]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/gup.c
um, pkeys: Add UML arch_*_access_permitted() methods
[mirror_ubuntu-bionic-kernel.git] / mm / gup.c
CommitLineData
cde70140 1#define __DISABLE_GUP_DEPRECATED 1
4bbd4c77
KS
2#include <linux/kernel.h>
3#include <linux/errno.h>
4#include <linux/err.h>
5#include <linux/spinlock.h>
6
4bbd4c77 7#include <linux/mm.h>
3565fce3 8#include <linux/memremap.h>
4bbd4c77
KS
9#include <linux/pagemap.h>
10#include <linux/rmap.h>
11#include <linux/swap.h>
12#include <linux/swapops.h>
13
2667f50e
SC
14#include <linux/sched.h>
15#include <linux/rwsem.h>
f30c59e9 16#include <linux/hugetlb.h>
1027e443 17
33a709b2 18#include <asm/mmu_context.h>
2667f50e 19#include <asm/pgtable.h>
1027e443 20#include <asm/tlbflush.h>
2667f50e 21
4bbd4c77
KS
22#include "internal.h"
23
69e68b4f
KS
24static struct page *no_page_table(struct vm_area_struct *vma,
25 unsigned int flags)
4bbd4c77 26{
69e68b4f
KS
27 /*
28 * When core dumping an enormous anonymous area that nobody
29 * has touched so far, we don't want to allocate unnecessary pages or
30 * page tables. Return error instead of NULL to skip handle_mm_fault,
31 * then get_dump_page() will return NULL to leave a hole in the dump.
32 * But we can only make this optimization where a hole would surely
33 * be zero-filled if handle_mm_fault() actually did handle it.
34 */
35 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
36 return ERR_PTR(-EFAULT);
37 return NULL;
38}
4bbd4c77 39
1027e443
KS
40static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
41 pte_t *pte, unsigned int flags)
42{
43 /* No page to get reference */
44 if (flags & FOLL_GET)
45 return -EFAULT;
46
47 if (flags & FOLL_TOUCH) {
48 pte_t entry = *pte;
49
50 if (flags & FOLL_WRITE)
51 entry = pte_mkdirty(entry);
52 entry = pte_mkyoung(entry);
53
54 if (!pte_same(*pte, entry)) {
55 set_pte_at(vma->vm_mm, address, pte, entry);
56 update_mmu_cache(vma, address, pte);
57 }
58 }
59
60 /* Proper page table entry exists, but no corresponding struct page */
61 return -EEXIST;
62}
63
69e68b4f
KS
64static struct page *follow_page_pte(struct vm_area_struct *vma,
65 unsigned long address, pmd_t *pmd, unsigned int flags)
66{
67 struct mm_struct *mm = vma->vm_mm;
3565fce3 68 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
69 struct page *page;
70 spinlock_t *ptl;
71 pte_t *ptep, pte;
4bbd4c77 72
69e68b4f 73retry:
4bbd4c77 74 if (unlikely(pmd_bad(*pmd)))
69e68b4f 75 return no_page_table(vma, flags);
4bbd4c77
KS
76
77 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
78 pte = *ptep;
79 if (!pte_present(pte)) {
80 swp_entry_t entry;
81 /*
82 * KSM's break_ksm() relies upon recognizing a ksm page
83 * even while it is being migrated, so for that case we
84 * need migration_entry_wait().
85 */
86 if (likely(!(flags & FOLL_MIGRATION)))
87 goto no_page;
0661a336 88 if (pte_none(pte))
4bbd4c77
KS
89 goto no_page;
90 entry = pte_to_swp_entry(pte);
91 if (!is_migration_entry(entry))
92 goto no_page;
93 pte_unmap_unlock(ptep, ptl);
94 migration_entry_wait(mm, pmd, address);
69e68b4f 95 goto retry;
4bbd4c77 96 }
8a0516ed 97 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 98 goto no_page;
69e68b4f
KS
99 if ((flags & FOLL_WRITE) && !pte_write(pte)) {
100 pte_unmap_unlock(ptep, ptl);
101 return NULL;
102 }
4bbd4c77
KS
103
104 page = vm_normal_page(vma, address, pte);
3565fce3
DW
105 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
106 /*
107 * Only return device mapping pages in the FOLL_GET case since
108 * they are only valid while holding the pgmap reference.
109 */
110 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
111 if (pgmap)
112 page = pte_page(pte);
113 else
114 goto no_page;
115 } else if (unlikely(!page)) {
1027e443
KS
116 if (flags & FOLL_DUMP) {
117 /* Avoid special (like zero) pages in core dumps */
118 page = ERR_PTR(-EFAULT);
119 goto out;
120 }
121
122 if (is_zero_pfn(pte_pfn(pte))) {
123 page = pte_page(pte);
124 } else {
125 int ret;
126
127 ret = follow_pfn_pte(vma, address, ptep, flags);
128 page = ERR_PTR(ret);
129 goto out;
130 }
4bbd4c77
KS
131 }
132
6742d293
KS
133 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
134 int ret;
135 get_page(page);
136 pte_unmap_unlock(ptep, ptl);
137 lock_page(page);
138 ret = split_huge_page(page);
139 unlock_page(page);
140 put_page(page);
141 if (ret)
142 return ERR_PTR(ret);
143 goto retry;
144 }
145
3565fce3 146 if (flags & FOLL_GET) {
ddc58f27 147 get_page(page);
3565fce3
DW
148
149 /* drop the pgmap reference now that we hold the page */
150 if (pgmap) {
151 put_dev_pagemap(pgmap);
152 pgmap = NULL;
153 }
154 }
4bbd4c77
KS
155 if (flags & FOLL_TOUCH) {
156 if ((flags & FOLL_WRITE) &&
157 !pte_dirty(pte) && !PageDirty(page))
158 set_page_dirty(page);
159 /*
160 * pte_mkyoung() would be more correct here, but atomic care
161 * is needed to avoid losing the dirty bit: it is easier to use
162 * mark_page_accessed().
163 */
164 mark_page_accessed(page);
165 }
de60f5f1 166 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
167 /* Do not mlock pte-mapped THP */
168 if (PageTransCompound(page))
169 goto out;
170
4bbd4c77
KS
171 /*
172 * The preliminary mapping check is mainly to avoid the
173 * pointless overhead of lock_page on the ZERO_PAGE
174 * which might bounce very badly if there is contention.
175 *
176 * If the page is already locked, we don't need to
177 * handle it now - vmscan will handle it later if and
178 * when it attempts to reclaim the page.
