]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/filemap.c
mm: page_alloc: calculate classzone_idx once from the zonelist ref
[mirror_ubuntu-zesty-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
44110fe3 32#include <linux/cpuset.h>
2f718ffc 33#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 34#include <linux/memcontrol.h>
c515e1fd 35#include <linux/cleancache.h>
f1820361 36#include <linux/rmap.h>
0f8053a5
NP
37#include "internal.h"
38
fe0bfaaf
RJ
39#define CREATE_TRACE_POINTS
40#include <trace/events/filemap.h>
41
1da177e4 42/*
1da177e4
LT
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
148f948b 45#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 46
1da177e4
LT
47#include <asm/mman.h>
48
49/*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61/*
62 * Lock ordering:
63 *
3d48ae45 64 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
1da177e4 68 *
1b1dcc1b 69 * ->i_mutex
3d48ae45 70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
71 *
72 * ->mmap_sem
3d48ae45 73 * ->i_mmap_mutex
b8072f09 74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
ccad2365 80 * ->i_mutex (generic_perform_write)
82591e6e 81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 82 *
f758eeab 83 * bdi->wb.list_lock
a66979ab 84 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
3d48ae45 87 * ->i_mmap_mutex
1da177e4
LT
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
9a3c531d
AK
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
109 */
110
91b0abe3
JW
111static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113{
449dd698
JW
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
91b0abe3 119
449dd698
JW
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
91b0abe3
JW
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
449dd698 133 }
91b0abe3 134 mapping->nrpages--;
449dd698
JW
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
91b0abe3
JW
172}
173
1da177e4 174/*
e64a782f 175 * Delete a page from the page cache and free it. Caller has to make
1da177e4 176 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 177 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 178 */
91b0abe3 179void __delete_from_page_cache(struct page *page, void *shadow)
1da177e4
LT
180{
181 struct address_space *mapping = page->mapping;
182
fe0bfaaf 183 trace_mm_filemap_delete_from_page_cache(page);
c515e1fd
DM
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
3167760f 192 cleancache_invalidate_page(mapping, page);
c515e1fd 193
91b0abe3
JW
194 page_cache_tree_delete(mapping, page, shadow);
195
1da177e4 196 page->mapping = NULL;
b85e0eff 197 /* Leave page->index set: truncation lookup relies upon it */
91b0abe3 198
347ce434 199 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
45426812 202 BUG_ON(page_mapped(page));
3a692790
LT
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
1da177e4
LT
215}
216
702cfbf9
MK
217/**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225void delete_from_page_cache(struct page *page)
1da177e4
LT
226{
227 struct address_space *mapping = page->mapping;
6072d13c 228 void (*freepage)(struct page *);
1da177e4 229
cd7619d6 230 BUG_ON(!PageLocked(page));
1da177e4 231
6072d13c 232 freepage = mapping->a_ops->freepage;
19fd6231 233 spin_lock_irq(&mapping->tree_lock);
91b0abe3 234 __delete_from_page_cache(page, NULL);
19fd6231 235 spin_unlock_irq(&mapping->tree_lock);
e767e056 236 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
237
238 if (freepage)
239 freepage(page);
97cecb5a
MK
240 page_cache_release(page);
241}
242EXPORT_SYMBOL(delete_from_page_cache);
243
7eaceacc 244static int sleep_on_page(void *word)
1da177e4 245{
1da177e4
LT
246 io_schedule();
247 return 0;
248}
249
7eaceacc 250static int sleep_on_page_killable(void *word)
2687a356 251{
7eaceacc 252 sleep_on_page(word);
2687a356
MW
253 return fatal_signal_pending(current) ? -EINTR : 0;
254}
255
865ffef3
DM
256static int filemap_check_errors(struct address_space *mapping)
257{
258 int ret = 0;
259 /* Check for outstanding write errors */
7fcbbaf1
JA
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
865ffef3 262 ret = -ENOSPC;
7fcbbaf1
JA
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
865ffef3
DM
265 ret = -EIO;
266 return ret;
267}
268
1da177e4 269/**
485bb99b 270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
469eb4d0 273 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 274 * @sync_mode: enable synchronous operation
1da177e4 275 *
485bb99b
RD
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
278 *
1da177e4 279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 280 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
283 */
ebcf28e1
AM
284int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
1da177e4
LT
286{
287 int ret;
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
05fe478d 290 .nr_to_write = LONG_MAX,
111ebb6e
OH
291 .range_start = start,
292 .range_end = end,
1da177e4
LT
293 };
294
295 if (!mapping_cap_writeback_dirty(mapping))
296 return 0;
297
298 ret = do_writepages(mapping, &wbc);
299 return ret;
300}
301
302static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
304{
111ebb6e 305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
306}
307
308int filemap_fdatawrite(struct address_space *mapping)
309{
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311}
312EXPORT_SYMBOL(filemap_fdatawrite);
313
f4c0a0fd 314int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 315 loff_t end)
1da177e4
LT
316{
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318}
f4c0a0fd 319EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 320
485bb99b
RD
321/**
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
324 *
1da177e4
LT
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
327 */
328int filemap_flush(struct address_space *mapping)
329{
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331}
332EXPORT_SYMBOL(filemap_flush);
333
485bb99b 334/**
94004ed7
CH
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 339 *
94004ed7
CH
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
1da177e4 342 */
94004ed7
CH
343int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
1da177e4 345{
94004ed7
CH
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
348 struct pagevec pvec;
349 int nr_pages;
865ffef3 350 int ret2, ret = 0;
1da177e4 351
94004ed7 352 if (end_byte < start_byte)
865ffef3 353 goto out;
1da177e4
LT
354
355 pagevec_init(&pvec, 0);
1da177e4
LT
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
364
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
368
369 wait_on_page_writeback(page);
212260aa 370 if (TestClearPageError(page))
1da177e4
LT
371 ret = -EIO;
372 }
373 pagevec_release(&pvec);
374 cond_resched();
375 }
865ffef3
DM
376out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
1da177e4
LT
380
381 return ret;
382}
d3bccb6f
JK
383EXPORT_SYMBOL(filemap_fdatawait_range);
384
1da177e4 385/**
485bb99b 386 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 387 * @mapping: address space structure to wait for
485bb99b
RD
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
1da177e4
LT
391 */
392int filemap_fdatawait(struct address_space *mapping)
393{
394 loff_t i_size = i_size_read(mapping->host);
395
396 if (i_size == 0)
397 return 0;
398
94004ed7 399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
400}
401EXPORT_SYMBOL(filemap_fdatawait);
402
403int filemap_write_and_wait(struct address_space *mapping)
404{
28fd1298 405 int err = 0;
1da177e4
LT
406
407 if (mapping->nrpages) {
28fd1298
OH
408 err = filemap_fdatawrite(mapping);
409 /*
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
414 */
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
419 }
865ffef3
DM
420 } else {
421 err = filemap_check_errors(mapping);
1da177e4 422 }
28fd1298 423 return err;
1da177e4 424}
28fd1298 425EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 426
485bb99b
RD
427/**
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
432 *
469eb4d0
AM
433 * Write out and wait upon file offsets lstart->lend, inclusive.
434 *
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
437 */
1da177e4
LT
438int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
440{
28fd1298 441 int err = 0;
1da177e4
LT
442
443 if (mapping->nrpages) {
28fd1298
OH
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
94004ed7
CH
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
28fd1298
OH
450 if (!err)
451 err = err2;
452 }
865ffef3
DM
453 } else {
454 err = filemap_check_errors(mapping);
1da177e4 455 }
28fd1298 456 return err;
1da177e4 457}
f6995585 458EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 459
ef6a3c63
MS
460/**
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
465 *
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
471 *
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
474 */
475int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476{
477 int error;
ef6a3c63 478
309381fe
SL
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
ef6a3c63 482
ef6a3c63
MS
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
487
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
490
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
494
495 spin_lock_irq(&mapping->tree_lock);
91b0abe3 496 __delete_from_page_cache(old, NULL);
ef6a3c63
MS
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
ef6a3c63
MS
510 }
511
512 return error;
513}
514EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
0cd6144a 516static int page_cache_tree_insert(struct address_space *mapping,
a528910e 517 struct page *page, void **shadowp)
0cd6144a 518{
449dd698 519 struct radix_tree_node *node;
0cd6144a
JW
520 void **slot;
521 int error;
522
449dd698
JW
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
0cd6144a
JW
528 void *p;
529
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
a528910e
JW
533 if (shadowp)
534 *shadowp = p;
449dd698
JW
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
0cd6144a 538 }
449dd698
JW
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
543 /*
544 * Don't track node that contains actual pages.
545 *
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
550 */
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
554 }
555 return 0;
0cd6144a
JW
556}
557
a528910e
JW
558static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
1da177e4 562{
e286781d
NP
563 int error;
564
309381fe
SL
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
e286781d 567
d715ae08 568 error = mem_cgroup_charge_file(page, current->mm,
2c26fdd7 569 gfp_mask & GFP_RECLAIM_MASK);
35c754d7 570 if (error)
66a0c8ee 571 return error;
1da177e4 572
5e4c0d97 573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
66a0c8ee 574 if (error) {
69029cd5 575 mem_cgroup_uncharge_cache_page(page);
66a0c8ee
KS
576 return error;
577 }
578
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
582
583 spin_lock_irq(&mapping->tree_lock);
a528910e 584 error = page_cache_tree_insert(mapping, page, shadowp);
66a0c8ee
KS
585 radix_tree_preload_end();
586 if (unlikely(error))
587 goto err_insert;
66a0c8ee
KS
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
591 return 0;
592err_insert:
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
1da177e4
LT
598 return error;
599}
a528910e
JW
600
601/**
602 * add_to_page_cache_locked - add a locked page to the pagecache
603 * @page: page to add
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
607 *
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
610 */
611int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
613{
614 return __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, NULL);
616}
e286781d 617EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
618
619int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 620 pgoff_t offset, gfp_t gfp_mask)
1da177e4 621{
a528910e 622 void *shadow = NULL;
4f98a2fe
RR
623 int ret;
624
a528910e
JW
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
627 gfp_mask, &shadow);
628 if (unlikely(ret))
629 __clear_page_locked(page);
630 else {
631 /*
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
635 */
636 if (shadow && workingset_refault(shadow)) {
637 SetPageActive(page);
638 workingset_activation(page);
639 } else
640 ClearPageActive(page);
641 lru_cache_add(page);
642 }
1da177e4
LT
643 return ret;
644}
18bc0bbd 645EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 646
44110fe3 647#ifdef CONFIG_NUMA
2ae88149 648struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 649{
c0ff7453
MX
650 int n;
651 struct page *page;
652
44110fe3 653 if (cpuset_do_page_mem_spread()) {
cc9a6c87
MG
654 unsigned int cpuset_mems_cookie;
655 do {
d26914d1 656 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87
MG
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
d26914d1 659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
cc9a6c87 660
c0ff7453 661 return page;
44110fe3 662 }
2ae88149 663 return alloc_pages(gfp, 0);
44110fe3 664}
2ae88149 665EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
666#endif
667
1da177e4
LT
668/*
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
676 * collisions.
