]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/gup.c
x86/mm/pkeys: Optimize fault handling in access_error()
[mirror_ubuntu-bionic-kernel.git] / mm / gup.c
CommitLineData
cde70140 1#define __DISABLE_GUP_DEPRECATED 1
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
2667f50e
SC
14#include <linux/sched.h>
15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
1027e443 17
33a709b2 18#include <asm/mmu_context.h>
2667f50e 19#include <asm/pgtable.h>
1027e443 20#include <asm/tlbflush.h>
2667f50e 21
4bbd4c77
KS
22#include "internal.h"
23
69e68b4f
KS
24static struct page *no_page_table(struct vm_area_struct *vma,
25 unsigned int flags)
4bbd4c77 26{
69e68b4f
KS
27 /*
28 * When core dumping an enormous anonymous area that nobody
29 * has touched so far, we don't want to allocate unnecessary pages or
30 * page tables. Return error instead of NULL to skip handle_mm_fault,
31 * then get_dump_page() will return NULL to leave a hole in the dump.
32 * But we can only make this optimization where a hole would surely
33 * be zero-filled if handle_mm_fault() actually did handle it.
34 */
35 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
36 return ERR_PTR(-EFAULT);
37 return NULL;
38}
4bbd4c77 39
1027e443
KS
40static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
41 pte_t *pte, unsigned int flags)
42{
43 /* No page to get reference */
44 if (flags & FOLL_GET)
45 return -EFAULT;
46
47 if (flags & FOLL_TOUCH) {
48 pte_t entry = *pte;
49
50 if (flags & FOLL_WRITE)
51 entry = pte_mkdirty(entry);
52 entry = pte_mkyoung(entry);
53
54 if (!pte_same(*pte, entry)) {
55 set_pte_at(vma->vm_mm, address, pte, entry);
56 update_mmu_cache(vma, address, pte);
57 }
58 }
59
60 /* Proper page table entry exists, but no corresponding struct page */
61 return -EEXIST;
62}
63
69e68b4f
KS
64static struct page *follow_page_pte(struct vm_area_struct *vma,
65 unsigned long address, pmd_t *pmd, unsigned int flags)
66{
67 struct mm_struct *mm = vma->vm_mm;
3565fce3 68 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
69 struct page *page;
70 spinlock_t *ptl;
71 pte_t *ptep, pte;
4bbd4c77 72
69e68b4f 73retry:
4bbd4c77 74 if (unlikely(pmd_bad(*pmd)))
69e68b4f 75 return no_page_table(vma, flags);
4bbd4c77
KS
76
77 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
78 pte = *ptep;
79 if (!pte_present(pte)) {
80 swp_entry_t entry;
81 /*
82 * KSM's break_ksm() relies upon recognizing a ksm page
83 * even while it is being migrated, so for that case we
84 * need migration_entry_wait().
85 */
86 if (likely(!(flags & FOLL_MIGRATION)))
87 goto no_page;
0661a336 88 if (pte_none(pte))
4bbd4c77
KS
89 goto no_page;
90 entry = pte_to_swp_entry(pte);
91 if (!is_migration_entry(entry))
92 goto no_page;
93 pte_unmap_unlock(ptep, ptl);
94 migration_entry_wait(mm, pmd, address);
69e68b4f 95 goto retry;
4bbd4c77 96 }
8a0516ed 97 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 98 goto no_page;
69e68b4f
KS
99 if ((flags & FOLL_WRITE) && !pte_write(pte)) {
100 pte_unmap_unlock(ptep, ptl);
101 return NULL;
102 }
4bbd4c77
KS
103
104 page = vm_normal_page(vma, address, pte);
3565fce3
DW
105 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
106 /*
107 * Only return device mapping pages in the FOLL_GET case since
108 * they are only valid while holding the pgmap reference.
109 */
110 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
111 if (pgmap)
112 page = pte_page(pte);
113 else
114 goto no_page;
115 } else if (unlikely(!page)) {
1027e443
KS
116 if (flags & FOLL_DUMP) {
117 /* Avoid special (like zero) pages in core dumps */
118 page = ERR_PTR(-EFAULT);
119 goto out;
120 }
121
122 if (is_zero_pfn(pte_pfn(pte))) {
123 page = pte_page(pte);
124 } else {
125 int ret;
126
127 ret = follow_pfn_pte(vma, address, ptep, flags);
128 page = ERR_PTR(ret);
129 goto out;
130 }
4bbd4c77
KS
131 }
132
6742d293
KS
133 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
134 int ret;
135 get_page(page);
136 pte_unmap_unlock(ptep, ptl);
137 lock_page(page);
138 ret = split_huge_page(page);
139 unlock_page(page);
140 put_page(page);
141 if (ret)
142 return ERR_PTR(ret);
143 goto retry;
144 }
145
3565fce3 146 if (flags & FOLL_GET) {
ddc58f27 147 get_page(page);
3565fce3
DW
148
149 /* drop the pgmap reference now that we hold the page */
150 if (pgmap) {
151 put_dev_pagemap(pgmap);
152 pgmap = NULL;
153 }
154 }
4bbd4c77
KS
155 if (flags & FOLL_TOUCH) {
156 if ((flags & FOLL_WRITE) &&
157 !pte_dirty(pte) && !PageDirty(page))
158 set_page_dirty(page);
159 /*
160 * pte_mkyoung() would be more correct here, but atomic care
161 * is needed to avoid losing the dirty bit: it is easier to use
162 * mark_page_accessed().
163 */
164 mark_page_accessed(page);
165 }
de60f5f1 166 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
167 /* Do not mlock pte-mapped THP */
168 if (PageTransCompound(page))
169 goto out;
170
4bbd4c77
KS
171 /*
172 * The preliminary mapping check is mainly to avoid the
173 * pointless overhead of lock_page on the ZERO_PAGE
174 * which might bounce very badly if there is contention.
175 *
176 * If the page is already locked, we don't need to
177 * handle it now - vmscan will handle it later if and
178 * when it attempts to reclaim the page.
179 */
180 if (page->mapping && trylock_page(page)) {
181 lru_add_drain(); /* push cached pages to LRU */
182 /*
183 * Because we lock page here, and migration is
184 * blocked by the pte's page reference, and we
185 * know the page is still mapped, we don't even
186 * need to check for file-cache page truncation.
