]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
mm: speculative page references
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
1da177e4
LT
12#include <linux/module.h>
13#include <linux/slab.h>
14#include <linux/compiler.h>
15#include <linux/fs.h>
c22ce143 16#include <linux/uaccess.h>
1da177e4 17#include <linux/aio.h>
c59ede7b 18#include <linux/capability.h>
1da177e4
LT
19#include <linux/kernel_stat.h>
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
0f8053a5
NP
36#include "internal.h"
37
1da177e4 38/*
1da177e4
LT
39 * FIXME: remove all knowledge of the buffer layer from the core VM
40 */
41#include <linux/buffer_head.h> /* for generic_osync_inode */
42
1da177e4
LT
43#include <asm/mman.h>
44
5ce7852c 45
1da177e4
LT
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
61 * ->i_mmap_lock (vmtruncate)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
1da177e4
LT
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
1b1dcc1b 80 * ->i_mutex
1da177e4
LT
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
b8072f09 91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 92 *
b8072f09 93 * ->page_table_lock or pte_lock
5d337b91 94 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
107 */
108
109/*
110 * Remove a page from the page cache and free it. Caller has to make
111 * sure the page is locked and that nobody else uses it - or that usage
112 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
113 */
114void __remove_from_page_cache(struct page *page)
115{
116 struct address_space *mapping = page->mapping;
117
69029cd5 118 mem_cgroup_uncharge_cache_page(page);
1da177e4
LT
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
347ce434 122 __dec_zone_page_state(page, NR_FILE_PAGES);
45426812 123 BUG_ON(page_mapped(page));
3a692790
LT
124
125 /*
126 * Some filesystems seem to re-dirty the page even after
127 * the VM has canceled the dirty bit (eg ext3 journaling).
128 *
129 * Fix it up by doing a final dirty accounting check after
130 * having removed the page entirely.
131 */
132 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
133 dec_zone_page_state(page, NR_FILE_DIRTY);
134 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
135 }
1da177e4
LT
136}
137
138void remove_from_page_cache(struct page *page)
139{
140 struct address_space *mapping = page->mapping;
141
cd7619d6 142 BUG_ON(!PageLocked(page));
1da177e4
LT
143
144 write_lock_irq(&mapping->tree_lock);
145 __remove_from_page_cache(page);
146 write_unlock_irq(&mapping->tree_lock);
147}
148
149static int sync_page(void *word)
150{
151 struct address_space *mapping;
152 struct page *page;
153
07808b74 154 page = container_of((unsigned long *)word, struct page, flags);
1da177e4
LT
155
156 /*
dd1d5afc
WLII
157 * page_mapping() is being called without PG_locked held.
158 * Some knowledge of the state and use of the page is used to
159 * reduce the requirements down to a memory barrier.
160 * The danger here is of a stale page_mapping() return value
161 * indicating a struct address_space different from the one it's
162 * associated with when it is associated with one.
163 * After smp_mb(), it's either the correct page_mapping() for
164 * the page, or an old page_mapping() and the page's own
165 * page_mapping() has gone NULL.
166 * The ->sync_page() address_space operation must tolerate
167 * page_mapping() going NULL. By an amazing coincidence,
168 * this comes about because none of the users of the page
169 * in the ->sync_page() methods make essential use of the
170 * page_mapping(), merely passing the page down to the backing
171 * device's unplug functions when it's non-NULL, which in turn
4c21e2f2 172 * ignore it for all cases but swap, where only page_private(page) is
dd1d5afc
WLII
173 * of interest. When page_mapping() does go NULL, the entire
174 * call stack gracefully ignores the page and returns.
175 * -- wli
1da177e4
LT
176 */
177 smp_mb();
178 mapping = page_mapping(page);
179 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
180 mapping->a_ops->sync_page(page);
181 io_schedule();
182 return 0;
183}
184
2687a356
MW
185static int sync_page_killable(void *word)
186{
187 sync_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189}
190
1da177e4 191/**
485bb99b 192 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
193 * @mapping: address space structure to write
194 * @start: offset in bytes where the range starts
469eb4d0 195 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 196 * @sync_mode: enable synchronous operation
1da177e4 197 *
485bb99b
RD
198 * Start writeback against all of a mapping's dirty pages that lie
199 * within the byte offsets <start, end> inclusive.
200 *
1da177e4 201 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 202 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
203 * these two operations is that if a dirty page/buffer is encountered, it must
204 * be waited upon, and not just skipped over.
205 */
ebcf28e1
AM
206int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
207 loff_t end, int sync_mode)
1da177e4
LT
208{
209 int ret;
210 struct writeback_control wbc = {
211 .sync_mode = sync_mode,
212 .nr_to_write = mapping->nrpages * 2,
111ebb6e
OH
213 .range_start = start,
214 .range_end = end,
1da177e4
LT
215 };
216
217 if (!mapping_cap_writeback_dirty(mapping))
218 return 0;
219
220 ret = do_writepages(mapping, &wbc);
221 return ret;
222}
223
224static inline int __filemap_fdatawrite(struct address_space *mapping,
225 int sync_mode)
226{
111ebb6e 227 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
228}
229
230int filemap_fdatawrite(struct address_space *mapping)
231{
232 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
233}
234EXPORT_SYMBOL(filemap_fdatawrite);
235
f4c0a0fd 236int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 237 loff_t end)
1da177e4
LT
238{
239 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
240}
f4c0a0fd 241EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 242
485bb99b
RD
243/**
244 * filemap_flush - mostly a non-blocking flush
245 * @mapping: target address_space
246 *
1da177e4
LT
247 * This is a mostly non-blocking flush. Not suitable for data-integrity
248 * purposes - I/O may not be started against all dirty pages.
249 */
250int filemap_flush(struct address_space *mapping)
251{
252 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
253}
254EXPORT_SYMBOL(filemap_flush);
255
485bb99b
RD
256/**
257 * wait_on_page_writeback_range - wait for writeback to complete
258 * @mapping: target address_space
259 * @start: beginning page index
260 * @end: ending page index
261 *
1da177e4
LT
262 * Wait for writeback to complete against pages indexed by start->end
263 * inclusive
264 */
ebcf28e1 265int wait_on_page_writeback_range(struct address_space *mapping,
1da177e4
LT
266 pgoff_t start, pgoff_t end)
267{
268 struct pagevec pvec;
269 int nr_pages;
270 int ret = 0;
271 pgoff_t index;
272
273 if (end < start)
274 return 0;
275
276 pagevec_init(&pvec, 0);
277 index = start;
278 while ((index <= end) &&
279 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
280 PAGECACHE_TAG_WRITEBACK,
281 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
282 unsigned i;
283
284 for (i = 0; i < nr_pages; i++) {
285 struct page *page = pvec.pages[i];
286
287 /* until radix tree lookup accepts end_index */
288 if (page->index > end)
289 continue;
290
291 wait_on_page_writeback(page);
292 if (PageError(page))
293 ret = -EIO;
294 }
295 pagevec_release(&pvec);
296 cond_resched();
297 }
298
299 /* Check for outstanding write errors */
300 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
301 ret = -ENOSPC;
302 if (test_and_clear_bit(AS_EIO, &mapping->flags))
303 ret = -EIO;
304
305 return ret;
306}
307
485bb99b
RD
308/**
309 * sync_page_range - write and wait on all pages in the passed range
310 * @inode: target inode
311 * @mapping: target address_space
312 * @pos: beginning offset in pages to write
313 * @count: number of bytes to write
314 *
1da177e4
LT
315 * Write and wait upon all the pages in the passed range. This is a "data
316 * integrity" operation. It waits upon in-flight writeout before starting and
317 * waiting upon new writeout. If there was an IO error, return it.
318 *
1b1dcc1b 319 * We need to re-take i_mutex during the generic_osync_inode list walk because
1da177e4
LT
320 * it is otherwise livelockable.
321 */
322int sync_page_range(struct inode *inode, struct address_space *mapping,
268fc16e 323 loff_t pos, loff_t count)
1da177e4
LT
324{
325 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
326 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
327 int ret;
328
329 if (!mapping_cap_writeback_dirty(mapping) || !count)
330 return 0;
331 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
332 if (ret == 0) {
1b1dcc1b 333 mutex_lock(&inode->i_mutex);
1da177e4 334 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1b1dcc1b 335 mutex_unlock(&inode->i_mutex);
1da177e4
LT
336 }
337 if (ret == 0)
338 ret = wait_on_page_writeback_range(mapping, start, end);
339 return ret;
340}
341EXPORT_SYMBOL(sync_page_range);
342
485bb99b 343/**
7682486b 344 * sync_page_range_nolock - write & wait on all pages in the passed range without locking
485bb99b
RD
345 * @inode: target inode
346 * @mapping: target address_space
347 * @pos: beginning offset in pages to write
348 * @count: number of bytes to write
349 *
72fd4a35 350 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
1da177e4
LT
351 * as it forces O_SYNC writers to different parts of the same file
352 * to be serialised right until io completion.
353 */
268fc16e
OH
354int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
355 loff_t pos, loff_t count)
1da177e4
LT
356{
357 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
358 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
359 int ret;
360
361 if (!mapping_cap_writeback_dirty(mapping) || !count)
362 return 0;
363 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
364 if (ret == 0)
365 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
366 if (ret == 0)
367 ret = wait_on_page_writeback_range(mapping, start, end);
368 return ret;
369}
268fc16e 370EXPORT_SYMBOL(sync_page_range_nolock);
1da177e4
LT
371
372/**
485bb99b 373 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 374 * @mapping: address space structure to wait for
485bb99b
RD
375 *
376 * Walk the list of under-writeback pages of the given address space
377 * and wait for all of them.
1da177e4
LT
378 */
379int filemap_fdatawait(struct address_space *mapping)
380{
381 loff_t i_size = i_size_read(mapping->host);
382
383 if (i_size == 0)
384 return 0;
385
386 return wait_on_page_writeback_range(mapping, 0,
387 (i_size - 1) >> PAGE_CACHE_SHIFT);
388}
389EXPORT_SYMBOL(filemap_fdatawait);
390
391int filemap_write_and_wait(struct address_space *mapping)
392{
28fd1298 393 int err = 0;
1da177e4
LT
394
395 if (mapping->nrpages) {
28fd1298
OH
396 err = filemap_fdatawrite(mapping);
397 /*
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
402 */
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
407 }
1da177e4 408 }
28fd1298 409 return err;
1da177e4 410}
28fd1298 411EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 412
485bb99b
RD
413/**
414 * filemap_write_and_wait_range - write out & wait on a file range
415 * @mapping: the address_space for the pages
416 * @lstart: offset in bytes where the range starts
417 * @lend: offset in bytes where the range ends (inclusive)
418 *
469eb4d0
AM
419 * Write out and wait upon file offsets lstart->lend, inclusive.