677 */
678static wait_queue_head_t *page_waitqueue(struct page *page)
679{
680 const struct zone *zone = page_zone(page);
681
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683}
684
685static inline void wake_up_page(struct page *page, int bit)
686{
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688}
689
920c7a5d 690void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
691{
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694 if (test_bit(bit_nr, &page->flags))
7eaceacc 695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
696 TASK_UNINTERRUPTIBLE);
697}
698EXPORT_SYMBOL(wait_on_page_bit);
699
f62e00cc
KM
700int wait_on_page_bit_killable(struct page *page, int bit_nr)
701{
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704 if (!test_bit(bit_nr, &page->flags))
705 return 0;
706
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
709}
710
385e1ca5
DH
711/**
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
385e1ca5
DH
715 *
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
717 */
718void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719{
720 wait_queue_head_t *q = page_waitqueue(page);
721 unsigned long flags;
722
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
726}
727EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
1da177e4 729/**
485bb99b 730 * unlock_page - unlock a locked page
1da177e4
LT
731 * @page: the page
732 *
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737 *
8413ac9d
NP
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 740 */
920c7a5d 741void unlock_page(struct page *page)
1da177e4 742{
309381fe 743 VM_BUG_ON_PAGE(!PageLocked(page), page);
8413ac9d 744 clear_bit_unlock(PG_locked, &page->flags);
4e857c58 745 smp_mb__after_atomic();
1da177e4
LT
746 wake_up_page(page, PG_locked);
747}
748EXPORT_SYMBOL(unlock_page);
749
485bb99b
RD
750/**
751 * end_page_writeback - end writeback against a page
752 * @page: the page
1da177e4
LT
753 */
754void end_page_writeback(struct page *page)
755{
ac6aadb2
MS
756 if (TestClearPageReclaim(page))
757 rotate_reclaimable_page(page);
758
759 if (!test_clear_page_writeback(page))
760 BUG();
761
4e857c58 762 smp_mb__after_atomic();
1da177e4
LT
763 wake_up_page(page, PG_writeback);
764}
765EXPORT_SYMBOL(end_page_writeback);
766
57d99845
MW
767/*
768 * After completing I/O on a page, call this routine to update the page
769 * flags appropriately
770 */
771void page_endio(struct page *page, int rw, int err)
772{
773 if (rw == READ) {
774 if (!err) {
775 SetPageUptodate(page);
776 } else {
777 ClearPageUptodate(page);
778 SetPageError(page);
779 }
780 unlock_page(page);
781 } else { /* rw == WRITE */
782 if (err) {
783 SetPageError(page);
784 if (page->mapping)
785 mapping_set_error(page->mapping, err);
786 }
787 end_page_writeback(page);
788 }
789}
790EXPORT_SYMBOL_GPL(page_endio);
791
485bb99b
RD
792/**
793 * __lock_page - get a lock on the page, assuming we need to sleep to get it
794 * @page: the page to lock
1da177e4 795 */
920c7a5d 796void __lock_page(struct page *page)
1da177e4
LT
797{
798 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
799
7eaceacc 800 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
801 TASK_UNINTERRUPTIBLE);
802}
803EXPORT_SYMBOL(__lock_page);
804
b5606c2d 805int __lock_page_killable(struct page *page)
2687a356
MW
806{
807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 810 sleep_on_page_killable, TASK_KILLABLE);
2687a356 811}
18bc0bbd 812EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 813
d065bd81
ML
814int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
815 unsigned int flags)
816{
37b23e05
KM
817 if (flags & FAULT_FLAG_ALLOW_RETRY) {
818 /*
819 * CAUTION! In this case, mmap_sem is not released
820 * even though return 0.
821 */
822 if (flags & FAULT_FLAG_RETRY_NOWAIT)
823 return 0;
824
825 up_read(&mm->mmap_sem);
826 if (flags & FAULT_FLAG_KILLABLE)
827 wait_on_page_locked_killable(page);
828 else
318b275f 829 wait_on_page_locked(page);
d065bd81 830 return 0;
37b23e05
KM
831 } else {
832 if (flags & FAULT_FLAG_KILLABLE) {
833 int ret;
834
835 ret = __lock_page_killable(page);
836 if (ret) {
837 up_read(&mm->mmap_sem);
838 return 0;
839 }
840 } else
841 __lock_page(page);
842 return 1;
d065bd81
ML
843 }
844}
845
e7b563bb
JW
846/**
847 * page_cache_next_hole - find the next hole (not-present entry)
848 * @mapping: mapping
849 * @index: index
850 * @max_scan: maximum range to search
851 *
852 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
853 * lowest indexed hole.
854 *
855 * Returns: the index of the hole if found, otherwise returns an index
856 * outside of the set specified (in which case 'return - index >=
857 * max_scan' will be true). In rare cases of index wrap-around, 0 will
858 * be returned.
859 *
860 * page_cache_next_hole may be called under rcu_read_lock. However,
861 * like radix_tree_gang_lookup, this will not atomically search a
862 * snapshot of the tree at a single point in time. For example, if a
863 * hole is created at index 5, then subsequently a hole is created at
864 * index 10, page_cache_next_hole covering both indexes may return 10
865 * if called under rcu_read_lock.
866 */
867pgoff_t page_cache_next_hole(struct address_space *mapping,
868 pgoff_t index, unsigned long max_scan)
869{
870 unsigned long i;
871
872 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
873 struct page *page;
874
875 page = radix_tree_lookup(&mapping->page_tree, index);
876 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
877 break;
878 index++;
879 if (index == 0)
880 break;
881 }
882
883 return index;
884}
885EXPORT_SYMBOL(page_cache_next_hole);
886
887/**
888 * page_cache_prev_hole - find the prev hole (not-present entry)
889 * @mapping: mapping
890 * @index: index
891 * @max_scan: maximum range to search
892 *
893 * Search backwards in the range [max(index-max_scan+1, 0), index] for
894 * the first hole.
895 *
896 * Returns: the index of the hole if found, otherwise returns an index
897 * outside of the set specified (in which case 'index - return >=
898 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
899 * will be returned.
900 *
901 * page_cache_prev_hole may be called under rcu_read_lock. However,
902 * like radix_tree_gang_lookup, this will not atomically search a
903 * snapshot of the tree at a single point in time. For example, if a
904 * hole is created at index 10, then subsequently a hole is created at
905 * index 5, page_cache_prev_hole covering both indexes may return 5 if
906 * called under rcu_read_lock.
907 */
908pgoff_t page_cache_prev_hole(struct address_space *mapping,
909 pgoff_t index, unsigned long max_scan)
910{
911 unsigned long i;
912
913 for (i = 0; i < max_scan; i++) {
0cd6144a
JW
914 struct page *page;
915
916 page = radix_tree_lookup(&mapping->page_tree, index);
917 if (!page || radix_tree_exceptional_entry(page))
e7b563bb
JW
918 break;
919 index--;
920 if (index == ULONG_MAX)
921 break;
922 }
923
924 return index;
925}
926EXPORT_SYMBOL(page_cache_prev_hole);
927
485bb99b 928/**
0cd6144a 929 * find_get_entry - find and get a page cache entry
485bb99b 930 * @mapping: the address_space to search
0cd6144a
JW
931 * @offset: the page cache index
932 *
933 * Looks up the page cache slot at @mapping & @offset. If there is a
934 * page cache page, it is returned with an increased refcount.
485bb99b 935 *
139b6a6f
JW
936 * If the slot holds a shadow entry of a previously evicted page, or a
937 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
938 *
939 * Otherwise, %NULL is returned.
1da177e4 940 */
0cd6144a 941struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1da177e4 942{
a60637c8 943 void **pagep;
1da177e4
LT
944 struct page *page;
945
a60637c8
NP
946 rcu_read_lock();
947repeat:
948 page = NULL;
949 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
950 if (pagep) {
951 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
952 if (unlikely(!page))
953 goto out;
a2c16d6c 954 if (radix_tree_exception(page)) {
8079b1c8
HD
955 if (radix_tree_deref_retry(page))
956 goto repeat;
957 /*
139b6a6f
JW
958 * A shadow entry of a recently evicted page,
959 * or a swap entry from shmem/tmpfs. Return
960 * it without attempting to raise page count.
8079b1c8
HD
961 */
962 goto out;
a2c16d6c 963 }
a60637c8
NP
964 if (!page_cache_get_speculative(page))
965 goto repeat;
966
967 /*
968 * Has the page moved?
969 * This is part of the lockless pagecache protocol. See
970 * include/linux/pagemap.h for details.
971 */
972 if (unlikely(page != *pagep)) {
973 page_cache_release(page);
974 goto repeat;
975 }
976 }
27d20fdd 977out:
a60637c8
NP
978 rcu_read_unlock();
979
1da177e4
LT
980 return page;
981}
0cd6144a 982EXPORT_SYMBOL(find_get_entry);
1da177e4 983
0cd6144a
JW
984/**
985 * find_lock_entry - locate, pin and lock a page cache entry
986 * @mapping: the address_space to search
987 * @offset: the page cache index
988 *
989 * Looks up the page cache slot at @mapping & @offset. If there is a
990 * page cache page, it is returned locked and with an increased
991 * refcount.
992 *
139b6a6f
JW
993 * If the slot holds a shadow entry of a previously evicted page, or a
994 * swap entry from shmem/tmpfs, it is returned.