187 */
188 mlock_vma_page(page);
189 unlock_page(page);
190 }
191 }
1027e443 192out:
4bbd4c77 193 pte_unmap_unlock(ptep, ptl);
4bbd4c77 194 return page;
4bbd4c77
KS
195no_page:
196 pte_unmap_unlock(ptep, ptl);
197 if (!pte_none(pte))
69e68b4f
KS
198 return NULL;
199 return no_page_table(vma, flags);
200}
201
202/**
203 * follow_page_mask - look up a page descriptor from a user-virtual address
204 * @vma: vm_area_struct mapping @address
205 * @address: virtual address to look up
206 * @flags: flags modifying lookup behaviour
207 * @page_mask: on output, *page_mask is set according to the size of the page
208 *
209 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
210 *
211 * Returns the mapped (struct page *), %NULL if no mapping exists, or
212 * an error pointer if there is a mapping to something not represented
213 * by a page descriptor (see also vm_normal_page()).
214 */
215struct page *follow_page_mask(struct vm_area_struct *vma,
216 unsigned long address, unsigned int flags,
217 unsigned int *page_mask)
218{
219 pgd_t *pgd;
220 pud_t *pud;
221 pmd_t *pmd;
222 spinlock_t *ptl;
223 struct page *page;
224 struct mm_struct *mm = vma->vm_mm;
225
226 *page_mask = 0;
227
228 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
229 if (!IS_ERR(page)) {
230 BUG_ON(flags & FOLL_GET);
4bbd4c77 231 return page;
69e68b4f 232 }
4bbd4c77 233
69e68b4f
KS
234 pgd = pgd_offset(mm, address);
235 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
236 return no_page_table(vma, flags);
237
238 pud = pud_offset(pgd, address);
239 if (pud_none(*pud))
240 return no_page_table(vma, flags);
241 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
242 page = follow_huge_pud(mm, address, pud, flags);
243 if (page)
244 return page;
245 return no_page_table(vma, flags);
69e68b4f
KS
246 }
247 if (unlikely(pud_bad(*pud)))
248 return no_page_table(vma, flags);
249
250 pmd = pmd_offset(pud, address);
251 if (pmd_none(*pmd))
252 return no_page_table(vma, flags);
253 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
254 page = follow_huge_pmd(mm, address, pmd, flags);
255 if (page)
256 return page;
257 return no_page_table(vma, flags);
69e68b4f 258 }
8a0516ed 259 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
69e68b4f 260 return no_page_table(vma, flags);
3565fce3
DW
261 if (pmd_devmap(*pmd)) {
262 ptl = pmd_lock(mm, pmd);
263 page = follow_devmap_pmd(vma, address, pmd, flags);
264 spin_unlock(ptl);
265 if (page)
266 return page;
267 }
6742d293
KS
268 if (likely(!pmd_trans_huge(*pmd)))
269 return follow_page_pte(vma, address, pmd, flags);
270
271 ptl = pmd_lock(mm, pmd);
272 if (unlikely(!pmd_trans_huge(*pmd))) {
273 spin_unlock(ptl);
274 return follow_page_pte(vma, address, pmd, flags);
275 }
6742d293
KS
276 if (flags & FOLL_SPLIT) {
277 int ret;
278 page = pmd_page(*pmd);
279 if (is_huge_zero_page(page)) {
280 spin_unlock(ptl);
281 ret = 0;
78ddc534 282 split_huge_pmd(vma, pmd, address);
6742d293
KS
283 } else {
284 get_page(page);
69e68b4f 285 spin_unlock(ptl);
6742d293
KS
286 lock_page(page);
287 ret = split_huge_page(page);
288 unlock_page(page);
289 put_page(page);
290 }
291
292 return ret ? ERR_PTR(ret) :
293 follow_page_pte(vma, address, pmd, flags);
69e68b4f 294 }
6742d293
KS
295
296 page = follow_trans_huge_pmd(vma, address, pmd, flags);
297 spin_unlock(ptl);
298 *page_mask = HPAGE_PMD_NR - 1;
299 return page;
4bbd4c77
KS
300}
301
f2b495ca
KS
302static int get_gate_page(struct mm_struct *mm, unsigned long address,
303 unsigned int gup_flags, struct vm_area_struct **vma,
304 struct page **page)
305{
306 pgd_t *pgd;
307 pud_t *pud;
308 pmd_t *pmd;
309 pte_t *pte;
310 int ret = -EFAULT;
311
312 /* user gate pages are read-only */
313 if (gup_flags & FOLL_WRITE)
314 return -EFAULT;
315 if (address > TASK_SIZE)
316 pgd = pgd_offset_k(address);
317 else
318 pgd = pgd_offset_gate(mm, address);
319 BUG_ON(pgd_none(*pgd));
320 pud = pud_offset(pgd, address);
321 BUG_ON(pud_none(*pud));
322 pmd = pmd_offset(pud, address);
323 if (pmd_none(*pmd))
324 return -EFAULT;
325 VM_BUG_ON(pmd_trans_huge(*pmd));
326 pte = pte_offset_map(pmd, address);
327 if (pte_none(*pte))
328 goto unmap;
329 *vma = get_gate_vma(mm);
330 if (!page)
331 goto out;
332 *page = vm_normal_page(*vma, address, *pte);
333 if (!*page) {
334 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
335 goto unmap;
336 *page = pte_page(*pte);
337 }
338 get_page(*page);
339out:
340 ret = 0;
341unmap:
342 pte_unmap(pte);
343 return ret;
344}
345
9a95f3cf
PC
346/*
347 * mmap_sem must be held on entry. If @nonblocking != NULL and
348 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
349 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
350 */
16744483
KS
351static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
352 unsigned long address, unsigned int *flags, int *nonblocking)
353{
354 struct mm_struct *mm = vma->vm_mm;
355 unsigned int fault_flags = 0;
356 int ret;
357
de60f5f1
EM
358 /* mlock all present pages, but do not fault in new pages */
359 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
360 return -ENOENT;
84d33df2
KS
361 /* For mm_populate(), just skip the stack guard page. */
362 if ((*flags & FOLL_POPULATE) &&
16744483
KS
363 (stack_guard_page_start(vma, address) ||
364 stack_guard_page_end(vma, address + PAGE_SIZE)))
365 return -ENOENT;
366 if (*flags & FOLL_WRITE)
367 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
368 if (*flags & FOLL_REMOTE)
369 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
370 if (nonblocking)
371 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
372 if (*flags & FOLL_NOWAIT)
373 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
374 if (*flags & FOLL_TRIED) {
375 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
376 fault_flags |= FAULT_FLAG_TRIED;
377 }
16744483
KS
378
379 ret = handle_mm_fault(mm, vma, address, fault_flags);
380 if (ret & VM_FAULT_ERROR) {
381 if (ret & VM_FAULT_OOM)
382 return -ENOMEM;
383 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
384 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
33692f27 385 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
16744483
KS
386 return -EFAULT;
387 BUG();
388 }
389
390 if (tsk) {
391 if (ret & VM_FAULT_MAJOR)
392 tsk->maj_flt++;
393 else
394 tsk->min_flt++;
395 }
396
397 if (ret & VM_FAULT_RETRY) {
398 if (nonblocking)
399 *nonblocking = 0;
400 return -EBUSY;
401 }
402
403 /*
404 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
405 * necessary, even if maybe_mkwrite decided not to set pte_write. We
406 * can thus safely do subsequent page lookups as if they were reads.
