]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/gup.c
mm/gup: don't permit users to call get_user_pages with FOLL_LONGTERM
[mirror_ubuntu-kernels.git] / mm / gup.c
CommitLineData
457c8996 1// SPDX-License-Identifier: GPL-2.0-only
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
174cd4b1 14#include <linux/sched/signal.h>
2667f50e 15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
9a4e9f3b
AK
17#include <linux/migrate.h>
18#include <linux/mm_inline.h>
19#include <linux/sched/mm.h>
1027e443 20
33a709b2 21#include <asm/mmu_context.h>
1027e443 22#include <asm/tlbflush.h>
2667f50e 23
4bbd4c77
KS
24#include "internal.h"
25
df06b37f
KB
26struct follow_page_context {
27 struct dev_pagemap *pgmap;
28 unsigned int page_mask;
29};
30
47e29d32
JH
31static void hpage_pincount_add(struct page *page, int refs)
32{
33 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
34 VM_BUG_ON_PAGE(page != compound_head(page), page);
35
36 atomic_add(refs, compound_pincount_ptr(page));
37}
38
39static void hpage_pincount_sub(struct page *page, int refs)
40{
41 VM_BUG_ON_PAGE(!hpage_pincount_available(page), page);
42 VM_BUG_ON_PAGE(page != compound_head(page), page);
43
44 atomic_sub(refs, compound_pincount_ptr(page));
45}
46
a707cdd5
JH
47/*
48 * Return the compound head page with ref appropriately incremented,
49 * or NULL if that failed.
50 */
51static inline struct page *try_get_compound_head(struct page *page, int refs)
52{
53 struct page *head = compound_head(page);
54
55 if (WARN_ON_ONCE(page_ref_count(head) < 0))
56 return NULL;
57 if (unlikely(!page_cache_add_speculative(head, refs)))
58 return NULL;
59 return head;
60}
61
3faa52c0
JH
62/*
63 * try_grab_compound_head() - attempt to elevate a page's refcount, by a
64 * flags-dependent amount.
65 *
66 * "grab" names in this file mean, "look at flags to decide whether to use
67 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
68 *
69 * Either FOLL_PIN or FOLL_GET (or neither) must be set, but not both at the
70 * same time. (That's true throughout the get_user_pages*() and
71 * pin_user_pages*() APIs.) Cases:
72 *
73 * FOLL_GET: page's refcount will be incremented by 1.
74 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
75 *
76 * Return: head page (with refcount appropriately incremented) for success, or
77 * NULL upon failure. If neither FOLL_GET nor FOLL_PIN was set, that's
78 * considered failure, and furthermore, a likely bug in the caller, so a warning
79 * is also emitted.
80 */
81static __maybe_unused struct page *try_grab_compound_head(struct page *page,
82 int refs,
83 unsigned int flags)
84{
85 if (flags & FOLL_GET)
86 return try_get_compound_head(page, refs);
87 else if (flags & FOLL_PIN) {
1970dc6f
JH
88 int orig_refs = refs;
89
df3a0a21
PL
90 /*
91 * Can't do FOLL_LONGTERM + FOLL_PIN with CMA in the gup fast
92 * path, so fail and let the caller fall back to the slow path.
93 */
94 if (unlikely(flags & FOLL_LONGTERM) &&
95 is_migrate_cma_page(page))
96 return NULL;
97
47e29d32
JH
98 /*
99 * When pinning a compound page of order > 1 (which is what
100 * hpage_pincount_available() checks for), use an exact count to
101 * track it, via hpage_pincount_add/_sub().
102 *
103 * However, be sure to *also* increment the normal page refcount
104 * field at least once, so that the page really is pinned.
105 */
106 if (!hpage_pincount_available(page))
107 refs *= GUP_PIN_COUNTING_BIAS;
108
109 page = try_get_compound_head(page, refs);
110 if (!page)
111 return NULL;
112
113 if (hpage_pincount_available(page))
114 hpage_pincount_add(page, refs);
115
1970dc6f
JH
116 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED,
117 orig_refs);
118
47e29d32 119 return page;
3faa52c0
JH
120 }
121
122 WARN_ON_ONCE(1);
123 return NULL;
124}
125
126/**
127 * try_grab_page() - elevate a page's refcount by a flag-dependent amount
128 *
129 * This might not do anything at all, depending on the flags argument.
130 *
131 * "grab" names in this file mean, "look at flags to decide whether to use
132 * FOLL_PIN or FOLL_GET behavior, when incrementing the page's refcount.
133 *
134 * @page: pointer to page to be grabbed
135 * @flags: gup flags: these are the FOLL_* flag values.
136 *
137 * Either FOLL_PIN or FOLL_GET (or neither) may be set, but not both at the same
138 * time. Cases:
139 *
140 * FOLL_GET: page's refcount will be incremented by 1.
141 * FOLL_PIN: page's refcount will be incremented by GUP_PIN_COUNTING_BIAS.
142 *
143 * Return: true for success, or if no action was required (if neither FOLL_PIN
144 * nor FOLL_GET was set, nothing is done). False for failure: FOLL_GET or
145 * FOLL_PIN was set, but the page could not be grabbed.
146 */
147bool __must_check try_grab_page(struct page *page, unsigned int flags)
148{
149 WARN_ON_ONCE((flags & (FOLL_GET | FOLL_PIN)) == (FOLL_GET | FOLL_PIN));
150
151 if (flags & FOLL_GET)
152 return try_get_page(page);
153 else if (flags & FOLL_PIN) {
47e29d32
JH
154 int refs = 1;
155
3faa52c0
JH
156 page = compound_head(page);
157
158 if (WARN_ON_ONCE(page_ref_count(page) <= 0))
159 return false;
160
47e29d32
JH
161 if (hpage_pincount_available(page))
162 hpage_pincount_add(page, 1);
163 else
164 refs = GUP_PIN_COUNTING_BIAS;
165
166 /*
167 * Similar to try_grab_compound_head(): even if using the
168 * hpage_pincount_add/_sub() routines, be sure to
169 * *also* increment the normal page refcount field at least
170 * once, so that the page really is pinned.
171 */
172 page_ref_add(page, refs);
1970dc6f
JH
173
174 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_ACQUIRED, 1);
3faa52c0
JH
175 }
176
177 return true;
178}
179
180#ifdef CONFIG_DEV_PAGEMAP_OPS
181static bool __unpin_devmap_managed_user_page(struct page *page)
182{
47e29d32 183 int count, refs = 1;
3faa52c0
JH
184
185 if (!page_is_devmap_managed(page))
186 return false;
187
47e29d32
JH
188 if (hpage_pincount_available(page))
189 hpage_pincount_sub(page, 1);
190 else
191 refs = GUP_PIN_COUNTING_BIAS;
192
193 count = page_ref_sub_return(page, refs);
3faa52c0 194
1970dc6f 195 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
196 /*
197 * devmap page refcounts are 1-based, rather than 0-based: if
198 * refcount is 1, then the page is free and the refcount is
199 * stable because nobody holds a reference on the page.
200 */
201 if (count == 1)
202 free_devmap_managed_page(page);
203 else if (!count)
204 __put_page(page);
205
206 return true;
207}
208#else
209static bool __unpin_devmap_managed_user_page(struct page *page)
210{
211 return false;
212}
213#endif /* CONFIG_DEV_PAGEMAP_OPS */
214
215/**
216 * unpin_user_page() - release a dma-pinned page
217 * @page: pointer to page to be released
218 *
219 * Pages that were pinned via pin_user_pages*() must be released via either
220 * unpin_user_page(), or one of the unpin_user_pages*() routines. This is so
221 * that such pages can be separately tracked and uniquely handled. In
222 * particular, interactions with RDMA and filesystems need special handling.
223 */
224void unpin_user_page(struct page *page)
225{
47e29d32
JH
226 int refs = 1;
227
3faa52c0
JH
228 page = compound_head(page);
229
230 /*
231 * For devmap managed pages we need to catch refcount transition from
232 * GUP_PIN_COUNTING_BIAS to 1, when refcount reach one it means the
233 * page is free and we need to inform the device driver through
234 * callback. See include/linux/memremap.h and HMM for details.
235 */
236 if (__unpin_devmap_managed_user_page(page))
237 return;
238
47e29d32
JH
239 if (hpage_pincount_available(page))
240 hpage_pincount_sub(page, 1);
241 else
242 refs = GUP_PIN_COUNTING_BIAS;
243
244 if (page_ref_sub_and_test(page, refs))
3faa52c0 245 __put_page(page);
1970dc6f
JH
246
247 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED, 1);
3faa52c0
JH
248}
249EXPORT_SYMBOL(unpin_user_page);
250
fc1d8e7c 251/**
f1f6a7dd 252 * unpin_user_pages_dirty_lock() - release and optionally dirty gup-pinned pages
2d15eb31 253 * @pages: array of pages to be maybe marked dirty, and definitely released.
fc1d8e7c 254 * @npages: number of pages in the @pages array.
2d15eb31 255 * @make_dirty: whether to mark the pages dirty
fc1d8e7c
JH
256 *
257 * "gup-pinned page" refers to a page that has had one of the get_user_pages()
258 * variants called on that page.
259 *
260 * For each page in the @pages array, make that page (or its head page, if a
2d15eb31 261 * compound page) dirty, if @make_dirty is true, and if the page was previously
f1f6a7dd
JH
262 * listed as clean. In any case, releases all pages using unpin_user_page(),
263 * possibly via unpin_user_pages(), for the non-dirty case.
fc1d8e7c 264 *
f1f6a7dd 265 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 266 *
2d15eb31 267 * set_page_dirty_lock() is used internally. If instead, set_page_dirty() is
268 * required, then the caller should a) verify that this is really correct,
269 * because _lock() is usually required, and b) hand code it:
f1f6a7dd 270 * set_page_dirty_lock(), unpin_user_page().
fc1d8e7c
JH
271 *
272 */
f1f6a7dd
JH
273void unpin_user_pages_dirty_lock(struct page **pages, unsigned long npages,
274 bool make_dirty)
fc1d8e7c 275{
2d15eb31 276 unsigned long index;
fc1d8e7c 277
2d15eb31 278 /*
279 * TODO: this can be optimized for huge pages: if a series of pages is
280 * physically contiguous and part of the same compound page, then a
281 * single operation to the head page should suffice.
282 */
283
284 if (!make_dirty) {
f1f6a7dd 285 unpin_user_pages(pages, npages);
2d15eb31 286 return;
287 }
288
289 for (index = 0; index < npages; index++) {
290 struct page *page = compound_head(pages[index]);
291 /*
292 * Checking PageDirty at this point may race with
293 * clear_page_dirty_for_io(), but that's OK. Two key
294 * cases:
295 *
296 * 1) This code sees the page as already dirty, so it
297 * skips the call to set_page_dirty(). That could happen
298 * because clear_page_dirty_for_io() called
299 * page_mkclean(), followed by set_page_dirty().
300 * However, now the page is going to get written back,
301 * which meets the original intention of setting it
302 * dirty, so all is well: clear_page_dirty_for_io() goes
303 * on to call TestClearPageDirty(), and write the page
304 * back.
305 *
306 * 2) This code sees the page as clean, so it calls
307 * set_page_dirty(). The page stays dirty, despite being
308 * written back, so it gets written back again in the
309 * next writeback cycle. This is harmless.
310 */
311 if (!PageDirty(page))
312 set_page_dirty_lock(page);
f1f6a7dd 313 unpin_user_page(page);
2d15eb31 314 }
fc1d8e7c 315}
f1f6a7dd 316EXPORT_SYMBOL(unpin_user_pages_dirty_lock);
fc1d8e7c
JH
317
318/**
f1f6a7dd 319 * unpin_user_pages() - release an array of gup-pinned pages.
fc1d8e7c
JH
320 * @pages: array of pages to be marked dirty and released.
321 * @npages: number of pages in the @pages array.
322 *
f1f6a7dd 323 * For each page in the @pages array, release the page using unpin_user_page().
fc1d8e7c 324 *
f1f6a7dd 325 * Please see the unpin_user_page() documentation for details.
fc1d8e7c 326 */
f1f6a7dd 327void unpin_user_pages(struct page **pages, unsigned long npages)
fc1d8e7c
JH
328{
329 unsigned long index;
330
331 /*
332 * TODO: this can be optimized for huge pages: if a series of pages is
333 * physically contiguous and part of the same compound page, then a
334 * single operation to the head page should suffice.
335 */
336 for (index = 0; index < npages; index++)
f1f6a7dd 337 unpin_user_page(pages[index]);
fc1d8e7c 338}
f1f6a7dd 339EXPORT_SYMBOL(unpin_user_pages);
fc1d8e7c 340
050a9adc 341#ifdef CONFIG_MMU
69e68b4f
KS
342static struct page *no_page_table(struct vm_area_struct *vma,
343 unsigned int flags)
4bbd4c77 344{
69e68b4f
KS
345 /*
346 * When core dumping an enormous anonymous area that nobody
347 * has touched so far, we don't want to allocate unnecessary pages or
348 * page tables. Return error instead of NULL to skip handle_mm_fault,
349 * then get_dump_page() will return NULL to leave a hole in the dump.
350 * But we can only make this optimization where a hole would surely
351 * be zero-filled if handle_mm_fault() actually did handle it.
352 */
a0137f16
AK
353 if ((flags & FOLL_DUMP) &&
354 (vma_is_anonymous(vma) || !vma->vm_ops->fault))
69e68b4f
KS
355 return ERR_PTR(-EFAULT);
356 return NULL;
357}
4bbd4c77 358
1027e443
KS
359static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
360 pte_t *pte, unsigned int flags)
361{
362 /* No page to get reference */
363 if (flags & FOLL_GET)
364 return -EFAULT;
365
366 if (flags & FOLL_TOUCH) {
367 pte_t entry = *pte;
368
369 if (flags & FOLL_WRITE)
370 entry = pte_mkdirty(entry);
371 entry = pte_mkyoung(entry);
372
373 if (!pte_same(*pte, entry)) {
374 set_pte_at(vma->vm_mm, address, pte, entry);
375 update_mmu_cache(vma, address, pte);
376 }
377 }
378
379 /* Proper page table entry exists, but no corresponding struct page */
380 return -EEXIST;
381}
382
19be0eaf 383/*
a308c71b
PX
384 * FOLL_FORCE can write to even unwritable pte's, but only
385 * after we've gone through a COW cycle and they are dirty.
