]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/gup.c
sched/headers: Prepare for new header dependencies before moving code to <linux/sched...
[mirror_ubuntu-artful-kernel.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
2667f50e
SC
13#include <linux/sched.h>
14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
69e68b4f
KS
23static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
4bbd4c77 25{
69e68b4f
KS
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37}
4bbd4c77 38
1027e443
KS
39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41{
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61}
62
19be0eaf
LT
63/*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68{
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71}
72
69e68b4f
KS
73static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75{
76 struct mm_struct *mm = vma->vm_mm;
3565fce3 77 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
4bbd4c77 81
69e68b4f 82retry:
4bbd4c77 83 if (unlikely(pmd_bad(*pmd)))
69e68b4f 84 return no_page_table(vma, flags);
4bbd4c77
KS
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
0661a336 97 if (pte_none(pte))
4bbd4c77
KS
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
69e68b4f 104 goto retry;
4bbd4c77 105 }
8a0516ed 106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 107 goto no_page;
19be0eaf 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
4bbd4c77
KS
112
113 page = vm_normal_page(vma, address, pte);
3565fce3
DW
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
1027e443
KS
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
4bbd4c77
KS
140 }
141
6742d293
KS
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
3565fce3 155 if (flags & FOLL_GET) {
ddc58f27 156 get_page(page);
3565fce3
DW
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
4bbd4c77
KS
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
de60f5f1 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
4bbd4c77
KS
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
1027e443 201out:
4bbd4c77 202 pte_unmap_unlock(ptep, ptl);
4bbd4c77 203 return page;
4bbd4c77
KS
204no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
69e68b4f
KS
207 return NULL;
208 return no_page_table(vma, flags);
209}
210
211/**
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
217 *
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219 *
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
223 */
224struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
227{
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 spinlock_t *ptl;
232 struct page *page;
233 struct mm_struct *mm = vma->vm_mm;
234
235 *page_mask = 0;
236
237 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 if (!IS_ERR(page)) {
239 BUG_ON(flags & FOLL_GET);
4bbd4c77 240 return page;
69e68b4f 241 }
4bbd4c77 242
69e68b4f
KS
243 pgd = pgd_offset(mm, address);
244 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 return no_page_table(vma, flags);
246
247 pud = pud_offset(pgd, address);
248 if (pud_none(*pud))
249 return no_page_table(vma, flags);
250 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
251 page = follow_huge_pud(mm, address, pud, flags);
252 if (page)
253 return page;
254 return no_page_table(vma, flags);
69e68b4f 255 }
a00cc7d9
MW
256 if (pud_devmap(*pud)) {
257 ptl = pud_lock(mm, pud);
258 page = follow_devmap_pud(vma, address, pud, flags);
259 spin_unlock(ptl);
260 if (page)
261 return page;
262 }
69e68b4f
KS
263 if (unlikely(pud_bad(*pud)))
264 return no_page_table(vma, flags);
265
266 pmd = pmd_offset(pud, address);
267 if (pmd_none(*pmd))
268 return no_page_table(vma, flags);
269 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
270 page = follow_huge_pmd(mm, address, pmd, flags);
271 if (page)
272 return page;
273 return no_page_table(vma, flags);
69e68b4f 274 }
3565fce3
DW
275 if (pmd_devmap(*pmd)) {
276 ptl = pmd_lock(mm, pmd);
277 page = follow_devmap_pmd(vma, address, pmd, flags);
278 spin_unlock(ptl);
279 if (page)
280 return page;
281 }
6742d293
KS
282 if (likely(!pmd_trans_huge(*pmd)))
283 return follow_page_pte(vma, address, pmd, flags);
284
db08f203
AK
285 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
286 return no_page_table(vma, flags);
287
6742d293
KS
288 ptl = pmd_lock(mm, pmd);
289 if (unlikely(!pmd_trans_huge(*pmd))) {
290 spin_unlock(ptl);
291 return follow_page_pte(vma, address, pmd, flags);
292 }
6742d293
KS
293 if (flags & FOLL_SPLIT) {
294 int ret;
295 page = pmd_page(*pmd);
296 if (is_huge_zero_page(page)) {
297 spin_unlock(ptl);
298 ret = 0;
78ddc534 299 split_huge_pmd(vma, pmd, address);
337d9abf
NH
300 if (pmd_trans_unstable(pmd))
301 ret = -EBUSY;
6742d293
KS
302 } else {
303 get_page(page);
69e68b4f 304 spin_unlock(ptl);
6742d293
KS
305 lock_page(page);
306 ret = split_huge_page(page);
307 unlock_page(page);
308 put_page(page);
baa355fd
KS
309 if (pmd_none(*pmd))
310 return no_page_table(vma, flags);
6742d293
KS
311 }
312
313 return ret ? ERR_PTR(ret) :
314 follow_page_pte(vma, address, pmd, flags);
69e68b4f 315 }
6742d293
KS
316
317 page = follow_trans_huge_pmd(vma, address, pmd, flags);
318 spin_unlock(ptl);
319 *page_mask = HPAGE_PMD_NR - 1;
320 return page;
4bbd4c77
KS
321}
322
f2b495ca
KS
323static int get_gate_page(struct mm_struct *mm, unsigned long address,
324 unsigned int gup_flags, struct vm_area_struct **vma,
325 struct page **page)
326{
327 pgd_t *pgd;
328 pud_t *pud;
329 pmd_t *pmd;
330 pte_t *pte;
331 int ret = -EFAULT;
332
333 /* user gate pages are read-only */
334 if (gup_flags & FOLL_WRITE)
335 return -EFAULT;