407 * But only do so when looping for pte_write is futile: in some cases
408 * userspace may also be wanting to write to the gotten user page,
409 * which a read fault here might prevent (a readonly page might get
410 * reCOWed by userspace write).
411 */
412 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
413 *flags &= ~FOLL_WRITE;
414 return 0;
415}
416
fa5bb209
KS
417static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
418{
419 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
420 int write = (gup_flags & FOLL_WRITE);
421 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
422
423 if (vm_flags & (VM_IO | VM_PFNMAP))
424 return -EFAULT;
425
1b2ee126 426 if (write) {
fa5bb209
KS
427 if (!(vm_flags & VM_WRITE)) {
428 if (!(gup_flags & FOLL_FORCE))
429 return -EFAULT;
430 /*
431 * We used to let the write,force case do COW in a
432 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
433 * set a breakpoint in a read-only mapping of an
434 * executable, without corrupting the file (yet only
435 * when that file had been opened for writing!).
436 * Anon pages in shared mappings are surprising: now
437 * just reject it.
438 */
46435364 439 if (!is_cow_mapping(vm_flags))
fa5bb209 440 return -EFAULT;
fa5bb209
KS
441 }
442 } else if (!(vm_flags & VM_READ)) {
443 if (!(gup_flags & FOLL_FORCE))
444 return -EFAULT;
445 /*
446 * Is there actually any vma we can reach here which does not
447 * have VM_MAYREAD set?
448 */
449 if (!(vm_flags & VM_MAYREAD))
450 return -EFAULT;
451 }
1b2ee126 452 if (!arch_vma_access_permitted(vma, write, foreign))
33a709b2 453 return -EFAULT;
fa5bb209
KS
454 return 0;
455}
456
4bbd4c77
KS
457/**
458 * __get_user_pages() - pin user pages in memory
459 * @tsk: task_struct of target task
460 * @mm: mm_struct of target mm
461 * @start: starting user address
462 * @nr_pages: number of pages from start to pin
463 * @gup_flags: flags modifying pin behaviour
464 * @pages: array that receives pointers to the pages pinned.
465 * Should be at least nr_pages long. Or NULL, if caller
466 * only intends to ensure the pages are faulted in.
467 * @vmas: array of pointers to vmas corresponding to each page.
468 * Or NULL if the caller does not require them.
469 * @nonblocking: whether waiting for disk IO or mmap_sem contention
470 *
471 * Returns number of pages pinned. This may be fewer than the number
472 * requested. If nr_pages is 0 or negative, returns 0. If no pages
473 * were pinned, returns -errno. Each page returned must be released
474 * with a put_page() call when it is finished with. vmas will only
475 * remain valid while mmap_sem is held.
476 *
9a95f3cf 477 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
478 *
479 * __get_user_pages walks a process's page tables and takes a reference to
480 * each struct page that each user address corresponds to at a given
481 * instant. That is, it takes the page that would be accessed if a user
482 * thread accesses the given user virtual address at that instant.
483 *
484 * This does not guarantee that the page exists in the user mappings when
485 * __get_user_pages returns, and there may even be a completely different
486 * page there in some cases (eg. if mmapped pagecache has been invalidated
487 * and subsequently re faulted). However it does guarantee that the page
488 * won't be freed completely. And mostly callers simply care that the page
489 * contains data that was valid *at some point in time*. Typically, an IO
490 * or similar operation cannot guarantee anything stronger anyway because
491 * locks can't be held over the syscall boundary.
492 *
493 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
494 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
495 * appropriate) must be called after the page is finished with, and
496 * before put_page is called.
497 *
498 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
499 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
500 * *@nonblocking will be set to 0. Further, if @gup_flags does not
501 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
502 * this case.
503 *
504 * A caller using such a combination of @nonblocking and @gup_flags
505 * must therefore hold the mmap_sem for reading only, and recognize
506 * when it's been released. Otherwise, it must be held for either
507 * reading or writing and will not be released.
4bbd4c77
KS
508 *
509 * In most cases, get_user_pages or get_user_pages_fast should be used
510 * instead of __get_user_pages. __get_user_pages should be used only if
511 * you need some special @gup_flags.
512 */
513long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
514 unsigned long start, unsigned long nr_pages,
515 unsigned int gup_flags, struct page **pages,
516 struct vm_area_struct **vmas, int *nonblocking)
517{
fa5bb209 518 long i = 0;
4bbd4c77 519 unsigned int page_mask;
fa5bb209 520 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
521
522 if (!nr_pages)
523 return 0;
524
525 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
526
527 /*
528 * If FOLL_FORCE is set then do not force a full fault as the hinting
529 * fault information is unrelated to the reference behaviour of a task
530 * using the address space
531 */
532 if (!(gup_flags & FOLL_FORCE))
533 gup_flags |= FOLL_NUMA;
534
4bbd4c77 535 do {
fa5bb209
KS
536 struct page *page;
537 unsigned int foll_flags = gup_flags;
538 unsigned int page_increm;
539
540 /* first iteration or cross vma bound */
541 if (!vma || start >= vma->vm_end) {
542 vma = find_extend_vma(mm, start);
543 if (!vma && in_gate_area(mm, start)) {
544 int ret;
545 ret = get_gate_page(mm, start & PAGE_MASK,
546 gup_flags, &vma,
547 pages ? &pages[i] : NULL);
548 if (ret)
549 return i ? : ret;
550 page_mask = 0;
551 goto next_page;
552 }
4bbd4c77 553
fa5bb209
KS
554 if (!vma || check_vma_flags(vma, gup_flags))
555 return i ? : -EFAULT;
556 if (is_vm_hugetlb_page(vma)) {
557 i = follow_hugetlb_page(mm, vma, pages, vmas,
558 &start, &nr_pages, i,
559 gup_flags);
560 continue;
4bbd4c77 561 }
fa5bb209
KS
562 }
563retry:
564 /*
565 * If we have a pending SIGKILL, don't keep faulting pages and
566 * potentially allocating memory.