0cd6144a
JW
995 *
996 * Otherwise, %NULL is returned.
997 *
998 * find_lock_entry() may sleep.
999 */
1000struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
1001{
1002 struct page *page;
1003
1da177e4 1004repeat:
0cd6144a 1005 page = find_get_entry(mapping, offset);
a2c16d6c 1006 if (page && !radix_tree_exception(page)) {
a60637c8
NP
1007 lock_page(page);
1008 /* Has the page been truncated? */
1009 if (unlikely(page->mapping != mapping)) {
1010 unlock_page(page);
1011 page_cache_release(page);
1012 goto repeat;
1da177e4 1013 }
309381fe 1014 VM_BUG_ON_PAGE(page->index != offset, page);
1da177e4 1015 }
1da177e4
LT
1016 return page;
1017}
0cd6144a
JW
1018EXPORT_SYMBOL(find_lock_entry);
1019
1020/**
2457aec6 1021 * pagecache_get_page - find and get a page reference
0cd6144a
JW
1022 * @mapping: the address_space to search
1023 * @offset: the page index
2457aec6
MG
1024 * @fgp_flags: PCG flags
1025 * @gfp_mask: gfp mask to use if a page is to be allocated
0cd6144a 1026 *
2457aec6 1027 * Looks up the page cache slot at @mapping & @offset.
1da177e4 1028 *
2457aec6 1029 * PCG flags modify how the page is returned
0cd6144a 1030 *
2457aec6
MG
1031 * FGP_ACCESSED: the page will be marked accessed
1032 * FGP_LOCK: Page is return locked
1033 * FGP_CREAT: If page is not present then a new page is allocated using
1034 * @gfp_mask and added to the page cache and the VM's LRU
1035 * list. The page is returned locked and with an increased
1036 * refcount. Otherwise, %NULL is returned.
1da177e4 1037 *
2457aec6
MG
1038 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1039 * if the GFP flags specified for FGP_CREAT are atomic.
1da177e4 1040 *
2457aec6 1041 * If there is a page cache page, it is returned with an increased refcount.
1da177e4 1042 */
2457aec6
MG
1043struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1044 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1da177e4 1045{
eb2be189 1046 struct page *page;
2457aec6 1047
1da177e4 1048repeat:
2457aec6
MG
1049 page = find_get_entry(mapping, offset);
1050 if (radix_tree_exceptional_entry(page))
1051 page = NULL;
1052 if (!page)
1053 goto no_page;
1054
1055 if (fgp_flags & FGP_LOCK) {
1056 if (fgp_flags & FGP_NOWAIT) {
1057 if (!trylock_page(page)) {
1058 page_cache_release(page);
1059 return NULL;
1060 }
1061 } else {
1062 lock_page(page);
1063 }
1064
1065 /* Has the page been truncated? */
1066 if (unlikely(page->mapping != mapping)) {
1067 unlock_page(page);
1068 page_cache_release(page);
1069 goto repeat;
1070 }
1071 VM_BUG_ON_PAGE(page->index != offset, page);
1072 }
1073
1074 if (page && (fgp_flags & FGP_ACCESSED))
1075 mark_page_accessed(page);
1076
1077no_page:
1078 if (!page && (fgp_flags & FGP_CREAT)) {
1079 int err;
1080 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1081 cache_gfp_mask |= __GFP_WRITE;
1082 if (fgp_flags & FGP_NOFS) {
1083 cache_gfp_mask &= ~__GFP_FS;
1084 radix_gfp_mask &= ~__GFP_FS;
1085 }
1086
1087 page = __page_cache_alloc(cache_gfp_mask);
eb2be189
NP
1088 if (!page)
1089 return NULL;
2457aec6
MG
1090
1091 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1092 fgp_flags |= FGP_LOCK;
1093
1094 /* Init accessed so avoit atomic mark_page_accessed later */
1095 if (fgp_flags & FGP_ACCESSED)
1096 init_page_accessed(page);
1097
1098 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
eb2be189
NP
1099 if (unlikely(err)) {
1100 page_cache_release(page);
1101 page = NULL;
1102 if (err == -EEXIST)
1103 goto repeat;
1da177e4 1104 }
1da177e4 1105 }
2457aec6 1106
1da177e4
LT
1107 return page;
1108}
2457aec6 1109EXPORT_SYMBOL(pagecache_get_page);
1da177e4 1110
0cd6144a
JW
1111/**
1112 * find_get_entries - gang pagecache lookup
1113 * @mapping: The address_space to search
1114 * @start: The starting page cache index
1115 * @nr_entries: The maximum number of entries
1116 * @entries: Where the resulting entries are placed
1117 * @indices: The cache indices corresponding to the entries in @entries
1118 *
1119 * find_get_entries() will search for and return a group of up to
1120 * @nr_entries entries in the mapping. The entries are placed at
1121 * @entries. find_get_entries() takes a reference against any actual
1122 * pages it returns.
1123 *
1124 * The search returns a group of mapping-contiguous page cache entries
1125 * with ascending indexes. There may be holes in the indices due to
1126 * not-present pages.
1127 *
139b6a6f
JW
1128 * Any shadow entries of evicted pages, or swap entries from
1129 * shmem/tmpfs, are included in the returned array.
0cd6144a
JW
1130 *
1131 * find_get_entries() returns the number of pages and shadow entries
1132 * which were found.
1133 */
1134unsigned find_get_entries(struct address_space *mapping,
1135 pgoff_t start, unsigned int nr_entries,
1136 struct page **entries, pgoff_t *indices)
1137{
1138 void **slot;
1139 unsigned int ret = 0;
1140 struct radix_tree_iter iter;
1141
1142 if (!nr_entries)
1143 return 0;
1144
1145 rcu_read_lock();
1146restart:
1147 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1148 struct page *page;
1149repeat:
1150 page = radix_tree_deref_slot(slot);
1151 if (unlikely(!page))
1152 continue;
1153 if (radix_tree_exception(page)) {
1154 if (radix_tree_deref_retry(page))
1155 goto restart;
1156 /*
139b6a6f
JW
1157 * A shadow entry of a recently evicted page,
1158 * or a swap entry from shmem/tmpfs. Return
1159 * it without attempting to raise page count.
0cd6144a
JW
1160 */
1161 goto export;
1162 }
1163 if (!page_cache_get_speculative(page))
1164 goto repeat;
1165
1166 /* Has the page moved? */
1167 if (unlikely(page != *slot)) {
1168 page_cache_release(page);
1169 goto repeat;
1170 }
1171export:
1172 indices[ret] = iter.index;
1173 entries[ret] = page;
1174 if (++ret == nr_entries)
1175 break;
1176 }
1177 rcu_read_unlock();
1178 return ret;
1179}
1180
1da177e4
LT
1181/**
1182 * find_get_pages - gang pagecache lookup
1183 * @mapping: The address_space to search
1184 * @start: The starting page index
1185 * @nr_pages: The maximum number of pages
1186 * @pages: Where the resulting pages are placed
1187 *
1188 * find_get_pages() will search for and return a group of up to
1189 * @nr_pages pages in the mapping. The pages are placed at @pages.
1190 * find_get_pages() takes a reference against the returned pages.
1191 *
1192 * The search returns a group of mapping-contiguous pages with ascending
1193 * indexes. There may be holes in the indices due to not-present pages.
1194 *
1195 * find_get_pages() returns the number of pages which were found.
1196 */
1197unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1198 unsigned int nr_pages, struct page **pages)
1199{
0fc9d104
KK
1200 struct radix_tree_iter iter;
1201 void **slot;
1202 unsigned ret = 0;
1203
1204 if (unlikely(!nr_pages))
1205 return 0;
a60637c8
NP
1206
1207 rcu_read_lock();
1208restart:
0fc9d104 1209 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
a60637c8
NP
1210 struct page *page;
1211repeat:
0fc9d104 1212 page = radix_tree_deref_slot(slot);
a60637c8
NP
1213 if (unlikely(!page))
1214 continue;
9d8aa4ea 1215
a2c16d6c 1216 if (radix_tree_exception(page)) {
8079b1c8
HD
1217 if (radix_tree_deref_retry(page)) {
1218 /*
1219 * Transient condition which can only trigger
1220 * when entry at index 0 moves out of or back
1221 * to root: none yet gotten, safe to restart.
1222 */
0fc9d104 1223 WARN_ON(iter.index);
8079b1c8
HD
1224 goto restart;
1225 }
a2c16d6c 1226 /*
139b6a6f
JW
1227 * A shadow entry of a recently evicted page,
1228 * or a swap entry from shmem/tmpfs. Skip
1229 * over it.
a2c16d6c 1230 */
8079b1c8 1231 continue;
27d20fdd 1232 }
a60637c8
NP
1233
1234 if (!page_cache_get_speculative(page))
1235 goto repeat;
1236
1237 /* Has the page moved? */
0fc9d104 1238 if (unlikely(page != *slot)) {
a60637c8
NP
1239 page_cache_release(page);
1240 goto repeat;
1241 }
1da177e4 1242
a60637c8 1243 pages[ret] = page;
0fc9d104
KK
1244 if (++ret == nr_pages)
1245 break;
a60637c8 1246 }
5b280c0c 1247
a60637c8 1248 rcu_read_unlock();
1da177e4
LT
1249 return ret;
1250}
1251
ebf43500
JA
1252/**
1253 * find_get_pages_contig - gang contiguous pagecache lookup
1254 * @mapping: The address_space to search
1255 * @index: The starting page index
1256 * @nr_pages: The maximum number of pages
1257 * @pages: Where the resulting pages are placed
1258 *
1259 * find_get_pages_contig() works exactly like find_get_pages(), except
1260 * that the returned number of pages are guaranteed to be contiguous.
1261 *
1262 * find_get_pages_contig() returns the number of pages which were found.
1263 */
1264unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1265 unsigned int nr_pages, struct page **pages)
1266{
0fc9d104
KK
1267 struct radix_tree_iter iter;
1268 void **slot;
1269 unsigned int ret = 0;
1270
1271 if (unlikely(!nr_pages))
1272 return 0;
a60637c8
NP
1273
1274 rcu_read_lock();
1275restart:
0fc9d104 1276 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
a60637c8
NP
1277 struct page *page;
1278repeat:
0fc9d104
KK
1279 page = radix_tree_deref_slot(slot);
1280 /* The hole, there no reason to continue */
a60637c8 1281 if (unlikely(!page))
0fc9d104 1282 break;
9d8aa4ea 1283
a2c16d6c 1284 if (radix_tree_exception(page)) {
8079b1c8
HD
1285 if (radix_tree_deref_retry(page)) {
1286 /*
1287 * Transient condition which can only trigger
1288 * when entry at index 0 moves out of or back
1289 * to root: none yet gotten, safe to restart.