336 if (address > TASK_SIZE)
337 pgd = pgd_offset_k(address);
338 else
339 pgd = pgd_offset_gate(mm, address);
340 BUG_ON(pgd_none(*pgd));
341 pud = pud_offset(pgd, address);
342 BUG_ON(pud_none(*pud));
343 pmd = pmd_offset(pud, address);
344 if (pmd_none(*pmd))
345 return -EFAULT;
346 VM_BUG_ON(pmd_trans_huge(*pmd));
347 pte = pte_offset_map(pmd, address);
348 if (pte_none(*pte))
349 goto unmap;
350 *vma = get_gate_vma(mm);
351 if (!page)
352 goto out;
353 *page = vm_normal_page(*vma, address, *pte);
354 if (!*page) {
355 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
356 goto unmap;
357 *page = pte_page(*pte);
358 }
359 get_page(*page);
360out:
361 ret = 0;
362unmap:
363 pte_unmap(pte);
364 return ret;
365}
366
9a95f3cf
PC
367/*
368 * mmap_sem must be held on entry. If @nonblocking != NULL and
369 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
370 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
371 */
16744483
KS
372static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
373 unsigned long address, unsigned int *flags, int *nonblocking)
374{
16744483
KS
375 unsigned int fault_flags = 0;
376 int ret;
377
de60f5f1
EM
378 /* mlock all present pages, but do not fault in new pages */
379 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
380 return -ENOENT;
84d33df2
KS
381 /* For mm_populate(), just skip the stack guard page. */
382 if ((*flags & FOLL_POPULATE) &&
16744483
KS
383 (stack_guard_page_start(vma, address) ||
384 stack_guard_page_end(vma, address + PAGE_SIZE)))
385 return -ENOENT;
386 if (*flags & FOLL_WRITE)
387 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
388 if (*flags & FOLL_REMOTE)
389 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
390 if (nonblocking)
391 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
392 if (*flags & FOLL_NOWAIT)
393 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
394 if (*flags & FOLL_TRIED) {
395 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
396 fault_flags |= FAULT_FLAG_TRIED;
397 }
16744483 398
dcddffd4 399 ret = handle_mm_fault(vma, address, fault_flags);
16744483
KS
400 if (ret & VM_FAULT_ERROR) {
401 if (ret & VM_FAULT_OOM)
402 return -ENOMEM;
403 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
404 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
33692f27 405 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
16744483
KS
406 return -EFAULT;
407 BUG();
408 }
409
410 if (tsk) {
411 if (ret & VM_FAULT_MAJOR)
412 tsk->maj_flt++;
413 else
414 tsk->min_flt++;
415 }
416
417 if (ret & VM_FAULT_RETRY) {
418 if (nonblocking)
419 *nonblocking = 0;
420 return -EBUSY;
421 }
422
423 /*
424 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
425 * necessary, even if maybe_mkwrite decided not to set pte_write. We
426 * can thus safely do subsequent page lookups as if they were reads.
427 * But only do so when looping for pte_write is futile: in some cases
428 * userspace may also be wanting to write to the gotten user page,
429 * which a read fault here might prevent (a readonly page might get
430 * reCOWed by userspace write).
431 */
432 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
19be0eaf 433 *flags |= FOLL_COW;
16744483
KS
434 return 0;
435}
436
fa5bb209
KS
437static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
438{
439 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
440 int write = (gup_flags & FOLL_WRITE);
441 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
442
443 if (vm_flags & (VM_IO | VM_PFNMAP))
444 return -EFAULT;
445
1b2ee126 446 if (write) {
fa5bb209
KS
447 if (!(vm_flags & VM_WRITE)) {
448 if (!(gup_flags & FOLL_FORCE))
449 return -EFAULT;
450 /*
451 * We used to let the write,force case do COW in a
452 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
453 * set a breakpoint in a read-only mapping of an
454 * executable, without corrupting the file (yet only
455 * when that file had been opened for writing!).
456 * Anon pages in shared mappings are surprising: now
457 * just reject it.
458 */
46435364 459 if (!is_cow_mapping(vm_flags))
fa5bb209 460 return -EFAULT;
fa5bb209
KS
461 }
462 } else if (!(vm_flags & VM_READ)) {
463 if (!(gup_flags & FOLL_FORCE))
464 return -EFAULT;
465 /*
466 * Is there actually any vma we can reach here which does not
467 * have VM_MAYREAD set?
468 */
469 if (!(vm_flags & VM_MAYREAD))
470 return -EFAULT;
471 }
d61172b4
DH
472 /*
473 * gups are always data accesses, not instruction
474 * fetches, so execute=false here
475 */
476 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 477 return -EFAULT;
fa5bb209
KS
478 return 0;
479}
480
4bbd4c77
KS
481/**
482 * __get_user_pages() - pin user pages in memory
483 * @tsk: task_struct of target task
484 * @mm: mm_struct of target mm
485 * @start: starting user address
486 * @nr_pages: number of pages from start to pin
487 * @gup_flags: flags modifying pin behaviour
488 * @pages: array that receives pointers to the pages pinned.
489 * Should be at least nr_pages long. Or NULL, if caller
490 * only intends to ensure the pages are faulted in.
491 * @vmas: array of pointers to vmas corresponding to each page.
492 * Or NULL if the caller does not require them.
493 * @nonblocking: whether waiting for disk IO or mmap_sem contention
494 *
495 * Returns number of pages pinned. This may be fewer than the number
496 * requested. If nr_pages is 0 or negative, returns 0. If no pages
497 * were pinned, returns -errno. Each page returned must be released
498 * with a put_page() call when it is finished with. vmas will only
499 * remain valid while mmap_sem is held.