567 */
568 if (unlikely(fatal_signal_pending(current)))
569 return i ? i : -ERESTARTSYS;
570 cond_resched();
571 page = follow_page_mask(vma, start, foll_flags, &page_mask);
572 if (!page) {
573 int ret;
574 ret = faultin_page(tsk, vma, start, &foll_flags,
575 nonblocking);
576 switch (ret) {
577 case 0:
578 goto retry;
579 case -EFAULT:
580 case -ENOMEM:
581 case -EHWPOISON:
582 return i ? i : ret;
583 case -EBUSY:
584 return i;
585 case -ENOENT:
586 goto next_page;
4bbd4c77 587 }
fa5bb209 588 BUG();
1027e443
KS
589 } else if (PTR_ERR(page) == -EEXIST) {
590 /*
591 * Proper page table entry exists, but no corresponding
592 * struct page.
593 */
594 goto next_page;
595 } else if (IS_ERR(page)) {
fa5bb209 596 return i ? i : PTR_ERR(page);
1027e443 597 }
fa5bb209
KS
598 if (pages) {
599 pages[i] = page;
600 flush_anon_page(vma, page, start);
601 flush_dcache_page(page);
602 page_mask = 0;
4bbd4c77 603 }
4bbd4c77 604next_page:
fa5bb209
KS
605 if (vmas) {
606 vmas[i] = vma;
607 page_mask = 0;
608 }
609 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
610 if (page_increm > nr_pages)
611 page_increm = nr_pages;
612 i += page_increm;
613 start += page_increm * PAGE_SIZE;
614 nr_pages -= page_increm;
4bbd4c77
KS
615 } while (nr_pages);
616 return i;
4bbd4c77
KS
617}
618EXPORT_SYMBOL(__get_user_pages);
619
d4925e00
DH
620bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
621{
1b2ee126
DH
622 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
623 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 624 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
625
626 if (!(vm_flags & vma->vm_flags))
627 return false;
628
33a709b2
DH
629 /*
630 * The architecture might have a hardware protection
1b2ee126 631 * mechanism other than read/write that can deny access.
33a709b2 632 */
1b2ee126 633 if (!arch_vma_access_permitted(vma, write, foreign))
33a709b2
DH
634 return false;
635
d4925e00
DH
636 return true;
637}
638
4bbd4c77
KS
639/*
640 * fixup_user_fault() - manually resolve a user page fault
641 * @tsk: the task_struct to use for page fault accounting, or
642 * NULL if faults are not to be recorded.
643 * @mm: mm_struct of target mm
644 * @address: user address
645 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
646 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
647 * does not allow retry
4bbd4c77
KS
648 *
649 * This is meant to be called in the specific scenario where for locking reasons
650 * we try to access user memory in atomic context (within a pagefault_disable()
651 * section), this returns -EFAULT, and we want to resolve the user fault before
652 * trying again.
653 *
654 * Typically this is meant to be used by the futex code.
655 *
656 * The main difference with get_user_pages() is that this function will
657 * unconditionally call handle_mm_fault() which will in turn perform all the
658 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 659 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
660 *
661 * This is important for some architectures where those bits also gate the
662 * access permission to the page because they are maintained in software. On
663 * such architectures, gup() will not be enough to make a subsequent access
664 * succeed.
665 *
4a9e1cda
DD
666 * This function will not return with an unlocked mmap_sem. So it has not the
667 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
668 */
669int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
670 unsigned long address, unsigned int fault_flags,
671 bool *unlocked)
4bbd4c77
KS
672{
673 struct vm_area_struct *vma;
4a9e1cda
DD
674 int ret, major = 0;
675
676 if (unlocked)
677 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 678
4a9e1cda 679retry:
4bbd4c77
KS
680 vma = find_extend_vma(mm, address);
681 if (!vma || address < vma->vm_start)
682 return -EFAULT;
683
d4925e00 684 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
685 return -EFAULT;
686
687 ret = handle_mm_fault(mm, vma, address, fault_flags);
4a9e1cda 688 major |= ret & VM_FAULT_MAJOR;
4bbd4c77
KS
689 if (ret & VM_FAULT_ERROR) {
690 if (ret & VM_FAULT_OOM)
691 return -ENOMEM;
692 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
693 return -EHWPOISON;
33692f27 694 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4bbd4c77
KS
695 return -EFAULT;
696 BUG();
697 }
4a9e1cda
DD
698
699 if (ret & VM_FAULT_RETRY) {
700 down_read(&mm->mmap_sem);
701 if (!(fault_flags & FAULT_FLAG_TRIED)) {
702 *unlocked = true;
703 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
704 fault_flags |= FAULT_FLAG_TRIED;
705 goto retry;
706 }
707 }
708
4bbd4c77 709 if (tsk) {
4a9e1cda 710 if (major)
4bbd4c77
KS
711 tsk->maj_flt++;
712 else
713 tsk->min_flt++;
714 }
715 return 0;
716}
717
f0818f47
AA
718static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
719 struct mm_struct *mm,
720 unsigned long start,
721 unsigned long nr_pages,
722 int write, int force,
723 struct page **pages,
724 struct vm_area_struct **vmas,
0fd71a56
AA
725 int *locked, bool notify_drop,
726 unsigned int flags)
f0818f47 727{
f0818f47
AA
728 long ret, pages_done;
729 bool lock_dropped;
730
731 if (locked) {
732 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
733 BUG_ON(vmas);
734 /* check caller initialized locked */
735 BUG_ON(*locked != 1);
736 }
737
738 if (pages)
739 flags |= FOLL_GET;
740 if (write)
741 flags |= FOLL_WRITE;
742 if (force)
743 flags |= FOLL_FORCE;
744
745 pages_done = 0;
746 lock_dropped = false;
747 for (;;) {
748 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
749 vmas, locked);
750 if (!locked)
751 /* VM_FAULT_RETRY couldn't trigger, bypass */
752 return ret;
753
754 /* VM_FAULT_RETRY cannot return errors */
755 if (!*locked) {
756 BUG_ON(ret < 0);
757 BUG_ON(ret >= nr_pages);
758 }
759
760 if (!pages)
761 /* If it's a prefault don't insist harder */
762 return ret;
763
764 if (ret > 0) {
765 nr_pages -= ret;
766 pages_done += ret;
767 if (!nr_pages)
768 break;
769 }
770 if (*locked) {
771 /* VM_FAULT_RETRY didn't trigger */
772 if (!pages_done)
773 pages_done = ret;
774 break;
775 }
776 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
777 pages += ret;
778 start += ret << PAGE_SHIFT;
779
780 /*
781 * Repeat on the address that fired VM_FAULT_RETRY
782 * without FAULT_FLAG_ALLOW_RETRY but with
783 * FAULT_FLAG_TRIED.