1290 */
1291 goto restart;
1292 }
a2c16d6c 1293 /*
139b6a6f
JW
1294 * A shadow entry of a recently evicted page,
1295 * or a swap entry from shmem/tmpfs. Stop
1296 * looking for contiguous pages.
a2c16d6c 1297 */
8079b1c8 1298 break;
a2c16d6c 1299 }
ebf43500 1300
a60637c8
NP
1301 if (!page_cache_get_speculative(page))
1302 goto repeat;
1303
1304 /* Has the page moved? */
0fc9d104 1305 if (unlikely(page != *slot)) {
a60637c8
NP
1306 page_cache_release(page);
1307 goto repeat;
1308 }
1309
9cbb4cb2
NP
1310 /*
1311 * must check mapping and index after taking the ref.
1312 * otherwise we can get both false positives and false
1313 * negatives, which is just confusing to the caller.
1314 */
0fc9d104 1315 if (page->mapping == NULL || page->index != iter.index) {
9cbb4cb2
NP
1316 page_cache_release(page);
1317 break;
1318 }
1319
a60637c8 1320 pages[ret] = page;
0fc9d104
KK
1321 if (++ret == nr_pages)
1322 break;
ebf43500 1323 }
a60637c8
NP
1324 rcu_read_unlock();
1325 return ret;
ebf43500 1326}
ef71c15c 1327EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 1328
485bb99b
RD
1329/**
1330 * find_get_pages_tag - find and return pages that match @tag
1331 * @mapping: the address_space to search
1332 * @index: the starting page index
1333 * @tag: the tag index
1334 * @nr_pages: the maximum number of pages
1335 * @pages: where the resulting pages are placed
1336 *
1da177e4 1337 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 1338 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
1339 */
1340unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1341 int tag, unsigned int nr_pages, struct page **pages)
1342{
0fc9d104
KK
1343 struct radix_tree_iter iter;
1344 void **slot;
1345 unsigned ret = 0;
1346
1347 if (unlikely(!nr_pages))
1348 return 0;
a60637c8
NP
1349
1350 rcu_read_lock();
1351restart:
0fc9d104
KK
1352 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1353 &iter, *index, tag) {
a60637c8
NP
1354 struct page *page;
1355repeat:
0fc9d104 1356 page = radix_tree_deref_slot(slot);
a60637c8
NP
1357 if (unlikely(!page))
1358 continue;
9d8aa4ea 1359
a2c16d6c 1360 if (radix_tree_exception(page)) {
8079b1c8
HD
1361 if (radix_tree_deref_retry(page)) {
1362 /*
1363 * Transient condition which can only trigger
1364 * when entry at index 0 moves out of or back
1365 * to root: none yet gotten, safe to restart.
1366 */
1367 goto restart;
1368 }
a2c16d6c 1369 /*
139b6a6f
JW
1370 * A shadow entry of a recently evicted page.
1371 *
1372 * Those entries should never be tagged, but
1373 * this tree walk is lockless and the tags are
1374 * looked up in bulk, one radix tree node at a
1375 * time, so there is a sizable window for page
1376 * reclaim to evict a page we saw tagged.
1377 *
1378 * Skip over it.
a2c16d6c 1379 */
139b6a6f 1380 continue;
a2c16d6c 1381 }
a60637c8
NP
1382
1383 if (!page_cache_get_speculative(page))
1384 goto repeat;
1385
1386 /* Has the page moved? */
0fc9d104 1387 if (unlikely(page != *slot)) {
a60637c8
NP
1388 page_cache_release(page);
1389 goto repeat;
1390 }
1391
1392 pages[ret] = page;
0fc9d104
KK
1393 if (++ret == nr_pages)
1394 break;
a60637c8 1395 }
5b280c0c 1396
a60637c8 1397 rcu_read_unlock();
1da177e4 1398
1da177e4
LT
1399 if (ret)
1400 *index = pages[ret - 1]->index + 1;
a60637c8 1401
1da177e4
LT
1402 return ret;
1403}
ef71c15c 1404EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1405
76d42bd9
WF
1406/*
1407 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408 * a _large_ part of the i/o request. Imagine the worst scenario:
1409 *
1410 * ---R__________________________________________B__________
1411 * ^ reading here ^ bad block(assume 4k)
1412 *
1413 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414 * => failing the whole request => read(R) => read(R+1) =>
1415 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1418 *
1419 * It is going insane. Fix it by quickly scaling down the readahead size.
1420 */
1421static void shrink_readahead_size_eio(struct file *filp,
1422 struct file_ra_state *ra)
1423{
76d42bd9 1424 ra->ra_pages /= 4;
76d42bd9
WF
1425}
1426
485bb99b 1427/**
36e78914 1428 * do_generic_file_read - generic file read routine
485bb99b
RD
1429 * @filp: the file to read
1430 * @ppos: current file position
6e58e79d
AV
1431 * @iter: data destination
1432 * @written: already copied
485bb99b 1433 *
1da177e4 1434 * This is a generic file read routine, and uses the
485bb99b 1435 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1436 *
1437 * This is really ugly. But the goto's actually try to clarify some
1438 * of the logic when it comes to error handling etc.
1da177e4 1439 */
6e58e79d
AV
1440static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1441 struct iov_iter *iter, ssize_t written)
1da177e4 1442{
36e78914 1443 struct address_space *mapping = filp->f_mapping;
1da177e4 1444 struct inode *inode = mapping->host;
36e78914 1445 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1446 pgoff_t index;
1447 pgoff_t last_index;
1448 pgoff_t prev_index;
1449 unsigned long offset; /* offset into pagecache page */
ec0f1637 1450 unsigned int prev_offset;
6e58e79d 1451 int error = 0;
1da177e4 1452
1da177e4 1453 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1454 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1455 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
6e58e79d 1456 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1457 offset = *ppos & ~PAGE_CACHE_MASK;
1458
1da177e4
LT
1459 for (;;) {
1460 struct page *page;
57f6b96c 1461 pgoff_t end_index;
a32ea1e1 1462 loff_t isize;
1da177e4
LT
1463 unsigned long nr, ret;
1464
1da177e4 1465 cond_resched();
1da177e4
LT
1466find_page:
1467 page = find_get_page(mapping, index);
3ea89ee8 1468 if (!page) {
cf914a7d 1469 page_cache_sync_readahead(mapping,
7ff81078 1470 ra, filp,
3ea89ee8
FW
1471 index, last_index - index);
1472 page = find_get_page(mapping, index);
1473 if (unlikely(page == NULL))
1474 goto no_cached_page;
1475 }
1476 if (PageReadahead(page)) {
cf914a7d 1477 page_cache_async_readahead(mapping,
7ff81078 1478 ra, filp, page,
3ea89ee8 1479 index, last_index - index);
1da177e4 1480 }
8ab22b9a
HH
1481 if (!PageUptodate(page)) {
1482 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1483 !mapping->a_ops->is_partially_uptodate)
1484 goto page_not_up_to_date;
529ae9aa 1485 if (!trylock_page(page))
8ab22b9a 1486 goto page_not_up_to_date;
8d056cb9
DH
1487 /* Did it get truncated before we got the lock? */
1488 if (!page->mapping)
1489 goto page_not_up_to_date_locked;
8ab22b9a 1490 if (!mapping->a_ops->is_partially_uptodate(page,
6e58e79d 1491 offset, iter->count))
8ab22b9a
HH
1492 goto page_not_up_to_date_locked;
1493 unlock_page(page);
1494 }
1da177e4 1495page_ok:
a32ea1e1
N
1496 /*
1497 * i_size must be checked after we know the page is Uptodate.
1498 *
1499 * Checking i_size after the check allows us to calculate
1500 * the correct value for "nr", which means the zero-filled
1501 * part of the page is not copied back to userspace (unless
1502 * another truncate extends the file - this is desired though).
1503 */
1504
1505 isize = i_size_read(inode);
1506 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1507 if (unlikely(!isize || index > end_index)) {
1508 page_cache_release(page);
1509 goto out;
1510 }
1511
1512 /* nr is the maximum number of bytes to copy from this page */
1513 nr = PAGE_CACHE_SIZE;
1514 if (index == end_index) {
1515 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1516 if (nr <= offset) {
1517 page_cache_release(page);
1518 goto out;
1519 }
1520 }
1521 nr = nr - offset;
1da177e4
LT
1522
1523 /* If users can be writing to this page using arbitrary
1524 * virtual addresses, take care about potential aliasing
1525 * before reading the page on the kernel side.
1526 */
1527 if (mapping_writably_mapped(mapping))
1528 flush_dcache_page(page);
1529
1530 /*
ec0f1637
JK
1531 * When a sequential read accesses a page several times,
1532 * only mark it as accessed the first time.
1da177e4 1533 */
ec0f1637 1534 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1535 mark_page_accessed(page);
1536 prev_index = index;
1537
1538 /*
1539 * Ok, we have the page, and it's up-to-date, so
1540 * now we can copy it to user space...
1da177e4 1541 */
6e58e79d
AV
1542
1543 ret = copy_page_to_iter(page, offset, nr, iter);
1da177e4
LT
1544 offset += ret;
1545 index += offset >> PAGE_CACHE_SHIFT;
1546 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1547 prev_offset = offset;
1da177e4
LT
1548
1549 page_cache_release(page);
6e58e79d
AV
1550 written += ret;
1551 if (!iov_iter_count(iter))
1552 goto out;
1553 if (ret < nr) {
1554 error = -EFAULT;
1555 goto out;
1556 }
1557 continue;
1da177e4
LT
1558
1559page_not_up_to_date:
1560 /* Get exclusive access to the page ... */
85462323
ON
1561 error = lock_page_killable(page);
1562 if (unlikely(error))
1563 goto readpage_error;
1da177e4 1564
8ab22b9a 1565page_not_up_to_date_locked:
da6052f7 1566 /* Did it get truncated before we got the lock? */
1da177e4
LT
1567 if (!page->mapping) {
1568 unlock_page(page);
1569 page_cache_release(page);
1570 continue;
1571 }
1572
1573 /* Did somebody else fill it already? */
1574 if (PageUptodate(page)) {
1575 unlock_page(page);
1576 goto page_ok;
1577 }
1578
1579readpage:
91803b49
JM
1580 /*
1581 * A previous I/O error may have been due to temporary
1582 * failures, eg. multipath errors.