420 *
421 * Note that `lend' is inclusive (describes the last byte to be written) so
422 * that this function can be used to write to the very end-of-file (end = -1).
423 */
1da177e4
LT
424int filemap_write_and_wait_range(struct address_space *mapping,
425 loff_t lstart, loff_t lend)
426{
28fd1298 427 int err = 0;
1da177e4
LT
428
429 if (mapping->nrpages) {
28fd1298
OH
430 err = __filemap_fdatawrite_range(mapping, lstart, lend,
431 WB_SYNC_ALL);
432 /* See comment of filemap_write_and_wait() */
433 if (err != -EIO) {
434 int err2 = wait_on_page_writeback_range(mapping,
435 lstart >> PAGE_CACHE_SHIFT,
436 lend >> PAGE_CACHE_SHIFT);
437 if (!err)
438 err = err2;
439 }
1da177e4 440 }
28fd1298 441 return err;
1da177e4
LT
442}
443
485bb99b 444/**
e286781d 445 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
446 * @page: page to add
447 * @mapping: the page's address_space
448 * @offset: page index
449 * @gfp_mask: page allocation mode
450 *
e286781d 451 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
452 * This function does not add the page to the LRU. The caller must do that.
453 */
e286781d 454int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 455 pgoff_t offset, gfp_t gfp_mask)
1da177e4 456{
e286781d
NP
457 int error;
458
459 VM_BUG_ON(!PageLocked(page));
460
461 error = mem_cgroup_cache_charge(page, current->mm,
4c6bc8dd 462 gfp_mask & ~__GFP_HIGHMEM);
35c754d7
BS
463 if (error)
464 goto out;
1da177e4 465
35c754d7 466 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 467 if (error == 0) {
e286781d
NP
468 page_cache_get(page);
469 page->mapping = mapping;
470 page->index = offset;
471
1da177e4
LT
472 write_lock_irq(&mapping->tree_lock);
473 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 474 if (likely(!error)) {
1da177e4 475 mapping->nrpages++;
347ce434 476 __inc_zone_page_state(page, NR_FILE_PAGES);
e286781d
NP
477 } else {
478 page->mapping = NULL;
69029cd5 479 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
480 page_cache_release(page);
481 }
8a9f3ccd 482
1da177e4
LT
483 write_unlock_irq(&mapping->tree_lock);
484 radix_tree_preload_end();
35c754d7 485 } else
69029cd5 486 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 487out:
1da177e4
LT
488 return error;
489}
e286781d 490EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
491
492int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 493 pgoff_t offset, gfp_t gfp_mask)
1da177e4
LT
494{
495 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
496 if (ret == 0)
497 lru_cache_add(page);
498 return ret;
499}
500
44110fe3 501#ifdef CONFIG_NUMA
2ae88149 502struct page *__page_cache_alloc(gfp_t gfp)
44110fe3
PJ
503{
504 if (cpuset_do_page_mem_spread()) {
505 int n = cpuset_mem_spread_node();
2ae88149 506 return alloc_pages_node(n, gfp, 0);
44110fe3 507 }
2ae88149 508 return alloc_pages(gfp, 0);
44110fe3 509}
2ae88149 510EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
511#endif
512
db37648c
NP
513static int __sleep_on_page_lock(void *word)
514{
515 io_schedule();
516 return 0;
517}
518
1da177e4
LT
519/*
520 * In order to wait for pages to become available there must be
521 * waitqueues associated with pages. By using a hash table of
522 * waitqueues where the bucket discipline is to maintain all
523 * waiters on the same queue and wake all when any of the pages
524 * become available, and for the woken contexts to check to be
525 * sure the appropriate page became available, this saves space
526 * at a cost of "thundering herd" phenomena during rare hash
527 * collisions.
528 */
529static wait_queue_head_t *page_waitqueue(struct page *page)
530{
531 const struct zone *zone = page_zone(page);
532
533 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
534}
535
536static inline void wake_up_page(struct page *page, int bit)
537{
538 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
539}
540
920c7a5d 541void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
542{
543 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
544
545 if (test_bit(bit_nr, &page->flags))
546 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
547 TASK_UNINTERRUPTIBLE);
548}
549EXPORT_SYMBOL(wait_on_page_bit);
550
551/**
485bb99b 552 * unlock_page - unlock a locked page
1da177e4
LT
553 * @page: the page
554 *
555 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
556 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
557 * mechananism between PageLocked pages and PageWriteback pages is shared.
558 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
559 *
560 * The first mb is necessary to safely close the critical section opened by the
561 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
562 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
563 * parallel wait_on_page_locked()).
564 */
920c7a5d 565void unlock_page(struct page *page)
1da177e4
LT
566{
567 smp_mb__before_clear_bit();
568 if (!TestClearPageLocked(page))
569 BUG();
570 smp_mb__after_clear_bit();
571 wake_up_page(page, PG_locked);
572}
573EXPORT_SYMBOL(unlock_page);
574
485bb99b
RD
575/**
576 * end_page_writeback - end writeback against a page
577 * @page: the page
1da177e4
LT
578 */
579void end_page_writeback(struct page *page)
580{
ac6aadb2
MS
581 if (TestClearPageReclaim(page))
582 rotate_reclaimable_page(page);
583
584 if (!test_clear_page_writeback(page))
585 BUG();
586
1da177e4
LT
587 smp_mb__after_clear_bit();
588 wake_up_page(page, PG_writeback);
589}
590EXPORT_SYMBOL(end_page_writeback);
591
485bb99b
RD
592/**
593 * __lock_page - get a lock on the page, assuming we need to sleep to get it
594 * @page: the page to lock
1da177e4 595 *
485bb99b 596 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
1da177e4
LT
597 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
598 * chances are that on the second loop, the block layer's plug list is empty,
599 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
600 */
920c7a5d 601void __lock_page(struct page *page)
1da177e4
LT
602{
603 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
604
605 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
606 TASK_UNINTERRUPTIBLE);
607}
608EXPORT_SYMBOL(__lock_page);
609
b5606c2d 610int __lock_page_killable(struct page *page)
2687a356
MW
611{
612 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
613
614 return __wait_on_bit_lock(page_waitqueue(page), &wait,
615 sync_page_killable, TASK_KILLABLE);
616}
617
7682486b
RD
618/**
619 * __lock_page_nosync - get a lock on the page, without calling sync_page()
620 * @page: the page to lock
621 *
db37648c
NP
622 * Variant of lock_page that does not require the caller to hold a reference
623 * on the page's mapping.
624 */
920c7a5d 625void __lock_page_nosync(struct page *page)
db37648c
NP
626{
627 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
628 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
629 TASK_UNINTERRUPTIBLE);
630}
631
485bb99b
RD
632/**
633 * find_get_page - find and get a page reference
634 * @mapping: the address_space to search
635 * @offset: the page index
636 *
da6052f7
NP
637 * Is there a pagecache struct page at the given (mapping, offset) tuple?
638 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 639 */
57f6b96c 640struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
641{
642 struct page *page;
643
644 read_lock_irq(&mapping->tree_lock);
645 page = radix_tree_lookup(&mapping->page_tree, offset);
646 if (page)
647 page_cache_get(page);
648 read_unlock_irq(&mapping->tree_lock);
649 return page;
650}
1da177e4
LT
651EXPORT_SYMBOL(find_get_page);
652
1da177e4
LT
653/**
654 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
655 * @mapping: the address_space to search
656 * @offset: the page index
1da177e4
LT
657 *
658 * Locates the desired pagecache page, locks it, increments its reference
659 * count and returns its address.
660 *
661 * Returns zero if the page was not present. find_lock_page() may sleep.
662 */
663struct page *find_lock_page(struct address_space *mapping,
57f6b96c 664 pgoff_t offset)
1da177e4
LT
665{
666 struct page *page;
667
1da177e4 668repeat:
45726cb4 669 read_lock_irq(&mapping->tree_lock);
1da177e4
LT
670 page = radix_tree_lookup(&mapping->page_tree, offset);
671 if (page) {
672 page_cache_get(page);
673 if (TestSetPageLocked(page)) {
674 read_unlock_irq(&mapping->tree_lock);
bbfbb7ce 675 __lock_page(page);
1da177e4
LT
676
677 /* Has the page been truncated while we slept? */
45726cb4 678 if (unlikely(page->mapping != mapping)) {
1da177e4
LT
679 unlock_page(page);
680 page_cache_release(page);
681 goto repeat;
682 }
45726cb4
NP
683 VM_BUG_ON(page->index != offset);
684 goto out;
1da177e4
LT
685 }
686 }
687 read_unlock_irq(&mapping->tree_lock);
45726cb4 688out:
1da177e4
LT
689 return page;
690}
1da177e4
LT
691EXPORT_SYMBOL(find_lock_page);
692
693/**
694 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
695 * @mapping: the page's address_space
696 * @index: the page's index into the mapping
697 * @gfp_mask: page allocation mode
1da177e4
LT
698 *
699 * Locates a page in the pagecache. If the page is not present, a new page
700 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
701 * LRU list. The returned page is locked and has its reference count
702 * incremented.
703 *
704 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
705 * allocation!
706 *
707 * find_or_create_page() returns the desired page's address, or zero on
708 * memory exhaustion.
709 */
710struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 711 pgoff_t index, gfp_t gfp_mask)
1da177e4 712{
eb2be189 713 struct page *page;
1da177e4
LT
714 int err;
715repeat:
716 page = find_lock_page(mapping, index);
717 if (!page) {
eb2be189
NP
718 page = __page_cache_alloc(gfp_mask);
719 if (!page)
720 return NULL;
721 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
722 if (unlikely(err)) {
723 page_cache_release(page);
724 page = NULL;
725 if (err == -EEXIST)
726 goto repeat;
1da177e4 727 }
1da177e4 728 }
1da177e4
LT
729 return page;
730}
1da177e4
LT
731EXPORT_SYMBOL(find_or_create_page);
732
733/**
734 * find_get_pages - gang pagecache lookup
735 * @mapping: The address_space to search
736 * @start: The starting page index
737 * @nr_pages: The maximum number of pages
738 * @pages: Where the resulting pages are placed
739 *
740 * find_get_pages() will search for and return a group of up to
741 * @nr_pages pages in the mapping. The pages are placed at @pages.