784 */
785 *locked = 1;
786 lock_dropped = true;
787 down_read(&mm->mmap_sem);
788 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
789 pages, NULL, NULL);
790 if (ret != 1) {
791 BUG_ON(ret > 1);
792 if (!pages_done)
793 pages_done = ret;
794 break;
795 }
796 nr_pages--;
797 pages_done++;
798 if (!nr_pages)
799 break;
800 pages++;
801 start += PAGE_SIZE;
802 }
803 if (notify_drop && lock_dropped && *locked) {
804 /*
805 * We must let the caller know we temporarily dropped the lock
806 * and so the critical section protected by it was lost.
807 */
808 up_read(&mm->mmap_sem);
809 *locked = 0;
810 }
811 return pages_done;
812}
813
814/*
815 * We can leverage the VM_FAULT_RETRY functionality in the page fault
816 * paths better by using either get_user_pages_locked() or
817 * get_user_pages_unlocked().
818 *
819 * get_user_pages_locked() is suitable to replace the form:
820 *
821 * down_read(&mm->mmap_sem);
822 * do_something()
823 * get_user_pages(tsk, mm, ..., pages, NULL);
824 * up_read(&mm->mmap_sem);
825 *
826 * to:
827 *
828 * int locked = 1;
829 * down_read(&mm->mmap_sem);
830 * do_something()
831 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
832 * if (locked)
833 * up_read(&mm->mmap_sem);
834 */
cde70140 835long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
f0818f47
AA
836 int write, int force, struct page **pages,
837 int *locked)
838{
cde70140
DH
839 return __get_user_pages_locked(current, current->mm, start, nr_pages,
840 write, force, pages, NULL, locked, true,
841 FOLL_TOUCH);
f0818f47 842}
cde70140 843EXPORT_SYMBOL(get_user_pages_locked6);
f0818f47 844
0fd71a56
AA
845/*
846 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
847 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
848 *
849 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
850 * caller if required (just like with __get_user_pages). "FOLL_GET",
851 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
852 * according to the parameters "pages", "write", "force"
853 * respectively.
854 */
855__always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
856 unsigned long start, unsigned long nr_pages,
857 int write, int force, struct page **pages,
858 unsigned int gup_flags)
859{
860 long ret;
861 int locked = 1;
862 down_read(&mm->mmap_sem);
863 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
864 pages, NULL, &locked, false, gup_flags);
865 if (locked)
866 up_read(&mm->mmap_sem);
867 return ret;
868}
869EXPORT_SYMBOL(__get_user_pages_unlocked);
870
f0818f47
AA
871/*
872 * get_user_pages_unlocked() is suitable to replace the form:
873 *
874 * down_read(&mm->mmap_sem);
875 * get_user_pages(tsk, mm, ..., pages, NULL);
876 * up_read(&mm->mmap_sem);
877 *
878 * with:
879 *
880 * get_user_pages_unlocked(tsk, mm, ..., pages);
881 *
882 * It is functionally equivalent to get_user_pages_fast so
883 * get_user_pages_fast should be used instead, if the two parameters
884 * "tsk" and "mm" are respectively equal to current and current->mm,
885 * or if "force" shall be set to 1 (get_user_pages_fast misses the
886 * "force" parameter).
887 */
cde70140 888long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
f0818f47
AA
889 int write, int force, struct page **pages)
890{
cde70140
DH
891 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
892 write, force, pages, FOLL_TOUCH);
f0818f47 893}
cde70140 894EXPORT_SYMBOL(get_user_pages_unlocked5);
f0818f47 895
4bbd4c77 896/*
1e987790 897 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
898 * @tsk: the task_struct to use for page fault accounting, or
899 * NULL if faults are not to be recorded.
900 * @mm: mm_struct of target mm
901 * @start: starting user address
902 * @nr_pages: number of pages from start to pin
903 * @write: whether pages will be written to by the caller
904 * @force: whether to force access even when user mapping is currently
905 * protected (but never forces write access to shared mapping).
906 * @pages: array that receives pointers to the pages pinned.
907 * Should be at least nr_pages long. Or NULL, if caller
908 * only intends to ensure the pages are faulted in.
909 * @vmas: array of pointers to vmas corresponding to each page.
910 * Or NULL if the caller does not require them.
911 *
912 * Returns number of pages pinned. This may be fewer than the number
913 * requested. If nr_pages is 0 or negative, returns 0. If no pages
914 * were pinned, returns -errno. Each page returned must be released
915 * with a put_page() call when it is finished with. vmas will only
916 * remain valid while mmap_sem is held.
917 *
918 * Must be called with mmap_sem held for read or write.
919 *
920 * get_user_pages walks a process's page tables and takes a reference to
921 * each struct page that each user address corresponds to at a given
922 * instant. That is, it takes the page that would be accessed if a user
923 * thread accesses the given user virtual address at that instant.
924 *
925 * This does not guarantee that the page exists in the user mappings when
926 * get_user_pages returns, and there may even be a completely different
927 * page there in some cases (eg. if mmapped pagecache has been invalidated
928 * and subsequently re faulted). However it does guarantee that the page
929 * won't be freed completely. And mostly callers simply care that the page
930 * contains data that was valid *at some point in time*. Typically, an IO
931 * or similar operation cannot guarantee anything stronger anyway because
932 * locks can't be held over the syscall boundary.
933 *
934 * If write=0, the page must not be written to. If the page is written to,
935 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
936 * after the page is finished with, and before put_page is called.