1583 * PG_error will be set again if readpage fails.
1584 */
1585 ClearPageError(page);
1da177e4
LT
1586 /* Start the actual read. The read will unlock the page. */
1587 error = mapping->a_ops->readpage(filp, page);
1588
994fc28c
ZB
1589 if (unlikely(error)) {
1590 if (error == AOP_TRUNCATED_PAGE) {
1591 page_cache_release(page);
6e58e79d 1592 error = 0;
994fc28c
ZB
1593 goto find_page;
1594 }
1da177e4 1595 goto readpage_error;
994fc28c 1596 }
1da177e4
LT
1597
1598 if (!PageUptodate(page)) {
85462323
ON
1599 error = lock_page_killable(page);
1600 if (unlikely(error))
1601 goto readpage_error;
1da177e4
LT
1602 if (!PageUptodate(page)) {
1603 if (page->mapping == NULL) {
1604 /*
2ecdc82e 1605 * invalidate_mapping_pages got it
1da177e4
LT
1606 */
1607 unlock_page(page);
1608 page_cache_release(page);
1609 goto find_page;
1610 }
1611 unlock_page(page);
7ff81078 1612 shrink_readahead_size_eio(filp, ra);
85462323
ON
1613 error = -EIO;
1614 goto readpage_error;
1da177e4
LT
1615 }
1616 unlock_page(page);
1617 }
1618
1da177e4
LT
1619 goto page_ok;
1620
1621readpage_error:
1622 /* UHHUH! A synchronous read error occurred. Report it */
1da177e4
LT
1623 page_cache_release(page);
1624 goto out;
1625
1626no_cached_page:
1627 /*
1628 * Ok, it wasn't cached, so we need to create a new
1629 * page..
1630 */
eb2be189
NP
1631 page = page_cache_alloc_cold(mapping);
1632 if (!page) {
6e58e79d 1633 error = -ENOMEM;
eb2be189 1634 goto out;
1da177e4 1635 }
eb2be189 1636 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1637 index, GFP_KERNEL);
1638 if (error) {
eb2be189 1639 page_cache_release(page);
6e58e79d
AV
1640 if (error == -EEXIST) {
1641 error = 0;
1da177e4 1642 goto find_page;
6e58e79d 1643 }
1da177e4
LT
1644 goto out;
1645 }
1da177e4
LT
1646 goto readpage;
1647 }
1648
1649out:
7ff81078
FW
1650 ra->prev_pos = prev_index;
1651 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1652 ra->prev_pos |= prev_offset;
1da177e4 1653
f4e6b498 1654 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1655 file_accessed(filp);
6e58e79d 1656 return written ? written : error;
1da177e4
LT
1657}
1658
0ceb3314
DM
1659/*
1660 * Performs necessary checks before doing a write
1661 * @iov: io vector request
1662 * @nr_segs: number of segments in the iovec
1663 * @count: number of bytes to write
1664 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1665 *
1666 * Adjust number of segments and amount of bytes to write (nr_segs should be
1667 * properly initialized first). Returns appropriate error code that caller
1668 * should return or zero in case that write should be allowed.
1669 */
1670int generic_segment_checks(const struct iovec *iov,
1671 unsigned long *nr_segs, size_t *count, int access_flags)
1672{
1673 unsigned long seg;
1674 size_t cnt = 0;
1675 for (seg = 0; seg < *nr_segs; seg++) {
1676 const struct iovec *iv = &iov[seg];
1677
1678 /*
1679 * If any segment has a negative length, or the cumulative
1680 * length ever wraps negative then return -EINVAL.
1681 */
1682 cnt += iv->iov_len;
1683 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1684 return -EINVAL;
1685 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1686 continue;
1687 if (seg == 0)
1688 return -EFAULT;
1689 *nr_segs = seg;
1690 cnt -= iv->iov_len; /* This segment is no good */
1691 break;
1692 }
1693 *count = cnt;
1694 return 0;
1695}
1696EXPORT_SYMBOL(generic_segment_checks);
1697
485bb99b 1698/**
b2abacf3 1699 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1700 * @iocb: kernel I/O control block
1701 * @iov: io vector request
1702 * @nr_segs: number of segments in the iovec
b2abacf3 1703 * @pos: current file position
485bb99b 1704 *
1da177e4
LT
1705 * This is the "read()" routine for all filesystems
1706 * that can use the page cache directly.
1707 */
1708ssize_t
543ade1f
BP
1709generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1710 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1711{
1712 struct file *filp = iocb->ki_filp;
1713 ssize_t retval;
1da177e4 1714 size_t count;
543ade1f 1715 loff_t *ppos = &iocb->ki_pos;
6e58e79d 1716 struct iov_iter i;
1da177e4
LT
1717
1718 count = 0;
0ceb3314
DM
1719 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1720 if (retval)
1721 return retval;
6e58e79d 1722 iov_iter_init(&i, iov, nr_segs, count, 0);
1da177e4
LT
1723
1724 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1725 if (filp->f_flags & O_DIRECT) {
543ade1f 1726 loff_t size;
1da177e4
LT
1727 struct address_space *mapping;
1728 struct inode *inode;
1729
1730 mapping = filp->f_mapping;
1731 inode = mapping->host;
1da177e4
LT
1732 if (!count)
1733 goto out; /* skip atime */
1734 size = i_size_read(inode);
9fe55eea 1735 retval = filemap_write_and_wait_range(mapping, pos,
48b47c56 1736 pos + iov_length(iov, nr_segs) - 1);
9fe55eea
SW
1737 if (!retval) {
1738 retval = mapping->a_ops->direct_IO(READ, iocb,
1739 iov, pos, nr_segs);
1740 }
1741 if (retval > 0) {
1742 *ppos = pos + retval;
1743 count -= retval;
6e58e79d
AV
1744 /*
1745 * If we did a short DIO read we need to skip the
1746 * section of the iov that we've already read data into.
1747 */
1748 iov_iter_advance(&i, retval);
9fe55eea 1749 }
66f998f6 1750
9fe55eea
SW
1751 /*
1752 * Btrfs can have a short DIO read if we encounter
1753 * compressed extents, so if there was an error, or if
1754 * we've already read everything we wanted to, or if
1755 * there was a short read because we hit EOF, go ahead
1756 * and return. Otherwise fallthrough to buffered io for
1757 * the rest of the read.
1758 */
1759 if (retval < 0 || !count || *ppos >= size) {
1760 file_accessed(filp);
1761 goto out;
0e0bcae3 1762 }
1da177e4
LT
1763 }
1764
6e58e79d 1765 retval = do_generic_file_read(filp, ppos, &i, retval);
1da177e4
LT
1766out:
1767 return retval;
1768}
1da177e4
LT
1769EXPORT_SYMBOL(generic_file_aio_read);
1770
1da177e4 1771#ifdef CONFIG_MMU
485bb99b
RD
1772/**
1773 * page_cache_read - adds requested page to the page cache if not already there
1774 * @file: file to read
1775 * @offset: page index
1776 *
1da177e4
LT
1777 * This adds the requested page to the page cache if it isn't already there,
1778 * and schedules an I/O to read in its contents from disk.
1779 */
920c7a5d 1780static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1781{
1782 struct address_space *mapping = file->f_mapping;
1783 struct page *page;
994fc28c 1784 int ret;
1da177e4 1785
994fc28c
ZB
1786 do {
1787 page = page_cache_alloc_cold(mapping);
1788 if (!page)
1789 return -ENOMEM;
1790
1791 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1792 if (ret == 0)
1793 ret = mapping->a_ops->readpage(file, page);
1794 else if (ret == -EEXIST)
1795 ret = 0; /* losing race to add is OK */
1da177e4 1796
1da177e4 1797 page_cache_release(page);
1da177e4 1798
994fc28c
ZB
1799 } while (ret == AOP_TRUNCATED_PAGE);
1800
1801 return ret;
1da177e4
LT
1802}
1803
1804#define MMAP_LOTSAMISS (100)
1805
ef00e08e
LT
1806/*
1807 * Synchronous readahead happens when we don't even find
1808 * a page in the page cache at all.
1809 */
1810static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1811 struct file_ra_state *ra,
1812 struct file *file,
1813 pgoff_t offset)
1814{
1815 unsigned long ra_pages;
1816 struct address_space *mapping = file->f_mapping;
1817
1818 /* If we don't want any read-ahead, don't bother */
64363aad 1819 if (vma->vm_flags & VM_RAND_READ)
ef00e08e 1820 return;
275b12bf
WF
1821 if (!ra->ra_pages)
1822 return;
ef00e08e 1823
64363aad 1824 if (vma->vm_flags & VM_SEQ_READ) {
7ffc59b4
WF
1825 page_cache_sync_readahead(mapping, ra, file, offset,
1826 ra->ra_pages);
ef00e08e
LT
1827 return;
1828 }
1829
207d04ba
AK
1830 /* Avoid banging the cache line if not needed */
1831 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1832 ra->mmap_miss++;
1833
1834 /*
1835 * Do we miss much more than hit in this file? If so,
1836 * stop bothering with read-ahead. It will only hurt.
1837 */
1838 if (ra->mmap_miss > MMAP_LOTSAMISS)
1839 return;
1840
d30a1100
WF
1841 /*
1842 * mmap read-around
1843 */
ef00e08e 1844 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1845 ra->start = max_t(long, 0, offset - ra_pages / 2);
1846 ra->size = ra_pages;
2cbea1d3 1847 ra->async_size = ra_pages / 4;
275b12bf 1848 ra_submit(ra, mapping, file);
ef00e08e
LT
1849}
1850
1851/*
1852 * Asynchronous readahead happens when we find the page and PG_readahead,
1853 * so we want to possibly extend the readahead further..