179 */
180 if (page->mapping && trylock_page(page)) {
181 lru_add_drain(); /* push cached pages to LRU */
182 /*
183 * Because we lock page here, and migration is
184 * blocked by the pte's page reference, and we
185 * know the page is still mapped, we don't even
186 * need to check for file-cache page truncation.
187 */
188 mlock_vma_page(page);
189 unlock_page(page);
190 }
191 }
1027e443 192out:
4bbd4c77 193 pte_unmap_unlock(ptep, ptl);
4bbd4c77 194 return page;
4bbd4c77
KS
195no_page:
196 pte_unmap_unlock(ptep, ptl);
197 if (!pte_none(pte))
69e68b4f
KS
198 return NULL;
199 return no_page_table(vma, flags);
200}
201
202/**
203 * follow_page_mask - look up a page descriptor from a user-virtual address
204 * @vma: vm_area_struct mapping @address
205 * @address: virtual address to look up
206 * @flags: flags modifying lookup behaviour
207 * @page_mask: on output, *page_mask is set according to the size of the page
208 *
209 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
210 *
211 * Returns the mapped (struct page *), %NULL if no mapping exists, or
212 * an error pointer if there is a mapping to something not represented
213 * by a page descriptor (see also vm_normal_page()).
214 */
215struct page *follow_page_mask(struct vm_area_struct *vma,
216 unsigned long address, unsigned int flags,
217 unsigned int *page_mask)
218{
219 pgd_t *pgd;
220 pud_t *pud;
221 pmd_t *pmd;
222 spinlock_t *ptl;
223 struct page *page;
224 struct mm_struct *mm = vma->vm_mm;
225
226 *page_mask = 0;
227
228 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
229 if (!IS_ERR(page)) {
230 BUG_ON(flags & FOLL_GET);
4bbd4c77 231 return page;
69e68b4f 232 }
4bbd4c77 233
69e68b4f
KS
234 pgd = pgd_offset(mm, address);
235 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
236 return no_page_table(vma, flags);
237
238 pud = pud_offset(pgd, address);
239 if (pud_none(*pud))
240 return no_page_table(vma, flags);
241 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
242 page = follow_huge_pud(mm, address, pud, flags);
243 if (page)
244 return page;
245 return no_page_table(vma, flags);
69e68b4f
KS
246 }
247 if (unlikely(pud_bad(*pud)))
248 return no_page_table(vma, flags);
249
250 pmd = pmd_offset(pud, address);
251 if (pmd_none(*pmd))
252 return no_page_table(vma, flags);
253 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
254 page = follow_huge_pmd(mm, address, pmd, flags);
255 if (page)
256 return page;
257 return no_page_table(vma, flags);
69e68b4f 258 }
8a0516ed 259 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
69e68b4f 260 return no_page_table(vma, flags);
3565fce3
DW
261 if (pmd_devmap(*pmd)) {
262 ptl = pmd_lock(mm, pmd);
263 page = follow_devmap_pmd(vma, address, pmd, flags);
264 spin_unlock(ptl);
265 if (page)
266 return page;
267 }
6742d293
KS
268 if (likely(!pmd_trans_huge(*pmd)))
269 return follow_page_pte(vma, address, pmd, flags);
270
271 ptl = pmd_lock(mm, pmd);
272 if (unlikely(!pmd_trans_huge(*pmd))) {
273 spin_unlock(ptl);
274 return follow_page_pte(vma, address, pmd, flags);
275 }
6742d293
KS
276 if (flags & FOLL_SPLIT) {
277 int ret;
278 page = pmd_page(*pmd);
279 if (is_huge_zero_page(page)) {
280 spin_unlock(ptl);
281 ret = 0;
78ddc534 282 split_huge_pmd(vma, pmd, address);
6742d293
KS
283 } else {
284 get_page(page);
69e68b4f 285 spin_unlock(ptl);
6742d293
KS
286 lock_page(page);
287 ret = split_huge_page(page);
288 unlock_page(page);
289 put_page(page);
290 }
291
292 return ret ? ERR_PTR(ret) :
293 follow_page_pte(vma, address, pmd, flags);
69e68b4f 294 }
6742d293
KS
295
296 page = follow_trans_huge_pmd(vma, address, pmd, flags);
297 spin_unlock(ptl);
298 *page_mask = HPAGE_PMD_NR - 1;
299 return page;
4bbd4c77
KS
300}
301
f2b495ca
KS
302static int get_gate_page(struct mm_struct *mm, unsigned long address,
303 unsigned int gup_flags, struct vm_area_struct **vma,
304 struct page **page)
305{
306 pgd_t *pgd;
307 pud_t *pud;
308 pmd_t *pmd;
309 pte_t *pte;
310 int ret = -EFAULT;
311
312 /* user gate pages are read-only */
313 if (gup_flags & FOLL_WRITE)
314 return -EFAULT;
315 if (address > TASK_SIZE)
316 pgd = pgd_offset_k(address);
317 else
318 pgd = pgd_offset_gate(mm, address);
319 BUG_ON(pgd_none(*pgd));
320 pud = pud_offset(pgd, address);
321 BUG_ON(pud_none(*pud));
322 pmd = pmd_offset(pud, address);
323 if (pmd_none(*pmd))
324 return -EFAULT;
325 VM_BUG_ON(pmd_trans_huge(*pmd));
326 pte = pte_offset_map(pmd, address);
327 if (pte_none(*pte))
328 goto unmap;
329 *vma = get_gate_vma(mm);
330 if (!page)
331 goto out;
332 *page = vm_normal_page(*vma, address, *pte);
333 if (!*page) {
334 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
335 goto unmap;
336 *page = pte_page(*pte);
337 }
338 get_page(*page);
339out:
340 ret = 0;
341unmap:
342 pte_unmap(pte);
343 return ret;
344}
345
9a95f3cf
PC
346/*
347 * mmap_sem must be held on entry. If @nonblocking != NULL and
348 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
349 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
350 */
16744483
KS
351static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
352 unsigned long address, unsigned int *flags, int *nonblocking)
353{
354 struct mm_struct *mm = vma->vm_mm;
355 unsigned int fault_flags = 0;
356 int ret;
357
de60f5f1
EM
358 /* mlock all present pages, but do not fault in new pages */
359 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
360 return -ENOENT;
84d33df2
KS
361 /* For mm_populate(), just skip the stack guard page. */
362 if ((*flags & FOLL_POPULATE) &&
16744483
KS
363 (stack_guard_page_start(vma, address) ||
364 stack_guard_page_end(vma, address + PAGE_SIZE)))
365 return -ENOENT;
366 if (*flags & FOLL_WRITE)
367 fault_flags |= FAULT_FLAG_WRITE;
368 if (nonblocking)
369 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
370 if (*flags & FOLL_NOWAIT)
371 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
372 if (*flags & FOLL_TRIED) {
373 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
374 fault_flags |= FAULT_FLAG_TRIED;
375 }
16744483
KS
376
377 ret = handle_mm_fault(mm, vma, address, fault_flags);
378 if (ret & VM_FAULT_ERROR) {
379 if (ret & VM_FAULT_OOM)
380 return -ENOMEM;
381 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
382 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
33692f27 383 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
16744483
KS
384 return -EFAULT;
385 BUG();
386 }
387
388 if (tsk) {
389 if (ret & VM_FAULT_MAJOR)
390 tsk->maj_flt++;
391 else
392 tsk->min_flt++;
393 }
394
395 if (ret & VM_FAULT_RETRY) {
396 if (nonblocking)
397 *nonblocking = 0;
398 return -EBUSY;
399 }
400
401 /*
402 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
403 * necessary, even if maybe_mkwrite decided not to set pte_write. We
404 * can thus safely do subsequent page lookups as if they were reads.
405 * But only do so when looping for pte_write is futile: in some cases
406 * userspace may also be wanting to write to the gotten user page,
407 * which a read fault here might prevent (a readonly page might get
408 * reCOWed by userspace write).
409 */
410 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
411 *flags &= ~FOLL_WRITE;
412 return 0;
413}
414
fa5bb209
KS
415static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
416{
417 vm_flags_t vm_flags = vma->vm_flags;
418
419 if (vm_flags & (VM_IO | VM_PFNMAP))
420 return -EFAULT;
421
422 if (gup_flags & FOLL_WRITE) {
423 if (!(vm_flags & VM_WRITE)) {
424 if (!(gup_flags & FOLL_FORCE))
425 return -EFAULT;
426 /*
427 * We used to let the write,force case do COW in a
428 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
429 * set a breakpoint in a read-only mapping of an
430 * executable, without corrupting the file (yet only
431 * when that file had been opened for writing!).
432 * Anon pages in shared mappings are surprising: now
433 * just reject it.
434 */
46435364 435 if (!is_cow_mapping(vm_flags))
fa5bb209 436 return -EFAULT;
fa5bb209
KS
437 }
438 } else if (!(vm_flags & VM_READ)) {
439 if (!(gup_flags & FOLL_FORCE))
440 return -EFAULT;
441 /*
442 * Is there actually any vma we can reach here which does not
443 * have VM_MAYREAD set?
444 */
445 if (!(vm_flags & VM_MAYREAD))
446 return -EFAULT;
447 }
33a709b2
DH
448 if (!arch_vma_access_permitted(vma, (gup_flags & FOLL_WRITE)))
449 return -EFAULT;
fa5bb209
KS
450 return 0;
451}
452
4bbd4c77
KS
453/**
454 * __get_user_pages() - pin user pages in memory
455 * @tsk: task_struct of target task
456 * @mm: mm_struct of target mm
457 * @start: starting user address
458 * @nr_pages: number of pages from start to pin
459 * @gup_flags: flags modifying pin behaviour
460 * @pages: array that receives pointers to the pages pinned.
461 * Should be at least nr_pages long. Or NULL, if caller
462 * only intends to ensure the pages are faulted in.
463 * @vmas: array of pointers to vmas corresponding to each page.
464 * Or NULL if the caller does not require them.
465 * @nonblocking: whether waiting for disk IO or mmap_sem contention
466 *
467 * Returns number of pages pinned. This may be fewer than the number
468 * requested. If nr_pages is 0 or negative, returns 0. If no pages
469 * were pinned, returns -errno. Each page returned must be released
470 * with a put_page() call when it is finished with. vmas will only
471 * remain valid while mmap_sem is held.
472 *
9a95f3cf 473 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
474 *
475 * __get_user_pages walks a process's page tables and takes a reference to
476 * each struct page that each user address corresponds to at a given
477 * instant. That is, it takes the page that would be accessed if a user
478 * thread accesses the given user virtual address at that instant.
479 *
480 * This does not guarantee that the page exists in the user mappings when
481 * __get_user_pages returns, and there may even be a completely different
482 * page there in some cases (eg. if mmapped pagecache has been invalidated
483 * and subsequently re faulted). However it does guarantee that the page
484 * won't be freed completely. And mostly callers simply care that the page
485 * contains data that was valid *at some point in time*. Typically, an IO
486 * or similar operation cannot guarantee anything stronger anyway because
487 * locks can't be held over the syscall boundary.
488 *
489 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
490 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
491 * appropriate) must be called after the page is finished with, and
492 * before put_page is called.
493 *
494 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
495 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
496 * *@nonblocking will be set to 0. Further, if @gup_flags does not
497 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
498 * this case.
499 *
500 * A caller using such a combination of @nonblocking and @gup_flags
501 * must therefore hold the mmap_sem for reading only, and recognize
502 * when it's been released. Otherwise, it must be held for either
503 * reading or writing and will not be released.
4bbd4c77
KS
504 *
505 * In most cases, get_user_pages or get_user_pages_fast should be used
506 * instead of __get_user_pages. __get_user_pages should be used only if
507 * you need some special @gup_flags.
508 */
509long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
510 unsigned long start, unsigned long nr_pages,
511 unsigned int gup_flags, struct page **pages,
512 struct vm_area_struct **vmas, int *nonblocking)
513{
fa5bb209 514 long i = 0;
4bbd4c77 515 unsigned int page_mask;
fa5bb209 516 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
517
518 if (!nr_pages)
519 return 0;
520
521 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
522
523 /*
524 * If FOLL_FORCE is set then do not force a full fault as the hinting
525 * fault information is unrelated to the reference behaviour of a task
526 * using the address space
527 */
528 if (!(gup_flags & FOLL_FORCE))
529 gup_flags |= FOLL_NUMA;
530
4bbd4c77 531 do {
fa5bb209
KS
532 struct page *page;
533 unsigned int foll_flags = gup_flags;
534 unsigned int page_increm;
535
536 /* first iteration or cross vma bound */
537 if (!vma || start >= vma->vm_end) {
538 vma = find_extend_vma(mm, start);
539 if (!vma && in_gate_area(mm, start)) {
540 int ret;
541 ret = get_gate_page(mm, start & PAGE_MASK,
542 gup_flags, &vma,
543 pages ? &pages[i] : NULL);
544 if (ret)
545 return i ? : ret;
546 page_mask = 0;
547 goto next_page;
548 }
4bbd4c77 549
fa5bb209
KS
550 if (!vma || check_vma_flags(vma, gup_flags))
551 return i ? : -EFAULT;
552 if (is_vm_hugetlb_page(vma)) {
553 i = follow_hugetlb_page(mm, vma, pages, vmas,
554 &start, &nr_pages, i,
555 gup_flags);
556 continue;
4bbd4c77 557 }
fa5bb209
KS
558 }
559retry:
560 /*
561 * If we have a pending SIGKILL, don't keep faulting pages and
562 * potentially allocating memory.
563 */
564 if (unlikely(fatal_signal_pending(current)))
565 return i ? i : -ERESTARTSYS;
566 cond_resched();
567 page = follow_page_mask(vma, start, foll_flags, &page_mask);
568 if (!page) {
569 int ret;
570 ret = faultin_page(tsk, vma, start, &foll_flags,
571 nonblocking);
572 switch (ret) {
573 case 0:
574 goto retry;
575 case -EFAULT:
576 case -ENOMEM:
577 case -EHWPOISON:
578 return i ? i : ret;
579 case -EBUSY:
580 return i;
581 case -ENOENT:
582 goto next_page;
4bbd4c77 583 }
fa5bb209 584 BUG();
1027e443
KS
585 } else if (PTR_ERR(page) == -EEXIST) {
586 /*
587 * Proper page table entry exists, but no corresponding
588 * struct page.
589 */
590 goto next_page;
591 } else if (IS_ERR(page)) {
fa5bb209 592 return i ? i : PTR_ERR(page);
1027e443 593 }
fa5bb209
KS
594 if (pages) {
595 pages[i] = page;
596 flush_anon_page(vma, page, start);
597 flush_dcache_page(page);
598 page_mask = 0;
4bbd4c77 599 }
4bbd4c77 600next_page:
fa5bb209
KS
601 if (vmas) {
602 vmas[i] = vma;
603 page_mask = 0;
604 }
605 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
606 if (page_increm > nr_pages)
607 page_increm = nr_pages;
608 i += page_increm;
609 start += page_increm * PAGE_SIZE;
610 nr_pages -= page_increm;
4bbd4c77
KS
611 } while (nr_pages);
612 return i;
4bbd4c77
KS
613}
614EXPORT_SYMBOL(__get_user_pages);
615
d4925e00
DH
616bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
617{
33a709b2
DH
618 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
619 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
620
621 if (!(vm_flags & vma->vm_flags))
622 return false;
623
33a709b2
DH
624 /*
625 * The architecture might have a hardware protection
626 * mechanism other than read/write that can deny access
627 */
628 if (!arch_vma_access_permitted(vma, write))
629 return false;
630
d4925e00
DH
631 return true;
632}
633
4bbd4c77
KS
634/*
635 * fixup_user_fault() - manually resolve a user page fault
636 * @tsk: the task_struct to use for page fault accounting, or
637 * NULL if faults are not to be recorded.
638 * @mm: mm_struct of target mm
639 * @address: user address
640 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
641 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
642 * does not allow retry
4bbd4c77
KS
643 *
644 * This is meant to be called in the specific scenario where for locking reasons
645 * we try to access user memory in atomic context (within a pagefault_disable()
646 * section), this returns -EFAULT, and we want to resolve the user fault before
647 * trying again.
648 *
649 * Typically this is meant to be used by the futex code.
650 *
651 * The main difference with get_user_pages() is that this function will
652 * unconditionally call handle_mm_fault() which will in turn perform all the
653 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 654 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
655 *
656 * This is important for some architectures where those bits also gate the
657 * access permission to the page because they are maintained in software. On
658 * such architectures, gup() will not be enough to make a subsequent access
659 * succeed.
660 *
4a9e1cda
DD
661 * This function will not return with an unlocked mmap_sem. So it has not the
662 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
663 */
664int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
665 unsigned long address, unsigned int fault_flags,
666 bool *unlocked)
4bbd4c77
KS
667{
668 struct vm_area_struct *vma;
4a9e1cda
DD
669 int ret, major = 0;
670
671 if (unlocked)
672 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 673
4a9e1cda 674retry:
4bbd4c77
KS
675 vma = find_extend_vma(mm, address);
676 if (!vma || address < vma->vm_start)
677 return -EFAULT;
678
d4925e00 679 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
680 return -EFAULT;
681
682 ret = handle_mm_fault(mm, vma, address, fault_flags);
4a9e1cda 683 major |= ret & VM_FAULT_MAJOR;
4bbd4c77
KS
684 if (ret & VM_FAULT_ERROR) {
685 if (ret & VM_FAULT_OOM)
686 return -ENOMEM;
687 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
688 return -EHWPOISON;
33692f27 689 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4bbd4c77
KS
690 return -EFAULT;
691 BUG();
692 }
4a9e1cda
DD
693
694 if (ret & VM_FAULT_RETRY) {
695 down_read(&mm->mmap_sem);
696 if (!(fault_flags & FAULT_FLAG_TRIED)) {
697 *unlocked = true;
698 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
699 fault_flags |= FAULT_FLAG_TRIED;
700 goto retry;
701 }
702 }
703
4bbd4c77 704 if (tsk) {
4a9e1cda 705 if (major)
4bbd4c77
KS
706 tsk->maj_flt++;
707 else
708 tsk->min_flt++;
709 }
710 return 0;
711}
712
f0818f47
AA
713static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
714 struct mm_struct *mm,
715 unsigned long start,
716 unsigned long nr_pages,
717 int write, int force,
718 struct page **pages,
719 struct vm_area_struct **vmas,
0fd71a56
AA
720 int *locked, bool notify_drop,
721 unsigned int flags)
f0818f47 722{
f0818f47
AA
723 long ret, pages_done;
724 bool lock_dropped;
725
726 if (locked) {
727 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
728 BUG_ON(vmas);
729 /* check caller initialized locked */
730 BUG_ON(*locked != 1);
731 }
732
733 if (pages)
734 flags |= FOLL_GET;
735 if (write)
736 flags |= FOLL_WRITE;
737 if (force)
738 flags |= FOLL_FORCE;
739
740 pages_done = 0;
741 lock_dropped = false;
742 for (;;) {
743 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
744 vmas, locked);
745 if (!locked)
746 /* VM_FAULT_RETRY couldn't trigger, bypass */
747 return ret;
748
749 /* VM_FAULT_RETRY cannot return errors */
750 if (!*locked) {
751 BUG_ON(ret < 0);
752 BUG_ON(ret >= nr_pages);
753 }
754
755 if (!pages)
756 /* If it's a prefault don't insist harder */
757 return ret;
758
759 if (ret > 0) {
760 nr_pages -= ret;
761 pages_done += ret;
762 if (!nr_pages)
763 break;
764 }
765 if (*locked) {
766 /* VM_FAULT_RETRY didn't trigger */
767 if (!pages_done)
768 pages_done = ret;
769 break;
770 }
771 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
772 pages += ret;
773 start += ret << PAGE_SHIFT;
774
775 /*
776 * Repeat on the address that fired VM_FAULT_RETRY
777 * without FAULT_FLAG_ALLOW_RETRY but with
778 * FAULT_FLAG_TRIED.