742 * find_get_pages() takes a reference against the returned pages.
743 *
744 * The search returns a group of mapping-contiguous pages with ascending
745 * indexes. There may be holes in the indices due to not-present pages.
746 *
747 * find_get_pages() returns the number of pages which were found.
748 */
749unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
750 unsigned int nr_pages, struct page **pages)
751{
752 unsigned int i;
753 unsigned int ret;
754
755 read_lock_irq(&mapping->tree_lock);
756 ret = radix_tree_gang_lookup(&mapping->page_tree,
757 (void **)pages, start, nr_pages);
758 for (i = 0; i < ret; i++)
759 page_cache_get(pages[i]);
760 read_unlock_irq(&mapping->tree_lock);
761 return ret;
762}
763
ebf43500
JA
764/**
765 * find_get_pages_contig - gang contiguous pagecache lookup
766 * @mapping: The address_space to search
767 * @index: The starting page index
768 * @nr_pages: The maximum number of pages
769 * @pages: Where the resulting pages are placed
770 *
771 * find_get_pages_contig() works exactly like find_get_pages(), except
772 * that the returned number of pages are guaranteed to be contiguous.
773 *
774 * find_get_pages_contig() returns the number of pages which were found.
775 */
776unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
777 unsigned int nr_pages, struct page **pages)
778{
779 unsigned int i;
780 unsigned int ret;
781
782 read_lock_irq(&mapping->tree_lock);
783 ret = radix_tree_gang_lookup(&mapping->page_tree,
784 (void **)pages, index, nr_pages);
785 for (i = 0; i < ret; i++) {
786 if (pages[i]->mapping == NULL || pages[i]->index != index)
787 break;
788
789 page_cache_get(pages[i]);
790 index++;
791 }
792 read_unlock_irq(&mapping->tree_lock);
793 return i;
794}
ef71c15c 795EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 796
485bb99b
RD
797/**
798 * find_get_pages_tag - find and return pages that match @tag
799 * @mapping: the address_space to search
800 * @index: the starting page index
801 * @tag: the tag index
802 * @nr_pages: the maximum number of pages
803 * @pages: where the resulting pages are placed
804 *
1da177e4 805 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 806 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
807 */
808unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
809 int tag, unsigned int nr_pages, struct page **pages)
810{
811 unsigned int i;
812 unsigned int ret;
813
814 read_lock_irq(&mapping->tree_lock);
815 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
816 (void **)pages, *index, nr_pages, tag);
817 for (i = 0; i < ret; i++)
818 page_cache_get(pages[i]);
819 if (ret)
820 *index = pages[ret - 1]->index + 1;
821 read_unlock_irq(&mapping->tree_lock);
822 return ret;
823}
ef71c15c 824EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 825
485bb99b
RD
826/**
827 * grab_cache_page_nowait - returns locked page at given index in given cache
828 * @mapping: target address_space
829 * @index: the page index
830 *
72fd4a35 831 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
832 * This is intended for speculative data generators, where the data can
833 * be regenerated if the page couldn't be grabbed. This routine should
834 * be safe to call while holding the lock for another page.
835 *
836 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
837 * and deadlock against the caller's locked page.
838 */
839struct page *
57f6b96c 840grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
841{
842 struct page *page = find_get_page(mapping, index);
1da177e4
LT
843
844 if (page) {
845 if (!TestSetPageLocked(page))
846 return page;
847 page_cache_release(page);
848 return NULL;
849 }
2ae88149
NP
850 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
851 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
1da177e4
LT
852 page_cache_release(page);
853 page = NULL;
854 }
855 return page;
856}
1da177e4
LT
857EXPORT_SYMBOL(grab_cache_page_nowait);
858
76d42bd9
WF
859/*
860 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
861 * a _large_ part of the i/o request. Imagine the worst scenario:
862 *
863 * ---R__________________________________________B__________
864 * ^ reading here ^ bad block(assume 4k)
865 *
866 * read(R) => miss => readahead(R...B) => media error => frustrating retries
867 * => failing the whole request => read(R) => read(R+1) =>
868 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
869 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
870 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
871 *
872 * It is going insane. Fix it by quickly scaling down the readahead size.
873 */
874static void shrink_readahead_size_eio(struct file *filp,
875 struct file_ra_state *ra)
876{
877 if (!ra->ra_pages)
878 return;
879
880 ra->ra_pages /= 4;
76d42bd9
WF
881}
882
485bb99b 883/**
36e78914 884 * do_generic_file_read - generic file read routine
485bb99b
RD
885 * @filp: the file to read
886 * @ppos: current file position
887 * @desc: read_descriptor
888 * @actor: read method
889 *
1da177e4 890 * This is a generic file read routine, and uses the
485bb99b 891 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
892 *
893 * This is really ugly. But the goto's actually try to clarify some
894 * of the logic when it comes to error handling etc.
1da177e4 895 */
36e78914
CH
896static void do_generic_file_read(struct file *filp, loff_t *ppos,
897 read_descriptor_t *desc, read_actor_t actor)
1da177e4 898{
36e78914 899 struct address_space *mapping = filp->f_mapping;
1da177e4 900 struct inode *inode = mapping->host;
36e78914 901 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
902 pgoff_t index;
903 pgoff_t last_index;
904 pgoff_t prev_index;
905 unsigned long offset; /* offset into pagecache page */
ec0f1637 906 unsigned int prev_offset;
1da177e4 907 int error;
1da177e4 908
1da177e4 909 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
910 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
911 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
912 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
913 offset = *ppos & ~PAGE_CACHE_MASK;
914
1da177e4
LT
915 for (;;) {
916 struct page *page;
57f6b96c 917 pgoff_t end_index;
a32ea1e1 918 loff_t isize;
1da177e4
LT
919 unsigned long nr, ret;
920
1da177e4 921 cond_resched();
1da177e4
LT
922find_page:
923 page = find_get_page(mapping, index);
3ea89ee8 924 if (!page) {
cf914a7d 925 page_cache_sync_readahead(mapping,
7ff81078 926 ra, filp,
3ea89ee8
FW
927 index, last_index - index);
928 page = find_get_page(mapping, index);
929 if (unlikely(page == NULL))
930 goto no_cached_page;
931 }
932 if (PageReadahead(page)) {
cf914a7d 933 page_cache_async_readahead(mapping,
7ff81078 934 ra, filp, page,
3ea89ee8 935 index, last_index - index);
1da177e4
LT
936 }
937 if (!PageUptodate(page))
938 goto page_not_up_to_date;
939page_ok:
a32ea1e1
N
940 /*
941 * i_size must be checked after we know the page is Uptodate.
942 *
943 * Checking i_size after the check allows us to calculate
944 * the correct value for "nr", which means the zero-filled
945 * part of the page is not copied back to userspace (unless
946 * another truncate extends the file - this is desired though).
947 */
948
949 isize = i_size_read(inode);
950 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
951 if (unlikely(!isize || index > end_index)) {
952 page_cache_release(page);
953 goto out;
954 }
955
956 /* nr is the maximum number of bytes to copy from this page */
957 nr = PAGE_CACHE_SIZE;
958 if (index == end_index) {
959 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
960 if (nr <= offset) {
961 page_cache_release(page);
962 goto out;
963 }
964 }
965 nr = nr - offset;
1da177e4
LT
966
967 /* If users can be writing to this page using arbitrary
968 * virtual addresses, take care about potential aliasing
969 * before reading the page on the kernel side.
970 */
971 if (mapping_writably_mapped(mapping))
972 flush_dcache_page(page);
973
974 /*
ec0f1637
JK
975 * When a sequential read accesses a page several times,
976 * only mark it as accessed the first time.
1da177e4 977 */
ec0f1637 978 if (prev_index != index || offset != prev_offset)
1da177e4
LT
979 mark_page_accessed(page);
980 prev_index = index;
981
982 /*
983 * Ok, we have the page, and it's up-to-date, so
984 * now we can copy it to user space...
985 *
986 * The actor routine returns how many bytes were actually used..
987 * NOTE! This may not be the same as how much of a user buffer
988 * we filled up (we may be padding etc), so we can only update
989 * "pos" here (the actor routine has to update the user buffer
990 * pointers and the remaining count).
991 */
992 ret = actor(desc, page, offset, nr);
993 offset += ret;
994 index += offset >> PAGE_CACHE_SHIFT;
995 offset &= ~PAGE_CACHE_MASK;
6ce745ed 996 prev_offset = offset;
1da177e4
LT
997
998 page_cache_release(page);
999 if (ret == nr && desc->count)
1000 continue;
1001 goto out;
1002
1003page_not_up_to_date:
1004 /* Get exclusive access to the page ... */
0b94e97a
MW
1005 if (lock_page_killable(page))
1006 goto readpage_eio;
1da177e4 1007
da6052f7 1008 /* Did it get truncated before we got the lock? */
1da177e4
LT
1009 if (!page->mapping) {
1010 unlock_page(page);
1011 page_cache_release(page);
1012 continue;
1013 }
1014
1015 /* Did somebody else fill it already? */
1016 if (PageUptodate(page)) {
1017 unlock_page(page);
1018 goto page_ok;
1019 }
1020
1021readpage:
1022 /* Start the actual read. The read will unlock the page. */
1023 error = mapping->a_ops->readpage(filp, page);
1024
994fc28c
ZB
1025 if (unlikely(error)) {
1026 if (error == AOP_TRUNCATED_PAGE) {
1027 page_cache_release(page);
1028 goto find_page;
1029 }
1da177e4 1030 goto readpage_error;
994fc28c 1031 }
1da177e4
LT
1032
1033 if (!PageUptodate(page)) {
0b94e97a
MW
1034 if (lock_page_killable(page))
1035 goto readpage_eio;
1da177e4
LT
1036 if (!PageUptodate(page)) {
1037 if (page->mapping == NULL) {
1038 /*
1039 * invalidate_inode_pages got it
1040 */
1041 unlock_page(page);
1042 page_cache_release(page);
1043 goto find_page;
1044 }
1045 unlock_page(page);
7ff81078 1046 shrink_readahead_size_eio(filp, ra);
0b94e97a 1047 goto readpage_eio;
1da177e4
LT
1048 }
1049 unlock_page(page);
1050 }
1051
1da177e4
LT
1052 goto page_ok;
1053
0b94e97a
MW
1054readpage_eio:
1055 error = -EIO;
1da177e4
LT
1056readpage_error:
1057 /* UHHUH! A synchronous read error occurred. Report it */
1058 desc->error = error;
1059 page_cache_release(page);
1060 goto out;
1061
1062no_cached_page:
1063 /*
1064 * Ok, it wasn't cached, so we need to create a new
1065 * page..
