]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/gup.c
mm/hugetlb: move default definition of hugepd_t earlier in the header
[mirror_ubuntu-bionic-kernel.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
174cd4b1 13#include <linux/sched/signal.h>
2667f50e 14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
69e68b4f
KS
23static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
4bbd4c77 25{
69e68b4f
KS
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37}
4bbd4c77 38
1027e443
KS
39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41{
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61}
62
19be0eaf
LT
63/*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68{
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71}
72
69e68b4f
KS
73static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75{
76 struct mm_struct *mm = vma->vm_mm;
3565fce3 77 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
4bbd4c77 81
69e68b4f 82retry:
4bbd4c77 83 if (unlikely(pmd_bad(*pmd)))
69e68b4f 84 return no_page_table(vma, flags);
4bbd4c77
KS
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
0661a336 97 if (pte_none(pte))
4bbd4c77
KS
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
69e68b4f 104 goto retry;
4bbd4c77 105 }
8a0516ed 106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 107 goto no_page;
19be0eaf 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
4bbd4c77
KS
112
113 page = vm_normal_page(vma, address, pte);
3565fce3
DW
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
1027e443
KS
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
4bbd4c77
KS
140 }
141
6742d293
KS
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
3565fce3 155 if (flags & FOLL_GET) {
ddc58f27 156 get_page(page);
3565fce3
DW
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
4bbd4c77
KS
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
de60f5f1 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
4bbd4c77
KS
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
1027e443 201out:
4bbd4c77 202 pte_unmap_unlock(ptep, ptl);
4bbd4c77 203 return page;
4bbd4c77
KS
204no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
69e68b4f
KS
207 return NULL;
208 return no_page_table(vma, flags);
209}
210
080dbb61
AK
211static struct page *follow_pmd_mask(struct vm_area_struct *vma,
212 unsigned long address, pud_t *pudp,
213 unsigned int flags, unsigned int *page_mask)
69e68b4f 214{
69e68b4f
KS
215 pmd_t *pmd;
216 spinlock_t *ptl;
217 struct page *page;
218 struct mm_struct *mm = vma->vm_mm;
219
080dbb61 220 pmd = pmd_offset(pudp, address);
69e68b4f
KS
221 if (pmd_none(*pmd))
222 return no_page_table(vma, flags);
223 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
224 page = follow_huge_pmd(mm, address, pmd, flags);
225 if (page)
226 return page;
227 return no_page_table(vma, flags);
69e68b4f 228 }
3565fce3
DW
229 if (pmd_devmap(*pmd)) {
230 ptl = pmd_lock(mm, pmd);
231 page = follow_devmap_pmd(vma, address, pmd, flags);
232 spin_unlock(ptl);
233 if (page)
234 return page;
235 }
6742d293
KS
236 if (likely(!pmd_trans_huge(*pmd)))
237 return follow_page_pte(vma, address, pmd, flags);
238
db08f203
AK
239 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
240 return no_page_table(vma, flags);
241
6742d293
KS
242 ptl = pmd_lock(mm, pmd);
243 if (unlikely(!pmd_trans_huge(*pmd))) {
244 spin_unlock(ptl);
245 return follow_page_pte(vma, address, pmd, flags);
246 }
6742d293
KS
247 if (flags & FOLL_SPLIT) {
248 int ret;
249 page = pmd_page(*pmd);
250 if (is_huge_zero_page(page)) {
251 spin_unlock(ptl);
252 ret = 0;
78ddc534 253 split_huge_pmd(vma, pmd, address);
337d9abf
NH
254 if (pmd_trans_unstable(pmd))
255 ret = -EBUSY;
6742d293
KS
256 } else {
257 get_page(page);
69e68b4f 258 spin_unlock(ptl);
6742d293
KS
259 lock_page(page);
260 ret = split_huge_page(page);
261 unlock_page(page);
262 put_page(page);
baa355fd
KS
263 if (pmd_none(*pmd))
264 return no_page_table(vma, flags);
6742d293
KS
265 }
266
267 return ret ? ERR_PTR(ret) :
268 follow_page_pte(vma, address, pmd, flags);
69e68b4f 269 }
6742d293
KS
270 page = follow_trans_huge_pmd(vma, address, pmd, flags);