500 *
9a95f3cf 501 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
502 *
503 * __get_user_pages walks a process's page tables and takes a reference to
504 * each struct page that each user address corresponds to at a given
505 * instant. That is, it takes the page that would be accessed if a user
506 * thread accesses the given user virtual address at that instant.
507 *
508 * This does not guarantee that the page exists in the user mappings when
509 * __get_user_pages returns, and there may even be a completely different
510 * page there in some cases (eg. if mmapped pagecache has been invalidated
511 * and subsequently re faulted). However it does guarantee that the page
512 * won't be freed completely. And mostly callers simply care that the page
513 * contains data that was valid *at some point in time*. Typically, an IO
514 * or similar operation cannot guarantee anything stronger anyway because
515 * locks can't be held over the syscall boundary.
516 *
517 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
518 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
519 * appropriate) must be called after the page is finished with, and
520 * before put_page is called.
521 *
522 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
523 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
524 * *@nonblocking will be set to 0. Further, if @gup_flags does not
525 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
526 * this case.
527 *
528 * A caller using such a combination of @nonblocking and @gup_flags
529 * must therefore hold the mmap_sem for reading only, and recognize
530 * when it's been released. Otherwise, it must be held for either
531 * reading or writing and will not be released.
4bbd4c77
KS
532 *
533 * In most cases, get_user_pages or get_user_pages_fast should be used
534 * instead of __get_user_pages. __get_user_pages should be used only if
535 * you need some special @gup_flags.
536 */
0d731759 537static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
538 unsigned long start, unsigned long nr_pages,
539 unsigned int gup_flags, struct page **pages,
540 struct vm_area_struct **vmas, int *nonblocking)
541{
fa5bb209 542 long i = 0;
4bbd4c77 543 unsigned int page_mask;
fa5bb209 544 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
545
546 if (!nr_pages)
547 return 0;
548
549 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
550
551 /*
552 * If FOLL_FORCE is set then do not force a full fault as the hinting
553 * fault information is unrelated to the reference behaviour of a task
554 * using the address space
555 */
556 if (!(gup_flags & FOLL_FORCE))
557 gup_flags |= FOLL_NUMA;
558
4bbd4c77 559 do {
fa5bb209
KS
560 struct page *page;
561 unsigned int foll_flags = gup_flags;
562 unsigned int page_increm;
563
564 /* first iteration or cross vma bound */
565 if (!vma || start >= vma->vm_end) {
566 vma = find_extend_vma(mm, start);
567 if (!vma && in_gate_area(mm, start)) {
568 int ret;
569 ret = get_gate_page(mm, start & PAGE_MASK,
570 gup_flags, &vma,
571 pages ? &pages[i] : NULL);
572 if (ret)
573 return i ? : ret;
574 page_mask = 0;
575 goto next_page;
576 }
4bbd4c77 577
fa5bb209
KS
578 if (!vma || check_vma_flags(vma, gup_flags))
579 return i ? : -EFAULT;
580 if (is_vm_hugetlb_page(vma)) {
581 i = follow_hugetlb_page(mm, vma, pages, vmas,
582 &start, &nr_pages, i,
87ffc118 583 gup_flags, nonblocking);
fa5bb209 584 continue;
4bbd4c77 585 }
fa5bb209
KS
586 }
587retry:
588 /*
589 * If we have a pending SIGKILL, don't keep faulting pages and
590 * potentially allocating memory.
591 */
592 if (unlikely(fatal_signal_pending(current)))
593 return i ? i : -ERESTARTSYS;
594 cond_resched();
595 page = follow_page_mask(vma, start, foll_flags, &page_mask);
596 if (!page) {
597 int ret;
598 ret = faultin_page(tsk, vma, start, &foll_flags,
599 nonblocking);
600 switch (ret) {
601 case 0:
602 goto retry;
603 case -EFAULT:
604 case -ENOMEM:
605 case -EHWPOISON:
606 return i ? i : ret;
607 case -EBUSY:
608 return i;
609 case -ENOENT:
610 goto next_page;
4bbd4c77 611 }
fa5bb209 612 BUG();
1027e443
KS
613 } else if (PTR_ERR(page) == -EEXIST) {
614 /*
615 * Proper page table entry exists, but no corresponding
616 * struct page.
617 */
618 goto next_page;
619 } else if (IS_ERR(page)) {
fa5bb209 620 return i ? i : PTR_ERR(page);
1027e443 621 }
fa5bb209
KS
622 if (pages) {
623 pages[i] = page;
624 flush_anon_page(vma, page, start);
625 flush_dcache_page(page);
626 page_mask = 0;
4bbd4c77 627 }
4bbd4c77 628next_page:
fa5bb209
KS
629 if (vmas) {
630 vmas[i] = vma;
631 page_mask = 0;
632 }
633 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
634 if (page_increm > nr_pages)
635 page_increm = nr_pages;
636 i += page_increm;
637 start += page_increm * PAGE_SIZE;
638 nr_pages -= page_increm;
4bbd4c77
KS
639 } while (nr_pages);
640 return i;
4bbd4c77 641}
4bbd4c77 642
771ab430
TK
643static bool vma_permits_fault(struct vm_area_struct *vma,
644 unsigned int fault_flags)
d4925e00 645{
1b2ee126
DH
646 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
647 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 648 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
649
650 if (!(vm_flags & vma->vm_flags))
651 return false;
652
33a709b2
DH
653 /*
654 * The architecture might have a hardware protection
1b2ee126 655 * mechanism other than read/write that can deny access.
d61172b4
DH
656 *
657 * gup always represents data access, not instruction
658 * fetches, so execute=false here:
33a709b2 659 */
d61172b4 660 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
661 return false;
662
d4925e00
DH
663 return true;
664}
665
4bbd4c77
KS
666/*
667 * fixup_user_fault() - manually resolve a user page fault
668 * @tsk: the task_struct to use for page fault accounting, or
669 * NULL if faults are not to be recorded.