779 */
780 *locked = 1;
781 lock_dropped = true;
782 down_read(&mm->mmap_sem);
783 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
784 pages, NULL, NULL);
785 if (ret != 1) {
786 BUG_ON(ret > 1);
787 if (!pages_done)
788 pages_done = ret;
789 break;
790 }
791 nr_pages--;
792 pages_done++;
793 if (!nr_pages)
794 break;
795 pages++;
796 start += PAGE_SIZE;
797 }
798 if (notify_drop && lock_dropped && *locked) {
799 /*
800 * We must let the caller know we temporarily dropped the lock
801 * and so the critical section protected by it was lost.
802 */
803 up_read(&mm->mmap_sem);
804 *locked = 0;
805 }
806 return pages_done;
807}
808
809/*
810 * We can leverage the VM_FAULT_RETRY functionality in the page fault
811 * paths better by using either get_user_pages_locked() or
812 * get_user_pages_unlocked().
813 *
814 * get_user_pages_locked() is suitable to replace the form:
815 *
816 * down_read(&mm->mmap_sem);
817 * do_something()
818 * get_user_pages(tsk, mm, ..., pages, NULL);
819 * up_read(&mm->mmap_sem);
820 *
821 * to:
822 *
823 * int locked = 1;
824 * down_read(&mm->mmap_sem);
825 * do_something()
826 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
827 * if (locked)
828 * up_read(&mm->mmap_sem);
829 */
cde70140 830long get_user_pages_locked6(unsigned long start, unsigned long nr_pages,
f0818f47
AA
831 int write, int force, struct page **pages,
832 int *locked)
833{
cde70140
DH
834 return __get_user_pages_locked(current, current->mm, start, nr_pages,
835 write, force, pages, NULL, locked, true,
836 FOLL_TOUCH);
f0818f47 837}
cde70140 838EXPORT_SYMBOL(get_user_pages_locked6);
f0818f47 839
0fd71a56
AA
840/*
841 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
842 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
843 *
844 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
845 * caller if required (just like with __get_user_pages). "FOLL_GET",
846 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
847 * according to the parameters "pages", "write", "force"
848 * respectively.
849 */
850__always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
851 unsigned long start, unsigned long nr_pages,
852 int write, int force, struct page **pages,
853 unsigned int gup_flags)
854{
855 long ret;
856 int locked = 1;
857 down_read(&mm->mmap_sem);
858 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
859 pages, NULL, &locked, false, gup_flags);
860 if (locked)
861 up_read(&mm->mmap_sem);
862 return ret;
863}
864EXPORT_SYMBOL(__get_user_pages_unlocked);
865
f0818f47
AA
866/*
867 * get_user_pages_unlocked() is suitable to replace the form:
868 *
869 * down_read(&mm->mmap_sem);
870 * get_user_pages(tsk, mm, ..., pages, NULL);
871 * up_read(&mm->mmap_sem);
872 *
873 * with:
874 *
875 * get_user_pages_unlocked(tsk, mm, ..., pages);
876 *
877 * It is functionally equivalent to get_user_pages_fast so
878 * get_user_pages_fast should be used instead, if the two parameters
879 * "tsk" and "mm" are respectively equal to current and current->mm,
880 * or if "force" shall be set to 1 (get_user_pages_fast misses the
881 * "force" parameter).
882 */
cde70140 883long get_user_pages_unlocked5(unsigned long start, unsigned long nr_pages,
f0818f47
AA
884 int write, int force, struct page **pages)
885{
cde70140
DH
886 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
887 write, force, pages, FOLL_TOUCH);
f0818f47 888}
cde70140 889EXPORT_SYMBOL(get_user_pages_unlocked5);
f0818f47 890
4bbd4c77 891/*
1e987790 892 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
893 * @tsk: the task_struct to use for page fault accounting, or
894 * NULL if faults are not to be recorded.
895 * @mm: mm_struct of target mm
896 * @start: starting user address
897 * @nr_pages: number of pages from start to pin
898 * @write: whether pages will be written to by the caller
899 * @force: whether to force access even when user mapping is currently
900 * protected (but never forces write access to shared mapping).
901 * @pages: array that receives pointers to the pages pinned.
902 * Should be at least nr_pages long. Or NULL, if caller
903 * only intends to ensure the pages are faulted in.
904 * @vmas: array of pointers to vmas corresponding to each page.
905 * Or NULL if the caller does not require them.
906 *
907 * Returns number of pages pinned. This may be fewer than the number
908 * requested. If nr_pages is 0 or negative, returns 0. If no pages
909 * were pinned, returns -errno. Each page returned must be released
910 * with a put_page() call when it is finished with. vmas will only
911 * remain valid while mmap_sem is held.
912 *
913 * Must be called with mmap_sem held for read or write.
914 *
915 * get_user_pages walks a process's page tables and takes a reference to
916 * each struct page that each user address corresponds to at a given
917 * instant. That is, it takes the page that would be accessed if a user
918 * thread accesses the given user virtual address at that instant.
919 *
920 * This does not guarantee that the page exists in the user mappings when
921 * get_user_pages returns, and there may even be a completely different
922 * page there in some cases (eg. if mmapped pagecache has been invalidated
923 * and subsequently re faulted). However it does guarantee that the page
924 * won't be freed completely. And mostly callers simply care that the page
925 * contains data that was valid *at some point in time*. Typically, an IO
926 * or similar operation cannot guarantee anything stronger anyway because
927 * locks can't be held over the syscall boundary.
928 *
929 * If write=0, the page must not be written to. If the page is written to,
930 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
931 * after the page is finished with, and before put_page is called.
932 *
933 * get_user_pages is typically used for fewer-copy IO operations, to get a
934 * handle on the memory by some means other than accesses via the user virtual
935 * addresses. The pages may be submitted for DMA to devices or accessed via
936 * their kernel linear mapping (via the kmap APIs). Care should be taken to
937 * use the correct cache flushing APIs.
938 *
939 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
940 *
941 * get_user_pages should be phased out in favor of
942 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
943 * should use get_user_pages because it cannot pass
944 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 945 */
1e987790
DH
946long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
947 unsigned long start, unsigned long nr_pages,
948 int write, int force, struct page **pages,
949 struct vm_area_struct **vmas)
4bbd4c77 950{
f0818f47 951 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
1e987790
DH
952 pages, vmas, NULL, false,
953 FOLL_TOUCH | FOLL_REMOTE);
954}
955EXPORT_SYMBOL(get_user_pages_remote);
956
957/*
d4edcf0d
DH
958 * This is the same as get_user_pages_remote(), just with a
959 * less-flexible calling convention where we assume that the task
960 * and mm being operated on are the current task's. We also
961 * obviously don't pass FOLL_REMOTE in here.
1e987790 962 */
cde70140 963long get_user_pages6(unsigned long start, unsigned long nr_pages,
1e987790
DH
964 int write, int force, struct page **pages,
965 struct vm_area_struct **vmas)
966{
cde70140 967 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1e987790
DH
968 write, force, pages, vmas, NULL, false,
969 FOLL_TOUCH);
4bbd4c77 970}
cde70140 971EXPORT_SYMBOL(get_user_pages6);
4bbd4c77 972
acc3c8d1
KS
973/**
974 * populate_vma_page_range() - populate a range of pages in the vma.
975 * @vma: target vma
976 * @start: start address
977 * @end: end address
978 * @nonblocking:
979 *
980 * This takes care of mlocking the pages too if VM_LOCKED is set.
981 *
982 * return 0 on success, negative error code on error.
983 *
984 * vma->vm_mm->mmap_sem must be held.
985 *
986 * If @nonblocking is NULL, it may be held for read or write and will
987 * be unperturbed.
988 *
989 * If @nonblocking is non-NULL, it must held for read only and may be
990 * released. If it's released, *@nonblocking will be set to 0.
991 */
992long populate_vma_page_range(struct vm_area_struct *vma,
993 unsigned long start, unsigned long end, int *nonblocking)
994{
995 struct mm_struct *mm = vma->vm_mm;
996 unsigned long nr_pages = (end - start) / PAGE_SIZE;
997 int gup_flags;
998
999 VM_BUG_ON(start & ~PAGE_MASK);
1000 VM_BUG_ON(end & ~PAGE_MASK);
1001 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1002 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1003 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1004
de60f5f1
EM
1005 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1006 if (vma->vm_flags & VM_LOCKONFAULT)
1007 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1008 /*
1009 * We want to touch writable mappings with a write fault in order
1010 * to break COW, except for shared mappings because these don't COW
1011 * and we would not want to dirty them for nothing.
1012 */
1013 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1014 gup_flags |= FOLL_WRITE;
1015
1016 /*
1017 * We want mlock to succeed for regions that have any permissions
1018 * other than PROT_NONE.
1019 */
1020 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1021 gup_flags |= FOLL_FORCE;
1022
1023 /*
1024 * We made sure addr is within a VMA, so the following will
1025 * not result in a stack expansion that recurses back here.
1026 */
1027 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1028 NULL, NULL, nonblocking);
1029}
1030
1031/*
1032 * __mm_populate - populate and/or mlock pages within a range of address space.
1033 *
1034 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1035 * flags. VMAs must be already marked with the desired vm_flags, and
1036 * mmap_sem must not be held.
1037 */
1038int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1039{
1040 struct mm_struct *mm = current->mm;
1041 unsigned long end, nstart, nend;
1042 struct vm_area_struct *vma = NULL;
1043 int locked = 0;
1044 long ret = 0;
1045
1046 VM_BUG_ON(start & ~PAGE_MASK);
1047 VM_BUG_ON(len != PAGE_ALIGN(len));
1048 end = start + len;
1049
1050 for (nstart = start; nstart < end; nstart = nend) {
1051 /*
1052 * We want to fault in pages for [nstart; end) address range.
1053 * Find first corresponding VMA.
1054 */
1055 if (!locked) {
1056 locked = 1;
1057 down_read(&mm->mmap_sem);
1058 vma = find_vma(mm, nstart);
1059 } else if (nstart >= vma->vm_end)
1060 vma = vma->vm_next;
1061 if (!vma || vma->vm_start >= end)
1062 break;
1063 /*
1064 * Set [nstart; nend) to intersection of desired address
1065 * range with the first VMA. Also, skip undesirable VMA types.
1066 */
1067 nend = min(end, vma->vm_end);
1068 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1069 continue;
1070 if (nstart < vma->vm_start)
1071 nstart = vma->vm_start;
1072 /*
1073 * Now fault in a range of pages. populate_vma_page_range()
1074 * double checks the vma flags, so that it won't mlock pages
1075 * if the vma was already munlocked.
1076 */
1077 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1078 if (ret < 0) {
1079 if (ignore_errors) {
1080 ret = 0;
1081 continue; /* continue at next VMA */
1082 }
1083 break;
1084 }
1085 nend = nstart + ret * PAGE_SIZE;
1086 ret = 0;
1087 }
1088 if (locked)
1089 up_read(&mm->mmap_sem);
1090 return ret; /* 0 or negative error code */
1091}
1092
4bbd4c77
KS
1093/**
1094 * get_dump_page() - pin user page in memory while writing it to core dump
1095 * @addr: user address
1096 *
1097 * Returns struct page pointer of user page pinned for dump,
1098 * to be freed afterwards by page_cache_release() or put_page().
1099 *
1100 * Returns NULL on any kind of failure - a hole must then be inserted into
1101 * the corefile, to preserve alignment with its headers; and also returns
1102 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1103 * allowing a hole to be left in the corefile to save diskspace.
1104 *
1105 * Called without mmap_sem, but after all other threads have been killed.
1106 */
1107#ifdef CONFIG_ELF_CORE
1108struct page *get_dump_page(unsigned long addr)
1109{
1110 struct vm_area_struct *vma;
1111 struct page *page;
1112
1113 if (__get_user_pages(current, current->mm, addr, 1,
1114 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1115 NULL) < 1)
1116 return NULL;
1117 flush_cache_page(vma, addr, page_to_pfn(page));
1118 return page;
1119}
1120#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1121
1122/*
1123 * Generic RCU Fast GUP
1124 *
1125 * get_user_pages_fast attempts to pin user pages by walking the page
1126 * tables directly and avoids taking locks. Thus the walker needs to be
1127 * protected from page table pages being freed from under it, and should
1128 * block any THP splits.
1129 *
1130 * One way to achieve this is to have the walker disable interrupts, and
1131 * rely on IPIs from the TLB flushing code blocking before the page table
1132 * pages are freed. This is unsuitable for architectures that do not need
1133 * to broadcast an IPI when invalidating TLBs.
1134 *
1135 * Another way to achieve this is to batch up page table containing pages
1136 * belonging to more than one mm_user, then rcu_sched a callback to free those
1137 * pages. Disabling interrupts will allow the fast_gup walker to both block
1138 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1139 * (which is a relatively rare event). The code below adopts this strategy.
1140 *
1141 * Before activating this code, please be aware that the following assumptions
1142 * are currently made:
1143 *
1144 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1145 * pages containing page tables.
1146 *
2667f50e
SC
1147 * *) ptes can be read atomically by the architecture.
1148 *
1149 * *) access_ok is sufficient to validate userspace address ranges.
1150 *
1151 * The last two assumptions can be relaxed by the addition of helper functions.
1152 *
1153 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1154 */
1155#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1156
1157#ifdef __HAVE_ARCH_PTE_SPECIAL
1158static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1159 int write, struct page **pages, int *nr)
1160{
1161 pte_t *ptep, *ptem;
1162 int ret = 0;
1163
1164 ptem = ptep = pte_offset_map(&pmd, addr);
1165 do {
1166 /*
1167 * In the line below we are assuming that the pte can be read
1168 * atomically. If this is not the case for your architecture,
1169 * please wrap this in a helper function!
1170 *
1171 * for an example see gup_get_pte in arch/x86/mm/gup.c
1172 */
9d8c47e4 1173 pte_t pte = READ_ONCE(*ptep);
7aef4172 1174 struct page *head, *page;
2667f50e
SC
1175
1176 /*
1177 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1178 * path using the pte_protnone check.
2667f50e
SC
1179 */
1180 if (!pte_present(pte) || pte_special(pte) ||
8a0516ed 1181 pte_protnone(pte) || (write && !pte_write(pte)))
2667f50e
SC
1182 goto pte_unmap;
1183
33a709b2
DH
1184 if (!arch_pte_access_permitted(pte, write))
1185 goto pte_unmap;
1186
2667f50e
SC
1187 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1188 page = pte_page(pte);
7aef4172 1189 head = compound_head(page);
2667f50e 1190
7aef4172 1191 if (!page_cache_get_speculative(head))
2667f50e
SC
1192 goto pte_unmap;
1193
1194 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1195 put_page(head);
2667f50e
SC
1196 goto pte_unmap;
1197 }
1198
7aef4172 1199 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2667f50e
SC
1200 pages[*nr] = page;
1201 (*nr)++;
1202
1203 } while (ptep++, addr += PAGE_SIZE, addr != end);
1204
1205 ret = 1;
1206
1207pte_unmap:
1208 pte_unmap(ptem);
1209 return ret;
1210}
1211#else
1212
1213/*
1214 * If we can't determine whether or not a pte is special, then fail immediately
1215 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1216 * to be special.
1217 *
1218 * For a futex to be placed on a THP tail page, get_futex_key requires a
1219 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1220 * useful to have gup_huge_pmd even if we can't operate on ptes.
1221 */
1222static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1223 int write, struct page **pages, int *nr)
1224{
1225 return 0;
1226}
1227#endif /* __HAVE_ARCH_PTE_SPECIAL */
1228
1229static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1230 unsigned long end, int write, struct page **pages, int *nr)
1231{
ddc58f27 1232 struct page *head, *page;
2667f50e
SC
1233 int refs;
1234
1235 if (write && !pmd_write(orig))
1236 return 0;
1237
1238 refs = 0;
1239 head = pmd_page(orig);
1240 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1241 do {
1242 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1243 pages[*nr] = page;
1244 (*nr)++;
1245 page++;
1246 refs++;
1247 } while (addr += PAGE_SIZE, addr != end);
1248
1249 if (!page_cache_add_speculative(head, refs)) {
1250 *nr -= refs;
1251 return 0;
1252 }
1253
1254 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1255 *nr -= refs;
1256 while (refs--)
1257 put_page(head);
1258 return 0;
1259 }
1260
2667f50e
SC
1261 return 1;
1262}
1263
1264static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1265 unsigned long end, int write, struct page **pages, int *nr)
1266{
ddc58f27 1267 struct page *head, *page;
2667f50e
SC
1268 int refs;
1269
1270 if (write && !pud_write(orig))
1271 return 0;
1272
1273 refs = 0;
1274 head = pud_page(orig);
1275 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1276 do {
1277 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1278 pages[*nr] = page;
1279 (*nr)++;
1280 page++;
1281 refs++;
1282 } while (addr += PAGE_SIZE, addr != end);
1283
1284 if (!page_cache_add_speculative(head, refs)) {
1285 *nr -= refs;
1286 return 0;
1287 }
1288
1289 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1290 *nr -= refs;
1291 while (refs--)
1292 put_page(head);
1293 return 0;
1294 }
1295
2667f50e
SC
1296 return 1;
1297}
1298
f30c59e9
AK
1299static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1300 unsigned long end, int write,
1301 struct page **pages, int *nr)
1302{
1303 int refs;
ddc58f27 1304 struct page *head, *page;
f30c59e9
AK
1305
1306 if (write && !pgd_write(orig))
1307 return 0;
1308
1309 refs = 0;
1310 head = pgd_page(orig);
1311 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1312 do {
1313 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1314 pages[*nr] = page;
1315 (*nr)++;
1316 page++;
1317 refs++;
1318 } while (addr += PAGE_SIZE, addr != end);
1319
1320 if (!page_cache_add_speculative(head, refs)) {
1321 *nr -= refs;
1322 return 0;
1323 }
1324
1325 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1326 *nr -= refs;
1327 while (refs--)
1328 put_page(head);
1329 return 0;
1330 }
1331
f30c59e9
AK
1332 return 1;
1333}
1334
2667f50e
SC
1335static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1336 int write, struct page **pages, int *nr)
1337{
1338 unsigned long next;
1339 pmd_t *pmdp;
1340
1341 pmdp = pmd_offset(&pud, addr);
1342 do {
38c5ce93 1343 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1344
1345 next = pmd_addr_end(addr, end);
4b471e88 1346 if (pmd_none(pmd))
2667f50e
SC
1347 return 0;
1348
1349 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1350 /*
1351 * NUMA hinting faults need to be handled in the GUP
1352 * slowpath for accounting purposes and so that they
1353 * can be serialised against THP migration.
1354 */
8a0516ed 1355 if (pmd_protnone(pmd))
2667f50e
SC
1356 return 0;
1357
1358 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1359 pages, nr))
1360 return 0;
1361
f30c59e9
AK
1362 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1363 /*
1364 * architecture have different format for hugetlbfs
1365 * pmd format and THP pmd format
1366 */
1367 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1368 PMD_SHIFT, next, write, pages, nr))
1369 return 0;
2667f50e
SC
1370 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1371 return 0;
1372 } while (pmdp++, addr = next, addr != end);
1373
1374 return 1;
1375}
1376
f30c59e9
AK
1377static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1378 int write, struct page **pages, int *nr)
2667f50e
SC
1379{
1380 unsigned long next;
1381 pud_t *pudp;
1382
f30c59e9 1383 pudp = pud_offset(&pgd, addr);
2667f50e 1384 do {
e37c6982 1385 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1386
1387 next = pud_addr_end(addr, end);
1388 if (pud_none(pud))
1389 return 0;
f30c59e9 1390 if (unlikely(pud_huge(pud))) {
2667f50e 1391 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1392 pages, nr))
1393 return 0;
1394 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1395 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1396 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1397 return 0;
1398 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1399 return 0;
1400 } while (pudp++, addr = next, addr != end);
1401
1402 return 1;
1403}
1404
1405/*
1406 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1407 * the regular GUP. It will only return non-negative values.
1408 */
1409int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1410 struct page **pages)
1411{
1412 struct mm_struct *mm = current->mm;
1413 unsigned long addr, len, end;
1414 unsigned long next, flags;
1415 pgd_t *pgdp;
1416 int nr = 0;
1417
1418 start &= PAGE_MASK;
1419 addr = start;
1420 len = (unsigned long) nr_pages << PAGE_SHIFT;
1421 end = start + len;
1422
1423 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1424 start, len)))
1425 return 0;
1426
1427 /*
1428 * Disable interrupts. We use the nested form as we can already have
1429 * interrupts disabled by get_futex_key.
1430 *
1431 * With interrupts disabled, we block page table pages from being
1432 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1433 * for more details.
1434 *
1435 * We do not adopt an rcu_read_lock(.) here as we also want to
1436 * block IPIs that come from THPs splitting.
1437 */
1438
1439 local_irq_save(flags);
1440 pgdp = pgd_offset(mm, addr);
1441 do {
9d8c47e4 1442 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1443
2667f50e 1444 next = pgd_addr_end(addr, end);
f30c59e9 1445 if (pgd_none(pgd))
2667f50e 1446 break;
f30c59e9
AK
1447 if (unlikely(pgd_huge(pgd))) {
1448 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1449 pages, &nr))
1450 break;
1451 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1452 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1453 PGDIR_SHIFT, next, write, pages, &nr))
1454 break;
1455 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1456 break;
1457 } while (pgdp++, addr = next, addr != end);
1458 local_irq_restore(flags);
1459
1460 return nr;
1461}
1462
1463/**
1464 * get_user_pages_fast() - pin user pages in memory
1465 * @start: starting user address
1466 * @nr_pages: number of pages from start to pin
1467 * @write: whether pages will be written to
1468 * @pages: array that receives pointers to the pages pinned.
1469 * Should be at least nr_pages long.
1470 *
1471 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1472 * If not successful, it will fall back to taking the lock and
1473 * calling get_user_pages().
1474 *
1475 * Returns number of pages pinned. This may be fewer than the number
1476 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1477 * were pinned, returns -errno.
1478 */
1479int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1480 struct page **pages)
1481{
1482 struct mm_struct *mm = current->mm;
1483 int nr, ret;
1484
1485 start &= PAGE_MASK;
1486 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1487 ret = nr;
1488
1489 if (nr < nr_pages) {
1490 /* Try to get the remaining pages with get_user_pages */
1491 start += nr << PAGE_SHIFT;
1492 pages += nr;
1493
a7b78075
AA
1494 ret = get_user_pages_unlocked(current, mm, start,
1495 nr_pages - nr, write, 0, pages);
2667f50e
SC
1496
1497 /* Have to be a bit careful with return values */
1498 if (nr > 0) {
1499 if (ret < 0)
1500 ret = nr;
1501 else
1502 ret += nr;
1503 }
1504 }
1505
1506 return ret;
1507}
1508
1509#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
cde70140
DH
1510
1511long get_user_pages8(struct task_struct *tsk, struct mm_struct *mm,
1512 unsigned long start, unsigned long nr_pages,
1513 int write, int force, struct page **pages,
1514 struct vm_area_struct **vmas)
1515{
1516 WARN_ONCE(tsk != current, "get_user_pages() called on remote task");
1517 WARN_ONCE(mm != current->mm, "get_user_pages() called on remote mm");
1518
1519 return get_user_pages6(start, nr_pages, write, force, pages, vmas);
1520}
1521EXPORT_SYMBOL(get_user_pages8);
1522
1523long get_user_pages_locked8(struct task_struct *tsk, struct mm_struct *mm,
1524 unsigned long start, unsigned long nr_pages,
1525 int write, int force, struct page **pages, int *locked)
1526{
1527 WARN_ONCE(tsk != current, "get_user_pages_locked() called on remote task");
1528 WARN_ONCE(mm != current->mm, "get_user_pages_locked() called on remote mm");
1529
1530 return get_user_pages_locked6(start, nr_pages, write, force, pages, locked);
1531}
1532EXPORT_SYMBOL(get_user_pages_locked8);
1533
1534long get_user_pages_unlocked7(struct task_struct *tsk, struct mm_struct *mm,
1535 unsigned long start, unsigned long nr_pages,
1536 int write, int force, struct page **pages)
1537{
1538 WARN_ONCE(tsk != current, "get_user_pages_unlocked() called on remote task");
1539 WARN_ONCE(mm != current->mm, "get_user_pages_unlocked() called on remote mm");
1540
1541 return get_user_pages_unlocked5(start, nr_pages, write, force, pages);
1542}
1543EXPORT_SYMBOL(get_user_pages_unlocked7);
1544