271 spin_unlock(ptl);
272 *page_mask = HPAGE_PMD_NR - 1;
273 return page;
4bbd4c77
KS
274}
275
080dbb61
AK
276
277static struct page *follow_pud_mask(struct vm_area_struct *vma,
278 unsigned long address, p4d_t *p4dp,
279 unsigned int flags, unsigned int *page_mask)
280{
281 pud_t *pud;
282 spinlock_t *ptl;
283 struct page *page;
284 struct mm_struct *mm = vma->vm_mm;
285
286 pud = pud_offset(p4dp, address);
287 if (pud_none(*pud))
288 return no_page_table(vma, flags);
289 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
290 page = follow_huge_pud(mm, address, pud, flags);
291 if (page)
292 return page;
293 return no_page_table(vma, flags);
294 }
295 if (pud_devmap(*pud)) {
296 ptl = pud_lock(mm, pud);
297 page = follow_devmap_pud(vma, address, pud, flags);
298 spin_unlock(ptl);
299 if (page)
300 return page;
301 }
302 if (unlikely(pud_bad(*pud)))
303 return no_page_table(vma, flags);
304
305 return follow_pmd_mask(vma, address, pud, flags, page_mask);
306}
307
308
309static struct page *follow_p4d_mask(struct vm_area_struct *vma,
310 unsigned long address, pgd_t *pgdp,
311 unsigned int flags, unsigned int *page_mask)
312{
313 p4d_t *p4d;
314
315 p4d = p4d_offset(pgdp, address);
316 if (p4d_none(*p4d))
317 return no_page_table(vma, flags);
318 BUILD_BUG_ON(p4d_huge(*p4d));
319 if (unlikely(p4d_bad(*p4d)))
320 return no_page_table(vma, flags);
321
322 return follow_pud_mask(vma, address, p4d, flags, page_mask);
323}
324
325/**
326 * follow_page_mask - look up a page descriptor from a user-virtual address
327 * @vma: vm_area_struct mapping @address
328 * @address: virtual address to look up
329 * @flags: flags modifying lookup behaviour
330 * @page_mask: on output, *page_mask is set according to the size of the page
331 *
332 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
333 *
334 * Returns the mapped (struct page *), %NULL if no mapping exists, or
335 * an error pointer if there is a mapping to something not represented
336 * by a page descriptor (see also vm_normal_page()).
337 */
338struct page *follow_page_mask(struct vm_area_struct *vma,
339 unsigned long address, unsigned int flags,
340 unsigned int *page_mask)
341{
342 pgd_t *pgd;
343 struct page *page;
344 struct mm_struct *mm = vma->vm_mm;
345
346 *page_mask = 0;
347
348 /* make this handle hugepd */
349 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
350 if (!IS_ERR(page)) {
351 BUG_ON(flags & FOLL_GET);
352 return page;
353 }
354
355 pgd = pgd_offset(mm, address);
356
357 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
358 return no_page_table(vma, flags);
359
faaa5b62
AK
360 if (pgd_huge(*pgd)) {
361 page = follow_huge_pgd(mm, address, pgd, flags);
362 if (page)
363 return page;
364 return no_page_table(vma, flags);
365 }
366
080dbb61
AK
367 return follow_p4d_mask(vma, address, pgd, flags, page_mask);
368}
369
f2b495ca
KS
370static int get_gate_page(struct mm_struct *mm, unsigned long address,
371 unsigned int gup_flags, struct vm_area_struct **vma,
372 struct page **page)
373{
374 pgd_t *pgd;
c2febafc 375 p4d_t *p4d;
f2b495ca
KS
376 pud_t *pud;
377 pmd_t *pmd;
378 pte_t *pte;
379 int ret = -EFAULT;
380
381 /* user gate pages are read-only */
382 if (gup_flags & FOLL_WRITE)
383 return -EFAULT;
384 if (address > TASK_SIZE)
385 pgd = pgd_offset_k(address);
386 else
387 pgd = pgd_offset_gate(mm, address);
388 BUG_ON(pgd_none(*pgd));
c2febafc
KS
389 p4d = p4d_offset(pgd, address);
390 BUG_ON(p4d_none(*p4d));
391 pud = pud_offset(p4d, address);
f2b495ca
KS
392 BUG_ON(pud_none(*pud));
393 pmd = pmd_offset(pud, address);
394 if (pmd_none(*pmd))
395 return -EFAULT;
396 VM_BUG_ON(pmd_trans_huge(*pmd));
397 pte = pte_offset_map(pmd, address);
398 if (pte_none(*pte))
399 goto unmap;
400 *vma = get_gate_vma(mm);
401 if (!page)
402 goto out;
403 *page = vm_normal_page(*vma, address, *pte);
404 if (!*page) {
405 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
406 goto unmap;
407 *page = pte_page(*pte);
408 }
409 get_page(*page);
410out:
411 ret = 0;
412unmap:
413 pte_unmap(pte);
414 return ret;
415}
416
9a95f3cf
PC
417/*
