]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/gup.c
tunnels: do not assume mac header is set in skb_tunnel_check_pmtu()
[mirror_ubuntu-jammy-kernel.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
1507f512 13#include <linux/secretmem.h>
4bbd4c77 14
174cd4b1 15#include <linux/sched/signal.h>
2667f50e 16#include <linux/rwsem.h>
f30c59e9 17#include <linux/hugetlb.h>
9a4e9f3b
AK
18#include <linux/migrate.h>
19#include <linux/mm_inline.h>
20#include <linux/sched/mm.h>
1027e443 21
33a709b2 22#include <asm/mmu_context.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
47e29d32
JH
32static void hpage_pincount_add(struct page *page, int refs)
33{
34 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
35 VM_BUG_ON_PAGE(page != compound_head(page), page);
36
37 atomic_add(refs, compound_pincount_ptr(page));
38}
39
40static void hpage_pincount_sub(struct page *page, int refs)
41{
42 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
43 VM_BUG_ON_PAGE(page != compound_head(page), page);
44
45 atomic_sub(refs, compound_pincount_ptr(page));
46}
47
c24d3732
JH
48/* Equivalent to calling put_page() @refs times. */
49static void put_page_refs(struct page *page, int refs)
50{
51#ifdef CONFIG_DEBUG_VM
52 if (VM_WARN_ON_ONCE_PAGE(page_ref_count(page) < refs, page))
53 return;
54#endif
55
56 /*
57 * Calling put_page() for each ref is unnecessarily slow. Only the last
58 * ref needs a put_page().
59 */
60 if (refs > 1)
61 page_ref_sub(page, refs - 1);
62 put_page(page);
63}
64
cd1adf1b
LT
65/*
66 * Return the compound head page with ref appropriately incremented,
67 * or NULL if that failed.
a707cdd5 68 */
cd1adf1b 69static inline struct page *try_get_compound_head(struct page *page, int refs)
a707cdd5
JH
70{
71 struct page *head = compound_head(page);
72
73 if (WARN_ON_ONCE(page_ref_count(head) < 0))
74 return NULL;
75 if (unlikely(!page_cache_add_speculative(head, refs)))
76 return NULL;
c24d3732
JH
77
78 /*
79 * At this point we have a stable reference to the head page; but it
80 * could be that between the compound_head() lookup and the refcount
81 * increment, the compound page was split, in which case we'd end up
82 * holding a reference on a page that has nothing to do with the page
83 * we were given anymore.
84 * So now that the head page is stable, recheck that the pages still
85 * belong together.
86 */
87 if (unlikely(compound_head(page) != head)) {
88 put_page_refs(head, refs);
89 return NULL;
90 }
91
a707cdd5
JH
92 return head;
93}
94
3967db22 95/**
3faa52c0
JH
96 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
97 * flags-dependent amount.
98 *
3967db22
JH
99 * Even though the name includes "compound_head", this function is still
100 * appropriate for callers that have a non-compound @page to get.
101 *
102 * @page: pointer to page to be grabbed
103 * @refs: the value to (effectively) add to the page's refcount
104 * @flags: gup flags: these are the FOLL_* flag values.
105 *
3faa52c0
JH
106 * "grab" names in this file mean, "look at flags to decide whether to use
107 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
108 *
109 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
110 * same time. (That's true throughout the get_user_pages*() and
111 * pin_user_pages*() APIs.) Cases:
112 *
3967db22
JH
113 * FOLL_GET: page's refcount will be incremented by @refs.
114 *
115 * FOLL_PIN on compound pages that are > two pages long: page's refcount will
116 * be incremented by @refs, and page[2].hpage_pinned_refcount will be
117 * incremented by @refs * GUP_PIN_COUNTING_BIAS.
118 *
119 * FOLL_PIN on normal pages, or compound pages that are two pages long:
120 * page's refcount will be incremented by @refs * GUP_PIN_COUNTING_BIAS.
3faa52c0
JH
121 *
122 * Return: head page (with refcount appropriately incremented) for success, or
123 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
124 * considered failure, and furthermore, a likely bug in the caller, so a warning
125 * is also emitted.
126 */
283892d2
JH
127__maybe_unused struct page *try_grab_compound_head(struct page *page,
128 int refs, unsigned int flags)
3faa52c0
JH
129{
130 if (flags & FOLL_GET)
131 return try_get_compound_head(page, refs);
132 else if (flags & FOLL_PIN) {
df3a0a21 133 /*
d1e153fe
PT
134 * Can't do FOLL_LONGTERM + FOLL_PIN gup fast path if not in a
135 * right zone, so fail and let the caller fall back to the slow
136 * path.
df3a0a21 137 */
d1e153fe
PT
138 if (unlikely((flags & FOLL_LONGTERM) &&
139 !is_pinnable_page(page)))
df3a0a21
PL
140 return NULL;
141
c24d3732
JH
142 /*
143 * CAUTION: Don't use compound_head() on the page before this
144 * point, the result won't be stable.
145 */
146 page = try_get_compound_head(page, refs);
147 if (!page)
148 return NULL;
149
47e29d32
JH
150 /*
151 * When pinning a compound page of order > 1 (which is what
152 * hpage_pincount_available() checks for), use an exact count to
153 * track it, via hpage_pincount_add/_sub().
154 *
155 * However, be sure to *also* increment the normal page refcount
156 * field at least once, so that the page really is pinned.
3967db22
JH
157 * That's why the refcount from the earlier
158 * try_get_compound_head() is left intact.
47e29d32 159 */
47e29d32
JH
160 if (hpage_pincount_available(page))
161 hpage_pincount_add(page, refs);
c24d3732
JH
162 else
163 page_ref_add(page, refs * (GUP_PIN_COUNTING_BIAS - 1));
47e29d32 164
1970dc6f 165 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
0fef147b 166 refs);
1970dc6f 167
47e29d32 168 return page;
3faa52c0
JH
169 }
170
171 WARN_ON_ONCE(1);
172 return NULL;
173}
174
4509b42c
JG
175static void put_compound_head(struct page *page, int refs, unsigned int flags)
176{
177 if (flags & FOLL_PIN) {
178 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
179 refs);
180
181 if (hpage_pincount_available(page))
182 hpage_pincount_sub(page, refs);
183 else
184 refs *= GUP_PIN_COUNTING_BIAS;
185 }
186
c24d3732 187 put_page_refs(page, refs);
4509b42c
JG
188}
189
3faa52c0
JH
190/**
191 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
192 *
193 * This might not do anything at all, depending on the flags argument.
194 *
195 * "grab" names in this file mean, "look at flags to decide whether to use
196 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
197 *
198 * @page: pointer to page to be grabbed
199 * @flags: gup flags: these are the FOLL_* flag values.
200 *
201 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
3967db22
JH
202 * time. Cases: please see the try_grab_compound_head() documentation, with
203 * "refs=1".
3faa52c0
JH
204 *
205 * Return: true for success, or if no action was required (if neither FOLL_PIN
206 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
207 * FOLL_PIN was set, but the page could not be grabbed.
208 */
209bool __must_check try_grab_page(struct page *page, unsigned int flags)
210{
283892d2 211 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
3faa52c0 212
283892d2
JH
213 if (flags & FOLL_GET)
214 return try_get_page(page);
215 else if (flags & FOLL_PIN) {
216 int refs = 1;
217
218 page = compound_head(page);
219
220 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
221 return false;
222
223 if (hpage_pincount_available(page))
224 hpage_pincount_add(page, 1);
225 else
226 refs = GUP_PIN_COUNTING_BIAS;
227
228 /*
229 * Similar to try_grab_compound_head(): even if using the
230 * hpage_pincount_add/_sub() routines, be sure to
231 * *also* increment the normal page refcount field at least
232 * once, so that the page really is pinned.
233 */
234 page_ref_add(page, refs);
235
236 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
237 }
238
239 return true;
3faa52c0
JH
240}
241
3faa52c0
JH
242/**
243 * unpin_user_page() - release a dma-pinned page
244 * @page: pointer to page to be released
245 *
246 * Pages that were pinned via pin_user_pages*() must be released via either
247 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
248 * that such pages can be separately tracked and uniquely handled. In
249 * particular, interactions with RDMA and filesystems need special handling.
250 */
251void unpin_user_page(struct page *page)
252{
4509b42c 253 put_compound_head(compound_head(page), 1, FOLL_PIN);
3faa52c0
JH
254}
255EXPORT_SYMBOL(unpin_user_page);
256
458a4f78
JM
257static inline void compound_range_next(unsigned long i, unsigned long npages,
258 struct page **list, struct page **head,
259 unsigned int *ntails)
260{
261 struct page *next, *page;
262 unsigned int nr = 1;
263
264 if (i >= npages)
265 return;
266
267 next = *list + i;
268 page = compound_head(next);
269 if (PageCompound(page) && compound_order(page) >= 1)
270 nr = min_t(unsigned int,
271 page + compound_nr(page) - next, npages - i);
272
273 *head = page;
274 *ntails = nr;
275}
276
277#define for_each_compound_range(__i, __list, __npages, __head, __ntails) \
278 for (__i = 0, \
279 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)); \
280 __i < __npages; __i += __ntails, \
281 compound_range_next(__i, __npages, __list, &(__head), &(__ntails)))
282
8745d7f6
JM
283static inline void compound_next(unsigned long i, unsigned long npages,
284 struct page **list, struct page **head,
285 unsigned int *ntails)
286{
287 struct page *page;
288 unsigned int nr;
289
290 if (i >= npages)
291 return;
292
293 page = compound_head(list[i]);
294 for (nr = i + 1; nr < npages; nr++) {
295 if (compound_head(list[nr]) != page)
296 break;
297 }
298
299 *head = page;
300 *ntails = nr - i;
301}
302
303#define for_each_compound_head(__i, __list, __npages, __head, __ntails) \
304 for (__i = 0, \
305 compound_next(__i, __npages, __list, &(__head), &(__ntails)); \
306 __i < __npages; __i += __ntails, \
307 compound_next(__i, __npages, __list, &(__head), &(__ntails)))
308
fc1d8e7c 309/**
f1f6a7dd 310 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 311 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 312 * @npages: number of pages in the @pages array.
2d15eb31 313 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
314 *
315 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
316 * variants called on that page.
317 *
318 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 319 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
320 * listed as clean. In any case, releases all pages using unpin_user_page(),
321 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 322 *
f1f6a7dd 323 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 324 *
2d15eb31
AM
325 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
326 * required, then the caller should a) verify that this is really correct,
327 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 328 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
329 *
330 */
f1f6a7dd
JH
331void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
332 bool make_dirty)
fc1d8e7c 333{
2d15eb31 334 unsigned long index;
31b912de
JM
335 struct page *head;
336 unsigned int ntails;
2d15eb31
AM
337
338 if (!make_dirty) {
f1f6a7dd 339 unpin_user_pages(pages, npages);
2d15eb31
AM
340 return;
341 }
342
31b912de 343 for_each_compound_head(index, pages, npages, head, ntails) {
2d15eb31
AM
344 /*
345 * Checking PageDirty at this point may race with
346 * clear_page_dirty_for_io(), but that's OK. Two key
347 * cases:
348 *
349 * 1) This code sees the page as already dirty, so it
350 * skips the call to set_page_dirty(). That could happen
351 * because clear_page_dirty_for_io() called
352 * page_mkclean(), followed by set_page_dirty().
353 * However, now the page is going to get written back,
354 * which meets the original intention of setting it
355 * dirty, so all is well: clear_page_dirty_for_io() goes
356 * on to call TestClearPageDirty(), and write the page
357 * back.
358 *
359 * 2) This code sees the page as clean, so it calls
360 * set_page_dirty(). The page stays dirty, despite being
361 * written back, so it gets written back again in the
362 * next writeback cycle. This is harmless.
363 */
31b912de
JM
364 if (!PageDirty(head))
365 set_page_dirty_lock(head);
366 put_compound_head(head, ntails, FOLL_PIN);
2d15eb31 367 }
fc1d8e7c 368}
f1f6a7dd 369EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c 370
458a4f78
JM
371/**
372 * unpin_user_page_range_dirty_lock() - release and optionally dirty
373 * gup-pinned page range
374 *
375 * @page: the starting page of a range maybe marked dirty, and definitely released.
376 * @npages: number of consecutive pages to release.
377 * @make_dirty: whether to mark the pages dirty
378 *
379 * "gup-pinned page range" refers to a range of pages that has had one of the
380 * pin_user_pages() variants called on that page.
381 *
382 * For the page ranges defined by [page .. page+npages], make that range (or
383 * its head pages, if a compound page) dirty, if @make_dirty is true, and if the
384 * page range was previously listed as clean.
385 *
386 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
387 * required, then the caller should a) verify that this is really correct,
388 * because _lock() is usually required, and b) hand code it:
389 * set_page_dirty_lock(), unpin_user_page().
390 *
391 */
392void unpin_user_page_range_dirty_lock(struct page *page, unsigned long npages,
393 bool make_dirty)
394{
395 unsigned long index;
396 struct page *head;
397 unsigned int ntails;
398
399 for_each_compound_range(index, &page, npages, head, ntails) {
400 if (make_dirty && !PageDirty(head))
401 set_page_dirty_lock(head);
402 put_compound_head(head, ntails, FOLL_PIN);
403 }
404}
405EXPORT_SYMBOL(unpin_user_page_range_dirty_lock);
406
fc1d8e7c 407/**
f1f6a7dd 408 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
409 * @pages: array of pages to be marked dirty and released.