670 * @mm: mm_struct of target mm
671 * @address: user address
672 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
673 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
674 * does not allow retry
4bbd4c77
KS
675 *
676 * This is meant to be called in the specific scenario where for locking reasons
677 * we try to access user memory in atomic context (within a pagefault_disable()
678 * section), this returns -EFAULT, and we want to resolve the user fault before
679 * trying again.
680 *
681 * Typically this is meant to be used by the futex code.
682 *
683 * The main difference with get_user_pages() is that this function will
684 * unconditionally call handle_mm_fault() which will in turn perform all the
685 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 686 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
687 *
688 * This is important for some architectures where those bits also gate the
689 * access permission to the page because they are maintained in software. On
690 * such architectures, gup() will not be enough to make a subsequent access
691 * succeed.
692 *
4a9e1cda
DD
693 * This function will not return with an unlocked mmap_sem. So it has not the
694 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
695 */
696int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
697 unsigned long address, unsigned int fault_flags,
698 bool *unlocked)
4bbd4c77
KS
699{
700 struct vm_area_struct *vma;
4a9e1cda
DD
701 int ret, major = 0;
702
703 if (unlocked)
704 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 705
4a9e1cda 706retry:
4bbd4c77
KS
707 vma = find_extend_vma(mm, address);
708 if (!vma || address < vma->vm_start)
709 return -EFAULT;
710
d4925e00 711 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
712 return -EFAULT;
713
dcddffd4 714 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 715 major |= ret & VM_FAULT_MAJOR;
4bbd4c77
KS
716 if (ret & VM_FAULT_ERROR) {
717 if (ret & VM_FAULT_OOM)
718 return -ENOMEM;
719 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
720 return -EHWPOISON;
33692f27 721 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4bbd4c77
KS
722 return -EFAULT;
723 BUG();
724 }
4a9e1cda
DD
725
726 if (ret & VM_FAULT_RETRY) {
727 down_read(&mm->mmap_sem);
728 if (!(fault_flags & FAULT_FLAG_TRIED)) {
729 *unlocked = true;
730 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
731 fault_flags |= FAULT_FLAG_TRIED;
732 goto retry;
733 }
734 }
735
4bbd4c77 736 if (tsk) {
4a9e1cda 737 if (major)
4bbd4c77
KS
738 tsk->maj_flt++;
739 else
740 tsk->min_flt++;
741 }
742 return 0;
743}
add6a0cd 744EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 745
f0818f47
AA
746static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
747 struct mm_struct *mm,
748 unsigned long start,
749 unsigned long nr_pages,
f0818f47
AA
750 struct page **pages,
751 struct vm_area_struct **vmas,
0fd71a56
AA
752 int *locked, bool notify_drop,
753 unsigned int flags)
f0818f47 754{
f0818f47
AA
755 long ret, pages_done;
756 bool lock_dropped;
757
758 if (locked) {
759 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
760 BUG_ON(vmas);
761 /* check caller initialized locked */
762 BUG_ON(*locked != 1);
763 }
764
765 if (pages)
766 flags |= FOLL_GET;
f0818f47
AA
767
768 pages_done = 0;
769 lock_dropped = false;
770 for (;;) {
771 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
772 vmas, locked);
773 if (!locked)
774 /* VM_FAULT_RETRY couldn't trigger, bypass */
775 return ret;
776
777 /* VM_FAULT_RETRY cannot return errors */
778 if (!*locked) {
779 BUG_ON(ret < 0);
780 BUG_ON(ret >= nr_pages);
781 }
782
783 if (!pages)
784 /* If it's a prefault don't insist harder */
785 return ret;
786
787 if (ret > 0) {
788 nr_pages -= ret;
789 pages_done += ret;
790 if (!nr_pages)
791 break;
792 }
793 if (*locked) {
794 /* VM_FAULT_RETRY didn't trigger */
795 if (!pages_done)
796 pages_done = ret;
797 break;
798 }
799 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
800 pages += ret;
801 start += ret << PAGE_SHIFT;
802
803 /*
804 * Repeat on the address that fired VM_FAULT_RETRY
805 * without FAULT_FLAG_ALLOW_RETRY but with
806 * FAULT_FLAG_TRIED.
807 */
808 *locked = 1;
809 lock_dropped = true;
810 down_read(&mm->mmap_sem);
811 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
812 pages, NULL, NULL);
813 if (ret != 1) {
814 BUG_ON(ret > 1);
815 if (!pages_done)
816 pages_done = ret;
817 break;
818 }
819 nr_pages--;
820 pages_done++;
821 if (!nr_pages)
822 break;
823 pages++;
824 start += PAGE_SIZE;
825 }
826 if (notify_drop && lock_dropped && *locked) {
827 /*
828 * We must let the caller know we temporarily dropped the lock
829 * and so the critical section protected by it was lost.
830 */
831 up_read(&mm->mmap_sem);
832 *locked = 0;
833 }
834 return pages_done;
835}
836
837/*
838 * We can leverage the VM_FAULT_RETRY functionality in the page fault
839 * paths better by using either get_user_pages_locked() or
840 * get_user_pages_unlocked().
