]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/filemap.c
mm, memcg: pass charge order to oom killer
[mirror_ubuntu-artful-kernel.git] / mm / filemap.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7/*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
b95f1b31 12#include <linux/export.h>
1da177e4
LT
13#include <linux/compiler.h>
14#include <linux/fs.h>
c22ce143 15#include <linux/uaccess.h>
1da177e4 16#include <linux/aio.h>
c59ede7b 17#include <linux/capability.h>
1da177e4 18#include <linux/kernel_stat.h>
5a0e3ad6 19#include <linux/gfp.h>
1da177e4
LT
20#include <linux/mm.h>
21#include <linux/swap.h>
22#include <linux/mman.h>
23#include <linux/pagemap.h>
24#include <linux/file.h>
25#include <linux/uio.h>
26#include <linux/hash.h>
27#include <linux/writeback.h>
53253383 28#include <linux/backing-dev.h>
1da177e4
LT
29#include <linux/pagevec.h>
30#include <linux/blkdev.h>
31#include <linux/security.h>
32#include <linux/syscalls.h>
44110fe3 33#include <linux/cpuset.h>
2f718ffc 34#include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
8a9f3ccd 35#include <linux/memcontrol.h>
c515e1fd 36#include <linux/cleancache.h>
0f8053a5
NP
37#include "internal.h"
38
1da177e4 39/*
1da177e4
LT
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
148f948b 42#include <linux/buffer_head.h> /* for try_to_free_buffers */
1da177e4 43
1da177e4
LT
44#include <asm/mman.h>
45
46/*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58/*
59 * Lock ordering:
60 *
3d48ae45 61 * ->i_mmap_mutex (truncate_pagecache)
1da177e4 62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
5d337b91
HD
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
1da177e4 65 *
1b1dcc1b 66 * ->i_mutex
3d48ae45 67 * ->i_mmap_mutex (truncate->unmap_mapping_range)
1da177e4
LT
68 *
69 * ->mmap_sem
3d48ae45 70 * ->i_mmap_mutex
b8072f09 71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
1da177e4
LT
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
82591e6e
NP
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
1da177e4 79 *
f758eeab 80 * bdi->wb.list_lock
a66979ab 81 * sb_lock (fs/fs-writeback.c)
1da177e4
LT
82 * ->mapping->tree_lock (__sync_single_inode)
83 *
3d48ae45 84 * ->i_mmap_mutex
1da177e4
LT
85 * ->anon_vma.lock (vma_adjust)
86 *
87 * ->anon_vma.lock
b8072f09 88 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
1da177e4 89 *
b8072f09 90 * ->page_table_lock or pte_lock
5d337b91 91 * ->swap_lock (try_to_unmap_one)
1da177e4
LT
92 * ->private_lock (try_to_unmap_one)
93 * ->tree_lock (try_to_unmap_one)
94 * ->zone.lru_lock (follow_page->mark_page_accessed)
053837fc 95 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
1da177e4
LT
96 * ->private_lock (page_remove_rmap->set_page_dirty)
97 * ->tree_lock (page_remove_rmap->set_page_dirty)
f758eeab 98 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
250df6ed 99 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
f758eeab 100 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
250df6ed 101 * ->inode->i_lock (zap_pte_range->set_page_dirty)
1da177e4
LT
102 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
103 *
9a3c531d
AK
104 * ->i_mmap_mutex
105 * ->tasklist_lock (memory_failure, collect_procs_ao)
1da177e4
LT
106 */
107
108/*
e64a782f 109 * Delete a page from the page cache and free it. Caller has to make
1da177e4 110 * sure the page is locked and that nobody else uses it - or that usage
19fd6231 111 * is safe. The caller must hold the mapping's tree_lock.
1da177e4 112 */
e64a782f 113void __delete_from_page_cache(struct page *page)
1da177e4
LT
114{
115 struct address_space *mapping = page->mapping;
116
c515e1fd
DM
117 /*
118 * if we're uptodate, flush out into the cleancache, otherwise
119 * invalidate any existing cleancache entries. We can't leave
120 * stale data around in the cleancache once our page is gone
121 */
122 if (PageUptodate(page) && PageMappedToDisk(page))
123 cleancache_put_page(page);
124 else
125 cleancache_flush_page(mapping, page);
126
1da177e4
LT
127 radix_tree_delete(&mapping->page_tree, page->index);
128 page->mapping = NULL;
b85e0eff 129 /* Leave page->index set: truncation lookup relies upon it */
1da177e4 130 mapping->nrpages--;
347ce434 131 __dec_zone_page_state(page, NR_FILE_PAGES);
4b02108a
KM
132 if (PageSwapBacked(page))
133 __dec_zone_page_state(page, NR_SHMEM);
45426812 134 BUG_ON(page_mapped(page));
3a692790
LT
135
136 /*
137 * Some filesystems seem to re-dirty the page even after
138 * the VM has canceled the dirty bit (eg ext3 journaling).
139 *
140 * Fix it up by doing a final dirty accounting check after
141 * having removed the page entirely.
142 */
143 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
144 dec_zone_page_state(page, NR_FILE_DIRTY);
145 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
146 }
1da177e4
LT
147}
148
702cfbf9
MK
149/**
150 * delete_from_page_cache - delete page from page cache
151 * @page: the page which the kernel is trying to remove from page cache
152 *
153 * This must be called only on pages that have been verified to be in the page
154 * cache and locked. It will never put the page into the free list, the caller
155 * has a reference on the page.
156 */
157void delete_from_page_cache(struct page *page)
1da177e4
LT
158{
159 struct address_space *mapping = page->mapping;
6072d13c 160 void (*freepage)(struct page *);
1da177e4 161
cd7619d6 162 BUG_ON(!PageLocked(page));
1da177e4 163
6072d13c 164 freepage = mapping->a_ops->freepage;
19fd6231 165 spin_lock_irq(&mapping->tree_lock);
e64a782f 166 __delete_from_page_cache(page);
19fd6231 167 spin_unlock_irq(&mapping->tree_lock);
e767e056 168 mem_cgroup_uncharge_cache_page(page);
6072d13c
LT
169
170 if (freepage)
171 freepage(page);
97cecb5a
MK
172 page_cache_release(page);
173}
174EXPORT_SYMBOL(delete_from_page_cache);
175
7eaceacc 176static int sleep_on_page(void *word)
1da177e4 177{
1da177e4
LT
178 io_schedule();
179 return 0;
180}
181
7eaceacc 182static int sleep_on_page_killable(void *word)
2687a356 183{
7eaceacc 184 sleep_on_page(word);
2687a356
MW
185 return fatal_signal_pending(current) ? -EINTR : 0;
186}
187
1da177e4 188/**
485bb99b 189 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
67be2dd1
MW
190 * @mapping: address space structure to write
191 * @start: offset in bytes where the range starts
469eb4d0 192 * @end: offset in bytes where the range ends (inclusive)
67be2dd1 193 * @sync_mode: enable synchronous operation
1da177e4 194 *
485bb99b
RD
195 * Start writeback against all of a mapping's dirty pages that lie
196 * within the byte offsets <start, end> inclusive.
197 *
1da177e4 198 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
485bb99b 199 * opposed to a regular memory cleansing writeback. The difference between
1da177e4
LT
200 * these two operations is that if a dirty page/buffer is encountered, it must
201 * be waited upon, and not just skipped over.
202 */
ebcf28e1
AM
203int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
204 loff_t end, int sync_mode)
1da177e4
LT
205{
206 int ret;
207 struct writeback_control wbc = {
208 .sync_mode = sync_mode,
05fe478d 209 .nr_to_write = LONG_MAX,
111ebb6e
OH
210 .range_start = start,
211 .range_end = end,
1da177e4
LT
212 };
213
214 if (!mapping_cap_writeback_dirty(mapping))
215 return 0;
216
217 ret = do_writepages(mapping, &wbc);
218 return ret;
219}
220
221static inline int __filemap_fdatawrite(struct address_space *mapping,
222 int sync_mode)
223{
111ebb6e 224 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
1da177e4
LT
225}
226
227int filemap_fdatawrite(struct address_space *mapping)
228{
229 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
230}
231EXPORT_SYMBOL(filemap_fdatawrite);
232
f4c0a0fd 233int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
ebcf28e1 234 loff_t end)
1da177e4
LT
235{
236 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
237}
f4c0a0fd 238EXPORT_SYMBOL(filemap_fdatawrite_range);
1da177e4 239
485bb99b
RD
240/**
241 * filemap_flush - mostly a non-blocking flush
242 * @mapping: target address_space
243 *
1da177e4
LT
244 * This is a mostly non-blocking flush. Not suitable for data-integrity
245 * purposes - I/O may not be started against all dirty pages.
246 */
247int filemap_flush(struct address_space *mapping)
248{
249 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
250}
251EXPORT_SYMBOL(filemap_flush);
252
485bb99b 253/**
94004ed7
CH
254 * filemap_fdatawait_range - wait for writeback to complete
255 * @mapping: address space structure to wait for
256 * @start_byte: offset in bytes where the range starts
257 * @end_byte: offset in bytes where the range ends (inclusive)
485bb99b 258 *
94004ed7
CH
259 * Walk the list of under-writeback pages of the given address space
260 * in the given range and wait for all of them.
1da177e4 261 */
94004ed7
CH
262int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
263 loff_t end_byte)
1da177e4 264{
94004ed7
CH
265 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
266 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
1da177e4
LT
267 struct pagevec pvec;
268 int nr_pages;
269 int ret = 0;
1da177e4 270
94004ed7 271 if (end_byte < start_byte)
1da177e4
LT
272 return 0;
273
274 pagevec_init(&pvec, 0);
1da177e4
LT
275 while ((index <= end) &&
276 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
277 PAGECACHE_TAG_WRITEBACK,
278 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
279 unsigned i;
280
281 for (i = 0; i < nr_pages; i++) {
282 struct page *page = pvec.pages[i];
283
284 /* until radix tree lookup accepts end_index */
285 if (page->index > end)
286 continue;
287
288 wait_on_page_writeback(page);
212260aa 289 if (TestClearPageError(page))
1da177e4
LT
290 ret = -EIO;
291 }
292 pagevec_release(&pvec);
293 cond_resched();
294 }
295
296 /* Check for outstanding write errors */
297 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
298 ret = -ENOSPC;
299 if (test_and_clear_bit(AS_EIO, &mapping->flags))
300 ret = -EIO;
301
302 return ret;
303}
d3bccb6f
JK
304EXPORT_SYMBOL(filemap_fdatawait_range);
305
1da177e4 306/**
485bb99b 307 * filemap_fdatawait - wait for all under-writeback pages to complete
1da177e4 308 * @mapping: address space structure to wait for
485bb99b
RD
309 *
310 * Walk the list of under-writeback pages of the given address space
311 * and wait for all of them.
1da177e4
LT
312 */
313int filemap_fdatawait(struct address_space *mapping)
314{
315 loff_t i_size = i_size_read(mapping->host);
316
317 if (i_size == 0)
318 return 0;
319
94004ed7 320 return filemap_fdatawait_range(mapping, 0, i_size - 1);
1da177e4
LT
321}
322EXPORT_SYMBOL(filemap_fdatawait);
323
324int filemap_write_and_wait(struct address_space *mapping)
325{
28fd1298 326 int err = 0;
1da177e4
LT
327
328 if (mapping->nrpages) {
28fd1298
OH
329 err = filemap_fdatawrite(mapping);
330 /*
331 * Even if the above returned error, the pages may be
332 * written partially (e.g. -ENOSPC), so we wait for it.
333 * But the -EIO is special case, it may indicate the worst
334 * thing (e.g. bug) happened, so we avoid waiting for it.