410 * @npages: number of pages in the @pages array.
411 *
f1f6a7dd 412 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 413 *
f1f6a7dd 414 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 415 */
f1f6a7dd 416void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
417{
418 unsigned long index;
31b912de
JM
419 struct page *head;
420 unsigned int ntails;
fc1d8e7c 421
146608bb
JH
422 /*
423 * If this WARN_ON() fires, then the system *might* be leaking pages (by
424 * leaving them pinned), but probably not. More likely, gup/pup returned
425 * a hard -ERRNO error to the caller, who erroneously passed it here.
426 */
427 if (WARN_ON(IS_ERR_VALUE(npages)))
428 return;
31b912de
JM
429
430 for_each_compound_head(index, pages, npages, head, ntails)
431 put_compound_head(head, ntails, FOLL_PIN);
fc1d8e7c 432}
f1f6a7dd 433EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 434
a458b76a
AA
435/*
436 * Set the MMF_HAS_PINNED if not set yet; after set it'll be there for the mm's
437 * lifecycle. Avoid setting the bit unless necessary, or it might cause write
438 * cache bouncing on large SMP machines for concurrent pinned gups.
439 */
440static inline void mm_set_has_pinned_flag(unsigned long *mm_flags)
441{
442 if (!test_bit(MMF_HAS_PINNED, mm_flags))
443 set_bit(MMF_HAS_PINNED, mm_flags);
444}
445
050a9adc 446#ifdef CONFIG_MMU
69e68b4f
KS
447static struct page *no_page_table(struct vm_area_struct *vma,
448 unsigned int flags)
4bbd4c77 449{
69e68b4f
KS
450 /*
451 * When core dumping an enormous anonymous area that nobody
452 * has touched so far, we don't want to allocate unnecessary pages or
453 * page tables. Return error instead of NULL to skip handle_mm_fault,
454 * then get_dump_page() will return NULL to leave a hole in the dump.
455 * But we can only make this optimization where a hole would surely
456 * be zero-filled if handle_mm_fault() actually did handle it.
457 */
a0137f16
AK
458 if ((flags & FOLL_DUMP) &&
459 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
460 return ERR_PTR(-EFAULT);
461 return NULL;
462}
4bbd4c77 463
1027e443
KS
464static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
465 pte_t *pte, unsigned int flags)
466{
467 /* No page to get reference */
b6097548 468 if (flags & (FOLL_GET | FOLL_PIN))
1027e443
KS
469 return -EFAULT;
470
471 if (flags & FOLL_TOUCH) {
472 pte_t entry = *pte;
473
474 if (flags & FOLL_WRITE)
475 entry = pte_mkdirty(entry);
476 entry = pte_mkyoung(entry);
477
478 if (!pte_same(*pte, entry)) {
479 set_pte_at(vma->vm_mm, address, pte, entry);
480 update_mmu_cache(vma, address, pte);
481 }
482 }
483
484 /* Proper page table entry exists, but no corresponding struct page */
485 return -EEXIST;
486}
487
19be0eaf 488/*
a308c71b
PX
489 * FOLL_FORCE can write to even unwritable pte's, but only
490 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
491 */
492static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
493{
a308c71b
PX
494 return pte_write(pte) ||
495 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
496}
497
69e68b4f 498static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
499 unsigned long address, pmd_t *pmd, unsigned int flags,
500 struct dev_pagemap **pgmap)
69e68b4f
KS
501{
502 struct mm_struct *mm = vma->vm_mm;
503 struct page *page;
504 spinlock_t *ptl;
505 pte_t *ptep, pte;
f28d4363 506 int ret;
4bbd4c77 507
eddb1c22
JH
508 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
509 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
510 (FOLL_PIN | FOLL_GET)))
511 return ERR_PTR(-EINVAL);
69e68b4f 512retry:
4bbd4c77 513 if (unlikely(pmd_bad(*pmd)))
69e68b4f 514 return no_page_table(vma, flags);
4bbd4c77
KS
515
516 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
517 pte = *ptep;
518 if (!pte_present(pte)) {
519 swp_entry_t entry;
520 /*
521 * KSM's break_ksm() relies upon recognizing a ksm page
522 * even while it is being migrated, so for that case we
523 * need migration_entry_wait().
524 */
525 if (likely(!(flags & FOLL_MIGRATION)))
526 goto no_page;
0661a336 527 if (pte_none(pte))
4bbd4c77
KS
528 goto no_page;
529 entry = pte_to_swp_entry(pte);
530 if (!is_migration_entry(entry))
531 goto no_page;
532 pte_unmap_unlock(ptep, ptl);
533 migration_entry_wait(mm, pmd, address);
69e68b4f 534 goto retry;
4bbd4c77 535 }
8a0516ed 536 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 537 goto no_page;
19be0eaf 538 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
539 pte_unmap_unlock(ptep, ptl);
540 return NULL;
541 }
4bbd4c77
KS
542
543 page = vm_normal_page(vma, address, pte);
3faa52c0 544 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 545 /*
3faa52c0
JH
546 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
547 * case since they are only valid while holding the pgmap
548 * reference.
3565fce3 549 */
df06b37f
KB
550 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
551 if (*pgmap)
3565fce3
DW
552 page = pte_page(pte);
553 else
554 goto no_page;
555 } else if (unlikely(!page)) {
1027e443
KS
556 if (flags & FOLL_DUMP) {
557 /* Avoid special (like zero) pages in core dumps */
558 page = ERR_PTR(-EFAULT);
559 goto out;
560 }
561
562 if (is_zero_pfn(pte_pfn(pte))) {
563 page = pte_page(pte);
564 } else {
1027e443
KS
565 ret = follow_pfn_pte(vma, address, ptep, flags);
566 page = ERR_PTR(ret);
567 goto out;
568 }
4bbd4c77
KS
569 }
570
3faa52c0
JH
571 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
572 if (unlikely(!try_grab_page(page, flags))) {
573 page = ERR_PTR(-ENOMEM);
574 goto out;
8fde12ca 575 }
f28d4363
CI
576 /*
577 * We need to make the page accessible if and only if we are going
578 * to access its content (the FOLL_PIN case). Please see
579 * Documentation/core-api/pin_user_pages.rst for details.
580 */
581 if (flags & FOLL_PIN) {
582 ret = arch_make_page_accessible(page);
583 if (ret) {
584 unpin_user_page(page);
585 page = ERR_PTR(ret);
586 goto out;
587 }
588 }
4bbd4c77
KS
589 if (flags & FOLL_TOUCH) {
590 if ((flags & FOLL_WRITE) &&
591 !pte_dirty(pte) && !PageDirty(page))
592 set_page_dirty(page);
593 /*
594 * pte_mkyoung() would be more correct here, but atomic care
595 * is needed to avoid losing the dirty bit: it is easier to use
596 * mark_page_accessed().
597 */
598 mark_page_accessed(page);
599 }
de60f5f1 600 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
601 /* Do not mlock pte-mapped THP */
602 if (PageTransCompound(page))
603 goto out;
604
4bbd4c77
KS
605 /*
606 * The preliminary mapping check is mainly to avoid the
607 * pointless overhead of lock_page on the ZERO_PAGE
608 * which might bounce very badly if there is contention.
609 *
610 * If the page is already locked, we don't need to
611 * handle it now - vmscan will handle it later if and
612 * when it attempts to reclaim the page.
613 */
614 if (page->mapping && trylock_page(page)) {
615 lru_add_drain(); /* push cached pages to LRU */
616 /*
617 * Because we lock page here, and migration is
618 * blocked by the pte's page reference, and we
619 * know the page is still mapped, we don't even
620 * need to check for file-cache page truncation.
621 */
622 mlock_vma_page(page);
623 unlock_page(page);
624 }
625 }
1027e443 626out:
4bbd4c77 627 pte_unmap_unlock(ptep, ptl);
4bbd4c77 628 return page;
4bbd4c77
KS
629no_page:
630 pte_unmap_unlock(ptep, ptl);
631 if (!pte_none(pte))
69e68b4f
KS
632 return NULL;
633 return no_page_table(vma, flags);
634}
635
080dbb61
AK
636static struct page *follow_pmd_mask(struct vm_area_struct *vma,
637 unsigned long address, pud_t *pudp,
df06b37f
KB
638 unsigned int flags,
639 struct follow_page_context *ctx)
69e68b4f 640{
68827280 641 pmd_t *pmd, pmdval;
69e68b4f
KS
642 spinlock_t *ptl;
643 struct page *page;
644 struct mm_struct *mm = vma->vm_mm;
645
080dbb61 646 pmd = pmd_offset(pudp, address);
68827280
HY
647 /*
648 * The READ_ONCE() will stabilize the pmdval in a register or
649 * on the stack so that it will stop changing under the code.
650 */
651 pmdval = READ_ONCE(*pmd);
652 if (pmd_none(pmdval))
69e68b4f 653 return no_page_table(vma, flags);
be9d3045 654 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
655 page = follow_huge_pmd(mm, address, pmd, flags);
656 if (page)
657 return page;
658 return no_page_table(vma, flags);
69e68b4f 659 }
68827280 660 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 661 page = follow_huge_pd(vma, address,
68827280 662 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
663 PMD_SHIFT);
664 if (page)
665 return page;
666 return no_page_table(vma, flags);
667 }
84c3fc4e 668retry:
68827280 669 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
670 if (likely(!(flags & FOLL_MIGRATION)))
671 return no_page_table(vma, flags);
672 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
673 !is_pmd_migration_entry(pmdval));
674 if (is_pmd_migration_entry(pmdval))
84c3fc4e 675 pmd_migration_entry_wait(mm, pmd);
68827280
HY
676 pmdval = READ_ONCE(*pmd);
677 /*
678 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 679 * mmap_lock is held in read mode
68827280
HY
680 */
681 if (pmd_none(pmdval))
682 return no_page_table(vma, flags);
84c3fc4e
ZY
683 goto retry;
684 }
68827280 685 if (pmd_devmap(pmdval)) {
3565fce3 686 ptl = pmd_lock(mm, pmd);
df06b37f 687 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
688 spin_unlock(ptl);
689 if (page)
690 return page;
691 }
68827280 692 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 693 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 694
68827280 695 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
696 return no_page_table(vma, flags);
697
84c3fc4e 698retry_locked:
6742d293 699 ptl = pmd_lock(mm, pmd);
68827280
HY
700 if (unlikely(pmd_none(*pmd))) {
701 spin_unlock(ptl);
702 return no_page_table(vma, flags);
703 }
84c3fc4e
ZY
704 if (unlikely(!pmd_present(*pmd))) {
705 spin_unlock(ptl);
706 if (likely(!(flags & FOLL_MIGRATION)))
707 return no_page_table(vma, flags);
708 pmd_migration_entry_wait(mm, pmd);
709 goto retry_locked;
710 }
6742d293
KS
711 if (unlikely(!pmd_trans_huge(*pmd))) {
712 spin_unlock(ptl);
df06b37f 713 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 714 }
4066c119 715 if (flags & FOLL_SPLIT_PMD) {
6742d293
KS
716 int ret;
717 page = pmd_page(*pmd);
718 if (is_huge_zero_page(page)) {
719 spin_unlock(ptl);
720 ret = 0;
78ddc534 721 split_huge_pmd(vma, pmd, address);
337d9abf
NH
722 if (pmd_trans_unstable(pmd))
723 ret = -EBUSY;
4066c119 724 } else {
bfe7b00d
SL
725 spin_unlock(ptl);
726 split_huge_pmd(vma, pmd, address);
727 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
728 }
729
730 return ret ? ERR_PTR(ret) :
df06b37f 731 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 732 }
6742d293
KS
733 page = follow_trans_huge_pmd(vma, address, pmd, flags);
734 spin_unlock(ptl);
df06b37f 735 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 736 return page;
4bbd4c77
KS
737}
738
080dbb61
AK
739static struct page *follow_pud_mask(struct vm_area_struct *vma,
740 unsigned long address, p4d_t *p4dp,
df06b37f
KB
741 unsigned int flags,
742 struct follow_page_context *ctx)
080dbb61
AK
743{
744 pud_t *pud;
745 spinlock_t *ptl;
746 struct page *page;
747 struct mm_struct *mm = vma->vm_mm;
748
749 pud = pud_offset(p4dp, address);
750 if (pud_none(*pud))
751 return no_page_table(vma, flags);
be9d3045 752 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
753 page = follow_huge_pud(mm, address, pud, flags);
754 if (page)
755 return page;
756 return no_page_table(vma, flags);
757 }
4dc71451
AK
758 if (is_hugepd(__hugepd(pud_val(*pud)))) {
759 page = follow_huge_pd(vma, address,
760 __hugepd(pud_val(*pud)), flags,
761 PUD_SHIFT);
762 if (page)
763 return page;
764 return no_page_table(vma, flags);
765 }
080dbb61
AK
766 if (pud_devmap(*pud)) {
767 ptl = pud_lock(mm, pud);
df06b37f 768 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
769 spin_unlock(ptl);
770 if (page)
771 return page;
772 }
773 if (unlikely(pud_bad(*pud)))
774 return no_page_table(vma, flags);
775
df06b37f 776 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
777}
778
080dbb61
AK
779static struct page *follow_p4d_mask(struct vm_area_struct *vma,
780 unsigned long address, pgd_t *pgdp,
df06b37f
KB
781 unsigned int flags,
782 struct follow_page_context *ctx)
080dbb61
AK
783{
784 p4d_t *p4d;
4dc71451 785 struct page *page;
080dbb61
AK
786
787 p4d = p4d_offset(pgdp, address);
788 if (p4d_none(*p4d))
789 return no_page_table(vma, flags);
790 BUILD_BUG_ON(p4d_huge(*p4d));
791 if (unlikely(p4d_bad(*p4d)))
792 return no_page_table(vma, flags);
793
4dc71451
AK
794 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
795 page = follow_huge_pd(vma, address,
796 __hugepd(p4d_val(*p4d)), flags,
797 P4D_SHIFT);
798 if (page)
799 return page;
800 return no_page_table(vma, flags);
801 }
df06b37f 802 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
803}
804
805/**
806 * follow_page_mask - look up a page descriptor from a user-virtual address
807 * @vma: vm_area_struct mapping @address
808 * @address: virtual address to look up
809 * @flags: flags modifying lookup behaviour
78179556
MR
810 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
811 * pointer to output page_mask
080dbb61
AK
812 *
813 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
814 *
78179556
MR
815 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
816 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
817 *
818 * On output, the @ctx->page_mask is set according to the size of the page.