1066 */
eb2be189
NP
1067 page = page_cache_alloc_cold(mapping);
1068 if (!page) {
1069 desc->error = -ENOMEM;
1070 goto out;
1da177e4 1071 }
eb2be189 1072 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1073 index, GFP_KERNEL);
1074 if (error) {
eb2be189 1075 page_cache_release(page);
1da177e4
LT
1076 if (error == -EEXIST)
1077 goto find_page;
1078 desc->error = error;
1079 goto out;
1080 }
1da177e4
LT
1081 goto readpage;
1082 }
1083
1084out:
7ff81078
FW
1085 ra->prev_pos = prev_index;
1086 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1087 ra->prev_pos |= prev_offset;
1da177e4 1088
f4e6b498 1089 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1da177e4
LT
1090 if (filp)
1091 file_accessed(filp);
1092}
1da177e4
LT
1093
1094int file_read_actor(read_descriptor_t *desc, struct page *page,
1095 unsigned long offset, unsigned long size)
1096{
1097 char *kaddr;
1098 unsigned long left, count = desc->count;
1099
1100 if (size > count)
1101 size = count;
1102
1103 /*
1104 * Faults on the destination of a read are common, so do it before
1105 * taking the kmap.
1106 */
1107 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1108 kaddr = kmap_atomic(page, KM_USER0);
1109 left = __copy_to_user_inatomic(desc->arg.buf,
1110 kaddr + offset, size);
1111 kunmap_atomic(kaddr, KM_USER0);
1112 if (left == 0)
1113 goto success;
1114 }
1115
1116 /* Do it the slow way */
1117 kaddr = kmap(page);
1118 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1119 kunmap(page);
1120
1121 if (left) {
1122 size -= left;
1123 desc->error = -EFAULT;
1124 }
1125success:
1126 desc->count = count - size;
1127 desc->written += size;
1128 desc->arg.buf += size;
1129 return size;
1130}
1131
0ceb3314
DM
1132/*
1133 * Performs necessary checks before doing a write
1134 * @iov: io vector request
1135 * @nr_segs: number of segments in the iovec
1136 * @count: number of bytes to write
1137 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1138 *
1139 * Adjust number of segments and amount of bytes to write (nr_segs should be
1140 * properly initialized first). Returns appropriate error code that caller
1141 * should return or zero in case that write should be allowed.
1142 */
1143int generic_segment_checks(const struct iovec *iov,
1144 unsigned long *nr_segs, size_t *count, int access_flags)
1145{
1146 unsigned long seg;
1147 size_t cnt = 0;
1148 for (seg = 0; seg < *nr_segs; seg++) {
1149 const struct iovec *iv = &iov[seg];
1150
1151 /*
1152 * If any segment has a negative length, or the cumulative
1153 * length ever wraps negative then return -EINVAL.
1154 */
1155 cnt += iv->iov_len;
1156 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1157 return -EINVAL;
1158 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1159 continue;
1160 if (seg == 0)
1161 return -EFAULT;
1162 *nr_segs = seg;
1163 cnt -= iv->iov_len; /* This segment is no good */
1164 break;
1165 }
1166 *count = cnt;
1167 return 0;
1168}
1169EXPORT_SYMBOL(generic_segment_checks);
1170
485bb99b 1171/**
b2abacf3 1172 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1173 * @iocb: kernel I/O control block
1174 * @iov: io vector request
1175 * @nr_segs: number of segments in the iovec
b2abacf3 1176 * @pos: current file position
485bb99b 1177 *
1da177e4
LT
1178 * This is the "read()" routine for all filesystems
1179 * that can use the page cache directly.
1180 */
1181ssize_t
543ade1f
BP
1182generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1183 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1184{
1185 struct file *filp = iocb->ki_filp;
1186 ssize_t retval;
1187 unsigned long seg;
1188 size_t count;
543ade1f 1189 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1190
1191 count = 0;
0ceb3314
DM
1192 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1193 if (retval)
1194 return retval;
1da177e4
LT
1195
1196 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1197 if (filp->f_flags & O_DIRECT) {
543ade1f 1198 loff_t size;
1da177e4
LT
1199 struct address_space *mapping;
1200 struct inode *inode;
1201
1202 mapping = filp->f_mapping;
1203 inode = mapping->host;
1da177e4
LT
1204 if (!count)
1205 goto out; /* skip atime */
1206 size = i_size_read(inode);
1207 if (pos < size) {
a969e903
CH
1208 retval = filemap_write_and_wait(mapping);
1209 if (!retval) {
1210 retval = mapping->a_ops->direct_IO(READ, iocb,
1211 iov, pos, nr_segs);
1212 }
1da177e4
LT
1213 if (retval > 0)
1214 *ppos = pos + retval;
11fa977e
HD
1215 if (retval) {
1216 file_accessed(filp);
1217 goto out;
1218 }
0e0bcae3 1219 }
1da177e4
LT
1220 }
1221
11fa977e
HD
1222 for (seg = 0; seg < nr_segs; seg++) {
1223 read_descriptor_t desc;
1da177e4 1224
11fa977e
HD
1225 desc.written = 0;
1226 desc.arg.buf = iov[seg].iov_base;
1227 desc.count = iov[seg].iov_len;
1228 if (desc.count == 0)
1229 continue;
1230 desc.error = 0;
1231 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1232 retval += desc.written;
1233 if (desc.error) {
1234 retval = retval ?: desc.error;
1235 break;
1da177e4 1236 }
11fa977e
HD
1237 if (desc.count > 0)
1238 break;
1da177e4
LT
1239 }
1240out:
1241 return retval;
1242}
1da177e4
LT
1243EXPORT_SYMBOL(generic_file_aio_read);
1244
1da177e4
LT
1245static ssize_t
1246do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1247 pgoff_t index, unsigned long nr)
1da177e4
LT
1248{
1249 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1250 return -EINVAL;
1251
1252 force_page_cache_readahead(mapping, filp, index,
1253 max_sane_readahead(nr));
1254 return 0;
1255}
1256
1257asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1258{
1259 ssize_t ret;
1260 struct file *file;
1261
1262 ret = -EBADF;
1263 file = fget(fd);
1264 if (file) {
1265 if (file->f_mode & FMODE_READ) {
1266 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1267 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1268 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1269 unsigned long len = end - start + 1;
1270 ret = do_readahead(mapping, file, start, len);
1271 }
1272 fput(file);
1273 }
1274 return ret;
1275}
1276
1277#ifdef CONFIG_MMU
485bb99b
RD
1278/**
1279 * page_cache_read - adds requested page to the page cache if not already there
1280 * @file: file to read
1281 * @offset: page index
1282 *
1da177e4
LT
1283 * This adds the requested page to the page cache if it isn't already there,
1284 * and schedules an I/O to read in its contents from disk.
1285 */
920c7a5d 1286static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1287{
1288 struct address_space *mapping = file->f_mapping;
1289 struct page *page;
994fc28c 1290 int ret;
1da177e4 1291
994fc28c
ZB
1292 do {
1293 page = page_cache_alloc_cold(mapping);
1294 if (!page)
1295 return -ENOMEM;
1296
1297 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1298 if (ret == 0)
1299 ret = mapping->a_ops->readpage(file, page);
1300 else if (ret == -EEXIST)
1301 ret = 0; /* losing race to add is OK */
1da177e4 1302
1da177e4 1303 page_cache_release(page);
1da177e4 1304
994fc28c
ZB
1305 } while (ret == AOP_TRUNCATED_PAGE);
1306
1307 return ret;
1da177e4
LT
1308}
1309
1310#define MMAP_LOTSAMISS (100)
1311
485bb99b 1312/**
54cb8821 1313 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1314 * @vma: vma in which the fault was taken
1315 * @vmf: struct vm_fault containing details of the fault
485bb99b 1316 *
54cb8821 1317 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1318 * mapped memory region to read in file data during a page fault.
1319 *
1320 * The goto's are kind of ugly, but this streamlines the normal case of having
1321 * it in the page cache, and handles the special cases reasonably without
1322 * having a lot of duplicated code.
1323 */
d0217ac0 1324int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1325{
1326 int error;
54cb8821 1327 struct file *file = vma->vm_file;
1da177e4
LT
1328 struct address_space *mapping = file->f_mapping;
1329 struct file_ra_state *ra = &file->f_ra;
1330 struct inode *inode = mapping->host;
1331 struct page *page;
2004dc8e 1332 pgoff_t size;
54cb8821 1333 int did_readaround = 0;
83c54070 1334 int ret = 0;
1da177e4 1335
1da177e4 1336 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0217ac0 1337 if (vmf->pgoff >= size)
5307cc1a 1338 return VM_FAULT_SIGBUS;
1da177e4
LT
1339
1340 /* If we don't want any read-ahead, don't bother */
54cb8821 1341 if (VM_RandomReadHint(vma))
1da177e4
LT
1342 goto no_cached_page;
1343
1da177e4
LT
1344 /*
1345 * Do we have something in the page cache already?
1346 */
1347retry_find:
d0217ac0 1348 page = find_lock_page(mapping, vmf->pgoff);
3ea89ee8
FW
1349 /*
1350 * For sequential accesses, we use the generic readahead logic.
1351 */
1352 if (VM_SequentialReadHint(vma)) {
1353 if (!page) {
cf914a7d 1354 page_cache_sync_readahead(mapping, ra, file,
3ea89ee8
FW
1355 vmf->pgoff, 1);
1356 page = find_lock_page(mapping, vmf->pgoff);
1357 if (!page)
1358 goto no_cached_page;
1359 }
1360 if (PageReadahead(page)) {
cf914a7d 1361 page_cache_async_readahead(mapping, ra, file, page,
3ea89ee8
FW
1362 vmf->pgoff, 1);
1363 }
1364 }
1365
1da177e4
LT
1366 if (!page) {
1367 unsigned long ra_pages;
1368
1da177e4
LT
1369 ra->mmap_miss++;
1370
1371 /*
1372 * Do we miss much more than hit in this file? If so,
1373 * stop bothering with read-ahead. It will only hurt.
1374 */
0bb7ba6b 1375 if (ra->mmap_miss > MMAP_LOTSAMISS)
1da177e4
LT
1376 goto no_cached_page;
1377
1378 /*
1379 * To keep the pgmajfault counter straight, we need to
1380 * check did_readaround, as this is an inner loop.
1381 */
1382 if (!did_readaround) {
d0217ac0 1383 ret = VM_FAULT_MAJOR;
f8891e5e 1384 count_vm_event(PGMAJFAULT);
1da177e4
LT
1385 }
1386 did_readaround = 1;
1387 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1388 if (ra_pages) {
1389 pgoff_t start = 0;
1390
d0217ac0
NP
1391 if (vmf->pgoff > ra_pages / 2)
1392 start = vmf->pgoff - ra_pages / 2;
1da177e4
LT
1393 do_page_cache_readahead(mapping, file, start, ra_pages);
1394 }
d0217ac0 1395 page = find_lock_page(mapping, vmf->pgoff);
1da177e4
LT
1396 if (!page)
1397 goto no_cached_page;
1398 }
1399
1400 if (!did_readaround)
0bb7ba6b 1401 ra->mmap_miss--;
1da177e4
LT
1402
1403 /*
d00806b1
NP
1404 * We have a locked page in the page cache, now we need to check
1405 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1406 */
d00806b1 1407 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1408 goto page_not_uptodate;
1409
d00806b1
NP
1410 /* Must recheck i_size under page lock */
1411 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
d0217ac0 1412 if (unlikely(vmf->pgoff >= size)) {
d00806b1 1413 unlock_page(page);
745ad48e 1414 page_cache_release(page);
5307cc1a 1415 return VM_FAULT_SIGBUS;
d00806b1
NP
1416 }
1417
1da177e4
LT
1418 /*
1419 * Found the page and have a reference on it.
1420 */
1421 mark_page_accessed(page);
f4e6b498 1422 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
d0217ac0 1423 vmf->page = page;
83c54070 1424 return ret | VM_FAULT_LOCKED;
1da177e4 1425
1da177e4
LT
1426no_cached_page:
1427 /*
1428 * We're only likely to ever get here if MADV_RANDOM is in
1429 * effect.
1430 */
d0217ac0 1431 error = page_cache_read(file, vmf->pgoff);
1da177e4
LT
1432
1433 /*
1434 * The page we want has now been added to the page cache.
1435 * In the unlikely event that someone removed it in the
1436 * meantime, we'll just come back here and read it again.
1437 */
1438 if (error >= 0)
1439 goto retry_find;
1440
1441 /*
1442 * An error return from page_cache_read can result if the
1443 * system is low on memory, or a problem occurs while trying
1444 * to schedule I/O.
1445 */
1446 if (error == -ENOMEM)
d0217ac0
NP
1447 return VM_FAULT_OOM;
1448 return VM_FAULT_SIGBUS;
1da177e4
LT
1449
1450page_not_uptodate:
d00806b1 1451 /* IO error path */
1da177e4 1452 if (!did_readaround) {
d0217ac0 1453 ret = VM_FAULT_MAJOR;
f8891e5e 1454 count_vm_event(PGMAJFAULT);
1da177e4 1455 }
1da177e4
LT
1456
1457 /*
1458 * Umm, take care of errors if the page isn't up-to-date.
1459 * Try to re-read it _once_. We do this synchronously,
1460 * because there really aren't any performance issues here
1461 * and we need to check for errors.
1462 */
1da177e4 1463 ClearPageError(page);
994fc28c 1464 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1465 if (!error) {
1466 wait_on_page_locked(page);
1467 if (!PageUptodate(page))
1468 error = -EIO;
1469 }
d00806b1
NP
1470 page_cache_release(page);
1471
1472 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1473 goto retry_find;
1da177e4 1474
d00806b1 1475 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1476 shrink_readahead_size_eio(file, ra);
d0217ac0 1477 return VM_FAULT_SIGBUS;
54cb8821
NP
1478}
1479EXPORT_SYMBOL(filemap_fault);
1480
1da177e4 1481struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1482 .fault = filemap_fault,
1da177e4
LT
1483};
1484
1485/* This is used for a general mmap of a disk file */
1486
1487int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1488{
1489 struct address_space *mapping = file->f_mapping;
1490
1491 if (!mapping->a_ops->readpage)
1492 return -ENOEXEC;
1493 file_accessed(file);
1494 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1495 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1496 return 0;
1497}
1da177e4
LT
1498
1499/*
1500 * This is for filesystems which do not implement ->writepage.
1501 */
1502int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1503{
1504 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1505 return -EINVAL;
1506 return generic_file_mmap(file, vma);
1507}
1508#else
1509int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1510{
1511 return -ENOSYS;
1512}
1513int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1514{
1515 return -ENOSYS;
1516}
1517#endif /* CONFIG_MMU */
1518
1519EXPORT_SYMBOL(generic_file_mmap);
1520EXPORT_SYMBOL(generic_file_readonly_mmap);
1521
6fe6900e 1522static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1523 pgoff_t index,
1da177e4
LT
1524 int (*filler)(void *,struct page*),
1525 void *data)
1526{
eb2be189 1527 struct page *page;
1da177e4
LT
1528 int err;
1529repeat:
1530 page = find_get_page(mapping, index);
1531 if (!page) {
eb2be189
NP
1532 page = page_cache_alloc_cold(mapping);
1533 if (!page)
1534 return ERR_PTR(-ENOMEM);
1535 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1536 if (unlikely(err)) {
1537 page_cache_release(page);
1538 if (err == -EEXIST)
1539 goto repeat;
1da177e4 1540 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1541 return ERR_PTR(err);
1542 }
1da177e4
LT
1543 err = filler(data, page);
1544 if (err < 0) {
1545 page_cache_release(page);
1546 page = ERR_PTR(err);
1547 }
1548 }
1da177e4
LT
1549 return page;
1550}
1551
7682486b
RD
1552/**
1553 * read_cache_page_async - read into page cache, fill it if needed
1554 * @mapping: the page's address_space
1555 * @index: the page index
1556 * @filler: function to perform the read
1557 * @data: destination for read data
1558 *
6fe6900e
NP
1559 * Same as read_cache_page, but don't wait for page to become unlocked
1560 * after submitting it to the filler.
7682486b
RD
1561 *
1562 * Read into the page cache. If a page already exists, and PageUptodate() is
1563 * not set, try to fill the page but don't wait for it to become unlocked.
1564 *
1565 * If the page does not get brought uptodate, return -EIO.
1da177e4 1566 */
6fe6900e 1567struct page *read_cache_page_async(struct address_space *mapping,
57f6b96c 1568 pgoff_t index,
1da177e4
LT
1569 int (*filler)(void *,struct page*),
1570 void *data)
1571{
1572 struct page *page;
1573 int err;
1574
1575retry:
1576 page = __read_cache_page(mapping, index, filler, data);
1577 if (IS_ERR(page))
c855ff37 1578 return page;
1da177e4
LT
1579 if (PageUptodate(page))
1580 goto out;
1581
1582 lock_page(page);
1583 if (!page->mapping) {
1584 unlock_page(page);
1585 page_cache_release(page);
1586 goto retry;
1587 }
1588 if (PageUptodate(page)) {
1589 unlock_page(page);
1590 goto out;
1591 }
1592 err = filler(data, page);
1593 if (err < 0) {
1594 page_cache_release(page);
c855ff37 1595 return ERR_PTR(err);
1da177e4 1596 }
c855ff37 1597out:
6fe6900e
NP
1598 mark_page_accessed(page);
1599 return page;
1600}
1601EXPORT_SYMBOL(read_cache_page_async);
1602
1603/**
1604 * read_cache_page - read into page cache, fill it if needed
1605 * @mapping: the page's address_space
1606 * @index: the page index
1607 * @filler: function to perform the read
1608 * @data: destination for read data
1609 *
1610 * Read into the page cache. If a page already exists, and PageUptodate() is
1611 * not set, try to fill the page then wait for it to become unlocked.
1612 *
1613 * If the page does not get brought uptodate, return -EIO.
1614 */
1615struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1616 pgoff_t index,
6fe6900e
NP
1617 int (*filler)(void *,struct page*),
1618 void *data)
1619{
1620 struct page *page;
1621
1622 page = read_cache_page_async(mapping, index, filler, data);
1623 if (IS_ERR(page))
1624 goto out;
1625 wait_on_page_locked(page);
1626 if (!PageUptodate(page)) {
1627 page_cache_release(page);
1628 page = ERR_PTR(-EIO);
1629 }
1da177e4
LT
1630 out:
1631 return page;
1632}
1da177e4
LT
1633EXPORT_SYMBOL(read_cache_page);
1634
1da177e4
LT
1635/*
1636 * The logic we want is
1637 *
1638 * if suid or (sgid and xgrp)
1639 * remove privs
1640 */
01de85e0 1641int should_remove_suid(struct dentry *dentry)
1da177e4
LT
1642{
1643 mode_t mode = dentry->d_inode->i_mode;
1644 int kill = 0;
1da177e4
LT
1645
1646 /* suid always must be killed */
1647 if (unlikely(mode & S_ISUID))
1648 kill = ATTR_KILL_SUID;
1649
1650 /*
1651 * sgid without any exec bits is just a mandatory locking mark; leave
1652 * it alone. If some exec bits are set, it's a real sgid; kill it.
1653 */
1654 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1655 kill |= ATTR_KILL_SGID;
1656
01de85e0
JA
1657 if (unlikely(kill && !capable(CAP_FSETID)))
1658 return kill;
1da177e4 1659
01de85e0
JA
1660 return 0;
1661}
d23a147b 1662EXPORT_SYMBOL(should_remove_suid);
01de85e0 1663
7f3d4ee1 1664static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1665{
1666 struct iattr newattrs;
1667
1668 newattrs.ia_valid = ATTR_FORCE | kill;
1669 return notify_change(dentry, &newattrs);
1670}
1671
1672int remove_suid(struct dentry *dentry)
1673{
b5376771
SH
1674 int killsuid = should_remove_suid(dentry);
1675 int killpriv = security_inode_need_killpriv(dentry);
1676 int error = 0;
01de85e0 1677
b5376771
SH
1678 if (killpriv < 0)
1679 return killpriv;
1680 if (killpriv)
1681 error = security_inode_killpriv(dentry);
1682 if (!error && killsuid)
1683 error = __remove_suid(dentry, killsuid);
01de85e0 1684
b5376771 1685 return error;
1da177e4
LT
1686}
1687EXPORT_SYMBOL(remove_suid);
1688
2f718ffc 1689static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
1690 const struct iovec *iov, size_t base, size_t bytes)
1691{
1692 size_t copied = 0, left = 0;
1693
1694 while (bytes) {
1695 char __user *buf = iov->iov_base + base;
1696 int copy = min(bytes, iov->iov_len - base);
1697
1698 base = 0;
c22ce143 1699 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1da177e4
LT
1700 copied += copy;
1701 bytes -= copy;
1702 vaddr += copy;
1703 iov++;
1704
01408c49 1705 if (unlikely(left))
1da177e4 1706 break;
1da177e4
LT
1707 }
1708 return copied - left;
1709}
1710
2f718ffc
NP
1711/*
1712 * Copy as much as we can into the page and return the number of bytes which
1713 * were sucessfully copied. If a fault is encountered then return the number of
1714 * bytes which were copied.
1715 */
1716size_t iov_iter_copy_from_user_atomic(struct page *page,
1717 struct iov_iter *i, unsigned long offset, size_t bytes)
1718{
1719 char *kaddr;
1720 size_t copied;
1721
1722 BUG_ON(!in_atomic());
1723 kaddr = kmap_atomic(page, KM_USER0);
1724 if (likely(i->nr_segs == 1)) {
1725 int left;
1726 char __user *buf = i->iov->iov_base + i->iov_offset;
1727 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1728 buf, bytes);
1729 copied = bytes - left;
1730 } else {
1731 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1732 i->iov, i->iov_offset, bytes);
1733 }
1734 kunmap_atomic(kaddr, KM_USER0);
1735
1736 return copied;
1737}
89e10787 1738EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
1739
1740/*
1741 * This has the same sideeffects and return value as
1742 * iov_iter_copy_from_user_atomic().
1743 * The difference is that it attempts to resolve faults.
1744 * Page must not be locked.
1745 */
1746size_t iov_iter_copy_from_user(struct page *page,
1747 struct iov_iter *i, unsigned long offset, size_t bytes)
1748{
1749 char *kaddr;
1750 size_t copied;
1751
1752 kaddr = kmap(page);
1753 if (likely(i->nr_segs == 1)) {
1754 int left;
1755 char __user *buf = i->iov->iov_base + i->iov_offset;
1756 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1757 copied = bytes - left;
1758 } else {
1759 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1760 i->iov, i->iov_offset, bytes);
1761 }
1762 kunmap(page);
1763 return copied;
1764}
89e10787 1765EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 1766
f7009264 1767void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 1768{
f7009264
NP
1769 BUG_ON(i->count < bytes);
1770
2f718ffc
NP
1771 if (likely(i->nr_segs == 1)) {
1772 i->iov_offset += bytes;
f7009264 1773 i->count -= bytes;
2f718ffc
NP
1774 } else {
1775 const struct iovec *iov = i->iov;
1776 size_t base = i->iov_offset;
1777
124d3b70
NP
1778 /*
1779 * The !iov->iov_len check ensures we skip over unlikely
f7009264 1780 * zero-length segments (without overruning the iovec).
124d3b70 1781 */
f7009264
NP
1782 while (bytes || unlikely(!iov->iov_len && i->count)) {
1783 int copy;
2f718ffc 1784
f7009264
NP
1785 copy = min(bytes, iov->iov_len - base);
1786 BUG_ON(!i->count || i->count < copy);
1787 i->count -= copy;
2f718ffc
NP
1788 bytes -= copy;
1789 base += copy;
1790 if (iov->iov_len == base) {
1791 iov++;
1792 base = 0;
1793 }
1794 }
1795 i->iov = iov;
1796 i->iov_offset = base;
1797 }
1798}
89e10787 1799EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 1800
afddba49
NP
1801/*
1802 * Fault in the first iovec of the given iov_iter, to a maximum length
1803 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1804 * accessed (ie. because it is an invalid address).
1805 *
1806 * writev-intensive code may want this to prefault several iovecs -- that
1807 * would be possible (callers must not rely on the fact that _only_ the
1808 * first iovec will be faulted with the current implementation).
1809 */
1810int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 1811{
2f718ffc 1812 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
1813 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1814 return fault_in_pages_readable(buf, bytes);
2f718ffc 1815}
89e10787 1816EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
1817
1818/*
1819 * Return the count of just the current iov_iter segment.
1820 */
1821size_t iov_iter_single_seg_count(struct iov_iter *i)
1822{
1823 const struct iovec *iov = i->iov;
1824 if (i->nr_segs == 1)
1825 return i->count;
1826 else
1827 return min(i->count, iov->iov_len - i->iov_offset);
1828}
89e10787 1829EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 1830
1da177e4
LT
1831/*
1832 * Performs necessary checks before doing a write
1833 *
485bb99b 1834 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
1835 * Returns appropriate error code that caller should return or
1836 * zero in case that write should be allowed.
1837 */
1838inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1839{
1840 struct inode *inode = file->f_mapping->host;
1841 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1842
1843 if (unlikely(*pos < 0))
1844 return -EINVAL;
1845
1da177e4
LT
1846 if (!isblk) {
1847 /* FIXME: this is for backwards compatibility with 2.4 */
1848 if (file->f_flags & O_APPEND)
1849 *pos = i_size_read(inode);
1850
1851 if (limit != RLIM_INFINITY) {
1852 if (*pos >= limit) {
1853 send_sig(SIGXFSZ, current, 0);
1854 return -EFBIG;
1855 }
1856 if (*count > limit - (typeof(limit))*pos) {
1857 *count = limit - (typeof(limit))*pos;
1858 }
1859 }
1860 }
1861
1862 /*
1863 * LFS rule
1864 */
1865 if (unlikely(*pos + *count > MAX_NON_LFS &&
1866 !(file->f_flags & O_LARGEFILE))) {
1867 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
1868 return -EFBIG;
1869 }
1870 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1871 *count = MAX_NON_LFS - (unsigned long)*pos;
1872 }
1873 }
1874
1875 /*
1876 * Are we about to exceed the fs block limit ?
1877 *
1878 * If we have written data it becomes a short write. If we have
1879 * exceeded without writing data we send a signal and return EFBIG.
1880 * Linus frestrict idea will clean these up nicely..
1881 */
1882 if (likely(!isblk)) {
1883 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1884 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
1885 return -EFBIG;
1886 }
1887 /* zero-length writes at ->s_maxbytes are OK */
1888 }
1889
1890 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1891 *count = inode->i_sb->s_maxbytes - *pos;
1892 } else {
9361401e 1893#ifdef CONFIG_BLOCK
1da177e4
LT
1894 loff_t isize;
1895 if (bdev_read_only(I_BDEV(inode)))
1896 return -EPERM;
1897 isize = i_size_read(inode);
1898 if (*pos >= isize) {
1899 if (*count || *pos > isize)
1900 return -ENOSPC;
1901 }
1902
1903 if (*pos + *count > isize)
1904 *count = isize - *pos;
9361401e
DH
1905#else
1906 return -EPERM;
1907#endif
1da177e4
LT
1908 }
1909 return 0;
1910}
1911EXPORT_SYMBOL(generic_write_checks);
1912
afddba49
NP
1913int pagecache_write_begin(struct file *file, struct address_space *mapping,
1914 loff_t pos, unsigned len, unsigned flags,
1915 struct page **pagep, void **fsdata)
1916{
1917 const struct address_space_operations *aops = mapping->a_ops;
1918
1919 if (aops->write_begin) {
1920 return aops->write_begin(file, mapping, pos, len, flags,
1921 pagep, fsdata);
1922 } else {
1923 int ret;
1924 pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1925 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1926 struct inode *inode = mapping->host;
1927 struct page *page;
1928again:
1929 page = __grab_cache_page(mapping, index);
1930 *pagep = page;
1931 if (!page)
1932 return -ENOMEM;
1933
1934 if (flags & AOP_FLAG_UNINTERRUPTIBLE && !PageUptodate(page)) {
1935 /*
1936 * There is no way to resolve a short write situation
1937 * for a !Uptodate page (except by double copying in
1938 * the caller done by generic_perform_write_2copy).
1939 *
1940 * Instead, we have to bring it uptodate here.
1941 */
1942 ret = aops->readpage(file, page);
1943 page_cache_release(page);
1944 if (ret) {
1945 if (ret == AOP_TRUNCATED_PAGE)
1946 goto again;
1947 return ret;
1948 }
1949 goto again;
1950 }
1951
1952 ret = aops->prepare_write(file, page, offset, offset+len);
1953 if (ret) {
55144768 1954 unlock_page(page);
afddba49
NP
1955 page_cache_release(page);
1956 if (pos + len > inode->i_size)
1957 vmtruncate(inode, inode->i_size);
afddba49
NP
1958 }
1959 return ret;
1960 }
1961}
1962EXPORT_SYMBOL(pagecache_write_begin);
1963
1964int pagecache_write_end(struct file *file, struct address_space *mapping,
1965 loff_t pos, unsigned len, unsigned copied,
1966 struct page *page, void *fsdata)
1967{
1968 const struct address_space_operations *aops = mapping->a_ops;
1969 int ret;
1970
1971 if (aops->write_end) {
1972 mark_page_accessed(page);
1973 ret = aops->write_end(file, mapping, pos, len, copied,
1974 page, fsdata);
1975 } else {
1976 unsigned offset = pos & (PAGE_CACHE_SIZE - 1);
1977 struct inode *inode = mapping->host;
1978
1979 flush_dcache_page(page);
1980 ret = aops->commit_write(file, page, offset, offset+len);
1981 unlock_page(page);
1982 mark_page_accessed(page);
1983 page_cache_release(page);
afddba49
NP
1984
1985 if (ret < 0) {
1986 if (pos + len > inode->i_size)
1987 vmtruncate(inode, inode->i_size);
1988 } else if (ret > 0)
1989 ret = min_t(size_t, copied, ret);
1990 else
1991 ret = copied;
1992 }
1993
1994 return ret;
1995}
1996EXPORT_SYMBOL(pagecache_write_end);
1997
1da177e4
LT
1998ssize_t
1999generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2000 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2001 size_t count, size_t ocount)
2002{
2003 struct file *file = iocb->ki_filp;
2004 struct address_space *mapping = file->f_mapping;
2005 struct inode *inode = mapping->host;
2006 ssize_t written;
a969e903
CH
2007 size_t write_len;
2008 pgoff_t end;
1da177e4
LT
2009
2010 if (count != ocount)
2011 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2012
a969e903
CH
2013 /*
2014 * Unmap all mmappings of the file up-front.
2015 *
2016 * This will cause any pte dirty bits to be propagated into the
2017 * pageframes for the subsequent filemap_write_and_wait().
2018 */
2019 write_len = iov_length(iov, *nr_segs);
2020 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2021 if (mapping_mapped(mapping))
2022 unmap_mapping_range(mapping, pos, write_len, 0);
2023
2024 written = filemap_write_and_wait(mapping);
2025 if (written)
2026 goto out;
2027
2028 /*
2029 * After a write we want buffered reads to be sure to go to disk to get
2030 * the new data. We invalidate clean cached page from the region we're
2031 * about to write. We do this *before* the write so that we can return
2032 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2033 */
2034 if (mapping->nrpages) {
2035 written = invalidate_inode_pages2_range(mapping,
2036 pos >> PAGE_CACHE_SHIFT, end);
2037 if (written)
2038 goto out;
2039 }
2040
2041 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2042
2043 /*
2044 * Finally, try again to invalidate clean pages which might have been
2045 * cached by non-direct readahead, or faulted in by get_user_pages()
2046 * if the source of the write was an mmap'ed region of the file
2047 * we're writing. Either one is a pretty crazy thing to do,
2048 * so we don't support it 100%. If this invalidation
2049 * fails, tough, the write still worked...
2050 */
2051 if (mapping->nrpages) {
2052 invalidate_inode_pages2_range(mapping,
2053 pos >> PAGE_CACHE_SHIFT, end);
2054 }
2055
1da177e4
LT
2056 if (written > 0) {
2057 loff_t end = pos + written;
2058 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2059 i_size_write(inode, end);
2060 mark_inode_dirty(inode);
2061 }
2062 *ppos = end;
2063 }
2064
2065 /*
2066 * Sync the fs metadata but not the minor inode changes and
2067 * of course not the data as we did direct DMA for the IO.
1b1dcc1b 2068 * i_mutex is held, which protects generic_osync_inode() from
8459d86a 2069 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1da177e4 2070 */
a969e903 2071out:
8459d86a
ZB
2072 if ((written >= 0 || written == -EIOCBQUEUED) &&
2073 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1e8a81c5
HH
2074 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2075 if (err < 0)
2076 written = err;
2077 }
1da177e4
LT
2078 return written;
2079}
2080EXPORT_SYMBOL(generic_file_direct_write);
2081
eb2be189
NP
2082/*
2083 * Find or create a page at the given pagecache position. Return the locked
2084 * page. This function is specifically for buffered writes.
2085 */
afddba49 2086struct page *__grab_cache_page(struct address_space *mapping, pgoff_t index)
eb2be189
NP
2087{
2088 int status;
2089 struct page *page;
2090repeat:
2091 page = find_lock_page(mapping, index);
2092 if (likely(page))
2093 return page;
2094
2095 page = page_cache_alloc(mapping);
2096 if (!page)
2097 return NULL;
2098 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
2099 if (unlikely(status)) {
2100 page_cache_release(page);
2101 if (status == -EEXIST)
2102 goto repeat;
2103 return NULL;
2104 }
2105 return page;
2106}
afddba49 2107EXPORT_SYMBOL(__grab_cache_page);
eb2be189 2108
afddba49
NP
2109static ssize_t generic_perform_write_2copy(struct file *file,
2110 struct iov_iter *i, loff_t pos)
1da177e4 2111{
ae37461c 2112 struct address_space *mapping = file->f_mapping;
f5e54d6e 2113 const struct address_space_operations *a_ops = mapping->a_ops;
afddba49
NP
2114 struct inode *inode = mapping->host;
2115 long status = 0;
2116 ssize_t written = 0;
1da177e4
LT
2117
2118 do {
08291429 2119 struct page *src_page;
eb2be189 2120 struct page *page;
ae37461c
AM
2121 pgoff_t index; /* Pagecache index for current page */
2122 unsigned long offset; /* Offset into pagecache page */
08291429 2123 unsigned long bytes; /* Bytes to write to page */
ae37461c 2124 size_t copied; /* Bytes copied from user */
1da177e4 2125
ae37461c 2126 offset = (pos & (PAGE_CACHE_SIZE - 1));
1da177e4 2127 index = pos >> PAGE_CACHE_SHIFT;
2f718ffc 2128 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
afddba49 2129 iov_iter_count(i));
41cb8ac0 2130
08291429
NP
2131 /*
2132 * a non-NULL src_page indicates that we're doing the
2133 * copy via get_user_pages and kmap.
2134 */
2135 src_page = NULL;
2136
41cb8ac0
NP
2137 /*
2138 * Bring in the user page that we will copy from _first_.
2139 * Otherwise there's a nasty deadlock on copying from the
2140 * same page as we're writing to, without it being marked
2141 * up-to-date.
08291429
NP
2142 *
2143 * Not only is this an optimisation, but it is also required
2144 * to check that the address is actually valid, when atomic
2145 * usercopies are used, below.
41cb8ac0 2146 */
afddba49 2147 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
08291429
NP
2148 status = -EFAULT;
2149 break;
2150 }
eb2be189
NP
2151
2152 page = __grab_cache_page(mapping, index);
1da177e4
LT
2153 if (!page) {
2154 status = -ENOMEM;
2155 break;
2156 }
2157
08291429
NP
2158 /*
2159 * non-uptodate pages cannot cope with short copies, and we
2160 * cannot take a pagefault with the destination page locked.
2161 * So pin the source page to copy it.
2162 */
674b892e 2163 if (!PageUptodate(page) && !segment_eq(get_fs(), KERNEL_DS)) {
08291429
NP
2164 unlock_page(page);
2165
2166 src_page = alloc_page(GFP_KERNEL);
2167 if (!src_page) {
2168 page_cache_release(page);
2169 status = -ENOMEM;
2170 break;
2171 }
2172
2173 /*
2174 * Cannot get_user_pages with a page locked for the
2175 * same reason as we can't take a page fault with a
2176 * page locked (as explained below).
2177 */
afddba49 2178 copied = iov_iter_copy_from_user(src_page, i,
2f718ffc 2179 offset, bytes);
08291429
NP
2180 if (unlikely(copied == 0)) {
2181 status = -EFAULT;
2182 page_cache_release(page);
2183 page_cache_release(src_page);
2184 break;
2185 }
2186 bytes = copied;
2187
2188 lock_page(page);
2189 /*
2190 * Can't handle the page going uptodate here, because
2191 * that means we would use non-atomic usercopies, which
2192 * zero out the tail of the page, which can cause
2193 * zeroes to become transiently visible. We could just
2194 * use a non-zeroing copy, but the APIs aren't too
2195 * consistent.
2196 */
2197 if (unlikely(!page->mapping || PageUptodate(page))) {
2198 unlock_page(page);
2199 page_cache_release(page);
2200 page_cache_release(src_page);
2201 continue;
2202 }
08291429
NP
2203 }
2204
1da177e4 2205 status = a_ops->prepare_write(file, page, offset, offset+bytes);
64649a58
NP
2206 if (unlikely(status))
2207 goto fs_write_aop_error;
994fc28c 2208
08291429
NP
2209 if (!src_page) {
2210 /*
2211 * Must not enter the pagefault handler here, because
2212 * we hold the page lock, so we might recursively
2213 * deadlock on the same lock, or get an ABBA deadlock
2214 * against a different lock, or against the mmap_sem
2215 * (which nests outside the page lock). So increment
2216 * preempt count, and use _atomic usercopies.
2217 *
2218 * The page is uptodate so we are OK to encounter a
2219 * short copy: if unmodified parts of the page are
2220 * marked dirty and written out to disk, it doesn't
2221 * really matter.
2222 */
2223 pagefault_disable();
afddba49 2224 copied = iov_iter_copy_from_user_atomic(page, i,
2f718ffc 2225 offset, bytes);
08291429
NP
2226 pagefault_enable();
2227 } else {
2228 void *src, *dst;
2229 src = kmap_atomic(src_page, KM_USER0);
2230 dst = kmap_atomic(page, KM_USER1);
2231 memcpy(dst + offset, src + offset, bytes);
2232 kunmap_atomic(dst, KM_USER1);
2233 kunmap_atomic(src, KM_USER0);
2234 copied = bytes;
2235 }
1da177e4 2236 flush_dcache_page(page);
4a9e5ef1 2237
1da177e4 2238 status = a_ops->commit_write(file, page, offset, offset+bytes);
55144768 2239 if (unlikely(status < 0))
64649a58 2240 goto fs_write_aop_error;
64649a58 2241 if (unlikely(status > 0)) /* filesystem did partial write */
08291429
NP
2242 copied = min_t(size_t, copied, status);
2243
2244 unlock_page(page);
2245 mark_page_accessed(page);
2246 page_cache_release(page);
2247 if (src_page)
2248 page_cache_release(src_page);
64649a58 2249
afddba49 2250 iov_iter_advance(i, copied);
4a9e5ef1 2251 pos += copied;
afddba49 2252 written += copied;
4a9e5ef1 2253
1da177e4
LT
2254 balance_dirty_pages_ratelimited(mapping);
2255 cond_resched();
64649a58
NP
2256 continue;
2257
2258fs_write_aop_error:
55144768 2259 unlock_page(page);
64649a58 2260 page_cache_release(page);
08291429
NP
2261 if (src_page)
2262 page_cache_release(src_page);
64649a58
NP
2263
2264 /*
2265 * prepare_write() may have instantiated a few blocks
2266 * outside i_size. Trim these off again. Don't need
2267 * i_size_read because we hold i_mutex.