1854 */
1855static void do_async_mmap_readahead(struct vm_area_struct *vma,
1856 struct file_ra_state *ra,
1857 struct file *file,
1858 struct page *page,
1859 pgoff_t offset)
1860{
1861 struct address_space *mapping = file->f_mapping;
1862
1863 /* If we don't want any read-ahead, don't bother */
64363aad 1864 if (vma->vm_flags & VM_RAND_READ)
ef00e08e
LT
1865 return;
1866 if (ra->mmap_miss > 0)
1867 ra->mmap_miss--;
1868 if (PageReadahead(page))
2fad6f5d
WF
1869 page_cache_async_readahead(mapping, ra, file,
1870 page, offset, ra->ra_pages);
ef00e08e
LT
1871}
1872
485bb99b 1873/**
54cb8821 1874 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1875 * @vma: vma in which the fault was taken
1876 * @vmf: struct vm_fault containing details of the fault
485bb99b 1877 *
54cb8821 1878 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1879 * mapped memory region to read in file data during a page fault.
1880 *
1881 * The goto's are kind of ugly, but this streamlines the normal case of having
1882 * it in the page cache, and handles the special cases reasonably without
1883 * having a lot of duplicated code.
1884 */
d0217ac0 1885int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1886{
1887 int error;
54cb8821 1888 struct file *file = vma->vm_file;
1da177e4
LT
1889 struct address_space *mapping = file->f_mapping;
1890 struct file_ra_state *ra = &file->f_ra;
1891 struct inode *inode = mapping->host;
ef00e08e 1892 pgoff_t offset = vmf->pgoff;
1da177e4 1893 struct page *page;
99e3e53f 1894 loff_t size;
83c54070 1895 int ret = 0;
1da177e4 1896
99e3e53f
KS
1897 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1898 if (offset >= size >> PAGE_CACHE_SHIFT)
5307cc1a 1899 return VM_FAULT_SIGBUS;
1da177e4 1900
1da177e4 1901 /*
49426420 1902 * Do we have something in the page cache already?
1da177e4 1903 */
ef00e08e 1904 page = find_get_page(mapping, offset);
45cac65b 1905 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1da177e4 1906 /*
ef00e08e
LT
1907 * We found the page, so try async readahead before
1908 * waiting for the lock.
1da177e4 1909 */
ef00e08e 1910 do_async_mmap_readahead(vma, ra, file, page, offset);
45cac65b 1911 } else if (!page) {
ef00e08e
LT
1912 /* No page in the page cache at all */
1913 do_sync_mmap_readahead(vma, ra, file, offset);
1914 count_vm_event(PGMAJFAULT);
456f998e 1915 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1916 ret = VM_FAULT_MAJOR;
1917retry_find:
b522c94d 1918 page = find_get_page(mapping, offset);
1da177e4
LT
1919 if (!page)
1920 goto no_cached_page;
1921 }
1922
d88c0922
ML
1923 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1924 page_cache_release(page);
d065bd81 1925 return ret | VM_FAULT_RETRY;
d88c0922 1926 }
b522c94d
ML
1927
1928 /* Did it get truncated? */
1929 if (unlikely(page->mapping != mapping)) {
1930 unlock_page(page);
1931 put_page(page);
1932 goto retry_find;
1933 }
309381fe 1934 VM_BUG_ON_PAGE(page->index != offset, page);
b522c94d 1935
1da177e4 1936 /*
d00806b1
NP
1937 * We have a locked page in the page cache, now we need to check
1938 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1939 */
d00806b1 1940 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1941 goto page_not_uptodate;
1942
ef00e08e
LT
1943 /*
1944 * Found the page and have a reference on it.
1945 * We must recheck i_size under page lock.
1946 */
99e3e53f
KS
1947 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1948 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
d00806b1 1949 unlock_page(page);
745ad48e 1950 page_cache_release(page);
5307cc1a 1951 return VM_FAULT_SIGBUS;
d00806b1
NP
1952 }
1953
d0217ac0 1954 vmf->page = page;
83c54070 1955 return ret | VM_FAULT_LOCKED;
1da177e4 1956
1da177e4
LT
1957no_cached_page:
1958 /*
1959 * We're only likely to ever get here if MADV_RANDOM is in
1960 * effect.
1961 */
ef00e08e 1962 error = page_cache_read(file, offset);
1da177e4
LT
1963
1964 /*
1965 * The page we want has now been added to the page cache.
1966 * In the unlikely event that someone removed it in the
1967 * meantime, we'll just come back here and read it again.
1968 */
1969 if (error >= 0)
1970 goto retry_find;
1971
1972 /*
1973 * An error return from page_cache_read can result if the
1974 * system is low on memory, or a problem occurs while trying
1975 * to schedule I/O.
1976 */
1977 if (error == -ENOMEM)
d0217ac0
NP
1978 return VM_FAULT_OOM;
1979 return VM_FAULT_SIGBUS;
1da177e4
LT
1980
1981page_not_uptodate:
1da177e4
LT
1982 /*
1983 * Umm, take care of errors if the page isn't up-to-date.
1984 * Try to re-read it _once_. We do this synchronously,
1985 * because there really aren't any performance issues here
1986 * and we need to check for errors.
1987 */
1da177e4 1988 ClearPageError(page);
994fc28c 1989 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1990 if (!error) {
1991 wait_on_page_locked(page);
1992 if (!PageUptodate(page))
1993 error = -EIO;
1994 }
d00806b1
NP
1995 page_cache_release(page);
1996
1997 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1998 goto retry_find;
1da177e4 1999
d00806b1 2000 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 2001 shrink_readahead_size_eio(file, ra);
d0217ac0 2002 return VM_FAULT_SIGBUS;
54cb8821
NP
2003}
2004EXPORT_SYMBOL(filemap_fault);
2005
f1820361
KS
2006void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2007{
2008 struct radix_tree_iter iter;
2009 void **slot;
2010 struct file *file = vma->vm_file;
2011 struct address_space *mapping = file->f_mapping;
2012 loff_t size;
2013 struct page *page;
2014 unsigned long address = (unsigned long) vmf->virtual_address;
2015 unsigned long addr;
2016 pte_t *pte;
2017
2018 rcu_read_lock();
2019 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2020 if (iter.index > vmf->max_pgoff)
2021 break;
2022repeat:
2023 page = radix_tree_deref_slot(slot);
2024 if (unlikely(!page))
2025 goto next;
2026 if (radix_tree_exception(page)) {
2027 if (radix_tree_deref_retry(page))
2028 break;
2029 else
2030 goto next;
2031 }
2032
2033 if (!page_cache_get_speculative(page))
2034 goto repeat;
2035
2036 /* Has the page moved? */
2037 if (unlikely(page != *slot)) {
2038 page_cache_release(page);
2039 goto repeat;
2040 }
2041
2042 if (!PageUptodate(page) ||
2043 PageReadahead(page) ||
2044 PageHWPoison(page))
2045 goto skip;
2046 if (!trylock_page(page))
2047 goto skip;
2048
2049 if (page->mapping != mapping || !PageUptodate(page))
2050 goto unlock;
2051
99e3e53f
KS
2052 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2053 if (page->index >= size >> PAGE_CACHE_SHIFT)
f1820361
KS
2054 goto unlock;
2055
2056 pte = vmf->pte + page->index - vmf->pgoff;
2057 if (!pte_none(*pte))
2058 goto unlock;
2059
2060 if (file->f_ra.mmap_miss > 0)
2061 file->f_ra.mmap_miss--;
2062 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2063 do_set_pte(vma, addr, page, pte, false, false);
2064 unlock_page(page);
2065 goto next;
2066unlock:
2067 unlock_page(page);
2068skip:
2069 page_cache_release(page);
2070next:
2071 if (iter.index == vmf->max_pgoff)
2072 break;
2073 }
2074 rcu_read_unlock();
2075}
2076EXPORT_SYMBOL(filemap_map_pages);
2077
4fcf1c62
JK
2078int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2079{
2080 struct page *page = vmf->page;
496ad9aa 2081 struct inode *inode = file_inode(vma->vm_file);
4fcf1c62
JK
2082 int ret = VM_FAULT_LOCKED;
2083
14da9200 2084 sb_start_pagefault(inode->i_sb);
4fcf1c62
JK
2085 file_update_time(vma->vm_file);
2086 lock_page(page);
2087 if (page->mapping != inode->i_mapping) {
2088 unlock_page(page);
2089 ret = VM_FAULT_NOPAGE;
2090 goto out;
2091 }
14da9200
JK
2092 /*
2093 * We mark the page dirty already here so that when freeze is in
2094 * progress, we are guaranteed that writeback during freezing will
2095 * see the dirty page and writeprotect it again.
2096 */
2097 set_page_dirty(page);
1d1d1a76 2098 wait_for_stable_page(page);
4fcf1c62 2099out:
14da9200 2100 sb_end_pagefault(inode->i_sb);
4fcf1c62
JK
2101 return ret;
2102}
2103EXPORT_SYMBOL(filemap_page_mkwrite);
2104
f0f37e2f 2105const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 2106 .fault = filemap_fault,
f1820361 2107 .map_pages = filemap_map_pages,
4fcf1c62 2108 .page_mkwrite = filemap_page_mkwrite,
0b173bc4 2109 .remap_pages = generic_file_remap_pages,
1da177e4
LT
2110};
2111
2112/* This is used for a general mmap of a disk file */
2113
2114int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2115{
2116 struct address_space *mapping = file->f_mapping;
2117
2118 if (!mapping->a_ops->readpage)
2119 return -ENOEXEC;
2120 file_accessed(file);
2121 vma->vm_ops = &generic_file_vm_ops;
2122 return 0;
2123}
1da177e4
LT
2124
2125/*
2126 * This is for filesystems which do not implement ->writepage.