841 *
842 * get_user_pages_locked() is suitable to replace the form:
843 *
844 * down_read(&mm->mmap_sem);
845 * do_something()
846 * get_user_pages(tsk, mm, ..., pages, NULL);
847 * up_read(&mm->mmap_sem);
848 *
849 * to:
850 *
851 * int locked = 1;
852 * down_read(&mm->mmap_sem);
853 * do_something()
854 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
855 * if (locked)
856 * up_read(&mm->mmap_sem);
857 */
c12d2da5 858long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 859 unsigned int gup_flags, struct page **pages,
f0818f47
AA
860 int *locked)
861{
cde70140 862 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3b913179
LS
863 pages, NULL, locked, true,
864 gup_flags | FOLL_TOUCH);
f0818f47 865}
c12d2da5 866EXPORT_SYMBOL(get_user_pages_locked);
f0818f47 867
0fd71a56 868/*
80a79516
LS
869 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
870 * tsk, mm to be specified.
0fd71a56
AA
871 *
872 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
80a79516
LS
873 * caller if required (just like with __get_user_pages). "FOLL_GET"
874 * is set implicitly if "pages" is non-NULL.
0fd71a56 875 */
8b7457ef
LS
876static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
877 struct mm_struct *mm, unsigned long start,
878 unsigned long nr_pages, struct page **pages,
879 unsigned int gup_flags)
0fd71a56
AA
880{
881 long ret;
882 int locked = 1;
859110d7 883
0fd71a56 884 down_read(&mm->mmap_sem);
859110d7
LS
885 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
886 &locked, false, gup_flags);
0fd71a56
AA
887 if (locked)
888 up_read(&mm->mmap_sem);
889 return ret;
890}
0fd71a56 891
f0818f47
AA
892/*
893 * get_user_pages_unlocked() is suitable to replace the form:
894 *
895 * down_read(&mm->mmap_sem);
896 * get_user_pages(tsk, mm, ..., pages, NULL);
897 * up_read(&mm->mmap_sem);
898 *
899 * with:
900 *
901 * get_user_pages_unlocked(tsk, mm, ..., pages);
902 *
903 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
904 * get_user_pages_fast should be used instead if specific gup_flags
905 * (e.g. FOLL_FORCE) are not required.
f0818f47 906 */
c12d2da5 907long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 908 struct page **pages, unsigned int gup_flags)
f0818f47 909{
cde70140 910 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
c164154f 911 pages, gup_flags | FOLL_TOUCH);
f0818f47 912}
c12d2da5 913EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 914
4bbd4c77 915/*
1e987790 916 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
917 * @tsk: the task_struct to use for page fault accounting, or
918 * NULL if faults are not to be recorded.
919 * @mm: mm_struct of target mm
920 * @start: starting user address
921 * @nr_pages: number of pages from start to pin
9beae1ea 922 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
923 * @pages: array that receives pointers to the pages pinned.
924 * Should be at least nr_pages long. Or NULL, if caller
925 * only intends to ensure the pages are faulted in.
926 * @vmas: array of pointers to vmas corresponding to each page.
927 * Or NULL if the caller does not require them.
5b56d49f
LS
928 * @locked: pointer to lock flag indicating whether lock is held and
929 * subsequently whether VM_FAULT_RETRY functionality can be
930 * utilised. Lock must initially be held.
4bbd4c77
KS
931 *
932 * Returns number of pages pinned. This may be fewer than the number
933 * requested. If nr_pages is 0 or negative, returns 0. If no pages
934 * were pinned, returns -errno. Each page returned must be released
935 * with a put_page() call when it is finished with. vmas will only
936 * remain valid while mmap_sem is held.
937 *
938 * Must be called with mmap_sem held for read or write.
939 *
940 * get_user_pages walks a process's page tables and takes a reference to
941 * each struct page that each user address corresponds to at a given
942 * instant. That is, it takes the page that would be accessed if a user
943 * thread accesses the given user virtual address at that instant.
944 *
945 * This does not guarantee that the page exists in the user mappings when
946 * get_user_pages returns, and there may even be a completely different
947 * page there in some cases (eg. if mmapped pagecache has been invalidated
948 * and subsequently re faulted). However it does guarantee that the page
949 * won't be freed completely. And mostly callers simply care that the page
950 * contains data that was valid *at some point in time*. Typically, an IO
951 * or similar operation cannot guarantee anything stronger anyway because
952 * locks can't be held over the syscall boundary.
953 *
9beae1ea
LS
954 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
955 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
956 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
957 *
958 * get_user_pages is typically used for fewer-copy IO operations, to get a
959 * handle on the memory by some means other than accesses via the user virtual
960 * addresses. The pages may be submitted for DMA to devices or accessed via
961 * their kernel linear mapping (via the kmap APIs). Care should be taken to
962 * use the correct cache flushing APIs.
963 *
964 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
965 *
966 * get_user_pages should be phased out in favor of
967 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
968 * should use get_user_pages because it cannot pass
969 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 970 */
1e987790
DH
971long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
972 unsigned long start, unsigned long nr_pages,
9beae1ea 973 unsigned int gup_flags, struct page **pages,
5b56d49f 974 struct vm_area_struct **vmas, int *locked)
4bbd4c77 975{
859110d7 976 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
5b56d49f 977 locked, true,
9beae1ea 978 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
979}
980EXPORT_SYMBOL(get_user_pages_remote);
981
982/*
d4edcf0d
DH
983 * This is the same as get_user_pages_remote(), just with a
984 * less-flexible calling convention where we assume that the task
5b56d49f
LS
985 * and mm being operated on are the current task's and don't allow
986 * passing of a locked parameter. We also obviously don't pass
987 * FOLL_REMOTE in here.