819 *
820 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
821 * an error pointer if there is a mapping to something not represented
822 * by a page descriptor (see also vm_normal_page()).
823 */
a7030aea 824static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 825 unsigned long address, unsigned int flags,
df06b37f 826 struct follow_page_context *ctx)
080dbb61
AK
827{
828 pgd_t *pgd;
829 struct page *page;
830 struct mm_struct *mm = vma->vm_mm;
831
df06b37f 832 ctx->page_mask = 0;
080dbb61
AK
833
834 /* make this handle hugepd */
835 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
836 if (!IS_ERR(page)) {
3faa52c0 837 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
838 return page;
839 }
840
841 pgd = pgd_offset(mm, address);
842
843 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
844 return no_page_table(vma, flags);
845
faaa5b62
AK
846 if (pgd_huge(*pgd)) {
847 page = follow_huge_pgd(mm, address, pgd, flags);
848 if (page)
849 return page;
850 return no_page_table(vma, flags);
851 }
4dc71451
AK
852 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
853 page = follow_huge_pd(vma, address,
854 __hugepd(pgd_val(*pgd)), flags,
855 PGDIR_SHIFT);
856 if (page)
857 return page;
858 return no_page_table(vma, flags);
859 }
faaa5b62 860
df06b37f
KB
861 return follow_p4d_mask(vma, address, pgd, flags, ctx);
862}
863
864struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
865 unsigned int foll_flags)
866{
867 struct follow_page_context ctx = { NULL };
868 struct page *page;
869
1507f512
MR
870 if (vma_is_secretmem(vma))
871 return NULL;
872
df06b37f
KB
873 page = follow_page_mask(vma, address, foll_flags, &ctx);
874 if (ctx.pgmap)
875 put_dev_pagemap(ctx.pgmap);
876 return page;
080dbb61
AK
877}
878
f2b495ca
KS
879static int get_gate_page(struct mm_struct *mm, unsigned long address,
880 unsigned int gup_flags, struct vm_area_struct **vma,
881 struct page **page)
882{
883 pgd_t *pgd;
c2febafc 884 p4d_t *p4d;
f2b495ca
KS
885 pud_t *pud;
886 pmd_t *pmd;
887 pte_t *pte;
888 int ret = -EFAULT;
889
890 /* user gate pages are read-only */
891 if (gup_flags & FOLL_WRITE)
892 return -EFAULT;
893 if (address > TASK_SIZE)
894 pgd = pgd_offset_k(address);
895 else
896 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
897 if (pgd_none(*pgd))
898 return -EFAULT;
c2febafc 899 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
900 if (p4d_none(*p4d))
901 return -EFAULT;
c2febafc 902 pud = pud_offset(p4d, address);
b5d1c39f
AL
903 if (pud_none(*pud))
904 return -EFAULT;
f2b495ca 905 pmd = pmd_offset(pud, address);
84c3fc4e 906 if (!pmd_present(*pmd))
f2b495ca
KS
907 return -EFAULT;
908 VM_BUG_ON(pmd_trans_huge(*pmd));
909 pte = pte_offset_map(pmd, address);
910 if (pte_none(*pte))
911 goto unmap;
912 *vma = get_gate_vma(mm);
913 if (!page)
914 goto out;
915 *page = vm_normal_page(*vma, address, *pte);
916 if (!*page) {
917 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
918 goto unmap;
919 *page = pte_page(*pte);
920 }
9fa2dd94 921 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
922 ret = -ENOMEM;
923 goto unmap;
924 }
f2b495ca
KS
925out:
926 ret = 0;
927unmap:
928 pte_unmap(pte);
929 return ret;
930}
931
9a95f3cf 932/*
c1e8d7c6
ML
933 * mmap_lock must be held on entry. If @locked != NULL and *@flags
934 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 935 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 936 */
64019a2e 937static int faultin_page(struct vm_area_struct *vma,
4f6da934 938 unsigned long address, unsigned int *flags, int *locked)
16744483 939{
16744483 940 unsigned int fault_flags = 0;
2b740303 941 vm_fault_t ret;
16744483 942
de60f5f1
EM
943 /* mlock all present pages, but do not fault in new pages */
944 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
945 return -ENOENT;
13437e84
AG
946 if (*flags & FOLL_NOFAULT)
947 return -EFAULT;
16744483
KS
948 if (*flags & FOLL_WRITE)
949 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
950 if (*flags & FOLL_REMOTE)
951 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 952 if (locked)
71335f37 953 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
954 if (*flags & FOLL_NOWAIT)
955 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 956 if (*flags & FOLL_TRIED) {
4426e945
PX
957 /*
958 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
959 * can co-exist
960 */
234b239b
ALC
961 fault_flags |= FAULT_FLAG_TRIED;
962 }
16744483 963
bce617ed 964 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 965 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
966 int err = vm_fault_to_errno(ret, *flags);
967
968 if (err)
969 return err;
16744483
KS
970 BUG();
971 }
972
16744483 973 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
974 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
975 *locked = 0;
16744483
KS
976 return -EBUSY;
977 }
978
979 /*
980 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
981 * necessary, even if maybe_mkwrite decided not to set pte_write. We
982 * can thus safely do subsequent page lookups as if they were reads.
983 * But only do so when looping for pte_write is futile: in some cases
984 * userspace may also be wanting to write to the gotten user page,
985 * which a read fault here might prevent (a readonly page might get
986 * reCOWed by userspace write).
987 */
988 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 989 *flags |= FOLL_COW;
16744483
KS
990 return 0;
991}
992
fa5bb209
KS
993static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
994{
995 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
996 int write = (gup_flags & FOLL_WRITE);
997 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
998
999 if (vm_flags & (VM_IO | VM_PFNMAP))
1000 return -EFAULT;
1001
7f7ccc2c
WT
1002 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
1003 return -EFAULT;
1004
52650c8b
JG
1005 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
1006 return -EOPNOTSUPP;
1007
1507f512
MR
1008 if (vma_is_secretmem(vma))
1009 return -EFAULT;
1010
1b2ee126 1011 if (write) {
fa5bb209
KS
1012 if (!(vm_flags & VM_WRITE)) {
1013 if (!(gup_flags & FOLL_FORCE))
1014 return -EFAULT;
1015 /*
1016 * We used to let the write,force case do COW in a
1017 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
1018 * set a breakpoint in a read-only mapping of an
1019 * executable, without corrupting the file (yet only
1020 * when that file had been opened for writing!).
1021 * Anon pages in shared mappings are surprising: now
1022 * just reject it.
1023 */
46435364 1024 if (!is_cow_mapping(vm_flags))
fa5bb209 1025 return -EFAULT;
fa5bb209
KS
1026 }
1027 } else if (!(vm_flags & VM_READ)) {
1028 if (!(gup_flags & FOLL_FORCE))
1029 return -EFAULT;
1030 /*
1031 * Is there actually any vma we can reach here which does not
1032 * have VM_MAYREAD set?
1033 */
1034 if (!(vm_flags & VM_MAYREAD))
1035 return -EFAULT;
1036 }
d61172b4
DH
1037 /*
1038 * gups are always data accesses, not instruction
1039 * fetches, so execute=false here
1040 */
1041 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 1042 return -EFAULT;
fa5bb209
KS
1043 return 0;
1044}
1045
4bbd4c77
KS
1046/**
1047 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
1048 * @mm: mm_struct of target mm
1049 * @start: starting user address
1050 * @nr_pages: number of pages from start to pin
1051 * @gup_flags: flags modifying pin behaviour
1052 * @pages: array that receives pointers to the pages pinned.
1053 * Should be at least nr_pages long. Or NULL, if caller
1054 * only intends to ensure the pages are faulted in.
1055 * @vmas: array of pointers to vmas corresponding to each page.
1056 * Or NULL if the caller does not require them.
c1e8d7c6 1057 * @locked: whether we're still with the mmap_lock held
4bbd4c77 1058 *
d2dfbe47
LX
1059 * Returns either number of pages pinned (which may be less than the
1060 * number requested), or an error. Details about the return value:
1061 *
1062 * -- If nr_pages is 0, returns 0.
1063 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1064 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1065 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 1066 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
1067 *
1068 * The caller is responsible for releasing returned @pages, via put_page().
1069 *
c1e8d7c6 1070 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 1071 *
c1e8d7c6 1072 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
1073 *
1074 * __get_user_pages walks a process's page tables and takes a reference to
1075 * each struct page that each user address corresponds to at a given
1076 * instant. That is, it takes the page that would be accessed if a user
1077 * thread accesses the given user virtual address at that instant.
1078 *
1079 * This does not guarantee that the page exists in the user mappings when
1080 * __get_user_pages returns, and there may even be a completely different
1081 * page there in some cases (eg. if mmapped pagecache has been invalidated
1082 * and subsequently re faulted). However it does guarantee that the page
1083 * won't be freed completely. And mostly callers simply care that the page
1084 * contains data that was valid *at some point in time*. Typically, an IO
1085 * or similar operation cannot guarantee anything stronger anyway because
1086 * locks can't be held over the syscall boundary.
1087 *
1088 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
1089 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
1090 * appropriate) must be called after the page is finished with, and
1091 * before put_page is called.
1092 *
c1e8d7c6 1093 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1094 * released by an up_read(). That can happen if @gup_flags does not
1095 * have FOLL_NOWAIT.
9a95f3cf 1096 *
4f6da934 1097 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1098 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1099 * when it's been released. Otherwise, it must be held for either
1100 * reading or writing and will not be released.
4bbd4c77
KS
1101 *
1102 * In most cases, get_user_pages or get_user_pages_fast should be used
1103 * instead of __get_user_pages. __get_user_pages should be used only if
1104 * you need some special @gup_flags.
1105 */
64019a2e 1106static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1107 unsigned long start, unsigned long nr_pages,
1108 unsigned int gup_flags, struct page **pages,
4f6da934 1109 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1110{
df06b37f 1111 long ret = 0, i = 0;
fa5bb209 1112 struct vm_area_struct *vma = NULL;
df06b37f 1113 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1114
1115 if (!nr_pages)
1116 return 0;
1117
f9652594
AK
1118 start = untagged_addr(start);
1119
eddb1c22 1120 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1121
1122 /*
1123 * If FOLL_FORCE is set then do not force a full fault as the hinting
1124 * fault information is unrelated to the reference behaviour of a task
1125 * using the address space
1126 */
1127 if (!(gup_flags & FOLL_FORCE))
1128 gup_flags |= FOLL_NUMA;
1129
4bbd4c77 1130 do {
fa5bb209
KS
1131 struct page *page;
1132 unsigned int foll_flags = gup_flags;
1133 unsigned int page_increm;
1134
1135 /* first iteration or cross vma bound */
1136 if (!vma || start >= vma->vm_end) {
1137 vma = find_extend_vma(mm, start);
1138 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1139 ret = get_gate_page(mm, start & PAGE_MASK,
1140 gup_flags, &vma,
1141 pages ? &pages[i] : NULL);
1142 if (ret)
08be37b7 1143 goto out;
df06b37f 1144 ctx.page_mask = 0;
fa5bb209
KS
1145 goto next_page;
1146 }
4bbd4c77 1147
52650c8b 1148 if (!vma) {
df06b37f
KB
1149 ret = -EFAULT;
1150 goto out;
1151 }
52650c8b
JG
1152 ret = check_vma_flags(vma, gup_flags);
1153 if (ret)
1154 goto out;
1155
fa5bb209
KS
1156 if (is_vm_hugetlb_page(vma)) {
1157 i = follow_hugetlb_page(mm, vma, pages, vmas,
1158 &start, &nr_pages, i,
a308c71b 1159 gup_flags, locked);
ad415db8
PX
1160 if (locked && *locked == 0) {
1161 /*
1162 * We've got a VM_FAULT_RETRY
c1e8d7c6 1163 * and we've lost mmap_lock.
ad415db8
PX
1164 * We must stop here.
1165 */
1166 BUG_ON(gup_flags & FOLL_NOWAIT);
ad415db8
PX
1167 goto out;
1168 }
fa5bb209 1169 continue;
4bbd4c77 1170 }
fa5bb209
KS
1171 }
1172retry:
1173 /*
1174 * If we have a pending SIGKILL, don't keep faulting pages and
1175 * potentially allocating memory.
1176 */
fa45f116 1177 if (fatal_signal_pending(current)) {
d180870d 1178 ret = -EINTR;
df06b37f
KB
1179 goto out;
1180 }
fa5bb209 1181 cond_resched();
df06b37f
KB
1182
1183 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1184 if (!page) {
64019a2e 1185 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1186 switch (ret) {
1187 case 0:
1188 goto retry;
df06b37f
KB
1189 case -EBUSY:
1190 ret = 0;
e4a9bc58 1191 fallthrough;
fa5bb209
KS
1192 case -EFAULT:
1193 case -ENOMEM:
1194 case -EHWPOISON:
df06b37f 1195 goto out;
fa5bb209
KS
1196 case -ENOENT:
1197 goto next_page;
4bbd4c77 1198 }
fa5bb209 1199 BUG();
1027e443
KS
1200 } else if (PTR_ERR(page) == -EEXIST) {
1201 /*
1202 * Proper page table entry exists, but no corresponding
1203 * struct page.
1204 */
1205 goto next_page;
1206 } else if (IS_ERR(page)) {
df06b37f
KB
1207 ret = PTR_ERR(page);
1208 goto out;
1027e443 1209 }
fa5bb209
KS
1210 if (pages) {
1211 pages[i] = page;
1212 flush_anon_page(vma, page, start);
1213 flush_dcache_page(page);
df06b37f 1214 ctx.page_mask = 0;
4bbd4c77 1215 }
4bbd4c77 1216next_page:
fa5bb209
KS
1217 if (vmas) {
1218 vmas[i] = vma;
df06b37f 1219 ctx.page_mask = 0;
fa5bb209 1220 }
df06b37f 1221 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1222 if (page_increm > nr_pages)
1223 page_increm = nr_pages;
1224 i += page_increm;
1225 start += page_increm * PAGE_SIZE;
1226 nr_pages -= page_increm;
4bbd4c77 1227 } while (nr_pages);
df06b37f
KB
1228out:
1229 if (ctx.pgmap)
1230 put_dev_pagemap(ctx.pgmap);
1231 return i ? i : ret;
4bbd4c77 1232}
4bbd4c77 1233
771ab430
TK
1234static bool vma_permits_fault(struct vm_area_struct *vma,
1235 unsigned int fault_flags)
d4925e00 1236{
1b2ee126
DH
1237 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1238 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1239 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1240
1241 if (!(vm_flags & vma->vm_flags))
1242 return false;
1243
33a709b2
DH
1244 /*
1245 * The architecture might have a hardware protection
1b2ee126 1246 * mechanism other than read/write that can deny access.
d61172b4
DH
1247 *
1248 * gup always represents data access, not instruction
1249 * fetches, so execute=false here:
33a709b2 1250 */
d61172b4 1251 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1252 return false;
1253
d4925e00
DH
1254 return true;
1255}
1256
adc8cb40 1257/**
4bbd4c77 1258 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1259 * @mm: mm_struct of target mm
1260 * @address: user address
1261 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1262 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1263 * does not allow retry. If NULL, the caller must guarantee
1264 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1265 *
1266 * This is meant to be called in the specific scenario where for locking reasons
1267 * we try to access user memory in atomic context (within a pagefault_disable()
1268 * section), this returns -EFAULT, and we want to resolve the user fault before
1269 * trying again.
1270 *
1271 * Typically this is meant to be used by the futex code.
1272 *
1273 * The main difference with get_user_pages() is that this function will
1274 * unconditionally call handle_mm_fault() which will in turn perform all the
1275 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1276 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1277 *
1278 * This is important for some architectures where those bits also gate the
1279 * access permission to the page because they are maintained in software. On
1280 * such architectures, gup() will not be enough to make a subsequent access
1281 * succeed.
1282 *
c1e8d7c6
ML
1283 * This function will not return with an unlocked mmap_lock. So it has not the
1284 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1285 */
64019a2e 1286int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1287 unsigned long address, unsigned int fault_flags,
1288 bool *unlocked)
4bbd4c77
KS
1289{
1290 struct vm_area_struct *vma;
8fed2f3c 1291 vm_fault_t ret;
4a9e1cda 1292
f9652594
AK
1293 address = untagged_addr(address);
1294
4a9e1cda 1295 if (unlocked)
71335f37 1296 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1297
4a9e1cda 1298retry:
4bbd4c77
KS
1299 vma = find_extend_vma(mm, address);
1300 if (!vma || address < vma->vm_start)
1301 return -EFAULT;
1302
d4925e00 1303 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1304 return -EFAULT;
1305
475f4dfc
PX
1306 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1307 fatal_signal_pending(current))
1308 return -EINTR;
1309
bce617ed 1310 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4bbd4c77 1311 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1312 int err = vm_fault_to_errno(ret, 0);
1313
1314 if (err)
1315 return err;
4bbd4c77
KS
1316 BUG();
1317 }
4a9e1cda
DD
1318
1319 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1320 mmap_read_lock(mm);
475f4dfc
PX
1321 *unlocked = true;
1322 fault_flags |= FAULT_FLAG_TRIED;
1323 goto retry;
4a9e1cda
DD
1324 }
1325
4bbd4c77
KS
1326 return 0;
1327}
add6a0cd 1328EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1329
2d3a36a4
MH
1330/*
1331 * Please note that this function, unlike __get_user_pages will not
1332 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1333 */
64019a2e 1334static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1335 unsigned long start,
1336 unsigned long nr_pages,
f0818f47
AA
1337 struct page **pages,
1338 struct vm_area_struct **vmas,
e716712f 1339 int *locked,
0fd71a56 1340 unsigned int flags)
f0818f47 1341{
f0818f47
AA
1342 long ret, pages_done;
1343 bool lock_dropped;
1344
1345 if (locked) {
1346 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1347 BUG_ON(vmas);
1348 /* check caller initialized locked */
1349 BUG_ON(*locked != 1);
1350 }
1351
a458b76a
AA
1352 if (flags & FOLL_PIN)
1353 mm_set_has_pinned_flag(&mm->flags);
008cfe44 1354
eddb1c22
JH
1355 /*
1356 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1357 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1358 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1359 * for FOLL_GET, not for the newer FOLL_PIN.
1360 *
1361 * FOLL_PIN always expects pages to be non-null, but no need to assert
1362 * that here, as any failures will be obvious enough.
1363 */
1364 if (pages && !(flags & FOLL_PIN))
f0818f47 1365 flags |= FOLL_GET;
f0818f47
AA
1366
1367 pages_done = 0;
1368 lock_dropped = false;
1369 for (;;) {
64019a2e 1370 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1371 vmas, locked);
1372 if (!locked)
1373 /* VM_FAULT_RETRY couldn't trigger, bypass */
1374 return ret;
1375
1376 /* VM_FAULT_RETRY cannot return errors */
1377 if (!*locked) {
1378 BUG_ON(ret < 0);
1379 BUG_ON(ret >= nr_pages);
1380 }
1381
f0818f47
AA
1382 if (ret > 0) {
1383 nr_pages -= ret;
1384 pages_done += ret;
1385 if (!nr_pages)
1386 break;
1387 }
1388 if (*locked) {
96312e61
AA
1389 /*
1390 * VM_FAULT_RETRY didn't trigger or it was a
1391 * FOLL_NOWAIT.
1392 */
f0818f47
AA
1393 if (!pages_done)
1394 pages_done = ret;
1395 break;
1396 }
df17277b
MR
1397 /*
1398 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1399 * For the prefault case (!pages) we only update counts.
1400 */
1401 if (likely(pages))
1402 pages += ret;
f0818f47 1403 start += ret << PAGE_SHIFT;
4426e945 1404 lock_dropped = true;
f0818f47 1405
4426e945 1406retry:
f0818f47
AA
1407 /*
1408 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1409 * with both FAULT_FLAG_ALLOW_RETRY and
1410 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1411 * by fatal signals, so we need to check it before we
1412 * start trying again otherwise it can loop forever.
f0818f47 1413 */
4426e945 1414
ae46d2aa
HD
1415 if (fatal_signal_pending(current)) {
1416 if (!pages_done)
1417 pages_done = -EINTR;
4426e945 1418 break;
ae46d2aa 1419 }
4426e945 1420
d8ed45c5 1421 ret = mmap_read_lock_killable(mm);
71335f37
PX
1422 if (ret) {
1423 BUG_ON(ret > 0);
1424 if (!pages_done)
1425 pages_done = ret;
1426 break;
1427 }
4426e945 1428
c7b6a566 1429 *locked = 1;
64019a2e 1430 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1431 pages, NULL, locked);
1432 if (!*locked) {
1433 /* Continue to retry until we succeeded */
1434 BUG_ON(ret != 0);
1435 goto retry;
1436 }
f0818f47
AA
1437 if (ret != 1) {
1438 BUG_ON(ret > 1);
1439 if (!pages_done)
1440 pages_done = ret;
1441 break;
1442 }
1443 nr_pages--;
1444 pages_done++;
1445 if (!nr_pages)
1446 break;
df17277b
MR
1447 if (likely(pages))
1448 pages++;
f0818f47
AA
1449 start += PAGE_SIZE;
1450 }
e716712f 1451 if (lock_dropped && *locked) {
f0818f47
AA
1452 /*
1453 * We must let the caller know we temporarily dropped the lock
1454 * and so the critical section protected by it was lost.
1455 */
d8ed45c5 1456 mmap_read_unlock(mm);
f0818f47
AA
1457 *locked = 0;
1458 }
1459 return pages_done;
1460}
1461
d3649f68
CH
1462/**
1463 * populate_vma_page_range() - populate a range of pages in the vma.
1464 * @vma: target vma
1465 * @start: start address
1466 * @end: end address
c1e8d7c6 1467 * @locked: whether the mmap_lock is still held
d3649f68
CH
1468 *
1469 * This takes care of mlocking the pages too if VM_LOCKED is set.
1470 *
0a36f7f8
TY
1471 * Return either number of pages pinned in the vma, or a negative error
1472 * code on error.
d3649f68 1473 *
c1e8d7c6 1474 * vma->vm_mm->mmap_lock must be held.
d3649f68 1475 *
4f6da934 1476 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1477 * be unperturbed.
1478 *
4f6da934
PX
1479 * If @locked is non-NULL, it must held for read only and may be
1480 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1481 */
1482long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1483 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1484{
1485 struct mm_struct *mm = vma->vm_mm;
1486 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1487 int gup_flags;
1488
be51eb18
ML
1489 VM_BUG_ON(!PAGE_ALIGNED(start));
1490 VM_BUG_ON(!PAGE_ALIGNED(end));
d3649f68
CH
1491 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1492 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1493 mmap_assert_locked(mm);
d3649f68
CH
1494
1495 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1496 if (vma->vm_flags & VM_LOCKONFAULT)
1497 gup_flags &= ~FOLL_POPULATE;
1498 /*
1499 * We want to touch writable mappings with a write fault in order
1500 * to break COW, except for shared mappings because these don't COW
1501 * and we would not want to dirty them for nothing.
1502 */
1503 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1504 gup_flags |= FOLL_WRITE;
1505
1506 /*
1507 * We want mlock to succeed for regions that have any permissions
1508 * other than PROT_NONE.
1509 */
3122e80e 1510 if (vma_is_accessible(vma))
d3649f68
CH
1511 gup_flags |= FOLL_FORCE;
1512
1513 /*
1514 * We made sure addr is within a VMA, so the following will
1515 * not result in a stack expansion that recurses back here.
1516 */
64019a2e 1517 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1518 NULL, NULL, locked);
d3649f68
CH
1519}
1520
4ca9b385
DH
1521/*
1522 * faultin_vma_page_range() - populate (prefault) page tables inside the
1523 * given VMA range readable/writable
1524 *
1525 * This takes care of mlocking the pages, too, if VM_LOCKED is set.
1526 *
1527 * @vma: target vma
1528 * @start: start address
1529 * @end: end address
1530 * @write: whether to prefault readable or writable
1531 * @locked: whether the mmap_lock is still held
1532 *
1533 * Returns either number of processed pages in the vma, or a negative error
1534 * code on error (see __get_user_pages()).
1535 *
1536 * vma->vm_mm->mmap_lock must be held. The range must be page-aligned and
1537 * covered by the VMA.
1538 *
1539 * If @locked is NULL, it may be held for read or write and will be unperturbed.
1540 *
1541 * If @locked is non-NULL, it must held for read only and may be released. If
1542 * it's released, *@locked will be set to 0.
1543 */
1544long faultin_vma_page_range(struct vm_area_struct *vma, unsigned long start,
1545 unsigned long end, bool write, int *locked)
1546{
1547 struct mm_struct *mm = vma->vm_mm;
1548 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1549 int gup_flags;
1550
1551 VM_BUG_ON(!PAGE_ALIGNED(start));
1552 VM_BUG_ON(!PAGE_ALIGNED(end));
1553 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1554 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1555 mmap_assert_locked(mm);
1556
1557 /*
1558 * FOLL_TOUCH: Mark page accessed and thereby young; will also mark
1559 * the page dirty with FOLL_WRITE -- which doesn't make a
1560 * difference with !FOLL_FORCE, because the page is writable
1561 * in the page table.
1562 * FOLL_HWPOISON: Return -EHWPOISON instead of -EFAULT when we hit
1563 * a poisoned page.
1564 * FOLL_POPULATE: Always populate memory with VM_LOCKONFAULT.
1565 * !FOLL_FORCE: Require proper access permissions.
1566 */
1567 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK | FOLL_HWPOISON;
1568 if (write)
1569 gup_flags |= FOLL_WRITE;
1570
1571 /*
eb2faa51
DH
1572 * We want to report -EINVAL instead of -EFAULT for any permission
1573 * problems or incompatible mappings.
4ca9b385 1574 */
eb2faa51
DH
1575 if (check_vma_flags(vma, gup_flags))
1576 return -EINVAL;
1577
4ca9b385
DH
1578 return __get_user_pages(mm, start, nr_pages, gup_flags,
1579 NULL, NULL, locked);
1580}
1581
d3649f68
CH
1582/*
1583 * __mm_populate - populate and/or mlock pages within a range of address space.
1584 *
1585 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1586 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1587 * mmap_lock must not be held.
d3649f68
CH
1588 */
1589int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1590{
1591 struct mm_struct *mm = current->mm;
1592 unsigned long end, nstart, nend;
1593 struct vm_area_struct *vma = NULL;
1594 int locked = 0;
1595 long ret = 0;
1596
1597 end = start + len;
1598
1599 for (nstart = start; nstart < end; nstart = nend) {
1600 /*
1601 * We want to fault in pages for [nstart; end) address range.
1602 * Find first corresponding VMA.
1603 */
1604 if (!locked) {
1605 locked = 1;
d8ed45c5 1606 mmap_read_lock(mm);
d3649f68
CH
1607 vma = find_vma(mm, nstart);
1608 } else if (nstart >= vma->vm_end)
1609 vma = vma->vm_next;
1610 if (!vma || vma->vm_start >= end)
1611 break;
1612 /*
1613 * Set [nstart; nend) to intersection of desired address
1614 * range with the first VMA. Also, skip undesirable VMA types.
1615 */
1616 nend = min(end, vma->vm_end);
1617 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1618 continue;
1619 if (nstart < vma->vm_start)
1620 nstart = vma->vm_start;
1621 /*
1622 * Now fault in a range of pages. populate_vma_page_range()
1623 * double checks the vma flags, so that it won't mlock pages
1624 * if the vma was already munlocked.
1625 */
1626 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1627 if (ret < 0) {
1628 if (ignore_errors) {
1629 ret = 0;
1630 continue; /* continue at next VMA */
1631 }
1632 break;
1633 }
1634 nend = nstart + ret * PAGE_SIZE;
1635 ret = 0;
1636 }
1637 if (locked)
d8ed45c5 1638 mmap_read_unlock(mm);
d3649f68
CH
1639 return ret; /* 0 or negative error code */
1640}
050a9adc 1641#else /* CONFIG_MMU */
64019a2e 1642static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1643 unsigned long nr_pages, struct page **pages,
1644 struct vm_area_struct **vmas, int *locked,
1645 unsigned int foll_flags)
1646{
1647 struct vm_area_struct *vma;
1648 unsigned long vm_flags;
24dc20c7 1649 long i;
050a9adc
CH
1650
1651 /* calculate required read or write permissions.
1652 * If FOLL_FORCE is set, we only require the "MAY" flags.
1653 */
1654 vm_flags = (foll_flags & FOLL_WRITE) ?
1655 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1656 vm_flags &= (foll_flags & FOLL_FORCE) ?
1657 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1658
1659 for (i = 0; i < nr_pages; i++) {
1660 vma = find_vma(mm, start);
1661 if (!vma)
1662 goto finish_or_fault;
1663
1664 /* protect what we can, including chardevs */
1665 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1666 !(vm_flags & vma->vm_flags))
1667 goto finish_or_fault;
1668
1669 if (pages) {
1670 pages[i] = virt_to_page(start);
1671 if (pages[i])
1672 get_page(pages[i]);
1673 }
1674 if (vmas)
1675 vmas[i] = vma;
1676 start = (start + PAGE_SIZE) & PAGE_MASK;
1677 }
1678
1679 return i;
1680
1681finish_or_fault:
1682 return i ? : -EFAULT;
1683}
1684#endif /* !CONFIG_MMU */
d3649f68 1685
f4925cfb
AG
1686/**
1687 * fault_in_writeable - fault in userspace address range for writing
1688 * @uaddr: start of address range
1689 * @size: size of address range
1690 *
1691 * Returns the number of bytes not faulted in (like copy_to_user() and
1692 * copy_from_user()).
1693 */
1694size_t fault_in_writeable(char __user *uaddr, size_t size)
1695{
1696 char __user *start = uaddr, *end;
1697
1698 if (unlikely(size == 0))
1699 return 0;
1700 if (!PAGE_ALIGNED(uaddr)) {
1701 if (unlikely(__put_user(0, uaddr) != 0))
1702 return size;
1703 uaddr = (char __user *)PAGE_ALIGN((unsigned long)uaddr);
1704 }
1705 end = (char __user *)PAGE_ALIGN((unsigned long)start + size);
1706 if (unlikely(end < start))
1707 end = NULL;
1708 while (uaddr != end) {
1709 if (unlikely(__put_user(0, uaddr) != 0))
1710 goto out;
1711 uaddr += PAGE_SIZE;
1712 }
1713
1714out:
1715 if (size > uaddr - start)
1716 return size - (uaddr - start);
1717 return 0;
1718}
1719EXPORT_SYMBOL(fault_in_writeable);
1720
5647396d
AG
1721/*
1722 * fault_in_safe_writeable - fault in an address range for writing
1723 * @uaddr: start of address range
1724 * @size: length of address range
1725 *
beed5f8d
LT
1726 * Faults in an address range for writing. This is primarily useful when we
1727 * already know that some or all of the pages in the address range aren't in
1728 * memory.
5647396d 1729 *
beed5f8d 1730 * Unlike fault_in_writeable(), this function is non-destructive.
5647396d
AG
1731 *
1732 * Note that we don't pin or otherwise hold the pages referenced that we fault
1733 * in. There's no guarantee that they'll stay in memory for any duration of
1734 * time.
1735 *
1736 * Returns the number of bytes not faulted in, like copy_to_user() and
1737 * copy_from_user().
1738 */
1739size_t fault_in_safe_writeable(const char __user *uaddr, size_t size)
1740{
beed5f8d 1741 unsigned long start = (unsigned long)uaddr, end;
5647396d 1742 struct mm_struct *mm = current->mm;
beed5f8d 1743 bool unlocked = false;
5647396d 1744
beed5f8d
LT
1745 if (unlikely(size == 0))
1746 return 0;
5647396d 1747 end = PAGE_ALIGN(start + size);
beed5f8d 1748 if (end < start)
5647396d 1749 end = 0;
5647396d 1750
beed5f8d
LT
1751 mmap_read_lock(mm);
1752 do {
1753 if (fixup_user_fault(mm, start, FAULT_FLAG_WRITE, &unlocked))
5647396d 1754 break;
beed5f8d
LT
1755 start = (start + PAGE_SIZE) & PAGE_MASK;
1756 } while (start != end);
1757 mmap_read_unlock(mm);
1758
1759 if (size > (unsigned long)uaddr - start)
1760 return size - ((unsigned long)uaddr - start);
1761 return 0;
5647396d
AG
1762}
1763EXPORT_SYMBOL(fault_in_safe_writeable);
1764
f4925cfb
AG
1765/**
1766 * fault_in_readable - fault in userspace address range for reading
1767 * @uaddr: start of user address range
1768 * @size: size of user address range
1769 *
1770 * Returns the number of bytes not faulted in (like copy_to_user() and
1771 * copy_from_user()).
1772 */
1773size_t fault_in_readable(const char __user *uaddr, size_t size)
1774{
1775 const char __user *start = uaddr, *end;
1776 volatile char c;
1777
1778 if (unlikely(size == 0))
1779 return 0;
1780 if (!PAGE_ALIGNED(uaddr)) {
1781 if (unlikely(__get_user(c, uaddr) != 0))
1782 return size;
1783 uaddr = (const char __user *)PAGE_ALIGN((unsigned long)uaddr);
1784 }
1785 end = (const char __user *)PAGE_ALIGN((unsigned long)start + size);
1786 if (unlikely(end < start))
1787 end = NULL;
1788 while (uaddr != end) {
1789 if (unlikely(__get_user(c, uaddr) != 0))
1790 goto out;
1791 uaddr += PAGE_SIZE;
1792 }
1793
1794out:
1795 (void)c;
1796 if (size > uaddr - start)
1797 return size - (uaddr - start);
1798 return 0;
1799}
1800EXPORT_SYMBOL(fault_in_readable);
1801
8f942eea
JH
1802/**
1803 * get_dump_page() - pin user page in memory while writing it to core dump
1804 * @addr: user address
1805 *
1806 * Returns struct page pointer of user page pinned for dump,
1807 * to be freed afterwards by put_page().
1808 *
1809 * Returns NULL on any kind of failure - a hole must then be inserted into
1810 * the corefile, to preserve alignment with its headers; and also returns
1811 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
f0953a1b 1812 * allowing a hole to be left in the corefile to save disk space.
8f942eea 1813 *
7f3bfab5 1814 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1815 */
1816#ifdef CONFIG_ELF_CORE
1817struct page *get_dump_page(unsigned long addr)
1818{
7f3bfab5 1819 struct mm_struct *mm = current->mm;
8f942eea 1820 struct page *page;
7f3bfab5
JH
1821 int locked = 1;
1822 int ret;
8f942eea 1823
7f3bfab5 1824 if (mmap_read_lock_killable(mm))
8f942eea 1825 return NULL;
7f3bfab5
JH
1826 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1827 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1828 if (locked)
1829 mmap_read_unlock(mm);
1830 return (ret == 1) ? page : NULL;
8f942eea
JH
1831}
1832#endif /* CONFIG_ELF_CORE */
1833
d1e153fe 1834#ifdef CONFIG_MIGRATION
f68749ec
PT
1835/*
1836 * Check whether all pages are pinnable, if so return number of pages. If some
1837 * pages are not pinnable, migrate them, and unpin all pages. Return zero if
1838 * pages were migrated, or if some pages were not successfully isolated.
1839 * Return negative error if migration fails.
1840 */
1841static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1842 struct page **pages,
d1e153fe 1843 unsigned int gup_flags)
9a4e9f3b 1844{
f68749ec
PT
1845 unsigned long i;
1846 unsigned long isolation_error_count = 0;
1847 bool drain_allow = true;
d1e153fe 1848 LIST_HEAD(movable_page_list);
f68749ec
PT
1849 long ret = 0;
1850 struct page *prev_head = NULL;
1851 struct page *head;
ed03d924
JK
1852 struct migration_target_control mtc = {
1853 .nid = NUMA_NO_NODE,
c991ffef 1854 .gfp_mask = GFP_USER | __GFP_NOWARN,
ed03d924 1855 };
9a4e9f3b 1856
83c02c23
PT
1857 for (i = 0; i < nr_pages; i++) {
1858 head = compound_head(pages[i]);
1859 if (head == prev_head)
1860 continue;
1861 prev_head = head;
9a4e9f3b 1862 /*
d1e153fe
PT
1863 * If we get a movable page, since we are going to be pinning
1864 * these entries, try to move them out if possible.
9a4e9f3b 1865 */
d1e153fe 1866 if (!is_pinnable_page(head)) {
6e7f34eb 1867 if (PageHuge(head)) {
d1e153fe 1868 if (!isolate_huge_page(head, &movable_page_list))
6e7f34eb
PT
1869 isolation_error_count++;
1870 } else {
9a4e9f3b
AK
1871 if (!PageLRU(head) && drain_allow) {
1872 lru_add_drain_all();
1873 drain_allow = false;
1874 }
1875
6e7f34eb
PT
1876 if (isolate_lru_page(head)) {
1877 isolation_error_count++;
1878 continue;
9a4e9f3b 1879 }
d1e153fe 1880 list_add_tail(&head->lru, &movable_page_list);
6e7f34eb
PT
1881 mod_node_page_state(page_pgdat(head),
1882 NR_ISOLATED_ANON +
1883 page_is_file_lru(head),
1884 thp_nr_pages(head));
9a4e9f3b
AK
1885 }
1886 }
1887 }
1888
6e7f34eb
PT
1889 /*
1890 * If list is empty, and no isolation errors, means that all pages are
1891 * in the correct zone.
1892 */
d1e153fe 1893 if (list_empty(&movable_page_list) && !isolation_error_count)
f68749ec 1894 return nr_pages;
6e7f34eb 1895
f68749ec
PT
1896 if (gup_flags & FOLL_PIN) {
1897 unpin_user_pages(pages, nr_pages);
1898 } else {
1899 for (i = 0; i < nr_pages; i++)
1900 put_page(pages[i]);
1901 }
d1e153fe 1902 if (!list_empty(&movable_page_list)) {
d1e153fe 1903 ret = migrate_pages(&movable_page_list, alloc_migration_target,
f0f44638 1904 NULL, (unsigned long)&mtc, MIGRATE_SYNC,
5ac95884 1905 MR_LONGTERM_PIN, NULL);
f68749ec
PT
1906 if (ret && !list_empty(&movable_page_list))
1907 putback_movable_pages(&movable_page_list);
9a4e9f3b
AK
1908 }
1909
f68749ec 1910 return ret > 0 ? -ENOMEM : ret;
9a4e9f3b
AK
1911}
1912#else
f68749ec 1913static long check_and_migrate_movable_pages(unsigned long nr_pages,
d1e153fe 1914 struct page **pages,
d1e153fe 1915 unsigned int gup_flags)
9a4e9f3b
AK
1916{
1917 return nr_pages;
1918}
d1e153fe 1919#endif /* CONFIG_MIGRATION */
9a4e9f3b 1920
2bb6d283 1921/*
932f4a63
IW
1922 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1923 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1924 */
64019a2e 1925static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1926 unsigned long start,
1927 unsigned long nr_pages,
1928 struct page **pages,
1929 struct vm_area_struct **vmas,
1930 unsigned int gup_flags)
2bb6d283 1931{
f68749ec 1932 unsigned int flags;
52650c8b 1933 long rc;
2bb6d283 1934
f68749ec
PT
1935 if (!(gup_flags & FOLL_LONGTERM))
1936 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1937 NULL, gup_flags);
1938 flags = memalloc_pin_save();
1939 do {
1940 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
1941 NULL, gup_flags);
1942 if (rc <= 0)
1943 break;
1944 rc = check_and_migrate_movable_pages(rc, pages, gup_flags);
1945 } while (!rc);
1946 memalloc_pin_restore(flags);
2bb6d283 1947
2bb6d283
DW
1948 return rc;
1949}
932f4a63 1950
447f3e45
BS
1951static bool is_valid_gup_flags(unsigned int gup_flags)
1952{
1953 /*
1954 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1955 * never directly by the caller, so enforce that with an assertion:
1956 */
1957 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1958 return false;
1959 /*
1960 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1961 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1962 * FOLL_PIN.
1963 */
1964 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1965 return false;
1966
1967 return true;
1968}
1969
22bf29b6 1970#ifdef CONFIG_MMU
64019a2e 1971static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1972 unsigned long start, unsigned long nr_pages,
1973 unsigned int gup_flags, struct page **pages,
1974 struct vm_area_struct **vmas, int *locked)
1975{
1976 /*
1977 * Parts of FOLL_LONGTERM behavior are incompatible with
1978 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1979 * vmas. However, this only comes up if locked is set, and there are
1980 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1981 * allow what we can.
1982 */
1983 if (gup_flags & FOLL_LONGTERM) {
1984 if (WARN_ON_ONCE(locked))
1985 return -EINVAL;
1986 /*
1987 * This will check the vmas (even if our vmas arg is NULL)
1988 * and return -ENOTSUPP if DAX isn't allowed in this case:
1989 */
64019a2e 1990 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1991 vmas, gup_flags | FOLL_TOUCH |
1992 FOLL_REMOTE);
1993 }
1994
64019a2e 1995 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1996 locked,
1997 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1998}
1999
adc8cb40 2000/**
c4237f8b 2001 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
2002 * @mm: mm_struct of target mm
2003 * @start: starting user address
2004 * @nr_pages: number of pages from start to pin
2005 * @gup_flags: flags modifying lookup behaviour
2006 * @pages: array that receives pointers to the pages pinned.
2007 * Should be at least nr_pages long. Or NULL, if caller
2008 * only intends to ensure the pages are faulted in.
2009 * @vmas: array of pointers to vmas corresponding to each page.
2010 * Or NULL if the caller does not require them.
2011 * @locked: pointer to lock flag indicating whether lock is held and
2012 * subsequently whether VM_FAULT_RETRY functionality can be
2013 * utilised. Lock must initially be held.
2014 *
2015 * Returns either number of pages pinned (which may be less than the
2016 * number requested), or an error. Details about the return value:
2017 *
2018 * -- If nr_pages is 0, returns 0.
2019 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
2020 * -- If nr_pages is >0, and some pages were pinned, returns the number of
2021 * pages pinned. Again, this may be less than nr_pages.
2022 *
2023 * The caller is responsible for releasing returned @pages, via put_page().
2024 *
c1e8d7c6 2025 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 2026 *
c1e8d7c6 2027 * Must be called with mmap_lock held for read or write.
c4237f8b 2028 *
adc8cb40
SJ
2029 * get_user_pages_remote walks a process's page tables and takes a reference
2030 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
2031 * instant. That is, it takes the page that would be accessed if a user
2032 * thread accesses the given user virtual address at that instant.
2033 *
2034 * This does not guarantee that the page exists in the user mappings when
adc8cb40 2035 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
2036 * page there in some cases (eg. if mmapped pagecache has been invalidated
2037 * and subsequently re faulted). However it does guarantee that the page
2038 * won't be freed completely. And mostly callers simply care that the page
2039 * contains data that was valid *at some point in time*. Typically, an IO
2040 * or similar operation cannot guarantee anything stronger anyway because
2041 * locks can't be held over the syscall boundary.
2042 *
2043 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
2044 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
2045 * be called after the page is finished with, and before put_page is called.
2046 *
adc8cb40
SJ
2047 * get_user_pages_remote is typically used for fewer-copy IO operations,
2048 * to get a handle on the memory by some means other than accesses
2049 * via the user virtual addresses. The pages may be submitted for
2050 * DMA to devices or accessed via their kernel linear mapping (via the
2051 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
2052 *
2053 * See also get_user_pages_fast, for performance critical applications.
2054 *
adc8cb40 2055 * get_user_pages_remote should be phased out in favor of
c4237f8b 2056 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 2057 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
2058 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
2059 */
64019a2e 2060long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
2061 unsigned long start, unsigned long nr_pages,
2062 unsigned int gup_flags, struct page **pages,
2063 struct vm_area_struct **vmas, int *locked)
2064{
447f3e45 2065 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2066 return -EINVAL;
2067
64019a2e 2068 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 2069 pages, vmas, locked);
c4237f8b
JH
2070}
2071EXPORT_SYMBOL(get_user_pages_remote);
2072
eddb1c22 2073#else /* CONFIG_MMU */
64019a2e 2074long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2075 unsigned long start, unsigned long nr_pages,
2076 unsigned int gup_flags, struct page **pages,
2077 struct vm_area_struct **vmas, int *locked)
2078{
2079 return 0;
2080}
3faa52c0 2081
64019a2e 2082static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
2083 unsigned long start, unsigned long nr_pages,
2084 unsigned int gup_flags, struct page **pages,
2085 struct vm_area_struct **vmas, int *locked)
2086{
2087 return 0;
2088}
eddb1c22
JH
2089#endif /* !CONFIG_MMU */
2090
adc8cb40
SJ
2091/**
2092 * get_user_pages() - pin user pages in memory
2093 * @start: starting user address
2094 * @nr_pages: number of pages from start to pin
2095 * @gup_flags: flags modifying lookup behaviour
2096 * @pages: array that receives pointers to the pages pinned.
2097 * Should be at least nr_pages long. Or NULL, if caller
2098 * only intends to ensure the pages are faulted in.
2099 * @vmas: array of pointers to vmas corresponding to each page.
2100 * Or NULL if the caller does not require them.
2101 *
64019a2e
PX
2102 * This is the same as get_user_pages_remote(), just with a less-flexible
2103 * calling convention where we assume that the mm being operated on belongs to
2104 * the current task, and doesn't allow passing of a locked parameter. We also
2105 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
2106 */
2107long get_user_pages(unsigned long start, unsigned long nr_pages,
2108 unsigned int gup_flags, struct page **pages,
2109 struct vm_area_struct **vmas)
2110{
447f3e45 2111 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2112 return -EINVAL;
2113
64019a2e 2114 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
2115 pages, vmas, gup_flags | FOLL_TOUCH);
2116}
2117EXPORT_SYMBOL(get_user_pages);
2bb6d283 2118
adc8cb40 2119/**
a00cda3f
MCC
2120 * get_user_pages_locked() - variant of get_user_pages()
2121 *
2122 * @start: starting user address
2123 * @nr_pages: number of pages from start to pin
2124 * @gup_flags: flags modifying lookup behaviour
2125 * @pages: array that receives pointers to the pages pinned.
2126 * Should be at least nr_pages long. Or NULL, if caller
2127 * only intends to ensure the pages are faulted in.
2128 * @locked: pointer to lock flag indicating whether lock is held and
2129 * subsequently whether VM_FAULT_RETRY functionality can be
2130 * utilised. Lock must initially be held.
2131 *
2132 * It is suitable to replace the form:
acc3c8d1 2133 *
3e4e28c5 2134 * mmap_read_lock(mm);
d3649f68 2135 * do_something()
64019a2e 2136 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2137 * mmap_read_unlock(mm);
acc3c8d1 2138 *
d3649f68 2139 * to:
acc3c8d1 2140 *
d3649f68 2141 * int locked = 1;
3e4e28c5 2142 * mmap_read_lock(mm);
d3649f68 2143 * do_something()
64019a2e 2144 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 2145 * if (locked)
3e4e28c5 2146 * mmap_read_unlock(mm);
adc8cb40 2147 *
adc8cb40
SJ
2148 * We can leverage the VM_FAULT_RETRY functionality in the page fault
2149 * paths better by using either get_user_pages_locked() or
2150 * get_user_pages_unlocked().
2151 *
acc3c8d1 2152 */
d3649f68
CH
2153long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
2154 unsigned int gup_flags, struct page **pages,
2155 int *locked)
acc3c8d1 2156{
acc3c8d1 2157 /*
d3649f68
CH
2158 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2159 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2160 * vmas. As there are no users of this flag in this call we simply
2161 * disallow this option for now.
acc3c8d1 2162 */
d3649f68
CH
2163 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2164 return -EINVAL;
420c2091
JH
2165 /*
2166 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
2167 * never directly by the caller, so enforce that:
2168 */
2169 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
2170 return -EINVAL;
acc3c8d1 2171
64019a2e 2172 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
2173 pages, NULL, locked,
2174 gup_flags | FOLL_TOUCH);
acc3c8d1 2175}
d3649f68 2176EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
2177
2178/*
d3649f68 2179 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 2180 *
3e4e28c5 2181 * mmap_read_lock(mm);
64019a2e 2182 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 2183 * mmap_read_unlock(mm);
d3649f68
CH
2184 *
2185 * with:
2186 *
64019a2e 2187 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
2188 *
2189 * It is functionally equivalent to get_user_pages_fast so
2190 * get_user_pages_fast should be used instead if specific gup_flags
2191 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 2192 */
d3649f68
CH
2193long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2194 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
2195{
2196 struct mm_struct *mm = current->mm;
d3649f68
CH
2197 int locked = 1;
2198 long ret;
acc3c8d1 2199
d3649f68
CH
2200 /*
2201 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2202 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2203 * vmas. As there are no users of this flag in this call we simply
2204 * disallow this option for now.
2205 */
2206 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2207 return -EINVAL;
acc3c8d1 2208
d8ed45c5 2209 mmap_read_lock(mm);
64019a2e 2210 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2211 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2212 if (locked)
d8ed45c5 2213 mmap_read_unlock(mm);
d3649f68 2214 return ret;
4bbd4c77 2215}
d3649f68 2216EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2217
2218/*
67a929e0 2219 * Fast GUP
2667f50e
SC
2220 *
2221 * get_user_pages_fast attempts to pin user pages by walking the page
2222 * tables directly and avoids taking locks. Thus the walker needs to be
2223 * protected from page table pages being freed from under it, and should
2224 * block any THP splits.
2225 *
2226 * One way to achieve this is to have the walker disable interrupts, and
2227 * rely on IPIs from the TLB flushing code blocking before the page table
2228 * pages are freed. This is unsuitable for architectures that do not need
2229 * to broadcast an IPI when invalidating TLBs.
2230 *
2231 * Another way to achieve this is to batch up page table containing pages
2232 * belonging to more than one mm_user, then rcu_sched a callback to free those
2233 * pages. Disabling interrupts will allow the fast_gup walker to both block
2234 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2235 * (which is a relatively rare event). The code below adopts this strategy.
2236 *
2237 * Before activating this code, please be aware that the following assumptions
2238 * are currently made:
2239 *
ff2e6d72 2240 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2241 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2242 *
2667f50e
SC
2243 * *) ptes can be read atomically by the architecture.
2244 *
2245 * *) access_ok is sufficient to validate userspace address ranges.
2246 *
2247 * The last two assumptions can be relaxed by the addition of helper functions.
2248 *
2249 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2250 */
67a929e0 2251#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 2252
790c7369 2253static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2254 unsigned int flags,
790c7369 2255 struct page **pages)
b59f65fa
KS
2256{
2257 while ((*nr) - nr_start) {
2258 struct page *page = pages[--(*nr)];
2259
2260 ClearPageReferenced(page);
3faa52c0
JH
2261 if (flags & FOLL_PIN)
2262 unpin_user_page(page);
2263 else
2264 put_page(page);
b59f65fa
KS
2265 }
2266}
2267
3010a5ea 2268#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2269static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2270 unsigned int flags, struct page **pages, int *nr)
2667f50e 2271{
b59f65fa
KS
2272 struct dev_pagemap *pgmap = NULL;
2273 int nr_start = *nr, ret = 0;
2667f50e 2274 pte_t *ptep, *ptem;
2667f50e
SC
2275
2276 ptem = ptep = pte_offset_map(&pmd, addr);
2277 do {
2a4a06da 2278 pte_t pte = ptep_get_lockless(ptep);
7aef4172 2279 struct page *head, *page;
2667f50e
SC
2280
2281 /*
2282 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2283 * path using the pte_protnone check.
2667f50e 2284 */
e7884f8e
KS
2285 if (pte_protnone(pte))
2286 goto pte_unmap;
2287
b798bec4 2288 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2289 goto pte_unmap;
2290
b59f65fa 2291 if (pte_devmap(pte)) {
7af75561
IW
2292 if (unlikely(flags & FOLL_LONGTERM))
2293 goto pte_unmap;
2294
b59f65fa
KS
2295 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2296 if (unlikely(!pgmap)) {
3b78d834 2297 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2298 goto pte_unmap;
2299 }
2300 } else if (pte_special(pte))
2667f50e
SC
2301 goto pte_unmap;
2302
2303 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2304 page = pte_page(pte);
2305
3faa52c0 2306 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2307 if (!head)
2667f50e
SC
2308 goto pte_unmap;
2309
1507f512
MR
2310 if (unlikely(page_is_secretmem(page))) {
2311 put_compound_head(head, 1, flags);
2312 goto pte_unmap;
2313 }
2314
2667f50e 2315 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2316 put_compound_head(head, 1, flags);
2667f50e
SC
2317 goto pte_unmap;
2318 }
2319
7aef4172 2320 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2321
f28d4363
CI
2322 /*
2323 * We need to make the page accessible if and only if we are
2324 * going to access its content (the FOLL_PIN case). Please
2325 * see Documentation/core-api/pin_user_pages.rst for
2326 * details.
2327 */
2328 if (flags & FOLL_PIN) {
2329 ret = arch_make_page_accessible(page);
2330 if (ret) {
2331 unpin_user_page(page);
2332 goto pte_unmap;
2333 }
2334 }
e9348053 2335 SetPageReferenced(page);
2667f50e
SC
2336 pages[*nr] = page;
2337 (*nr)++;
2338
2339 } while (ptep++, addr += PAGE_SIZE, addr != end);
2340
2341 ret = 1;
2342
2343pte_unmap:
832d7aa0
CH
2344 if (pgmap)
2345 put_dev_pagemap(pgmap);
2667f50e
SC
2346 pte_unmap(ptem);
2347 return ret;
2348}
2349#else
2350
2351/*
2352 * If we can't determine whether or not a pte is special, then fail immediately
2353 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2354 * to be special.
2355 *
2356 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2357 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2358 * useful to have gup_huge_pmd even if we can't operate on ptes.
2359 */
2360static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2361 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2362{
2363 return 0;
2364}
3010a5ea 2365#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2366
17596731 2367#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2368static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2369 unsigned long end, unsigned int flags,
2370 struct page **pages, int *nr)
b59f65fa
KS
2371{
2372 int nr_start = *nr;
2373 struct dev_pagemap *pgmap = NULL;
6401c4eb 2374 int ret = 1;
b59f65fa
KS
2375
2376 do {
2377 struct page *page = pfn_to_page(pfn);
2378
2379 pgmap = get_dev_pagemap(pfn, pgmap);
2380 if (unlikely(!pgmap)) {
3b78d834 2381 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb
ML
2382 ret = 0;
2383 break;
b59f65fa
KS
2384 }
2385 SetPageReferenced(page);
2386 pages[*nr] = page;
3faa52c0
JH
2387 if (unlikely(!try_grab_page(page, flags))) {
2388 undo_dev_pagemap(nr, nr_start, flags, pages);
6401c4eb
ML
2389 ret = 0;
2390 break;
3faa52c0 2391 }
b59f65fa
KS
2392 (*nr)++;
2393 pfn++;
2394 } while (addr += PAGE_SIZE, addr != end);
832d7aa0 2395
6401c4eb
ML
2396 put_dev_pagemap(pgmap);
2397 return ret;
b59f65fa
KS
2398}
2399
a9b6de77 2400static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2401 unsigned long end, unsigned int flags,
2402 struct page **pages, int *nr)
b59f65fa
KS
2403{
2404 unsigned long fault_pfn;
a9b6de77
DW
2405 int nr_start = *nr;
2406
2407 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2408 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2409 return 0;
b59f65fa 2410
a9b6de77 2411 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2412 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2413 return 0;
2414 }
2415 return 1;
b59f65fa
KS
2416}
2417
a9b6de77 2418static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2419 unsigned long end, unsigned int flags,
2420 struct page **pages, int *nr)
b59f65fa
KS
2421{
2422 unsigned long fault_pfn;
a9b6de77
DW
2423 int nr_start = *nr;
2424
2425 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2426 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2427 return 0;
b59f65fa 2428
a9b6de77 2429 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2430 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2431 return 0;
2432 }
2433 return 1;
b59f65fa
KS
2434}
2435#else
a9b6de77 2436static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2437 unsigned long end, unsigned int flags,
2438 struct page **pages, int *nr)
b59f65fa
KS
2439{
2440 BUILD_BUG();
2441 return 0;
2442}
2443
a9b6de77 2444static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2445 unsigned long end, unsigned int flags,
2446 struct page **pages, int *nr)
b59f65fa
KS
2447{
2448 BUILD_BUG();
2449 return 0;
2450}
2451#endif
2452
a43e9820
JH
2453static int record_subpages(struct page *page, unsigned long addr,
2454 unsigned long end, struct page **pages)
2455{
2456 int nr;
2457
2458 for (nr = 0; addr != end; addr += PAGE_SIZE)
2459 pages[nr++] = page++;
2460
2461 return nr;
2462}
2463
cbd34da7
CH
2464#ifdef CONFIG_ARCH_HAS_HUGEPD
2465static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2466 unsigned long sz)
2467{
2468 unsigned long __boundary = (addr + sz) & ~(sz-1);
2469 return (__boundary - 1 < end - 1) ? __boundary : end;
2470}
2471
2472static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2473 unsigned long end, unsigned int flags,
2474 struct page **pages, int *nr)
cbd34da7
CH
2475{
2476 unsigned long pte_end;
2477 struct page *head, *page;
2478 pte_t pte;
2479 int refs;
2480
2481 pte_end = (addr + sz) & ~(sz-1);
2482 if (pte_end < end)
2483 end = pte_end;
2484
55ca2263 2485 pte = huge_ptep_get(ptep);
cbd34da7 2486
0cd22afd 2487 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2488 return 0;
2489
2490 /* hugepages are never "special" */
2491 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2492
cbd34da7 2493 head = pte_page(pte);
cbd34da7 2494 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2495 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2496
3faa52c0 2497 head = try_grab_compound_head(head, refs, flags);
a43e9820 2498 if (!head)
cbd34da7 2499 return 0;
cbd34da7
CH
2500
2501 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2502 put_compound_head(head, refs, flags);
cbd34da7
CH
2503 return 0;
2504 }
2505
a43e9820 2506 *nr += refs;
520b4a44 2507 SetPageReferenced(head);
cbd34da7
CH
2508 return 1;
2509}
2510
2511static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2512 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2513 struct page **pages, int *nr)
2514{
2515 pte_t *ptep;
2516 unsigned long sz = 1UL << hugepd_shift(hugepd);
2517 unsigned long next;
2518
2519 ptep = hugepte_offset(hugepd, addr, pdshift);
2520 do {
2521 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2522 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2523 return 0;
2524 } while (ptep++, addr = next, addr != end);
2525
2526 return 1;
2527}
2528#else
2529static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2530 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2531 struct page **pages, int *nr)
2532{
2533 return 0;
2534}
2535#endif /* CONFIG_ARCH_HAS_HUGEPD */
2536
2667f50e 2537static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2538 unsigned long end, unsigned int flags,
2539 struct page **pages, int *nr)
2667f50e 2540{
ddc58f27 2541 struct page *head, *page;
2667f50e
SC
2542 int refs;
2543
b798bec4 2544 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2545 return 0;
2546
7af75561
IW
2547 if (pmd_devmap(orig)) {
2548 if (unlikely(flags & FOLL_LONGTERM))
2549 return 0;
86dfbed4
JH
2550 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2551 pages, nr);
7af75561 2552 }
b59f65fa 2553
d63206ee 2554 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2555 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2556
3faa52c0 2557 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2558 if (!head)
2667f50e 2559 return 0;
2667f50e
SC
2560
2561 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2562 put_compound_head(head, refs, flags);
2667f50e
SC
2563 return 0;
2564 }
2565
a43e9820 2566 *nr += refs;
e9348053 2567 SetPageReferenced(head);
2667f50e
SC
2568 return 1;
2569}
2570
2571static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2572 unsigned long end, unsigned int flags,
2573 struct page **pages, int *nr)
2667f50e 2574{
ddc58f27 2575 struct page *head, *page;
2667f50e
SC
2576 int refs;
2577
b798bec4 2578 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2579 return 0;
2580
7af75561
IW
2581 if (pud_devmap(orig)) {
2582 if (unlikely(flags & FOLL_LONGTERM))
2583 return 0;
86dfbed4
JH
2584 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2585 pages, nr);
7af75561 2586 }
b59f65fa 2587
d63206ee 2588 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2589 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2590
3faa52c0 2591 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2592 if (!head)
2667f50e 2593 return 0;
2667f50e
SC
2594
2595 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2596 put_compound_head(head, refs, flags);
2667f50e
SC
2597 return 0;
2598 }
2599
a43e9820 2600 *nr += refs;
e9348053 2601 SetPageReferenced(head);
2667f50e
SC
2602 return 1;
2603}
2604
f30c59e9 2605static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2606 unsigned long end, unsigned int flags,
f30c59e9
AK
2607 struct page **pages, int *nr)
2608{
2609 int refs;
ddc58f27 2610 struct page *head, *page;
f30c59e9 2611
b798bec4 2612 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2613 return 0;
2614
b59f65fa 2615 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2616
d63206ee 2617 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2618 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2619
3faa52c0 2620 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2621 if (!head)
f30c59e9 2622 return 0;
f30c59e9
AK
2623
2624 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2625 put_compound_head(head, refs, flags);
f30c59e9
AK
2626 return 0;
2627 }
2628
a43e9820 2629 *nr += refs;
e9348053 2630 SetPageReferenced(head);
f30c59e9
AK
2631 return 1;
2632}
2633
d3f7b1bb 2634static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2635 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2636{
2637 unsigned long next;
2638 pmd_t *pmdp;
2639
d3f7b1bb 2640 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2641 do {
38c5ce93 2642 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2643
2644 next = pmd_addr_end(addr, end);
84c3fc4e 2645 if (!pmd_present(pmd))
2667f50e
SC
2646 return 0;
2647
414fd080
YZ
2648 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2649 pmd_devmap(pmd))) {
2667f50e
SC
2650 /*
2651 * NUMA hinting faults need to be handled in the GUP
2652 * slowpath for accounting purposes and so that they
2653 * can be serialised against THP migration.
2654 */
8a0516ed 2655 if (pmd_protnone(pmd))
2667f50e
SC
2656 return 0;
2657
b798bec4 2658 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2659 pages, nr))
2660 return 0;
2661
f30c59e9
AK
2662 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2663 /*
2664 * architecture have different format for hugetlbfs
2665 * pmd format and THP pmd format
2666 */
2667 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2668 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2669 return 0;
b798bec4 2670 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2671 return 0;
2667f50e
SC
2672 } while (pmdp++, addr = next, addr != end);
2673
2674 return 1;
2675}
2676
d3f7b1bb 2677static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2678 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2679{
2680 unsigned long next;
2681 pud_t *pudp;
2682
d3f7b1bb 2683 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2684 do {
e37c6982 2685 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2686
2687 next = pud_addr_end(addr, end);
15494520 2688 if (unlikely(!pud_present(pud)))
2667f50e 2689 return 0;
f30c59e9 2690 if (unlikely(pud_huge(pud))) {
b798bec4 2691 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2692 pages, nr))
2693 return 0;
2694 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2695 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2696 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2697 return 0;
d3f7b1bb 2698 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2699 return 0;
2700 } while (pudp++, addr = next, addr != end);
2701
2702 return 1;
2703}
2704
d3f7b1bb 2705static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2706 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2707{
2708 unsigned long next;
2709 p4d_t *p4dp;
2710
d3f7b1bb 2711 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2712 do {
2713 p4d_t p4d = READ_ONCE(*p4dp);
2714
2715 next = p4d_addr_end(addr, end);
2716 if (p4d_none(p4d))
2717 return 0;
2718 BUILD_BUG_ON(p4d_huge(p4d));
2719 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2720 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2721 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2722 return 0;
d3f7b1bb 2723 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2724 return 0;
2725 } while (p4dp++, addr = next, addr != end);
2726
2727 return 1;
2728}
2729
5b65c467 2730static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2731 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2732{
2733 unsigned long next;
2734 pgd_t *pgdp;
2735
2736 pgdp = pgd_offset(current->mm, addr);
2737 do {
2738 pgd_t pgd = READ_ONCE(*pgdp);
2739
2740 next = pgd_addr_end(addr, end);
2741 if (pgd_none(pgd))
2742 return;
2743 if (unlikely(pgd_huge(pgd))) {
b798bec4 2744 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2745 pages, nr))
2746 return;
2747 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2748 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2749 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2750 return;
d3f7b1bb 2751 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2752 return;
2753 } while (pgdp++, addr = next, addr != end);
2754}
050a9adc
CH
2755#else
2756static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2757 unsigned int flags, struct page **pages, int *nr)
2758{
2759}
2760#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2761
2762#ifndef gup_fast_permitted
2763/*
dadbb612 2764 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2765 * we need to fall back to the slow version:
2766 */
26f4c328 2767static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2768{
26f4c328 2769 return true;
5b65c467
KS
2770}
2771#endif
2772
7af75561
IW
2773static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2774 unsigned int gup_flags, struct page **pages)
2775{
2776 int ret;
2777
2778 /*
2779 * FIXME: FOLL_LONGTERM does not work with
2780 * get_user_pages_unlocked() (see comments in that function)
2781 */
2782 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2783 mmap_read_lock(current->mm);
64019a2e 2784 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2785 start, nr_pages,
2786 pages, NULL, gup_flags);
d8ed45c5 2787 mmap_read_unlock(current->mm);
7af75561
IW
2788 } else {
2789 ret = get_user_pages_unlocked(start, nr_pages,
2790 pages, gup_flags);
2791 }
2792
2793 return ret;
2794}
2795
c28b1fc7
JG
2796static unsigned long lockless_pages_from_mm(unsigned long start,
2797 unsigned long end,
2798 unsigned int gup_flags,
2799 struct page **pages)
2800{
2801 unsigned long flags;
2802 int nr_pinned = 0;
57efa1fe 2803 unsigned seq;
c28b1fc7
JG
2804
2805 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2806 !gup_fast_permitted(start, end))
2807 return 0;
2808
57efa1fe
JG
2809 if (gup_flags & FOLL_PIN) {
2810 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2811 if (seq & 1)
2812 return 0;
2813 }
2814
c28b1fc7
JG
2815 /*
2816 * Disable interrupts. The nested form is used, in order to allow full,
2817 * general purpose use of this routine.
2818 *
2819 * With interrupts disabled, we block page table pages from being freed
2820 * from under us. See struct mmu_table_batch comments in
2821 * include/asm-generic/tlb.h for more details.
2822 *
2823 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2824 * that come from THPs splitting.
2825 */
2826 local_irq_save(flags);
2827 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2828 local_irq_restore(flags);
57efa1fe
JG
2829
2830 /*
2831 * When pinning pages for DMA there could be a concurrent write protect
2832 * from fork() via copy_page_range(), in this case always fail fast GUP.
2833 */
2834 if (gup_flags & FOLL_PIN) {
2835 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2836 unpin_user_pages(pages, nr_pinned);
2837 return 0;
2838 }
2839 }
c28b1fc7
JG
2840 return nr_pinned;
2841}
2842
2843static int internal_get_user_pages_fast(unsigned long start,
2844 unsigned long nr_pages,
eddb1c22
JH
2845 unsigned int gup_flags,
2846 struct page **pages)
2667f50e 2847{
c28b1fc7
JG
2848 unsigned long len, end;
2849 unsigned long nr_pinned;
2850 int ret;
2667f50e 2851
f4000fdf 2852 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef 2853 FOLL_FORCE | FOLL_PIN | FOLL_GET |
13437e84 2854 FOLL_FAST_ONLY | FOLL_NOFAULT)))
817be129
CH
2855 return -EINVAL;
2856
a458b76a
AA
2857 if (gup_flags & FOLL_PIN)
2858 mm_set_has_pinned_flag(&current->mm->flags);
008cfe44 2859
f81cd178 2860 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2861 might_lock_read(&current->mm->mmap_lock);
f81cd178 2862
f455c854 2863 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2864 len = nr_pages << PAGE_SHIFT;
2865 if (check_add_overflow(start, len, &end))
c61611f7 2866 return 0;
96d4f267 2867 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2868 return -EFAULT;
73e10a61 2869
c28b1fc7
JG
2870 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2871 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2872 return nr_pinned;
2667f50e 2873
c28b1fc7
JG
2874 /* Slow path: try to get the remaining pages with get_user_pages */
2875 start += nr_pinned << PAGE_SHIFT;
2876 pages += nr_pinned;
2877 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2878 pages);
2879 if (ret < 0) {
2880 /*
2881 * The caller has to unpin the pages we already pinned so
2882 * returning -errno is not an option
2883 */
2884 if (nr_pinned)
2885 return nr_pinned;
2886 return ret;
2667f50e 2887 }
c28b1fc7 2888 return ret + nr_pinned;
2667f50e 2889}
c28b1fc7 2890
dadbb612
SJ
2891/**
2892 * get_user_pages_fast_only() - pin user pages in memory
2893 * @start: starting user address
2894 * @nr_pages: number of pages from start to pin
2895 * @gup_flags: flags modifying pin behaviour
2896 * @pages: array that receives pointers to the pages pinned.
2897 * Should be at least nr_pages long.
2898 *
9e1f0580
JH
2899 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2900 * the regular GUP.
2901 * Note a difference with get_user_pages_fast: this always returns the
2902 * number of pages pinned, 0 if no pages were pinned.
2903 *
2904 * If the architecture does not support this function, simply return with no
2905 * pages pinned.
2906 *
2907 * Careful, careful! COW breaking can go either way, so a non-write
2908 * access can get ambiguous page results. If you call this function without
2909 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2910 */
dadbb612
SJ
2911int get_user_pages_fast_only(unsigned long start, int nr_pages,
2912 unsigned int gup_flags, struct page **pages)
9e1f0580 2913{
376a34ef 2914 int nr_pinned;
9e1f0580
JH
2915 /*
2916 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2917 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2918 *
2919 * FOLL_FAST_ONLY is required in order to match the API description of
2920 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2921 */
dadbb612 2922 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2923
376a34ef
JH
2924 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2925 pages);
9e1f0580
JH
2926
2927 /*
376a34ef
JH
2928 * As specified in the API description above, this routine is not
2929 * allowed to return negative values. However, the common core
2930 * routine internal_get_user_pages_fast() *can* return -errno.
2931 * Therefore, correct for that here:
9e1f0580 2932 */
376a34ef
JH
2933 if (nr_pinned < 0)
2934 nr_pinned = 0;
9e1f0580
JH
2935
2936 return nr_pinned;
2937}
dadbb612 2938EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2939
eddb1c22
JH
2940/**
2941 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2942 * @start: starting user address
2943 * @nr_pages: number of pages from start to pin
2944 * @gup_flags: flags modifying pin behaviour
2945 * @pages: array that receives pointers to the pages pinned.
2946 * Should be at least nr_pages long.
eddb1c22 2947 *
c1e8d7c6 2948 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2949 * If not successful, it will fall back to taking the lock and
2950 * calling get_user_pages().
2951 *
2952 * Returns number of pages pinned. This may be fewer than the number requested.
2953 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2954 * -errno.
2955 */
2956int get_user_pages_fast(unsigned long start, int nr_pages,
2957 unsigned int gup_flags, struct page **pages)
2958{
447f3e45 2959 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2960 return -EINVAL;
2961
94202f12
JH
2962 /*
2963 * The caller may or may not have explicitly set FOLL_GET; either way is
2964 * OK. However, internally (within mm/gup.c), gup fast variants must set
2965 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2966 * request.
2967 */
2968 gup_flags |= FOLL_GET;
eddb1c22
JH
2969 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2970}
050a9adc 2971EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2972
2973/**
2974 * pin_user_pages_fast() - pin user pages in memory without taking locks
2975 *
3faa52c0
JH
2976 * @start: starting user address
2977 * @nr_pages: number of pages from start to pin
2978 * @gup_flags: flags modifying pin behaviour
2979 * @pages: array that receives pointers to the pages pinned.
2980 * Should be at least nr_pages long.
2981 *
2982 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2983 * get_user_pages_fast() for documentation on the function arguments, because
2984 * the arguments here are identical.
2985 *
2986 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2987 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2988 */
2989int pin_user_pages_fast(unsigned long start, int nr_pages,
2990 unsigned int gup_flags, struct page **pages)
2991{
3faa52c0
JH
2992 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2993 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2994 return -EINVAL;
2995
2996 gup_flags |= FOLL_PIN;
2997 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2998}
2999EXPORT_SYMBOL_GPL(pin_user_pages_fast);
3000
104acc32 3001/*
dadbb612
SJ
3002 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
3003 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
3004 *
3005 * The API rules are the same, too: no negative values may be returned.
3006 */
3007int pin_user_pages_fast_only(unsigned long start, int nr_pages,
3008 unsigned int gup_flags, struct page **pages)
3009{
3010 int nr_pinned;
3011
3012 /*
3013 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
3014 * rules require returning 0, rather than -errno:
3015 */
3016 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3017 return 0;
3018 /*
3019 * FOLL_FAST_ONLY is required in order to match the API description of
3020 * this routine: no fall back to regular ("slow") GUP.
3021 */
3022 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
3023 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
3024 pages);
3025 /*
3026 * This routine is not allowed to return negative values. However,
3027 * internal_get_user_pages_fast() *can* return -errno. Therefore,
3028 * correct for that here:
3029 */
3030 if (nr_pinned < 0)
3031 nr_pinned = 0;
3032
3033 return nr_pinned;
3034}
3035EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
3036
eddb1c22 3037/**
64019a2e 3038 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 3039 *
3faa52c0
JH
3040 * @mm: mm_struct of target mm
3041 * @start: starting user address
3042 * @nr_pages: number of pages from start to pin
3043 * @gup_flags: flags modifying lookup behaviour
3044 * @pages: array that receives pointers to the pages pinned.
3045 * Should be at least nr_pages long. Or NULL, if caller
3046 * only intends to ensure the pages are faulted in.
3047 * @vmas: array of pointers to vmas corresponding to each page.
3048 * Or NULL if the caller does not require them.
3049 * @locked: pointer to lock flag indicating whether lock is held and
3050 * subsequently whether VM_FAULT_RETRY functionality can be
3051 * utilised. Lock must initially be held.
3052 *
3053 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
3054 * get_user_pages_remote() for documentation on the function arguments, because
3055 * the arguments here are identical.
3056 *
3057 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3058 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 3059 */
64019a2e 3060long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
3061 unsigned long start, unsigned long nr_pages,
3062 unsigned int gup_flags, struct page **pages,
3063 struct vm_area_struct **vmas, int *locked)
3064{
3faa52c0
JH
3065 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3066 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3067 return -EINVAL;
3068
3069 gup_flags |= FOLL_PIN;
64019a2e 3070 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 3071 pages, vmas, locked);
eddb1c22
JH
3072}
3073EXPORT_SYMBOL(pin_user_pages_remote);
3074
3075/**
3076 * pin_user_pages() - pin user pages in memory for use by other devices
3077 *
3faa52c0
JH
3078 * @start: starting user address
3079 * @nr_pages: number of pages from start to pin
3080 * @gup_flags: flags modifying lookup behaviour
3081 * @pages: array that receives pointers to the pages pinned.
3082 * Should be at least nr_pages long. Or NULL, if caller
3083 * only intends to ensure the pages are faulted in.
3084 * @vmas: array of pointers to vmas corresponding to each page.
3085 * Or NULL if the caller does not require them.
3086 *
3087 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
3088 * FOLL_PIN is set.
3089 *
3090 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 3091 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
3092 */
3093long pin_user_pages(unsigned long start, unsigned long nr_pages,
3094 unsigned int gup_flags, struct page **pages,
3095 struct vm_area_struct **vmas)
3096{
3faa52c0
JH
3097 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3098 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3099 return -EINVAL;
3100
3101 gup_flags |= FOLL_PIN;
64019a2e 3102 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 3103 pages, vmas, gup_flags);
eddb1c22
JH
3104}
3105EXPORT_SYMBOL(pin_user_pages);
91429023
JH
3106
3107/*
3108 * pin_user_pages_unlocked() is the FOLL_PIN variant of
3109 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
3110 * FOLL_PIN and rejects FOLL_GET.
3111 */
3112long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
3113 struct page **pages, unsigned int gup_flags)
3114{
3115 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3116 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3117 return -EINVAL;
3118
3119 gup_flags |= FOLL_PIN;
3120 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
3121}
3122EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
3123
3124/*
3125 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
3126 * Behavior is the same, except that this one sets FOLL_PIN and rejects
3127 * FOLL_GET.
3128 */
3129long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
3130 unsigned int gup_flags, struct page **pages,
3131 int *locked)
3132{
3133 /*
3134 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
3135 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
3136 * vmas. As there are no users of this flag in this call we simply
3137 * disallow this option for now.
3138 */
3139 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
3140 return -EINVAL;
3141
3142 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
3143 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
3144 return -EINVAL;
3145
3146 gup_flags |= FOLL_PIN;
64019a2e 3147 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
3148 pages, NULL, locked,
3149 gup_flags | FOLL_TOUCH);
3150}
3151EXPORT_SYMBOL(pin_user_pages_locked);