2127 */
2128int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2129{
2130 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2131 return -EINVAL;
2132 return generic_file_mmap(file, vma);
2133}
2134#else
2135int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2136{
2137 return -ENOSYS;
2138}
2139int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2140{
2141 return -ENOSYS;
2142}
2143#endif /* CONFIG_MMU */
2144
2145EXPORT_SYMBOL(generic_file_mmap);
2146EXPORT_SYMBOL(generic_file_readonly_mmap);
2147
67f9fd91
SL
2148static struct page *wait_on_page_read(struct page *page)
2149{
2150 if (!IS_ERR(page)) {
2151 wait_on_page_locked(page);
2152 if (!PageUptodate(page)) {
2153 page_cache_release(page);
2154 page = ERR_PTR(-EIO);
2155 }
2156 }
2157 return page;
2158}
2159
6fe6900e 2160static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 2161 pgoff_t index,
5e5358e7 2162 int (*filler)(void *, struct page *),
0531b2aa
LT
2163 void *data,
2164 gfp_t gfp)
1da177e4 2165{
eb2be189 2166 struct page *page;
1da177e4
LT
2167 int err;
2168repeat:
2169 page = find_get_page(mapping, index);
2170 if (!page) {
0531b2aa 2171 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
2172 if (!page)
2173 return ERR_PTR(-ENOMEM);
e6f67b8c 2174 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
2175 if (unlikely(err)) {
2176 page_cache_release(page);
2177 if (err == -EEXIST)
2178 goto repeat;
1da177e4 2179 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
2180 return ERR_PTR(err);
2181 }
1da177e4
LT
2182 err = filler(data, page);
2183 if (err < 0) {
2184 page_cache_release(page);
2185 page = ERR_PTR(err);
67f9fd91
SL
2186 } else {
2187 page = wait_on_page_read(page);
1da177e4
LT
2188 }
2189 }
1da177e4
LT
2190 return page;
2191}
2192
0531b2aa 2193static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 2194 pgoff_t index,
5e5358e7 2195 int (*filler)(void *, struct page *),
0531b2aa
LT
2196 void *data,
2197 gfp_t gfp)
2198
1da177e4
LT
2199{
2200 struct page *page;
2201 int err;
2202
2203retry:
0531b2aa 2204 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 2205 if (IS_ERR(page))
c855ff37 2206 return page;
1da177e4
LT
2207 if (PageUptodate(page))
2208 goto out;
2209
2210 lock_page(page);
2211 if (!page->mapping) {
2212 unlock_page(page);
2213 page_cache_release(page);
2214 goto retry;
2215 }
2216 if (PageUptodate(page)) {
2217 unlock_page(page);
2218 goto out;
2219 }
2220 err = filler(data, page);
2221 if (err < 0) {
2222 page_cache_release(page);
c855ff37 2223 return ERR_PTR(err);
67f9fd91
SL
2224 } else {
2225 page = wait_on_page_read(page);
2226 if (IS_ERR(page))
2227 return page;
1da177e4 2228 }
c855ff37 2229out:
6fe6900e
NP
2230 mark_page_accessed(page);
2231 return page;
2232}
0531b2aa
LT
2233
2234/**
67f9fd91 2235 * read_cache_page - read into page cache, fill it if needed
0531b2aa
LT
2236 * @mapping: the page's address_space
2237 * @index: the page index
2238 * @filler: function to perform the read
5e5358e7 2239 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa 2240 *
0531b2aa 2241 * Read into the page cache. If a page already exists, and PageUptodate() is
67f9fd91 2242 * not set, try to fill the page and wait for it to become unlocked.
0531b2aa
LT
2243 *
2244 * If the page does not get brought uptodate, return -EIO.
2245 */
67f9fd91 2246struct page *read_cache_page(struct address_space *mapping,
0531b2aa 2247 pgoff_t index,
5e5358e7 2248 int (*filler)(void *, struct page *),
0531b2aa
LT
2249 void *data)
2250{
2251 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2252}
67f9fd91 2253EXPORT_SYMBOL(read_cache_page);
0531b2aa
LT
2254
2255/**
2256 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2257 * @mapping: the page's address_space
2258 * @index: the page index
2259 * @gfp: the page allocator flags to use if allocating
2260 *
2261 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 2262 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
2263 *
2264 * If the page does not get brought uptodate, return -EIO.
2265 */
2266struct page *read_cache_page_gfp(struct address_space *mapping,
2267 pgoff_t index,
2268 gfp_t gfp)
2269{
2270 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2271
67f9fd91 2272 return do_read_cache_page(mapping, index, filler, NULL, gfp);
0531b2aa
LT
2273}
2274EXPORT_SYMBOL(read_cache_page_gfp);
2275
1da177e4
LT
2276/*
2277 * Performs necessary checks before doing a write
2278 *
485bb99b 2279 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2280 * Returns appropriate error code that caller should return or
2281 * zero in case that write should be allowed.
2282 */
2283inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2284{
2285 struct inode *inode = file->f_mapping->host;
59e99e5b 2286 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2287
2288 if (unlikely(*pos < 0))
2289 return -EINVAL;
2290
1da177e4
LT
2291 if (!isblk) {
2292 /* FIXME: this is for backwards compatibility with 2.4 */
2293 if (file->f_flags & O_APPEND)
2294 *pos = i_size_read(inode);
2295
2296 if (limit != RLIM_INFINITY) {
2297 if (*pos >= limit) {
2298 send_sig(SIGXFSZ, current, 0);
2299 return -EFBIG;
2300 }
2301 if (*count > limit - (typeof(limit))*pos) {
2302 *count = limit - (typeof(limit))*pos;
2303 }
2304 }
2305 }
2306
2307 /*
2308 * LFS rule
2309 */
2310 if (unlikely(*pos + *count > MAX_NON_LFS &&
2311 !(file->f_flags & O_LARGEFILE))) {
2312 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2313 return -EFBIG;
2314 }
2315 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2316 *count = MAX_NON_LFS - (unsigned long)*pos;
2317 }
2318 }
2319
2320 /*
2321 * Are we about to exceed the fs block limit ?
2322 *
2323 * If we have written data it becomes a short write. If we have
2324 * exceeded without writing data we send a signal and return EFBIG.
2325 * Linus frestrict idea will clean these up nicely..
2326 */
2327 if (likely(!isblk)) {
2328 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2329 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2330 return -EFBIG;
2331 }
2332 /* zero-length writes at ->s_maxbytes are OK */
2333 }
2334
2335 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2336 *count = inode->i_sb->s_maxbytes - *pos;
2337 } else {
9361401e 2338#ifdef CONFIG_BLOCK
1da177e4
LT
2339 loff_t isize;
2340 if (bdev_read_only(I_BDEV(inode)))
2341 return -EPERM;
2342 isize = i_size_read(inode);
2343 if (*pos >= isize) {
2344 if (*count || *pos > isize)
2345 return -ENOSPC;
2346 }
2347
2348 if (*pos + *count > isize)
2349 *count = isize - *pos;
9361401e
DH
2350#else
2351 return -EPERM;
2352#endif
1da177e4
LT
2353 }
2354 return 0;
2355}
2356EXPORT_SYMBOL(generic_write_checks);
2357
afddba49
NP
2358int pagecache_write_begin(struct file *file, struct address_space *mapping,
2359 loff_t pos, unsigned len, unsigned flags,
2360 struct page **pagep, void **fsdata)
2361{
2362 const struct address_space_operations *aops = mapping->a_ops;
2363
4e02ed4b 2364 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2365 pagep, fsdata);
afddba49
NP
2366}
2367EXPORT_SYMBOL(pagecache_write_begin);
2368
2369int pagecache_write_end(struct file *file, struct address_space *mapping,
2370 loff_t pos, unsigned len, unsigned copied,
2371 struct page *page, void *fsdata)
2372{
2373 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2374
4e02ed4b 2375 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2376}
2377EXPORT_SYMBOL(pagecache_write_end);
2378
1da177e4
LT
2379ssize_t
2380generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
5cb6c6c7 2381 unsigned long *nr_segs, loff_t pos,
1da177e4
LT
2382 size_t count, size_t ocount)
2383{
2384 struct file *file = iocb->ki_filp;
2385 struct address_space *mapping = file->f_mapping;
2386 struct inode *inode = mapping->host;
2387 ssize_t written;
a969e903
CH
2388 size_t write_len;
2389 pgoff_t end;
1da177e4
LT
2390
2391 if (count != ocount)
2392 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2393
a969e903
CH
2394 write_len = iov_length(iov, *nr_segs);
2395 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2396
48b47c56 2397 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2398 if (written)
2399 goto out;
2400
2401 /*
2402 * After a write we want buffered reads to be sure to go to disk to get
2403 * the new data. We invalidate clean cached page from the region we're
2404 * about to write. We do this *before* the write so that we can return
6ccfa806 2405 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2406 */
2407 if (mapping->nrpages) {
2408 written = invalidate_inode_pages2_range(mapping,
2409 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2410 /*
2411 * If a page can not be invalidated, return 0 to fall back
2412 * to buffered write.
2413 */
2414 if (written) {
2415 if (written == -EBUSY)
2416 return 0;
a969e903 2417 goto out;
6ccfa806 2418 }
a969e903
CH
2419 }
2420
2421 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2422
2423 /*
2424 * Finally, try again to invalidate clean pages which might have been
2425 * cached by non-direct readahead, or faulted in by get_user_pages()
2426 * if the source of the write was an mmap'ed region of the file
2427 * we're writing. Either one is a pretty crazy thing to do,
2428 * so we don't support it 100%. If this invalidation
2429 * fails, tough, the write still worked...
2430 */
2431 if (mapping->nrpages) {
2432 invalidate_inode_pages2_range(mapping,
2433 pos >> PAGE_CACHE_SHIFT, end);
2434 }
2435
1da177e4 2436 if (written > 0) {
0116651c
NK
2437 pos += written;
2438 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2439 i_size_write(inode, pos);
1da177e4
LT
2440 mark_inode_dirty(inode);
2441 }
5cb6c6c7 2442 iocb->ki_pos = pos;
1da177e4 2443 }
a969e903 2444out:
1da177e4
LT
2445 return written;
2446}
2447EXPORT_SYMBOL(generic_file_direct_write);
2448
eb2be189
NP
2449/*
2450 * Find or create a page at the given pagecache position. Return the locked
2451 * page. This function is specifically for buffered writes.