1e987790 988 */
c12d2da5 989long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 990 unsigned int gup_flags, struct page **pages,
1e987790
DH
991 struct vm_area_struct **vmas)
992{
cde70140 993 return __get_user_pages_locked(current, current->mm, start, nr_pages,
768ae309
LS
994 pages, vmas, NULL, false,
995 gup_flags | FOLL_TOUCH);
4bbd4c77 996}
c12d2da5 997EXPORT_SYMBOL(get_user_pages);
4bbd4c77 998
acc3c8d1
KS
999/**
1000 * populate_vma_page_range() - populate a range of pages in the vma.
1001 * @vma: target vma
1002 * @start: start address
1003 * @end: end address
1004 * @nonblocking:
1005 *
1006 * This takes care of mlocking the pages too if VM_LOCKED is set.
1007 *
1008 * return 0 on success, negative error code on error.
1009 *
1010 * vma->vm_mm->mmap_sem must be held.
1011 *
1012 * If @nonblocking is NULL, it may be held for read or write and will
1013 * be unperturbed.
1014 *
1015 * If @nonblocking is non-NULL, it must held for read only and may be
1016 * released. If it's released, *@nonblocking will be set to 0.
1017 */
1018long populate_vma_page_range(struct vm_area_struct *vma,
1019 unsigned long start, unsigned long end, int *nonblocking)
1020{
1021 struct mm_struct *mm = vma->vm_mm;
1022 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1023 int gup_flags;
1024
1025 VM_BUG_ON(start & ~PAGE_MASK);
1026 VM_BUG_ON(end & ~PAGE_MASK);
1027 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1028 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1029 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1030
de60f5f1
EM
1031 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1032 if (vma->vm_flags & VM_LOCKONFAULT)
1033 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1034 /*
1035 * We want to touch writable mappings with a write fault in order
1036 * to break COW, except for shared mappings because these don't COW
1037 * and we would not want to dirty them for nothing.
1038 */
1039 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1040 gup_flags |= FOLL_WRITE;
1041
1042 /*
1043 * We want mlock to succeed for regions that have any permissions
1044 * other than PROT_NONE.
1045 */
1046 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1047 gup_flags |= FOLL_FORCE;
1048
1049 /*
1050 * We made sure addr is within a VMA, so the following will
1051 * not result in a stack expansion that recurses back here.
1052 */
1053 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1054 NULL, NULL, nonblocking);
1055}
1056
1057/*
1058 * __mm_populate - populate and/or mlock pages within a range of address space.
1059 *
1060 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1061 * flags. VMAs must be already marked with the desired vm_flags, and
1062 * mmap_sem must not be held.
1063 */
1064int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1065{
1066 struct mm_struct *mm = current->mm;
1067 unsigned long end, nstart, nend;
1068 struct vm_area_struct *vma = NULL;
1069 int locked = 0;
1070 long ret = 0;
1071
1072 VM_BUG_ON(start & ~PAGE_MASK);
1073 VM_BUG_ON(len != PAGE_ALIGN(len));
1074 end = start + len;
1075
1076 for (nstart = start; nstart < end; nstart = nend) {
1077 /*
1078 * We want to fault in pages for [nstart; end) address range.
1079 * Find first corresponding VMA.
1080 */
1081 if (!locked) {
1082 locked = 1;
1083 down_read(&mm->mmap_sem);
1084 vma = find_vma(mm, nstart);
1085 } else if (nstart >= vma->vm_end)
1086 vma = vma->vm_next;
1087 if (!vma || vma->vm_start >= end)
1088 break;
1089 /*
1090 * Set [nstart; nend) to intersection of desired address
1091 * range with the first VMA. Also, skip undesirable VMA types.
1092 */
1093 nend = min(end, vma->vm_end);
1094 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1095 continue;
1096 if (nstart < vma->vm_start)
1097 nstart = vma->vm_start;
1098 /*
1099 * Now fault in a range of pages. populate_vma_page_range()
1100 * double checks the vma flags, so that it won't mlock pages
1101 * if the vma was already munlocked.
1102 */
1103 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1104 if (ret < 0) {
1105 if (ignore_errors) {
1106 ret = 0;
1107 continue; /* continue at next VMA */
1108 }
1109 break;
1110 }
1111 nend = nstart + ret * PAGE_SIZE;
1112 ret = 0;
1113 }
1114 if (locked)
1115 up_read(&mm->mmap_sem);
1116 return ret; /* 0 or negative error code */
1117}
1118
4bbd4c77
KS
1119/**
1120 * get_dump_page() - pin user page in memory while writing it to core dump
1121 * @addr: user address
1122 *
1123 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1124 * to be freed afterwards by put_page().
4bbd4c77
KS
1125 *
1126 * Returns NULL on any kind of failure - a hole must then be inserted into
1127 * the corefile, to preserve alignment with its headers; and also returns
1128 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1129 * allowing a hole to be left in the corefile to save diskspace.
1130 *
1131 * Called without mmap_sem, but after all other threads have been killed.
1132 */
1133#ifdef CONFIG_ELF_CORE
1134struct page *get_dump_page(unsigned long addr)
1135{
1136 struct vm_area_struct *vma;
1137 struct page *page;
1138
1139 if (__get_user_pages(current, current->mm, addr, 1,
1140 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1141 NULL) < 1)
1142 return NULL;
1143 flush_cache_page(vma, addr, page_to_pfn(page));
1144 return page;
1145}
1146#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1147
1148/*
1149 * Generic RCU Fast GUP
1150 *
1151 * get_user_pages_fast attempts to pin user pages by walking the page
1152 * tables directly and avoids taking locks. Thus the walker needs to be
1153 * protected from page table pages being freed from under it, and should
1154 * block any THP splits.