937 *
938 * get_user_pages is typically used for fewer-copy IO operations, to get a
939 * handle on the memory by some means other than accesses via the user virtual
940 * addresses. The pages may be submitted for DMA to devices or accessed via
941 * their kernel linear mapping (via the kmap APIs). Care should be taken to
942 * use the correct cache flushing APIs.
943 *
944 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
945 *
946 * get_user_pages should be phased out in favor of
947 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
948 * should use get_user_pages because it cannot pass
949 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 950 */
1e987790
DH
951long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
952 unsigned long start, unsigned long nr_pages,
953 int write, int force, struct page **pages,
954 struct vm_area_struct **vmas)
4bbd4c77 955{
f0818f47 956 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
1e987790
DH
957 pages, vmas, NULL, false,
958 FOLL_TOUCH | FOLL_REMOTE);
959}
960EXPORT_SYMBOL(get_user_pages_remote);
961
962/*
d4edcf0d
DH
963 * This is the same as get_user_pages_remote(), just with a
964 * less-flexible calling convention where we assume that the task
965 * and mm being operated on are the current task's. We also
966 * obviously don't pass FOLL_REMOTE in here.
1e987790 967 */
cde70140 968long get_user_pages6(unsigned long start, unsigned long nr_pages,
1e987790
DH
969 int write, int force, struct page **pages,
970 struct vm_area_struct **vmas)
971{
cde70140 972 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1e987790
DH
973 write, force, pages, vmas, NULL, false,
974 FOLL_TOUCH);
4bbd4c77 975}
cde70140 976EXPORT_SYMBOL(get_user_pages6);
4bbd4c77 977
acc3c8d1
KS
978/**
979 * populate_vma_page_range() - populate a range of pages in the vma.
980 * @vma: target vma
981 * @start: start address
982 * @end: end address
983 * @nonblocking:
984 *
985 * This takes care of mlocking the pages too if VM_LOCKED is set.
986 *
987 * return 0 on success, negative error code on error.
988 *
989 * vma->vm_mm->mmap_sem must be held.
990 *
991 * If @nonblocking is NULL, it may be held for read or write and will
992 * be unperturbed.
993 *
994 * If @nonblocking is non-NULL, it must held for read only and may be
995 * released. If it's released, *@nonblocking will be set to 0.
996 */
997long populate_vma_page_range(struct vm_area_struct *vma,
998 unsigned long start, unsigned long end, int *nonblocking)
999{
1000 struct mm_struct *mm = vma->vm_mm;
1001 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1002 int gup_flags;
1003
1004 VM_BUG_ON(start & ~PAGE_MASK);
1005 VM_BUG_ON(end & ~PAGE_MASK);
1006 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1007 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1008 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1009
de60f5f1
EM
1010 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1011 if (vma->vm_flags & VM_LOCKONFAULT)
1012 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1013 /*
1014 * We want to touch writable mappings with a write fault in order
1015 * to break COW, except for shared mappings because these don't COW
1016 * and we would not want to dirty them for nothing.
1017 */
1018 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1019 gup_flags |= FOLL_WRITE;
1020
1021 /*
1022 * We want mlock to succeed for regions that have any permissions
1023 * other than PROT_NONE.
1024 */
1025 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1026 gup_flags |= FOLL_FORCE;
1027
1028 /*
1029 * We made sure addr is within a VMA, so the following will
1030 * not result in a stack expansion that recurses back here.
1031 */
1032 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1033 NULL, NULL, nonblocking);
1034}
1035
1036/*
1037 * __mm_populate - populate and/or mlock pages within a range of address space.
1038 *
1039 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1040 * flags. VMAs must be already marked with the desired vm_flags, and
1041 * mmap_sem must not be held.
1042 */
1043int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1044{
1045 struct mm_struct *mm = current->mm;
1046 unsigned long end, nstart, nend;
1047 struct vm_area_struct *vma = NULL;
1048 int locked = 0;
1049 long ret = 0;
1050
1051 VM_BUG_ON(start & ~PAGE_MASK);
1052 VM_BUG_ON(len != PAGE_ALIGN(len));
1053 end = start + len;
1054
1055 for (nstart = start; nstart < end; nstart = nend) {
1056 /*
1057 * We want to fault in pages for [nstart; end) address range.
1058 * Find first corresponding VMA.
1059 */
1060 if (!locked) {
1061 locked = 1;
1062 down_read(&mm->mmap_sem);
1063 vma = find_vma(mm, nstart);
1064 } else if (nstart >= vma->vm_end)
1065 vma = vma->vm_next;
1066 if (!vma || vma->vm_start >= end)
1067 break;
1068 /*
1069 * Set [nstart; nend) to intersection of desired address
1070 * range with the first VMA. Also, skip undesirable VMA types.
1071 */
1072 nend = min(end, vma->vm_end);
1073 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1074 continue;
1075 if (nstart < vma->vm_start)
1076 nstart = vma->vm_start;
1077 /*
1078 * Now fault in a range of pages. populate_vma_page_range()
1079 * double checks the vma flags, so that it won't mlock pages
1080 * if the vma was already munlocked.
1081 */
1082 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1083 if (ret < 0) {
1084 if (ignore_errors) {
1085 ret = 0;
1086 continue; /* continue at next VMA */
1087 }
1088 break;
1089 }
1090 nend = nstart + ret * PAGE_SIZE;
1091 ret = 0;
1092 }
1093 if (locked)
1094 up_read(&mm->mmap_sem);
1095 return ret; /* 0 or negative error code */
1096}
1097
4bbd4c77
KS
1098/**
1099 * get_dump_page() - pin user page in memory while writing it to core dump
1100 * @addr: user address
1101 *
1102 * Returns struct page pointer of user page pinned for dump,
1103 * to be freed afterwards by page_cache_release() or put_page().
1104 *
1105 * Returns NULL on any kind of failure - a hole must then be inserted into
1106 * the corefile, to preserve alignment with its headers; and also returns
1107 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1108 * allowing a hole to be left in the corefile to save diskspace.
1109 *
1110 * Called without mmap_sem, but after all other threads have been killed.
1111 */
1112#ifdef CONFIG_ELF_CORE
1113struct page *get_dump_page(unsigned long addr)
1114{
1115 struct vm_area_struct *vma;
1116 struct page *page;
1117
1118 if (__get_user_pages(current, current->mm, addr, 1,
1119 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1120 NULL) < 1)
1121 return NULL;
1122 flush_cache_page(vma, addr, page_to_pfn(page));
1123 return page;
1124}
1125#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1126
1127/*
1128 * Generic RCU Fast GUP
1129 *
1130 * get_user_pages_fast attempts to pin user pages by walking the page
1131 * tables directly and avoids taking locks. Thus the walker needs to be
1132 * protected from page table pages being freed from under it, and should
1133 * block any THP splits.
1134 *
1135 * One way to achieve this is to have the walker disable interrupts, and
1136 * rely on IPIs from the TLB flushing code blocking before the page table
1137 * pages are freed. This is unsuitable for architectures that do not need
1138 * to broadcast an IPI when invalidating TLBs.
1139 *
1140 * Another way to achieve this is to batch up page table containing pages
1141 * belonging to more than one mm_user, then rcu_sched a callback to free those
1142 * pages. Disabling interrupts will allow the fast_gup walker to both block
1143 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1144 * (which is a relatively rare event). The code below adopts this strategy.
1145 *
1146 * Before activating this code, please be aware that the following assumptions
1147 * are currently made:
1148 *
1149 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1150 * pages containing page tables.
1151 *
2667f50e
SC
1152 * *) ptes can be read atomically by the architecture.
1153 *
1154 * *) access_ok is sufficient to validate userspace address ranges.
1155 *
1156 * The last two assumptions can be relaxed by the addition of helper functions.
1157 *
1158 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1159 */
1160#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1161
1162#ifdef __HAVE_ARCH_PTE_SPECIAL
1163static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1164 int write, struct page **pages, int *nr)
1165{
1166 pte_t *ptep, *ptem;
1167 int ret = 0;
1168
1169 ptem = ptep = pte_offset_map(&pmd, addr);
1170 do {
1171 /*
1172 * In the line below we are assuming that the pte can be read
1173 * atomically. If this is not the case for your architecture,
1174 * please wrap this in a helper function!
1175 *
1176 * for an example see gup_get_pte in arch/x86/mm/gup.c
1177 */
9d8c47e4 1178 pte_t pte = READ_ONCE(*ptep);
7aef4172 1179 struct page *head, *page;
2667f50e
SC
1180
1181 /*
1182 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1183 * path using the pte_protnone check.
2667f50e
SC
1184 */
1185 if (!pte_present(pte) || pte_special(pte) ||
8a0516ed 1186 pte_protnone(pte) || (write && !pte_write(pte)))
2667f50e
SC
1187 goto pte_unmap;
1188
33a709b2
DH
1189 if (!arch_pte_access_permitted(pte, write))
1190 goto pte_unmap;
1191
2667f50e
SC
1192 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1193 page = pte_page(pte);
7aef4172 1194 head = compound_head(page);
2667f50e 1195
7aef4172 1196 if (!page_cache_get_speculative(head))
2667f50e
SC
1197 goto pte_unmap;
1198
1199 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1200 put_page(head);
2667f50e
SC
1201 goto pte_unmap;
1202 }
1203
7aef4172 1204 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2667f50e
SC
1205 pages[*nr] = page;
1206 (*nr)++;
1207
1208 } while (ptep++, addr += PAGE_SIZE, addr != end);
1209
1210 ret = 1;
1211
1212pte_unmap:
1213 pte_unmap(ptem);
1214 return ret;
1215}
1216#else
1217
1218/*
1219 * If we can't determine whether or not a pte is special, then fail immediately
1220 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1221 * to be special.
1222 *
1223 * For a futex to be placed on a THP tail page, get_futex_key requires a
1224 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1225 * useful to have gup_huge_pmd even if we can't operate on ptes.
1226 */
1227static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1228 int write, struct page **pages, int *nr)
1229{
1230 return 0;
1231}
1232#endif /* __HAVE_ARCH_PTE_SPECIAL */
1233
1234static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1235 unsigned long end, int write, struct page **pages, int *nr)
1236{
ddc58f27 1237 struct page *head, *page;
2667f50e
SC
1238 int refs;
1239
1240 if (write && !pmd_write(orig))
1241 return 0;
1242
1243 refs = 0;
1244 head = pmd_page(orig);
1245 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1246 do {
1247 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1248 pages[*nr] = page;
1249 (*nr)++;
1250 page++;
1251 refs++;
1252 } while (addr += PAGE_SIZE, addr != end);
1253
1254 if (!page_cache_add_speculative(head, refs)) {
1255 *nr -= refs;
1256 return 0;
1257 }
1258
1259 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1260 *nr -= refs;
1261 while (refs--)
1262 put_page(head);
1263 return 0;
1264 }
1265
2667f50e
SC
1266 return 1;
1267}
1268
1269static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1270 unsigned long end, int write, struct page **pages, int *nr)
1271{
ddc58f27 1272 struct page *head, *page;
2667f50e
SC
1273 int refs;
1274
1275 if (write && !pud_write(orig))
1276 return 0;
1277
1278 refs = 0;
1279 head = pud_page(orig);
1280 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1281 do {
1282 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1283 pages[*nr] = page;
1284 (*nr)++;
1285 page++;
1286 refs++;
1287 } while (addr += PAGE_SIZE, addr != end);
1288
1289 if (!page_cache_add_speculative(head, refs)) {
1290 *nr -= refs;
1291 return 0;
1292 }
1293
1294 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1295 *nr -= refs;
1296 while (refs--)
1297 put_page(head);
1298 return 0;
1299 }
1300
2667f50e
SC
1301 return 1;
1302}
1303
f30c59e9
AK
1304static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1305 unsigned long end, int write,
1306 struct page **pages, int *nr)
1307{
1308 int refs;
ddc58f27 1309 struct page *head, *page;
f30c59e9
AK
1310
1311 if (write && !pgd_write(orig))
1312 return 0;
1313
1314 refs = 0;
1315 head = pgd_page(orig);
1316 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1317 do {
1318 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1319 pages[*nr] = page;
1320 (*nr)++;
1321 page++;
1322 refs++;
1323 } while (addr += PAGE_SIZE, addr != end);
1324
1325 if (!page_cache_add_speculative(head, refs)) {
1326 *nr -= refs;
1327 return 0;
1328 }
1329
1330 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1331 *nr -= refs;
1332 while (refs--)
1333 put_page(head);
1334 return 0;
1335 }
1336
f30c59e9
AK
1337 return 1;
1338}
1339
2667f50e
SC
1340static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1341 int write, struct page **pages, int *nr)
1342{
1343 unsigned long next;
1344 pmd_t *pmdp;
1345
1346 pmdp = pmd_offset(&pud, addr);
1347 do {
38c5ce93 1348 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1349
1350 next = pmd_addr_end(addr, end);
4b471e88 1351 if (pmd_none(pmd))
2667f50e
SC
1352 return 0;
1353
1354 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1355 /*
1356 * NUMA hinting faults need to be handled in the GUP
1357 * slowpath for accounting purposes and so that they
1358 * can be serialised against THP migration.
1359 */
8a0516ed 1360 if (pmd_protnone(pmd))
2667f50e
SC
1361 return 0;
1362
1363 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1364 pages, nr))
1365 return 0;
1366
f30c59e9
AK
1367 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1368 /*
1369 * architecture have different format for hugetlbfs
1370 * pmd format and THP pmd format
1371 */
1372 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1373 PMD_SHIFT, next, write, pages, nr))
1374 return 0;
2667f50e
SC
1375 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1376 return 0;
1377 } while (pmdp++, addr = next, addr != end);
1378
1379 return 1;
1380}
1381
f30c59e9
AK
1382static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1383 int write, struct page **pages, int *nr)
2667f50e
SC
1384{
1385 unsigned long next;
1386 pud_t *pudp;
1387
f30c59e9 1388 pudp = pud_offset(&pgd, addr);
2667f50e 1389 do {
e37c6982 1390 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1391
1392 next = pud_addr_end(addr, end);
1393 if (pud_none(pud))
1394 return 0;
f30c59e9 1395 if (unlikely(pud_huge(pud))) {
2667f50e 1396 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1397 pages, nr))
1398 return 0;
1399 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1400 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1401 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1402 return 0;
1403 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1404 return 0;
1405 } while (pudp++, addr = next, addr != end);
1406
1407 return 1;
1408}
1409
1410/*
1411 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1412 * the regular GUP. It will only return non-negative values.
1413 */
1414int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1415 struct page **pages)
1416{
1417 struct mm_struct *mm = current->mm;
1418 unsigned long addr, len, end;
1419 unsigned long next, flags;
1420 pgd_t *pgdp;
1421 int nr = 0;
1422
1423 start &= PAGE_MASK;
1424 addr = start;
1425 len = (unsigned long) nr_pages << PAGE_SHIFT;
1426 end = start + len;
1427
1428 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1429 start, len)))
1430 return 0;
1431
1432 /*
1433 * Disable interrupts. We use the nested form as we can already have
1434 * interrupts disabled by get_futex_key.
1435 *
1436 * With interrupts disabled, we block page table pages from being
1437 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1438 * for more details.
1439 *
1440 * We do not adopt an rcu_read_lock(.) here as we also want to
1441 * block IPIs that come from THPs splitting.
1442 */
1443
1444 local_irq_save(flags);
1445 pgdp = pgd_offset(mm, addr);
1446 do {
9d8c47e4 1447 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1448
2667f50e 1449 next = pgd_addr_end(addr, end);
f30c59e9 1450 if (pgd_none(pgd))
2667f50e 1451 break;
f30c59e9
AK
1452 if (unlikely(pgd_huge(pgd))) {
1453 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1454 pages, &nr))
1455 break;
1456 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1457 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1458 PGDIR_SHIFT, next, write, pages, &nr))
1459 break;
1460 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1461 break;
1462 } while (pgdp++, addr = next, addr != end);
1463 local_irq_restore(flags);
1464
1465 return nr;
1466}
1467
1468/**
1469 * get_user_pages_fast() - pin user pages in memory
1470 * @start: starting user address
1471 * @nr_pages: number of pages from start to pin
1472 * @write: whether pages will be written to
1473 * @pages: array that receives pointers to the pages pinned.
1474 * Should be at least nr_pages long.
1475 *
1476 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1477 * If not successful, it will fall back to taking the lock and
1478 * calling get_user_pages().
1479 *
1480 * Returns number of pages pinned. This may be fewer than the number
1481 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1482 * were pinned, returns -errno.
1483 */
1484int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1485 struct page **pages)
1486{
1487 struct mm_struct *mm = current->mm;
1488 int nr, ret;
1489
1490 start &= PAGE_MASK;
1491 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1492 ret = nr;
1493
1494 if (nr < nr_pages) {
1495 /* Try to get the remaining pages with get_user_pages */
1496 start += nr << PAGE_SHIFT;
1497 pages += nr;
1498
a7b78075
AA
1499 ret = get_user_pages_unlocked(current, mm, start,
1500 nr_pages - nr, write, 0, pages);
2667f50e
SC
1501
1502 /* Have to be a bit careful with return values */
1503 if (nr > 0) {
1504 if (ret < 0)
1505 ret = nr;
1506 else
1507 ret += nr;
1508 }
1509 }
1510
1511 return ret;
1512}
1513
1514#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
cde70140
DH
1515
1516long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1517 unsigned long start, unsigned long nr_pages,
1518 int write, int force, struct page **pages,
1519 struct vm_area_struct **vmas)
1520{
1521 WARN_ONCE(tsk != current, "get_user_pages() called on remote task");
1522 WARN_ONCE(mm != current->mm, "get_user_pages() called on remote mm");
1523
1524 return get_user_pages6(start, nr_pages, write, force, pages, vmas);
1525}
1526EXPORT_SYMBOL(get_user_pages8);
1527
1528long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1529 unsigned long start, unsigned long nr_pages,
1530 int write, int force, struct page **pages, int *locked)
1531{
1532 WARN_ONCE(tsk != current, "get_user_pages_locked() called on remote task");
1533 WARN_ONCE(mm != current->mm, "get_user_pages_locked() called on remote mm");
1534
1535 return get_user_pages_locked6(start, nr_pages, write, force, pages, locked);
1536}
1537EXPORT_SYMBOL(get_user_pages_locked8);
1538
1539long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1540 unsigned long start, unsigned long nr_pages,
1541 int write, int force, struct page **pages)
1542{
1543 WARN_ONCE(tsk != current, "get_user_pages_unlocked() called on remote task");
1544 WARN_ONCE(mm != current->mm, "get_user_pages_unlocked() called on remote mm");
1545
1546 return get_user_pages_unlocked5(start, nr_pages, write, force, pages);
1547}
1548EXPORT_SYMBOL(get_user_pages_unlocked7);
1549