19be0eaf
LT
386 */
387static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
388{
a308c71b
PX
389 return pte_write(pte) ||
390 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
19be0eaf
LT
391}
392
69e68b4f 393static struct page *follow_page_pte(struct vm_area_struct *vma,
df06b37f
KB
394 unsigned long address, pmd_t *pmd, unsigned int flags,
395 struct dev_pagemap **pgmap)
69e68b4f
KS
396{
397 struct mm_struct *mm = vma->vm_mm;
398 struct page *page;
399 spinlock_t *ptl;
400 pte_t *ptep, pte;
f28d4363 401 int ret;
4bbd4c77 402
eddb1c22
JH
403 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
404 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
405 (FOLL_PIN | FOLL_GET)))
406 return ERR_PTR(-EINVAL);
69e68b4f 407retry:
4bbd4c77 408 if (unlikely(pmd_bad(*pmd)))
69e68b4f 409 return no_page_table(vma, flags);
4bbd4c77
KS
410
411 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
412 pte = *ptep;
413 if (!pte_present(pte)) {
414 swp_entry_t entry;
415 /*
416 * KSM's break_ksm() relies upon recognizing a ksm page
417 * even while it is being migrated, so for that case we
418 * need migration_entry_wait().
419 */
420 if (likely(!(flags & FOLL_MIGRATION)))
421 goto no_page;
0661a336 422 if (pte_none(pte))
4bbd4c77
KS
423 goto no_page;
424 entry = pte_to_swp_entry(pte);
425 if (!is_migration_entry(entry))
426 goto no_page;
427 pte_unmap_unlock(ptep, ptl);
428 migration_entry_wait(mm, pmd, address);
69e68b4f 429 goto retry;
4bbd4c77 430 }
8a0516ed 431 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 432 goto no_page;
19be0eaf 433 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
434 pte_unmap_unlock(ptep, ptl);
435 return NULL;
436 }
4bbd4c77
KS
437
438 page = vm_normal_page(vma, address, pte);
3faa52c0 439 if (!page && pte_devmap(pte) && (flags & (FOLL_GET | FOLL_PIN))) {
3565fce3 440 /*
3faa52c0
JH
441 * Only return device mapping pages in the FOLL_GET or FOLL_PIN
442 * case since they are only valid while holding the pgmap
443 * reference.
3565fce3 444 */
df06b37f
KB
445 *pgmap = get_dev_pagemap(pte_pfn(pte), *pgmap);
446 if (*pgmap)
3565fce3
DW
447 page = pte_page(pte);
448 else
449 goto no_page;
450 } else if (unlikely(!page)) {
1027e443
KS
451 if (flags & FOLL_DUMP) {
452 /* Avoid special (like zero) pages in core dumps */
453 page = ERR_PTR(-EFAULT);
454 goto out;
455 }
456
457 if (is_zero_pfn(pte_pfn(pte))) {
458 page = pte_page(pte);
459 } else {
1027e443
KS
460 ret = follow_pfn_pte(vma, address, ptep, flags);
461 page = ERR_PTR(ret);
462 goto out;
463 }
4bbd4c77
KS
464 }
465
6742d293 466 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
6742d293
KS
467 get_page(page);
468 pte_unmap_unlock(ptep, ptl);
469 lock_page(page);
470 ret = split_huge_page(page);
471 unlock_page(page);
472 put_page(page);
473 if (ret)
474 return ERR_PTR(ret);
475 goto retry;
476 }
477
3faa52c0
JH
478 /* try_grab_page() does nothing unless FOLL_GET or FOLL_PIN is set. */
479 if (unlikely(!try_grab_page(page, flags))) {
480 page = ERR_PTR(-ENOMEM);
481 goto out;
8fde12ca 482 }
f28d4363
CI
483 /*
484 * We need to make the page accessible if and only if we are going
485 * to access its content (the FOLL_PIN case). Please see
486 * Documentation/core-api/pin_user_pages.rst for details.
487 */
488 if (flags & FOLL_PIN) {
489 ret = arch_make_page_accessible(page);
490 if (ret) {
491 unpin_user_page(page);
492 page = ERR_PTR(ret);
493 goto out;
494 }
495 }
4bbd4c77
KS
496 if (flags & FOLL_TOUCH) {
497 if ((flags & FOLL_WRITE) &&
498 !pte_dirty(pte) && !PageDirty(page))
499 set_page_dirty(page);
500 /*
501 * pte_mkyoung() would be more correct here, but atomic care
502 * is needed to avoid losing the dirty bit: it is easier to use
503 * mark_page_accessed().
504 */
505 mark_page_accessed(page);
506 }
de60f5f1 507 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
508 /* Do not mlock pte-mapped THP */
509 if (PageTransCompound(page))
510 goto out;
511
4bbd4c77
KS
512 /*
513 * The preliminary mapping check is mainly to avoid the
514 * pointless overhead of lock_page on the ZERO_PAGE
515 * which might bounce very badly if there is contention.
516 *
517 * If the page is already locked, we don't need to
518 * handle it now - vmscan will handle it later if and
519 * when it attempts to reclaim the page.
520 */
521 if (page->mapping && trylock_page(page)) {
522 lru_add_drain(); /* push cached pages to LRU */
523 /*
524 * Because we lock page here, and migration is
525 * blocked by the pte's page reference, and we
526 * know the page is still mapped, we don't even
527 * need to check for file-cache page truncation.
528 */
529 mlock_vma_page(page);
530 unlock_page(page);
531 }
532 }
1027e443 533out:
4bbd4c77 534 pte_unmap_unlock(ptep, ptl);
4bbd4c77 535 return page;
4bbd4c77
KS
536no_page:
537 pte_unmap_unlock(ptep, ptl);
538 if (!pte_none(pte))
69e68b4f
KS
539 return NULL;
540 return no_page_table(vma, flags);
541}
542
080dbb61
AK
543static struct page *follow_pmd_mask(struct vm_area_struct *vma,
544 unsigned long address, pud_t *pudp,
df06b37f
KB
545 unsigned int flags,
546 struct follow_page_context *ctx)
69e68b4f 547{
68827280 548 pmd_t *pmd, pmdval;
69e68b4f
KS
549 spinlock_t *ptl;
550 struct page *page;
551 struct mm_struct *mm = vma->vm_mm;
552
080dbb61 553 pmd = pmd_offset(pudp, address);
68827280
HY
554 /*
555 * The READ_ONCE() will stabilize the pmdval in a register or
556 * on the stack so that it will stop changing under the code.
557 */
558 pmdval = READ_ONCE(*pmd);
559 if (pmd_none(pmdval))
69e68b4f 560 return no_page_table(vma, flags);
be9d3045 561 if (pmd_huge(pmdval) && is_vm_hugetlb_page(vma)) {
e66f17ff
NH
562 page = follow_huge_pmd(mm, address, pmd, flags);
563 if (page)
564 return page;
565 return no_page_table(vma, flags);
69e68b4f 566 }
68827280 567 if (is_hugepd(__hugepd(pmd_val(pmdval)))) {
4dc71451 568 page = follow_huge_pd(vma, address,
68827280 569 __hugepd(pmd_val(pmdval)), flags,
4dc71451
AK
570 PMD_SHIFT);
571 if (page)
572 return page;
573 return no_page_table(vma, flags);
574 }
84c3fc4e 575retry:
68827280 576 if (!pmd_present(pmdval)) {
84c3fc4e
ZY
577 if (likely(!(flags & FOLL_MIGRATION)))
578 return no_page_table(vma, flags);
579 VM_BUG_ON(thp_migration_supported() &&
68827280
HY
580 !is_pmd_migration_entry(pmdval));
581 if (is_pmd_migration_entry(pmdval))
84c3fc4e 582 pmd_migration_entry_wait(mm, pmd);
68827280
HY
583 pmdval = READ_ONCE(*pmd);
584 /*
585 * MADV_DONTNEED may convert the pmd to null because
c1e8d7c6 586 * mmap_lock is held in read mode
68827280
HY
587 */
588 if (pmd_none(pmdval))
589 return no_page_table(vma, flags);
84c3fc4e
ZY
590 goto retry;
591 }
68827280 592 if (pmd_devmap(pmdval)) {
3565fce3 593 ptl = pmd_lock(mm, pmd);
df06b37f 594 page = follow_devmap_pmd(vma, address, pmd, flags, &ctx->pgmap);
3565fce3
DW
595 spin_unlock(ptl);
596 if (page)
597 return page;
598 }
68827280 599 if (likely(!pmd_trans_huge(pmdval)))
df06b37f 600 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 601
68827280 602 if ((flags & FOLL_NUMA) && pmd_protnone(pmdval))
db08f203
AK
603 return no_page_table(vma, flags);
604
84c3fc4e 605retry_locked:
6742d293 606 ptl = pmd_lock(mm, pmd);
68827280
HY
607 if (unlikely(pmd_none(*pmd))) {
608 spin_unlock(ptl);
609 return no_page_table(vma, flags);
610 }
84c3fc4e
ZY
611 if (unlikely(!pmd_present(*pmd))) {
612 spin_unlock(ptl);
613 if (likely(!(flags & FOLL_MIGRATION)))
614 return no_page_table(vma, flags);
615 pmd_migration_entry_wait(mm, pmd);
616 goto retry_locked;
617 }
6742d293
KS
618 if (unlikely(!pmd_trans_huge(*pmd))) {
619 spin_unlock(ptl);
df06b37f 620 return follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
6742d293 621 }
bfe7b00d 622 if (flags & (FOLL_SPLIT | FOLL_SPLIT_PMD)) {
6742d293
KS
623 int ret;
624 page = pmd_page(*pmd);
625 if (is_huge_zero_page(page)) {
626 spin_unlock(ptl);
627 ret = 0;
78ddc534 628 split_huge_pmd(vma, pmd, address);
337d9abf
NH
629 if (pmd_trans_unstable(pmd))
630 ret = -EBUSY;
bfe7b00d 631 } else if (flags & FOLL_SPLIT) {
8fde12ca
LT
632 if (unlikely(!try_get_page(page))) {
633 spin_unlock(ptl);
634 return ERR_PTR(-ENOMEM);
635 }
69e68b4f 636 spin_unlock(ptl);
6742d293
KS
637 lock_page(page);
638 ret = split_huge_page(page);
639 unlock_page(page);
640 put_page(page);
baa355fd
KS
641 if (pmd_none(*pmd))
642 return no_page_table(vma, flags);
bfe7b00d
SL
643 } else { /* flags & FOLL_SPLIT_PMD */
644 spin_unlock(ptl);
645 split_huge_pmd(vma, pmd, address);
646 ret = pte_alloc(mm, pmd) ? -ENOMEM : 0;
6742d293
KS
647 }
648
649 return ret ? ERR_PTR(ret) :
df06b37f 650 follow_page_pte(vma, address, pmd, flags, &ctx->pgmap);
69e68b4f 651 }
6742d293
KS
652 page = follow_trans_huge_pmd(vma, address, pmd, flags);
653 spin_unlock(ptl);
df06b37f 654 ctx->page_mask = HPAGE_PMD_NR - 1;
6742d293 655 return page;
4bbd4c77
KS
656}
657
080dbb61
AK
658static struct page *follow_pud_mask(struct vm_area_struct *vma,
659 unsigned long address, p4d_t *p4dp,
df06b37f
KB
660 unsigned int flags,
661 struct follow_page_context *ctx)
080dbb61
AK
662{
663 pud_t *pud;
664 spinlock_t *ptl;
665 struct page *page;
666 struct mm_struct *mm = vma->vm_mm;
667
668 pud = pud_offset(p4dp, address);
669 if (pud_none(*pud))
670 return no_page_table(vma, flags);
be9d3045 671 if (pud_huge(*pud) && is_vm_hugetlb_page(vma)) {
080dbb61
AK
672 page = follow_huge_pud(mm, address, pud, flags);
673 if (page)
674 return page;
675 return no_page_table(vma, flags);
676 }
4dc71451
AK
677 if (is_hugepd(__hugepd(pud_val(*pud)))) {
678 page = follow_huge_pd(vma, address,
679 __hugepd(pud_val(*pud)), flags,
680 PUD_SHIFT);
681 if (page)
682 return page;
683 return no_page_table(vma, flags);
684 }
080dbb61
AK
685 if (pud_devmap(*pud)) {
686 ptl = pud_lock(mm, pud);
df06b37f 687 page = follow_devmap_pud(vma, address, pud, flags, &ctx->pgmap);
080dbb61
AK
688 spin_unlock(ptl);
689 if (page)
690 return page;
691 }
692 if (unlikely(pud_bad(*pud)))
693 return no_page_table(vma, flags);
694
df06b37f 695 return follow_pmd_mask(vma, address, pud, flags, ctx);
080dbb61
AK
696}
697
080dbb61
AK
698static struct page *follow_p4d_mask(struct vm_area_struct *vma,
699 unsigned long address, pgd_t *pgdp,
df06b37f
KB
700 unsigned int flags,
701 struct follow_page_context *ctx)
080dbb61
AK
702{
703 p4d_t *p4d;
4dc71451 704 struct page *page;
080dbb61
AK
705
706 p4d = p4d_offset(pgdp, address);
707 if (p4d_none(*p4d))
708 return no_page_table(vma, flags);
709 BUILD_BUG_ON(p4d_huge(*p4d));
710 if (unlikely(p4d_bad(*p4d)))
711 return no_page_table(vma, flags);
712
4dc71451
AK
713 if (is_hugepd(__hugepd(p4d_val(*p4d)))) {
714 page = follow_huge_pd(vma, address,
715 __hugepd(p4d_val(*p4d)), flags,
716 P4D_SHIFT);
717 if (page)
718 return page;
719 return no_page_table(vma, flags);
720 }
df06b37f 721 return follow_pud_mask(vma, address, p4d, flags, ctx);
080dbb61
AK
722}
723
724/**
725 * follow_page_mask - look up a page descriptor from a user-virtual address
726 * @vma: vm_area_struct mapping @address
727 * @address: virtual address to look up
728 * @flags: flags modifying lookup behaviour
78179556
MR
729 * @ctx: contains dev_pagemap for %ZONE_DEVICE memory pinning and a
730 * pointer to output page_mask
080dbb61
AK
731 *
732 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
733 *
78179556
MR
734 * When getting pages from ZONE_DEVICE memory, the @ctx->pgmap caches
735 * the device's dev_pagemap metadata to avoid repeating expensive lookups.
736 *
737 * On output, the @ctx->page_mask is set according to the size of the page.
738 *
739 * Return: the mapped (struct page *), %NULL if no mapping exists, or
080dbb61
AK
740 * an error pointer if there is a mapping to something not represented
741 * by a page descriptor (see also vm_normal_page()).