1155 *
1156 * One way to achieve this is to have the walker disable interrupts, and
1157 * rely on IPIs from the TLB flushing code blocking before the page table
1158 * pages are freed. This is unsuitable for architectures that do not need
1159 * to broadcast an IPI when invalidating TLBs.
1160 *
1161 * Another way to achieve this is to batch up page table containing pages
1162 * belonging to more than one mm_user, then rcu_sched a callback to free those
1163 * pages. Disabling interrupts will allow the fast_gup walker to both block
1164 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1165 * (which is a relatively rare event). The code below adopts this strategy.
1166 *
1167 * Before activating this code, please be aware that the following assumptions
1168 * are currently made:
1169 *
1170 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1171 * pages containing page tables.
1172 *
2667f50e
SC
1173 * *) ptes can be read atomically by the architecture.
1174 *
1175 * *) access_ok is sufficient to validate userspace address ranges.
1176 *
1177 * The last two assumptions can be relaxed by the addition of helper functions.
1178 *
1179 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1180 */
1181#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1182
1183#ifdef __HAVE_ARCH_PTE_SPECIAL
1184static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1185 int write, struct page **pages, int *nr)
1186{
1187 pte_t *ptep, *ptem;
1188 int ret = 0;
1189
1190 ptem = ptep = pte_offset_map(&pmd, addr);
1191 do {
1192 /*
1193 * In the line below we are assuming that the pte can be read
1194 * atomically. If this is not the case for your architecture,
1195 * please wrap this in a helper function!
1196 *
1197 * for an example see gup_get_pte in arch/x86/mm/gup.c
1198 */
9d8c47e4 1199 pte_t pte = READ_ONCE(*ptep);
7aef4172 1200 struct page *head, *page;
2667f50e
SC
1201
1202 /*
1203 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1204 * path using the pte_protnone check.
2667f50e
SC
1205 */
1206 if (!pte_present(pte) || pte_special(pte) ||
8a0516ed 1207 pte_protnone(pte) || (write && !pte_write(pte)))
2667f50e
SC
1208 goto pte_unmap;
1209
33a709b2
DH
1210 if (!arch_pte_access_permitted(pte, write))
1211 goto pte_unmap;
1212
2667f50e
SC
1213 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1214 page = pte_page(pte);
7aef4172 1215 head = compound_head(page);
2667f50e 1216
7aef4172 1217 if (!page_cache_get_speculative(head))
2667f50e
SC
1218 goto pte_unmap;
1219
1220 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1221 put_page(head);
2667f50e
SC
1222 goto pte_unmap;
1223 }
1224
7aef4172 1225 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2667f50e
SC
1226 pages[*nr] = page;
1227 (*nr)++;
1228
1229 } while (ptep++, addr += PAGE_SIZE, addr != end);
1230
1231 ret = 1;
1232
1233pte_unmap:
1234 pte_unmap(ptem);
1235 return ret;
1236}
1237#else
1238
1239/*
1240 * If we can't determine whether or not a pte is special, then fail immediately
1241 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1242 * to be special.
1243 *
1244 * For a futex to be placed on a THP tail page, get_futex_key requires a
1245 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1246 * useful to have gup_huge_pmd even if we can't operate on ptes.
1247 */
1248static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1249 int write, struct page **pages, int *nr)
1250{
1251 return 0;
1252}
1253#endif /* __HAVE_ARCH_PTE_SPECIAL */
1254
1255static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1256 unsigned long end, int write, struct page **pages, int *nr)
1257{
ddc58f27 1258 struct page *head, *page;
2667f50e
SC
1259 int refs;
1260
1261 if (write && !pmd_write(orig))
1262 return 0;
1263
1264 refs = 0;
1265 head = pmd_page(orig);
1266 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1267 do {
1268 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1269 pages[*nr] = page;
1270 (*nr)++;
1271 page++;
1272 refs++;
1273 } while (addr += PAGE_SIZE, addr != end);
1274
1275 if (!page_cache_add_speculative(head, refs)) {
1276 *nr -= refs;
1277 return 0;
1278 }
1279
1280 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1281 *nr -= refs;
1282 while (refs--)
1283 put_page(head);
1284 return 0;
1285 }
1286
2667f50e
SC
1287 return 1;
1288}
1289
1290static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1291 unsigned long end, int write, struct page **pages, int *nr)
1292{
ddc58f27 1293 struct page *head, *page;
2667f50e
SC
1294 int refs;
1295
1296 if (write && !pud_write(orig))
1297 return 0;
1298
1299 refs = 0;
1300 head = pud_page(orig);
1301 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1302 do {
1303 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1304 pages[*nr] = page;
1305 (*nr)++;
1306 page++;
1307 refs++;
1308 } while (addr += PAGE_SIZE, addr != end);
1309
1310 if (!page_cache_add_speculative(head, refs)) {
1311 *nr -= refs;
1312 return 0;
1313 }
1314
1315 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1316 *nr -= refs;
1317 while (refs--)
1318 put_page(head);
1319 return 0;
1320 }
1321
2667f50e
SC
1322 return 1;
1323}
1324
f30c59e9
AK
1325static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1326 unsigned long end, int write,
1327 struct page **pages, int *nr)
1328{
1329 int refs;
ddc58f27 1330 struct page *head, *page;
f30c59e9
AK
1331
1332 if (write && !pgd_write(orig))
1333 return 0;
1334
1335 refs = 0;
1336 head = pgd_page(orig);
1337 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1338 do {
1339 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1340 pages[*nr] = page;
1341 (*nr)++;
1342 page++;
1343 refs++;
1344 } while (addr += PAGE_SIZE, addr != end);
1345
1346 if (!page_cache_add_speculative(head, refs)) {
1347 *nr -= refs;
1348 return 0;
1349 }
1350
1351 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1352 *nr -= refs;
1353 while (refs--)
1354 put_page(head);
1355 return 0;
1356 }
1357
f30c59e9
AK
1358 return 1;
1359}
1360
2667f50e
SC
1361static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1362 int write, struct page **pages, int *nr)
1363{
1364 unsigned long next;
1365 pmd_t *pmdp;
1366
1367 pmdp = pmd_offset(&pud, addr);
1368 do {
38c5ce93 1369 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1370
1371 next = pmd_addr_end(addr, end);
4b471e88 1372 if (pmd_none(pmd))
2667f50e
SC
1373 return 0;
1374
1375 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1376 /*
1377 * NUMA hinting faults need to be handled in the GUP
1378 * slowpath for accounting purposes and so that they
1379 * can be serialised against THP migration.