2452 */
54566b2c
NP
2453struct page *grab_cache_page_write_begin(struct address_space *mapping,
2454 pgoff_t index, unsigned flags)
eb2be189 2455{
eb2be189 2456 struct page *page;
2457aec6 2457 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
0faa70cb 2458
54566b2c 2459 if (flags & AOP_FLAG_NOFS)
2457aec6
MG
2460 fgp_flags |= FGP_NOFS;
2461
2462 page = pagecache_get_page(mapping, index, fgp_flags,
2463 mapping_gfp_mask(mapping),
2464 GFP_KERNEL);
c585a267 2465 if (page)
2457aec6 2466 wait_for_stable_page(page);
eb2be189 2467
eb2be189
NP
2468 return page;
2469}
54566b2c 2470EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2471
3b93f911 2472ssize_t generic_perform_write(struct file *file,
afddba49
NP
2473 struct iov_iter *i, loff_t pos)
2474{
2475 struct address_space *mapping = file->f_mapping;
2476 const struct address_space_operations *a_ops = mapping->a_ops;
2477 long status = 0;
2478 ssize_t written = 0;
674b892e
NP
2479 unsigned int flags = 0;
2480
2481 /*
2482 * Copies from kernel address space cannot fail (NFSD is a big user).
2483 */
2484 if (segment_eq(get_fs(), KERNEL_DS))
2485 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2486
2487 do {
2488 struct page *page;
afddba49
NP
2489 unsigned long offset; /* Offset into pagecache page */
2490 unsigned long bytes; /* Bytes to write to page */
2491 size_t copied; /* Bytes copied from user */
2492 void *fsdata;
2493
2494 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2495 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2496 iov_iter_count(i));
2497
2498again:
afddba49
NP
2499 /*
2500 * Bring in the user page that we will copy from _first_.
2501 * Otherwise there's a nasty deadlock on copying from the
2502 * same page as we're writing to, without it being marked
2503 * up-to-date.
2504 *
2505 * Not only is this an optimisation, but it is also required
2506 * to check that the address is actually valid, when atomic
2507 * usercopies are used, below.
2508 */
2509 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2510 status = -EFAULT;
2511 break;
2512 }
2513
674b892e 2514 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49 2515 &page, &fsdata);
2457aec6 2516 if (unlikely(status < 0))
afddba49
NP
2517 break;
2518
931e80e4 2519 if (mapping_writably_mapped(mapping))
2520 flush_dcache_page(page);
2521
afddba49 2522 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
afddba49
NP
2523 flush_dcache_page(page);
2524
2525 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2526 page, fsdata);
2527 if (unlikely(status < 0))
2528 break;
2529 copied = status;
2530
2531 cond_resched();
2532
124d3b70 2533 iov_iter_advance(i, copied);
afddba49
NP
2534 if (unlikely(copied == 0)) {
2535 /*
2536 * If we were unable to copy any data at all, we must
2537 * fall back to a single segment length write.
2538 *
2539 * If we didn't fallback here, we could livelock
2540 * because not all segments in the iov can be copied at
2541 * once without a pagefault.
2542 */
2543 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2544 iov_iter_single_seg_count(i));
2545 goto again;
2546 }
afddba49
NP
2547 pos += copied;
2548 written += copied;
2549
2550 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2551 if (fatal_signal_pending(current)) {
2552 status = -EINTR;
2553 break;
2554 }
afddba49
NP
2555 } while (iov_iter_count(i));
2556
2557 return written ? written : status;
2558}
3b93f911 2559EXPORT_SYMBOL(generic_perform_write);
1da177e4 2560
e4dd9de3
JK
2561/**
2562 * __generic_file_aio_write - write data to a file
2563 * @iocb: IO state structure (file, offset, etc.)
2564 * @iov: vector with data to write
2565 * @nr_segs: number of segments in the vector
e4dd9de3
JK
2566 *
2567 * This function does all the work needed for actually writing data to a
2568 * file. It does all basic checks, removes SUID from the file, updates
2569 * modification times and calls proper subroutines depending on whether we
2570 * do direct IO or a standard buffered write.
2571 *
2572 * It expects i_mutex to be grabbed unless we work on a block device or similar
2573 * object which does not need locking at all.
2574 *
2575 * This function does *not* take care of syncing data in case of O_SYNC write.
2576 * A caller has to handle it. This is mainly due to the fact that we want to
2577 * avoid syncing under i_mutex.
2578 */
2579ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
41fc56d5 2580 unsigned long nr_segs)
1da177e4
LT
2581{
2582 struct file *file = iocb->ki_filp;
fb5527e6 2583 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2584 size_t ocount; /* original count */
2585 size_t count; /* after file limit checks */
2586 struct inode *inode = mapping->host;
41fc56d5 2587 loff_t pos = iocb->ki_pos;
3b93f911 2588 ssize_t written = 0;
1da177e4 2589 ssize_t err;
3b93f911
AV
2590 ssize_t status;
2591 struct iov_iter from;
1da177e4
LT
2592
2593 ocount = 0;
0ceb3314
DM
2594 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2595 if (err)
2596 return err;
1da177e4
LT
2597
2598 count = ocount;
1da177e4 2599
1da177e4
LT
2600 /* We can write back this queue in page reclaim */
2601 current->backing_dev_info = mapping->backing_dev_info;
1da177e4
LT
2602 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2603 if (err)
2604 goto out;
2605
2606 if (count == 0)
2607 goto out;
2608
2f1936b8 2609 err = file_remove_suid(file);
1da177e4
LT
2610 if (err)
2611 goto out;
2612
c3b2da31
JB
2613 err = file_update_time(file);
2614 if (err)
2615 goto out;
1da177e4 2616
3b93f911
AV
2617 iov_iter_init(&from, iov, nr_segs, count, 0);
2618
1da177e4
LT
2619 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2620 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6 2621 loff_t endbyte;
fb5527e6 2622
3b93f911 2623 written = generic_file_direct_write(iocb, iov, &from.nr_segs, pos,
5cb6c6c7 2624 count, ocount);
1da177e4
LT
2625 if (written < 0 || written == count)
2626 goto out;
3b93f911
AV
2627 iov_iter_advance(&from, written);
2628
1da177e4
LT
2629 /*
2630 * direct-io write to a hole: fall through to buffered I/O
2631 * for completing the rest of the request.
2632 */
2633 pos += written;
2634 count -= written;
3b93f911
AV
2635
2636 status = generic_perform_write(file, &from, pos);
fb5527e6 2637 /*
3b93f911 2638 * If generic_perform_write() returned a synchronous error
fb5527e6
JM
2639 * then we want to return the number of bytes which were
2640 * direct-written, or the error code if that was zero. Note
2641 * that this differs from normal direct-io semantics, which
2642 * will return -EFOO even if some bytes were written.
2643 */
3b93f911
AV
2644 if (unlikely(status < 0) && !written) {
2645 err = status;
fb5527e6
JM
2646 goto out;
2647 }
3b93f911 2648 iocb->ki_pos = pos + status;
fb5527e6
JM
2649 /*
2650 * We need to ensure that the page cache pages are written to
2651 * disk and invalidated to preserve the expected O_DIRECT
2652 * semantics.
2653 */
3b93f911 2654 endbyte = pos + status - 1;
c05c4edd 2655 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6 2656 if (err == 0) {
3b93f911 2657 written += status;
fb5527e6
JM
2658 invalidate_mapping_pages(mapping,
2659 pos >> PAGE_CACHE_SHIFT,
2660 endbyte >> PAGE_CACHE_SHIFT);
2661 } else {
2662 /*
2663 * We don't know how much we wrote, so just return
2664 * the number of bytes which were direct-written
2665 */
2666 }
2667 } else {
3b93f911
AV
2668 written = generic_perform_write(file, &from, pos);
2669 if (likely(written >= 0))
2670 iocb->ki_pos = pos + written;
fb5527e6 2671 }
1da177e4
LT
2672out:
2673 current->backing_dev_info = NULL;
2674 return written ? written : err;
2675}
e4dd9de3
JK
2676EXPORT_SYMBOL(__generic_file_aio_write);
2677
e4dd9de3
JK
2678/**
2679 * generic_file_aio_write - write data to a file
2680 * @iocb: IO state structure
2681 * @iov: vector with data to write
2682 * @nr_segs: number of segments in the vector
2683 * @pos: position in file where to write
2684 *
2685 * This is a wrapper around __generic_file_aio_write() to be used by most
2686 * filesystems. It takes care of syncing the file in case of O_SYNC file
2687 * and acquires i_mutex as needed.
2688 */
027445c3
BP
2689ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2690 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2691{
2692 struct file *file = iocb->ki_filp;
148f948b 2693 struct inode *inode = file->f_mapping->host;
1da177e4 2694 ssize_t ret;
1da177e4
LT
2695
2696 BUG_ON(iocb->ki_pos != pos);
2697
1b1dcc1b 2698 mutex_lock(&inode->i_mutex);
41fc56d5 2699 ret = __generic_file_aio_write(iocb, iov, nr_segs);
1b1dcc1b 2700 mutex_unlock(&inode->i_mutex);
1da177e4 2701
02afc27f 2702 if (ret > 0) {
1da177e4
LT
2703 ssize_t err;
2704
d311d79d
AV
2705 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2706 if (err < 0)
1da177e4
LT
2707 ret = err;
2708 }
2709 return ret;
2710}
2711EXPORT_SYMBOL(generic_file_aio_write);
2712
cf9a2ae8
DH
2713/**
2714 * try_to_release_page() - release old fs-specific metadata on a page
2715 *
2716 * @page: the page which the kernel is trying to free
2717 * @gfp_mask: memory allocation flags (and I/O mode)
2718 *
2719 * The address_space is to try to release any data against the page
2720 * (presumably at page->private). If the release was successful, return `1'.
2721 * Otherwise return zero.
2722 *
266cf658
DH
2723 * This may also be called if PG_fscache is set on a page, indicating that the
2724 * page is known to the local caching routines.
2725 *
cf9a2ae8 2726 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2727 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2728 *
cf9a2ae8
DH
2729 */
2730int try_to_release_page(struct page *page, gfp_t gfp_mask)
2731{
2732 struct address_space * const mapping = page->mapping;
2733
2734 BUG_ON(!PageLocked(page));
2735 if (PageWriteback(page))
2736 return 0;
2737
2738 if (mapping && mapping->a_ops->releasepage)
2739 return mapping->a_ops->releasepage(page, gfp_mask);
2740 return try_to_free_buffers(page);
2741}
2742
2743EXPORT_SYMBOL(try_to_release_page);