742 */
a7030aea 743static struct page *follow_page_mask(struct vm_area_struct *vma,
080dbb61 744 unsigned long address, unsigned int flags,
df06b37f 745 struct follow_page_context *ctx)
080dbb61
AK
746{
747 pgd_t *pgd;
748 struct page *page;
749 struct mm_struct *mm = vma->vm_mm;
750
df06b37f 751 ctx->page_mask = 0;
080dbb61
AK
752
753 /* make this handle hugepd */
754 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
755 if (!IS_ERR(page)) {
3faa52c0 756 WARN_ON_ONCE(flags & (FOLL_GET | FOLL_PIN));
080dbb61
AK
757 return page;
758 }
759
760 pgd = pgd_offset(mm, address);
761
762 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
763 return no_page_table(vma, flags);
764
faaa5b62
AK
765 if (pgd_huge(*pgd)) {
766 page = follow_huge_pgd(mm, address, pgd, flags);
767 if (page)
768 return page;
769 return no_page_table(vma, flags);
770 }
4dc71451
AK
771 if (is_hugepd(__hugepd(pgd_val(*pgd)))) {
772 page = follow_huge_pd(vma, address,
773 __hugepd(pgd_val(*pgd)), flags,
774 PGDIR_SHIFT);
775 if (page)
776 return page;
777 return no_page_table(vma, flags);
778 }
faaa5b62 779
df06b37f
KB
780 return follow_p4d_mask(vma, address, pgd, flags, ctx);
781}
782
783struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
784 unsigned int foll_flags)
785{
786 struct follow_page_context ctx = { NULL };
787 struct page *page;
788
789 page = follow_page_mask(vma, address, foll_flags, &ctx);
790 if (ctx.pgmap)
791 put_dev_pagemap(ctx.pgmap);
792 return page;
080dbb61
AK
793}
794
f2b495ca
KS
795static int get_gate_page(struct mm_struct *mm, unsigned long address,
796 unsigned int gup_flags, struct vm_area_struct **vma,
797 struct page **page)
798{
799 pgd_t *pgd;
c2febafc 800 p4d_t *p4d;
f2b495ca
KS
801 pud_t *pud;
802 pmd_t *pmd;
803 pte_t *pte;
804 int ret = -EFAULT;
805
806 /* user gate pages are read-only */
807 if (gup_flags & FOLL_WRITE)
808 return -EFAULT;
809 if (address > TASK_SIZE)
810 pgd = pgd_offset_k(address);
811 else
812 pgd = pgd_offset_gate(mm, address);
b5d1c39f
AL
813 if (pgd_none(*pgd))
814 return -EFAULT;
c2febafc 815 p4d = p4d_offset(pgd, address);
b5d1c39f
AL
816 if (p4d_none(*p4d))
817 return -EFAULT;
c2febafc 818 pud = pud_offset(p4d, address);
b5d1c39f
AL
819 if (pud_none(*pud))
820 return -EFAULT;
f2b495ca 821 pmd = pmd_offset(pud, address);
84c3fc4e 822 if (!pmd_present(*pmd))
f2b495ca
KS
823 return -EFAULT;
824 VM_BUG_ON(pmd_trans_huge(*pmd));
825 pte = pte_offset_map(pmd, address);
826 if (pte_none(*pte))
827 goto unmap;
828 *vma = get_gate_vma(mm);
829 if (!page)
830 goto out;
831 *page = vm_normal_page(*vma, address, *pte);
832 if (!*page) {
833 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
834 goto unmap;
835 *page = pte_page(*pte);
836 }
9fa2dd94 837 if (unlikely(!try_grab_page(*page, gup_flags))) {
8fde12ca
LT
838 ret = -ENOMEM;
839 goto unmap;
840 }
f2b495ca
KS
841out:
842 ret = 0;
843unmap:
844 pte_unmap(pte);
845 return ret;
846}
847
9a95f3cf 848/*
c1e8d7c6
ML
849 * mmap_lock must be held on entry. If @locked != NULL and *@flags
850 * does not include FOLL_NOWAIT, the mmap_lock may be released. If it
4f6da934 851 * is, *@locked will be set to 0 and -EBUSY returned.
9a95f3cf 852 */
64019a2e 853static int faultin_page(struct vm_area_struct *vma,
4f6da934 854 unsigned long address, unsigned int *flags, int *locked)
16744483 855{
16744483 856 unsigned int fault_flags = 0;
2b740303 857 vm_fault_t ret;
16744483 858
de60f5f1
EM
859 /* mlock all present pages, but do not fault in new pages */
860 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
861 return -ENOENT;
16744483
KS
862 if (*flags & FOLL_WRITE)
863 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
864 if (*flags & FOLL_REMOTE)
865 fault_flags |= FAULT_FLAG_REMOTE;
4f6da934 866 if (locked)
71335f37 867 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
16744483
KS
868 if (*flags & FOLL_NOWAIT)
869 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b 870 if (*flags & FOLL_TRIED) {
4426e945
PX
871 /*
872 * Note: FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_TRIED
873 * can co-exist
874 */
234b239b
ALC
875 fault_flags |= FAULT_FLAG_TRIED;
876 }
16744483 877
bce617ed 878 ret = handle_mm_fault(vma, address, fault_flags, NULL);
16744483 879 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
880 int err = vm_fault_to_errno(ret, *flags);
881
882 if (err)
883 return err;
16744483
KS
884 BUG();
885 }
886
16744483 887 if (ret & VM_FAULT_RETRY) {
4f6da934
PX
888 if (locked && !(fault_flags & FAULT_FLAG_RETRY_NOWAIT))
889 *locked = 0;
16744483
KS
890 return -EBUSY;
891 }
892
893 /*
894 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
895 * necessary, even if maybe_mkwrite decided not to set pte_write. We
896 * can thus safely do subsequent page lookups as if they were reads.
897 * But only do so when looping for pte_write is futile: in some cases
898 * userspace may also be wanting to write to the gotten user page,
899 * which a read fault here might prevent (a readonly page might get
900 * reCOWed by userspace write).
901 */
902 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
2923117b 903 *flags |= FOLL_COW;
16744483
KS
904 return 0;
905}
906
fa5bb209
KS
907static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
908{
909 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
910 int write = (gup_flags & FOLL_WRITE);
911 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
912
913 if (vm_flags & (VM_IO | VM_PFNMAP))
914 return -EFAULT;
915
7f7ccc2c
WT
916 if (gup_flags & FOLL_ANON && !vma_is_anonymous(vma))
917 return -EFAULT;
918
1b2ee126 919 if (write) {
fa5bb209
KS
920 if (!(vm_flags & VM_WRITE)) {
921 if (!(gup_flags & FOLL_FORCE))
922 return -EFAULT;
923 /*
924 * We used to let the write,force case do COW in a
925 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
926 * set a breakpoint in a read-only mapping of an
927 * executable, without corrupting the file (yet only
928 * when that file had been opened for writing!).
929 * Anon pages in shared mappings are surprising: now
930 * just reject it.
931 */
46435364 932 if (!is_cow_mapping(vm_flags))
fa5bb209 933 return -EFAULT;
fa5bb209
KS
934 }
935 } else if (!(vm_flags & VM_READ)) {
936 if (!(gup_flags & FOLL_FORCE))
937 return -EFAULT;
938 /*
939 * Is there actually any vma we can reach here which does not
940 * have VM_MAYREAD set?
941 */
942 if (!(vm_flags & VM_MAYREAD))
943 return -EFAULT;
944 }
d61172b4
DH
945 /*
946 * gups are always data accesses, not instruction
947 * fetches, so execute=false here
948 */
949 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 950 return -EFAULT;
fa5bb209
KS
951 return 0;
952}
953
4bbd4c77
KS
954/**
955 * __get_user_pages() - pin user pages in memory
4bbd4c77
KS
956 * @mm: mm_struct of target mm
957 * @start: starting user address
958 * @nr_pages: number of pages from start to pin
959 * @gup_flags: flags modifying pin behaviour
960 * @pages: array that receives pointers to the pages pinned.
961 * Should be at least nr_pages long. Or NULL, if caller
962 * only intends to ensure the pages are faulted in.
963 * @vmas: array of pointers to vmas corresponding to each page.
964 * Or NULL if the caller does not require them.
c1e8d7c6 965 * @locked: whether we're still with the mmap_lock held
4bbd4c77 966 *
d2dfbe47
LX
967 * Returns either number of pages pinned (which may be less than the
968 * number requested), or an error. Details about the return value:
969 *
970 * -- If nr_pages is 0, returns 0.
971 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
972 * -- If nr_pages is >0, and some pages were pinned, returns the number of
973 * pages pinned. Again, this may be less than nr_pages.
2d3a36a4 974 * -- 0 return value is possible when the fault would need to be retried.
d2dfbe47
LX
975 *
976 * The caller is responsible for releasing returned @pages, via put_page().
977 *
c1e8d7c6 978 * @vmas are valid only as long as mmap_lock is held.
4bbd4c77 979 *
c1e8d7c6 980 * Must be called with mmap_lock held. It may be released. See below.
4bbd4c77
KS
981 *
982 * __get_user_pages walks a process's page tables and takes a reference to
983 * each struct page that each user address corresponds to at a given
984 * instant. That is, it takes the page that would be accessed if a user
985 * thread accesses the given user virtual address at that instant.
986 *
987 * This does not guarantee that the page exists in the user mappings when
988 * __get_user_pages returns, and there may even be a completely different
989 * page there in some cases (eg. if mmapped pagecache has been invalidated
990 * and subsequently re faulted). However it does guarantee that the page
991 * won't be freed completely. And mostly callers simply care that the page
992 * contains data that was valid *at some point in time*. Typically, an IO
993 * or similar operation cannot guarantee anything stronger anyway because
994 * locks can't be held over the syscall boundary.
995 *
996 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
997 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
998 * appropriate) must be called after the page is finished with, and
999 * before put_page is called.
1000 *
c1e8d7c6 1001 * If @locked != NULL, *@locked will be set to 0 when mmap_lock is
4f6da934
PX
1002 * released by an up_read(). That can happen if @gup_flags does not
1003 * have FOLL_NOWAIT.
9a95f3cf 1004 *
4f6da934 1005 * A caller using such a combination of @locked and @gup_flags
c1e8d7c6 1006 * must therefore hold the mmap_lock for reading only, and recognize
9a95f3cf
PC
1007 * when it's been released. Otherwise, it must be held for either
1008 * reading or writing and will not be released.
4bbd4c77
KS
1009 *
1010 * In most cases, get_user_pages or get_user_pages_fast should be used
1011 * instead of __get_user_pages. __get_user_pages should be used only if
1012 * you need some special @gup_flags.
1013 */
64019a2e 1014static long __get_user_pages(struct mm_struct *mm,
4bbd4c77
KS
1015 unsigned long start, unsigned long nr_pages,
1016 unsigned int gup_flags, struct page **pages,
4f6da934 1017 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1018{
df06b37f 1019 long ret = 0, i = 0;
fa5bb209 1020 struct vm_area_struct *vma = NULL;
df06b37f 1021 struct follow_page_context ctx = { NULL };
4bbd4c77
KS
1022
1023 if (!nr_pages)
1024 return 0;
1025
f9652594
AK
1026 start = untagged_addr(start);
1027
eddb1c22 1028 VM_BUG_ON(!!pages != !!(gup_flags & (FOLL_GET | FOLL_PIN)));
4bbd4c77
KS
1029
1030 /*
1031 * If FOLL_FORCE is set then do not force a full fault as the hinting
1032 * fault information is unrelated to the reference behaviour of a task
1033 * using the address space
1034 */
1035 if (!(gup_flags & FOLL_FORCE))
1036 gup_flags |= FOLL_NUMA;
1037
4bbd4c77 1038 do {
fa5bb209
KS
1039 struct page *page;
1040 unsigned int foll_flags = gup_flags;
1041 unsigned int page_increm;
1042
1043 /* first iteration or cross vma bound */
1044 if (!vma || start >= vma->vm_end) {
1045 vma = find_extend_vma(mm, start);
1046 if (!vma && in_gate_area(mm, start)) {
fa5bb209
KS
1047 ret = get_gate_page(mm, start & PAGE_MASK,
1048 gup_flags, &vma,
1049 pages ? &pages[i] : NULL);
1050 if (ret)
08be37b7 1051 goto out;
df06b37f 1052 ctx.page_mask = 0;
fa5bb209
KS
1053 goto next_page;
1054 }
4bbd4c77 1055
df06b37f
KB
1056 if (!vma || check_vma_flags(vma, gup_flags)) {
1057 ret = -EFAULT;
1058 goto out;
1059 }
fa5bb209
KS
1060 if (is_vm_hugetlb_page(vma)) {
1061 i = follow_hugetlb_page(mm, vma, pages, vmas,
1062 &start, &nr_pages, i,
a308c71b 1063 gup_flags, locked);
ad415db8
PX
1064 if (locked && *locked == 0) {
1065 /*
1066 * We've got a VM_FAULT_RETRY
c1e8d7c6 1067 * and we've lost mmap_lock.
ad415db8
PX
1068 * We must stop here.
1069 */
1070 BUG_ON(gup_flags & FOLL_NOWAIT);
1071 BUG_ON(ret != 0);
1072 goto out;
1073 }
fa5bb209 1074 continue;
4bbd4c77 1075 }
fa5bb209
KS
1076 }
1077retry:
1078 /*
1079 * If we have a pending SIGKILL, don't keep faulting pages and
1080 * potentially allocating memory.
1081 */
fa45f116 1082 if (fatal_signal_pending(current)) {
d180870d 1083 ret = -EINTR;
df06b37f
KB
1084 goto out;
1085 }
fa5bb209 1086 cond_resched();
df06b37f
KB
1087
1088 page = follow_page_mask(vma, start, foll_flags, &ctx);
fa5bb209 1089 if (!page) {
64019a2e 1090 ret = faultin_page(vma, start, &foll_flags, locked);
fa5bb209
KS
1091 switch (ret) {
1092 case 0:
1093 goto retry;
df06b37f
KB
1094 case -EBUSY:
1095 ret = 0;
e4a9bc58 1096 fallthrough;
fa5bb209
KS
1097 case -EFAULT:
1098 case -ENOMEM:
1099 case -EHWPOISON:
df06b37f 1100 goto out;
fa5bb209
KS
1101 case -ENOENT:
1102 goto next_page;
4bbd4c77 1103 }
fa5bb209 1104 BUG();
1027e443
KS
1105 } else if (PTR_ERR(page) == -EEXIST) {
1106 /*
1107 * Proper page table entry exists, but no corresponding
1108 * struct page.
1109 */
1110 goto next_page;
1111 } else if (IS_ERR(page)) {
df06b37f
KB
1112 ret = PTR_ERR(page);
1113 goto out;
1027e443 1114 }
fa5bb209
KS
1115 if (pages) {
1116 pages[i] = page;
1117 flush_anon_page(vma, page, start);
1118 flush_dcache_page(page);
df06b37f 1119 ctx.page_mask = 0;
4bbd4c77 1120 }
4bbd4c77 1121next_page:
fa5bb209
KS
1122 if (vmas) {
1123 vmas[i] = vma;
df06b37f 1124 ctx.page_mask = 0;
fa5bb209 1125 }
df06b37f 1126 page_increm = 1 + (~(start >> PAGE_SHIFT) & ctx.page_mask);
fa5bb209
KS
1127 if (page_increm > nr_pages)
1128 page_increm = nr_pages;
1129 i += page_increm;
1130 start += page_increm * PAGE_SIZE;
1131 nr_pages -= page_increm;
4bbd4c77 1132 } while (nr_pages);
df06b37f
KB
1133out:
1134 if (ctx.pgmap)
1135 put_dev_pagemap(ctx.pgmap);
1136 return i ? i : ret;
4bbd4c77 1137}
4bbd4c77 1138
771ab430
TK
1139static bool vma_permits_fault(struct vm_area_struct *vma,
1140 unsigned int fault_flags)
d4925e00 1141{
1b2ee126
DH
1142 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
1143 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 1144 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
1145
1146 if (!(vm_flags & vma->vm_flags))
1147 return false;
1148
33a709b2
DH
1149 /*
1150 * The architecture might have a hardware protection
1b2ee126 1151 * mechanism other than read/write that can deny access.
d61172b4
DH
1152 *
1153 * gup always represents data access, not instruction
1154 * fetches, so execute=false here:
33a709b2 1155 */
d61172b4 1156 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
1157 return false;
1158
d4925e00
DH
1159 return true;
1160}
1161
adc8cb40 1162/**
4bbd4c77 1163 * fixup_user_fault() - manually resolve a user page fault
4bbd4c77
KS
1164 * @mm: mm_struct of target mm
1165 * @address: user address
1166 * @fault_flags:flags to pass down to handle_mm_fault()
c1e8d7c6 1167 * @unlocked: did we unlock the mmap_lock while retrying, maybe NULL if caller
548b6a1e
MC
1168 * does not allow retry. If NULL, the caller must guarantee
1169 * that fault_flags does not contain FAULT_FLAG_ALLOW_RETRY.
4bbd4c77
KS
1170 *
1171 * This is meant to be called in the specific scenario where for locking reasons
1172 * we try to access user memory in atomic context (within a pagefault_disable()
1173 * section), this returns -EFAULT, and we want to resolve the user fault before
1174 * trying again.
1175 *
1176 * Typically this is meant to be used by the futex code.
1177 *
1178 * The main difference with get_user_pages() is that this function will
1179 * unconditionally call handle_mm_fault() which will in turn perform all the
1180 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 1181 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
1182 *
1183 * This is important for some architectures where those bits also gate the
1184 * access permission to the page because they are maintained in software. On
1185 * such architectures, gup() will not be enough to make a subsequent access
1186 * succeed.
1187 *
c1e8d7c6
ML
1188 * This function will not return with an unlocked mmap_lock. So it has not the
1189 * same semantics wrt the @mm->mmap_lock as does filemap_fault().
4bbd4c77 1190 */
64019a2e 1191int fixup_user_fault(struct mm_struct *mm,
4a9e1cda
DD
1192 unsigned long address, unsigned int fault_flags,
1193 bool *unlocked)
4bbd4c77
KS
1194{
1195 struct vm_area_struct *vma;
2b740303 1196 vm_fault_t ret, major = 0;
4a9e1cda 1197
f9652594
AK
1198 address = untagged_addr(address);
1199
4a9e1cda 1200 if (unlocked)
71335f37 1201 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
4bbd4c77 1202
4a9e1cda 1203retry:
4bbd4c77
KS
1204 vma = find_extend_vma(mm, address);
1205 if (!vma || address < vma->vm_start)
1206 return -EFAULT;
1207
d4925e00 1208 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
1209 return -EFAULT;
1210
475f4dfc
PX
1211 if ((fault_flags & FAULT_FLAG_KILLABLE) &&
1212 fatal_signal_pending(current))
1213 return -EINTR;
1214
bce617ed 1215 ret = handle_mm_fault(vma, address, fault_flags, NULL);
4a9e1cda 1216 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 1217 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
1218 int err = vm_fault_to_errno(ret, 0);
1219
1220 if (err)
1221 return err;
4bbd4c77
KS
1222 BUG();
1223 }
4a9e1cda
DD
1224
1225 if (ret & VM_FAULT_RETRY) {
d8ed45c5 1226 mmap_read_lock(mm);
475f4dfc
PX
1227 *unlocked = true;
1228 fault_flags |= FAULT_FLAG_TRIED;
1229 goto retry;
4a9e1cda
DD
1230 }
1231
4bbd4c77
KS
1232 return 0;
1233}
add6a0cd 1234EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 1235
2d3a36a4
MH
1236/*
1237 * Please note that this function, unlike __get_user_pages will not
1238 * return 0 for nr_pages > 0 without FOLL_NOWAIT
1239 */
64019a2e 1240static __always_inline long __get_user_pages_locked(struct mm_struct *mm,
f0818f47
AA
1241 unsigned long start,
1242 unsigned long nr_pages,
f0818f47
AA
1243 struct page **pages,
1244 struct vm_area_struct **vmas,
e716712f 1245 int *locked,
0fd71a56 1246 unsigned int flags)
f0818f47 1247{
f0818f47
AA
1248 long ret, pages_done;
1249 bool lock_dropped;
1250
1251 if (locked) {
1252 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
1253 BUG_ON(vmas);
1254 /* check caller initialized locked */
1255 BUG_ON(*locked != 1);
1256 }
1257
008cfe44 1258 if (flags & FOLL_PIN)
a4d63c37 1259 atomic_set(&mm->has_pinned, 1);
008cfe44 1260
eddb1c22
JH
1261 /*
1262 * FOLL_PIN and FOLL_GET are mutually exclusive. Traditional behavior
1263 * is to set FOLL_GET if the caller wants pages[] filled in (but has
1264 * carelessly failed to specify FOLL_GET), so keep doing that, but only
1265 * for FOLL_GET, not for the newer FOLL_PIN.
1266 *
1267 * FOLL_PIN always expects pages to be non-null, but no need to assert
1268 * that here, as any failures will be obvious enough.
1269 */
1270 if (pages && !(flags & FOLL_PIN))
f0818f47 1271 flags |= FOLL_GET;
f0818f47
AA
1272
1273 pages_done = 0;
1274 lock_dropped = false;
1275 for (;;) {
64019a2e 1276 ret = __get_user_pages(mm, start, nr_pages, flags, pages,
f0818f47
AA
1277 vmas, locked);
1278 if (!locked)
1279 /* VM_FAULT_RETRY couldn't trigger, bypass */
1280 return ret;
1281
1282 /* VM_FAULT_RETRY cannot return errors */
1283 if (!*locked) {
1284 BUG_ON(ret < 0);
1285 BUG_ON(ret >= nr_pages);
1286 }
1287
f0818f47
AA
1288 if (ret > 0) {
1289 nr_pages -= ret;
1290 pages_done += ret;
1291 if (!nr_pages)
1292 break;
1293 }
1294 if (*locked) {
96312e61
AA
1295 /*
1296 * VM_FAULT_RETRY didn't trigger or it was a
1297 * FOLL_NOWAIT.
1298 */
f0818f47
AA
1299 if (!pages_done)
1300 pages_done = ret;
1301 break;
1302 }
df17277b
MR
1303 /*
1304 * VM_FAULT_RETRY triggered, so seek to the faulting offset.
1305 * For the prefault case (!pages) we only update counts.
1306 */
1307 if (likely(pages))
1308 pages += ret;
f0818f47 1309 start += ret << PAGE_SHIFT;
4426e945 1310 lock_dropped = true;
f0818f47 1311
4426e945 1312retry:
f0818f47
AA
1313 /*
1314 * Repeat on the address that fired VM_FAULT_RETRY
4426e945
PX
1315 * with both FAULT_FLAG_ALLOW_RETRY and
1316 * FAULT_FLAG_TRIED. Note that GUP can be interrupted
1317 * by fatal signals, so we need to check it before we
1318 * start trying again otherwise it can loop forever.
f0818f47 1319 */
4426e945 1320
ae46d2aa
HD
1321 if (fatal_signal_pending(current)) {
1322 if (!pages_done)
1323 pages_done = -EINTR;
4426e945 1324 break;
ae46d2aa 1325 }
4426e945 1326
d8ed45c5 1327 ret = mmap_read_lock_killable(mm);
71335f37
PX
1328 if (ret) {
1329 BUG_ON(ret > 0);
1330 if (!pages_done)
1331 pages_done = ret;
1332 break;
1333 }
4426e945 1334
c7b6a566 1335 *locked = 1;
64019a2e 1336 ret = __get_user_pages(mm, start, 1, flags | FOLL_TRIED,
4426e945
PX
1337 pages, NULL, locked);
1338 if (!*locked) {
1339 /* Continue to retry until we succeeded */
1340 BUG_ON(ret != 0);
1341 goto retry;
1342 }
f0818f47
AA
1343 if (ret != 1) {
1344 BUG_ON(ret > 1);
1345 if (!pages_done)
1346 pages_done = ret;
1347 break;
1348 }
1349 nr_pages--;
1350 pages_done++;
1351 if (!nr_pages)
1352 break;
df17277b
MR
1353 if (likely(pages))
1354 pages++;
f0818f47
AA
1355 start += PAGE_SIZE;
1356 }
e716712f 1357 if (lock_dropped && *locked) {
f0818f47
AA
1358 /*
1359 * We must let the caller know we temporarily dropped the lock
1360 * and so the critical section protected by it was lost.
1361 */
d8ed45c5 1362 mmap_read_unlock(mm);
f0818f47
AA
1363 *locked = 0;
1364 }
1365 return pages_done;
1366}
1367
d3649f68
CH
1368/**
1369 * populate_vma_page_range() - populate a range of pages in the vma.
1370 * @vma: target vma
1371 * @start: start address
1372 * @end: end address
c1e8d7c6 1373 * @locked: whether the mmap_lock is still held
d3649f68
CH
1374 *
1375 * This takes care of mlocking the pages too if VM_LOCKED is set.
1376 *
0a36f7f8
TY
1377 * Return either number of pages pinned in the vma, or a negative error
1378 * code on error.
d3649f68 1379 *
c1e8d7c6 1380 * vma->vm_mm->mmap_lock must be held.
d3649f68 1381 *
4f6da934 1382 * If @locked is NULL, it may be held for read or write and will
d3649f68
CH
1383 * be unperturbed.
1384 *
4f6da934
PX
1385 * If @locked is non-NULL, it must held for read only and may be
1386 * released. If it's released, *@locked will be set to 0.
d3649f68
CH
1387 */
1388long populate_vma_page_range(struct vm_area_struct *vma,
4f6da934 1389 unsigned long start, unsigned long end, int *locked)
d3649f68
CH
1390{
1391 struct mm_struct *mm = vma->vm_mm;
1392 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1393 int gup_flags;
1394
1395 VM_BUG_ON(start & ~PAGE_MASK);
1396 VM_BUG_ON(end & ~PAGE_MASK);
1397 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1398 VM_BUG_ON_VMA(end > vma->vm_end, vma);
42fc5414 1399 mmap_assert_locked(mm);
d3649f68
CH
1400
1401 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1402 if (vma->vm_flags & VM_LOCKONFAULT)
1403 gup_flags &= ~FOLL_POPULATE;
1404 /*
1405 * We want to touch writable mappings with a write fault in order
1406 * to break COW, except for shared mappings because these don't COW
1407 * and we would not want to dirty them for nothing.
1408 */
1409 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1410 gup_flags |= FOLL_WRITE;
1411
1412 /*
1413 * We want mlock to succeed for regions that have any permissions
1414 * other than PROT_NONE.
1415 */
3122e80e 1416 if (vma_is_accessible(vma))
d3649f68
CH
1417 gup_flags |= FOLL_FORCE;
1418
1419 /*
1420 * We made sure addr is within a VMA, so the following will
1421 * not result in a stack expansion that recurses back here.
1422 */
64019a2e 1423 return __get_user_pages(mm, start, nr_pages, gup_flags,
4f6da934 1424 NULL, NULL, locked);
d3649f68
CH
1425}
1426
1427/*
1428 * __mm_populate - populate and/or mlock pages within a range of address space.
1429 *
1430 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1431 * flags. VMAs must be already marked with the desired vm_flags, and
c1e8d7c6 1432 * mmap_lock must not be held.
d3649f68
CH
1433 */
1434int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1435{
1436 struct mm_struct *mm = current->mm;
1437 unsigned long end, nstart, nend;
1438 struct vm_area_struct *vma = NULL;
1439 int locked = 0;
1440 long ret = 0;
1441
1442 end = start + len;
1443
1444 for (nstart = start; nstart < end; nstart = nend) {
1445 /*
1446 * We want to fault in pages for [nstart; end) address range.
1447 * Find first corresponding VMA.
1448 */
1449 if (!locked) {
1450 locked = 1;
d8ed45c5 1451 mmap_read_lock(mm);
d3649f68
CH
1452 vma = find_vma(mm, nstart);
1453 } else if (nstart >= vma->vm_end)
1454 vma = vma->vm_next;
1455 if (!vma || vma->vm_start >= end)
1456 break;
1457 /*
1458 * Set [nstart; nend) to intersection of desired address
1459 * range with the first VMA. Also, skip undesirable VMA types.
1460 */
1461 nend = min(end, vma->vm_end);
1462 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1463 continue;
1464 if (nstart < vma->vm_start)
1465 nstart = vma->vm_start;
1466 /*
1467 * Now fault in a range of pages. populate_vma_page_range()
1468 * double checks the vma flags, so that it won't mlock pages
1469 * if the vma was already munlocked.
1470 */
1471 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1472 if (ret < 0) {
1473 if (ignore_errors) {
1474 ret = 0;
1475 continue; /* continue at next VMA */
1476 }
1477 break;
1478 }
1479 nend = nstart + ret * PAGE_SIZE;
1480 ret = 0;
1481 }
1482 if (locked)
d8ed45c5 1483 mmap_read_unlock(mm);
d3649f68
CH
1484 return ret; /* 0 or negative error code */
1485}
1486
1487/**
1488 * get_dump_page() - pin user page in memory while writing it to core dump
1489 * @addr: user address
1490 *
1491 * Returns struct page pointer of user page pinned for dump,
1492 * to be freed afterwards by put_page().
1493 *
1494 * Returns NULL on any kind of failure - a hole must then be inserted into
1495 * the corefile, to preserve alignment with its headers; and also returns
1496 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1497 * allowing a hole to be left in the corefile to save diskspace.
1498 *
c1e8d7c6 1499 * Called without mmap_lock, but after all other threads have been killed.
d3649f68
CH
1500 */
1501#ifdef CONFIG_ELF_CORE
1502struct page *get_dump_page(unsigned long addr)
1503{
1504 struct vm_area_struct *vma;
1505 struct page *page;
1506
64019a2e 1507 if (__get_user_pages(current->mm, addr, 1,
d3649f68
CH
1508 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1509 NULL) < 1)
1510 return NULL;
1511 flush_cache_page(vma, addr, page_to_pfn(page));
1512 return page;
1513}
1514#endif /* CONFIG_ELF_CORE */
050a9adc 1515#else /* CONFIG_MMU */
64019a2e 1516static long __get_user_pages_locked(struct mm_struct *mm, unsigned long start,
050a9adc
CH
1517 unsigned long nr_pages, struct page **pages,
1518 struct vm_area_struct **vmas, int *locked,
1519 unsigned int foll_flags)
1520{
1521 struct vm_area_struct *vma;
1522 unsigned long vm_flags;
1523 int i;
1524
1525 /* calculate required read or write permissions.
1526 * If FOLL_FORCE is set, we only require the "MAY" flags.
1527 */
1528 vm_flags = (foll_flags & FOLL_WRITE) ?
1529 (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1530 vm_flags &= (foll_flags & FOLL_FORCE) ?
1531 (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1532
1533 for (i = 0; i < nr_pages; i++) {
1534 vma = find_vma(mm, start);
1535 if (!vma)
1536 goto finish_or_fault;
1537
1538 /* protect what we can, including chardevs */
1539 if ((vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1540 !(vm_flags & vma->vm_flags))
1541 goto finish_or_fault;
1542
1543 if (pages) {
1544 pages[i] = virt_to_page(start);
1545 if (pages[i])
1546 get_page(pages[i]);
1547 }
1548 if (vmas)
1549 vmas[i] = vma;
1550 start = (start + PAGE_SIZE) & PAGE_MASK;
1551 }
1552
1553 return i;
1554
1555finish_or_fault:
1556 return i ? : -EFAULT;
1557}
1558#endif /* !CONFIG_MMU */
d3649f68 1559
9a4e9f3b 1560#if defined(CONFIG_FS_DAX) || defined (CONFIG_CMA)
9a4e9f3b
AK
1561static bool check_dax_vmas(struct vm_area_struct **vmas, long nr_pages)
1562{
1563 long i;
1564 struct vm_area_struct *vma_prev = NULL;
1565
1566 for (i = 0; i < nr_pages; i++) {
1567 struct vm_area_struct *vma = vmas[i];
1568
1569 if (vma == vma_prev)
1570 continue;
1571
1572 vma_prev = vma;
1573
1574 if (vma_is_fsdax(vma))
1575 return true;
1576 }
1577 return false;
1578}
9a4e9f3b
AK
1579
1580#ifdef CONFIG_CMA
64019a2e 1581static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1582 unsigned long start,
1583 unsigned long nr_pages,
9a4e9f3b 1584 struct page **pages,
932f4a63
IW
1585 struct vm_area_struct **vmas,
1586 unsigned int gup_flags)
9a4e9f3b 1587{
aa712399
PL
1588 unsigned long i;
1589 unsigned long step;
9a4e9f3b
AK
1590 bool drain_allow = true;
1591 bool migrate_allow = true;
1592 LIST_HEAD(cma_page_list);
b96cc655 1593 long ret = nr_pages;
ed03d924
JK
1594 struct migration_target_control mtc = {
1595 .nid = NUMA_NO_NODE,
1596 .gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_NOWARN,
1597 };
9a4e9f3b
AK
1598
1599check_again:
aa712399
PL
1600 for (i = 0; i < nr_pages;) {
1601
1602 struct page *head = compound_head(pages[i]);
1603
1604 /*
1605 * gup may start from a tail page. Advance step by the left
1606 * part.
1607 */
d8c6546b 1608 step = compound_nr(head) - (pages[i] - head);
9a4e9f3b
AK
1609 /*
1610 * If we get a page from the CMA zone, since we are going to
1611 * be pinning these entries, we might as well move them out
1612 * of the CMA zone if possible.
1613 */
aa712399
PL
1614 if (is_migrate_cma_page(head)) {
1615 if (PageHuge(head))
9a4e9f3b 1616 isolate_huge_page(head, &cma_page_list);
aa712399 1617 else {
9a4e9f3b
AK
1618 if (!PageLRU(head) && drain_allow) {
1619 lru_add_drain_all();
1620 drain_allow = false;
1621 }
1622
1623 if (!isolate_lru_page(head)) {
1624 list_add_tail(&head->lru, &cma_page_list);
1625 mod_node_page_state(page_pgdat(head),
1626 NR_ISOLATED_ANON +
9de4f22a 1627 page_is_file_lru(head),
6c357848 1628 thp_nr_pages(head));
9a4e9f3b
AK
1629 }
1630 }
1631 }
aa712399
PL
1632
1633 i += step;
9a4e9f3b
AK
1634 }
1635
1636 if (!list_empty(&cma_page_list)) {
1637 /*
1638 * drop the above get_user_pages reference.
1639 */
1640 for (i = 0; i < nr_pages; i++)
1641 put_page(pages[i]);
1642
ed03d924
JK
1643 if (migrate_pages(&cma_page_list, alloc_migration_target, NULL,
1644 (unsigned long)&mtc, MIGRATE_SYNC, MR_CONTIG_RANGE)) {
9a4e9f3b
AK
1645 /*
1646 * some of the pages failed migration. Do get_user_pages
1647 * without migration.
1648 */
1649 migrate_allow = false;
1650
1651 if (!list_empty(&cma_page_list))
1652 putback_movable_pages(&cma_page_list);
1653 }
1654 /*
932f4a63
IW
1655 * We did migrate all the pages, Try to get the page references
1656 * again migrating any new CMA pages which we failed to isolate
1657 * earlier.
9a4e9f3b 1658 */
64019a2e 1659 ret = __get_user_pages_locked(mm, start, nr_pages,
932f4a63
IW
1660 pages, vmas, NULL,
1661 gup_flags);
1662
b96cc655 1663 if ((ret > 0) && migrate_allow) {
1664 nr_pages = ret;
9a4e9f3b
AK
1665 drain_allow = true;
1666 goto check_again;
1667 }
1668 }
1669
b96cc655 1670 return ret;
9a4e9f3b
AK
1671}
1672#else
64019a2e 1673static long check_and_migrate_cma_pages(struct mm_struct *mm,
932f4a63
IW
1674 unsigned long start,
1675 unsigned long nr_pages,
1676 struct page **pages,
1677 struct vm_area_struct **vmas,
1678 unsigned int gup_flags)
9a4e9f3b
AK
1679{
1680 return nr_pages;
1681}
050a9adc 1682#endif /* CONFIG_CMA */
9a4e9f3b 1683
2bb6d283 1684/*
932f4a63
IW
1685 * __gup_longterm_locked() is a wrapper for __get_user_pages_locked which
1686 * allows us to process the FOLL_LONGTERM flag.
2bb6d283 1687 */
64019a2e 1688static long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1689 unsigned long start,
1690 unsigned long nr_pages,
1691 struct page **pages,
1692 struct vm_area_struct **vmas,
1693 unsigned int gup_flags)
2bb6d283 1694{
932f4a63
IW
1695 struct vm_area_struct **vmas_tmp = vmas;
1696 unsigned long flags = 0;
2bb6d283
DW
1697 long rc, i;
1698
932f4a63
IW
1699 if (gup_flags & FOLL_LONGTERM) {
1700 if (!pages)
1701 return -EINVAL;
1702
1703 if (!vmas_tmp) {
1704 vmas_tmp = kcalloc(nr_pages,
1705 sizeof(struct vm_area_struct *),
1706 GFP_KERNEL);
1707 if (!vmas_tmp)
1708 return -ENOMEM;
1709 }
1710 flags = memalloc_nocma_save();
2bb6d283
DW
1711 }
1712
64019a2e 1713 rc = __get_user_pages_locked(mm, start, nr_pages, pages,
932f4a63 1714 vmas_tmp, NULL, gup_flags);
2bb6d283 1715
932f4a63 1716 if (gup_flags & FOLL_LONGTERM) {
932f4a63
IW
1717 if (rc < 0)
1718 goto out;
1719
1720 if (check_dax_vmas(vmas_tmp, rc)) {
1721 for (i = 0; i < rc; i++)
1722 put_page(pages[i]);
1723 rc = -EOPNOTSUPP;
1724 goto out;
1725 }
1726
64019a2e 1727 rc = check_and_migrate_cma_pages(mm, start, rc, pages,
932f4a63 1728 vmas_tmp, gup_flags);
41b4dc14
JK
1729out:
1730 memalloc_nocma_restore(flags);
9a4e9f3b 1731 }
2bb6d283 1732
932f4a63
IW
1733 if (vmas_tmp != vmas)
1734 kfree(vmas_tmp);
2bb6d283
DW
1735 return rc;
1736}
932f4a63 1737#else /* !CONFIG_FS_DAX && !CONFIG_CMA */
64019a2e 1738static __always_inline long __gup_longterm_locked(struct mm_struct *mm,
932f4a63
IW
1739 unsigned long start,
1740 unsigned long nr_pages,
1741 struct page **pages,
1742 struct vm_area_struct **vmas,
1743 unsigned int flags)
1744{
64019a2e 1745 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
932f4a63
IW
1746 NULL, flags);
1747}
1748#endif /* CONFIG_FS_DAX || CONFIG_CMA */
1749
447f3e45
BS
1750static bool is_valid_gup_flags(unsigned int gup_flags)
1751{
1752 /*
1753 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1754 * never directly by the caller, so enforce that with an assertion:
1755 */
1756 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1757 return false;
1758 /*
1759 * FOLL_PIN is a prerequisite to FOLL_LONGTERM. Another way of saying
1760 * that is, FOLL_LONGTERM is a specific case, more restrictive case of
1761 * FOLL_PIN.
1762 */
1763 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1764 return false;
1765
1766 return true;
1767}
1768
22bf29b6 1769#ifdef CONFIG_MMU
64019a2e 1770static long __get_user_pages_remote(struct mm_struct *mm,
22bf29b6
JH
1771 unsigned long start, unsigned long nr_pages,
1772 unsigned int gup_flags, struct page **pages,
1773 struct vm_area_struct **vmas, int *locked)
1774{
1775 /*
1776 * Parts of FOLL_LONGTERM behavior are incompatible with
1777 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1778 * vmas. However, this only comes up if locked is set, and there are
1779 * callers that do request FOLL_LONGTERM, but do not set locked. So,
1780 * allow what we can.
1781 */
1782 if (gup_flags & FOLL_LONGTERM) {
1783 if (WARN_ON_ONCE(locked))
1784 return -EINVAL;
1785 /*
1786 * This will check the vmas (even if our vmas arg is NULL)
1787 * and return -ENOTSUPP if DAX isn't allowed in this case:
1788 */
64019a2e 1789 return __gup_longterm_locked(mm, start, nr_pages, pages,
22bf29b6
JH
1790 vmas, gup_flags | FOLL_TOUCH |
1791 FOLL_REMOTE);
1792 }
1793
64019a2e 1794 return __get_user_pages_locked(mm, start, nr_pages, pages, vmas,
22bf29b6
JH
1795 locked,
1796 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1797}
1798
adc8cb40 1799/**
c4237f8b 1800 * get_user_pages_remote() - pin user pages in memory
c4237f8b
JH
1801 * @mm: mm_struct of target mm
1802 * @start: starting user address
1803 * @nr_pages: number of pages from start to pin
1804 * @gup_flags: flags modifying lookup behaviour
1805 * @pages: array that receives pointers to the pages pinned.
1806 * Should be at least nr_pages long. Or NULL, if caller
1807 * only intends to ensure the pages are faulted in.
1808 * @vmas: array of pointers to vmas corresponding to each page.
1809 * Or NULL if the caller does not require them.
1810 * @locked: pointer to lock flag indicating whether lock is held and
1811 * subsequently whether VM_FAULT_RETRY functionality can be
1812 * utilised. Lock must initially be held.
1813 *
1814 * Returns either number of pages pinned (which may be less than the
1815 * number requested), or an error. Details about the return value:
1816 *
1817 * -- If nr_pages is 0, returns 0.
1818 * -- If nr_pages is >0, but no pages were pinned, returns -errno.
1819 * -- If nr_pages is >0, and some pages were pinned, returns the number of
1820 * pages pinned. Again, this may be less than nr_pages.
1821 *
1822 * The caller is responsible for releasing returned @pages, via put_page().
1823 *
c1e8d7c6 1824 * @vmas are valid only as long as mmap_lock is held.
c4237f8b 1825 *
c1e8d7c6 1826 * Must be called with mmap_lock held for read or write.
c4237f8b 1827 *
adc8cb40
SJ
1828 * get_user_pages_remote walks a process's page tables and takes a reference
1829 * to each struct page that each user address corresponds to at a given
c4237f8b
JH
1830 * instant. That is, it takes the page that would be accessed if a user
1831 * thread accesses the given user virtual address at that instant.
1832 *
1833 * This does not guarantee that the page exists in the user mappings when
adc8cb40 1834 * get_user_pages_remote returns, and there may even be a completely different
c4237f8b
JH
1835 * page there in some cases (eg. if mmapped pagecache has been invalidated
1836 * and subsequently re faulted). However it does guarantee that the page
1837 * won't be freed completely. And mostly callers simply care that the page
1838 * contains data that was valid *at some point in time*. Typically, an IO
1839 * or similar operation cannot guarantee anything stronger anyway because
1840 * locks can't be held over the syscall boundary.
1841 *
1842 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
1843 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
1844 * be called after the page is finished with, and before put_page is called.
1845 *
adc8cb40
SJ
1846 * get_user_pages_remote is typically used for fewer-copy IO operations,
1847 * to get a handle on the memory by some means other than accesses
1848 * via the user virtual addresses. The pages may be submitted for
1849 * DMA to devices or accessed via their kernel linear mapping (via the
1850 * kmap APIs). Care should be taken to use the correct cache flushing APIs.
c4237f8b
JH
1851 *
1852 * See also get_user_pages_fast, for performance critical applications.
1853 *
adc8cb40 1854 * get_user_pages_remote should be phased out in favor of
c4237f8b 1855 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
adc8cb40 1856 * should use get_user_pages_remote because it cannot pass
c4237f8b
JH
1857 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
1858 */
64019a2e 1859long get_user_pages_remote(struct mm_struct *mm,
c4237f8b
JH
1860 unsigned long start, unsigned long nr_pages,
1861 unsigned int gup_flags, struct page **pages,
1862 struct vm_area_struct **vmas, int *locked)
1863{
447f3e45 1864 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1865 return -EINVAL;
1866
64019a2e 1867 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
22bf29b6 1868 pages, vmas, locked);
c4237f8b
JH
1869}
1870EXPORT_SYMBOL(get_user_pages_remote);
1871
eddb1c22 1872#else /* CONFIG_MMU */
64019a2e 1873long get_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
1874 unsigned long start, unsigned long nr_pages,
1875 unsigned int gup_flags, struct page **pages,
1876 struct vm_area_struct **vmas, int *locked)
1877{
1878 return 0;
1879}
3faa52c0 1880
64019a2e 1881static long __get_user_pages_remote(struct mm_struct *mm,
3faa52c0
JH
1882 unsigned long start, unsigned long nr_pages,
1883 unsigned int gup_flags, struct page **pages,
1884 struct vm_area_struct **vmas, int *locked)
1885{
1886 return 0;
1887}
eddb1c22
JH
1888#endif /* !CONFIG_MMU */
1889
adc8cb40
SJ
1890/**
1891 * get_user_pages() - pin user pages in memory
1892 * @start: starting user address
1893 * @nr_pages: number of pages from start to pin
1894 * @gup_flags: flags modifying lookup behaviour
1895 * @pages: array that receives pointers to the pages pinned.
1896 * Should be at least nr_pages long. Or NULL, if caller
1897 * only intends to ensure the pages are faulted in.
1898 * @vmas: array of pointers to vmas corresponding to each page.
1899 * Or NULL if the caller does not require them.
1900 *
64019a2e
PX
1901 * This is the same as get_user_pages_remote(), just with a less-flexible
1902 * calling convention where we assume that the mm being operated on belongs to
1903 * the current task, and doesn't allow passing of a locked parameter. We also
1904 * obviously don't pass FOLL_REMOTE in here.
932f4a63
IW
1905 */
1906long get_user_pages(unsigned long start, unsigned long nr_pages,
1907 unsigned int gup_flags, struct page **pages,
1908 struct vm_area_struct **vmas)
1909{
447f3e45 1910 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
1911 return -EINVAL;
1912
64019a2e 1913 return __gup_longterm_locked(current->mm, start, nr_pages,
932f4a63
IW
1914 pages, vmas, gup_flags | FOLL_TOUCH);
1915}
1916EXPORT_SYMBOL(get_user_pages);
2bb6d283 1917
adc8cb40 1918/**
d3649f68 1919 * get_user_pages_locked() is suitable to replace the form:
acc3c8d1 1920 *
3e4e28c5 1921 * mmap_read_lock(mm);
d3649f68 1922 * do_something()
64019a2e 1923 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1924 * mmap_read_unlock(mm);
acc3c8d1 1925 *
d3649f68 1926 * to:
acc3c8d1 1927 *
d3649f68 1928 * int locked = 1;
3e4e28c5 1929 * mmap_read_lock(mm);
d3649f68 1930 * do_something()
64019a2e 1931 * get_user_pages_locked(mm, ..., pages, &locked);
d3649f68 1932 * if (locked)
3e4e28c5 1933 * mmap_read_unlock(mm);
adc8cb40
SJ
1934 *
1935 * @start: starting user address
1936 * @nr_pages: number of pages from start to pin
1937 * @gup_flags: flags modifying lookup behaviour
1938 * @pages: array that receives pointers to the pages pinned.
1939 * Should be at least nr_pages long. Or NULL, if caller
1940 * only intends to ensure the pages are faulted in.
1941 * @locked: pointer to lock flag indicating whether lock is held and
1942 * subsequently whether VM_FAULT_RETRY functionality can be
1943 * utilised. Lock must initially be held.
1944 *
1945 * We can leverage the VM_FAULT_RETRY functionality in the page fault
1946 * paths better by using either get_user_pages_locked() or
1947 * get_user_pages_unlocked().
1948 *
acc3c8d1 1949 */
d3649f68
CH
1950long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
1951 unsigned int gup_flags, struct page **pages,
1952 int *locked)
acc3c8d1 1953{
acc3c8d1 1954 /*
d3649f68
CH
1955 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1956 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
1957 * vmas. As there are no users of this flag in this call we simply
1958 * disallow this option for now.
acc3c8d1 1959 */
d3649f68
CH
1960 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
1961 return -EINVAL;
420c2091
JH
1962 /*
1963 * FOLL_PIN must only be set internally by the pin_user_pages*() APIs,
1964 * never directly by the caller, so enforce that:
1965 */
1966 if (WARN_ON_ONCE(gup_flags & FOLL_PIN))
1967 return -EINVAL;
acc3c8d1 1968
64019a2e 1969 return __get_user_pages_locked(current->mm, start, nr_pages,
d3649f68
CH
1970 pages, NULL, locked,
1971 gup_flags | FOLL_TOUCH);
acc3c8d1 1972}
d3649f68 1973EXPORT_SYMBOL(get_user_pages_locked);
acc3c8d1
KS
1974
1975/*
d3649f68 1976 * get_user_pages_unlocked() is suitable to replace the form:
acc3c8d1 1977 *
3e4e28c5 1978 * mmap_read_lock(mm);
64019a2e 1979 * get_user_pages(mm, ..., pages, NULL);
3e4e28c5 1980 * mmap_read_unlock(mm);
d3649f68
CH
1981 *
1982 * with:
1983 *
64019a2e 1984 * get_user_pages_unlocked(mm, ..., pages);
d3649f68
CH
1985 *
1986 * It is functionally equivalent to get_user_pages_fast so
1987 * get_user_pages_fast should be used instead if specific gup_flags
1988 * (e.g. FOLL_FORCE) are not required.
acc3c8d1 1989 */
d3649f68
CH
1990long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
1991 struct page **pages, unsigned int gup_flags)
acc3c8d1
KS
1992{
1993 struct mm_struct *mm = current->mm;
d3649f68
CH
1994 int locked = 1;
1995 long ret;
acc3c8d1 1996
d3649f68
CH
1997 /*
1998 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
1999 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2000 * vmas. As there are no users of this flag in this call we simply
2001 * disallow this option for now.
2002 */
2003 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2004 return -EINVAL;
acc3c8d1 2005
d8ed45c5 2006 mmap_read_lock(mm);
64019a2e 2007 ret = __get_user_pages_locked(mm, start, nr_pages, pages, NULL,
d3649f68 2008 &locked, gup_flags | FOLL_TOUCH);
acc3c8d1 2009 if (locked)
d8ed45c5 2010 mmap_read_unlock(mm);
d3649f68 2011 return ret;
4bbd4c77 2012}
d3649f68 2013EXPORT_SYMBOL(get_user_pages_unlocked);
2667f50e
SC
2014
2015/*
67a929e0 2016 * Fast GUP
2667f50e
SC
2017 *
2018 * get_user_pages_fast attempts to pin user pages by walking the page
2019 * tables directly and avoids taking locks. Thus the walker needs to be
2020 * protected from page table pages being freed from under it, and should
2021 * block any THP splits.
2022 *
2023 * One way to achieve this is to have the walker disable interrupts, and
2024 * rely on IPIs from the TLB flushing code blocking before the page table
2025 * pages are freed. This is unsuitable for architectures that do not need
2026 * to broadcast an IPI when invalidating TLBs.
2027 *
2028 * Another way to achieve this is to batch up page table containing pages
2029 * belonging to more than one mm_user, then rcu_sched a callback to free those
2030 * pages. Disabling interrupts will allow the fast_gup walker to both block
2031 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
2032 * (which is a relatively rare event). The code below adopts this strategy.
2033 *
2034 * Before activating this code, please be aware that the following assumptions
2035 * are currently made:
2036 *
ff2e6d72 2037 * *) Either MMU_GATHER_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
e585513b 2038 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 2039 *
2667f50e
SC
2040 * *) ptes can be read atomically by the architecture.
2041 *
2042 * *) access_ok is sufficient to validate userspace address ranges.
2043 *
2044 * The last two assumptions can be relaxed by the addition of helper functions.
2045 *
2046 * This code is based heavily on the PowerPC implementation by Nick Piggin.
2047 */
67a929e0 2048#ifdef CONFIG_HAVE_FAST_GUP
3faa52c0
JH
2049
2050static void put_compound_head(struct page *page, int refs, unsigned int flags)
2051{
47e29d32 2052 if (flags & FOLL_PIN) {
1970dc6f
JH
2053 mod_node_page_state(page_pgdat(page), NR_FOLL_PIN_RELEASED,
2054 refs);
2055
47e29d32
JH
2056 if (hpage_pincount_available(page))
2057 hpage_pincount_sub(page, refs);
2058 else
2059 refs *= GUP_PIN_COUNTING_BIAS;
2060 }
3faa52c0
JH
2061
2062 VM_BUG_ON_PAGE(page_ref_count(page) < refs, page);
2063 /*
2064 * Calling put_page() for each ref is unnecessarily slow. Only the last
2065 * ref needs a put_page().
2066 */
2067 if (refs > 1)
2068 page_ref_sub(page, refs - 1);
2069 put_page(page);
2070}
2071
39656e83 2072#ifdef CONFIG_GUP_GET_PTE_LOW_HIGH
3faa52c0 2073
39656e83
CH
2074/*
2075 * WARNING: only to be used in the get_user_pages_fast() implementation.
2076 *
2077 * With get_user_pages_fast(), we walk down the pagetables without taking any
2078 * locks. For this we would like to load the pointers atomically, but sometimes
2079 * that is not possible (e.g. without expensive cmpxchg8b on x86_32 PAE). What
2080 * we do have is the guarantee that a PTE will only either go from not present
2081 * to present, or present to not present or both -- it will not switch to a
2082 * completely different present page without a TLB flush in between; something
2083 * that we are blocking by holding interrupts off.
2084 *
2085 * Setting ptes from not present to present goes:
2086 *
2087 * ptep->pte_high = h;
2088 * smp_wmb();
2089 * ptep->pte_low = l;
2090 *
2091 * And present to not present goes:
2092 *
2093 * ptep->pte_low = 0;
2094 * smp_wmb();
2095 * ptep->pte_high = 0;
2096 *
2097 * We must ensure here that the load of pte_low sees 'l' IFF pte_high sees 'h'.
2098 * We load pte_high *after* loading pte_low, which ensures we don't see an older
2099 * value of pte_high. *Then* we recheck pte_low, which ensures that we haven't
2100 * picked up a changed pte high. We might have gotten rubbish values from
2101 * pte_low and pte_high, but we are guaranteed that pte_low will not have the
2102 * present bit set *unless* it is 'l'. Because get_user_pages_fast() only
2103 * operates on present ptes we're safe.
2104 */
2105static inline pte_t gup_get_pte(pte_t *ptep)
2106{
2107 pte_t pte;
2667f50e 2108
39656e83
CH
2109 do {
2110 pte.pte_low = ptep->pte_low;
2111 smp_rmb();
2112 pte.pte_high = ptep->pte_high;
2113 smp_rmb();
2114 } while (unlikely(pte.pte_low != ptep->pte_low));
2115
2116 return pte;
2117}
2118#else /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2119/*
39656e83 2120 * We require that the PTE can be read atomically.
0005d20b
KS
2121 */
2122static inline pte_t gup_get_pte(pte_t *ptep)
2123{
481e980a 2124 return ptep_get(ptep);
0005d20b 2125}
39656e83 2126#endif /* CONFIG_GUP_GET_PTE_LOW_HIGH */
0005d20b 2127
790c7369 2128static void __maybe_unused undo_dev_pagemap(int *nr, int nr_start,
3b78d834 2129 unsigned int flags,
790c7369 2130 struct page **pages)
b59f65fa
KS
2131{
2132 while ((*nr) - nr_start) {
2133 struct page *page = pages[--(*nr)];
2134
2135 ClearPageReferenced(page);
3faa52c0
JH
2136 if (flags & FOLL_PIN)
2137 unpin_user_page(page);
2138 else
2139 put_page(page);
b59f65fa
KS
2140 }
2141}
2142
3010a5ea 2143#ifdef CONFIG_ARCH_HAS_PTE_SPECIAL
2667f50e 2144static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2145 unsigned int flags, struct page **pages, int *nr)
2667f50e 2146{
b59f65fa
KS
2147 struct dev_pagemap *pgmap = NULL;
2148 int nr_start = *nr, ret = 0;
2667f50e 2149 pte_t *ptep, *ptem;
2667f50e
SC
2150
2151 ptem = ptep = pte_offset_map(&pmd, addr);
2152 do {
0005d20b 2153 pte_t pte = gup_get_pte(ptep);
7aef4172 2154 struct page *head, *page;
2667f50e
SC
2155
2156 /*
2157 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 2158 * path using the pte_protnone check.
2667f50e 2159 */
e7884f8e
KS
2160 if (pte_protnone(pte))
2161 goto pte_unmap;
2162
b798bec4 2163 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
e7884f8e
KS
2164 goto pte_unmap;
2165
b59f65fa 2166 if (pte_devmap(pte)) {
7af75561
IW
2167 if (unlikely(flags & FOLL_LONGTERM))
2168 goto pte_unmap;
2169
b59f65fa
KS
2170 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
2171 if (unlikely(!pgmap)) {
3b78d834 2172 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2173 goto pte_unmap;
2174 }
2175 } else if (pte_special(pte))
2667f50e
SC
2176 goto pte_unmap;
2177
2178 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2179 page = pte_page(pte);
2180
3faa52c0 2181 head = try_grab_compound_head(page, 1, flags);
8fde12ca 2182 if (!head)
2667f50e
SC
2183 goto pte_unmap;
2184
2185 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3faa52c0 2186 put_compound_head(head, 1, flags);
2667f50e
SC
2187 goto pte_unmap;
2188 }
2189
7aef4172 2190 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 2191
f28d4363
CI
2192 /*
2193 * We need to make the page accessible if and only if we are
2194 * going to access its content (the FOLL_PIN case). Please
2195 * see Documentation/core-api/pin_user_pages.rst for
2196 * details.
2197 */
2198 if (flags & FOLL_PIN) {
2199 ret = arch_make_page_accessible(page);
2200 if (ret) {
2201 unpin_user_page(page);
2202 goto pte_unmap;
2203 }
2204 }
e9348053 2205 SetPageReferenced(page);
2667f50e
SC
2206 pages[*nr] = page;
2207 (*nr)++;
2208
2209 } while (ptep++, addr += PAGE_SIZE, addr != end);
2210
2211 ret = 1;
2212
2213pte_unmap:
832d7aa0
CH
2214 if (pgmap)
2215 put_dev_pagemap(pgmap);
2667f50e
SC
2216 pte_unmap(ptem);
2217 return ret;
2218}
2219#else
2220
2221/*
2222 * If we can't determine whether or not a pte is special, then fail immediately
2223 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
2224 * to be special.
2225 *
2226 * For a futex to be placed on a THP tail page, get_futex_key requires a
dadbb612 2227 * get_user_pages_fast_only implementation that can pin pages. Thus it's still
2667f50e
SC
2228 * useful to have gup_huge_pmd even if we can't operate on ptes.
2229 */
2230static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
b798bec4 2231 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2232{
2233 return 0;
2234}
3010a5ea 2235#endif /* CONFIG_ARCH_HAS_PTE_SPECIAL */
2667f50e 2236
17596731 2237#if defined(CONFIG_ARCH_HAS_PTE_DEVMAP) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
b59f65fa 2238static int __gup_device_huge(unsigned long pfn, unsigned long addr,
86dfbed4
JH
2239 unsigned long end, unsigned int flags,
2240 struct page **pages, int *nr)
b59f65fa
KS
2241{
2242 int nr_start = *nr;
2243 struct dev_pagemap *pgmap = NULL;
2244
2245 do {
2246 struct page *page = pfn_to_page(pfn);
2247
2248 pgmap = get_dev_pagemap(pfn, pgmap);
2249 if (unlikely(!pgmap)) {
3b78d834 2250 undo_dev_pagemap(nr, nr_start, flags, pages);
b59f65fa
KS
2251 return 0;
2252 }
2253 SetPageReferenced(page);
2254 pages[*nr] = page;
3faa52c0
JH
2255 if (unlikely(!try_grab_page(page, flags))) {
2256 undo_dev_pagemap(nr, nr_start, flags, pages);
2257 return 0;
2258 }
b59f65fa
KS
2259 (*nr)++;
2260 pfn++;
2261 } while (addr += PAGE_SIZE, addr != end);
832d7aa0
CH
2262
2263 if (pgmap)
2264 put_dev_pagemap(pgmap);
b59f65fa
KS
2265 return 1;
2266}
2267
a9b6de77 2268static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2269 unsigned long end, unsigned int flags,
2270 struct page **pages, int *nr)
b59f65fa
KS
2271{
2272 unsigned long fault_pfn;
a9b6de77
DW
2273 int nr_start = *nr;
2274
2275 fault_pfn = pmd_pfn(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
86dfbed4 2276 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2277 return 0;
b59f65fa 2278
a9b6de77 2279 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2280 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2281 return 0;
2282 }
2283 return 1;
b59f65fa
KS
2284}
2285
a9b6de77 2286static int __gup_device_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2287 unsigned long end, unsigned int flags,
2288 struct page **pages, int *nr)
b59f65fa
KS
2289{
2290 unsigned long fault_pfn;
a9b6de77
DW
2291 int nr_start = *nr;
2292
2293 fault_pfn = pud_pfn(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
86dfbed4 2294 if (!__gup_device_huge(fault_pfn, addr, end, flags, pages, nr))
a9b6de77 2295 return 0;
b59f65fa 2296
a9b6de77 2297 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2298 undo_dev_pagemap(nr, nr_start, flags, pages);
a9b6de77
DW
2299 return 0;
2300 }
2301 return 1;
b59f65fa
KS
2302}
2303#else
a9b6de77 2304static int __gup_device_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
86dfbed4
JH
2305 unsigned long end, unsigned int flags,
2306 struct page **pages, int *nr)
b59f65fa
KS
2307{
2308 BUILD_BUG();
2309 return 0;
2310}
2311
a9b6de77 2312static int __gup_device_huge_pud(pud_t pud, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2313 unsigned long end, unsigned int flags,
2314 struct page **pages, int *nr)
b59f65fa
KS
2315{
2316 BUILD_BUG();
2317 return 0;
2318}
2319#endif
2320
a43e9820
JH
2321static int record_subpages(struct page *page, unsigned long addr,
2322 unsigned long end, struct page **pages)
2323{
2324 int nr;
2325
2326 for (nr = 0; addr != end; addr += PAGE_SIZE)
2327 pages[nr++] = page++;
2328
2329 return nr;
2330}
2331
cbd34da7
CH
2332#ifdef CONFIG_ARCH_HAS_HUGEPD
2333static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
2334 unsigned long sz)
2335{
2336 unsigned long __boundary = (addr + sz) & ~(sz-1);
2337 return (__boundary - 1 < end - 1) ? __boundary : end;
2338}
2339
2340static int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
0cd22afd
JH
2341 unsigned long end, unsigned int flags,
2342 struct page **pages, int *nr)
cbd34da7
CH
2343{
2344 unsigned long pte_end;
2345 struct page *head, *page;
2346 pte_t pte;
2347 int refs;
2348
2349 pte_end = (addr + sz) & ~(sz-1);
2350 if (pte_end < end)
2351 end = pte_end;
2352
55ca2263 2353 pte = huge_ptep_get(ptep);
cbd34da7 2354
0cd22afd 2355 if (!pte_access_permitted(pte, flags & FOLL_WRITE))
cbd34da7
CH
2356 return 0;
2357
2358 /* hugepages are never "special" */
2359 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
2360
cbd34da7 2361 head = pte_page(pte);
cbd34da7 2362 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
a43e9820 2363 refs = record_subpages(page, addr, end, pages + *nr);
cbd34da7 2364
3faa52c0 2365 head = try_grab_compound_head(head, refs, flags);
a43e9820 2366 if (!head)
cbd34da7 2367 return 0;
cbd34da7
CH
2368
2369 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
3b78d834 2370 put_compound_head(head, refs, flags);
cbd34da7
CH
2371 return 0;
2372 }
2373
a43e9820 2374 *nr += refs;
520b4a44 2375 SetPageReferenced(head);
cbd34da7
CH
2376 return 1;
2377}
2378
2379static int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2380 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2381 struct page **pages, int *nr)
2382{
2383 pte_t *ptep;
2384 unsigned long sz = 1UL << hugepd_shift(hugepd);
2385 unsigned long next;
2386
2387 ptep = hugepte_offset(hugepd, addr, pdshift);
2388 do {
2389 next = hugepte_addr_end(addr, end, sz);
0cd22afd 2390 if (!gup_hugepte(ptep, sz, addr, end, flags, pages, nr))
cbd34da7
CH
2391 return 0;
2392 } while (ptep++, addr = next, addr != end);
2393
2394 return 1;
2395}
2396#else
2397static inline int gup_huge_pd(hugepd_t hugepd, unsigned long addr,
0cd22afd 2398 unsigned int pdshift, unsigned long end, unsigned int flags,
cbd34da7
CH
2399 struct page **pages, int *nr)
2400{
2401 return 0;
2402}
2403#endif /* CONFIG_ARCH_HAS_HUGEPD */
2404
2667f50e 2405static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
0cd22afd
JH
2406 unsigned long end, unsigned int flags,
2407 struct page **pages, int *nr)
2667f50e 2408{
ddc58f27 2409 struct page *head, *page;
2667f50e
SC
2410 int refs;
2411
b798bec4 2412 if (!pmd_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2413 return 0;
2414
7af75561
IW
2415 if (pmd_devmap(orig)) {
2416 if (unlikely(flags & FOLL_LONGTERM))
2417 return 0;
86dfbed4
JH
2418 return __gup_device_huge_pmd(orig, pmdp, addr, end, flags,
2419 pages, nr);
7af75561 2420 }
b59f65fa 2421
d63206ee 2422 page = pmd_page(orig) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
a43e9820 2423 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2424
3faa52c0 2425 head = try_grab_compound_head(pmd_page(orig), refs, flags);
a43e9820 2426 if (!head)
2667f50e 2427 return 0;
2667f50e
SC
2428
2429 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
3b78d834 2430 put_compound_head(head, refs, flags);
2667f50e
SC
2431 return 0;
2432 }
2433
a43e9820 2434 *nr += refs;
e9348053 2435 SetPageReferenced(head);
2667f50e
SC
2436 return 1;
2437}
2438
2439static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
86dfbed4
JH
2440 unsigned long end, unsigned int flags,
2441 struct page **pages, int *nr)
2667f50e 2442{
ddc58f27 2443 struct page *head, *page;
2667f50e
SC
2444 int refs;
2445
b798bec4 2446 if (!pud_access_permitted(orig, flags & FOLL_WRITE))
2667f50e
SC
2447 return 0;
2448
7af75561
IW
2449 if (pud_devmap(orig)) {
2450 if (unlikely(flags & FOLL_LONGTERM))
2451 return 0;
86dfbed4
JH
2452 return __gup_device_huge_pud(orig, pudp, addr, end, flags,
2453 pages, nr);
7af75561 2454 }
b59f65fa 2455
d63206ee 2456 page = pud_page(orig) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
a43e9820 2457 refs = record_subpages(page, addr, end, pages + *nr);
2667f50e 2458
3faa52c0 2459 head = try_grab_compound_head(pud_page(orig), refs, flags);
a43e9820 2460 if (!head)
2667f50e 2461 return 0;
2667f50e
SC
2462
2463 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
3b78d834 2464 put_compound_head(head, refs, flags);
2667f50e
SC
2465 return 0;
2466 }
2467
a43e9820 2468 *nr += refs;
e9348053 2469 SetPageReferenced(head);
2667f50e
SC
2470 return 1;
2471}
2472
f30c59e9 2473static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
b798bec4 2474 unsigned long end, unsigned int flags,
f30c59e9
AK
2475 struct page **pages, int *nr)
2476{
2477 int refs;
ddc58f27 2478 struct page *head, *page;
f30c59e9 2479
b798bec4 2480 if (!pgd_access_permitted(orig, flags & FOLL_WRITE))
f30c59e9
AK
2481 return 0;
2482
b59f65fa 2483 BUILD_BUG_ON(pgd_devmap(orig));
a43e9820 2484
d63206ee 2485 page = pgd_page(orig) + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
a43e9820 2486 refs = record_subpages(page, addr, end, pages + *nr);
f30c59e9 2487
3faa52c0 2488 head = try_grab_compound_head(pgd_page(orig), refs, flags);
a43e9820 2489 if (!head)
f30c59e9 2490 return 0;
f30c59e9
AK
2491
2492 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
3b78d834 2493 put_compound_head(head, refs, flags);
f30c59e9
AK
2494 return 0;
2495 }
2496
a43e9820 2497 *nr += refs;
e9348053 2498 SetPageReferenced(head);
f30c59e9
AK
2499 return 1;
2500}
2501
d3f7b1bb 2502static int gup_pmd_range(pud_t *pudp, pud_t pud, unsigned long addr, unsigned long end,
b798bec4 2503 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2504{
2505 unsigned long next;
2506 pmd_t *pmdp;
2507
d3f7b1bb 2508 pmdp = pmd_offset_lockless(pudp, pud, addr);
2667f50e 2509 do {
38c5ce93 2510 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
2511
2512 next = pmd_addr_end(addr, end);
84c3fc4e 2513 if (!pmd_present(pmd))
2667f50e
SC
2514 return 0;
2515
414fd080
YZ
2516 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd) ||
2517 pmd_devmap(pmd))) {
2667f50e
SC
2518 /*
2519 * NUMA hinting faults need to be handled in the GUP
2520 * slowpath for accounting purposes and so that they
2521 * can be serialised against THP migration.
2522 */
8a0516ed 2523 if (pmd_protnone(pmd))
2667f50e
SC
2524 return 0;
2525
b798bec4 2526 if (!gup_huge_pmd(pmd, pmdp, addr, next, flags,
2667f50e
SC
2527 pages, nr))
2528 return 0;
2529
f30c59e9
AK
2530 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
2531 /*
2532 * architecture have different format for hugetlbfs
2533 * pmd format and THP pmd format
2534 */
2535 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
b798bec4 2536 PMD_SHIFT, next, flags, pages, nr))
f30c59e9 2537 return 0;
b798bec4 2538 } else if (!gup_pte_range(pmd, addr, next, flags, pages, nr))
2923117b 2539 return 0;
2667f50e
SC
2540 } while (pmdp++, addr = next, addr != end);
2541
2542 return 1;
2543}
2544
d3f7b1bb 2545static int gup_pud_range(p4d_t *p4dp, p4d_t p4d, unsigned long addr, unsigned long end,
b798bec4 2546 unsigned int flags, struct page **pages, int *nr)
2667f50e
SC
2547{
2548 unsigned long next;
2549 pud_t *pudp;
2550
d3f7b1bb 2551 pudp = pud_offset_lockless(p4dp, p4d, addr);
2667f50e 2552 do {
e37c6982 2553 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
2554
2555 next = pud_addr_end(addr, end);
15494520 2556 if (unlikely(!pud_present(pud)))
2667f50e 2557 return 0;
f30c59e9 2558 if (unlikely(pud_huge(pud))) {
b798bec4 2559 if (!gup_huge_pud(pud, pudp, addr, next, flags,
f30c59e9
AK
2560 pages, nr))
2561 return 0;
2562 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
2563 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
b798bec4 2564 PUD_SHIFT, next, flags, pages, nr))
2667f50e 2565 return 0;
d3f7b1bb 2566 } else if (!gup_pmd_range(pudp, pud, addr, next, flags, pages, nr))
2667f50e
SC
2567 return 0;
2568 } while (pudp++, addr = next, addr != end);
2569
2570 return 1;
2571}
2572
d3f7b1bb 2573static int gup_p4d_range(pgd_t *pgdp, pgd_t pgd, unsigned long addr, unsigned long end,
b798bec4 2574 unsigned int flags, struct page **pages, int *nr)
c2febafc
KS
2575{
2576 unsigned long next;
2577 p4d_t *p4dp;
2578
d3f7b1bb 2579 p4dp = p4d_offset_lockless(pgdp, pgd, addr);
c2febafc
KS
2580 do {
2581 p4d_t p4d = READ_ONCE(*p4dp);
2582
2583 next = p4d_addr_end(addr, end);
2584 if (p4d_none(p4d))
2585 return 0;
2586 BUILD_BUG_ON(p4d_huge(p4d));
2587 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
2588 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
b798bec4 2589 P4D_SHIFT, next, flags, pages, nr))
c2febafc 2590 return 0;
d3f7b1bb 2591 } else if (!gup_pud_range(p4dp, p4d, addr, next, flags, pages, nr))
c2febafc
KS
2592 return 0;
2593 } while (p4dp++, addr = next, addr != end);
2594
2595 return 1;
2596}
2597
5b65c467 2598static void gup_pgd_range(unsigned long addr, unsigned long end,
b798bec4 2599 unsigned int flags, struct page **pages, int *nr)
5b65c467
KS
2600{
2601 unsigned long next;
2602 pgd_t *pgdp;
2603
2604 pgdp = pgd_offset(current->mm, addr);
2605 do {
2606 pgd_t pgd = READ_ONCE(*pgdp);
2607
2608 next = pgd_addr_end(addr, end);
2609 if (pgd_none(pgd))
2610 return;
2611 if (unlikely(pgd_huge(pgd))) {
b798bec4 2612 if (!gup_huge_pgd(pgd, pgdp, addr, next, flags,
5b65c467
KS
2613 pages, nr))
2614 return;
2615 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
2616 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
b798bec4 2617 PGDIR_SHIFT, next, flags, pages, nr))
5b65c467 2618 return;
d3f7b1bb 2619 } else if (!gup_p4d_range(pgdp, pgd, addr, next, flags, pages, nr))
5b65c467
KS
2620 return;
2621 } while (pgdp++, addr = next, addr != end);
2622}
050a9adc
CH
2623#else
2624static inline void gup_pgd_range(unsigned long addr, unsigned long end,
2625 unsigned int flags, struct page **pages, int *nr)
2626{
2627}
2628#endif /* CONFIG_HAVE_FAST_GUP */
5b65c467
KS
2629
2630#ifndef gup_fast_permitted
2631/*
dadbb612 2632 * Check if it's allowed to use get_user_pages_fast_only() for the range, or
5b65c467
KS
2633 * we need to fall back to the slow version:
2634 */
26f4c328 2635static bool gup_fast_permitted(unsigned long start, unsigned long end)
5b65c467 2636{
26f4c328 2637 return true;
5b65c467
KS
2638}
2639#endif
2640
7af75561
IW
2641static int __gup_longterm_unlocked(unsigned long start, int nr_pages,
2642 unsigned int gup_flags, struct page **pages)
2643{
2644 int ret;
2645
2646 /*
2647 * FIXME: FOLL_LONGTERM does not work with
2648 * get_user_pages_unlocked() (see comments in that function)
2649 */
2650 if (gup_flags & FOLL_LONGTERM) {
d8ed45c5 2651 mmap_read_lock(current->mm);
64019a2e 2652 ret = __gup_longterm_locked(current->mm,
7af75561
IW
2653 start, nr_pages,
2654 pages, NULL, gup_flags);
d8ed45c5 2655 mmap_read_unlock(current->mm);
7af75561
IW
2656 } else {
2657 ret = get_user_pages_unlocked(start, nr_pages,
2658 pages, gup_flags);
2659 }
2660
2661 return ret;
2662}
2663
eddb1c22
JH
2664static int internal_get_user_pages_fast(unsigned long start, int nr_pages,
2665 unsigned int gup_flags,
2666 struct page **pages)
2667f50e 2667{
5b65c467 2668 unsigned long addr, len, end;
376a34ef 2669 unsigned long flags;
4628b063 2670 int nr_pinned = 0, ret = 0;
2667f50e 2671
f4000fdf 2672 if (WARN_ON_ONCE(gup_flags & ~(FOLL_WRITE | FOLL_LONGTERM |
376a34ef
JH
2673 FOLL_FORCE | FOLL_PIN | FOLL_GET |
2674 FOLL_FAST_ONLY)))
817be129
CH
2675 return -EINVAL;
2676
008cfe44
PX
2677 if (gup_flags & FOLL_PIN)
2678 atomic_set(&current->mm->has_pinned, 1);
2679
f81cd178 2680 if (!(gup_flags & FOLL_FAST_ONLY))
da1c55f1 2681 might_lock_read(&current->mm->mmap_lock);
f81cd178 2682
f455c854 2683 start = untagged_addr(start) & PAGE_MASK;
5b65c467
KS
2684 addr = start;
2685 len = (unsigned long) nr_pages << PAGE_SHIFT;
2686 end = start + len;
2687
26f4c328 2688 if (end <= start)
c61611f7 2689 return 0;
96d4f267 2690 if (unlikely(!access_ok((void __user *)start, len)))
c61611f7 2691 return -EFAULT;
73e10a61 2692
17839856 2693 /*
376a34ef
JH
2694 * Disable interrupts. The nested form is used, in order to allow
2695 * full, general purpose use of this routine.
2696 *
2697 * With interrupts disabled, we block page table pages from being
2698 * freed from under us. See struct mmu_table_batch comments in
2699 * include/asm-generic/tlb.h for more details.
2700 *
2701 * We do not adopt an rcu_read_lock(.) here as we also want to
2702 * block IPIs that come from THPs splitting.
17839856 2703 */
376a34ef
JH
2704 if (IS_ENABLED(CONFIG_HAVE_FAST_GUP) && gup_fast_permitted(start, end)) {
2705 unsigned long fast_flags = gup_flags;
376a34ef
JH
2706
2707 local_irq_save(flags);
2708 gup_pgd_range(addr, end, fast_flags, pages, &nr_pinned);
2709 local_irq_restore(flags);
4628b063 2710 ret = nr_pinned;
73e10a61 2711 }
2667f50e 2712
376a34ef 2713 if (nr_pinned < nr_pages && !(gup_flags & FOLL_FAST_ONLY)) {
2667f50e 2714 /* Try to get the remaining pages with get_user_pages */
4628b063
PL
2715 start += nr_pinned << PAGE_SHIFT;
2716 pages += nr_pinned;
2667f50e 2717
4628b063 2718 ret = __gup_longterm_unlocked(start, nr_pages - nr_pinned,
7af75561 2719 gup_flags, pages);
2667f50e
SC
2720
2721 /* Have to be a bit careful with return values */
4628b063 2722 if (nr_pinned > 0) {
2667f50e 2723 if (ret < 0)
4628b063 2724 ret = nr_pinned;
2667f50e 2725 else
4628b063 2726 ret += nr_pinned;
2667f50e
SC
2727 }
2728 }
2729
2730 return ret;
2731}
dadbb612
SJ
2732/**
2733 * get_user_pages_fast_only() - pin user pages in memory
2734 * @start: starting user address
2735 * @nr_pages: number of pages from start to pin
2736 * @gup_flags: flags modifying pin behaviour
2737 * @pages: array that receives pointers to the pages pinned.
2738 * Should be at least nr_pages long.
2739 *
9e1f0580
JH
2740 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
2741 * the regular GUP.
2742 * Note a difference with get_user_pages_fast: this always returns the
2743 * number of pages pinned, 0 if no pages were pinned.
2744 *
2745 * If the architecture does not support this function, simply return with no
2746 * pages pinned.
2747 *
2748 * Careful, careful! COW breaking can go either way, so a non-write
2749 * access can get ambiguous page results. If you call this function without
2750 * 'write' set, you'd better be sure that you're ok with that ambiguity.
2751 */
dadbb612
SJ
2752int get_user_pages_fast_only(unsigned long start, int nr_pages,
2753 unsigned int gup_flags, struct page **pages)
9e1f0580 2754{
376a34ef 2755 int nr_pinned;
9e1f0580
JH
2756 /*
2757 * Internally (within mm/gup.c), gup fast variants must set FOLL_GET,
2758 * because gup fast is always a "pin with a +1 page refcount" request.
376a34ef
JH
2759 *
2760 * FOLL_FAST_ONLY is required in order to match the API description of
2761 * this routine: no fall back to regular ("slow") GUP.
9e1f0580 2762 */
dadbb612 2763 gup_flags |= FOLL_GET | FOLL_FAST_ONLY;
9e1f0580 2764
376a34ef
JH
2765 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2766 pages);
9e1f0580
JH
2767
2768 /*
376a34ef
JH
2769 * As specified in the API description above, this routine is not
2770 * allowed to return negative values. However, the common core
2771 * routine internal_get_user_pages_fast() *can* return -errno.
2772 * Therefore, correct for that here:
9e1f0580 2773 */
376a34ef
JH
2774 if (nr_pinned < 0)
2775 nr_pinned = 0;
9e1f0580
JH
2776
2777 return nr_pinned;
2778}
dadbb612 2779EXPORT_SYMBOL_GPL(get_user_pages_fast_only);
9e1f0580 2780
eddb1c22
JH
2781/**
2782 * get_user_pages_fast() - pin user pages in memory
3faa52c0
JH
2783 * @start: starting user address
2784 * @nr_pages: number of pages from start to pin
2785 * @gup_flags: flags modifying pin behaviour
2786 * @pages: array that receives pointers to the pages pinned.
2787 * Should be at least nr_pages long.
eddb1c22 2788 *
c1e8d7c6 2789 * Attempt to pin user pages in memory without taking mm->mmap_lock.
eddb1c22
JH
2790 * If not successful, it will fall back to taking the lock and
2791 * calling get_user_pages().
2792 *
2793 * Returns number of pages pinned. This may be fewer than the number requested.
2794 * If nr_pages is 0 or negative, returns 0. If no pages were pinned, returns
2795 * -errno.
2796 */
2797int get_user_pages_fast(unsigned long start, int nr_pages,
2798 unsigned int gup_flags, struct page **pages)
2799{
447f3e45 2800 if (!is_valid_gup_flags(gup_flags))
eddb1c22
JH
2801 return -EINVAL;
2802
94202f12
JH
2803 /*
2804 * The caller may or may not have explicitly set FOLL_GET; either way is
2805 * OK. However, internally (within mm/gup.c), gup fast variants must set
2806 * FOLL_GET, because gup fast is always a "pin with a +1 page refcount"
2807 * request.
2808 */
2809 gup_flags |= FOLL_GET;
eddb1c22
JH
2810 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
2811}
050a9adc 2812EXPORT_SYMBOL_GPL(get_user_pages_fast);
eddb1c22
JH
2813
2814/**
2815 * pin_user_pages_fast() - pin user pages in memory without taking locks
2816 *
3faa52c0
JH
2817 * @start: starting user address
2818 * @nr_pages: number of pages from start to pin
2819 * @gup_flags: flags modifying pin behaviour
2820 * @pages: array that receives pointers to the pages pinned.
2821 * Should be at least nr_pages long.
2822 *
2823 * Nearly the same as get_user_pages_fast(), except that FOLL_PIN is set. See
2824 * get_user_pages_fast() for documentation on the function arguments, because
2825 * the arguments here are identical.
2826 *
2827 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2828 * see Documentation/core-api/pin_user_pages.rst for further details.
eddb1c22
JH
2829 */
2830int pin_user_pages_fast(unsigned long start, int nr_pages,
2831 unsigned int gup_flags, struct page **pages)
2832{
3faa52c0
JH
2833 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2834 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2835 return -EINVAL;
2836
2837 gup_flags |= FOLL_PIN;
2838 return internal_get_user_pages_fast(start, nr_pages, gup_flags, pages);
eddb1c22
JH
2839}
2840EXPORT_SYMBOL_GPL(pin_user_pages_fast);
2841
104acc32 2842/*
dadbb612
SJ
2843 * This is the FOLL_PIN equivalent of get_user_pages_fast_only(). Behavior
2844 * is the same, except that this one sets FOLL_PIN instead of FOLL_GET.
104acc32
JH
2845 *
2846 * The API rules are the same, too: no negative values may be returned.
2847 */
2848int pin_user_pages_fast_only(unsigned long start, int nr_pages,
2849 unsigned int gup_flags, struct page **pages)
2850{
2851 int nr_pinned;
2852
2853 /*
2854 * FOLL_GET and FOLL_PIN are mutually exclusive. Note that the API
2855 * rules require returning 0, rather than -errno:
2856 */
2857 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2858 return 0;
2859 /*
2860 * FOLL_FAST_ONLY is required in order to match the API description of
2861 * this routine: no fall back to regular ("slow") GUP.
2862 */
2863 gup_flags |= (FOLL_PIN | FOLL_FAST_ONLY);
2864 nr_pinned = internal_get_user_pages_fast(start, nr_pages, gup_flags,
2865 pages);
2866 /*
2867 * This routine is not allowed to return negative values. However,
2868 * internal_get_user_pages_fast() *can* return -errno. Therefore,
2869 * correct for that here:
2870 */
2871 if (nr_pinned < 0)
2872 nr_pinned = 0;
2873
2874 return nr_pinned;
2875}
2876EXPORT_SYMBOL_GPL(pin_user_pages_fast_only);
2877
eddb1c22 2878/**
64019a2e 2879 * pin_user_pages_remote() - pin pages of a remote process
eddb1c22 2880 *
3faa52c0
JH
2881 * @mm: mm_struct of target mm
2882 * @start: starting user address
2883 * @nr_pages: number of pages from start to pin
2884 * @gup_flags: flags modifying lookup behaviour
2885 * @pages: array that receives pointers to the pages pinned.
2886 * Should be at least nr_pages long. Or NULL, if caller
2887 * only intends to ensure the pages are faulted in.
2888 * @vmas: array of pointers to vmas corresponding to each page.
2889 * Or NULL if the caller does not require them.
2890 * @locked: pointer to lock flag indicating whether lock is held and
2891 * subsequently whether VM_FAULT_RETRY functionality can be
2892 * utilised. Lock must initially be held.
2893 *
2894 * Nearly the same as get_user_pages_remote(), except that FOLL_PIN is set. See
2895 * get_user_pages_remote() for documentation on the function arguments, because
2896 * the arguments here are identical.
2897 *
2898 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2899 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22 2900 */
64019a2e 2901long pin_user_pages_remote(struct mm_struct *mm,
eddb1c22
JH
2902 unsigned long start, unsigned long nr_pages,
2903 unsigned int gup_flags, struct page **pages,
2904 struct vm_area_struct **vmas, int *locked)
2905{
3faa52c0
JH
2906 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2907 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2908 return -EINVAL;
2909
2910 gup_flags |= FOLL_PIN;
64019a2e 2911 return __get_user_pages_remote(mm, start, nr_pages, gup_flags,
3faa52c0 2912 pages, vmas, locked);
eddb1c22
JH
2913}
2914EXPORT_SYMBOL(pin_user_pages_remote);
2915
2916/**
2917 * pin_user_pages() - pin user pages in memory for use by other devices
2918 *
3faa52c0
JH
2919 * @start: starting user address
2920 * @nr_pages: number of pages from start to pin
2921 * @gup_flags: flags modifying lookup behaviour
2922 * @pages: array that receives pointers to the pages pinned.
2923 * Should be at least nr_pages long. Or NULL, if caller
2924 * only intends to ensure the pages are faulted in.
2925 * @vmas: array of pointers to vmas corresponding to each page.
2926 * Or NULL if the caller does not require them.
2927 *
2928 * Nearly the same as get_user_pages(), except that FOLL_TOUCH is not set, and
2929 * FOLL_PIN is set.
2930 *
2931 * FOLL_PIN means that the pages must be released via unpin_user_page(). Please
72ef5e52 2932 * see Documentation/core-api/pin_user_pages.rst for details.
eddb1c22
JH
2933 */
2934long pin_user_pages(unsigned long start, unsigned long nr_pages,
2935 unsigned int gup_flags, struct page **pages,
2936 struct vm_area_struct **vmas)
2937{
3faa52c0
JH
2938 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2939 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2940 return -EINVAL;
2941
2942 gup_flags |= FOLL_PIN;
64019a2e 2943 return __gup_longterm_locked(current->mm, start, nr_pages,
3faa52c0 2944 pages, vmas, gup_flags);
eddb1c22
JH
2945}
2946EXPORT_SYMBOL(pin_user_pages);
91429023
JH
2947
2948/*
2949 * pin_user_pages_unlocked() is the FOLL_PIN variant of
2950 * get_user_pages_unlocked(). Behavior is the same, except that this one sets
2951 * FOLL_PIN and rejects FOLL_GET.
2952 */
2953long pin_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
2954 struct page **pages, unsigned int gup_flags)
2955{
2956 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2957 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2958 return -EINVAL;
2959
2960 gup_flags |= FOLL_PIN;
2961 return get_user_pages_unlocked(start, nr_pages, pages, gup_flags);
2962}
2963EXPORT_SYMBOL(pin_user_pages_unlocked);
420c2091
JH
2964
2965/*
2966 * pin_user_pages_locked() is the FOLL_PIN variant of get_user_pages_locked().
2967 * Behavior is the same, except that this one sets FOLL_PIN and rejects
2968 * FOLL_GET.
2969 */
2970long pin_user_pages_locked(unsigned long start, unsigned long nr_pages,
2971 unsigned int gup_flags, struct page **pages,
2972 int *locked)
2973{
2974 /*
2975 * FIXME: Current FOLL_LONGTERM behavior is incompatible with
2976 * FAULT_FLAG_ALLOW_RETRY because of the FS DAX check requirement on
2977 * vmas. As there are no users of this flag in this call we simply
2978 * disallow this option for now.
2979 */
2980 if (WARN_ON_ONCE(gup_flags & FOLL_LONGTERM))
2981 return -EINVAL;
2982
2983 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
2984 if (WARN_ON_ONCE(gup_flags & FOLL_GET))
2985 return -EINVAL;
2986
2987 gup_flags |= FOLL_PIN;
64019a2e 2988 return __get_user_pages_locked(current->mm, start, nr_pages,
420c2091
JH
2989 pages, NULL, locked,
2990 gup_flags | FOLL_TOUCH);
2991}
2992EXPORT_SYMBOL(pin_user_pages_locked);