1380 */
8a0516ed 1381 if (pmd_protnone(pmd))
2667f50e
SC
1382 return 0;
1383
1384 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1385 pages, nr))
1386 return 0;
1387
f30c59e9
AK
1388 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1389 /*
1390 * architecture have different format for hugetlbfs
1391 * pmd format and THP pmd format
1392 */
1393 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1394 PMD_SHIFT, next, write, pages, nr))
1395 return 0;
2667f50e
SC
1396 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1397 return 0;
1398 } while (pmdp++, addr = next, addr != end);
1399
1400 return 1;
1401}
1402
f30c59e9
AK
1403static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1404 int write, struct page **pages, int *nr)
2667f50e
SC
1405{
1406 unsigned long next;
1407 pud_t *pudp;
1408
f30c59e9 1409 pudp = pud_offset(&pgd, addr);
2667f50e 1410 do {
e37c6982 1411 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1412
1413 next = pud_addr_end(addr, end);
1414 if (pud_none(pud))
1415 return 0;
f30c59e9 1416 if (unlikely(pud_huge(pud))) {
2667f50e 1417 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1418 pages, nr))
1419 return 0;
1420 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1421 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1422 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1423 return 0;
1424 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1425 return 0;
1426 } while (pudp++, addr = next, addr != end);
1427
1428 return 1;
1429}
1430
1431/*
1432 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1433 * the regular GUP. It will only return non-negative values.
1434 */
1435int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1436 struct page **pages)
1437{
1438 struct mm_struct *mm = current->mm;
1439 unsigned long addr, len, end;
1440 unsigned long next, flags;
1441 pgd_t *pgdp;
1442 int nr = 0;
1443
1444 start &= PAGE_MASK;
1445 addr = start;
1446 len = (unsigned long) nr_pages << PAGE_SHIFT;
1447 end = start + len;
1448
1449 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1450 start, len)))
1451 return 0;
1452
1453 /*
1454 * Disable interrupts. We use the nested form as we can already have
1455 * interrupts disabled by get_futex_key.
1456 *
1457 * With interrupts disabled, we block page table pages from being
1458 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1459 * for more details.
1460 *
1461 * We do not adopt an rcu_read_lock(.) here as we also want to
1462 * block IPIs that come from THPs splitting.
1463 */
1464
1465 local_irq_save(flags);
1466 pgdp = pgd_offset(mm, addr);
1467 do {
9d8c47e4 1468 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1469
2667f50e 1470 next = pgd_addr_end(addr, end);
f30c59e9 1471 if (pgd_none(pgd))
2667f50e 1472 break;
f30c59e9
AK
1473 if (unlikely(pgd_huge(pgd))) {
1474 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1475 pages, &nr))
1476 break;
1477 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1478 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1479 PGDIR_SHIFT, next, write, pages, &nr))
1480 break;
1481 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1482 break;
1483 } while (pgdp++, addr = next, addr != end);
1484 local_irq_restore(flags);
1485
1486 return nr;
1487}
1488
1489/**
1490 * get_user_pages_fast() - pin user pages in memory
1491 * @start: starting user address
1492 * @nr_pages: number of pages from start to pin
1493 * @write: whether pages will be written to
1494 * @pages: array that receives pointers to the pages pinned.
1495 * Should be at least nr_pages long.
1496 *
1497 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1498 * If not successful, it will fall back to taking the lock and
1499 * calling get_user_pages().
1500 *
1501 * Returns number of pages pinned. This may be fewer than the number
1502 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1503 * were pinned, returns -errno.
1504 */
1505int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1506 struct page **pages)
1507{
2667f50e
SC
1508 int nr, ret;
1509
1510 start &= PAGE_MASK;
1511 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1512 ret = nr;
1513
1514 if (nr < nr_pages) {
1515 /* Try to get the remaining pages with get_user_pages */
1516 start += nr << PAGE_SHIFT;
1517 pages += nr;
1518
c164154f
LS
1519 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1520 write ? FOLL_WRITE : 0);
2667f50e
SC
1521
1522 /* Have to be a bit careful with return values */
1523 if (nr > 0) {
1524 if (ret < 0)
1525 ret = nr;
1526 else
1527 ret += nr;
1528 }
1529 }
1530
1531 return ret;
1532}
1533
1534#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */