]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/gup.c
mm: switch gup_hugepte to use try_get_compound_head
[mirror_ubuntu-hirsute-kernel.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
2667f50e 22#include <asm/pgtable.h>
1027e443 23#include <asm/tlbflush.h>
2667f50e 24
4bbd4c77
KS
25#include "internal.h"
26
df06b37f
KB
27struct follow_page_context {
28 struct dev_pagemap *pgmap;
29 unsigned int page_mask;
30};
31
fc1d8e7c
JH
32typedef int (*set_dirty_func_t)(struct page *page);
33
34static void __put_user_pages_dirty(struct page **pages,
35 unsigned long npages,
36 set_dirty_func_t sdf)
37{
38 unsigned long index;
39
40 for (index = 0; index < npages; index++) {
41 struct page *page = compound_head(pages[index]);
42
43 /*
44 * Checking PageDirty at this point may race with
45 * clear_page_dirty_for_io(), but that's OK. Two key cases:
46 *
47 * 1) This code sees the page as already dirty, so it skips
48 * the call to sdf(). That could happen because
49 * clear_page_dirty_for_io() called page_mkclean(),
50 * followed by set_page_dirty(). However, now the page is
51 * going to get written back, which meets the original
52 * intention of setting it dirty, so all is well:
53 * clear_page_dirty_for_io() goes on to call
54 * TestClearPageDirty(), and write the page back.
55 *
56 * 2) This code sees the page as clean, so it calls sdf().
57 * The page stays dirty, despite being written back, so it
58 * gets written back again in the next writeback cycle.
59 * This is harmless.
60 */
61 if (!PageDirty(page))
62 sdf(page);
63
64 put_user_page(page);
65 }
66}
67
68/**
69 * put_user_pages_dirty() - release and dirty an array of gup-pinned pages
70 * @pages: array of pages to be marked dirty and released.
71 * @npages: number of pages in the @pages array.
72 *
73 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
74 * variants called on that page.
75 *
76 * For each page in the @pages array, make that page (or its head page, if a
77 * compound page) dirty, if it was previously listed as clean. Then, release
78 * the page using put_user_page().
79 *
80 * Please see the put_user_page() documentation for details.
81 *
82 * set_page_dirty(), which does not lock the page, is used here.
83 * Therefore, it is the caller's responsibility to ensure that this is
84 * safe. If not, then put_user_pages_dirty_lock() should be called instead.
85 *
86 */
87void put_user_pages_dirty(struct page **pages, unsigned long npages)
88{
89 __put_user_pages_dirty(pages, npages, set_page_dirty);
90}
91EXPORT_SYMBOL(put_user_pages_dirty);
92
93/**
94 * put_user_pages_dirty_lock() - release and dirty an array of gup-pinned pages
95 * @pages: array of pages to be marked dirty and released.
96 * @npages: number of pages in the @pages array.
97 *
98 * For each page in the @pages array, make that page (or its head page, if a
99 * compound page) dirty, if it was previously listed as clean. Then, release
100 * the page using put_user_page().
101 *
102 * Please see the put_user_page() documentation for details.
103 *
104 * This is just like put_user_pages_dirty(), except that it invokes
105 * set_page_dirty_lock(), instead of set_page_dirty().
106 *
107 */
108void put_user_pages_dirty_lock(struct page **pages, unsigned long npages)
109{
110 __put_user_pages_dirty(pages, npages, set_page_dirty_lock);
111}
112EXPORT_SYMBOL(put_user_pages_dirty_lock);
113
114/**
115 * put_user_pages() - release an array of gup-pinned pages.
116 * @pages: array of pages to be marked dirty and released.
117 * @npages: number of pages in the @pages array.
118 *
119 * For each page in the @pages array, release the page using put_user_page().
120 *
121 * Please see the put_user_page() documentation for details.
122 */
123void put_user_pages(struct page **pages, unsigned long npages)
124{
125 unsigned long index;
126
127 /*
128 * TODO: this can be optimized for huge pages: if a series of pages is
129 * physically contiguous and part of the same compound page, then a
130 * single operation to the head page should suffice.
131 */
132 for (index = 0; index < npages; index++)
133 put_user_page(pages[index]);
134}
135EXPORT_SYMBOL(put_user_pages);
136
050a9adc 137#ifdef CONFIG_MMU
69e68b4f
KS
138static struct page *no_page_table(struct vm_area_struct *vma,
139 unsigned int flags)
4bbd4c77 140{
69e68b4f
KS
141 /*
142 * When core dumping an enormous anonymous area that nobody
143 * has touched so far, we don't want to allocate unnecessary pages or
144 * page tables. Return error instead of NULL to skip handle_mm_fault,
145 * then get_dump_page() will return NULL to leave a hole in the dump.
146 * But we can only make this optimization where a hole would surely
147 * be zero-filled if handle_mm_fault() actually did handle it.
148 */
149 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
150 return ERR_PTR(-EFAULT);
151 return NULL;
152}
4bbd4c77 153
1027e443
KS
154static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
155 pte_t *pte, unsigned int flags)
156{
157 /* No page to get reference */
158 if (flags & FOLL_GET)
159 return -EFAULT;
160
161 if (flags & FOLL_TOUCH) {
162 pte_t entry = *pte;
163
164 if (flags & FOLL_WRITE)
165 entry = pte_mkdirty(entry);
166 entry = pte_mkyoung(entry);
167
168 if (!pte_same(*pte, entry)) {
169 set_pte_at(vma->vm_mm, address, pte, entry);
170 update_mmu_cache(vma, address, pte);
171 }
172 }
173
174 /* Proper page table entry exists, but no corresponding struct page */
175 return -EEXIST;
176}
177
19be0eaf
LT
178/*
179 * FOLL_FORCE can write to even unwritable pte's, but only
180 * after we've gone through a COW cycle and they are dirty.
181 */
182static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
183{
f6f37321 184 return pte_write(pte) ||
19be0eaf
LT
185 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
186}
187
69e68b4f 188static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
189 unsigned long address, pmd_t *pmd, unsigned int flags,
190 struct dev_pagemap **pgmap)
69e68b4f
KS
191{
192 struct mm_struct *mm = vma->vm_mm;
193 struct page *page;
194 spinlock_t *ptl;
195 pte_t *ptep, pte;
4bbd4c77 196
69e68b4f 197retry:
4bbd4c77 198 if (unlikely(pmd_bad(*pmd)))
69e68b4f 199 return no_page_table(vma, flags);
4bbd4c77
KS
200
201 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
202 pte = *ptep;
203 if (!pte_present(pte)) {
204 swp_entry_t entry;
205 /*
206 * KSM's break_ksm() relies upon recognizing a ksm page
207 * even while it is being migrated, so for that case we
208 * need migration_entry_wait().
209 */
210 if (likely(!(flags & FOLL_MIGRATION)))
211 goto no_page;
0661a336 212 if (pte_none(pte))
4bbd4c77
KS
213 goto no_page;
214 entry = pte_to_swp_entry(pte);
215 if (!is_migration_entry(entry))
216 goto no_page;
217 pte_unmap_unlock(ptep, ptl);
218 migration_entry_wait(mm, pmd, address);
69e68b4f 219 goto retry;
4bbd4c77 220 }
8a0516ed 221 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 222 goto no_page;
19be0eaf 223 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
224 pte_unmap_unlock(ptep, ptl);
225 return NULL;
226 }
4bbd4c77
KS
227
228 page = vm_normal_page(vma, address, pte);
3565fce3
DW
229 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
230 /*
231 * Only return device mapping pages in the FOLL_GET case since
232 * they are only valid while holding the pgmap reference.
233 */
df06b37f
KB
234 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
235 if (*pgmap)
3565fce3
DW
236 page = pte_page(pte);
237 else
238 goto no_page;
239 } else if (unlikely(!page)) {
1027e443
KS
240 if (flags & FOLL_DUMP) {
241 /* Avoid special (like zero) pages in core dumps */
242 page = ERR_PTR(-EFAULT);
243 goto out;
244 }
245
246 if (is_zero_pfn(pte_pfn(pte))) {
247 page = pte_page(pte);
248 } else {
249 int ret;
250
251 ret = follow_pfn_pte(vma, address, ptep, flags);
252 page = ERR_PTR(ret);
253 goto out;
254 }
4bbd4c77
KS
255 }
256
6742d293
KS
257 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
258 int ret;
259 get_page(page);
260 pte_unmap_unlock(ptep, ptl);
261 lock_page(page);
262 ret = split_huge_page(page);
263 unlock_page(page);
264 put_page(page);
265 if (ret)
266 return ERR_PTR(ret);
267 goto retry;
268 }
269
8fde12ca
LT
270 if (flags & FOLL_GET) {
271 if (unlikely(!try_get_page(page))) {
272 page = ERR_PTR(-ENOMEM);
273 goto out;
274 }
275 }
4bbd4c77
KS
276 if (flags & FOLL_TOUCH) {
277 if ((flags & FOLL_WRITE) &&
278 !pte_dirty(pte) && !PageDirty(page))
279 set_page_dirty(page);
280 /*
281 * pte_mkyoung() would be more correct here, but atomic care
282 * is needed to avoid losing the dirty bit: it is easier to use
283 * mark_page_accessed().
284 */
285 mark_page_accessed(page);
286 }
de60f5f1 287 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
288 /* Do not mlock pte-mapped THP */
289 if (PageTransCompound(page))
290 goto out;
291
4bbd4c77
KS
292 /*
293 * The preliminary mapping check is mainly to avoid the
294 * pointless overhead of lock_page on the ZERO_PAGE
295 * which might bounce very badly if there is contention.
296 *
297 * If the page is already locked, we don't need to
298 * handle it now - vmscan will handle it later if and
299 * when it attempts to reclaim the page.
300 */
301 if (page->mapping && trylock_page(page)) {
302 lru_add_drain(); /* push cached pages to LRU */
303 /*
304 * Because we lock page here, and migration is
305 * blocked by the pte's page reference, and we
306 * know the page is still mapped, we don't even
307 * need to check for file-cache page truncation.
308 */
309 mlock_vma_page(page);
310 unlock_page(page);
311 }
312 }
1027e443 313out:
4bbd4c77 314 pte_unmap_unlock(ptep, ptl);
4bbd4c77 315 return page;
4bbd4c77
KS
316no_page:
317 pte_unmap_unlock(ptep, ptl);
318 if (!pte_none(pte))
69e68b4f
KS
319 return NULL;
320 return no_page_table(vma, flags);
321}
322
080dbb61
AK
323static struct page *follow_pmd_mask(struct vm_area_struct *vma,
324 unsigned long address, pud_t *pudp,
df06b37f
KB
325 unsigned int flags,
326 struct follow_page_context *ctx)
69e68b4f 327{
68827280 328 pmd_t *pmd, pmdval;
69e68b4f
KS
329 spinlock_t *ptl;
330 struct page *page;
331 struct mm_struct *mm = vma->vm_mm;
332
080dbb61 333 pmd = pmd_offset(pudp, address);
68827280
HY
334 /*
335 * The READ_ONCE() will stabilize the pmdval in a register or
336 * on the stack so that it will stop changing under the code.
337 */
338 pmdval = READ_ONCE(*pmd);
339 if (pmd_none(pmdval))
69e68b4f 340 return no_page_table(vma, flags);
68827280 341 if (pmd_huge(pmdval) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
342 page = follow_huge_pmd(mm, address, pmd, flags);
343 if (page)
344 return page;
345 return no_page_table(vma, flags);
69e68b4f 346 }
68827280 347 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 348 page = follow_huge_pd(vma, address,
68827280 349 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
350 PMD_SHIFT);
351 if (page)
352 return page;
353 return no_page_table(vma, flags);
354 }
84c3fc4e 355retry:
68827280 356 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
357 if (likely(!(flags & FOLL_MIGRATION)))
358 return no_page_table(vma, flags);
359 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
360 !is_pmd_migration_entry(pmdval));
361 if (is_pmd_migration_entry(pmdval))
84c3fc4e 362 pmd_migration_entry_wait(mm, pmd);
68827280
HY
363 pmdval = READ_ONCE(*pmd);
364 /*
365 * MADV_DONTNEED may convert the pmd to null because
366 * mmap_sem is held in read mode
367 */
368 if (pmd_none(pmdval))
369 return no_page_table(vma, flags);
84c3fc4e
ZY
370 goto retry;
371 }
68827280 372 if (pmd_devmap(pmdval)) {
3565fce3 373 ptl = pmd_lock(mm, pmd);
df06b37f 374 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
375 spin_unlock(ptl);
376 if (page)
377 return page;
378 }
68827280 379 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 380 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 381
68827280 382 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
383 return no_page_table(vma, flags);
384
84c3fc4e 385retry_locked:
6742d293 386 ptl = pmd_lock(mm, pmd);
68827280
HY
387 if (unlikely(pmd_none(*pmd))) {
388 spin_unlock(ptl);
389 return no_page_table(vma, flags);
390 }
84c3fc4e
ZY
391 if (unlikely(!pmd_present(*pmd))) {
392 spin_unlock(ptl);
393 if (likely(!(flags & FOLL_MIGRATION)))
394 return no_page_table(vma, flags);
395 pmd_migration_entry_wait(mm, pmd);
396 goto retry_locked;
397 }
6742d293
KS
398 if (unlikely(!pmd_trans_huge(*pmd))) {
399 spin_unlock(ptl);
df06b37f 400 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 401 }
6742d293
KS
402 if (flags & FOLL_SPLIT) {
403 int ret;
404 page = pmd_page(*pmd);
405 if (is_huge_zero_page(page)) {
406 spin_unlock(ptl);
407 ret = 0;
78ddc534 408 split_huge_pmd(vma, pmd, address);
337d9abf
NH
409 if (pmd_trans_unstable(pmd))
410 ret = -EBUSY;
6742d293 411 } else {
8fde12ca
LT
412 if (unlikely(!try_get_page(page))) {
413 spin_unlock(ptl);
414 return ERR_PTR(-ENOMEM);
415 }
69e68b4f 416 spin_unlock(ptl);
6742d293
KS
417 lock_page(page);
418 ret = split_huge_page(page);
419 unlock_page(page);
420 put_page(page);
baa355fd
KS
421 if (pmd_none(*pmd))
422 return no_page_table(vma, flags);
6742d293
KS
423 }
424
425 return ret ? ERR_PTR(ret) :
df06b37f 426 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 427 }
6742d293
KS
428 page = follow_trans_huge_pmd(vma, address, pmd, flags);
429 spin_unlock(ptl);
df06b37f 430 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 431 return page;
4bbd4c77
KS
432}
433
080dbb61
AK
434static struct page *follow_pud_mask(struct vm_area_struct *vma,
435 unsigned long address, p4d_t *p4dp,
df06b37f
KB
436 unsigned int flags,
437 struct follow_page_context *ctx)
080dbb61
AK
438{
439 pud_t *pud;
440 spinlock_t *ptl;
441 struct page *page;
442 struct mm_struct *mm = vma->vm_mm;
443
444 pud = pud_offset(p4dp, address);
445 if (pud_none(*pud))
446 return no_page_table(vma, flags);
447 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
448 page = follow_huge_pud(mm, address, pud, flags);
449 if (page)
450 return page;
451 return no_page_table(vma, flags);
452 }
4dc71451
AK
453 if (is_hugepd(__hugepd(pud_val(*pud)))) {
454 page = follow_huge_pd(vma, address,
455 __hugepd(pud_val(*pud)), flags,
456 PUD_SHIFT);
457 if (page)
458 return page;
459 return no_page_table(vma, flags);
460 }
080dbb61
AK
461 if (pud_devmap(*pud)) {
462 ptl = pud_lock(mm, pud);
df06b37f 463 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
464 spin_unlock(ptl);
465 if (page)
466 return page;
467 }
468 if (unlikely(pud_bad(*pud)))
469 return no_page_table(vma, flags);
470
df06b37f 471 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
472}
473
080dbb61
AK
474static struct page *follow_p4d_mask(struct vm_area_struct *vma,
475 unsigned long address, pgd_t *pgdp,
df06b37f
KB
476 unsigned int flags,
477 struct follow_page_context *ctx)
080dbb61
AK
478{
479 p4d_t *p4d;
4dc71451 480 struct page *page;
080dbb61
AK
481
482 p4d = p4d_offset(pgdp, address);
483 if (p4d_none(*p4d))
484 return no_page_table(vma, flags);
485 BUILD_BUG_ON(p4d_huge(*p4d));
486 if (unlikely(p4d_bad(*p4d)))
487 return no_page_table(vma, flags);
488
4dc71451
AK
489 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
490 page = follow_huge_pd(vma, address,
491 __hugepd(p4d_val(*p4d)), flags,
492 P4D_SHIFT);
493 if (page)
494 return page;
495 return no_page_table(vma, flags);
496 }
df06b37f 497 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
498}
499
500/**
501 * follow_page_mask - look up a page descriptor from a user-virtual address
502 * @vma: vm_area_struct mapping @address
503 * @address: virtual address to look up
504 * @flags: flags modifying lookup behaviour
78179556
MR
505 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
506 * pointer to output page_mask
080dbb61
AK
507 *
508 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
509 *
78179556
MR
510 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
511 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
512 *
513 * On output, the @ctx->page_mask is set according to the size of the page.
514 *
515 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
516 * an error pointer if there is a mapping to something not represented
517 * by a page descriptor (see also vm_normal_page()).
518 */
a7030aea 519static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 520 unsigned long address, unsigned int flags,
df06b37f 521 struct follow_page_context *ctx)
080dbb61
AK
522{
523 pgd_t *pgd;
524 struct page *page;
525 struct mm_struct *mm = vma->vm_mm;
526
df06b37f 527 ctx->page_mask = 0;
080dbb61
AK
528
529 /* make this handle hugepd */
530 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
531 if (!IS_ERR(page)) {
532 BUG_ON(flags & FOLL_GET);
533 return page;
534 }
535
536 pgd = pgd_offset(mm, address);
537
538 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
539 return no_page_table(vma, flags);
540
faaa5b62
AK
541 if (pgd_huge(*pgd)) {
542 page = follow_huge_pgd(mm, address, pgd, flags);
543 if (page)
544 return page;
545 return no_page_table(vma, flags);
546 }
4dc71451
AK
547 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
548 page = follow_huge_pd(vma, address,
549 __hugepd(pgd_val(*pgd)), flags,
550 PGDIR_SHIFT);
551 if (page)
552 return page;
553 return no_page_table(vma, flags);
554 }
faaa5b62 555
df06b37f
KB
556 return follow_p4d_mask(vma, address, pgd, flags, ctx);
557}
558
559struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
560 unsigned int foll_flags)
561{
562 struct follow_page_context ctx = { NULL };
563 struct page *page;
564
565 page = follow_page_mask(vma, address, foll_flags, &ctx);
566 if (ctx.pgmap)
567 put_dev_pagemap(ctx.pgmap);
568 return page;
080dbb61
AK
569}
570
f2b495ca
KS
571static int get_gate_page(struct mm_struct *mm, unsigned long address,
572 unsigned int gup_flags, struct vm_area_struct **vma,
573 struct page **page)
574{
575 pgd_t *pgd;
c2febafc 576 p4d_t *p4d;
f2b495ca
KS
577 pud_t *pud;
578 pmd_t *pmd;
579 pte_t *pte;
580 int ret = -EFAULT;
581
582 /* user gate pages are read-only */
583 if (gup_flags & FOLL_WRITE)
584 return -EFAULT;
585 if (address > TASK_SIZE)
586 pgd = pgd_offset_k(address);
587 else
588 pgd = pgd_offset_gate(mm, address);
589 BUG_ON(pgd_none(*pgd));
c2febafc
KS
590 p4d = p4d_offset(pgd, address);
591 BUG_ON(p4d_none(*p4d));
592 pud = pud_offset(p4d, address);
f2b495ca
KS
593 BUG_ON(pud_none(*pud));
594 pmd = pmd_offset(pud, address);
84c3fc4e 595 if (!pmd_present(*pmd))
f2b495ca
KS
596 return -EFAULT;
597 VM_BUG_ON(pmd_trans_huge(*pmd));
598 pte = pte_offset_map(pmd, address);
599 if (pte_none(*pte))
600 goto unmap;
601 *vma = get_gate_vma(mm);
602 if (!page)
603 goto out;
604 *page = vm_normal_page(*vma, address, *pte);
605 if (!*page) {
606 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
607 goto unmap;
608 *page = pte_page(*pte);
df6ad698
JG
609
610 /*
611 * This should never happen (a device public page in the gate
612 * area).
613 */
614 if (is_device_public_page(*page))
615 goto unmap;
f2b495ca 616 }
8fde12ca
LT
617 if (unlikely(!try_get_page(*page))) {
618 ret = -ENOMEM;
619 goto unmap;
620 }
f2b495ca
KS
621out:
622 ret = 0;
623unmap:
624 pte_unmap(pte);
625 return ret;
626}
627
9a95f3cf
PC
628/*
629 * mmap_sem must be held on entry. If @nonblocking != NULL and
630 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
631 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
632 */
16744483
KS
633static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
634 unsigned long address, unsigned int *flags, int *nonblocking)
635{
16744483 636 unsigned int fault_flags = 0;
2b740303 637 vm_fault_t ret;
16744483 638
de60f5f1
EM
639 /* mlock all present pages, but do not fault in new pages */
640 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
641 return -ENOENT;
16744483
KS
642 if (*flags & FOLL_WRITE)
643 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
644 if (*flags & FOLL_REMOTE)
645 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
646 if (nonblocking)
647 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
648 if (*flags & FOLL_NOWAIT)
649 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
650 if (*flags & FOLL_TRIED) {
651 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
652 fault_flags |= FAULT_FLAG_TRIED;
653 }
16744483 654
dcddffd4 655 ret = handle_mm_fault(vma, address, fault_flags);
16744483 656 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
657 int err = vm_fault_to_errno(ret, *flags);
658
659 if (err)
660 return err;
16744483
KS
661 BUG();
662 }
663
664 if (tsk) {
665 if (ret & VM_FAULT_MAJOR)
666 tsk->maj_flt++;
667 else
668 tsk->min_flt++;
669 }
670
671 if (ret & VM_FAULT_RETRY) {
96312e61 672 if (nonblocking && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
16744483
KS
673 *nonblocking = 0;
674 return -EBUSY;
675 }
676
677 /*
678 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
679 * necessary, even if maybe_mkwrite decided not to set pte_write. We
680 * can thus safely do subsequent page lookups as if they were reads.
681 * But only do so when looping for pte_write is futile: in some cases
682 * userspace may also be wanting to write to the gotten user page,
683 * which a read fault here might prevent (a readonly page might get
684 * reCOWed by userspace write).
685 */
686 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 687 *flags |= FOLL_COW;
16744483
KS
688 return 0;
689}
690
fa5bb209
KS
691static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
692{
693 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
694 int write = (gup_flags & FOLL_WRITE);
695 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
696
697 if (vm_flags & (VM_IO | VM_PFNMAP))
698 return -EFAULT;
699
7f7ccc2c
WT
700 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
701 return -EFAULT;
702
1b2ee126 703 if (write) {
fa5bb209
KS
704 if (!(vm_flags & VM_WRITE)) {
705 if (!(gup_flags & FOLL_FORCE))
706 return -EFAULT;
707 /*
708 * We used to let the write,force case do COW in a
709 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
710 * set a breakpoint in a read-only mapping of an
711 * executable, without corrupting the file (yet only
712 * when that file had been opened for writing!).
713 * Anon pages in shared mappings are surprising: now
714 * just reject it.
715 */
46435364 716 if (!is_cow_mapping(vm_flags))
fa5bb209 717 return -EFAULT;
fa5bb209
KS
718 }
719 } else if (!(vm_flags & VM_READ)) {
720 if (!(gup_flags & FOLL_FORCE))
721 return -EFAULT;
722 /*
723 * Is there actually any vma we can reach here which does not
724 * have VM_MAYREAD set?
725 */
726 if (!(vm_flags & VM_MAYREAD))
727 return -EFAULT;
728 }
d61172b4
DH
729 /*
730 * gups are always data accesses, not instruction
731 * fetches, so execute=false here
732 */
733 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 734 return -EFAULT;
fa5bb209
KS
735 return 0;
736}
737
4bbd4c77
KS
738/**
739 * __get_user_pages() - pin user pages in memory
740 * @tsk: task_struct of target task
741 * @mm: mm_struct of target mm
742 * @start: starting user address
743 * @nr_pages: number of pages from start to pin
744 * @gup_flags: flags modifying pin behaviour
745 * @pages: array that receives pointers to the pages pinned.
746 * Should be at least nr_pages long. Or NULL, if caller
747 * only intends to ensure the pages are faulted in.
748 * @vmas: array of pointers to vmas corresponding to each page.
749 * Or NULL if the caller does not require them.
750 * @nonblocking: whether waiting for disk IO or mmap_sem contention
751 *
752 * Returns number of pages pinned. This may be fewer than the number
753 * requested. If nr_pages is 0 or negative, returns 0. If no pages
754 * were pinned, returns -errno. Each page returned must be released
755 * with a put_page() call when it is finished with. vmas will only
756 * remain valid while mmap_sem is held.
757 *
9a95f3cf 758 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
759 *
760 * __get_user_pages walks a process's page tables and takes a reference to
761 * each struct page that each user address corresponds to at a given
762 * instant. That is, it takes the page that would be accessed if a user
763 * thread accesses the given user virtual address at that instant.
764 *
765 * This does not guarantee that the page exists in the user mappings when
766 * __get_user_pages returns, and there may even be a completely different
767 * page there in some cases (eg. if mmapped pagecache has been invalidated
768 * and subsequently re faulted). However it does guarantee that the page
769 * won't be freed completely. And mostly callers simply care that the page
770 * contains data that was valid *at some point in time*. Typically, an IO
771 * or similar operation cannot guarantee anything stronger anyway because
772 * locks can't be held over the syscall boundary.
773 *
774 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
775 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
776 * appropriate) must be called after the page is finished with, and
777 * before put_page is called.
778 *
779 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
780 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
781 * *@nonblocking will be set to 0. Further, if @gup_flags does not
782 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
783 * this case.
784 *
785 * A caller using such a combination of @nonblocking and @gup_flags
786 * must therefore hold the mmap_sem for reading only, and recognize
787 * when it's been released. Otherwise, it must be held for either
788 * reading or writing and will not be released.
4bbd4c77
KS
789 *
790 * In most cases, get_user_pages or get_user_pages_fast should be used
791 * instead of __get_user_pages. __get_user_pages should be used only if
792 * you need some special @gup_flags.
793 */
0d731759 794static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
795 unsigned long start, unsigned long nr_pages,
796 unsigned int gup_flags, struct page **pages,
797 struct vm_area_struct **vmas, int *nonblocking)
798{
df06b37f 799 long ret = 0, i = 0;
fa5bb209 800 struct vm_area_struct *vma = NULL;
df06b37f 801 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
802
803 if (!nr_pages)
804 return 0;
805
806 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
807
808 /*
809 * If FOLL_FORCE is set then do not force a full fault as the hinting
810 * fault information is unrelated to the reference behaviour of a task
811 * using the address space
812 */
813 if (!(gup_flags & FOLL_FORCE))
814 gup_flags |= FOLL_NUMA;
815
4bbd4c77 816 do {
fa5bb209
KS
817 struct page *page;
818 unsigned int foll_flags = gup_flags;
819 unsigned int page_increm;
820
821 /* first iteration or cross vma bound */
822 if (!vma || start >= vma->vm_end) {
823 vma = find_extend_vma(mm, start);
824 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
825 ret = get_gate_page(mm, start & PAGE_MASK,
826 gup_flags, &vma,
827 pages ? &pages[i] : NULL);
828 if (ret)
08be37b7 829 goto out;
df06b37f 830 ctx.page_mask = 0;
fa5bb209
KS
831 goto next_page;
832 }
4bbd4c77 833
df06b37f
KB
834 if (!vma || check_vma_flags(vma, gup_flags)) {
835 ret = -EFAULT;
836 goto out;
837 }
fa5bb209
KS
838 if (is_vm_hugetlb_page(vma)) {
839 i = follow_hugetlb_page(mm, vma, pages, vmas,
840 &start, &nr_pages, i,
87ffc118 841 gup_flags, nonblocking);
fa5bb209 842 continue;
4bbd4c77 843 }
fa5bb209
KS
844 }
845retry:
846 /*
847 * If we have a pending SIGKILL, don't keep faulting pages and
848 * potentially allocating memory.
849 */
fa45f116 850 if (fatal_signal_pending(current)) {
df06b37f
KB
851 ret = -ERESTARTSYS;
852 goto out;
853 }
fa5bb209 854 cond_resched();
df06b37f
KB
855
856 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 857 if (!page) {
fa5bb209
KS
858 ret = faultin_page(tsk, vma, start, &foll_flags,
859 nonblocking);
860 switch (ret) {
861 case 0:
862 goto retry;
df06b37f
KB
863 case -EBUSY:
864 ret = 0;
865 /* FALLTHRU */
fa5bb209
KS
866 case -EFAULT:
867 case -ENOMEM:
868 case -EHWPOISON:
df06b37f 869 goto out;
fa5bb209
KS
870 case -ENOENT:
871 goto next_page;
4bbd4c77 872 }
fa5bb209 873 BUG();
1027e443
KS
874 } else if (PTR_ERR(page) == -EEXIST) {
875 /*
876 * Proper page table entry exists, but no corresponding
877 * struct page.
878 */
879 goto next_page;
880 } else if (IS_ERR(page)) {
df06b37f
KB
881 ret = PTR_ERR(page);
882 goto out;
1027e443 883 }
fa5bb209
KS
884 if (pages) {
885 pages[i] = page;
886 flush_anon_page(vma, page, start);
887 flush_dcache_page(page);
df06b37f 888 ctx.page_mask = 0;
4bbd4c77 889 }
4bbd4c77 890next_page:
fa5bb209
KS
891 if (vmas) {
892 vmas[i] = vma;
df06b37f 893 ctx.page_mask = 0;
fa5bb209 894 }
df06b37f 895 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
896 if (page_increm > nr_pages)
897 page_increm = nr_pages;
898 i += page_increm;
899 start += page_increm * PAGE_SIZE;
900 nr_pages -= page_increm;
4bbd4c77 901 } while (nr_pages);
df06b37f
KB
902out:
903 if (ctx.pgmap)
904 put_dev_pagemap(ctx.pgmap);
905 return i ? i : ret;
4bbd4c77 906}
4bbd4c77 907
771ab430
TK
908static bool vma_permits_fault(struct vm_area_struct *vma,
909 unsigned int fault_flags)
d4925e00 910{
1b2ee126
DH
911 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
912 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 913 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
914
915 if (!(vm_flags & vma->vm_flags))
916 return false;
917
33a709b2
DH
918 /*
919 * The architecture might have a hardware protection
1b2ee126 920 * mechanism other than read/write that can deny access.
d61172b4
DH
921 *
922 * gup always represents data access, not instruction
923 * fetches, so execute=false here:
33a709b2 924 */
d61172b4 925 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
926 return false;
927
d4925e00
DH
928 return true;
929}
930
4bbd4c77
KS
931/*
932 * fixup_user_fault() - manually resolve a user page fault
933 * @tsk: the task_struct to use for page fault accounting, or
934 * NULL if faults are not to be recorded.
935 * @mm: mm_struct of target mm
936 * @address: user address
937 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
938 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
939 * does not allow retry
4bbd4c77
KS
940 *
941 * This is meant to be called in the specific scenario where for locking reasons
942 * we try to access user memory in atomic context (within a pagefault_disable()
943 * section), this returns -EFAULT, and we want to resolve the user fault before
944 * trying again.
945 *
946 * Typically this is meant to be used by the futex code.
947 *
948 * The main difference with get_user_pages() is that this function will
949 * unconditionally call handle_mm_fault() which will in turn perform all the
950 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 951 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
952 *
953 * This is important for some architectures where those bits also gate the
954 * access permission to the page because they are maintained in software. On
955 * such architectures, gup() will not be enough to make a subsequent access
956 * succeed.
957 *
4a9e1cda
DD
958 * This function will not return with an unlocked mmap_sem. So it has not the
959 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
960 */
961int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
962 unsigned long address, unsigned int fault_flags,
963 bool *unlocked)
4bbd4c77
KS
964{
965 struct vm_area_struct *vma;
2b740303 966 vm_fault_t ret, major = 0;
4a9e1cda
DD
967
968 if (unlocked)
969 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 970
4a9e1cda 971retry:
4bbd4c77
KS
972 vma = find_extend_vma(mm, address);
973 if (!vma || address < vma->vm_start)
974 return -EFAULT;
975
d4925e00 976 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
977 return -EFAULT;
978
dcddffd4 979 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 980 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 981 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
982 int err = vm_fault_to_errno(ret, 0);
983
984 if (err)
985 return err;
4bbd4c77
KS
986 BUG();
987 }
4a9e1cda
DD
988
989 if (ret & VM_FAULT_RETRY) {
990 down_read(&mm->mmap_sem);
991 if (!(fault_flags & FAULT_FLAG_TRIED)) {
992 *unlocked = true;
993 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
994 fault_flags |= FAULT_FLAG_TRIED;
995 goto retry;
996 }
997 }
998
4bbd4c77 999 if (tsk) {
4a9e1cda 1000 if (major)
4bbd4c77
KS
1001 tsk->maj_flt++;
1002 else
1003 tsk->min_flt++;
1004 }
1005 return 0;
1006}
add6a0cd 1007EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1008
f0818f47
AA
1009static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
1010 struct mm_struct *mm,
1011 unsigned long start,
1012 unsigned long nr_pages,
f0818f47
AA
1013 struct page **pages,
1014 struct vm_area_struct **vmas,
e716712f 1015 int *locked,
0fd71a56 1016 unsigned int flags)
f0818f47 1017{
f0818f47
AA
1018 long ret, pages_done;
1019 bool lock_dropped;
1020
1021 if (locked) {
1022 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1023 BUG_ON(vmas);
1024 /* check caller initialized locked */
1025 BUG_ON(*locked != 1);
1026 }
1027
1028 if (pages)
1029 flags |= FOLL_GET;
f0818f47
AA
1030
1031 pages_done = 0;
1032 lock_dropped = false;
1033 for (;;) {
1034 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
1035 vmas, locked);
1036 if (!locked)
1037 /* VM_FAULT_RETRY couldn't trigger, bypass */
1038 return ret;
1039
1040 /* VM_FAULT_RETRY cannot return errors */
1041 if (!*locked) {
1042 BUG_ON(ret < 0);
1043 BUG_ON(ret >= nr_pages);
1044 }
1045
f0818f47
AA
1046 if (ret > 0) {
1047 nr_pages -= ret;
1048 pages_done += ret;
1049 if (!nr_pages)
1050 break;
1051 }
1052 if (*locked) {
96312e61
AA
1053 /*
1054 * VM_FAULT_RETRY didn't trigger or it was a
1055 * FOLL_NOWAIT.
1056 */
f0818f47
AA
1057 if (!pages_done)
1058 pages_done = ret;
1059 break;
1060 }
df17277b
MR
1061 /*
1062 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1063 * For the prefault case (!pages) we only update counts.
1064 */
1065 if (likely(pages))
1066 pages += ret;
f0818f47
AA
1067 start += ret << PAGE_SHIFT;
1068
1069 /*
1070 * Repeat on the address that fired VM_FAULT_RETRY
1071 * without FAULT_FLAG_ALLOW_RETRY but with
1072 * FAULT_FLAG_TRIED.
1073 */
1074 *locked = 1;
1075 lock_dropped = true;
1076 down_read(&mm->mmap_sem);
1077 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
1078 pages, NULL, NULL);
1079 if (ret != 1) {
1080 BUG_ON(ret > 1);
1081 if (!pages_done)
1082 pages_done = ret;
1083 break;
1084 }
1085 nr_pages--;
1086 pages_done++;
1087 if (!nr_pages)
1088 break;
df17277b
MR
1089 if (likely(pages))
1090 pages++;
f0818f47
AA
1091 start += PAGE_SIZE;
1092 }
e716712f 1093 if (lock_dropped && *locked) {
f0818f47
AA
1094 /*
1095 * We must let the caller know we temporarily dropped the lock
1096 * and so the critical section protected by it was lost.
1097 */
1098 up_read(&mm->mmap_sem);
1099 *locked = 0;
1100 }
1101 return pages_done;
1102}
1103
4bbd4c77 1104/*
1e987790 1105 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
1106 * @tsk: the task_struct to use for page fault accounting, or
1107 * NULL if faults are not to be recorded.
1108 * @mm: mm_struct of target mm
1109 * @start: starting user address
1110 * @nr_pages: number of pages from start to pin
9beae1ea 1111 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
1112 * @pages: array that receives pointers to the pages pinned.
1113 * Should be at least nr_pages long. Or NULL, if caller
1114 * only intends to ensure the pages are faulted in.
1115 * @vmas: array of pointers to vmas corresponding to each page.
1116 * Or NULL if the caller does not require them.
5b56d49f
LS
1117 * @locked: pointer to lock flag indicating whether lock is held and
1118 * subsequently whether VM_FAULT_RETRY functionality can be
1119 * utilised. Lock must initially be held.
4bbd4c77
KS
1120 *
1121 * Returns number of pages pinned. This may be fewer than the number
1122 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1123 * were pinned, returns -errno. Each page returned must be released
1124 * with a put_page() call when it is finished with. vmas will only
1125 * remain valid while mmap_sem is held.
1126 *
1127 * Must be called with mmap_sem held for read or write.
1128 *
1129 * get_user_pages walks a process's page tables and takes a reference to
1130 * each struct page that each user address corresponds to at a given
1131 * instant. That is, it takes the page that would be accessed if a user
1132 * thread accesses the given user virtual address at that instant.
1133 *
1134 * This does not guarantee that the page exists in the user mappings when
1135 * get_user_pages returns, and there may even be a completely different
1136 * page there in some cases (eg. if mmapped pagecache has been invalidated
1137 * and subsequently re faulted). However it does guarantee that the page
1138 * won't be freed completely. And mostly callers simply care that the page
1139 * contains data that was valid *at some point in time*. Typically, an IO
1140 * or similar operation cannot guarantee anything stronger anyway because
1141 * locks can't be held over the syscall boundary.
1142 *
9beae1ea
LS
1143 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1144 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1145 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
1146 *
1147 * get_user_pages is typically used for fewer-copy IO operations, to get a
1148 * handle on the memory by some means other than accesses via the user virtual
1149 * addresses. The pages may be submitted for DMA to devices or accessed via
1150 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1151 * use the correct cache flushing APIs.
1152 *
1153 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1154 *
1155 * get_user_pages should be phased out in favor of
1156 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1157 * should use get_user_pages because it cannot pass
1158 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1159 */
1e987790
DH
1160long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1161 unsigned long start, unsigned long nr_pages,
9beae1ea 1162 unsigned int gup_flags, struct page **pages,
5b56d49f 1163 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1164{
932f4a63
IW
1165 /*
1166 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1167 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1168 * vmas. As there are no users of this flag in this call we simply
1169 * disallow this option for now.
1170 */
1171 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1172 return -EINVAL;
1173
859110d7 1174 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
e716712f 1175 locked,
9beae1ea 1176 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1177}
1178EXPORT_SYMBOL(get_user_pages_remote);
1179
d3649f68
CH
1180/**
1181 * populate_vma_page_range() - populate a range of pages in the vma.
1182 * @vma: target vma
1183 * @start: start address
1184 * @end: end address
1185 * @nonblocking:
1186 *
1187 * This takes care of mlocking the pages too if VM_LOCKED is set.
1188 *
1189 * return 0 on success, negative error code on error.
1190 *
1191 * vma->vm_mm->mmap_sem must be held.
1192 *
1193 * If @nonblocking is NULL, it may be held for read or write and will
1194 * be unperturbed.
1195 *
1196 * If @nonblocking is non-NULL, it must held for read only and may be
1197 * released. If it's released, *@nonblocking will be set to 0.
1198 */
1199long populate_vma_page_range(struct vm_area_struct *vma,
1200 unsigned long start, unsigned long end, int *nonblocking)
1201{
1202 struct mm_struct *mm = vma->vm_mm;
1203 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1204 int gup_flags;
1205
1206 VM_BUG_ON(start & ~PAGE_MASK);
1207 VM_BUG_ON(end & ~PAGE_MASK);
1208 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1209 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1210 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1211
1212 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1213 if (vma->vm_flags & VM_LOCKONFAULT)
1214 gup_flags &= ~FOLL_POPULATE;
1215 /*
1216 * We want to touch writable mappings with a write fault in order
1217 * to break COW, except for shared mappings because these don't COW
1218 * and we would not want to dirty them for nothing.
1219 */
1220 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1221 gup_flags |= FOLL_WRITE;
1222
1223 /*
1224 * We want mlock to succeed for regions that have any permissions
1225 * other than PROT_NONE.
1226 */
1227 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1228 gup_flags |= FOLL_FORCE;
1229
1230 /*
1231 * We made sure addr is within a VMA, so the following will
1232 * not result in a stack expansion that recurses back here.
1233 */
1234 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1235 NULL, NULL, nonblocking);
1236}
1237
1238/*
1239 * __mm_populate - populate and/or mlock pages within a range of address space.
1240 *
1241 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1242 * flags. VMAs must be already marked with the desired vm_flags, and
1243 * mmap_sem must not be held.
1244 */
1245int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1246{
1247 struct mm_struct *mm = current->mm;
1248 unsigned long end, nstart, nend;
1249 struct vm_area_struct *vma = NULL;
1250 int locked = 0;
1251 long ret = 0;
1252
1253 end = start + len;
1254
1255 for (nstart = start; nstart < end; nstart = nend) {
1256 /*
1257 * We want to fault in pages for [nstart; end) address range.
1258 * Find first corresponding VMA.
1259 */
1260 if (!locked) {
1261 locked = 1;
1262 down_read(&mm->mmap_sem);
1263 vma = find_vma(mm, nstart);
1264 } else if (nstart >= vma->vm_end)
1265 vma = vma->vm_next;
1266 if (!vma || vma->vm_start >= end)
1267 break;
1268 /*
1269 * Set [nstart; nend) to intersection of desired address
1270 * range with the first VMA. Also, skip undesirable VMA types.
1271 */
1272 nend = min(end, vma->vm_end);
1273 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1274 continue;
1275 if (nstart < vma->vm_start)
1276 nstart = vma->vm_start;
1277 /*
1278 * Now fault in a range of pages. populate_vma_page_range()
1279 * double checks the vma flags, so that it won't mlock pages
1280 * if the vma was already munlocked.
1281 */
1282 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1283 if (ret < 0) {
1284 if (ignore_errors) {
1285 ret = 0;
1286 continue; /* continue at next VMA */
1287 }
1288 break;
1289 }
1290 nend = nstart + ret * PAGE_SIZE;
1291 ret = 0;
1292 }
1293 if (locked)
1294 up_read(&mm->mmap_sem);
1295 return ret; /* 0 or negative error code */
1296}
1297
1298/**
1299 * get_dump_page() - pin user page in memory while writing it to core dump
1300 * @addr: user address
1301 *
1302 * Returns struct page pointer of user page pinned for dump,
1303 * to be freed afterwards by put_page().
1304 *
1305 * Returns NULL on any kind of failure - a hole must then be inserted into
1306 * the corefile, to preserve alignment with its headers; and also returns
1307 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1308 * allowing a hole to be left in the corefile to save diskspace.
1309 *
1310 * Called without mmap_sem, but after all other threads have been killed.
1311 */
1312#ifdef CONFIG_ELF_CORE
1313struct page *get_dump_page(unsigned long addr)
1314{
1315 struct vm_area_struct *vma;
1316 struct page *page;
1317
1318 if (__get_user_pages(current, current->mm, addr, 1,
1319 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1320 NULL) < 1)
1321 return NULL;
1322 flush_cache_page(vma, addr, page_to_pfn(page));
1323 return page;
1324}
1325#endif /* CONFIG_ELF_CORE */
050a9adc
CH
1326#else /* CONFIG_MMU */
1327static long __get_user_pages_locked(struct task_struct *tsk,
1328 struct mm_struct *mm, unsigned long start,
1329 unsigned long nr_pages, struct page **pages,
1330 struct vm_area_struct **vmas, int *locked,
1331 unsigned int foll_flags)
1332{
1333 struct vm_area_struct *vma;
1334 unsigned long vm_flags;
1335 int i;
1336
1337 /* calculate required read or write permissions.
1338 * If FOLL_FORCE is set, we only require the "MAY" flags.
1339 */
1340 vm_flags = (foll_flags & FOLL_WRITE) ?
1341 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1342 vm_flags &= (foll_flags & FOLL_FORCE) ?
1343 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1344
1345 for (i = 0; i < nr_pages; i++) {
1346 vma = find_vma(mm, start);
1347 if (!vma)
1348 goto finish_or_fault;
1349
1350 /* protect what we can, including chardevs */
1351 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1352 !(vm_flags & vma->vm_flags))
1353 goto finish_or_fault;
1354
1355 if (pages) {
1356 pages[i] = virt_to_page(start);
1357 if (pages[i])
1358 get_page(pages[i]);
1359 }
1360 if (vmas)
1361 vmas[i] = vma;
1362 start = (start + PAGE_SIZE) & PAGE_MASK;
1363 }
1364
1365 return i;
1366
1367finish_or_fault:
1368 return i ? : -EFAULT;
1369}
1370#endif /* !CONFIG_MMU */
d3649f68 1371
9a4e9f3b 1372#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1373static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1374{
1375 long i;
1376 struct vm_area_struct *vma_prev = NULL;
1377
1378 for (i = 0; i < nr_pages; i++) {
1379 struct vm_area_struct *vma = vmas[i];
1380
1381 if (vma == vma_prev)
1382 continue;
1383
1384 vma_prev = vma;
1385
1386 if (vma_is_fsdax(vma))
1387 return true;
1388 }
1389 return false;
1390}
9a4e9f3b
AK
1391
1392#ifdef CONFIG_CMA
1393static struct page *new_non_cma_page(struct page *page, unsigned long private)
1394{
1395 /*
1396 * We want to make sure we allocate the new page from the same node
1397 * as the source page.
1398 */
1399 int nid = page_to_nid(page);
1400 /*
1401 * Trying to allocate a page for migration. Ignore allocation
1402 * failure warnings. We don't force __GFP_THISNODE here because
1403 * this node here is the node where we have CMA reservation and
1404 * in some case these nodes will have really less non movable
1405 * allocation memory.
1406 */
1407 gfp_t gfp_mask = GFP_USER | __GFP_NOWARN;
1408
1409 if (PageHighMem(page))
1410 gfp_mask |= __GFP_HIGHMEM;
1411
1412#ifdef CONFIG_HUGETLB_PAGE
1413 if (PageHuge(page)) {
1414 struct hstate *h = page_hstate(page);
1415 /*
1416 * We don't want to dequeue from the pool because pool pages will
1417 * mostly be from the CMA region.
1418 */
1419 return alloc_migrate_huge_page(h, gfp_mask, nid, NULL);
1420 }
1421#endif
1422 if (PageTransHuge(page)) {
1423 struct page *thp;
1424 /*
1425 * ignore allocation failure warnings
1426 */
1427 gfp_t thp_gfpmask = GFP_TRANSHUGE | __GFP_NOWARN;
1428
1429 /*
1430 * Remove the movable mask so that we don't allocate from
1431 * CMA area again.
1432 */
1433 thp_gfpmask &= ~__GFP_MOVABLE;
1434 thp = __alloc_pages_node(nid, thp_gfpmask, HPAGE_PMD_ORDER);
1435 if (!thp)
1436 return NULL;
1437 prep_transhuge_page(thp);
1438 return thp;
1439 }
1440
1441 return __alloc_pages_node(nid, gfp_mask, 0);
1442}
1443
932f4a63
IW
1444static long check_and_migrate_cma_pages(struct task_struct *tsk,
1445 struct mm_struct *mm,
1446 unsigned long start,
1447 unsigned long nr_pages,
9a4e9f3b 1448 struct page **pages,
932f4a63
IW
1449 struct vm_area_struct **vmas,
1450 unsigned int gup_flags)
9a4e9f3b
AK
1451{
1452 long i;
1453 bool drain_allow = true;
1454 bool migrate_allow = true;
1455 LIST_HEAD(cma_page_list);
1456
1457check_again:
1458 for (i = 0; i < nr_pages; i++) {
1459 /*
1460 * If we get a page from the CMA zone, since we are going to
1461 * be pinning these entries, we might as well move them out
1462 * of the CMA zone if possible.
1463 */
1464 if (is_migrate_cma_page(pages[i])) {
1465
1466 struct page *head = compound_head(pages[i]);
1467
1468 if (PageHuge(head)) {
1469 isolate_huge_page(head, &cma_page_list);
1470 } else {
1471 if (!PageLRU(head) && drain_allow) {
1472 lru_add_drain_all();
1473 drain_allow = false;
1474 }
1475
1476 if (!isolate_lru_page(head)) {
1477 list_add_tail(&head->lru, &cma_page_list);
1478 mod_node_page_state(page_pgdat(head),
1479 NR_ISOLATED_ANON +
1480 page_is_file_cache(head),
1481 hpage_nr_pages(head));
1482 }
1483 }
1484 }
1485 }
1486
1487 if (!list_empty(&cma_page_list)) {
1488 /*
1489 * drop the above get_user_pages reference.
1490 */
1491 for (i = 0; i < nr_pages; i++)
1492 put_page(pages[i]);
1493
1494 if (migrate_pages(&cma_page_list, new_non_cma_page,
1495 NULL, 0, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
1496 /*
1497 * some of the pages failed migration. Do get_user_pages
1498 * without migration.
1499 */
1500 migrate_allow = false;
1501
1502 if (!list_empty(&cma_page_list))
1503 putback_movable_pages(&cma_page_list);
1504 }
1505 /*
932f4a63
IW
1506 * We did migrate all the pages, Try to get the page references
1507 * again migrating any new CMA pages which we failed to isolate
1508 * earlier.
9a4e9f3b 1509 */
932f4a63
IW
1510 nr_pages = __get_user_pages_locked(tsk, mm, start, nr_pages,
1511 pages, vmas, NULL,
1512 gup_flags);
1513
9a4e9f3b
AK
1514 if ((nr_pages > 0) && migrate_allow) {
1515 drain_allow = true;
1516 goto check_again;
1517 }
1518 }
1519
1520 return nr_pages;
1521}
1522#else
932f4a63
IW
1523static long check_and_migrate_cma_pages(struct task_struct *tsk,
1524 struct mm_struct *mm,
1525 unsigned long start,
1526 unsigned long nr_pages,
1527 struct page **pages,
1528 struct vm_area_struct **vmas,
1529 unsigned int gup_flags)
9a4e9f3b
AK
1530{
1531 return nr_pages;
1532}
050a9adc 1533#endif /* CONFIG_CMA */
9a4e9f3b 1534
2bb6d283 1535/*
932f4a63
IW
1536 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1537 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1538 */
932f4a63
IW
1539static long __gup_longterm_locked(struct task_struct *tsk,
1540 struct mm_struct *mm,
1541 unsigned long start,
1542 unsigned long nr_pages,
1543 struct page **pages,
1544 struct vm_area_struct **vmas,
1545 unsigned int gup_flags)
2bb6d283 1546{
932f4a63
IW
1547 struct vm_area_struct **vmas_tmp = vmas;
1548 unsigned long flags = 0;
2bb6d283
DW
1549 long rc, i;
1550
932f4a63
IW
1551 if (gup_flags & FOLL_LONGTERM) {
1552 if (!pages)
1553 return -EINVAL;
1554
1555 if (!vmas_tmp) {
1556 vmas_tmp = kcalloc(nr_pages,
1557 sizeof(struct vm_area_struct *),
1558 GFP_KERNEL);
1559 if (!vmas_tmp)
1560 return -ENOMEM;
1561 }
1562 flags = memalloc_nocma_save();
2bb6d283
DW
1563 }
1564
932f4a63
IW
1565 rc = __get_user_pages_locked(tsk, mm, start, nr_pages, pages,
1566 vmas_tmp, NULL, gup_flags);
2bb6d283 1567
932f4a63
IW
1568 if (gup_flags & FOLL_LONGTERM) {
1569 memalloc_nocma_restore(flags);
1570 if (rc < 0)
1571 goto out;
1572
1573 if (check_dax_vmas(vmas_tmp, rc)) {
1574 for (i = 0; i < rc; i++)
1575 put_page(pages[i]);
1576 rc = -EOPNOTSUPP;
1577 goto out;
1578 }
1579
1580 rc = check_and_migrate_cma_pages(tsk, mm, start, rc, pages,
1581 vmas_tmp, gup_flags);
9a4e9f3b 1582 }
2bb6d283 1583
2bb6d283 1584out:
932f4a63
IW
1585 if (vmas_tmp != vmas)
1586 kfree(vmas_tmp);
2bb6d283
DW
1587 return rc;
1588}
932f4a63
IW
1589#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
1590static __always_inline long __gup_longterm_locked(struct task_struct *tsk,
1591 struct mm_struct *mm,
1592 unsigned long start,
1593 unsigned long nr_pages,
1594 struct page **pages,
1595 struct vm_area_struct **vmas,
1596 unsigned int flags)
1597{
1598 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
1599 NULL, flags);
1600}
1601#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1602
1603/*
1604 * This is the same as get_user_pages_remote(), just with a
1605 * less-flexible calling convention where we assume that the task
1606 * and mm being operated on are the current task's and don't allow
1607 * passing of a locked parameter. We also obviously don't pass
1608 * FOLL_REMOTE in here.
1609 */
1610long get_user_pages(unsigned long start, unsigned long nr_pages,
1611 unsigned int gup_flags, struct page **pages,
1612 struct vm_area_struct **vmas)
1613{
1614 return __gup_longterm_locked(current, current->mm, start, nr_pages,
1615 pages, vmas, gup_flags | FOLL_TOUCH);
1616}
1617EXPORT_SYMBOL(get_user_pages);
2bb6d283 1618
d3649f68
CH
1619/*
1620 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1621 * paths better by using either get_user_pages_locked() or
1622 * get_user_pages_unlocked().
acc3c8d1 1623 *
d3649f68 1624 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1625 *
d3649f68
CH
1626 * down_read(&mm->mmap_sem);
1627 * do_something()
1628 * get_user_pages(tsk, mm, ..., pages, NULL);
1629 * up_read(&mm->mmap_sem);
acc3c8d1 1630 *
d3649f68 1631 * to:
acc3c8d1 1632 *
d3649f68
CH
1633 * int locked = 1;
1634 * down_read(&mm->mmap_sem);
1635 * do_something()
1636 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
1637 * if (locked)
1638 * up_read(&mm->mmap_sem);
acc3c8d1 1639 */
d3649f68
CH
1640long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1641 unsigned int gup_flags, struct page **pages,
1642 int *locked)
acc3c8d1 1643{
acc3c8d1 1644 /*
d3649f68
CH
1645 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1646 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1647 * vmas. As there are no users of this flag in this call we simply
1648 * disallow this option for now.
acc3c8d1 1649 */
d3649f68
CH
1650 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1651 return -EINVAL;
acc3c8d1 1652
d3649f68
CH
1653 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1654 pages, NULL, locked,
1655 gup_flags | FOLL_TOUCH);
acc3c8d1 1656}
d3649f68 1657EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1658
1659/*
d3649f68 1660 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1661 *
d3649f68
CH
1662 * down_read(&mm->mmap_sem);
1663 * get_user_pages(tsk, mm, ..., pages, NULL);
1664 * up_read(&mm->mmap_sem);
1665 *
1666 * with:
1667 *
1668 * get_user_pages_unlocked(tsk, mm, ..., pages);
1669 *
1670 * It is functionally equivalent to get_user_pages_fast so
1671 * get_user_pages_fast should be used instead if specific gup_flags
1672 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1673 */
d3649f68
CH
1674long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1675 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1676{
1677 struct mm_struct *mm = current->mm;
d3649f68
CH
1678 int locked = 1;
1679 long ret;
acc3c8d1 1680
d3649f68
CH
1681 /*
1682 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1683 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1684 * vmas. As there are no users of this flag in this call we simply
1685 * disallow this option for now.
1686 */
1687 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1688 return -EINVAL;
acc3c8d1 1689
d3649f68
CH
1690 down_read(&mm->mmap_sem);
1691 ret = __get_user_pages_locked(current, mm, start, nr_pages, pages, NULL,
1692 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1
KS
1693 if (locked)
1694 up_read(&mm->mmap_sem);
d3649f68 1695 return ret;
4bbd4c77 1696}
d3649f68 1697EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
1698
1699/*
67a929e0 1700 * Fast GUP
2667f50e
SC
1701 *
1702 * get_user_pages_fast attempts to pin user pages by walking the page
1703 * tables directly and avoids taking locks. Thus the walker needs to be
1704 * protected from page table pages being freed from under it, and should
1705 * block any THP splits.
1706 *
1707 * One way to achieve this is to have the walker disable interrupts, and
1708 * rely on IPIs from the TLB flushing code blocking before the page table
1709 * pages are freed. This is unsuitable for architectures that do not need
1710 * to broadcast an IPI when invalidating TLBs.
1711 *
1712 * Another way to achieve this is to batch up page table containing pages
1713 * belonging to more than one mm_user, then rcu_sched a callback to free those
1714 * pages. Disabling interrupts will allow the fast_gup walker to both block
1715 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1716 * (which is a relatively rare event). The code below adopts this strategy.
1717 *
1718 * Before activating this code, please be aware that the following assumptions
1719 * are currently made:
1720 *
e585513b
KS
1721 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1722 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1723 *
2667f50e
SC
1724 * *) ptes can be read atomically by the architecture.
1725 *
1726 * *) access_ok is sufficient to validate userspace address ranges.
1727 *
1728 * The last two assumptions can be relaxed by the addition of helper functions.
1729 *
1730 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1731 */
67a929e0 1732#ifdef CONFIG_HAVE_FAST_GUP
39656e83
CH
1733#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
1734/*
1735 * WARNING: only to be used in the get_user_pages_fast() implementation.
1736 *
1737 * With get_user_pages_fast(), we walk down the pagetables without taking any
1738 * locks. For this we would like to load the pointers atomically, but sometimes
1739 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
1740 * we do have is the guarantee that a PTE will only either go from not present
1741 * to present, or present to not present or both -- it will not switch to a
1742 * completely different present page without a TLB flush in between; something
1743 * that we are blocking by holding interrupts off.
1744 *
1745 * Setting ptes from not present to present goes:
1746 *
1747 * ptep->pte_high = h;
1748 * smp_wmb();
1749 * ptep->pte_low = l;
1750 *
1751 * And present to not present goes:
1752 *
1753 * ptep->pte_low = 0;
1754 * smp_wmb();
1755 * ptep->pte_high = 0;
1756 *
1757 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
1758 * We load pte_high *after* loading pte_low, which ensures we don't see an older
1759 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
1760 * picked up a changed pte high. We might have gotten rubbish values from
1761 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
1762 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
1763 * operates on present ptes we're safe.
1764 */
1765static inline pte_t gup_get_pte(pte_t *ptep)
1766{
1767 pte_t pte;
2667f50e 1768
39656e83
CH
1769 do {
1770 pte.pte_low = ptep->pte_low;
1771 smp_rmb();
1772 pte.pte_high = ptep->pte_high;
1773 smp_rmb();
1774 } while (unlikely(pte.pte_low != ptep->pte_low));
1775
1776 return pte;
1777}
1778#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1779/*
39656e83 1780 * We require that the PTE can be read atomically.
0005d20b
KS
1781 */
1782static inline pte_t gup_get_pte(pte_t *ptep)
1783{
1784 return READ_ONCE(*ptep);
1785}
39656e83 1786#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 1787
b59f65fa
KS
1788static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1789{
1790 while ((*nr) - nr_start) {
1791 struct page *page = pages[--(*nr)];
1792
1793 ClearPageReferenced(page);
1794 put_page(page);
1795 }
1796}
1797
8fde12ca
LT
1798/*
1799 * Return the compund head page with ref appropriately incremented,
1800 * or NULL if that failed.
1801 */
1802static inline struct page *try_get_compound_head(struct page *page, int refs)
1803{
1804 struct page *head = compound_head(page);
1805 if (WARN_ON_ONCE(page_ref_count(head) < 0))
1806 return NULL;
1807 if (unlikely(!page_cache_add_speculative(head, refs)))
1808 return NULL;
1809 return head;
1810}
1811
3010a5ea 1812#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 1813static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1814 unsigned int flags, struct page **pages, int *nr)
2667f50e 1815{
b59f65fa
KS
1816 struct dev_pagemap *pgmap = NULL;
1817 int nr_start = *nr, ret = 0;
2667f50e 1818 pte_t *ptep, *ptem;
2667f50e
SC
1819
1820 ptem = ptep = pte_offset_map(&pmd, addr);
1821 do {
0005d20b 1822 pte_t pte = gup_get_pte(ptep);
7aef4172 1823 struct page *head, *page;
2667f50e
SC
1824
1825 /*
1826 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1827 * path using the pte_protnone check.
2667f50e 1828 */
e7884f8e
KS
1829 if (pte_protnone(pte))
1830 goto pte_unmap;
1831
b798bec4 1832 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
1833 goto pte_unmap;
1834
b59f65fa 1835 if (pte_devmap(pte)) {
7af75561
IW
1836 if (unlikely(flags & FOLL_LONGTERM))
1837 goto pte_unmap;
1838
b59f65fa
KS
1839 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1840 if (unlikely(!pgmap)) {
1841 undo_dev_pagemap(nr, nr_start, pages);
1842 goto pte_unmap;
1843 }
1844 } else if (pte_special(pte))
2667f50e
SC
1845 goto pte_unmap;
1846
1847 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1848 page = pte_page(pte);
1849
8fde12ca
LT
1850 head = try_get_compound_head(page, 1);
1851 if (!head)
2667f50e
SC
1852 goto pte_unmap;
1853
1854 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1855 put_page(head);
2667f50e
SC
1856 goto pte_unmap;
1857 }
1858
7aef4172 1859 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053
KS
1860
1861 SetPageReferenced(page);
2667f50e
SC
1862 pages[*nr] = page;
1863 (*nr)++;
1864
1865 } while (ptep++, addr += PAGE_SIZE, addr != end);
1866
1867 ret = 1;
1868
1869pte_unmap:
832d7aa0
CH
1870 if (pgmap)
1871 put_dev_pagemap(pgmap);
2667f50e
SC
1872 pte_unmap(ptem);
1873 return ret;
1874}
1875#else
1876
1877/*
1878 * If we can't determine whether or not a pte is special, then fail immediately
1879 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1880 * to be special.
1881 *
1882 * For a futex to be placed on a THP tail page, get_futex_key requires a
1883 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1884 * useful to have gup_huge_pmd even if we can't operate on ptes.
1885 */
1886static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 1887 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
1888{
1889 return 0;
1890}
3010a5ea 1891#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 1892
09180ca4 1893#if defined(__HAVE_ARCH_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa
KS
1894static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1895 unsigned long end, struct page **pages, int *nr)
1896{
1897 int nr_start = *nr;
1898 struct dev_pagemap *pgmap = NULL;
1899
1900 do {
1901 struct page *page = pfn_to_page(pfn);
1902
1903 pgmap = get_dev_pagemap(pfn, pgmap);
1904 if (unlikely(!pgmap)) {
1905 undo_dev_pagemap(nr, nr_start, pages);
1906 return 0;
1907 }
1908 SetPageReferenced(page);
1909 pages[*nr] = page;
1910 get_page(page);
b59f65fa
KS
1911 (*nr)++;
1912 pfn++;
1913 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
1914
1915 if (pgmap)
1916 put_dev_pagemap(pgmap);
b59f65fa
KS
1917 return 1;
1918}
1919
a9b6de77 1920static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1921 unsigned long end, struct page **pages, int *nr)
1922{
1923 unsigned long fault_pfn;
a9b6de77
DW
1924 int nr_start = *nr;
1925
1926 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1927 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1928 return 0;
b59f65fa 1929
a9b6de77
DW
1930 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1931 undo_dev_pagemap(nr, nr_start, pages);
1932 return 0;
1933 }
1934 return 1;
b59f65fa
KS
1935}
1936
a9b6de77 1937static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1938 unsigned long end, struct page **pages, int *nr)
1939{
1940 unsigned long fault_pfn;
a9b6de77
DW
1941 int nr_start = *nr;
1942
1943 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1944 if (!__gup_device_huge(fault_pfn, addr, end, pages, nr))
1945 return 0;
b59f65fa 1946
a9b6de77
DW
1947 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1948 undo_dev_pagemap(nr, nr_start, pages);
1949 return 0;
1950 }
1951 return 1;
b59f65fa
KS
1952}
1953#else
a9b6de77 1954static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b59f65fa
KS
1955 unsigned long end, struct page **pages, int *nr)
1956{
1957 BUILD_BUG();
1958 return 0;
1959}
1960
a9b6de77 1961static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
b59f65fa
KS
1962 unsigned long end, struct page **pages, int *nr)
1963{
1964 BUILD_BUG();
1965 return 0;
1966}
1967#endif
1968
cbd34da7
CH
1969#ifdef CONFIG_ARCH_HAS_HUGEPD
1970static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
1971 unsigned long sz)
1972{
1973 unsigned long __boundary = (addr + sz) & ~(sz-1);
1974 return (__boundary - 1 < end - 1) ? __boundary : end;
1975}
1976
1977static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
1978 unsigned long end, int write, struct page **pages, int *nr)
1979{
1980 unsigned long pte_end;
1981 struct page *head, *page;
1982 pte_t pte;
1983 int refs;
1984
1985 pte_end = (addr + sz) & ~(sz-1);
1986 if (pte_end < end)
1987 end = pte_end;
1988
1989 pte = READ_ONCE(*ptep);
1990
1991 if (!pte_access_permitted(pte, write))
1992 return 0;
1993
1994 /* hugepages are never "special" */
1995 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1996
1997 refs = 0;
1998 head = pte_page(pte);
1999
2000 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
2001 do {
2002 VM_BUG_ON(compound_head(page) != head);
2003 pages[*nr] = page;
2004 (*nr)++;
2005 page++;
2006 refs++;
2007 } while (addr += PAGE_SIZE, addr != end);
2008
01a36916
CH
2009 head = try_get_compound_head(head, refs);
2010 if (!head) {
cbd34da7
CH
2011 *nr -= refs;
2012 return 0;
2013 }
2014
2015 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
2016 /* Could be optimized better */
2017 *nr -= refs;
2018 while (refs--)
2019 put_page(head);
2020 return 0;
2021 }
2022
2023 return 1;
2024}
2025
2026static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2027 unsigned int pdshift, unsigned long end, int write,
2028 struct page **pages, int *nr)
2029{
2030 pte_t *ptep;
2031 unsigned long sz = 1UL << hugepd_shift(hugepd);
2032 unsigned long next;
2033
2034 ptep = hugepte_offset(hugepd, addr, pdshift);
2035 do {
2036 next = hugepte_addr_end(addr, end, sz);
2037 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
2038 return 0;
2039 } while (ptep++, addr = next, addr != end);
2040
2041 return 1;
2042}
2043#else
2044static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
2045 unsigned pdshift, unsigned long end, int write,
2046 struct page **pages, int *nr)
2047{
2048 return 0;
2049}
2050#endif /* CONFIG_ARCH_HAS_HUGEPD */
2051
2667f50e 2052static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
b798bec4 2053 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 2054{
ddc58f27 2055 struct page *head, *page;
2667f50e
SC
2056 int refs;
2057
b798bec4 2058 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2059 return 0;
2060
7af75561
IW
2061 if (pmd_devmap(orig)) {
2062 if (unlikely(flags & FOLL_LONGTERM))
2063 return 0;
a9b6de77 2064 return __gup_device_huge_pmd(orig, pmdp, addr, end, pages, nr);
7af75561 2065 }
b59f65fa 2066
2667f50e 2067 refs = 0;
d63206ee 2068 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e 2069 do {
2667f50e
SC
2070 pages[*nr] = page;
2071 (*nr)++;
2072 page++;
2073 refs++;
2074 } while (addr += PAGE_SIZE, addr != end);
2075
8fde12ca
LT
2076 head = try_get_compound_head(pmd_page(orig), refs);
2077 if (!head) {
2667f50e
SC
2078 *nr -= refs;
2079 return 0;
2080 }
2081
2082 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
2083 *nr -= refs;
2084 while (refs--)
2085 put_page(head);
2086 return 0;
2087 }
2088
e9348053 2089 SetPageReferenced(head);
2667f50e
SC
2090 return 1;
2091}
2092
2093static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
b798bec4 2094 unsigned long end, unsigned int flags, struct page **pages, int *nr)
2667f50e 2095{
ddc58f27 2096 struct page *head, *page;
2667f50e
SC
2097 int refs;
2098
b798bec4 2099 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2100 return 0;
2101
7af75561
IW
2102 if (pud_devmap(orig)) {
2103 if (unlikely(flags & FOLL_LONGTERM))
2104 return 0;
a9b6de77 2105 return __gup_device_huge_pud(orig, pudp, addr, end, pages, nr);
7af75561 2106 }
b59f65fa 2107
2667f50e 2108 refs = 0;
d63206ee 2109 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e 2110 do {
2667f50e
SC
2111 pages[*nr] = page;
2112 (*nr)++;
2113 page++;
2114 refs++;
2115 } while (addr += PAGE_SIZE, addr != end);
2116
8fde12ca
LT
2117 head = try_get_compound_head(pud_page(orig), refs);
2118 if (!head) {
2667f50e
SC
2119 *nr -= refs;
2120 return 0;
2121 }
2122
2123 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
2124 *nr -= refs;
2125 while (refs--)
2126 put_page(head);
2127 return 0;
2128 }
2129
e9348053 2130 SetPageReferenced(head);
2667f50e
SC
2131 return 1;
2132}
2133
f30c59e9 2134static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2135 unsigned long end, unsigned int flags,
f30c59e9
AK
2136 struct page **pages, int *nr)
2137{
2138 int refs;
ddc58f27 2139 struct page *head, *page;
f30c59e9 2140
b798bec4 2141 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2142 return 0;
2143
b59f65fa 2144 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9 2145 refs = 0;
d63206ee 2146 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9 2147 do {
f30c59e9
AK
2148 pages[*nr] = page;
2149 (*nr)++;
2150 page++;
2151 refs++;
2152 } while (addr += PAGE_SIZE, addr != end);
2153
8fde12ca
LT
2154 head = try_get_compound_head(pgd_page(orig), refs);
2155 if (!head) {
f30c59e9
AK
2156 *nr -= refs;
2157 return 0;
2158 }
2159
2160 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
2161 *nr -= refs;
2162 while (refs--)
2163 put_page(head);
2164 return 0;
2165 }
2166
e9348053 2167 SetPageReferenced(head);
f30c59e9
AK
2168 return 1;
2169}
2170
2667f50e 2171static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2172 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2173{
2174 unsigned long next;
2175 pmd_t *pmdp;
2176
2177 pmdp = pmd_offset(&pud, addr);
2178 do {
38c5ce93 2179 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2180
2181 next = pmd_addr_end(addr, end);
84c3fc4e 2182 if (!pmd_present(pmd))
2667f50e
SC
2183 return 0;
2184
414fd080
YZ
2185 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2186 pmd_devmap(pmd))) {
2667f50e
SC
2187 /*
2188 * NUMA hinting faults need to be handled in the GUP
2189 * slowpath for accounting purposes and so that they
2190 * can be serialised against THP migration.
2191 */
8a0516ed 2192 if (pmd_protnone(pmd))
2667f50e
SC
2193 return 0;
2194
b798bec4 2195 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2196 pages, nr))
2197 return 0;
2198
f30c59e9
AK
2199 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2200 /*
2201 * architecture have different format for hugetlbfs
2202 * pmd format and THP pmd format
2203 */
2204 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2205 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2206 return 0;
b798bec4 2207 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2208 return 0;
2667f50e
SC
2209 } while (pmdp++, addr = next, addr != end);
2210
2211 return 1;
2212}
2213
c2febafc 2214static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2215 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2216{
2217 unsigned long next;
2218 pud_t *pudp;
2219
c2febafc 2220 pudp = pud_offset(&p4d, addr);
2667f50e 2221 do {
e37c6982 2222 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2223
2224 next = pud_addr_end(addr, end);
2225 if (pud_none(pud))
2226 return 0;
f30c59e9 2227 if (unlikely(pud_huge(pud))) {
b798bec4 2228 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2229 pages, nr))
2230 return 0;
2231 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2232 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2233 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2234 return 0;
b798bec4 2235 } else if (!gup_pmd_range(pud, addr, next, flags, pages, nr))
2667f50e
SC
2236 return 0;
2237 } while (pudp++, addr = next, addr != end);
2238
2239 return 1;
2240}
2241
c2febafc 2242static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2243 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2244{
2245 unsigned long next;
2246 p4d_t *p4dp;
2247
2248 p4dp = p4d_offset(&pgd, addr);
2249 do {
2250 p4d_t p4d = READ_ONCE(*p4dp);
2251
2252 next = p4d_addr_end(addr, end);
2253 if (p4d_none(p4d))
2254 return 0;
2255 BUILD_BUG_ON(p4d_huge(p4d));
2256 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2257 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2258 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2259 return 0;
b798bec4 2260 } else if (!gup_pud_range(p4d, addr, next, flags, pages, nr))
c2febafc
KS
2261 return 0;
2262 } while (p4dp++, addr = next, addr != end);
2263
2264 return 1;
2265}
2266
5b65c467 2267static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2268 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2269{
2270 unsigned long next;
2271 pgd_t *pgdp;
2272
2273 pgdp = pgd_offset(current->mm, addr);
2274 do {
2275 pgd_t pgd = READ_ONCE(*pgdp);
2276
2277 next = pgd_addr_end(addr, end);
2278 if (pgd_none(pgd))
2279 return;
2280 if (unlikely(pgd_huge(pgd))) {
b798bec4 2281 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2282 pages, nr))
2283 return;
2284 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2285 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2286 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2287 return;
b798bec4 2288 } else if (!gup_p4d_range(pgd, addr, next, flags, pages, nr))
5b65c467
KS
2289 return;
2290 } while (pgdp++, addr = next, addr != end);
2291}
050a9adc
CH
2292#else
2293static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2294 unsigned int flags, struct page **pages, int *nr)
2295{
2296}
2297#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2298
2299#ifndef gup_fast_permitted
2300/*
2301 * Check if it's allowed to use __get_user_pages_fast() for the range, or
2302 * we need to fall back to the slow version:
2303 */
26f4c328 2304static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2305{
26f4c328 2306 return true;
5b65c467
KS
2307}
2308#endif
2309
2667f50e
SC
2310/*
2311 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
d0811078
MT
2312 * the regular GUP.
2313 * Note a difference with get_user_pages_fast: this always returns the
2314 * number of pages pinned, 0 if no pages were pinned.
050a9adc
CH
2315 *
2316 * If the architecture does not support this function, simply return with no
2317 * pages pinned.
2667f50e
SC
2318 */
2319int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
2320 struct page **pages)
2321{
d4faa402 2322 unsigned long len, end;
5b65c467 2323 unsigned long flags;
2667f50e
SC
2324 int nr = 0;
2325
f455c854 2326 start = untagged_addr(start) & PAGE_MASK;
2667f50e
SC
2327 len = (unsigned long) nr_pages << PAGE_SHIFT;
2328 end = start + len;
2329
26f4c328
CH
2330 if (end <= start)
2331 return 0;
96d4f267 2332 if (unlikely(!access_ok((void __user *)start, len)))
2667f50e
SC
2333 return 0;
2334
2335 /*
2336 * Disable interrupts. We use the nested form as we can already have
2337 * interrupts disabled by get_futex_key.
2338 *
2339 * With interrupts disabled, we block page table pages from being
2ebe8228
FW
2340 * freed from under us. See struct mmu_table_batch comments in
2341 * include/asm-generic/tlb.h for more details.
2667f50e
SC
2342 *
2343 * We do not adopt an rcu_read_lock(.) here as we also want to
2344 * block IPIs that come from THPs splitting.
2345 */
2346
050a9adc
CH
2347 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2348 gup_fast_permitted(start, end)) {
5b65c467 2349 local_irq_save(flags);
b798bec4 2350 gup_pgd_range(start, end, write ? FOLL_WRITE : 0, pages, &nr);
5b65c467
KS
2351 local_irq_restore(flags);
2352 }
2667f50e
SC
2353
2354 return nr;
2355}
050a9adc 2356EXPORT_SYMBOL_GPL(__get_user_pages_fast);
2667f50e 2357
7af75561
IW
2358static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2359 unsigned int gup_flags, struct page **pages)
2360{
2361 int ret;
2362
2363 /*
2364 * FIXME: FOLL_LONGTERM does not work with
2365 * get_user_pages_unlocked() (see comments in that function)
2366 */
2367 if (gup_flags & FOLL_LONGTERM) {
2368 down_read(&current->mm->mmap_sem);
2369 ret = __gup_longterm_locked(current, current->mm,
2370 start, nr_pages,
2371 pages, NULL, gup_flags);
2372 up_read(&current->mm->mmap_sem);
2373 } else {
2374 ret = get_user_pages_unlocked(start, nr_pages,
2375 pages, gup_flags);
2376 }
2377
2378 return ret;
2379}
2380
2667f50e
SC
2381/**
2382 * get_user_pages_fast() - pin user pages in memory
2383 * @start: starting user address
2384 * @nr_pages: number of pages from start to pin
73b0140b 2385 * @gup_flags: flags modifying pin behaviour
2667f50e
SC
2386 * @pages: array that receives pointers to the pages pinned.
2387 * Should be at least nr_pages long.
2388 *
2389 * Attempt to pin user pages in memory without taking mm->mmap_sem.
2390 * If not successful, it will fall back to taking the lock and
2391 * calling get_user_pages().
2392 *
2393 * Returns number of pages pinned. This may be fewer than the number
2394 * requested. If nr_pages is 0 or negative, returns 0. If no pages
2395 * were pinned, returns -errno.
2396 */
73b0140b
IW
2397int get_user_pages_fast(unsigned long start, int nr_pages,
2398 unsigned int gup_flags, struct page **pages)
2667f50e 2399{
5b65c467 2400 unsigned long addr, len, end;
73e10a61 2401 int nr = 0, ret = 0;
2667f50e 2402
817be129
CH
2403 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM)))
2404 return -EINVAL;
2405
f455c854 2406 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2407 addr = start;
2408 len = (unsigned long) nr_pages << PAGE_SHIFT;
2409 end = start + len;
2410
26f4c328 2411 if (end <= start)
c61611f7 2412 return 0;
96d4f267 2413 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2414 return -EFAULT;
73e10a61 2415
050a9adc
CH
2416 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) &&
2417 gup_fast_permitted(start, end)) {
5b65c467 2418 local_irq_disable();
73b0140b 2419 gup_pgd_range(addr, end, gup_flags, pages, &nr);
5b65c467 2420 local_irq_enable();
73e10a61
KS
2421 ret = nr;
2422 }
2667f50e
SC
2423
2424 if (nr < nr_pages) {
2425 /* Try to get the remaining pages with get_user_pages */
2426 start += nr << PAGE_SHIFT;
2427 pages += nr;
2428
7af75561
IW
2429 ret = __gup_longterm_unlocked(start, nr_pages - nr,
2430 gup_flags, pages);
2667f50e
SC
2431
2432 /* Have to be a bit careful with return values */
2433 if (nr > 0) {
2434 if (ret < 0)
2435 ret = nr;
2436 else
2437 ret += nr;
2438 }
2439 }
2440
2441 return ret;
2442}
050a9adc 2443EXPORT_SYMBOL_GPL(get_user_pages_fast);