335 */
336 if (err != -EIO) {
337 int err2 = filemap_fdatawait(mapping);
338 if (!err)
339 err = err2;
340 }
1da177e4 341 }
28fd1298 342 return err;
1da177e4 343}
28fd1298 344EXPORT_SYMBOL(filemap_write_and_wait);
1da177e4 345
485bb99b
RD
346/**
347 * filemap_write_and_wait_range - write out & wait on a file range
348 * @mapping: the address_space for the pages
349 * @lstart: offset in bytes where the range starts
350 * @lend: offset in bytes where the range ends (inclusive)
351 *
469eb4d0
AM
352 * Write out and wait upon file offsets lstart->lend, inclusive.
353 *
354 * Note that `lend' is inclusive (describes the last byte to be written) so
355 * that this function can be used to write to the very end-of-file (end = -1).
356 */
1da177e4
LT
357int filemap_write_and_wait_range(struct address_space *mapping,
358 loff_t lstart, loff_t lend)
359{
28fd1298 360 int err = 0;
1da177e4
LT
361
362 if (mapping->nrpages) {
28fd1298
OH
363 err = __filemap_fdatawrite_range(mapping, lstart, lend,
364 WB_SYNC_ALL);
365 /* See comment of filemap_write_and_wait() */
366 if (err != -EIO) {
94004ed7
CH
367 int err2 = filemap_fdatawait_range(mapping,
368 lstart, lend);
28fd1298
OH
369 if (!err)
370 err = err2;
371 }
1da177e4 372 }
28fd1298 373 return err;
1da177e4 374}
f6995585 375EXPORT_SYMBOL(filemap_write_and_wait_range);
1da177e4 376
ef6a3c63
MS
377/**
378 * replace_page_cache_page - replace a pagecache page with a new one
379 * @old: page to be replaced
380 * @new: page to replace with
381 * @gfp_mask: allocation mode
382 *
383 * This function replaces a page in the pagecache with a new one. On
384 * success it acquires the pagecache reference for the new page and
385 * drops it for the old page. Both the old and new pages must be
386 * locked. This function does not add the new page to the LRU, the
387 * caller must do that.
388 *
389 * The remove + add is atomic. The only way this function can fail is
390 * memory allocation failure.
391 */
392int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
393{
394 int error;
ef6a3c63
MS
395
396 VM_BUG_ON(!PageLocked(old));
397 VM_BUG_ON(!PageLocked(new));
398 VM_BUG_ON(new->mapping);
399
ef6a3c63
MS
400 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
401 if (!error) {
402 struct address_space *mapping = old->mapping;
403 void (*freepage)(struct page *);
404
405 pgoff_t offset = old->index;
406 freepage = mapping->a_ops->freepage;
407
408 page_cache_get(new);
409 new->mapping = mapping;
410 new->index = offset;
411
412 spin_lock_irq(&mapping->tree_lock);
e64a782f 413 __delete_from_page_cache(old);
ef6a3c63
MS
414 error = radix_tree_insert(&mapping->page_tree, offset, new);
415 BUG_ON(error);
416 mapping->nrpages++;
417 __inc_zone_page_state(new, NR_FILE_PAGES);
418 if (PageSwapBacked(new))
419 __inc_zone_page_state(new, NR_SHMEM);
420 spin_unlock_irq(&mapping->tree_lock);
ab936cbc
KH
421 /* mem_cgroup codes must not be called under tree_lock */
422 mem_cgroup_replace_page_cache(old, new);
ef6a3c63
MS
423 radix_tree_preload_end();
424 if (freepage)
425 freepage(old);
426 page_cache_release(old);
ef6a3c63
MS
427 }
428
429 return error;
430}
431EXPORT_SYMBOL_GPL(replace_page_cache_page);
432
485bb99b 433/**
e286781d 434 * add_to_page_cache_locked - add a locked page to the pagecache
485bb99b
RD
435 * @page: page to add
436 * @mapping: the page's address_space
437 * @offset: page index
438 * @gfp_mask: page allocation mode
439 *
e286781d 440 * This function is used to add a page to the pagecache. It must be locked.
1da177e4
LT
441 * This function does not add the page to the LRU. The caller must do that.
442 */
e286781d 443int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
6daa0e28 444 pgoff_t offset, gfp_t gfp_mask)
1da177e4 445{
e286781d
NP
446 int error;
447
448 VM_BUG_ON(!PageLocked(page));
31475dd6 449 VM_BUG_ON(PageSwapBacked(page));
e286781d
NP
450
451 error = mem_cgroup_cache_charge(page, current->mm,
2c26fdd7 452 gfp_mask & GFP_RECLAIM_MASK);
35c754d7
BS
453 if (error)
454 goto out;
1da177e4 455
35c754d7 456 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
1da177e4 457 if (error == 0) {
e286781d
NP
458 page_cache_get(page);
459 page->mapping = mapping;
460 page->index = offset;
461
19fd6231 462 spin_lock_irq(&mapping->tree_lock);
1da177e4 463 error = radix_tree_insert(&mapping->page_tree, offset, page);
e286781d 464 if (likely(!error)) {
1da177e4 465 mapping->nrpages++;
347ce434 466 __inc_zone_page_state(page, NR_FILE_PAGES);
e767e056 467 spin_unlock_irq(&mapping->tree_lock);
e286781d
NP
468 } else {
469 page->mapping = NULL;
b85e0eff 470 /* Leave page->index set: truncation relies upon it */
e767e056 471 spin_unlock_irq(&mapping->tree_lock);
69029cd5 472 mem_cgroup_uncharge_cache_page(page);
e286781d
NP
473 page_cache_release(page);
474 }
1da177e4 475 radix_tree_preload_end();
35c754d7 476 } else
69029cd5 477 mem_cgroup_uncharge_cache_page(page);
8a9f3ccd 478out:
1da177e4
LT
479 return error;
480}
e286781d 481EXPORT_SYMBOL(add_to_page_cache_locked);
1da177e4
LT
482
483int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
6daa0e28 484 pgoff_t offset, gfp_t gfp_mask)
1da177e4 485{
4f98a2fe
RR
486 int ret;
487
4f98a2fe 488 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
31475dd6
HD
489 if (ret == 0)
490 lru_cache_add_file(page);
1da177e4
LT
491 return ret;
492}
18bc0bbd 493EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
1da177e4 494
44110fe3 495#ifdef CONFIG_NUMA
2ae88149 496struct page *__page_cache_alloc(gfp_t gfp)
44110fe3 497{
c0ff7453
MX
498 int n;
499 struct page *page;
500
44110fe3 501 if (cpuset_do_page_mem_spread()) {
c0ff7453
MX
502 get_mems_allowed();
503 n = cpuset_mem_spread_node();
504 page = alloc_pages_exact_node(n, gfp, 0);
505 put_mems_allowed();
506 return page;
44110fe3 507 }
2ae88149 508 return alloc_pages(gfp, 0);
44110fe3 509}
2ae88149 510EXPORT_SYMBOL(__page_cache_alloc);
44110fe3
PJ
511#endif
512
1da177e4
LT
513/*
514 * In order to wait for pages to become available there must be
515 * waitqueues associated with pages. By using a hash table of
516 * waitqueues where the bucket discipline is to maintain all
517 * waiters on the same queue and wake all when any of the pages
518 * become available, and for the woken contexts to check to be
519 * sure the appropriate page became available, this saves space
520 * at a cost of "thundering herd" phenomena during rare hash
521 * collisions.
522 */
523static wait_queue_head_t *page_waitqueue(struct page *page)
524{
525 const struct zone *zone = page_zone(page);
526
527 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
528}
529
530static inline void wake_up_page(struct page *page, int bit)
531{
532 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
533}
534
920c7a5d 535void wait_on_page_bit(struct page *page, int bit_nr)
1da177e4
LT
536{
537 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
538
539 if (test_bit(bit_nr, &page->flags))
7eaceacc 540 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
541 TASK_UNINTERRUPTIBLE);
542}
543EXPORT_SYMBOL(wait_on_page_bit);
544
f62e00cc
KM
545int wait_on_page_bit_killable(struct page *page, int bit_nr)
546{
547 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
548
549 if (!test_bit(bit_nr, &page->flags))
550 return 0;
551
552 return __wait_on_bit(page_waitqueue(page), &wait,
553 sleep_on_page_killable, TASK_KILLABLE);
554}
555
385e1ca5
DH
556/**
557 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
697f619f
RD
558 * @page: Page defining the wait queue of interest
559 * @waiter: Waiter to add to the queue
385e1ca5
DH
560 *
561 * Add an arbitrary @waiter to the wait queue for the nominated @page.
562 */
563void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
564{
565 wait_queue_head_t *q = page_waitqueue(page);
566 unsigned long flags;
567
568 spin_lock_irqsave(&q->lock, flags);
569 __add_wait_queue(q, waiter);
570 spin_unlock_irqrestore(&q->lock, flags);
571}
572EXPORT_SYMBOL_GPL(add_page_wait_queue);
573
1da177e4 574/**
485bb99b 575 * unlock_page - unlock a locked page
1da177e4
LT
576 * @page: the page
577 *
578 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
579 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
580 * mechananism between PageLocked pages and PageWriteback pages is shared.
581 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
582 *
8413ac9d
NP
583 * The mb is necessary to enforce ordering between the clear_bit and the read
584 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
1da177e4 585 */
920c7a5d 586void unlock_page(struct page *page)
1da177e4 587{
8413ac9d
NP
588 VM_BUG_ON(!PageLocked(page));
589 clear_bit_unlock(PG_locked, &page->flags);
590 smp_mb__after_clear_bit();
1da177e4
LT
591 wake_up_page(page, PG_locked);
592}
593EXPORT_SYMBOL(unlock_page);
594
485bb99b
RD
595/**
596 * end_page_writeback - end writeback against a page
597 * @page: the page
1da177e4
LT
598 */
599void end_page_writeback(struct page *page)
600{
ac6aadb2
MS
601 if (TestClearPageReclaim(page))
602 rotate_reclaimable_page(page);
603
604 if (!test_clear_page_writeback(page))
605 BUG();
606
1da177e4
LT
607 smp_mb__after_clear_bit();
608 wake_up_page(page, PG_writeback);
609}
610EXPORT_SYMBOL(end_page_writeback);
611
485bb99b
RD
612/**
613 * __lock_page - get a lock on the page, assuming we need to sleep to get it
614 * @page: the page to lock
1da177e4 615 */
920c7a5d 616void __lock_page(struct page *page)
1da177e4
LT
617{
618 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
619
7eaceacc 620 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
1da177e4
LT
621 TASK_UNINTERRUPTIBLE);
622}
623EXPORT_SYMBOL(__lock_page);
624
b5606c2d 625int __lock_page_killable(struct page *page)
2687a356
MW
626{
627 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
628
629 return __wait_on_bit_lock(page_waitqueue(page), &wait,
7eaceacc 630 sleep_on_page_killable, TASK_KILLABLE);
2687a356 631}
18bc0bbd 632EXPORT_SYMBOL_GPL(__lock_page_killable);
2687a356 633
d065bd81
ML
634int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
635 unsigned int flags)
636{
37b23e05
KM
637 if (flags & FAULT_FLAG_ALLOW_RETRY) {
638 /*
639 * CAUTION! In this case, mmap_sem is not released
640 * even though return 0.
641 */
642 if (flags & FAULT_FLAG_RETRY_NOWAIT)
643 return 0;
644
645 up_read(&mm->mmap_sem);
646 if (flags & FAULT_FLAG_KILLABLE)
647 wait_on_page_locked_killable(page);
648 else
318b275f 649 wait_on_page_locked(page);
d065bd81 650 return 0;
37b23e05
KM
651 } else {
652 if (flags & FAULT_FLAG_KILLABLE) {
653 int ret;
654
655 ret = __lock_page_killable(page);
656 if (ret) {
657 up_read(&mm->mmap_sem);
658 return 0;
659 }
660 } else
661 __lock_page(page);
662 return 1;
d065bd81
ML
663 }
664}
665
485bb99b
RD
666/**
667 * find_get_page - find and get a page reference
668 * @mapping: the address_space to search
669 * @offset: the page index
670 *
da6052f7
NP
671 * Is there a pagecache struct page at the given (mapping, offset) tuple?
672 * If yes, increment its refcount and return it; if no, return NULL.
1da177e4 673 */
a60637c8 674struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
1da177e4 675{
a60637c8 676 void **pagep;
1da177e4
LT
677 struct page *page;
678
a60637c8
NP
679 rcu_read_lock();
680repeat:
681 page = NULL;
682 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
683 if (pagep) {
684 page = radix_tree_deref_slot(pagep);
27d20fdd
NP
685 if (unlikely(!page))
686 goto out;
a2c16d6c 687 if (radix_tree_exception(page)) {
8079b1c8
HD
688 if (radix_tree_deref_retry(page))
689 goto repeat;
690 /*
691 * Otherwise, shmem/tmpfs must be storing a swap entry
692 * here as an exceptional entry: so return it without
693 * attempting to raise page count.
694 */
695 goto out;
a2c16d6c 696 }
a60637c8
NP
697 if (!page_cache_get_speculative(page))
698 goto repeat;
699
700 /*
701 * Has the page moved?
702 * This is part of the lockless pagecache protocol. See
703 * include/linux/pagemap.h for details.
704 */
705 if (unlikely(page != *pagep)) {
706 page_cache_release(page);
707 goto repeat;
708 }
709 }
27d20fdd 710out:
a60637c8
NP
711 rcu_read_unlock();
712
1da177e4
LT
713 return page;
714}
1da177e4
LT
715EXPORT_SYMBOL(find_get_page);
716
1da177e4
LT
717/**
718 * find_lock_page - locate, pin and lock a pagecache page
67be2dd1
MW
719 * @mapping: the address_space to search
720 * @offset: the page index
1da177e4
LT
721 *
722 * Locates the desired pagecache page, locks it, increments its reference
723 * count and returns its address.
724 *
725 * Returns zero if the page was not present. find_lock_page() may sleep.
726 */
a60637c8 727struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1da177e4
LT
728{
729 struct page *page;
730
1da177e4 731repeat:
a60637c8 732 page = find_get_page(mapping, offset);
a2c16d6c 733 if (page && !radix_tree_exception(page)) {
a60637c8
NP
734 lock_page(page);
735 /* Has the page been truncated? */
736 if (unlikely(page->mapping != mapping)) {
737 unlock_page(page);
738 page_cache_release(page);
739 goto repeat;
1da177e4 740 }
a60637c8 741 VM_BUG_ON(page->index != offset);
1da177e4 742 }
1da177e4
LT
743 return page;
744}
1da177e4
LT
745EXPORT_SYMBOL(find_lock_page);
746
747/**
748 * find_or_create_page - locate or add a pagecache page
67be2dd1
MW
749 * @mapping: the page's address_space
750 * @index: the page's index into the mapping
751 * @gfp_mask: page allocation mode
1da177e4
LT
752 *
753 * Locates a page in the pagecache. If the page is not present, a new page
754 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
755 * LRU list. The returned page is locked and has its reference count
756 * incremented.
757 *
758 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
759 * allocation!
760 *
761 * find_or_create_page() returns the desired page's address, or zero on
762 * memory exhaustion.
763 */
764struct page *find_or_create_page(struct address_space *mapping,
57f6b96c 765 pgoff_t index, gfp_t gfp_mask)
1da177e4 766{
eb2be189 767 struct page *page;
1da177e4
LT
768 int err;
769repeat:
770 page = find_lock_page(mapping, index);
771 if (!page) {
eb2be189
NP
772 page = __page_cache_alloc(gfp_mask);
773 if (!page)
774 return NULL;
67d58ac4
NP
775 /*
776 * We want a regular kernel memory (not highmem or DMA etc)
777 * allocation for the radix tree nodes, but we need to honour
778 * the context-specific requirements the caller has asked for.
779 * GFP_RECLAIM_MASK collects those requirements.
780 */
781 err = add_to_page_cache_lru(page, mapping, index,
782 (gfp_mask & GFP_RECLAIM_MASK));
eb2be189
NP
783 if (unlikely(err)) {
784 page_cache_release(page);
785 page = NULL;
786 if (err == -EEXIST)
787 goto repeat;
1da177e4 788 }
1da177e4 789 }
1da177e4
LT
790 return page;
791}
1da177e4
LT
792EXPORT_SYMBOL(find_or_create_page);
793
794/**
795 * find_get_pages - gang pagecache lookup
796 * @mapping: The address_space to search
797 * @start: The starting page index
798 * @nr_pages: The maximum number of pages
799 * @pages: Where the resulting pages are placed
800 *
801 * find_get_pages() will search for and return a group of up to
802 * @nr_pages pages in the mapping. The pages are placed at @pages.
803 * find_get_pages() takes a reference against the returned pages.
804 *
805 * The search returns a group of mapping-contiguous pages with ascending
806 * indexes. There may be holes in the indices due to not-present pages.
807 *
808 * find_get_pages() returns the number of pages which were found.
809 */
810unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
811 unsigned int nr_pages, struct page **pages)
812{
813 unsigned int i;
814 unsigned int ret;
cc39c6a9 815 unsigned int nr_found, nr_skip;
a60637c8
NP
816
817 rcu_read_lock();
818restart:
819 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
6328650b 820 (void ***)pages, NULL, start, nr_pages);
a60637c8 821 ret = 0;
cc39c6a9 822 nr_skip = 0;
a60637c8
NP
823 for (i = 0; i < nr_found; i++) {
824 struct page *page;
825repeat:
826 page = radix_tree_deref_slot((void **)pages[i]);
827 if (unlikely(!page))
828 continue;
9d8aa4ea 829
a2c16d6c 830 if (radix_tree_exception(page)) {
8079b1c8
HD
831 if (radix_tree_deref_retry(page)) {
832 /*
833 * Transient condition which can only trigger
834 * when entry at index 0 moves out of or back
835 * to root: none yet gotten, safe to restart.
836 */
837 WARN_ON(start | i);
838 goto restart;
839 }
a2c16d6c 840 /*
8079b1c8
HD
841 * Otherwise, shmem/tmpfs must be storing a swap entry
842 * here as an exceptional entry: so skip over it -
843 * we only reach this from invalidate_mapping_pages().
a2c16d6c 844 */
cc39c6a9 845 nr_skip++;
8079b1c8 846 continue;
27d20fdd 847 }
a60637c8
NP
848
849 if (!page_cache_get_speculative(page))
850 goto repeat;
851
852 /* Has the page moved? */
853 if (unlikely(page != *((void **)pages[i]))) {
854 page_cache_release(page);
855 goto repeat;
856 }
1da177e4 857
a60637c8
NP
858 pages[ret] = page;
859 ret++;
860 }
5b280c0c
HD
861
862 /*
863 * If all entries were removed before we could secure them,
864 * try again, because callers stop trying once 0 is returned.
865 */
cc39c6a9 866 if (unlikely(!ret && nr_found > nr_skip))
5b280c0c 867 goto restart;
a60637c8 868 rcu_read_unlock();
1da177e4
LT
869 return ret;
870}
871
ebf43500
JA
872/**
873 * find_get_pages_contig - gang contiguous pagecache lookup
874 * @mapping: The address_space to search
875 * @index: The starting page index
876 * @nr_pages: The maximum number of pages
877 * @pages: Where the resulting pages are placed
878 *
879 * find_get_pages_contig() works exactly like find_get_pages(), except
880 * that the returned number of pages are guaranteed to be contiguous.
881 *
882 * find_get_pages_contig() returns the number of pages which were found.
883 */
884unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
885 unsigned int nr_pages, struct page **pages)
886{
887 unsigned int i;
888 unsigned int ret;
a60637c8
NP
889 unsigned int nr_found;
890
891 rcu_read_lock();
892restart:
893 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
6328650b 894 (void ***)pages, NULL, index, nr_pages);
a60637c8
NP
895 ret = 0;
896 for (i = 0; i < nr_found; i++) {
897 struct page *page;
898repeat:
899 page = radix_tree_deref_slot((void **)pages[i]);
900 if (unlikely(!page))
901 continue;
9d8aa4ea 902
a2c16d6c 903 if (radix_tree_exception(page)) {
8079b1c8
HD
904 if (radix_tree_deref_retry(page)) {
905 /*
906 * Transient condition which can only trigger
907 * when entry at index 0 moves out of or back
908 * to root: none yet gotten, safe to restart.
909 */
910 goto restart;
911 }
a2c16d6c 912 /*
8079b1c8
HD
913 * Otherwise, shmem/tmpfs must be storing a swap entry
914 * here as an exceptional entry: so stop looking for
915 * contiguous pages.
a2c16d6c 916 */
8079b1c8 917 break;
a2c16d6c 918 }
ebf43500 919
a60637c8
NP
920 if (!page_cache_get_speculative(page))
921 goto repeat;
922
923 /* Has the page moved? */
924 if (unlikely(page != *((void **)pages[i]))) {
925 page_cache_release(page);
926 goto repeat;
927 }
928
9cbb4cb2
NP
929 /*
930 * must check mapping and index after taking the ref.
931 * otherwise we can get both false positives and false
932 * negatives, which is just confusing to the caller.
933 */
934 if (page->mapping == NULL || page->index != index) {
935 page_cache_release(page);
936 break;
937 }
938
a60637c8
NP
939 pages[ret] = page;
940 ret++;
ebf43500
JA
941 index++;
942 }
a60637c8
NP
943 rcu_read_unlock();
944 return ret;
ebf43500 945}
ef71c15c 946EXPORT_SYMBOL(find_get_pages_contig);
ebf43500 947
485bb99b
RD
948/**
949 * find_get_pages_tag - find and return pages that match @tag
950 * @mapping: the address_space to search
951 * @index: the starting page index
952 * @tag: the tag index
953 * @nr_pages: the maximum number of pages
954 * @pages: where the resulting pages are placed
955 *
1da177e4 956 * Like find_get_pages, except we only return pages which are tagged with
485bb99b 957 * @tag. We update @index to index the next page for the traversal.
1da177e4
LT
958 */
959unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
960 int tag, unsigned int nr_pages, struct page **pages)
961{
962 unsigned int i;
963 unsigned int ret;
a60637c8
NP
964 unsigned int nr_found;
965
966 rcu_read_lock();
967restart:
968 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
969 (void ***)pages, *index, nr_pages, tag);
970 ret = 0;
971 for (i = 0; i < nr_found; i++) {
972 struct page *page;
973repeat:
974 page = radix_tree_deref_slot((void **)pages[i]);
975 if (unlikely(!page))
976 continue;
9d8aa4ea 977
a2c16d6c 978 if (radix_tree_exception(page)) {
8079b1c8
HD
979 if (radix_tree_deref_retry(page)) {
980 /*
981 * Transient condition which can only trigger
982 * when entry at index 0 moves out of or back
983 * to root: none yet gotten, safe to restart.
984 */
985 goto restart;
986 }
a2c16d6c 987 /*
8079b1c8
HD
988 * This function is never used on a shmem/tmpfs
989 * mapping, so a swap entry won't be found here.
a2c16d6c 990 */
8079b1c8 991 BUG();
a2c16d6c 992 }
a60637c8
NP
993
994 if (!page_cache_get_speculative(page))
995 goto repeat;
996
997 /* Has the page moved? */
998 if (unlikely(page != *((void **)pages[i]))) {
999 page_cache_release(page);
1000 goto repeat;
1001 }
1002
1003 pages[ret] = page;
1004 ret++;
1005 }
5b280c0c
HD
1006
1007 /*
1008 * If all entries were removed before we could secure them,
1009 * try again, because callers stop trying once 0 is returned.
1010 */
1011 if (unlikely(!ret && nr_found))
1012 goto restart;
a60637c8 1013 rcu_read_unlock();
1da177e4 1014
1da177e4
LT
1015 if (ret)
1016 *index = pages[ret - 1]->index + 1;
a60637c8 1017
1da177e4
LT
1018 return ret;
1019}
ef71c15c 1020EXPORT_SYMBOL(find_get_pages_tag);
1da177e4 1021
485bb99b
RD
1022/**
1023 * grab_cache_page_nowait - returns locked page at given index in given cache
1024 * @mapping: target address_space
1025 * @index: the page index
1026 *
72fd4a35 1027 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1da177e4
LT
1028 * This is intended for speculative data generators, where the data can
1029 * be regenerated if the page couldn't be grabbed. This routine should
1030 * be safe to call while holding the lock for another page.
1031 *
1032 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1033 * and deadlock against the caller's locked page.
1034 */
1035struct page *
57f6b96c 1036grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1da177e4
LT
1037{
1038 struct page *page = find_get_page(mapping, index);
1da177e4
LT
1039
1040 if (page) {
529ae9aa 1041 if (trylock_page(page))
1da177e4
LT
1042 return page;
1043 page_cache_release(page);
1044 return NULL;
1045 }
2ae88149 1046 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
67d58ac4 1047 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1da177e4
LT
1048 page_cache_release(page);
1049 page = NULL;
1050 }
1051 return page;
1052}
1da177e4
LT
1053EXPORT_SYMBOL(grab_cache_page_nowait);
1054
76d42bd9
WF
1055/*
1056 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1057 * a _large_ part of the i/o request. Imagine the worst scenario:
1058 *
1059 * ---R__________________________________________B__________
1060 * ^ reading here ^ bad block(assume 4k)
1061 *
1062 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1063 * => failing the whole request => read(R) => read(R+1) =>
1064 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1065 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1066 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1067 *
1068 * It is going insane. Fix it by quickly scaling down the readahead size.
1069 */
1070static void shrink_readahead_size_eio(struct file *filp,
1071 struct file_ra_state *ra)
1072{
76d42bd9 1073 ra->ra_pages /= 4;
76d42bd9
WF
1074}
1075
485bb99b 1076/**
36e78914 1077 * do_generic_file_read - generic file read routine
485bb99b
RD
1078 * @filp: the file to read
1079 * @ppos: current file position
1080 * @desc: read_descriptor
1081 * @actor: read method
1082 *
1da177e4 1083 * This is a generic file read routine, and uses the
485bb99b 1084 * mapping->a_ops->readpage() function for the actual low-level stuff.
1da177e4
LT
1085 *
1086 * This is really ugly. But the goto's actually try to clarify some
1087 * of the logic when it comes to error handling etc.
1da177e4 1088 */
36e78914
CH
1089static void do_generic_file_read(struct file *filp, loff_t *ppos,
1090 read_descriptor_t *desc, read_actor_t actor)
1da177e4 1091{
36e78914 1092 struct address_space *mapping = filp->f_mapping;
1da177e4 1093 struct inode *inode = mapping->host;
36e78914 1094 struct file_ra_state *ra = &filp->f_ra;
57f6b96c
FW
1095 pgoff_t index;
1096 pgoff_t last_index;
1097 pgoff_t prev_index;
1098 unsigned long offset; /* offset into pagecache page */
ec0f1637 1099 unsigned int prev_offset;
1da177e4 1100 int error;
1da177e4 1101
1da177e4 1102 index = *ppos >> PAGE_CACHE_SHIFT;
7ff81078
FW
1103 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1104 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1da177e4
LT
1105 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1106 offset = *ppos & ~PAGE_CACHE_MASK;
1107
1da177e4
LT
1108 for (;;) {
1109 struct page *page;
57f6b96c 1110 pgoff_t end_index;
a32ea1e1 1111 loff_t isize;
1da177e4
LT
1112 unsigned long nr, ret;
1113
1da177e4 1114 cond_resched();
1da177e4
LT
1115find_page:
1116 page = find_get_page(mapping, index);
3ea89ee8 1117 if (!page) {
cf914a7d 1118 page_cache_sync_readahead(mapping,
7ff81078 1119 ra, filp,
3ea89ee8
FW
1120 index, last_index - index);
1121 page = find_get_page(mapping, index);
1122 if (unlikely(page == NULL))
1123 goto no_cached_page;
1124 }
1125 if (PageReadahead(page)) {
cf914a7d 1126 page_cache_async_readahead(mapping,
7ff81078 1127 ra, filp, page,
3ea89ee8 1128 index, last_index - index);
1da177e4 1129 }
8ab22b9a
HH
1130 if (!PageUptodate(page)) {
1131 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1132 !mapping->a_ops->is_partially_uptodate)
1133 goto page_not_up_to_date;
529ae9aa 1134 if (!trylock_page(page))
8ab22b9a 1135 goto page_not_up_to_date;
8d056cb9
DH
1136 /* Did it get truncated before we got the lock? */
1137 if (!page->mapping)
1138 goto page_not_up_to_date_locked;
8ab22b9a
HH
1139 if (!mapping->a_ops->is_partially_uptodate(page,
1140 desc, offset))
1141 goto page_not_up_to_date_locked;
1142 unlock_page(page);
1143 }
1da177e4 1144page_ok:
a32ea1e1
N
1145 /*
1146 * i_size must be checked after we know the page is Uptodate.
1147 *
1148 * Checking i_size after the check allows us to calculate
1149 * the correct value for "nr", which means the zero-filled
1150 * part of the page is not copied back to userspace (unless
1151 * another truncate extends the file - this is desired though).
1152 */
1153
1154 isize = i_size_read(inode);
1155 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1156 if (unlikely(!isize || index > end_index)) {
1157 page_cache_release(page);
1158 goto out;
1159 }
1160
1161 /* nr is the maximum number of bytes to copy from this page */
1162 nr = PAGE_CACHE_SIZE;
1163 if (index == end_index) {
1164 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1165 if (nr <= offset) {
1166 page_cache_release(page);
1167 goto out;
1168 }
1169 }
1170 nr = nr - offset;
1da177e4
LT
1171
1172 /* If users can be writing to this page using arbitrary
1173 * virtual addresses, take care about potential aliasing
1174 * before reading the page on the kernel side.
1175 */
1176 if (mapping_writably_mapped(mapping))
1177 flush_dcache_page(page);
1178
1179 /*
ec0f1637
JK
1180 * When a sequential read accesses a page several times,
1181 * only mark it as accessed the first time.
1da177e4 1182 */
ec0f1637 1183 if (prev_index != index || offset != prev_offset)
1da177e4
LT
1184 mark_page_accessed(page);
1185 prev_index = index;
1186
1187 /*
1188 * Ok, we have the page, and it's up-to-date, so
1189 * now we can copy it to user space...
1190 *
1191 * The actor routine returns how many bytes were actually used..
1192 * NOTE! This may not be the same as how much of a user buffer
1193 * we filled up (we may be padding etc), so we can only update
1194 * "pos" here (the actor routine has to update the user buffer
1195 * pointers and the remaining count).
1196 */
1197 ret = actor(desc, page, offset, nr);
1198 offset += ret;
1199 index += offset >> PAGE_CACHE_SHIFT;
1200 offset &= ~PAGE_CACHE_MASK;
6ce745ed 1201 prev_offset = offset;
1da177e4
LT
1202
1203 page_cache_release(page);
1204 if (ret == nr && desc->count)
1205 continue;
1206 goto out;
1207
1208page_not_up_to_date:
1209 /* Get exclusive access to the page ... */
85462323
ON
1210 error = lock_page_killable(page);
1211 if (unlikely(error))
1212 goto readpage_error;
1da177e4 1213
8ab22b9a 1214page_not_up_to_date_locked:
da6052f7 1215 /* Did it get truncated before we got the lock? */
1da177e4
LT
1216 if (!page->mapping) {
1217 unlock_page(page);
1218 page_cache_release(page);
1219 continue;
1220 }
1221
1222 /* Did somebody else fill it already? */
1223 if (PageUptodate(page)) {
1224 unlock_page(page);
1225 goto page_ok;
1226 }
1227
1228readpage:
91803b49
JM
1229 /*
1230 * A previous I/O error may have been due to temporary
1231 * failures, eg. multipath errors.
1232 * PG_error will be set again if readpage fails.
1233 */
1234 ClearPageError(page);
1da177e4
LT
1235 /* Start the actual read. The read will unlock the page. */
1236 error = mapping->a_ops->readpage(filp, page);
1237
994fc28c
ZB
1238 if (unlikely(error)) {
1239 if (error == AOP_TRUNCATED_PAGE) {
1240 page_cache_release(page);
1241 goto find_page;
1242 }
1da177e4 1243 goto readpage_error;
994fc28c 1244 }
1da177e4
LT
1245
1246 if (!PageUptodate(page)) {
85462323
ON
1247 error = lock_page_killable(page);
1248 if (unlikely(error))
1249 goto readpage_error;
1da177e4
LT
1250 if (!PageUptodate(page)) {
1251 if (page->mapping == NULL) {
1252 /*
2ecdc82e 1253 * invalidate_mapping_pages got it
1da177e4
LT
1254 */
1255 unlock_page(page);
1256 page_cache_release(page);
1257 goto find_page;
1258 }
1259 unlock_page(page);
7ff81078 1260 shrink_readahead_size_eio(filp, ra);
85462323
ON
1261 error = -EIO;
1262 goto readpage_error;
1da177e4
LT
1263 }
1264 unlock_page(page);
1265 }
1266
1da177e4
LT
1267 goto page_ok;
1268
1269readpage_error:
1270 /* UHHUH! A synchronous read error occurred. Report it */
1271 desc->error = error;
1272 page_cache_release(page);
1273 goto out;
1274
1275no_cached_page:
1276 /*
1277 * Ok, it wasn't cached, so we need to create a new
1278 * page..
1279 */
eb2be189
NP
1280 page = page_cache_alloc_cold(mapping);
1281 if (!page) {
1282 desc->error = -ENOMEM;
1283 goto out;
1da177e4 1284 }
eb2be189 1285 error = add_to_page_cache_lru(page, mapping,
1da177e4
LT
1286 index, GFP_KERNEL);
1287 if (error) {
eb2be189 1288 page_cache_release(page);
1da177e4
LT
1289 if (error == -EEXIST)
1290 goto find_page;
1291 desc->error = error;
1292 goto out;
1293 }
1da177e4
LT
1294 goto readpage;
1295 }
1296
1297out:
7ff81078
FW
1298 ra->prev_pos = prev_index;
1299 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1300 ra->prev_pos |= prev_offset;
1da177e4 1301
f4e6b498 1302 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
0c6aa263 1303 file_accessed(filp);
1da177e4 1304}
1da177e4
LT
1305
1306int file_read_actor(read_descriptor_t *desc, struct page *page,
1307 unsigned long offset, unsigned long size)
1308{
1309 char *kaddr;
1310 unsigned long left, count = desc->count;
1311
1312 if (size > count)
1313 size = count;
1314
1315 /*
1316 * Faults on the destination of a read are common, so do it before
1317 * taking the kmap.
1318 */
1319 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
9b04c5fe 1320 kaddr = kmap_atomic(page);
1da177e4
LT
1321 left = __copy_to_user_inatomic(desc->arg.buf,
1322 kaddr + offset, size);
9b04c5fe 1323 kunmap_atomic(kaddr);
1da177e4
LT
1324 if (left == 0)
1325 goto success;
1326 }
1327
1328 /* Do it the slow way */
1329 kaddr = kmap(page);
1330 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1331 kunmap(page);
1332
1333 if (left) {
1334 size -= left;
1335 desc->error = -EFAULT;
1336 }
1337success:
1338 desc->count = count - size;
1339 desc->written += size;
1340 desc->arg.buf += size;
1341 return size;
1342}
1343
0ceb3314
DM
1344/*
1345 * Performs necessary checks before doing a write
1346 * @iov: io vector request
1347 * @nr_segs: number of segments in the iovec
1348 * @count: number of bytes to write
1349 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1350 *
1351 * Adjust number of segments and amount of bytes to write (nr_segs should be
1352 * properly initialized first). Returns appropriate error code that caller
1353 * should return or zero in case that write should be allowed.
1354 */
1355int generic_segment_checks(const struct iovec *iov,
1356 unsigned long *nr_segs, size_t *count, int access_flags)
1357{
1358 unsigned long seg;
1359 size_t cnt = 0;
1360 for (seg = 0; seg < *nr_segs; seg++) {
1361 const struct iovec *iv = &iov[seg];
1362
1363 /*
1364 * If any segment has a negative length, or the cumulative
1365 * length ever wraps negative then return -EINVAL.
1366 */
1367 cnt += iv->iov_len;
1368 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1369 return -EINVAL;
1370 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1371 continue;
1372 if (seg == 0)
1373 return -EFAULT;
1374 *nr_segs = seg;
1375 cnt -= iv->iov_len; /* This segment is no good */
1376 break;
1377 }
1378 *count = cnt;
1379 return 0;
1380}
1381EXPORT_SYMBOL(generic_segment_checks);
1382
485bb99b 1383/**
b2abacf3 1384 * generic_file_aio_read - generic filesystem read routine
485bb99b
RD
1385 * @iocb: kernel I/O control block
1386 * @iov: io vector request
1387 * @nr_segs: number of segments in the iovec
b2abacf3 1388 * @pos: current file position
485bb99b 1389 *
1da177e4
LT
1390 * This is the "read()" routine for all filesystems
1391 * that can use the page cache directly.
1392 */
1393ssize_t
543ade1f
BP
1394generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1395 unsigned long nr_segs, loff_t pos)
1da177e4
LT
1396{
1397 struct file *filp = iocb->ki_filp;
1398 ssize_t retval;
66f998f6 1399 unsigned long seg = 0;
1da177e4 1400 size_t count;
543ade1f 1401 loff_t *ppos = &iocb->ki_pos;
1da177e4
LT
1402
1403 count = 0;
0ceb3314
DM
1404 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1405 if (retval)
1406 return retval;
1da177e4
LT
1407
1408 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1409 if (filp->f_flags & O_DIRECT) {
543ade1f 1410 loff_t size;
1da177e4
LT
1411 struct address_space *mapping;
1412 struct inode *inode;
1413
1414 mapping = filp->f_mapping;
1415 inode = mapping->host;
1da177e4
LT
1416 if (!count)
1417 goto out; /* skip atime */
1418 size = i_size_read(inode);
1419 if (pos < size) {
48b47c56
NP
1420 retval = filemap_write_and_wait_range(mapping, pos,
1421 pos + iov_length(iov, nr_segs) - 1);
a969e903 1422 if (!retval) {
3deaa719
SL
1423 struct blk_plug plug;
1424
1425 blk_start_plug(&plug);
a969e903
CH
1426 retval = mapping->a_ops->direct_IO(READ, iocb,
1427 iov, pos, nr_segs);
3deaa719 1428 blk_finish_plug(&plug);
a969e903 1429 }
66f998f6 1430 if (retval > 0) {
1da177e4 1431 *ppos = pos + retval;
66f998f6
JB
1432 count -= retval;
1433 }
1434
1435 /*
1436 * Btrfs can have a short DIO read if we encounter
1437 * compressed extents, so if there was an error, or if
1438 * we've already read everything we wanted to, or if
1439 * there was a short read because we hit EOF, go ahead
1440 * and return. Otherwise fallthrough to buffered io for
1441 * the rest of the read.
1442 */
1443 if (retval < 0 || !count || *ppos >= size) {
11fa977e
HD
1444 file_accessed(filp);
1445 goto out;
1446 }
0e0bcae3 1447 }
1da177e4
LT
1448 }
1449
66f998f6 1450 count = retval;
11fa977e
HD
1451 for (seg = 0; seg < nr_segs; seg++) {
1452 read_descriptor_t desc;
66f998f6
JB
1453 loff_t offset = 0;
1454
1455 /*
1456 * If we did a short DIO read we need to skip the section of the
1457 * iov that we've already read data into.
1458 */
1459 if (count) {
1460 if (count > iov[seg].iov_len) {
1461 count -= iov[seg].iov_len;
1462 continue;
1463 }
1464 offset = count;
1465 count = 0;
1466 }
1da177e4 1467
11fa977e 1468 desc.written = 0;
66f998f6
JB
1469 desc.arg.buf = iov[seg].iov_base + offset;
1470 desc.count = iov[seg].iov_len - offset;
11fa977e
HD
1471 if (desc.count == 0)
1472 continue;
1473 desc.error = 0;
1474 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1475 retval += desc.written;
1476 if (desc.error) {
1477 retval = retval ?: desc.error;
1478 break;
1da177e4 1479 }
11fa977e
HD
1480 if (desc.count > 0)
1481 break;
1da177e4
LT
1482 }
1483out:
1484 return retval;
1485}
1da177e4
LT
1486EXPORT_SYMBOL(generic_file_aio_read);
1487
1da177e4
LT
1488static ssize_t
1489do_readahead(struct address_space *mapping, struct file *filp,
57f6b96c 1490 pgoff_t index, unsigned long nr)
1da177e4
LT
1491{
1492 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1493 return -EINVAL;
1494
f7e839dd 1495 force_page_cache_readahead(mapping, filp, index, nr);
1da177e4
LT
1496 return 0;
1497}
1498
6673e0c3 1499SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1da177e4
LT
1500{
1501 ssize_t ret;
1502 struct file *file;
1503
1504 ret = -EBADF;
1505 file = fget(fd);
1506 if (file) {
1507 if (file->f_mode & FMODE_READ) {
1508 struct address_space *mapping = file->f_mapping;
57f6b96c
FW
1509 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1510 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1da177e4
LT
1511 unsigned long len = end - start + 1;
1512 ret = do_readahead(mapping, file, start, len);
1513 }
1514 fput(file);
1515 }
1516 return ret;
1517}
6673e0c3
HC
1518#ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1519asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1520{
1521 return SYSC_readahead((int) fd, offset, (size_t) count);
1522}
1523SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1524#endif
1da177e4
LT
1525
1526#ifdef CONFIG_MMU
485bb99b
RD
1527/**
1528 * page_cache_read - adds requested page to the page cache if not already there
1529 * @file: file to read
1530 * @offset: page index
1531 *
1da177e4
LT
1532 * This adds the requested page to the page cache if it isn't already there,
1533 * and schedules an I/O to read in its contents from disk.
1534 */
920c7a5d 1535static int page_cache_read(struct file *file, pgoff_t offset)
1da177e4
LT
1536{
1537 struct address_space *mapping = file->f_mapping;
1538 struct page *page;
994fc28c 1539 int ret;
1da177e4 1540
994fc28c
ZB
1541 do {
1542 page = page_cache_alloc_cold(mapping);
1543 if (!page)
1544 return -ENOMEM;
1545
1546 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1547 if (ret == 0)
1548 ret = mapping->a_ops->readpage(file, page);
1549 else if (ret == -EEXIST)
1550 ret = 0; /* losing race to add is OK */
1da177e4 1551
1da177e4 1552 page_cache_release(page);
1da177e4 1553
994fc28c
ZB
1554 } while (ret == AOP_TRUNCATED_PAGE);
1555
1556 return ret;
1da177e4
LT
1557}
1558
1559#define MMAP_LOTSAMISS (100)
1560
ef00e08e
LT
1561/*
1562 * Synchronous readahead happens when we don't even find
1563 * a page in the page cache at all.
1564 */
1565static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1566 struct file_ra_state *ra,
1567 struct file *file,
1568 pgoff_t offset)
1569{
1570 unsigned long ra_pages;
1571 struct address_space *mapping = file->f_mapping;
1572
1573 /* If we don't want any read-ahead, don't bother */
1574 if (VM_RandomReadHint(vma))
1575 return;
275b12bf
WF
1576 if (!ra->ra_pages)
1577 return;
ef00e08e 1578
2cbea1d3 1579 if (VM_SequentialReadHint(vma)) {
7ffc59b4
WF
1580 page_cache_sync_readahead(mapping, ra, file, offset,
1581 ra->ra_pages);
ef00e08e
LT
1582 return;
1583 }
1584
207d04ba
AK
1585 /* Avoid banging the cache line if not needed */
1586 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
ef00e08e
LT
1587 ra->mmap_miss++;
1588
1589 /*
1590 * Do we miss much more than hit in this file? If so,
1591 * stop bothering with read-ahead. It will only hurt.
1592 */
1593 if (ra->mmap_miss > MMAP_LOTSAMISS)
1594 return;
1595
d30a1100
WF
1596 /*
1597 * mmap read-around
1598 */
ef00e08e 1599 ra_pages = max_sane_readahead(ra->ra_pages);
275b12bf
WF
1600 ra->start = max_t(long, 0, offset - ra_pages / 2);
1601 ra->size = ra_pages;
2cbea1d3 1602 ra->async_size = ra_pages / 4;
275b12bf 1603 ra_submit(ra, mapping, file);
ef00e08e
LT
1604}
1605
1606/*
1607 * Asynchronous readahead happens when we find the page and PG_readahead,
1608 * so we want to possibly extend the readahead further..
1609 */
1610static void do_async_mmap_readahead(struct vm_area_struct *vma,
1611 struct file_ra_state *ra,
1612 struct file *file,
1613 struct page *page,
1614 pgoff_t offset)
1615{
1616 struct address_space *mapping = file->f_mapping;
1617
1618 /* If we don't want any read-ahead, don't bother */
1619 if (VM_RandomReadHint(vma))
1620 return;
1621 if (ra->mmap_miss > 0)
1622 ra->mmap_miss--;
1623 if (PageReadahead(page))
2fad6f5d
WF
1624 page_cache_async_readahead(mapping, ra, file,
1625 page, offset, ra->ra_pages);
ef00e08e
LT
1626}
1627
485bb99b 1628/**
54cb8821 1629 * filemap_fault - read in file data for page fault handling
d0217ac0
NP
1630 * @vma: vma in which the fault was taken
1631 * @vmf: struct vm_fault containing details of the fault
485bb99b 1632 *
54cb8821 1633 * filemap_fault() is invoked via the vma operations vector for a
1da177e4
LT
1634 * mapped memory region to read in file data during a page fault.
1635 *
1636 * The goto's are kind of ugly, but this streamlines the normal case of having
1637 * it in the page cache, and handles the special cases reasonably without
1638 * having a lot of duplicated code.
1639 */
d0217ac0 1640int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
1641{
1642 int error;
54cb8821 1643 struct file *file = vma->vm_file;
1da177e4
LT
1644 struct address_space *mapping = file->f_mapping;
1645 struct file_ra_state *ra = &file->f_ra;
1646 struct inode *inode = mapping->host;
ef00e08e 1647 pgoff_t offset = vmf->pgoff;
1da177e4 1648 struct page *page;
2004dc8e 1649 pgoff_t size;
83c54070 1650 int ret = 0;
1da177e4 1651
1da177e4 1652 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1653 if (offset >= size)
5307cc1a 1654 return VM_FAULT_SIGBUS;
1da177e4 1655
1da177e4
LT
1656 /*
1657 * Do we have something in the page cache already?
1658 */
ef00e08e
LT
1659 page = find_get_page(mapping, offset);
1660 if (likely(page)) {
1da177e4 1661 /*
ef00e08e
LT
1662 * We found the page, so try async readahead before
1663 * waiting for the lock.
1da177e4 1664 */
ef00e08e 1665 do_async_mmap_readahead(vma, ra, file, page, offset);
ef00e08e
LT
1666 } else {
1667 /* No page in the page cache at all */
1668 do_sync_mmap_readahead(vma, ra, file, offset);
1669 count_vm_event(PGMAJFAULT);
456f998e 1670 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
ef00e08e
LT
1671 ret = VM_FAULT_MAJOR;
1672retry_find:
b522c94d 1673 page = find_get_page(mapping, offset);
1da177e4
LT
1674 if (!page)
1675 goto no_cached_page;
1676 }
1677
d88c0922
ML
1678 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1679 page_cache_release(page);
d065bd81 1680 return ret | VM_FAULT_RETRY;
d88c0922 1681 }
b522c94d
ML
1682
1683 /* Did it get truncated? */
1684 if (unlikely(page->mapping != mapping)) {
1685 unlock_page(page);
1686 put_page(page);
1687 goto retry_find;
1688 }
1689 VM_BUG_ON(page->index != offset);
1690
1da177e4 1691 /*
d00806b1
NP
1692 * We have a locked page in the page cache, now we need to check
1693 * that it's up-to-date. If not, it is going to be due to an error.
1da177e4 1694 */
d00806b1 1695 if (unlikely(!PageUptodate(page)))
1da177e4
LT
1696 goto page_not_uptodate;
1697
ef00e08e
LT
1698 /*
1699 * Found the page and have a reference on it.
1700 * We must recheck i_size under page lock.
1701 */
d00806b1 1702 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
ef00e08e 1703 if (unlikely(offset >= size)) {
d00806b1 1704 unlock_page(page);
745ad48e 1705 page_cache_release(page);
5307cc1a 1706 return VM_FAULT_SIGBUS;
d00806b1
NP
1707 }
1708
d0217ac0 1709 vmf->page = page;
83c54070 1710 return ret | VM_FAULT_LOCKED;
1da177e4 1711
1da177e4
LT
1712no_cached_page:
1713 /*
1714 * We're only likely to ever get here if MADV_RANDOM is in
1715 * effect.
1716 */
ef00e08e 1717 error = page_cache_read(file, offset);
1da177e4
LT
1718
1719 /*
1720 * The page we want has now been added to the page cache.
1721 * In the unlikely event that someone removed it in the
1722 * meantime, we'll just come back here and read it again.
1723 */
1724 if (error >= 0)
1725 goto retry_find;
1726
1727 /*
1728 * An error return from page_cache_read can result if the
1729 * system is low on memory, or a problem occurs while trying
1730 * to schedule I/O.
1731 */
1732 if (error == -ENOMEM)
d0217ac0
NP
1733 return VM_FAULT_OOM;
1734 return VM_FAULT_SIGBUS;
1da177e4
LT
1735
1736page_not_uptodate:
1da177e4
LT
1737 /*
1738 * Umm, take care of errors if the page isn't up-to-date.
1739 * Try to re-read it _once_. We do this synchronously,
1740 * because there really aren't any performance issues here
1741 * and we need to check for errors.
1742 */
1da177e4 1743 ClearPageError(page);
994fc28c 1744 error = mapping->a_ops->readpage(file, page);
3ef0f720
MS
1745 if (!error) {
1746 wait_on_page_locked(page);
1747 if (!PageUptodate(page))
1748 error = -EIO;
1749 }
d00806b1
NP
1750 page_cache_release(page);
1751
1752 if (!error || error == AOP_TRUNCATED_PAGE)
994fc28c 1753 goto retry_find;
1da177e4 1754
d00806b1 1755 /* Things didn't work out. Return zero to tell the mm layer so. */
76d42bd9 1756 shrink_readahead_size_eio(file, ra);
d0217ac0 1757 return VM_FAULT_SIGBUS;
54cb8821
NP
1758}
1759EXPORT_SYMBOL(filemap_fault);
1760
f0f37e2f 1761const struct vm_operations_struct generic_file_vm_ops = {
54cb8821 1762 .fault = filemap_fault,
1da177e4
LT
1763};
1764
1765/* This is used for a general mmap of a disk file */
1766
1767int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1768{
1769 struct address_space *mapping = file->f_mapping;
1770
1771 if (!mapping->a_ops->readpage)
1772 return -ENOEXEC;
1773 file_accessed(file);
1774 vma->vm_ops = &generic_file_vm_ops;
d0217ac0 1775 vma->vm_flags |= VM_CAN_NONLINEAR;
1da177e4
LT
1776 return 0;
1777}
1da177e4
LT
1778
1779/*
1780 * This is for filesystems which do not implement ->writepage.
1781 */
1782int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1783{
1784 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1785 return -EINVAL;
1786 return generic_file_mmap(file, vma);
1787}
1788#else
1789int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1790{
1791 return -ENOSYS;
1792}
1793int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1794{
1795 return -ENOSYS;
1796}
1797#endif /* CONFIG_MMU */
1798
1799EXPORT_SYMBOL(generic_file_mmap);
1800EXPORT_SYMBOL(generic_file_readonly_mmap);
1801
6fe6900e 1802static struct page *__read_cache_page(struct address_space *mapping,
57f6b96c 1803 pgoff_t index,
5e5358e7 1804 int (*filler)(void *, struct page *),
0531b2aa
LT
1805 void *data,
1806 gfp_t gfp)
1da177e4 1807{
eb2be189 1808 struct page *page;
1da177e4
LT
1809 int err;
1810repeat:
1811 page = find_get_page(mapping, index);
1812 if (!page) {
0531b2aa 1813 page = __page_cache_alloc(gfp | __GFP_COLD);
eb2be189
NP
1814 if (!page)
1815 return ERR_PTR(-ENOMEM);
e6f67b8c 1816 err = add_to_page_cache_lru(page, mapping, index, gfp);
eb2be189
NP
1817 if (unlikely(err)) {
1818 page_cache_release(page);
1819 if (err == -EEXIST)
1820 goto repeat;
1da177e4 1821 /* Presumably ENOMEM for radix tree node */
1da177e4
LT
1822 return ERR_PTR(err);
1823 }
1da177e4
LT
1824 err = filler(data, page);
1825 if (err < 0) {
1826 page_cache_release(page);
1827 page = ERR_PTR(err);
1828 }
1829 }
1da177e4
LT
1830 return page;
1831}
1832
0531b2aa 1833static struct page *do_read_cache_page(struct address_space *mapping,
57f6b96c 1834 pgoff_t index,
5e5358e7 1835 int (*filler)(void *, struct page *),
0531b2aa
LT
1836 void *data,
1837 gfp_t gfp)
1838
1da177e4
LT
1839{
1840 struct page *page;
1841 int err;
1842
1843retry:
0531b2aa 1844 page = __read_cache_page(mapping, index, filler, data, gfp);
1da177e4 1845 if (IS_ERR(page))
c855ff37 1846 return page;
1da177e4
LT
1847 if (PageUptodate(page))
1848 goto out;
1849
1850 lock_page(page);
1851 if (!page->mapping) {
1852 unlock_page(page);
1853 page_cache_release(page);
1854 goto retry;
1855 }
1856 if (PageUptodate(page)) {
1857 unlock_page(page);
1858 goto out;
1859 }
1860 err = filler(data, page);
1861 if (err < 0) {
1862 page_cache_release(page);
c855ff37 1863 return ERR_PTR(err);
1da177e4 1864 }
c855ff37 1865out:
6fe6900e
NP
1866 mark_page_accessed(page);
1867 return page;
1868}
0531b2aa
LT
1869
1870/**
1871 * read_cache_page_async - read into page cache, fill it if needed
1872 * @mapping: the page's address_space
1873 * @index: the page index
1874 * @filler: function to perform the read
5e5358e7 1875 * @data: first arg to filler(data, page) function, often left as NULL
0531b2aa
LT
1876 *
1877 * Same as read_cache_page, but don't wait for page to become unlocked
1878 * after submitting it to the filler.
1879 *
1880 * Read into the page cache. If a page already exists, and PageUptodate() is
1881 * not set, try to fill the page but don't wait for it to become unlocked.
1882 *
1883 * If the page does not get brought uptodate, return -EIO.
1884 */
1885struct page *read_cache_page_async(struct address_space *mapping,
1886 pgoff_t index,
5e5358e7 1887 int (*filler)(void *, struct page *),
0531b2aa
LT
1888 void *data)
1889{
1890 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1891}
6fe6900e
NP
1892EXPORT_SYMBOL(read_cache_page_async);
1893
0531b2aa
LT
1894static struct page *wait_on_page_read(struct page *page)
1895{
1896 if (!IS_ERR(page)) {
1897 wait_on_page_locked(page);
1898 if (!PageUptodate(page)) {
1899 page_cache_release(page);
1900 page = ERR_PTR(-EIO);
1901 }
1902 }
1903 return page;
1904}
1905
1906/**
1907 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1908 * @mapping: the page's address_space
1909 * @index: the page index
1910 * @gfp: the page allocator flags to use if allocating
1911 *
1912 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
e6f67b8c 1913 * any new page allocations done using the specified allocation flags.
0531b2aa
LT
1914 *
1915 * If the page does not get brought uptodate, return -EIO.
1916 */
1917struct page *read_cache_page_gfp(struct address_space *mapping,
1918 pgoff_t index,
1919 gfp_t gfp)
1920{
1921 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1922
1923 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1924}
1925EXPORT_SYMBOL(read_cache_page_gfp);
1926
6fe6900e
NP
1927/**
1928 * read_cache_page - read into page cache, fill it if needed
1929 * @mapping: the page's address_space
1930 * @index: the page index
1931 * @filler: function to perform the read
5e5358e7 1932 * @data: first arg to filler(data, page) function, often left as NULL
6fe6900e
NP
1933 *
1934 * Read into the page cache. If a page already exists, and PageUptodate() is
1935 * not set, try to fill the page then wait for it to become unlocked.
1936 *
1937 * If the page does not get brought uptodate, return -EIO.
1938 */
1939struct page *read_cache_page(struct address_space *mapping,
57f6b96c 1940 pgoff_t index,
5e5358e7 1941 int (*filler)(void *, struct page *),
6fe6900e
NP
1942 void *data)
1943{
0531b2aa 1944 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1da177e4 1945}
1da177e4
LT
1946EXPORT_SYMBOL(read_cache_page);
1947
1da177e4
LT
1948/*
1949 * The logic we want is
1950 *
1951 * if suid or (sgid and xgrp)
1952 * remove privs
1953 */
01de85e0 1954int should_remove_suid(struct dentry *dentry)
1da177e4 1955{
649fc7b1 1956 umode_t mode = dentry->d_inode->i_mode;
1da177e4 1957 int kill = 0;
1da177e4
LT
1958
1959 /* suid always must be killed */
1960 if (unlikely(mode & S_ISUID))
1961 kill = ATTR_KILL_SUID;
1962
1963 /*
1964 * sgid without any exec bits is just a mandatory locking mark; leave
1965 * it alone. If some exec bits are set, it's a real sgid; kill it.
1966 */
1967 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1968 kill |= ATTR_KILL_SGID;
1969
7f5ff766 1970 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
01de85e0 1971 return kill;
1da177e4 1972
01de85e0
JA
1973 return 0;
1974}
d23a147b 1975EXPORT_SYMBOL(should_remove_suid);
01de85e0 1976
7f3d4ee1 1977static int __remove_suid(struct dentry *dentry, int kill)
01de85e0
JA
1978{
1979 struct iattr newattrs;
1980
1981 newattrs.ia_valid = ATTR_FORCE | kill;
1982 return notify_change(dentry, &newattrs);
1983}
1984
2f1936b8 1985int file_remove_suid(struct file *file)
01de85e0 1986{
2f1936b8 1987 struct dentry *dentry = file->f_path.dentry;
69b45732
AK
1988 struct inode *inode = dentry->d_inode;
1989 int killsuid;
1990 int killpriv;
b5376771 1991 int error = 0;
01de85e0 1992
69b45732
AK
1993 /* Fast path for nothing security related */
1994 if (IS_NOSEC(inode))
1995 return 0;
1996
1997 killsuid = should_remove_suid(dentry);
1998 killpriv = security_inode_need_killpriv(dentry);
1999
b5376771
SH
2000 if (killpriv < 0)
2001 return killpriv;
2002 if (killpriv)
2003 error = security_inode_killpriv(dentry);
2004 if (!error && killsuid)
2005 error = __remove_suid(dentry, killsuid);
9e1f1de0 2006 if (!error && (inode->i_sb->s_flags & MS_NOSEC))
69b45732 2007 inode->i_flags |= S_NOSEC;
01de85e0 2008
b5376771 2009 return error;
1da177e4 2010}
2f1936b8 2011EXPORT_SYMBOL(file_remove_suid);
1da177e4 2012
2f718ffc 2013static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1da177e4
LT
2014 const struct iovec *iov, size_t base, size_t bytes)
2015{
f1800536 2016 size_t copied = 0, left = 0;
1da177e4
LT
2017
2018 while (bytes) {
2019 char __user *buf = iov->iov_base + base;
2020 int copy = min(bytes, iov->iov_len - base);
2021
2022 base = 0;
f1800536 2023 left = __copy_from_user_inatomic(vaddr, buf, copy);
1da177e4
LT
2024 copied += copy;
2025 bytes -= copy;
2026 vaddr += copy;
2027 iov++;
2028
01408c49 2029 if (unlikely(left))
1da177e4 2030 break;
1da177e4
LT
2031 }
2032 return copied - left;
2033}
2034
2f718ffc
NP
2035/*
2036 * Copy as much as we can into the page and return the number of bytes which
af901ca1 2037 * were successfully copied. If a fault is encountered then return the number of
2f718ffc
NP
2038 * bytes which were copied.
2039 */
2040size_t iov_iter_copy_from_user_atomic(struct page *page,
2041 struct iov_iter *i, unsigned long offset, size_t bytes)
2042{
2043 char *kaddr;
2044 size_t copied;
2045
2046 BUG_ON(!in_atomic());
9b04c5fe 2047 kaddr = kmap_atomic(page);
2f718ffc
NP
2048 if (likely(i->nr_segs == 1)) {
2049 int left;
2050 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2051 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2f718ffc
NP
2052 copied = bytes - left;
2053 } else {
2054 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2055 i->iov, i->iov_offset, bytes);
2056 }
9b04c5fe 2057 kunmap_atomic(kaddr);
2f718ffc
NP
2058
2059 return copied;
2060}
89e10787 2061EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2f718ffc
NP
2062
2063/*
2064 * This has the same sideeffects and return value as
2065 * iov_iter_copy_from_user_atomic().
2066 * The difference is that it attempts to resolve faults.
2067 * Page must not be locked.
2068 */
2069size_t iov_iter_copy_from_user(struct page *page,
2070 struct iov_iter *i, unsigned long offset, size_t bytes)
2071{
2072 char *kaddr;
2073 size_t copied;
2074
2075 kaddr = kmap(page);
2076 if (likely(i->nr_segs == 1)) {
2077 int left;
2078 char __user *buf = i->iov->iov_base + i->iov_offset;
f1800536 2079 left = __copy_from_user(kaddr + offset, buf, bytes);
2f718ffc
NP
2080 copied = bytes - left;
2081 } else {
2082 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2083 i->iov, i->iov_offset, bytes);
2084 }
2085 kunmap(page);
2086 return copied;
2087}
89e10787 2088EXPORT_SYMBOL(iov_iter_copy_from_user);
2f718ffc 2089
f7009264 2090void iov_iter_advance(struct iov_iter *i, size_t bytes)
2f718ffc 2091{
f7009264
NP
2092 BUG_ON(i->count < bytes);
2093
2f718ffc
NP
2094 if (likely(i->nr_segs == 1)) {
2095 i->iov_offset += bytes;
f7009264 2096 i->count -= bytes;
2f718ffc
NP
2097 } else {
2098 const struct iovec *iov = i->iov;
2099 size_t base = i->iov_offset;
39be79c1 2100 unsigned long nr_segs = i->nr_segs;
2f718ffc 2101
124d3b70
NP
2102 /*
2103 * The !iov->iov_len check ensures we skip over unlikely
f7009264 2104 * zero-length segments (without overruning the iovec).
124d3b70 2105 */
94ad374a 2106 while (bytes || unlikely(i->count && !iov->iov_len)) {
f7009264 2107 int copy;
2f718ffc 2108
f7009264
NP
2109 copy = min(bytes, iov->iov_len - base);
2110 BUG_ON(!i->count || i->count < copy);
2111 i->count -= copy;
2f718ffc
NP
2112 bytes -= copy;
2113 base += copy;
2114 if (iov->iov_len == base) {
2115 iov++;
39be79c1 2116 nr_segs--;
2f718ffc
NP
2117 base = 0;
2118 }
2119 }
2120 i->iov = iov;
2121 i->iov_offset = base;
39be79c1 2122 i->nr_segs = nr_segs;
2f718ffc
NP
2123 }
2124}
89e10787 2125EXPORT_SYMBOL(iov_iter_advance);
2f718ffc 2126
afddba49
NP
2127/*
2128 * Fault in the first iovec of the given iov_iter, to a maximum length
2129 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2130 * accessed (ie. because it is an invalid address).
2131 *
2132 * writev-intensive code may want this to prefault several iovecs -- that
2133 * would be possible (callers must not rely on the fact that _only_ the
2134 * first iovec will be faulted with the current implementation).
2135 */
2136int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2f718ffc 2137{
2f718ffc 2138 char __user *buf = i->iov->iov_base + i->iov_offset;
afddba49
NP
2139 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2140 return fault_in_pages_readable(buf, bytes);
2f718ffc 2141}
89e10787 2142EXPORT_SYMBOL(iov_iter_fault_in_readable);
2f718ffc
NP
2143
2144/*
2145 * Return the count of just the current iov_iter segment.
2146 */
2147size_t iov_iter_single_seg_count(struct iov_iter *i)
2148{
2149 const struct iovec *iov = i->iov;
2150 if (i->nr_segs == 1)
2151 return i->count;
2152 else
2153 return min(i->count, iov->iov_len - i->iov_offset);
2154}
89e10787 2155EXPORT_SYMBOL(iov_iter_single_seg_count);
2f718ffc 2156
1da177e4
LT
2157/*
2158 * Performs necessary checks before doing a write
2159 *
485bb99b 2160 * Can adjust writing position or amount of bytes to write.
1da177e4
LT
2161 * Returns appropriate error code that caller should return or
2162 * zero in case that write should be allowed.
2163 */
2164inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2165{
2166 struct inode *inode = file->f_mapping->host;
59e99e5b 2167 unsigned long limit = rlimit(RLIMIT_FSIZE);
1da177e4
LT
2168
2169 if (unlikely(*pos < 0))
2170 return -EINVAL;
2171
1da177e4
LT
2172 if (!isblk) {
2173 /* FIXME: this is for backwards compatibility with 2.4 */
2174 if (file->f_flags & O_APPEND)
2175 *pos = i_size_read(inode);
2176
2177 if (limit != RLIM_INFINITY) {
2178 if (*pos >= limit) {
2179 send_sig(SIGXFSZ, current, 0);
2180 return -EFBIG;
2181 }
2182 if (*count > limit - (typeof(limit))*pos) {
2183 *count = limit - (typeof(limit))*pos;
2184 }
2185 }
2186 }
2187
2188 /*
2189 * LFS rule
2190 */
2191 if (unlikely(*pos + *count > MAX_NON_LFS &&
2192 !(file->f_flags & O_LARGEFILE))) {
2193 if (*pos >= MAX_NON_LFS) {
1da177e4
LT
2194 return -EFBIG;
2195 }
2196 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2197 *count = MAX_NON_LFS - (unsigned long)*pos;
2198 }
2199 }
2200
2201 /*
2202 * Are we about to exceed the fs block limit ?
2203 *
2204 * If we have written data it becomes a short write. If we have
2205 * exceeded without writing data we send a signal and return EFBIG.
2206 * Linus frestrict idea will clean these up nicely..
2207 */
2208 if (likely(!isblk)) {
2209 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2210 if (*count || *pos > inode->i_sb->s_maxbytes) {
1da177e4
LT
2211 return -EFBIG;
2212 }
2213 /* zero-length writes at ->s_maxbytes are OK */
2214 }
2215
2216 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2217 *count = inode->i_sb->s_maxbytes - *pos;
2218 } else {
9361401e 2219#ifdef CONFIG_BLOCK
1da177e4
LT
2220 loff_t isize;
2221 if (bdev_read_only(I_BDEV(inode)))
2222 return -EPERM;
2223 isize = i_size_read(inode);
2224 if (*pos >= isize) {
2225 if (*count || *pos > isize)
2226 return -ENOSPC;
2227 }
2228
2229 if (*pos + *count > isize)
2230 *count = isize - *pos;
9361401e
DH
2231#else
2232 return -EPERM;
2233#endif
1da177e4
LT
2234 }
2235 return 0;
2236}
2237EXPORT_SYMBOL(generic_write_checks);
2238
afddba49
NP
2239int pagecache_write_begin(struct file *file, struct address_space *mapping,
2240 loff_t pos, unsigned len, unsigned flags,
2241 struct page **pagep, void **fsdata)
2242{
2243 const struct address_space_operations *aops = mapping->a_ops;
2244
4e02ed4b 2245 return aops->write_begin(file, mapping, pos, len, flags,
afddba49 2246 pagep, fsdata);
afddba49
NP
2247}
2248EXPORT_SYMBOL(pagecache_write_begin);
2249
2250int pagecache_write_end(struct file *file, struct address_space *mapping,
2251 loff_t pos, unsigned len, unsigned copied,
2252 struct page *page, void *fsdata)
2253{
2254 const struct address_space_operations *aops = mapping->a_ops;
afddba49 2255
4e02ed4b
NP
2256 mark_page_accessed(page);
2257 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
afddba49
NP
2258}
2259EXPORT_SYMBOL(pagecache_write_end);
2260
1da177e4
LT
2261ssize_t
2262generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2263 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2264 size_t count, size_t ocount)
2265{
2266 struct file *file = iocb->ki_filp;
2267 struct address_space *mapping = file->f_mapping;
2268 struct inode *inode = mapping->host;
2269 ssize_t written;
a969e903
CH
2270 size_t write_len;
2271 pgoff_t end;
1da177e4
LT
2272
2273 if (count != ocount)
2274 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2275
a969e903
CH
2276 write_len = iov_length(iov, *nr_segs);
2277 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
a969e903 2278
48b47c56 2279 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
a969e903
CH
2280 if (written)
2281 goto out;
2282
2283 /*
2284 * After a write we want buffered reads to be sure to go to disk to get
2285 * the new data. We invalidate clean cached page from the region we're
2286 * about to write. We do this *before* the write so that we can return
6ccfa806 2287 * without clobbering -EIOCBQUEUED from ->direct_IO().
a969e903
CH
2288 */
2289 if (mapping->nrpages) {
2290 written = invalidate_inode_pages2_range(mapping,
2291 pos >> PAGE_CACHE_SHIFT, end);
6ccfa806
HH
2292 /*
2293 * If a page can not be invalidated, return 0 to fall back
2294 * to buffered write.
2295 */
2296 if (written) {
2297 if (written == -EBUSY)
2298 return 0;
a969e903 2299 goto out;
6ccfa806 2300 }
a969e903
CH
2301 }
2302
2303 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2304
2305 /*
2306 * Finally, try again to invalidate clean pages which might have been
2307 * cached by non-direct readahead, or faulted in by get_user_pages()
2308 * if the source of the write was an mmap'ed region of the file
2309 * we're writing. Either one is a pretty crazy thing to do,
2310 * so we don't support it 100%. If this invalidation
2311 * fails, tough, the write still worked...
2312 */
2313 if (mapping->nrpages) {
2314 invalidate_inode_pages2_range(mapping,
2315 pos >> PAGE_CACHE_SHIFT, end);
2316 }
2317
1da177e4 2318 if (written > 0) {
0116651c
NK
2319 pos += written;
2320 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2321 i_size_write(inode, pos);
1da177e4
LT
2322 mark_inode_dirty(inode);
2323 }
0116651c 2324 *ppos = pos;
1da177e4 2325 }
a969e903 2326out:
1da177e4
LT
2327 return written;
2328}
2329EXPORT_SYMBOL(generic_file_direct_write);
2330
eb2be189
NP
2331/*
2332 * Find or create a page at the given pagecache position. Return the locked
2333 * page. This function is specifically for buffered writes.
2334 */
54566b2c
NP
2335struct page *grab_cache_page_write_begin(struct address_space *mapping,
2336 pgoff_t index, unsigned flags)
eb2be189
NP
2337{
2338 int status;
0faa70cb 2339 gfp_t gfp_mask;
eb2be189 2340 struct page *page;
54566b2c 2341 gfp_t gfp_notmask = 0;
0faa70cb 2342
1010bb1b
FW
2343 gfp_mask = mapping_gfp_mask(mapping);
2344 if (mapping_cap_account_dirty(mapping))
2345 gfp_mask |= __GFP_WRITE;
54566b2c
NP
2346 if (flags & AOP_FLAG_NOFS)
2347 gfp_notmask = __GFP_FS;
eb2be189
NP
2348repeat:
2349 page = find_lock_page(mapping, index);
c585a267 2350 if (page)
3d08bcc8 2351 goto found;
eb2be189 2352
0faa70cb 2353 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
eb2be189
NP
2354 if (!page)
2355 return NULL;
54566b2c
NP
2356 status = add_to_page_cache_lru(page, mapping, index,
2357 GFP_KERNEL & ~gfp_notmask);
eb2be189
NP
2358 if (unlikely(status)) {
2359 page_cache_release(page);
2360 if (status == -EEXIST)
2361 goto repeat;
2362 return NULL;
2363 }
3d08bcc8
DW
2364found:
2365 wait_on_page_writeback(page);
eb2be189
NP
2366 return page;
2367}
54566b2c 2368EXPORT_SYMBOL(grab_cache_page_write_begin);
eb2be189 2369
afddba49
NP
2370static ssize_t generic_perform_write(struct file *file,
2371 struct iov_iter *i, loff_t pos)
2372{
2373 struct address_space *mapping = file->f_mapping;
2374 const struct address_space_operations *a_ops = mapping->a_ops;
2375 long status = 0;
2376 ssize_t written = 0;
674b892e
NP
2377 unsigned int flags = 0;
2378
2379 /*
2380 * Copies from kernel address space cannot fail (NFSD is a big user).
2381 */
2382 if (segment_eq(get_fs(), KERNEL_DS))
2383 flags |= AOP_FLAG_UNINTERRUPTIBLE;
afddba49
NP
2384
2385 do {
2386 struct page *page;
afddba49
NP
2387 unsigned long offset; /* Offset into pagecache page */
2388 unsigned long bytes; /* Bytes to write to page */
2389 size_t copied; /* Bytes copied from user */
2390 void *fsdata;
2391
2392 offset = (pos & (PAGE_CACHE_SIZE - 1));
afddba49
NP
2393 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2394 iov_iter_count(i));
2395
2396again:
afddba49
NP
2397 /*
2398 * Bring in the user page that we will copy from _first_.
2399 * Otherwise there's a nasty deadlock on copying from the
2400 * same page as we're writing to, without it being marked
2401 * up-to-date.
2402 *
2403 * Not only is this an optimisation, but it is also required
2404 * to check that the address is actually valid, when atomic
2405 * usercopies are used, below.
2406 */
2407 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2408 status = -EFAULT;
2409 break;
2410 }
2411
674b892e 2412 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
afddba49
NP
2413 &page, &fsdata);
2414 if (unlikely(status))
2415 break;
2416
931e80e4 2417 if (mapping_writably_mapped(mapping))
2418 flush_dcache_page(page);
2419
afddba49
NP
2420 pagefault_disable();
2421 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2422 pagefault_enable();
2423 flush_dcache_page(page);
2424
c8236db9 2425 mark_page_accessed(page);
afddba49
NP
2426 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2427 page, fsdata);
2428 if (unlikely(status < 0))
2429 break;
2430 copied = status;
2431
2432 cond_resched();
2433
124d3b70 2434 iov_iter_advance(i, copied);
afddba49
NP
2435 if (unlikely(copied == 0)) {
2436 /*
2437 * If we were unable to copy any data at all, we must
2438 * fall back to a single segment length write.
2439 *
2440 * If we didn't fallback here, we could livelock
2441 * because not all segments in the iov can be copied at
2442 * once without a pagefault.
2443 */
2444 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2445 iov_iter_single_seg_count(i));
2446 goto again;
2447 }
afddba49
NP
2448 pos += copied;
2449 written += copied;
2450
2451 balance_dirty_pages_ratelimited(mapping);
a50527b1
JK
2452 if (fatal_signal_pending(current)) {
2453 status = -EINTR;
2454 break;
2455 }
afddba49
NP
2456 } while (iov_iter_count(i));
2457
2458 return written ? written : status;
2459}
2460
2461ssize_t
2462generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2463 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2464 size_t count, ssize_t written)
2465{
2466 struct file *file = iocb->ki_filp;
afddba49
NP
2467 ssize_t status;
2468 struct iov_iter i;
2469
2470 iov_iter_init(&i, iov, nr_segs, count, written);
4e02ed4b 2471 status = generic_perform_write(file, &i, pos);
1da177e4 2472
1da177e4 2473 if (likely(status >= 0)) {
afddba49
NP
2474 written += status;
2475 *ppos = pos + status;
1da177e4
LT
2476 }
2477
1da177e4
LT
2478 return written ? written : status;
2479}
2480EXPORT_SYMBOL(generic_file_buffered_write);
2481
e4dd9de3
JK
2482/**
2483 * __generic_file_aio_write - write data to a file
2484 * @iocb: IO state structure (file, offset, etc.)
2485 * @iov: vector with data to write
2486 * @nr_segs: number of segments in the vector
2487 * @ppos: position where to write
2488 *
2489 * This function does all the work needed for actually writing data to a
2490 * file. It does all basic checks, removes SUID from the file, updates
2491 * modification times and calls proper subroutines depending on whether we
2492 * do direct IO or a standard buffered write.
2493 *
2494 * It expects i_mutex to be grabbed unless we work on a block device or similar
2495 * object which does not need locking at all.
2496 *
2497 * This function does *not* take care of syncing data in case of O_SYNC write.
2498 * A caller has to handle it. This is mainly due to the fact that we want to
2499 * avoid syncing under i_mutex.
2500 */
2501ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2502 unsigned long nr_segs, loff_t *ppos)
1da177e4
LT
2503{
2504 struct file *file = iocb->ki_filp;
fb5527e6 2505 struct address_space * mapping = file->f_mapping;
1da177e4
LT
2506 size_t ocount; /* original count */
2507 size_t count; /* after file limit checks */
2508 struct inode *inode = mapping->host;
1da177e4
LT
2509 loff_t pos;
2510 ssize_t written;
2511 ssize_t err;
2512
2513 ocount = 0;
0ceb3314
DM
2514 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2515 if (err)
2516 return err;
1da177e4
LT
2517
2518 count = ocount;
2519 pos = *ppos;
2520
2521 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2522
2523 /* We can write back this queue in page reclaim */
2524 current->backing_dev_info = mapping->backing_dev_info;
2525 written = 0;
2526
2527 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2528 if (err)
2529 goto out;
2530
2531 if (count == 0)
2532 goto out;
2533
2f1936b8 2534 err = file_remove_suid(file);
1da177e4
LT
2535 if (err)
2536 goto out;
2537
870f4817 2538 file_update_time(file);
1da177e4
LT
2539
2540 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2541 if (unlikely(file->f_flags & O_DIRECT)) {
fb5527e6
JM
2542 loff_t endbyte;
2543 ssize_t written_buffered;
2544
2545 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2546 ppos, count, ocount);
1da177e4
LT
2547 if (written < 0 || written == count)
2548 goto out;
2549 /*
2550 * direct-io write to a hole: fall through to buffered I/O
2551 * for completing the rest of the request.
2552 */
2553 pos += written;
2554 count -= written;
fb5527e6
JM
2555 written_buffered = generic_file_buffered_write(iocb, iov,
2556 nr_segs, pos, ppos, count,
2557 written);
2558 /*
2559 * If generic_file_buffered_write() retuned a synchronous error
2560 * then we want to return the number of bytes which were
2561 * direct-written, or the error code if that was zero. Note
2562 * that this differs from normal direct-io semantics, which
2563 * will return -EFOO even if some bytes were written.
2564 */
2565 if (written_buffered < 0) {
2566 err = written_buffered;
2567 goto out;
2568 }
1da177e4 2569
fb5527e6
JM
2570 /*
2571 * We need to ensure that the page cache pages are written to
2572 * disk and invalidated to preserve the expected O_DIRECT
2573 * semantics.
2574 */
2575 endbyte = pos + written_buffered - written - 1;
c05c4edd 2576 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
fb5527e6
JM
2577 if (err == 0) {
2578 written = written_buffered;
2579 invalidate_mapping_pages(mapping,
2580 pos >> PAGE_CACHE_SHIFT,
2581 endbyte >> PAGE_CACHE_SHIFT);
2582 } else {
2583 /*
2584 * We don't know how much we wrote, so just return
2585 * the number of bytes which were direct-written
2586 */
2587 }
2588 } else {
2589 written = generic_file_buffered_write(iocb, iov, nr_segs,
2590 pos, ppos, count, written);
2591 }
1da177e4
LT
2592out:
2593 current->backing_dev_info = NULL;
2594 return written ? written : err;
2595}
e4dd9de3
JK
2596EXPORT_SYMBOL(__generic_file_aio_write);
2597
e4dd9de3
JK
2598/**
2599 * generic_file_aio_write - write data to a file
2600 * @iocb: IO state structure
2601 * @iov: vector with data to write
2602 * @nr_segs: number of segments in the vector
2603 * @pos: position in file where to write
2604 *
2605 * This is a wrapper around __generic_file_aio_write() to be used by most
2606 * filesystems. It takes care of syncing the file in case of O_SYNC file
2607 * and acquires i_mutex as needed.
2608 */
027445c3
BP
2609ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2610 unsigned long nr_segs, loff_t pos)
1da177e4
LT
2611{
2612 struct file *file = iocb->ki_filp;
148f948b 2613 struct inode *inode = file->f_mapping->host;
55602dd6 2614 struct blk_plug plug;
1da177e4 2615 ssize_t ret;
1da177e4
LT
2616
2617 BUG_ON(iocb->ki_pos != pos);
2618
1b1dcc1b 2619 mutex_lock(&inode->i_mutex);
55602dd6 2620 blk_start_plug(&plug);
e4dd9de3 2621 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
1b1dcc1b 2622 mutex_unlock(&inode->i_mutex);
1da177e4 2623
148f948b 2624 if (ret > 0 || ret == -EIOCBQUEUED) {
1da177e4
LT
2625 ssize_t err;
2626
148f948b 2627 err = generic_write_sync(file, pos, ret);
c7b50db2 2628 if (err < 0 && ret > 0)
1da177e4
LT
2629 ret = err;
2630 }
55602dd6 2631 blk_finish_plug(&plug);
1da177e4
LT
2632 return ret;
2633}
2634EXPORT_SYMBOL(generic_file_aio_write);
2635
cf9a2ae8
DH
2636/**
2637 * try_to_release_page() - release old fs-specific metadata on a page
2638 *
2639 * @page: the page which the kernel is trying to free
2640 * @gfp_mask: memory allocation flags (and I/O mode)
2641 *
2642 * The address_space is to try to release any data against the page
2643 * (presumably at page->private). If the release was successful, return `1'.
2644 * Otherwise return zero.
2645 *
266cf658
DH
2646 * This may also be called if PG_fscache is set on a page, indicating that the
2647 * page is known to the local caching routines.
2648 *
cf9a2ae8 2649 * The @gfp_mask argument specifies whether I/O may be performed to release
3f31fddf 2650 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
cf9a2ae8 2651 *
cf9a2ae8
DH
2652 */
2653int try_to_release_page(struct page *page, gfp_t gfp_mask)
2654{
2655 struct address_space * const mapping = page->mapping;
2656
2657 BUG_ON(!PageLocked(page));
2658 if (PageWriteback(page))
2659 return 0;
2660
2661 if (mapping && mapping->a_ops->releasepage)
2662 return mapping->a_ops->releasepage(page, gfp_mask);
2663 return try_to_free_buffers(page);
2664}
2665
2666EXPORT_SYMBOL(try_to_release_page);