]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blame - mm/gup.c
kconfig: nconf: refactor in print_in_middle()
[mirror_ubuntu-jammy-kernel.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
47e29d32
JH
31static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
a707cdd5
JH
47/*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51static inline struct page *try_get_compound_head(struct page *page, int refs)
52{
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60}
61
3faa52c0
JH
62/*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
0fa5bc40
JM
81__maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs, unsigned int flags)
3faa52c0
JH
83{
84 if (flags & FOLL_GET)
85 return try_get_compound_head(page, refs);
86 else if (flags & FOLL_PIN) {
1970dc6f
JH
87 int orig_refs = refs;
88
df3a0a21
PL
89 /*
90 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
91 * path, so fail and let the caller fall back to the slow path.
92 */
93 if (unlikely(flags & FOLL_LONGTERM) &&
94 is_migrate_cma_page(page))
95 return NULL;
96
47e29d32
JH
97 /*
98 * When pinning a compound page of order > 1 (which is what
99 * hpage_pincount_available() checks for), use an exact count to
100 * track it, via hpage_pincount_add/_sub().
101 *
102 * However, be sure to *also* increment the normal page refcount
103 * field at least once, so that the page really is pinned.
104 */
105 if (!hpage_pincount_available(page))
106 refs *= GUP_PIN_COUNTING_BIAS;
107
108 page = try_get_compound_head(page, refs);
109 if (!page)
110 return NULL;
111
112 if (hpage_pincount_available(page))
113 hpage_pincount_add(page, refs);
114
1970dc6f
JH
115 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
116 orig_refs);
117
47e29d32 118 return page;
3faa52c0
JH
119 }
120
121 WARN_ON_ONCE(1);
122 return NULL;
123}
124
4509b42c
JG
125static void put_compound_head(struct page *page, int refs, unsigned int flags)
126{
127 if (flags & FOLL_PIN) {
128 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
129 refs);
130
131 if (hpage_pincount_available(page))
132 hpage_pincount_sub(page, refs);
133 else
134 refs *= GUP_PIN_COUNTING_BIAS;
135 }
136
137 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
138 /*
139 * Calling put_page() for each ref is unnecessarily slow. Only the last
140 * ref needs a put_page().
141 */
142 if (refs > 1)
143 page_ref_sub(page, refs - 1);
144 put_page(page);
145}
146
3faa52c0
JH
147/**
148 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
149 *
150 * This might not do anything at all, depending on the flags argument.
151 *
152 * "grab" names in this file mean, "look at flags to decide whether to use
153 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
154 *
155 * @page: pointer to page to be grabbed
156 * @flags: gup flags: these are the FOLL_* flag values.
157 *
158 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
159 * time. Cases:
160 *
161 * FOLL_GET: page's refcount will be incremented by 1.
162 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
163 *
164 * Return: true for success, or if no action was required (if neither FOLL_PIN
165 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
166 * FOLL_PIN was set, but the page could not be grabbed.
167 */
168bool __must_check try_grab_page(struct page *page, unsigned int flags)
169{
170 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
171
172 if (flags & FOLL_GET)
173 return try_get_page(page);
174 else if (flags & FOLL_PIN) {
47e29d32
JH
175 int refs = 1;
176
3faa52c0
JH
177 page = compound_head(page);
178
179 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
180 return false;
181
47e29d32
JH
182 if (hpage_pincount_available(page))
183 hpage_pincount_add(page, 1);
184 else
185 refs = GUP_PIN_COUNTING_BIAS;
186
187 /*
188 * Similar to try_grab_compound_head(): even if using the
189 * hpage_pincount_add/_sub() routines, be sure to
190 * *also* increment the normal page refcount field at least
191 * once, so that the page really is pinned.
192 */
193 page_ref_add(page, refs);
1970dc6f
JH
194
195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
196 }
197
198 return true;
199}
200
3faa52c0
JH
201/**
202 * unpin_user_page() - release a dma-pinned page
203 * @page: pointer to page to be released
204 *
205 * Pages that were pinned via pin_user_pages*() must be released via either
206 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
207 * that such pages can be separately tracked and uniquely handled. In
208 * particular, interactions with RDMA and filesystems need special handling.
209 */
210void unpin_user_page(struct page *page)
211{
4509b42c 212 put_compound_head(compound_head(page), 1, FOLL_PIN);
3faa52c0
JH
213}
214EXPORT_SYMBOL(unpin_user_page);
215
fc1d8e7c 216/**
f1f6a7dd 217 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 218 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 219 * @npages: number of pages in the @pages array.
2d15eb31 220 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
221 *
222 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
223 * variants called on that page.
224 *
225 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 226 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
227 * listed as clean. In any case, releases all pages using unpin_user_page(),
228 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 229 *
f1f6a7dd 230 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 231 *
2d15eb31
AM
232 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
233 * required, then the caller should a) verify that this is really correct,
234 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 235 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
236 *
237 */
f1f6a7dd
JH
238void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
239 bool make_dirty)
fc1d8e7c 240{
2d15eb31 241 unsigned long index;
fc1d8e7c 242
2d15eb31
AM
243 /*
244 * TODO: this can be optimized for huge pages: if a series of pages is
245 * physically contiguous and part of the same compound page, then a
246 * single operation to the head page should suffice.
247 */
248
249 if (!make_dirty) {
f1f6a7dd 250 unpin_user_pages(pages, npages);
2d15eb31
AM
251 return;
252 }
253
254 for (index = 0; index < npages; index++) {
255 struct page *page = compound_head(pages[index]);
256 /*
257 * Checking PageDirty at this point may race with
258 * clear_page_dirty_for_io(), but that's OK. Two key
259 * cases:
260 *
261 * 1) This code sees the page as already dirty, so it
262 * skips the call to set_page_dirty(). That could happen
263 * because clear_page_dirty_for_io() called
264 * page_mkclean(), followed by set_page_dirty().
265 * However, now the page is going to get written back,
266 * which meets the original intention of setting it
267 * dirty, so all is well: clear_page_dirty_for_io() goes
268 * on to call TestClearPageDirty(), and write the page
269 * back.
270 *
271 * 2) This code sees the page as clean, so it calls
272 * set_page_dirty(). The page stays dirty, despite being
273 * written back, so it gets written back again in the
274 * next writeback cycle. This is harmless.
275 */
276 if (!PageDirty(page))
277 set_page_dirty_lock(page);
f1f6a7dd 278 unpin_user_page(page);
2d15eb31 279 }
fc1d8e7c 280}
f1f6a7dd 281EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
282
283/**
f1f6a7dd 284 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
285 * @pages: array of pages to be marked dirty and released.
286 * @npages: number of pages in the @pages array.
287 *
f1f6a7dd 288 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 289 *
f1f6a7dd 290 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 291 */
f1f6a7dd 292void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
293{
294 unsigned long index;
295
146608bb
JH
296 /*
297 * If this WARN_ON() fires, then the system *might* be leaking pages (by
298 * leaving them pinned), but probably not. More likely, gup/pup returned
299 * a hard -ERRNO error to the caller, who erroneously passed it here.
300 */
301 if (WARN_ON(IS_ERR_VALUE(npages)))
302 return;
fc1d8e7c
JH
303 /*
304 * TODO: this can be optimized for huge pages: if a series of pages is
305 * physically contiguous and part of the same compound page, then a
306 * single operation to the head page should suffice.
307 */
308 for (index = 0; index < npages; index++)
f1f6a7dd 309 unpin_user_page(pages[index]);
fc1d8e7c 310}
f1f6a7dd 311EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 312
050a9adc 313#ifdef CONFIG_MMU
69e68b4f
KS
314static struct page *no_page_table(struct vm_area_struct *vma,
315 unsigned int flags)
4bbd4c77 316{
69e68b4f
KS
317 /*
318 * When core dumping an enormous anonymous area that nobody
319 * has touched so far, we don't want to allocate unnecessary pages or
320 * page tables. Return error instead of NULL to skip handle_mm_fault,
321 * then get_dump_page() will return NULL to leave a hole in the dump.
322 * But we can only make this optimization where a hole would surely
323 * be zero-filled if handle_mm_fault() actually did handle it.
324 */
a0137f16
AK
325 if ((flags & FOLL_DUMP) &&
326 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
327 return ERR_PTR(-EFAULT);
328 return NULL;
329}
4bbd4c77 330
1027e443
KS
331static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
332 pte_t *pte, unsigned int flags)
333{
334 /* No page to get reference */
335 if (flags & FOLL_GET)
336 return -EFAULT;
337
338 if (flags & FOLL_TOUCH) {
339 pte_t entry = *pte;
340
341 if (flags & FOLL_WRITE)
342 entry = pte_mkdirty(entry);
343 entry = pte_mkyoung(entry);
344
345 if (!pte_same(*pte, entry)) {
346 set_pte_at(vma->vm_mm, address, pte, entry);
347 update_mmu_cache(vma, address, pte);
348 }
349 }
350
351 /* Proper page table entry exists, but no corresponding struct page */
352 return -EEXIST;
353}
354
19be0eaf 355/*
a308c71b
PX
356 * FOLL_FORCE can write to even unwritable pte's, but only
357 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
358 */
359static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
360{
a308c71b
PX
361 return pte_write(pte) ||
362 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
363}
364
69e68b4f 365static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
366 unsigned long address, pmd_t *pmd, unsigned int flags,
367 struct dev_pagemap **pgmap)
69e68b4f
KS
368{
369 struct mm_struct *mm = vma->vm_mm;
370 struct page *page;
371 spinlock_t *ptl;
372 pte_t *ptep, pte;
f28d4363 373 int ret;
4bbd4c77 374
eddb1c22
JH
375 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
376 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
377 (FOLL_PIN | FOLL_GET)))
378 return ERR_PTR(-EINVAL);
69e68b4f 379retry:
4bbd4c77 380 if (unlikely(pmd_bad(*pmd)))
69e68b4f 381 return no_page_table(vma, flags);
4bbd4c77
KS
382
383 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
384 pte = *ptep;
385 if (!pte_present(pte)) {
386 swp_entry_t entry;
387 /*
388 * KSM's break_ksm() relies upon recognizing a ksm page
389 * even while it is being migrated, so for that case we
390 * need migration_entry_wait().
391 */
392 if (likely(!(flags & FOLL_MIGRATION)))
393 goto no_page;
0661a336 394 if (pte_none(pte))
4bbd4c77
KS
395 goto no_page;
396 entry = pte_to_swp_entry(pte);
397 if (!is_migration_entry(entry))
398 goto no_page;
399 pte_unmap_unlock(ptep, ptl);
400 migration_entry_wait(mm, pmd, address);
69e68b4f 401 goto retry;
4bbd4c77 402 }
8a0516ed 403 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 404 goto no_page;
19be0eaf 405 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
406 pte_unmap_unlock(ptep, ptl);
407 return NULL;
408 }
4bbd4c77
KS
409
410 page = vm_normal_page(vma, address, pte);
3faa52c0 411 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 412 /*
3faa52c0
JH
413 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
414 * case since they are only valid while holding the pgmap
415 * reference.
3565fce3 416 */
df06b37f
KB
417 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
418 if (*pgmap)
3565fce3
DW
419 page = pte_page(pte);
420 else
421 goto no_page;
422 } else if (unlikely(!page)) {
1027e443
KS
423 if (flags & FOLL_DUMP) {
424 /* Avoid special (like zero) pages in core dumps */
425 page = ERR_PTR(-EFAULT);
426 goto out;
427 }
428
429 if (is_zero_pfn(pte_pfn(pte))) {
430 page = pte_page(pte);
431 } else {
1027e443
KS
432 ret = follow_pfn_pte(vma, address, ptep, flags);
433 page = ERR_PTR(ret);
434 goto out;
435 }
4bbd4c77
KS
436 }
437
6742d293 438 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
439 get_page(page);
440 pte_unmap_unlock(ptep, ptl);
441 lock_page(page);
442 ret = split_huge_page(page);
443 unlock_page(page);
444 put_page(page);
445 if (ret)
446 return ERR_PTR(ret);
447 goto retry;
448 }
449
3faa52c0
JH
450 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
451 if (unlikely(!try_grab_page(page, flags))) {
452 page = ERR_PTR(-ENOMEM);
453 goto out;
8fde12ca 454 }
f28d4363
CI
455 /*
456 * We need to make the page accessible if and only if we are going
457 * to access its content (the FOLL_PIN case). Please see
458 * Documentation/core-api/pin_user_pages.rst for details.
459 */
460 if (flags & FOLL_PIN) {
461 ret = arch_make_page_accessible(page);
462 if (ret) {
463 unpin_user_page(page);
464 page = ERR_PTR(ret);
465 goto out;
466 }
467 }
4bbd4c77
KS
468 if (flags & FOLL_TOUCH) {
469 if ((flags & FOLL_WRITE) &&
470 !pte_dirty(pte) && !PageDirty(page))
471 set_page_dirty(page);
472 /*
473 * pte_mkyoung() would be more correct here, but atomic care
474 * is needed to avoid losing the dirty bit: it is easier to use
475 * mark_page_accessed().
476 */
477 mark_page_accessed(page);
478 }
de60f5f1 479 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
480 /* Do not mlock pte-mapped THP */
481 if (PageTransCompound(page))
482 goto out;
483
4bbd4c77
KS
484 /*
485 * The preliminary mapping check is mainly to avoid the
486 * pointless overhead of lock_page on the ZERO_PAGE
487 * which might bounce very badly if there is contention.
488 *
489 * If the page is already locked, we don't need to
490 * handle it now - vmscan will handle it later if and
491 * when it attempts to reclaim the page.
492 */
493 if (page->mapping && trylock_page(page)) {
494 lru_add_drain(); /* push cached pages to LRU */
495 /*
496 * Because we lock page here, and migration is
497 * blocked by the pte's page reference, and we
498 * know the page is still mapped, we don't even
499 * need to check for file-cache page truncation.
500 */
501 mlock_vma_page(page);
502 unlock_page(page);
503 }
504 }
1027e443 505out:
4bbd4c77 506 pte_unmap_unlock(ptep, ptl);
4bbd4c77 507 return page;
4bbd4c77
KS
508no_page:
509 pte_unmap_unlock(ptep, ptl);
510 if (!pte_none(pte))
69e68b4f
KS
511 return NULL;
512 return no_page_table(vma, flags);
513}
514
080dbb61
AK
515static struct page *follow_pmd_mask(struct vm_area_struct *vma,
516 unsigned long address, pud_t *pudp,
df06b37f
KB
517 unsigned int flags,
518 struct follow_page_context *ctx)
69e68b4f 519{
68827280 520 pmd_t *pmd, pmdval;
69e68b4f
KS
521 spinlock_t *ptl;
522 struct page *page;
523 struct mm_struct *mm = vma->vm_mm;
524
080dbb61 525 pmd = pmd_offset(pudp, address);
68827280
HY
526 /*
527 * The READ_ONCE() will stabilize the pmdval in a register or
528 * on the stack so that it will stop changing under the code.
529 */
530 pmdval = READ_ONCE(*pmd);
531 if (pmd_none(pmdval))
69e68b4f 532 return no_page_table(vma, flags);
be9d3045 533 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
534 page = follow_huge_pmd(mm, address, pmd, flags);
535 if (page)
536 return page;
537 return no_page_table(vma, flags);
69e68b4f 538 }
68827280 539 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 540 page = follow_huge_pd(vma, address,
68827280 541 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
542 PMD_SHIFT);
543 if (page)
544 return page;
545 return no_page_table(vma, flags);
546 }
84c3fc4e 547retry:
68827280 548 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
549 if (likely(!(flags & FOLL_MIGRATION)))
550 return no_page_table(vma, flags);
551 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
552 !is_pmd_migration_entry(pmdval));
553 if (is_pmd_migration_entry(pmdval))
84c3fc4e 554 pmd_migration_entry_wait(mm, pmd);
68827280
HY
555 pmdval = READ_ONCE(*pmd);
556 /*
557 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 558 * mmap_lock is held in read mode
68827280
HY
559 */
560 if (pmd_none(pmdval))
561 return no_page_table(vma, flags);
84c3fc4e
ZY
562 goto retry;
563 }
68827280 564 if (pmd_devmap(pmdval)) {
3565fce3 565 ptl = pmd_lock(mm, pmd);
df06b37f 566 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
567 spin_unlock(ptl);
568 if (page)
569 return page;
570 }
68827280 571 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 572 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 573
68827280 574 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
575 return no_page_table(vma, flags);
576
84c3fc4e 577retry_locked:
6742d293 578 ptl = pmd_lock(mm, pmd);
68827280
HY
579 if (unlikely(pmd_none(*pmd))) {
580 spin_unlock(ptl);
581 return no_page_table(vma, flags);
582 }
84c3fc4e
ZY
583 if (unlikely(!pmd_present(*pmd))) {
584 spin_unlock(ptl);
585 if (likely(!(flags & FOLL_MIGRATION)))
586 return no_page_table(vma, flags);
587 pmd_migration_entry_wait(mm, pmd);
588 goto retry_locked;
589 }
6742d293
KS
590 if (unlikely(!pmd_trans_huge(*pmd))) {
591 spin_unlock(ptl);
df06b37f 592 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 593 }
bfe7b00d 594 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
595 int ret;
596 page = pmd_page(*pmd);
597 if (is_huge_zero_page(page)) {
598 spin_unlock(ptl);
599 ret = 0;
78ddc534 600 split_huge_pmd(vma, pmd, address);
337d9abf
NH
601 if (pmd_trans_unstable(pmd))
602 ret = -EBUSY;
bfe7b00d 603 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
604 if (unlikely(!try_get_page(page))) {
605 spin_unlock(ptl);
606 return ERR_PTR(-ENOMEM);
607 }
69e68b4f 608 spin_unlock(ptl);
6742d293
KS
609 lock_page(page);
610 ret = split_huge_page(page);
611 unlock_page(page);
612 put_page(page);
baa355fd
KS
613 if (pmd_none(*pmd))
614 return no_page_table(vma, flags);
bfe7b00d
SL
615 } else { /* flags & FOLL_SPLIT_PMD */
616 spin_unlock(ptl);
617 split_huge_pmd(vma, pmd, address);
618 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
619 }
620
621 return ret ? ERR_PTR(ret) :
df06b37f 622 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 623 }
6742d293
KS
624 page = follow_trans_huge_pmd(vma, address, pmd, flags);
625 spin_unlock(ptl);
df06b37f 626 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 627 return page;
4bbd4c77
KS
628}
629
080dbb61
AK
630static struct page *follow_pud_mask(struct vm_area_struct *vma,
631 unsigned long address, p4d_t *p4dp,
df06b37f
KB
632 unsigned int flags,
633 struct follow_page_context *ctx)
080dbb61
AK
634{
635 pud_t *pud;
636 spinlock_t *ptl;
637 struct page *page;
638 struct mm_struct *mm = vma->vm_mm;
639
640 pud = pud_offset(p4dp, address);
641 if (pud_none(*pud))
642 return no_page_table(vma, flags);
be9d3045 643 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
644 page = follow_huge_pud(mm, address, pud, flags);
645 if (page)
646 return page;
647 return no_page_table(vma, flags);
648 }
4dc71451
AK
649 if (is_hugepd(__hugepd(pud_val(*pud)))) {
650 page = follow_huge_pd(vma, address,
651 __hugepd(pud_val(*pud)), flags,
652 PUD_SHIFT);
653 if (page)
654 return page;
655 return no_page_table(vma, flags);
656 }
080dbb61
AK
657 if (pud_devmap(*pud)) {
658 ptl = pud_lock(mm, pud);
df06b37f 659 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
660 spin_unlock(ptl);
661 if (page)
662 return page;
663 }
664 if (unlikely(pud_bad(*pud)))
665 return no_page_table(vma, flags);
666
df06b37f 667 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
668}
669
080dbb61
AK
670static struct page *follow_p4d_mask(struct vm_area_struct *vma,
671 unsigned long address, pgd_t *pgdp,
df06b37f
KB
672 unsigned int flags,
673 struct follow_page_context *ctx)
080dbb61
AK
674{
675 p4d_t *p4d;
4dc71451 676 struct page *page;
080dbb61
AK
677
678 p4d = p4d_offset(pgdp, address);
679 if (p4d_none(*p4d))
680 return no_page_table(vma, flags);
681 BUILD_BUG_ON(p4d_huge(*p4d));
682 if (unlikely(p4d_bad(*p4d)))
683 return no_page_table(vma, flags);
684
4dc71451
AK
685 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
686 page = follow_huge_pd(vma, address,
687 __hugepd(p4d_val(*p4d)), flags,
688 P4D_SHIFT);
689 if (page)
690 return page;
691 return no_page_table(vma, flags);
692 }
df06b37f 693 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
694}
695
696/**
697 * follow_page_mask - look up a page descriptor from a user-virtual address
698 * @vma: vm_area_struct mapping @address
699 * @address: virtual address to look up
700 * @flags: flags modifying lookup behaviour
78179556
MR
701 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
702 * pointer to output page_mask
080dbb61
AK
703 *
704 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
705 *
78179556
MR
706 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
707 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
708 *
709 * On output, the @ctx->page_mask is set according to the size of the page.
710 *
711 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
712 * an error pointer if there is a mapping to something not represented
713 * by a page descriptor (see also vm_normal_page()).
714 */
a7030aea 715static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 716 unsigned long address, unsigned int flags,
df06b37f 717 struct follow_page_context *ctx)
080dbb61
AK
718{
719 pgd_t *pgd;
720 struct page *page;
721 struct mm_struct *mm = vma->vm_mm;
722
df06b37f 723 ctx->page_mask = 0;
080dbb61
AK
724
725 /* make this handle hugepd */
726 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
727 if (!IS_ERR(page)) {
3faa52c0 728 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
729 return page;
730 }
731
732 pgd = pgd_offset(mm, address);
733
734 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
735 return no_page_table(vma, flags);
736
faaa5b62
AK
737 if (pgd_huge(*pgd)) {
738 page = follow_huge_pgd(mm, address, pgd, flags);
739 if (page)
740 return page;
741 return no_page_table(vma, flags);
742 }
4dc71451
AK
743 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
744 page = follow_huge_pd(vma, address,
745 __hugepd(pgd_val(*pgd)), flags,
746 PGDIR_SHIFT);
747 if (page)
748 return page;
749 return no_page_table(vma, flags);
750 }
faaa5b62 751
df06b37f
KB
752 return follow_p4d_mask(vma, address, pgd, flags, ctx);
753}
754
755struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
756 unsigned int foll_flags)
757{
758 struct follow_page_context ctx = { NULL };
759 struct page *page;
760
761 page = follow_page_mask(vma, address, foll_flags, &ctx);
762 if (ctx.pgmap)
763 put_dev_pagemap(ctx.pgmap);
764 return page;
080dbb61
AK
765}
766
f2b495ca
KS
767static int get_gate_page(struct mm_struct *mm, unsigned long address,
768 unsigned int gup_flags, struct vm_area_struct **vma,
769 struct page **page)
770{
771 pgd_t *pgd;
c2febafc 772 p4d_t *p4d;
f2b495ca
KS
773 pud_t *pud;
774 pmd_t *pmd;
775 pte_t *pte;
776 int ret = -EFAULT;
777
778 /* user gate pages are read-only */
779 if (gup_flags & FOLL_WRITE)
780 return -EFAULT;
781 if (address > TASK_SIZE)
782 pgd = pgd_offset_k(address);
783 else
784 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
785 if (pgd_none(*pgd))
786 return -EFAULT;
c2febafc 787 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
788 if (p4d_none(*p4d))
789 return -EFAULT;
c2febafc 790 pud = pud_offset(p4d, address);
b5d1c39f
AL
791 if (pud_none(*pud))
792 return -EFAULT;
f2b495ca 793 pmd = pmd_offset(pud, address);
84c3fc4e 794 if (!pmd_present(*pmd))
f2b495ca
KS
795 return -EFAULT;
796 VM_BUG_ON(pmd_trans_huge(*pmd));
797 pte = pte_offset_map(pmd, address);
798 if (pte_none(*pte))
799 goto unmap;
800 *vma = get_gate_vma(mm);
801 if (!page)
802 goto out;
803 *page = vm_normal_page(*vma, address, *pte);
804 if (!*page) {
805 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
806 goto unmap;
807 *page = pte_page(*pte);
808 }
9fa2dd94 809 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
810 ret = -ENOMEM;
811 goto unmap;
812 }
f2b495ca
KS
813out:
814 ret = 0;
815unmap:
816 pte_unmap(pte);
817 return ret;
818}
819
9a95f3cf 820/*
c1e8d7c6
ML
821 * mmap_lock must be held on entry. If @locked != NULL and *@flags
822 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 823 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 824 */
64019a2e 825static int faultin_page(struct vm_area_struct *vma,
4f6da934 826 unsigned long address, unsigned int *flags, int *locked)
16744483 827{
16744483 828 unsigned int fault_flags = 0;
2b740303 829 vm_fault_t ret;
16744483 830
de60f5f1
EM
831 /* mlock all present pages, but do not fault in new pages */
832 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
833 return -ENOENT;
16744483
KS
834 if (*flags & FOLL_WRITE)
835 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
836 if (*flags & FOLL_REMOTE)
837 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 838 if (locked)
71335f37 839 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
840 if (*flags & FOLL_NOWAIT)
841 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 842 if (*flags & FOLL_TRIED) {
4426e945
PX
843 /*
844 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
845 * can co-exist
846 */
234b239b
ALC
847 fault_flags |= FAULT_FLAG_TRIED;
848 }
16744483 849
bce617ed 850 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 851 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
852 int err = vm_fault_to_errno(ret, *flags);
853
854 if (err)
855 return err;
16744483
KS
856 BUG();
857 }
858
16744483 859 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
860 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
861 *locked = 0;
16744483
KS
862 return -EBUSY;
863 }
864
865 /*
866 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
867 * necessary, even if maybe_mkwrite decided not to set pte_write. We
868 * can thus safely do subsequent page lookups as if they were reads.
869 * But only do so when looping for pte_write is futile: in some cases
870 * userspace may also be wanting to write to the gotten user page,
871 * which a read fault here might prevent (a readonly page might get
872 * reCOWed by userspace write).
873 */
874 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 875 *flags |= FOLL_COW;
16744483
KS
876 return 0;
877}
878
fa5bb209
KS
879static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
880{
881 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
882 int write = (gup_flags & FOLL_WRITE);
883 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
884
885 if (vm_flags & (VM_IO | VM_PFNMAP))
886 return -EFAULT;
887
7f7ccc2c
WT
888 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
889 return -EFAULT;
890
52650c8b
JG
891 if ((gup_flags & FOLL_LONGTERM) && vma_is_fsdax(vma))
892 return -EOPNOTSUPP;
893
1b2ee126 894 if (write) {
fa5bb209
KS
895 if (!(vm_flags & VM_WRITE)) {
896 if (!(gup_flags & FOLL_FORCE))
897 return -EFAULT;
898 /*
899 * We used to let the write,force case do COW in a
900 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
901 * set a breakpoint in a read-only mapping of an
902 * executable, without corrupting the file (yet only
903 * when that file had been opened for writing!).
904 * Anon pages in shared mappings are surprising: now
905 * just reject it.
906 */
46435364 907 if (!is_cow_mapping(vm_flags))
fa5bb209 908 return -EFAULT;
fa5bb209
KS
909 }
910 } else if (!(vm_flags & VM_READ)) {
911 if (!(gup_flags & FOLL_FORCE))
912 return -EFAULT;
913 /*
914 * Is there actually any vma we can reach here which does not
915 * have VM_MAYREAD set?
916 */
917 if (!(vm_flags & VM_MAYREAD))
918 return -EFAULT;
919 }
d61172b4
DH
920 /*
921 * gups are always data accesses, not instruction
922 * fetches, so execute=false here
923 */
924 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 925 return -EFAULT;
fa5bb209
KS
926 return 0;
927}
928
4bbd4c77
KS
929/**
930 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
931 * @mm: mm_struct of target mm
932 * @start: starting user address
933 * @nr_pages: number of pages from start to pin
934 * @gup_flags: flags modifying pin behaviour
935 * @pages: array that receives pointers to the pages pinned.
936 * Should be at least nr_pages long. Or NULL, if caller
937 * only intends to ensure the pages are faulted in.
938 * @vmas: array of pointers to vmas corresponding to each page.
939 * Or NULL if the caller does not require them.
c1e8d7c6 940 * @locked: whether we're still with the mmap_lock held
4bbd4c77 941 *
d2dfbe47
LX
942 * Returns either number of pages pinned (which may be less than the
943 * number requested), or an error. Details about the return value:
944 *
945 * -- If nr_pages is 0, returns 0.
946 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
947 * -- If nr_pages is >0, and some pages were pinned, returns the number of
948 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 949 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
950 *
951 * The caller is responsible for releasing returned @pages, via put_page().
952 *
c1e8d7c6 953 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 954 *
c1e8d7c6 955 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
956 *
957 * __get_user_pages walks a process's page tables and takes a reference to
958 * each struct page that each user address corresponds to at a given
959 * instant. That is, it takes the page that would be accessed if a user
960 * thread accesses the given user virtual address at that instant.
961 *
962 * This does not guarantee that the page exists in the user mappings when
963 * __get_user_pages returns, and there may even be a completely different
964 * page there in some cases (eg. if mmapped pagecache has been invalidated
965 * and subsequently re faulted). However it does guarantee that the page
966 * won't be freed completely. And mostly callers simply care that the page
967 * contains data that was valid *at some point in time*. Typically, an IO
968 * or similar operation cannot guarantee anything stronger anyway because
969 * locks can't be held over the syscall boundary.
970 *
971 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
972 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
973 * appropriate) must be called after the page is finished with, and
974 * before put_page is called.
975 *
c1e8d7c6 976 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
977 * released by an up_read(). That can happen if @gup_flags does not
978 * have FOLL_NOWAIT.
9a95f3cf 979 *
4f6da934 980 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 981 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
982 * when it's been released. Otherwise, it must be held for either
983 * reading or writing and will not be released.
4bbd4c77
KS
984 *
985 * In most cases, get_user_pages or get_user_pages_fast should be used
986 * instead of __get_user_pages. __get_user_pages should be used only if
987 * you need some special @gup_flags.
988 */
64019a2e 989static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
990 unsigned long start, unsigned long nr_pages,
991 unsigned int gup_flags, struct page **pages,
4f6da934 992 struct vm_area_struct **vmas, int *locked)
4bbd4c77 993{
df06b37f 994 long ret = 0, i = 0;
fa5bb209 995 struct vm_area_struct *vma = NULL;
df06b37f 996 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
997
998 if (!nr_pages)
999 return 0;
1000
f9652594
AK
1001 start = untagged_addr(start);
1002
eddb1c22 1003 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1004
1005 /*
1006 * If FOLL_FORCE is set then do not force a full fault as the hinting
1007 * fault information is unrelated to the reference behaviour of a task
1008 * using the address space
1009 */
1010 if (!(gup_flags & FOLL_FORCE))
1011 gup_flags |= FOLL_NUMA;
1012
4bbd4c77 1013 do {
fa5bb209
KS
1014 struct page *page;
1015 unsigned int foll_flags = gup_flags;
1016 unsigned int page_increm;
1017
1018 /* first iteration or cross vma bound */
1019 if (!vma || start >= vma->vm_end) {
1020 vma = find_extend_vma(mm, start);
1021 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1022 ret = get_gate_page(mm, start & PAGE_MASK,
1023 gup_flags, &vma,
1024 pages ? &pages[i] : NULL);
1025 if (ret)
08be37b7 1026 goto out;
df06b37f 1027 ctx.page_mask = 0;
fa5bb209
KS
1028 goto next_page;
1029 }
4bbd4c77 1030
52650c8b 1031 if (!vma) {
df06b37f
KB
1032 ret = -EFAULT;
1033 goto out;
1034 }
52650c8b
JG
1035 ret = check_vma_flags(vma, gup_flags);
1036 if (ret)
1037 goto out;
1038
fa5bb209
KS
1039 if (is_vm_hugetlb_page(vma)) {
1040 i = follow_hugetlb_page(mm, vma, pages, vmas,
1041 &start, &nr_pages, i,
a308c71b 1042 gup_flags, locked);
ad415db8
PX
1043 if (locked && *locked == 0) {
1044 /*
1045 * We've got a VM_FAULT_RETRY
c1e8d7c6 1046 * and we've lost mmap_lock.
ad415db8
PX
1047 * We must stop here.
1048 */
1049 BUG_ON(gup_flags & FOLL_NOWAIT);
1050 BUG_ON(ret != 0);
1051 goto out;
1052 }
fa5bb209 1053 continue;
4bbd4c77 1054 }
fa5bb209
KS
1055 }
1056retry:
1057 /*
1058 * If we have a pending SIGKILL, don't keep faulting pages and
1059 * potentially allocating memory.
1060 */
fa45f116 1061 if (fatal_signal_pending(current)) {
d180870d 1062 ret = -EINTR;
df06b37f
KB
1063 goto out;
1064 }
fa5bb209 1065 cond_resched();
df06b37f
KB
1066
1067 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1068 if (!page) {
64019a2e 1069 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1070 switch (ret) {
1071 case 0:
1072 goto retry;
df06b37f
KB
1073 case -EBUSY:
1074 ret = 0;
e4a9bc58 1075 fallthrough;
fa5bb209
KS
1076 case -EFAULT:
1077 case -ENOMEM:
1078 case -EHWPOISON:
df06b37f 1079 goto out;
fa5bb209
KS
1080 case -ENOENT:
1081 goto next_page;
4bbd4c77 1082 }
fa5bb209 1083 BUG();
1027e443
KS
1084 } else if (PTR_ERR(page) == -EEXIST) {
1085 /*
1086 * Proper page table entry exists, but no corresponding
1087 * struct page.
1088 */
1089 goto next_page;
1090 } else if (IS_ERR(page)) {
df06b37f
KB
1091 ret = PTR_ERR(page);
1092 goto out;
1027e443 1093 }
fa5bb209
KS
1094 if (pages) {
1095 pages[i] = page;
1096 flush_anon_page(vma, page, start);
1097 flush_dcache_page(page);
df06b37f 1098 ctx.page_mask = 0;
4bbd4c77 1099 }
4bbd4c77 1100next_page:
fa5bb209
KS
1101 if (vmas) {
1102 vmas[i] = vma;
df06b37f 1103 ctx.page_mask = 0;
fa5bb209 1104 }
df06b37f 1105 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1106 if (page_increm > nr_pages)
1107 page_increm = nr_pages;
1108 i += page_increm;
1109 start += page_increm * PAGE_SIZE;
1110 nr_pages -= page_increm;
4bbd4c77 1111 } while (nr_pages);
df06b37f
KB
1112out:
1113 if (ctx.pgmap)
1114 put_dev_pagemap(ctx.pgmap);
1115 return i ? i : ret;
4bbd4c77 1116}
4bbd4c77 1117
771ab430
TK
1118static bool vma_permits_fault(struct vm_area_struct *vma,
1119 unsigned int fault_flags)
d4925e00 1120{
1b2ee126
DH
1121 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1122 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1123 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1124
1125 if (!(vm_flags & vma->vm_flags))
1126 return false;
1127
33a709b2
DH
1128 /*
1129 * The architecture might have a hardware protection
1b2ee126 1130 * mechanism other than read/write that can deny access.
d61172b4
DH
1131 *
1132 * gup always represents data access, not instruction
1133 * fetches, so execute=false here:
33a709b2 1134 */
d61172b4 1135 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1136 return false;
1137
d4925e00
DH
1138 return true;
1139}
1140
adc8cb40 1141/**
4bbd4c77 1142 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1143 * @mm: mm_struct of target mm
1144 * @address: user address
1145 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1146 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1147 * does not allow retry. If NULL, the caller must guarantee
1148 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1149 *
1150 * This is meant to be called in the specific scenario where for locking reasons
1151 * we try to access user memory in atomic context (within a pagefault_disable()
1152 * section), this returns -EFAULT, and we want to resolve the user fault before
1153 * trying again.
1154 *
1155 * Typically this is meant to be used by the futex code.
1156 *
1157 * The main difference with get_user_pages() is that this function will
1158 * unconditionally call handle_mm_fault() which will in turn perform all the
1159 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1160 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1161 *
1162 * This is important for some architectures where those bits also gate the
1163 * access permission to the page because they are maintained in software. On
1164 * such architectures, gup() will not be enough to make a subsequent access
1165 * succeed.
1166 *
c1e8d7c6
ML
1167 * This function will not return with an unlocked mmap_lock. So it has not the
1168 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1169 */
64019a2e 1170int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1171 unsigned long address, unsigned int fault_flags,
1172 bool *unlocked)
4bbd4c77
KS
1173{
1174 struct vm_area_struct *vma;
2b740303 1175 vm_fault_t ret, major = 0;
4a9e1cda 1176
f9652594
AK
1177 address = untagged_addr(address);
1178
4a9e1cda 1179 if (unlocked)
71335f37 1180 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1181
4a9e1cda 1182retry:
4bbd4c77
KS
1183 vma = find_extend_vma(mm, address);
1184 if (!vma || address < vma->vm_start)
1185 return -EFAULT;
1186
d4925e00 1187 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1188 return -EFAULT;
1189
475f4dfc
PX
1190 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1191 fatal_signal_pending(current))
1192 return -EINTR;
1193
bce617ed 1194 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4a9e1cda 1195 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1196 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1197 int err = vm_fault_to_errno(ret, 0);
1198
1199 if (err)
1200 return err;
4bbd4c77
KS
1201 BUG();
1202 }
4a9e1cda
DD
1203
1204 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1205 mmap_read_lock(mm);
475f4dfc
PX
1206 *unlocked = true;
1207 fault_flags |= FAULT_FLAG_TRIED;
1208 goto retry;
4a9e1cda
DD
1209 }
1210
4bbd4c77
KS
1211 return 0;
1212}
add6a0cd 1213EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1214
2d3a36a4
MH
1215/*
1216 * Please note that this function, unlike __get_user_pages will not
1217 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1218 */
64019a2e 1219static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1220 unsigned long start,
1221 unsigned long nr_pages,
f0818f47
AA
1222 struct page **pages,
1223 struct vm_area_struct **vmas,
e716712f 1224 int *locked,
0fd71a56 1225 unsigned int flags)
f0818f47 1226{
f0818f47
AA
1227 long ret, pages_done;
1228 bool lock_dropped;
1229
1230 if (locked) {
1231 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1232 BUG_ON(vmas);
1233 /* check caller initialized locked */
1234 BUG_ON(*locked != 1);
1235 }
1236
008cfe44 1237 if (flags & FOLL_PIN)
a4d63c37 1238 atomic_set(&mm->has_pinned, 1);
008cfe44 1239
eddb1c22
JH
1240 /*
1241 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1242 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1243 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1244 * for FOLL_GET, not for the newer FOLL_PIN.
1245 *
1246 * FOLL_PIN always expects pages to be non-null, but no need to assert
1247 * that here, as any failures will be obvious enough.
1248 */
1249 if (pages && !(flags & FOLL_PIN))
f0818f47 1250 flags |= FOLL_GET;
f0818f47
AA
1251
1252 pages_done = 0;
1253 lock_dropped = false;
1254 for (;;) {
64019a2e 1255 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1256 vmas, locked);
1257 if (!locked)
1258 /* VM_FAULT_RETRY couldn't trigger, bypass */
1259 return ret;
1260
1261 /* VM_FAULT_RETRY cannot return errors */
1262 if (!*locked) {
1263 BUG_ON(ret < 0);
1264 BUG_ON(ret >= nr_pages);
1265 }
1266
f0818f47
AA
1267 if (ret > 0) {
1268 nr_pages -= ret;
1269 pages_done += ret;
1270 if (!nr_pages)
1271 break;
1272 }
1273 if (*locked) {
96312e61
AA
1274 /*
1275 * VM_FAULT_RETRY didn't trigger or it was a
1276 * FOLL_NOWAIT.
1277 */
f0818f47
AA
1278 if (!pages_done)
1279 pages_done = ret;
1280 break;
1281 }
df17277b
MR
1282 /*
1283 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1284 * For the prefault case (!pages) we only update counts.
1285 */
1286 if (likely(pages))
1287 pages += ret;
f0818f47 1288 start += ret << PAGE_SHIFT;
4426e945 1289 lock_dropped = true;
f0818f47 1290
4426e945 1291retry:
f0818f47
AA
1292 /*
1293 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1294 * with both FAULT_FLAG_ALLOW_RETRY and
1295 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1296 * by fatal signals, so we need to check it before we
1297 * start trying again otherwise it can loop forever.
f0818f47 1298 */
4426e945 1299
ae46d2aa
HD
1300 if (fatal_signal_pending(current)) {
1301 if (!pages_done)
1302 pages_done = -EINTR;
4426e945 1303 break;
ae46d2aa 1304 }
4426e945 1305
d8ed45c5 1306 ret = mmap_read_lock_killable(mm);
71335f37
PX
1307 if (ret) {
1308 BUG_ON(ret > 0);
1309 if (!pages_done)
1310 pages_done = ret;
1311 break;
1312 }
4426e945 1313
c7b6a566 1314 *locked = 1;
64019a2e 1315 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1316 pages, NULL, locked);
1317 if (!*locked) {
1318 /* Continue to retry until we succeeded */
1319 BUG_ON(ret != 0);
1320 goto retry;
1321 }
f0818f47
AA
1322 if (ret != 1) {
1323 BUG_ON(ret > 1);
1324 if (!pages_done)
1325 pages_done = ret;
1326 break;
1327 }
1328 nr_pages--;
1329 pages_done++;
1330 if (!nr_pages)
1331 break;
df17277b
MR
1332 if (likely(pages))
1333 pages++;
f0818f47
AA
1334 start += PAGE_SIZE;
1335 }
e716712f 1336 if (lock_dropped && *locked) {
f0818f47
AA
1337 /*
1338 * We must let the caller know we temporarily dropped the lock
1339 * and so the critical section protected by it was lost.
1340 */
d8ed45c5 1341 mmap_read_unlock(mm);
f0818f47
AA
1342 *locked = 0;
1343 }
1344 return pages_done;
1345}
1346
d3649f68
CH
1347/**
1348 * populate_vma_page_range() - populate a range of pages in the vma.
1349 * @vma: target vma
1350 * @start: start address
1351 * @end: end address
c1e8d7c6 1352 * @locked: whether the mmap_lock is still held
d3649f68
CH
1353 *
1354 * This takes care of mlocking the pages too if VM_LOCKED is set.
1355 *
0a36f7f8
TY
1356 * Return either number of pages pinned in the vma, or a negative error
1357 * code on error.
d3649f68 1358 *
c1e8d7c6 1359 * vma->vm_mm->mmap_lock must be held.
d3649f68 1360 *
4f6da934 1361 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1362 * be unperturbed.
1363 *
4f6da934
PX
1364 * If @locked is non-NULL, it must held for read only and may be
1365 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1366 */
1367long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1368 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1369{
1370 struct mm_struct *mm = vma->vm_mm;
1371 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1372 int gup_flags;
1373
1374 VM_BUG_ON(start & ~PAGE_MASK);
1375 VM_BUG_ON(end & ~PAGE_MASK);
1376 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1377 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1378 mmap_assert_locked(mm);
d3649f68
CH
1379
1380 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1381 if (vma->vm_flags & VM_LOCKONFAULT)
1382 gup_flags &= ~FOLL_POPULATE;
1383 /*
1384 * We want to touch writable mappings with a write fault in order
1385 * to break COW, except for shared mappings because these don't COW
1386 * and we would not want to dirty them for nothing.
1387 */
1388 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1389 gup_flags |= FOLL_WRITE;
1390
1391 /*
1392 * We want mlock to succeed for regions that have any permissions
1393 * other than PROT_NONE.
1394 */
3122e80e 1395 if (vma_is_accessible(vma))
d3649f68
CH
1396 gup_flags |= FOLL_FORCE;
1397
1398 /*
1399 * We made sure addr is within a VMA, so the following will
1400 * not result in a stack expansion that recurses back here.
1401 */
64019a2e 1402 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1403 NULL, NULL, locked);
d3649f68
CH
1404}
1405
1406/*
1407 * __mm_populate - populate and/or mlock pages within a range of address space.
1408 *
1409 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1410 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1411 * mmap_lock must not be held.
d3649f68
CH
1412 */
1413int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1414{
1415 struct mm_struct *mm = current->mm;
1416 unsigned long end, nstart, nend;
1417 struct vm_area_struct *vma = NULL;
1418 int locked = 0;
1419 long ret = 0;
1420
1421 end = start + len;
1422
1423 for (nstart = start; nstart < end; nstart = nend) {
1424 /*
1425 * We want to fault in pages for [nstart; end) address range.
1426 * Find first corresponding VMA.
1427 */
1428 if (!locked) {
1429 locked = 1;
d8ed45c5 1430 mmap_read_lock(mm);
d3649f68
CH
1431 vma = find_vma(mm, nstart);
1432 } else if (nstart >= vma->vm_end)
1433 vma = vma->vm_next;
1434 if (!vma || vma->vm_start >= end)
1435 break;
1436 /*
1437 * Set [nstart; nend) to intersection of desired address
1438 * range with the first VMA. Also, skip undesirable VMA types.
1439 */
1440 nend = min(end, vma->vm_end);
1441 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1442 continue;
1443 if (nstart < vma->vm_start)
1444 nstart = vma->vm_start;
1445 /*
1446 * Now fault in a range of pages. populate_vma_page_range()
1447 * double checks the vma flags, so that it won't mlock pages
1448 * if the vma was already munlocked.
1449 */
1450 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1451 if (ret < 0) {
1452 if (ignore_errors) {
1453 ret = 0;
1454 continue; /* continue at next VMA */
1455 }
1456 break;
1457 }
1458 nend = nstart + ret * PAGE_SIZE;
1459 ret = 0;
1460 }
1461 if (locked)
d8ed45c5 1462 mmap_read_unlock(mm);
d3649f68
CH
1463 return ret; /* 0 or negative error code */
1464}
050a9adc 1465#else /* CONFIG_MMU */
64019a2e 1466static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1467 unsigned long nr_pages, struct page **pages,
1468 struct vm_area_struct **vmas, int *locked,
1469 unsigned int foll_flags)
1470{
1471 struct vm_area_struct *vma;
1472 unsigned long vm_flags;
1473 int i;
1474
1475 /* calculate required read or write permissions.
1476 * If FOLL_FORCE is set, we only require the "MAY" flags.
1477 */
1478 vm_flags = (foll_flags & FOLL_WRITE) ?
1479 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1480 vm_flags &= (foll_flags & FOLL_FORCE) ?
1481 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1482
1483 for (i = 0; i < nr_pages; i++) {
1484 vma = find_vma(mm, start);
1485 if (!vma)
1486 goto finish_or_fault;
1487
1488 /* protect what we can, including chardevs */
1489 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1490 !(vm_flags & vma->vm_flags))
1491 goto finish_or_fault;
1492
1493 if (pages) {
1494 pages[i] = virt_to_page(start);
1495 if (pages[i])
1496 get_page(pages[i]);
1497 }
1498 if (vmas)
1499 vmas[i] = vma;
1500 start = (start + PAGE_SIZE) & PAGE_MASK;
1501 }
1502
1503 return i;
1504
1505finish_or_fault:
1506 return i ? : -EFAULT;
1507}
1508#endif /* !CONFIG_MMU */
d3649f68 1509
8f942eea
JH
1510/**
1511 * get_dump_page() - pin user page in memory while writing it to core dump
1512 * @addr: user address
1513 *
1514 * Returns struct page pointer of user page pinned for dump,
1515 * to be freed afterwards by put_page().
1516 *
1517 * Returns NULL on any kind of failure - a hole must then be inserted into
1518 * the corefile, to preserve alignment with its headers; and also returns
1519 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1520 * allowing a hole to be left in the corefile to save diskspace.
1521 *
7f3bfab5 1522 * Called without mmap_lock (takes and releases the mmap_lock by itself).
8f942eea
JH
1523 */
1524#ifdef CONFIG_ELF_CORE
1525struct page *get_dump_page(unsigned long addr)
1526{
7f3bfab5 1527 struct mm_struct *mm = current->mm;
8f942eea 1528 struct page *page;
7f3bfab5
JH
1529 int locked = 1;
1530 int ret;
8f942eea 1531
7f3bfab5 1532 if (mmap_read_lock_killable(mm))
8f942eea 1533 return NULL;
7f3bfab5
JH
1534 ret = __get_user_pages_locked(mm, addr, 1, &page, NULL, &locked,
1535 FOLL_FORCE | FOLL_DUMP | FOLL_GET);
1536 if (locked)
1537 mmap_read_unlock(mm);
1538 return (ret == 1) ? page : NULL;
8f942eea
JH
1539}
1540#endif /* CONFIG_ELF_CORE */
1541
9a4e9f3b 1542#ifdef CONFIG_CMA
64019a2e 1543static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1544 unsigned long start,
1545 unsigned long nr_pages,
9a4e9f3b 1546 struct page **pages,
932f4a63
IW
1547 struct vm_area_struct **vmas,
1548 unsigned int gup_flags)
9a4e9f3b 1549{
aa712399
PL
1550 unsigned long i;
1551 unsigned long step;
9a4e9f3b
AK
1552 bool drain_allow = true;
1553 bool migrate_allow = true;
1554 LIST_HEAD(cma_page_list);
b96cc655 1555 long ret = nr_pages;
ed03d924
JK
1556 struct migration_target_control mtc = {
1557 .nid = NUMA_NO_NODE,
1558 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1559 };
9a4e9f3b
AK
1560
1561check_again:
aa712399
PL
1562 for (i = 0; i < nr_pages;) {
1563
1564 struct page *head = compound_head(pages[i]);
1565
1566 /*
1567 * gup may start from a tail page. Advance step by the left
1568 * part.
1569 */
d8c6546b 1570 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1571 /*
1572 * If we get a page from the CMA zone, since we are going to
1573 * be pinning these entries, we might as well move them out
1574 * of the CMA zone if possible.
1575 */
aa712399
PL
1576 if (is_migrate_cma_page(head)) {
1577 if (PageHuge(head))
9a4e9f3b 1578 isolate_huge_page(head, &cma_page_list);
aa712399 1579 else {
9a4e9f3b
AK
1580 if (!PageLRU(head) && drain_allow) {
1581 lru_add_drain_all();
1582 drain_allow = false;
1583 }
1584
1585 if (!isolate_lru_page(head)) {
1586 list_add_tail(&head->lru, &cma_page_list);
1587 mod_node_page_state(page_pgdat(head),
1588 NR_ISOLATED_ANON +
9de4f22a 1589 page_is_file_lru(head),
6c357848 1590 thp_nr_pages(head));
9a4e9f3b
AK
1591 }
1592 }
1593 }
aa712399
PL
1594
1595 i += step;
9a4e9f3b
AK
1596 }
1597
1598 if (!list_empty(&cma_page_list)) {
1599 /*
1600 * drop the above get_user_pages reference.
1601 */
96e1fac1
JG
1602 if (gup_flags & FOLL_PIN)
1603 unpin_user_pages(pages, nr_pages);
1604 else
1605 for (i = 0; i < nr_pages; i++)
1606 put_page(pages[i]);
9a4e9f3b 1607
ed03d924
JK
1608 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1609 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
9a4e9f3b
AK
1610 /*
1611 * some of the pages failed migration. Do get_user_pages
1612 * without migration.
1613 */
1614 migrate_allow = false;
1615
1616 if (!list_empty(&cma_page_list))
1617 putback_movable_pages(&cma_page_list);
1618 }
1619 /*
932f4a63
IW
1620 * We did migrate all the pages, Try to get the page references
1621 * again migrating any new CMA pages which we failed to isolate
1622 * earlier.
9a4e9f3b 1623 */
64019a2e 1624 ret = __get_user_pages_locked(mm, start, nr_pages,
932f4a63
IW
1625 pages, vmas, NULL,
1626 gup_flags);
1627
b96cc655 1628 if ((ret > 0) && migrate_allow) {
1629 nr_pages = ret;
9a4e9f3b
AK
1630 drain_allow = true;
1631 goto check_again;
1632 }
1633 }
1634
b96cc655 1635 return ret;
9a4e9f3b
AK
1636}
1637#else
64019a2e 1638static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1639 unsigned long start,
1640 unsigned long nr_pages,
1641 struct page **pages,
1642 struct vm_area_struct **vmas,
1643 unsigned int gup_flags)
9a4e9f3b
AK
1644{
1645 return nr_pages;
1646}
050a9adc 1647#endif /* CONFIG_CMA */
9a4e9f3b 1648
2bb6d283 1649/*
932f4a63
IW
1650 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1651 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1652 */
64019a2e 1653static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1654 unsigned long start,
1655 unsigned long nr_pages,
1656 struct page **pages,
1657 struct vm_area_struct **vmas,
1658 unsigned int gup_flags)
2bb6d283 1659{
932f4a63 1660 unsigned long flags = 0;
52650c8b 1661 long rc;
2bb6d283 1662
52650c8b 1663 if (gup_flags & FOLL_LONGTERM)
932f4a63 1664 flags = memalloc_nocma_save();
2bb6d283 1665
52650c8b
JG
1666 rc = __get_user_pages_locked(mm, start, nr_pages, pages, vmas, NULL,
1667 gup_flags);
2bb6d283 1668
932f4a63 1669 if (gup_flags & FOLL_LONGTERM) {
52650c8b
JG
1670 if (rc > 0)
1671 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
1672 vmas, gup_flags);
41b4dc14 1673 memalloc_nocma_restore(flags);
9a4e9f3b 1674 }
2bb6d283
DW
1675 return rc;
1676}
932f4a63 1677
447f3e45
BS
1678static bool is_valid_gup_flags(unsigned int gup_flags)
1679{
1680 /*
1681 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1682 * never directly by the caller, so enforce that with an assertion:
1683 */
1684 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1685 return false;
1686 /*
1687 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1688 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1689 * FOLL_PIN.
1690 */
1691 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1692 return false;
1693
1694 return true;
1695}
1696
22bf29b6 1697#ifdef CONFIG_MMU
64019a2e 1698static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1699 unsigned long start, unsigned long nr_pages,
1700 unsigned int gup_flags, struct page **pages,
1701 struct vm_area_struct **vmas, int *locked)
1702{
1703 /*
1704 * Parts of FOLL_LONGTERM behavior are incompatible with
1705 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1706 * vmas. However, this only comes up if locked is set, and there are
1707 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1708 * allow what we can.
1709 */
1710 if (gup_flags & FOLL_LONGTERM) {
1711 if (WARN_ON_ONCE(locked))
1712 return -EINVAL;
1713 /*
1714 * This will check the vmas (even if our vmas arg is NULL)
1715 * and return -ENOTSUPP if DAX isn't allowed in this case:
1716 */
64019a2e 1717 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1718 vmas, gup_flags | FOLL_TOUCH |
1719 FOLL_REMOTE);
1720 }
1721
64019a2e 1722 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1723 locked,
1724 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1725}
1726
adc8cb40 1727/**
c4237f8b 1728 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1729 * @mm: mm_struct of target mm
1730 * @start: starting user address
1731 * @nr_pages: number of pages from start to pin
1732 * @gup_flags: flags modifying lookup behaviour
1733 * @pages: array that receives pointers to the pages pinned.
1734 * Should be at least nr_pages long. Or NULL, if caller
1735 * only intends to ensure the pages are faulted in.
1736 * @vmas: array of pointers to vmas corresponding to each page.
1737 * Or NULL if the caller does not require them.
1738 * @locked: pointer to lock flag indicating whether lock is held and
1739 * subsequently whether VM_FAULT_RETRY functionality can be
1740 * utilised. Lock must initially be held.
1741 *
1742 * Returns either number of pages pinned (which may be less than the
1743 * number requested), or an error. Details about the return value:
1744 *
1745 * -- If nr_pages is 0, returns 0.
1746 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1747 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1748 * pages pinned. Again, this may be less than nr_pages.
1749 *
1750 * The caller is responsible for releasing returned @pages, via put_page().
1751 *
c1e8d7c6 1752 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1753 *
c1e8d7c6 1754 * Must be called with mmap_lock held for read or write.
c4237f8b 1755 *
adc8cb40
SJ
1756 * get_user_pages_remote walks a process's page tables and takes a reference
1757 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1758 * instant. That is, it takes the page that would be accessed if a user
1759 * thread accesses the given user virtual address at that instant.
1760 *
1761 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1762 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1763 * page there in some cases (eg. if mmapped pagecache has been invalidated
1764 * and subsequently re faulted). However it does guarantee that the page
1765 * won't be freed completely. And mostly callers simply care that the page
1766 * contains data that was valid *at some point in time*. Typically, an IO
1767 * or similar operation cannot guarantee anything stronger anyway because
1768 * locks can't be held over the syscall boundary.
1769 *
1770 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1771 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1772 * be called after the page is finished with, and before put_page is called.
1773 *
adc8cb40
SJ
1774 * get_user_pages_remote is typically used for fewer-copy IO operations,
1775 * to get a handle on the memory by some means other than accesses
1776 * via the user virtual addresses. The pages may be submitted for
1777 * DMA to devices or accessed via their kernel linear mapping (via the
1778 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1779 *
1780 * See also get_user_pages_fast, for performance critical applications.
1781 *
adc8cb40 1782 * get_user_pages_remote should be phased out in favor of
c4237f8b 1783 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1784 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1785 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1786 */
64019a2e 1787long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1788 unsigned long start, unsigned long nr_pages,
1789 unsigned int gup_flags, struct page **pages,
1790 struct vm_area_struct **vmas, int *locked)
1791{
447f3e45 1792 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1793 return -EINVAL;
1794
64019a2e 1795 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1796 pages, vmas, locked);
c4237f8b
JH
1797}
1798EXPORT_SYMBOL(get_user_pages_remote);
1799
eddb1c22 1800#else /* CONFIG_MMU */
64019a2e 1801long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1802 unsigned long start, unsigned long nr_pages,
1803 unsigned int gup_flags, struct page **pages,
1804 struct vm_area_struct **vmas, int *locked)
1805{
1806 return 0;
1807}
3faa52c0 1808
64019a2e 1809static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1810 unsigned long start, unsigned long nr_pages,
1811 unsigned int gup_flags, struct page **pages,
1812 struct vm_area_struct **vmas, int *locked)
1813{
1814 return 0;
1815}
eddb1c22
JH
1816#endif /* !CONFIG_MMU */
1817
adc8cb40
SJ
1818/**
1819 * get_user_pages() - pin user pages in memory
1820 * @start: starting user address
1821 * @nr_pages: number of pages from start to pin
1822 * @gup_flags: flags modifying lookup behaviour
1823 * @pages: array that receives pointers to the pages pinned.
1824 * Should be at least nr_pages long. Or NULL, if caller
1825 * only intends to ensure the pages are faulted in.
1826 * @vmas: array of pointers to vmas corresponding to each page.
1827 * Or NULL if the caller does not require them.
1828 *
64019a2e
PX
1829 * This is the same as get_user_pages_remote(), just with a less-flexible
1830 * calling convention where we assume that the mm being operated on belongs to
1831 * the current task, and doesn't allow passing of a locked parameter. We also
1832 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1833 */
1834long get_user_pages(unsigned long start, unsigned long nr_pages,
1835 unsigned int gup_flags, struct page **pages,
1836 struct vm_area_struct **vmas)
1837{
447f3e45 1838 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1839 return -EINVAL;
1840
64019a2e 1841 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1842 pages, vmas, gup_flags | FOLL_TOUCH);
1843}
1844EXPORT_SYMBOL(get_user_pages);
2bb6d283 1845
adc8cb40 1846/**
a00cda3f
MCC
1847 * get_user_pages_locked() - variant of get_user_pages()
1848 *
1849 * @start: starting user address
1850 * @nr_pages: number of pages from start to pin
1851 * @gup_flags: flags modifying lookup behaviour
1852 * @pages: array that receives pointers to the pages pinned.
1853 * Should be at least nr_pages long. Or NULL, if caller
1854 * only intends to ensure the pages are faulted in.
1855 * @locked: pointer to lock flag indicating whether lock is held and
1856 * subsequently whether VM_FAULT_RETRY functionality can be
1857 * utilised. Lock must initially be held.
1858 *
1859 * It is suitable to replace the form:
acc3c8d1 1860 *
3e4e28c5 1861 * mmap_read_lock(mm);
d3649f68 1862 * do_something()
64019a2e 1863 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1864 * mmap_read_unlock(mm);
acc3c8d1 1865 *
d3649f68 1866 * to:
acc3c8d1 1867 *
d3649f68 1868 * int locked = 1;
3e4e28c5 1869 * mmap_read_lock(mm);
d3649f68 1870 * do_something()
64019a2e 1871 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 1872 * if (locked)
3e4e28c5 1873 * mmap_read_unlock(mm);
adc8cb40 1874 *
adc8cb40
SJ
1875 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1876 * paths better by using either get_user_pages_locked() or
1877 * get_user_pages_unlocked().
1878 *
acc3c8d1 1879 */
d3649f68
CH
1880long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1881 unsigned int gup_flags, struct page **pages,
1882 int *locked)
acc3c8d1 1883{
acc3c8d1 1884 /*
d3649f68
CH
1885 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1886 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1887 * vmas. As there are no users of this flag in this call we simply
1888 * disallow this option for now.
acc3c8d1 1889 */
d3649f68
CH
1890 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1891 return -EINVAL;
420c2091
JH
1892 /*
1893 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1894 * never directly by the caller, so enforce that:
1895 */
1896 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1897 return -EINVAL;
acc3c8d1 1898
64019a2e 1899 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
1900 pages, NULL, locked,
1901 gup_flags | FOLL_TOUCH);
acc3c8d1 1902}
d3649f68 1903EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1904
1905/*
d3649f68 1906 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1907 *
3e4e28c5 1908 * mmap_read_lock(mm);
64019a2e 1909 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1910 * mmap_read_unlock(mm);
d3649f68
CH
1911 *
1912 * with:
1913 *
64019a2e 1914 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
1915 *
1916 * It is functionally equivalent to get_user_pages_fast so
1917 * get_user_pages_fast should be used instead if specific gup_flags
1918 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1919 */
d3649f68
CH
1920long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1921 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1922{
1923 struct mm_struct *mm = current->mm;
d3649f68
CH
1924 int locked = 1;
1925 long ret;
acc3c8d1 1926
d3649f68
CH
1927 /*
1928 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1929 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1930 * vmas. As there are no users of this flag in this call we simply
1931 * disallow this option for now.
1932 */
1933 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1934 return -EINVAL;
acc3c8d1 1935
d8ed45c5 1936 mmap_read_lock(mm);
64019a2e 1937 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 1938 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 1939 if (locked)
d8ed45c5 1940 mmap_read_unlock(mm);
d3649f68 1941 return ret;
4bbd4c77 1942}
d3649f68 1943EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1944
1945/*
67a929e0 1946 * Fast GUP
2667f50e
SC
1947 *
1948 * get_user_pages_fast attempts to pin user pages by walking the page
1949 * tables directly and avoids taking locks. Thus the walker needs to be
1950 * protected from page table pages being freed from under it, and should
1951 * block any THP splits.
1952 *
1953 * One way to achieve this is to have the walker disable interrupts, and
1954 * rely on IPIs from the TLB flushing code blocking before the page table
1955 * pages are freed. This is unsuitable for architectures that do not need
1956 * to broadcast an IPI when invalidating TLBs.
1957 *
1958 * Another way to achieve this is to batch up page table containing pages
1959 * belonging to more than one mm_user, then rcu_sched a callback to free those
1960 * pages. Disabling interrupts will allow the fast_gup walker to both block
1961 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1962 * (which is a relatively rare event). The code below adopts this strategy.
1963 *
1964 * Before activating this code, please be aware that the following assumptions
1965 * are currently made:
1966 *
ff2e6d72 1967 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 1968 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1969 *
2667f50e
SC
1970 * *) ptes can be read atomically by the architecture.
1971 *
1972 * *) access_ok is sufficient to validate userspace address ranges.
1973 *
1974 * The last two assumptions can be relaxed by the addition of helper functions.
1975 *
1976 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1977 */
67a929e0 1978#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0 1979
790c7369 1980static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 1981 unsigned int flags,
790c7369 1982 struct page **pages)
b59f65fa
KS
1983{
1984 while ((*nr) - nr_start) {
1985 struct page *page = pages[--(*nr)];
1986
1987 ClearPageReferenced(page);
3faa52c0
JH
1988 if (flags & FOLL_PIN)
1989 unpin_user_page(page);
1990 else
1991 put_page(page);
b59f65fa
KS
1992 }
1993}
1994
3010a5ea 1995#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 1996static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1997 unsigned int flags, struct page **pages, int *nr)
2667f50e 1998{
b59f65fa
KS
1999 struct dev_pagemap *pgmap = NULL;
2000 int nr_start = *nr, ret = 0;
2667f50e 2001 pte_t *ptep, *ptem;
2667f50e
SC
2002
2003 ptem = ptep = pte_offset_map(&pmd, addr);
2004 do {
2a4a06da 2005 pte_t pte = ptep_get_lockless(ptep);
7aef4172 2006 struct page *head, *page;
2667f50e
SC
2007
2008 /*
2009 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2010 * path using the pte_protnone check.
2667f50e 2011 */
e7884f8e
KS
2012 if (pte_protnone(pte))
2013 goto pte_unmap;
2014
b798bec4 2015 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2016 goto pte_unmap;
2017
b59f65fa 2018 if (pte_devmap(pte)) {
7af75561
IW
2019 if (unlikely(flags & FOLL_LONGTERM))
2020 goto pte_unmap;
2021
b59f65fa
KS
2022 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2023 if (unlikely(!pgmap)) {
3b78d834 2024 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2025 goto pte_unmap;
2026 }
2027 } else if (pte_special(pte))
2667f50e
SC
2028 goto pte_unmap;
2029
2030 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2031 page = pte_page(pte);
2032
3faa52c0 2033 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2034 if (!head)
2667f50e
SC
2035 goto pte_unmap;
2036
2037 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2038 put_compound_head(head, 1, flags);
2667f50e
SC
2039 goto pte_unmap;
2040 }
2041
7aef4172 2042 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2043
f28d4363
CI
2044 /*
2045 * We need to make the page accessible if and only if we are
2046 * going to access its content (the FOLL_PIN case). Please
2047 * see Documentation/core-api/pin_user_pages.rst for
2048 * details.
2049 */
2050 if (flags & FOLL_PIN) {
2051 ret = arch_make_page_accessible(page);
2052 if (ret) {
2053 unpin_user_page(page);
2054 goto pte_unmap;
2055 }
2056 }
e9348053 2057 SetPageReferenced(page);
2667f50e
SC
2058 pages[*nr] = page;
2059 (*nr)++;
2060
2061 } while (ptep++, addr += PAGE_SIZE, addr != end);
2062
2063 ret = 1;
2064
2065pte_unmap:
832d7aa0
CH
2066 if (pgmap)
2067 put_dev_pagemap(pgmap);
2667f50e
SC
2068 pte_unmap(ptem);
2069 return ret;
2070}
2071#else
2072
2073/*
2074 * If we can't determine whether or not a pte is special, then fail immediately
2075 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2076 * to be special.
2077 *
2078 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2079 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2080 * useful to have gup_huge_pmd even if we can't operate on ptes.
2081 */
2082static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2083 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2084{
2085 return 0;
2086}
3010a5ea 2087#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2088
17596731 2089#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2090static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2091 unsigned long end, unsigned int flags,
2092 struct page **pages, int *nr)
b59f65fa
KS
2093{
2094 int nr_start = *nr;
2095 struct dev_pagemap *pgmap = NULL;
2096
2097 do {
2098 struct page *page = pfn_to_page(pfn);
2099
2100 pgmap = get_dev_pagemap(pfn, pgmap);
2101 if (unlikely(!pgmap)) {
3b78d834 2102 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2103 return 0;
2104 }
2105 SetPageReferenced(page);
2106 pages[*nr] = page;
3faa52c0
JH
2107 if (unlikely(!try_grab_page(page, flags))) {
2108 undo_dev_pagemap(nr, nr_start, flags, pages);
2109 return 0;
2110 }
b59f65fa
KS
2111 (*nr)++;
2112 pfn++;
2113 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2114
2115 if (pgmap)
2116 put_dev_pagemap(pgmap);
b59f65fa
KS
2117 return 1;
2118}
2119
a9b6de77 2120static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2121 unsigned long end, unsigned int flags,
2122 struct page **pages, int *nr)
b59f65fa
KS
2123{
2124 unsigned long fault_pfn;
a9b6de77
DW
2125 int nr_start = *nr;
2126
2127 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2128 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2129 return 0;
b59f65fa 2130
a9b6de77 2131 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2132 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2133 return 0;
2134 }
2135 return 1;
b59f65fa
KS
2136}
2137
a9b6de77 2138static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2139 unsigned long end, unsigned int flags,
2140 struct page **pages, int *nr)
b59f65fa
KS
2141{
2142 unsigned long fault_pfn;
a9b6de77
DW
2143 int nr_start = *nr;
2144
2145 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2146 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2147 return 0;
b59f65fa 2148
a9b6de77 2149 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2150 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2151 return 0;
2152 }
2153 return 1;
b59f65fa
KS
2154}
2155#else
a9b6de77 2156static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2157 unsigned long end, unsigned int flags,
2158 struct page **pages, int *nr)
b59f65fa
KS
2159{
2160 BUILD_BUG();
2161 return 0;
2162}
2163
a9b6de77 2164static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2165 unsigned long end, unsigned int flags,
2166 struct page **pages, int *nr)
b59f65fa
KS
2167{
2168 BUILD_BUG();
2169 return 0;
2170}
2171#endif
2172
a43e9820
JH
2173static int record_subpages(struct page *page, unsigned long addr,
2174 unsigned long end, struct page **pages)
2175{
2176 int nr;
2177
2178 for (nr = 0; addr != end; addr += PAGE_SIZE)
2179 pages[nr++] = page++;
2180
2181 return nr;
2182}
2183
cbd34da7
CH
2184#ifdef CONFIG_ARCH_HAS_HUGEPD
2185static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2186 unsigned long sz)
2187{
2188 unsigned long __boundary = (addr + sz) & ~(sz-1);
2189 return (__boundary - 1 < end - 1) ? __boundary : end;
2190}
2191
2192static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2193 unsigned long end, unsigned int flags,
2194 struct page **pages, int *nr)
cbd34da7
CH
2195{
2196 unsigned long pte_end;
2197 struct page *head, *page;
2198 pte_t pte;
2199 int refs;
2200
2201 pte_end = (addr + sz) & ~(sz-1);
2202 if (pte_end < end)
2203 end = pte_end;
2204
55ca2263 2205 pte = huge_ptep_get(ptep);
cbd34da7 2206
0cd22afd 2207 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2208 return 0;
2209
2210 /* hugepages are never "special" */
2211 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2212
cbd34da7 2213 head = pte_page(pte);
cbd34da7 2214 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2215 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2216
3faa52c0 2217 head = try_grab_compound_head(head, refs, flags);
a43e9820 2218 if (!head)
cbd34da7 2219 return 0;
cbd34da7
CH
2220
2221 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2222 put_compound_head(head, refs, flags);
cbd34da7
CH
2223 return 0;
2224 }
2225
a43e9820 2226 *nr += refs;
520b4a44 2227 SetPageReferenced(head);
cbd34da7
CH
2228 return 1;
2229}
2230
2231static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2232 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2233 struct page **pages, int *nr)
2234{
2235 pte_t *ptep;
2236 unsigned long sz = 1UL << hugepd_shift(hugepd);
2237 unsigned long next;
2238
2239 ptep = hugepte_offset(hugepd, addr, pdshift);
2240 do {
2241 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2242 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2243 return 0;
2244 } while (ptep++, addr = next, addr != end);
2245
2246 return 1;
2247}
2248#else
2249static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2250 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2251 struct page **pages, int *nr)
2252{
2253 return 0;
2254}
2255#endif /* CONFIG_ARCH_HAS_HUGEPD */
2256
2667f50e 2257static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2258 unsigned long end, unsigned int flags,
2259 struct page **pages, int *nr)
2667f50e 2260{
ddc58f27 2261 struct page *head, *page;
2667f50e
SC
2262 int refs;
2263
b798bec4 2264 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2265 return 0;
2266
7af75561
IW
2267 if (pmd_devmap(orig)) {
2268 if (unlikely(flags & FOLL_LONGTERM))
2269 return 0;
86dfbed4
JH
2270 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2271 pages, nr);
7af75561 2272 }
b59f65fa 2273
d63206ee 2274 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2275 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2276
3faa52c0 2277 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2278 if (!head)
2667f50e 2279 return 0;
2667f50e
SC
2280
2281 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2282 put_compound_head(head, refs, flags);
2667f50e
SC
2283 return 0;
2284 }
2285
a43e9820 2286 *nr += refs;
e9348053 2287 SetPageReferenced(head);
2667f50e
SC
2288 return 1;
2289}
2290
2291static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2292 unsigned long end, unsigned int flags,
2293 struct page **pages, int *nr)
2667f50e 2294{
ddc58f27 2295 struct page *head, *page;
2667f50e
SC
2296 int refs;
2297
b798bec4 2298 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2299 return 0;
2300
7af75561
IW
2301 if (pud_devmap(orig)) {
2302 if (unlikely(flags & FOLL_LONGTERM))
2303 return 0;
86dfbed4
JH
2304 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2305 pages, nr);
7af75561 2306 }
b59f65fa 2307
d63206ee 2308 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2309 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2310
3faa52c0 2311 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2312 if (!head)
2667f50e 2313 return 0;
2667f50e
SC
2314
2315 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2316 put_compound_head(head, refs, flags);
2667f50e
SC
2317 return 0;
2318 }
2319
a43e9820 2320 *nr += refs;
e9348053 2321 SetPageReferenced(head);
2667f50e
SC
2322 return 1;
2323}
2324
f30c59e9 2325static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2326 unsigned long end, unsigned int flags,
f30c59e9
AK
2327 struct page **pages, int *nr)
2328{
2329 int refs;
ddc58f27 2330 struct page *head, *page;
f30c59e9 2331
b798bec4 2332 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2333 return 0;
2334
b59f65fa 2335 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2336
d63206ee 2337 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2338 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2339
3faa52c0 2340 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2341 if (!head)
f30c59e9 2342 return 0;
f30c59e9
AK
2343
2344 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2345 put_compound_head(head, refs, flags);
f30c59e9
AK
2346 return 0;
2347 }
2348
a43e9820 2349 *nr += refs;
e9348053 2350 SetPageReferenced(head);
f30c59e9
AK
2351 return 1;
2352}
2353
d3f7b1bb 2354static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2355 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2356{
2357 unsigned long next;
2358 pmd_t *pmdp;
2359
d3f7b1bb 2360 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2361 do {
38c5ce93 2362 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2363
2364 next = pmd_addr_end(addr, end);
84c3fc4e 2365 if (!pmd_present(pmd))
2667f50e
SC
2366 return 0;
2367
414fd080
YZ
2368 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2369 pmd_devmap(pmd))) {
2667f50e
SC
2370 /*
2371 * NUMA hinting faults need to be handled in the GUP
2372 * slowpath for accounting purposes and so that they
2373 * can be serialised against THP migration.
2374 */
8a0516ed 2375 if (pmd_protnone(pmd))
2667f50e
SC
2376 return 0;
2377
b798bec4 2378 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2379 pages, nr))
2380 return 0;
2381
f30c59e9
AK
2382 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2383 /*
2384 * architecture have different format for hugetlbfs
2385 * pmd format and THP pmd format
2386 */
2387 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2388 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2389 return 0;
b798bec4 2390 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2391 return 0;
2667f50e
SC
2392 } while (pmdp++, addr = next, addr != end);
2393
2394 return 1;
2395}
2396
d3f7b1bb 2397static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2398 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2399{
2400 unsigned long next;
2401 pud_t *pudp;
2402
d3f7b1bb 2403 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2404 do {
e37c6982 2405 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2406
2407 next = pud_addr_end(addr, end);
15494520 2408 if (unlikely(!pud_present(pud)))
2667f50e 2409 return 0;
f30c59e9 2410 if (unlikely(pud_huge(pud))) {
b798bec4 2411 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2412 pages, nr))
2413 return 0;
2414 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2415 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2416 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2417 return 0;
d3f7b1bb 2418 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2419 return 0;
2420 } while (pudp++, addr = next, addr != end);
2421
2422 return 1;
2423}
2424
d3f7b1bb 2425static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2426 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2427{
2428 unsigned long next;
2429 p4d_t *p4dp;
2430
d3f7b1bb 2431 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2432 do {
2433 p4d_t p4d = READ_ONCE(*p4dp);
2434
2435 next = p4d_addr_end(addr, end);
2436 if (p4d_none(p4d))
2437 return 0;
2438 BUILD_BUG_ON(p4d_huge(p4d));
2439 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2440 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2441 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2442 return 0;
d3f7b1bb 2443 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2444 return 0;
2445 } while (p4dp++, addr = next, addr != end);
2446
2447 return 1;
2448}
2449
5b65c467 2450static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2451 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2452{
2453 unsigned long next;
2454 pgd_t *pgdp;
2455
2456 pgdp = pgd_offset(current->mm, addr);
2457 do {
2458 pgd_t pgd = READ_ONCE(*pgdp);
2459
2460 next = pgd_addr_end(addr, end);
2461 if (pgd_none(pgd))
2462 return;
2463 if (unlikely(pgd_huge(pgd))) {
b798bec4 2464 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2465 pages, nr))
2466 return;
2467 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2468 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2469 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2470 return;
d3f7b1bb 2471 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2472 return;
2473 } while (pgdp++, addr = next, addr != end);
2474}
050a9adc
CH
2475#else
2476static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2477 unsigned int flags, struct page **pages, int *nr)
2478{
2479}
2480#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2481
2482#ifndef gup_fast_permitted
2483/*
dadbb612 2484 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2485 * we need to fall back to the slow version:
2486 */
26f4c328 2487static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2488{
26f4c328 2489 return true;
5b65c467
KS
2490}
2491#endif
2492
7af75561
IW
2493static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2494 unsigned int gup_flags, struct page **pages)
2495{
2496 int ret;
2497
2498 /*
2499 * FIXME: FOLL_LONGTERM does not work with
2500 * get_user_pages_unlocked() (see comments in that function)
2501 */
2502 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2503 mmap_read_lock(current->mm);
64019a2e 2504 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2505 start, nr_pages,
2506 pages, NULL, gup_flags);
d8ed45c5 2507 mmap_read_unlock(current->mm);
7af75561
IW
2508 } else {
2509 ret = get_user_pages_unlocked(start, nr_pages,
2510 pages, gup_flags);
2511 }
2512
2513 return ret;
2514}
2515
c28b1fc7
JG
2516static unsigned long lockless_pages_from_mm(unsigned long start,
2517 unsigned long end,
2518 unsigned int gup_flags,
2519 struct page **pages)
2520{
2521 unsigned long flags;
2522 int nr_pinned = 0;
57efa1fe 2523 unsigned seq;
c28b1fc7
JG
2524
2525 if (!IS_ENABLED(CONFIG_HAVE_FAST_GUP) ||
2526 !gup_fast_permitted(start, end))
2527 return 0;
2528
57efa1fe
JG
2529 if (gup_flags & FOLL_PIN) {
2530 seq = raw_read_seqcount(&current->mm->write_protect_seq);
2531 if (seq & 1)
2532 return 0;
2533 }
2534
c28b1fc7
JG
2535 /*
2536 * Disable interrupts. The nested form is used, in order to allow full,
2537 * general purpose use of this routine.
2538 *
2539 * With interrupts disabled, we block page table pages from being freed
2540 * from under us. See struct mmu_table_batch comments in
2541 * include/asm-generic/tlb.h for more details.
2542 *
2543 * We do not adopt an rcu_read_lock() here as we also want to block IPIs
2544 * that come from THPs splitting.
2545 */
2546 local_irq_save(flags);
2547 gup_pgd_range(start, end, gup_flags, pages, &nr_pinned);
2548 local_irq_restore(flags);
57efa1fe
JG
2549
2550 /*
2551 * When pinning pages for DMA there could be a concurrent write protect
2552 * from fork() via copy_page_range(), in this case always fail fast GUP.
2553 */
2554 if (gup_flags & FOLL_PIN) {
2555 if (read_seqcount_retry(&current->mm->write_protect_seq, seq)) {
2556 unpin_user_pages(pages, nr_pinned);
2557 return 0;
2558 }
2559 }
c28b1fc7
JG
2560 return nr_pinned;
2561}
2562
2563static int internal_get_user_pages_fast(unsigned long start,
2564 unsigned long nr_pages,
eddb1c22
JH
2565 unsigned int gup_flags,
2566 struct page **pages)
2667f50e 2567{
c28b1fc7
JG
2568 unsigned long len, end;
2569 unsigned long nr_pinned;
2570 int ret;
2667f50e 2571
f4000fdf 2572 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2573 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2574 FOLL_FAST_ONLY)))
817be129
CH
2575 return -EINVAL;
2576
008cfe44
PX
2577 if (gup_flags & FOLL_PIN)
2578 atomic_set(&current->mm->has_pinned, 1);
2579
f81cd178 2580 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2581 might_lock_read(&current->mm->mmap_lock);
f81cd178 2582
f455c854 2583 start = untagged_addr(start) & PAGE_MASK;
c28b1fc7
JG
2584 len = nr_pages << PAGE_SHIFT;
2585 if (check_add_overflow(start, len, &end))
c61611f7 2586 return 0;
96d4f267 2587 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2588 return -EFAULT;
73e10a61 2589
c28b1fc7
JG
2590 nr_pinned = lockless_pages_from_mm(start, end, gup_flags, pages);
2591 if (nr_pinned == nr_pages || gup_flags & FOLL_FAST_ONLY)
2592 return nr_pinned;
2667f50e 2593
c28b1fc7
JG
2594 /* Slow path: try to get the remaining pages with get_user_pages */
2595 start += nr_pinned << PAGE_SHIFT;
2596 pages += nr_pinned;
2597 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned, gup_flags,
2598 pages);
2599 if (ret < 0) {
2600 /*
2601 * The caller has to unpin the pages we already pinned so
2602 * returning -errno is not an option
2603 */
2604 if (nr_pinned)
2605 return nr_pinned;
2606 return ret;
2667f50e 2607 }
c28b1fc7 2608 return ret + nr_pinned;
2667f50e 2609}
c28b1fc7 2610
dadbb612
SJ
2611/**
2612 * get_user_pages_fast_only() - pin user pages in memory
2613 * @start: starting user address
2614 * @nr_pages: number of pages from start to pin
2615 * @gup_flags: flags modifying pin behaviour
2616 * @pages: array that receives pointers to the pages pinned.
2617 * Should be at least nr_pages long.
2618 *
9e1f0580
JH
2619 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2620 * the regular GUP.
2621 * Note a difference with get_user_pages_fast: this always returns the
2622 * number of pages pinned, 0 if no pages were pinned.
2623 *
2624 * If the architecture does not support this function, simply return with no
2625 * pages pinned.
2626 *
2627 * Careful, careful! COW breaking can go either way, so a non-write
2628 * access can get ambiguous page results. If you call this function without
2629 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2630 */
dadbb612
SJ
2631int get_user_pages_fast_only(unsigned long start, int nr_pages,
2632 unsigned int gup_flags, struct page **pages)
9e1f0580 2633{
376a34ef 2634 int nr_pinned;
9e1f0580
JH
2635 /*
2636 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2637 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2638 *
2639 * FOLL_FAST_ONLY is required in order to match the API description of
2640 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2641 */
dadbb612 2642 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2643
376a34ef
JH
2644 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2645 pages);
9e1f0580
JH
2646
2647 /*
376a34ef
JH
2648 * As specified in the API description above, this routine is not
2649 * allowed to return negative values. However, the common core
2650 * routine internal_get_user_pages_fast() *can* return -errno.
2651 * Therefore, correct for that here:
9e1f0580 2652 */
376a34ef
JH
2653 if (nr_pinned < 0)
2654 nr_pinned = 0;
9e1f0580
JH
2655
2656 return nr_pinned;
2657}
dadbb612 2658EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2659
eddb1c22
JH
2660/**
2661 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2662 * @start: starting user address
2663 * @nr_pages: number of pages from start to pin
2664 * @gup_flags: flags modifying pin behaviour
2665 * @pages: array that receives pointers to the pages pinned.
2666 * Should be at least nr_pages long.
eddb1c22 2667 *
c1e8d7c6 2668 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2669 * If not successful, it will fall back to taking the lock and
2670 * calling get_user_pages().
2671 *
2672 * Returns number of pages pinned. This may be fewer than the number requested.
2673 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2674 * -errno.
2675 */
2676int get_user_pages_fast(unsigned long start, int nr_pages,
2677 unsigned int gup_flags, struct page **pages)
2678{
447f3e45 2679 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2680 return -EINVAL;
2681
94202f12
JH
2682 /*
2683 * The caller may or may not have explicitly set FOLL_GET; either way is
2684 * OK. However, internally (within mm/gup.c), gup fast variants must set
2685 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2686 * request.
2687 */
2688 gup_flags |= FOLL_GET;
eddb1c22
JH
2689 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2690}
050a9adc 2691EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2692
2693/**
2694 * pin_user_pages_fast() - pin user pages in memory without taking locks
2695 *
3faa52c0
JH
2696 * @start: starting user address
2697 * @nr_pages: number of pages from start to pin
2698 * @gup_flags: flags modifying pin behaviour
2699 * @pages: array that receives pointers to the pages pinned.
2700 * Should be at least nr_pages long.
2701 *
2702 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2703 * get_user_pages_fast() for documentation on the function arguments, because
2704 * the arguments here are identical.
2705 *
2706 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2707 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2708 */
2709int pin_user_pages_fast(unsigned long start, int nr_pages,
2710 unsigned int gup_flags, struct page **pages)
2711{
3faa52c0
JH
2712 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2713 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2714 return -EINVAL;
2715
2716 gup_flags |= FOLL_PIN;
2717 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2718}
2719EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2720
104acc32 2721/*
dadbb612
SJ
2722 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2723 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2724 *
2725 * The API rules are the same, too: no negative values may be returned.
2726 */
2727int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2728 unsigned int gup_flags, struct page **pages)
2729{
2730 int nr_pinned;
2731
2732 /*
2733 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2734 * rules require returning 0, rather than -errno:
2735 */
2736 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2737 return 0;
2738 /*
2739 * FOLL_FAST_ONLY is required in order to match the API description of
2740 * this routine: no fall back to regular ("slow") GUP.
2741 */
2742 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2743 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2744 pages);
2745 /*
2746 * This routine is not allowed to return negative values. However,
2747 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2748 * correct for that here:
2749 */
2750 if (nr_pinned < 0)
2751 nr_pinned = 0;
2752
2753 return nr_pinned;
2754}
2755EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2756
eddb1c22 2757/**
64019a2e 2758 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2759 *
3faa52c0
JH
2760 * @mm: mm_struct of target mm
2761 * @start: starting user address
2762 * @nr_pages: number of pages from start to pin
2763 * @gup_flags: flags modifying lookup behaviour
2764 * @pages: array that receives pointers to the pages pinned.
2765 * Should be at least nr_pages long. Or NULL, if caller
2766 * only intends to ensure the pages are faulted in.
2767 * @vmas: array of pointers to vmas corresponding to each page.
2768 * Or NULL if the caller does not require them.
2769 * @locked: pointer to lock flag indicating whether lock is held and
2770 * subsequently whether VM_FAULT_RETRY functionality can be
2771 * utilised. Lock must initially be held.
2772 *
2773 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2774 * get_user_pages_remote() for documentation on the function arguments, because
2775 * the arguments here are identical.
2776 *
2777 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2778 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2779 */
64019a2e 2780long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2781 unsigned long start, unsigned long nr_pages,
2782 unsigned int gup_flags, struct page **pages,
2783 struct vm_area_struct **vmas, int *locked)
2784{
3faa52c0
JH
2785 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2786 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2787 return -EINVAL;
2788
2789 gup_flags |= FOLL_PIN;
64019a2e 2790 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2791 pages, vmas, locked);
eddb1c22
JH
2792}
2793EXPORT_SYMBOL(pin_user_pages_remote);
2794
2795/**
2796 * pin_user_pages() - pin user pages in memory for use by other devices
2797 *
3faa52c0
JH
2798 * @start: starting user address
2799 * @nr_pages: number of pages from start to pin
2800 * @gup_flags: flags modifying lookup behaviour
2801 * @pages: array that receives pointers to the pages pinned.
2802 * Should be at least nr_pages long. Or NULL, if caller
2803 * only intends to ensure the pages are faulted in.
2804 * @vmas: array of pointers to vmas corresponding to each page.
2805 * Or NULL if the caller does not require them.
2806 *
2807 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2808 * FOLL_PIN is set.
2809 *
2810 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2811 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2812 */
2813long pin_user_pages(unsigned long start, unsigned long nr_pages,
2814 unsigned int gup_flags, struct page **pages,
2815 struct vm_area_struct **vmas)
2816{
3faa52c0
JH
2817 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2818 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2819 return -EINVAL;
2820
2821 gup_flags |= FOLL_PIN;
64019a2e 2822 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2823 pages, vmas, gup_flags);
eddb1c22
JH
2824}
2825EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2826
2827/*
2828 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2829 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2830 * FOLL_PIN and rejects FOLL_GET.
2831 */
2832long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2833 struct page **pages, unsigned int gup_flags)
2834{
2835 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2836 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2837 return -EINVAL;
2838
2839 gup_flags |= FOLL_PIN;
2840 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2841}
2842EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2843
2844/*
2845 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2846 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2847 * FOLL_GET.
2848 */
2849long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2850 unsigned int gup_flags, struct page **pages,
2851 int *locked)
2852{
2853 /*
2854 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2855 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2856 * vmas. As there are no users of this flag in this call we simply
2857 * disallow this option for now.
2858 */
2859 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2860 return -EINVAL;
2861
2862 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2863 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2864 return -EINVAL;
2865
2866 gup_flags |= FOLL_PIN;
64019a2e 2867 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
2868 pages, NULL, locked,
2869 gup_flags | FOLL_TOUCH);
2870}
2871EXPORT_SYMBOL(pin_user_pages_locked);