49
NP
2881 } while (iov_iter_count(i));
2882
2883 return written ? written : status;
2884}
3b93f911 2885EXPORT_SYMBOL(generic_perform_write);
1da177e4 2886
e4dd9de3 2887/**
8174202b 2888 * __generic_file_write_iter - write data to a file
e4dd9de3 2889 * @iocb: IO state structure (file, offset, etc.)
8174202b 2890 * @from: iov_iter with data to write
e4dd9de3
JK
2891 *
2892 * This function does all the work needed for actually writing data to a
2893 * file. It does all basic checks, removes SUID from the file, updates
2894 * modification times and calls proper subroutines depending on whether we
2895 * do direct IO or a standard buffered write.
2896 *
2897 * It expects i_mutex to be grabbed unless we work on a block device or similar
2898 * object which does not need locking at all.
2899 *
2900 * This function does *not* take care of syncing data in case of O_SYNC write.
2901 * A caller has to handle it. This is mainly due to the fact that we want to
2902 * avoid syncing under i_mutex.
2903 */
8174202b 2904ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2905{
2906 struct file *file = iocb->ki_filp;
fb5527e6 2907 struct address_space * mapping = file->f_mapping;
1da177e4 2908 struct inode *inode = mapping->host;
3b93f911 2909 ssize_t written = 0;
1da177e4 2910 ssize_t err;
3b93f911 2911 ssize_t status;
1da177e4 2912
1da177e4 2913 /* We can write back this queue in page reclaim */
de1414a6 2914 current->backing_dev_info = inode_to_bdi(inode);
5fa8e0a1 2915 err = file_remove_privs(file);
1da177e4
LT
2916 if (err)
2917 goto out;
2918
c3b2da31
JB
2919 err = file_update_time(file);
2920 if (err)
2921 goto out;
1da177e4 2922
2ba48ce5 2923 if (iocb->ki_flags & IOCB_DIRECT) {
0b8def9d 2924 loff_t pos, endbyte;
fb5527e6 2925
1af5bb49 2926 written = generic_file_direct_write(iocb, from);
1da177e4 2927 /*
fbbbad4b
MW
2928 * If the write stopped short of completing, fall back to
2929 * buffered writes. Some filesystems do this for writes to
2930 * holes, for example. For DAX files, a buffered write will
2931 * not succeed (even if it did, DAX does not handle dirty
2932 * page-cache pages correctly).
1da177e4 2933 */
0b8def9d 2934 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
fbbbad4b
MW
2935 goto out;
2936
0b8def9d 2937 status = generic_perform_write(file, from, pos = iocb->ki_pos);
fb5527e6 2938 /*
3b93f911 2939 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2940 * then we want to return the number of bytes which were
2941 * direct-written, or the error code if that was zero. Note
2942 * that this differs from normal direct-io semantics, which
2943 * will return -EFOO even if some bytes were written.
2944 */
60bb4529 2945 if (unlikely(status < 0)) {
3b93f911 2946 err = status;
fb5527e6
JM
2947 goto out;
2948 }
fb5527e6
JM
2949 /*
2950 * We need to ensure that the page cache pages are written to
2951 * disk and invalidated to preserve the expected O_DIRECT
2952 * semantics.
2953 */
3b93f911 2954 endbyte = pos + status - 1;
0b8def9d 2955 err = filemap_write_and_wait_range(mapping, pos, endbyte);
fb5527e6 2956 if (err == 0) {
0b8def9d 2957 iocb->ki_pos = endbyte + 1;
3b93f911 2958 written += status;
fb5527e6 2959 invalidate_mapping_pages(mapping,
09cbfeaf
KS
2960 pos >> PAGE_SHIFT,
2961 endbyte >> PAGE_SHIFT);
fb5527e6
JM
2962 } else {
2963 /*
2964 * We don't know how much we wrote, so just return
2965 * the number of bytes which were direct-written
2966 */
2967 }
2968 } else {
0b8def9d
AV
2969 written = generic_perform_write(file, from, iocb->ki_pos);
2970 if (likely(written > 0))
2971 iocb->ki_pos += written;
fb5527e6 2972 }
1da177e4
LT
2973out:
2974 current->backing_dev_info = NULL;
2975 return written ? written : err;
2976}
8174202b 2977EXPORT_SYMBOL(__generic_file_write_iter);
e4dd9de3 2978
e4dd9de3 2979/**
8174202b 2980 * generic_file_write_iter - write data to a file
e4dd9de3 2981 * @iocb: IO state structure
8174202b 2982 * @from: iov_iter with data to write
e4dd9de3 2983 *
8174202b 2984 * This is a wrapper around __generic_file_write_iter() to be used by most
e4dd9de3
JK
2985 * filesystems. It takes care of syncing the file in case of O_SYNC file
2986 * and acquires i_mutex as needed.
2987 */
8174202b 2988ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
1da177e4
LT
2989{
2990 struct file *file = iocb->ki_filp;
148f948b 2991 struct inode *inode = file->f_mapping->host;
1da177e4 2992 ssize_t ret;
1da177e4 2993
5955102c 2994 inode_lock(inode);
3309dd04
AV
2995 ret = generic_write_checks(iocb, from);
2996 if (ret > 0)
5f380c7f 2997 ret = __generic_file_write_iter(iocb, from);
5955102c 2998 inode_unlock(inode);
1da177e4 2999
e2592217
CH
3000 if (ret > 0)
3001 ret = generic_write_sync(iocb, ret);
1da177e4
LT
3002 return ret;
3003}
8174202b 3004EXPORT_SYMBOL(generic_file_write_iter);
1da177e4 3005
cf9a2ae8
DH
3006/**
3007 * try_to_release_page() - release old fs-specific metadata on a page
3008 *
3009 * @page: the page which the kernel is trying to free
3010 * @gfp_mask: memory allocation flags (and I/O mode)
3011 *
3012 * The address_space is to try to release any data against the page
0e056eb5 3013 * (presumably at page->private). If the release was successful, return '1'.
cf9a2ae8
DH
3014 * Otherwise return zero.
3015 *
266cf658
DH
3016 * This may also be called if PG_fscache is set on a page, indicating that the
3017 * page is known to the local caching routines.
3018 *
cf9a2ae8 3019 * The @gfp_mask argument specifies whether I/O may be performed to release
71baba4b 3020 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
cf9a2ae8 3021 *
cf9a2ae8
DH
3022 */
3023int try_to_release_page(struct page *page, gfp_t gfp_mask)
3024{
3025 struct address_space * const mapping = page->mapping;
3026
3027 BUG_ON(!PageLocked(page));
3028 if (PageWriteback(page))
3029 return 0;
3030
3031 if (mapping && mapping->a_ops->releasepage)
3032 return mapping->a_ops->releasepage(page, gfp_mask);
3033 return try_to_free_buffers(page);
3034}
3035
3036EXPORT_SYMBOL(try_to_release_page);