2268 */
2269 if (pos + bytes > inode->i_size)
2270 vmtruncate(inode, inode->i_size);
55144768 2271 break;
afddba49
NP
2272 } while (iov_iter_count(i));
2273
2274 return written ? written : status;
2275}
2276
2277static ssize_t generic_perform_write(struct file *file,
2278 struct iov_iter *i, loff_t pos)
2279{
2280 struct address_space *mapping = file->f_mapping;
2281 const struct address_space_operations *a_ops = mapping->a_ops;
2282 long status = 0;
2283 ssize_t written = 0;
674b892e
NP
2284 unsigned int flags = 0;
2285
2286 /*
2287 * Copies from kernel address space cannot fail (NFSD is a big user).
2288 */
2289 if (segment_eq(get_fs(), KERNEL_DS))
2290 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2291
2292 do {
2293 struct page *page;
2294 pgoff_t index; /* Pagecache index for current page */
2295 unsigned long offset; /* Offset into pagecache page */
2296 unsigned long bytes; /* Bytes to write to page */
2297 size_t copied; /* Bytes copied from user */
2298 void *fsdata;
2299
2300 offset = (pos & (PAGE_CACHE_SIZE - 1));
2301 index = pos >> PAGE_CACHE_SHIFT;
2302 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2303 iov_iter_count(i));
2304
2305again:
2306
2307 /*
2308 * Bring in the user page that we will copy from _first_.
2309 * Otherwise there's a nasty deadlock on copying from the
2310 * same page as we're writing to, without it being marked
2311 * up-to-date.
2312 *
2313 * Not only is this an optimisation, but it is also required
2314 * to check that the address is actually valid, when atomic
2315 * usercopies are used, below.
2316 */
2317 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2318 status = -EFAULT;
2319 break;
2320 }
2321
674b892e 2322 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2323 &page, &fsdata);
2324 if (unlikely(status))
2325 break;
2326
2327 pagefault_disable();
2328 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2329 pagefault_enable();
2330 flush_dcache_page(page);
2331
2332 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2333 page, fsdata);
2334 if (unlikely(status < 0))
2335 break;
2336 copied = status;
2337
2338 cond_resched();
2339
124d3b70 2340 iov_iter_advance(i, copied);
afddba49
NP
2341 if (unlikely(copied == 0)) {
2342 /*
2343 * If we were unable to copy any data at all, we must
2344 * fall back to a single segment length write.
2345 *
2346 * If we didn't fallback here, we could livelock
2347 * because not all segments in the iov can be copied at
2348 * once without a pagefault.
2349 */
2350 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2351 iov_iter_single_seg_count(i));
2352 goto again;
2353 }
afddba49
NP
2354 pos += copied;
2355 written += copied;
2356
2357 balance_dirty_pages_ratelimited(mapping);
2358
2359 } while (iov_iter_count(i));
2360
2361 return written ? written : status;
2362}
2363
2364ssize_t
2365generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2366 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2367 size_t count, ssize_t written)
2368{
2369 struct file *file = iocb->ki_filp;
2370 struct address_space *mapping = file->f_mapping;
2371 const struct address_space_operations *a_ops = mapping->a_ops;
2372 struct inode *inode = mapping->host;
2373 ssize_t status;
2374 struct iov_iter i;
2375
2376 iov_iter_init(&i, iov, nr_segs, count, written);
2377 if (a_ops->write_begin)
2378 status = generic_perform_write(file, &i, pos);
2379 else
2380 status = generic_perform_write_2copy(file, &i, pos);
1da177e4 2381
1da177e4 2382 if (likely(status >= 0)) {
afddba49
NP
2383 written += status;
2384 *ppos = pos + status;
2385
2386 /*
2387 * For now, when the user asks for O_SYNC, we'll actually give
2388 * O_DSYNC
2389 */
1da177e4
LT
2390 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2391 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2392 status = generic_osync_inode(inode, mapping,
2393 OSYNC_METADATA|OSYNC_DATA);
2394 }
2395 }
2396
2397 /*
2398 * If we get here for O_DIRECT writes then we must have fallen through
2399 * to buffered writes (block instantiation inside i_size). So we sync
2400 * the file data here, to try to honour O_DIRECT expectations.
2401 */
2402 if (unlikely(file->f_flags & O_DIRECT) && written)
2403 status = filemap_write_and_wait(mapping);
2404
1da177e4
LT
2405 return written ? written : status;
2406}
2407EXPORT_SYMBOL(generic_file_buffered_write);
2408
5ce7852c 2409static ssize_t
1da177e4
LT
2410__generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2411 unsigned long nr_segs, loff_t *ppos)
2412{
2413 struct file *file = iocb->ki_filp;
fb5527e6 2414 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2415 size_t ocount; /* original count */
2416 size_t count; /* after file limit checks */
2417 struct inode *inode = mapping->host;
1da177e4
LT
2418 loff_t pos;
2419 ssize_t written;
2420 ssize_t err;
2421
2422 ocount = 0;
0ceb3314
DM
2423 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2424 if (err)
2425 return err;
1da177e4
LT
2426
2427 count = ocount;
2428 pos = *ppos;
2429
2430 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2431
2432 /* We can write back this queue in page reclaim */
2433 current->backing_dev_info = mapping->backing_dev_info;
2434 written = 0;
2435
2436 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2437 if (err)
2438 goto out;
2439
2440 if (count == 0)
2441 goto out;
2442
d3ac7f89 2443 err = remove_suid(file->f_path.dentry);
1da177e4
LT
2444 if (err)
2445 goto out;
2446
870f4817 2447 file_update_time(file);
1da177e4
LT
2448
2449 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2450 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2451 loff_t endbyte;
2452 ssize_t written_buffered;
2453
2454 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2455 ppos, count, ocount);
1da177e4
LT
2456 if (written < 0 || written == count)
2457 goto out;
2458 /*
2459 * direct-io write to a hole: fall through to buffered I/O
2460 * for completing the rest of the request.
2461 */
2462 pos += written;
2463 count -= written;
fb5527e6
JM
2464 written_buffered = generic_file_buffered_write(iocb, iov,
2465 nr_segs, pos, ppos, count,
2466 written);
2467 /*
2468 * If generic_file_buffered_write() retuned a synchronous error
2469 * then we want to return the number of bytes which were
2470 * direct-written, or the error code if that was zero. Note
2471 * that this differs from normal direct-io semantics, which
2472 * will return -EFOO even if some bytes were written.
2473 */
2474 if (written_buffered < 0) {
2475 err = written_buffered;
2476 goto out;
2477 }
1da177e4 2478
fb5527e6
JM
2479 /*
2480 * We need to ensure that the page cache pages are written to
2481 * disk and invalidated to preserve the expected O_DIRECT
2482 * semantics.
2483 */
2484 endbyte = pos + written_buffered - written - 1;
ef51c976
MF
2485 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2486 SYNC_FILE_RANGE_WAIT_BEFORE|
2487 SYNC_FILE_RANGE_WRITE|
2488 SYNC_FILE_RANGE_WAIT_AFTER);
fb5527e6
JM
2489 if (err == 0) {
2490 written = written_buffered;
2491 invalidate_mapping_pages(mapping,
2492 pos >> PAGE_CACHE_SHIFT,
2493 endbyte >> PAGE_CACHE_SHIFT);
2494 } else {
2495 /*
2496 * We don't know how much we wrote, so just return
2497 * the number of bytes which were direct-written
2498 */
2499 }
2500 } else {
2501 written = generic_file_buffered_write(iocb, iov, nr_segs,
2502 pos, ppos, count, written);
2503 }
1da177e4
LT
2504out:
2505 current->backing_dev_info = NULL;
2506 return written ? written : err;
2507}
1da177e4 2508
027445c3
BP
2509ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2510 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
1da177e4
LT
2511{
2512 struct file *file = iocb->ki_filp;
2513 struct address_space *mapping = file->f_mapping;
2514 struct inode *inode = mapping->host;
2515 ssize_t ret;
1da177e4 2516
027445c3
BP
2517 BUG_ON(iocb->ki_pos != pos);
2518
2519 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2520 &iocb->ki_pos);
1da177e4
LT
2521
2522 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
027445c3 2523 ssize_t err;
1da177e4
LT
2524
2525 err = sync_page_range_nolock(inode, mapping, pos, ret);
2526 if (err < 0)
2527 ret = err;
2528 }
2529 return ret;
2530}
027445c3 2531EXPORT_SYMBOL(generic_file_aio_write_nolock);
1da177e4 2532
027445c3
BP
2533ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2534 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2535{
2536 struct file *file = iocb->ki_filp;
2537 struct address_space *mapping = file->f_mapping;
2538 struct inode *inode = mapping->host;
2539 ssize_t ret;
1da177e4
LT
2540
2541 BUG_ON(iocb->ki_pos != pos);
2542
1b1dcc1b 2543 mutex_lock(&inode->i_mutex);
027445c3
BP
2544 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2545 &iocb->ki_pos);
1b1dcc1b 2546 mutex_unlock(&inode->i_mutex);
1da177e4
LT
2547
2548 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2549 ssize_t err;
2550
2551 err = sync_page_range(inode, mapping, pos, ret);
2552 if (err < 0)
2553 ret = err;
2554 }
2555 return ret;
2556}
2557EXPORT_SYMBOL(generic_file_aio_write);
2558
cf9a2ae8
DH
2559/**
2560 * try_to_release_page() - release old fs-specific metadata on a page
2561 *
2562 * @page: the page which the kernel is trying to free
2563 * @gfp_mask: memory allocation flags (and I/O mode)
2564 *
2565 * The address_space is to try to release any data against the page
2566 * (presumably at page->private). If the release was successful, return `1'.
2567 * Otherwise return zero.
2568 *
2569 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2570 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2571 *
cf9a2ae8
DH
2572 */
2573int try_to_release_page(struct page *page, gfp_t gfp_mask)
2574{
2575 struct address_space * const mapping = page->mapping;
2576
2577 BUG_ON(!PageLocked(page));
2578 if (PageWriteback(page))
2579 return 0;
2580
2581 if (mapping && mapping->a_ops->releasepage)
2582 return mapping->a_ops->releasepage(page, gfp_mask);
2583 return try_to_free_buffers(page);
2584}
2585
2586EXPORT_SYMBOL(try_to_release_page);