418 * mmap_sem must be held on entry. If @nonblocking != NULL and
419 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
420 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
421 */
16744483
KS
422static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
423 unsigned long address, unsigned int *flags, int *nonblocking)
424{
16744483
KS
425 unsigned int fault_flags = 0;
426 int ret;
427
de60f5f1
EM
428 /* mlock all present pages, but do not fault in new pages */
429 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
430 return -ENOENT;
16744483
KS
431 if (*flags & FOLL_WRITE)
432 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
433 if (*flags & FOLL_REMOTE)
434 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
435 if (nonblocking)
436 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
437 if (*flags & FOLL_NOWAIT)
438 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
439 if (*flags & FOLL_TRIED) {
440 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
441 fault_flags |= FAULT_FLAG_TRIED;
442 }
16744483 443
dcddffd4 444 ret = handle_mm_fault(vma, address, fault_flags);
16744483 445 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
446 int err = vm_fault_to_errno(ret, *flags);
447
448 if (err)
449 return err;
16744483
KS
450 BUG();
451 }
452
453 if (tsk) {
454 if (ret & VM_FAULT_MAJOR)
455 tsk->maj_flt++;
456 else
457 tsk->min_flt++;
458 }
459
460 if (ret & VM_FAULT_RETRY) {
461 if (nonblocking)
462 *nonblocking = 0;
463 return -EBUSY;
464 }
465
466 /*
467 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
468 * necessary, even if maybe_mkwrite decided not to set pte_write. We
469 * can thus safely do subsequent page lookups as if they were reads.
470 * But only do so when looping for pte_write is futile: in some cases
471 * userspace may also be wanting to write to the gotten user page,
472 * which a read fault here might prevent (a readonly page might get
473 * reCOWed by userspace write).
474 */
475 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
19be0eaf 476 *flags |= FOLL_COW;
16744483
KS
477 return 0;
478}
479
fa5bb209
KS
480static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
481{
482 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
483 int write = (gup_flags & FOLL_WRITE);
484 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
485
486 if (vm_flags & (VM_IO | VM_PFNMAP))
487 return -EFAULT;
488
1b2ee126 489 if (write) {
fa5bb209
KS
490 if (!(vm_flags & VM_WRITE)) {
491 if (!(gup_flags & FOLL_FORCE))
492 return -EFAULT;
493 /*
494 * We used to let the write,force case do COW in a
495 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
496 * set a breakpoint in a read-only mapping of an
497 * executable, without corrupting the file (yet only
498 * when that file had been opened for writing!).
499 * Anon pages in shared mappings are surprising: now
500 * just reject it.
501 */
46435364 502 if (!is_cow_mapping(vm_flags))
fa5bb209 503 return -EFAULT;
fa5bb209
KS
504 }
505 } else if (!(vm_flags & VM_READ)) {
506 if (!(gup_flags & FOLL_FORCE))
507 return -EFAULT;
508 /*
509 * Is there actually any vma we can reach here which does not
510 * have VM_MAYREAD set?
511 */
512 if (!(vm_flags & VM_MAYREAD))
513 return -EFAULT;
514 }
d61172b4
DH
515 /*
516 * gups are always data accesses, not instruction
517 * fetches, so execute=false here
518 */
519 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 520 return -EFAULT;
fa5bb209
KS
521 return 0;
522}
523
4bbd4c77
KS
524/**
525 * __get_user_pages() - pin user pages in memory
526 * @tsk: task_struct of target task
527 * @mm: mm_struct of target mm
528 * @start: starting user address
529 * @nr_pages: number of pages from start to pin
530 * @gup_flags: flags modifying pin behaviour
531 * @pages: array that receives pointers to the pages pinned.
532 * Should be at least nr_pages long. Or NULL, if caller
533 * only intends to ensure the pages are faulted in.
534 * @vmas: array of pointers to vmas corresponding to each page.
535 * Or NULL if the caller does not require them.
536 * @nonblocking: whether waiting for disk IO or mmap_sem contention
537 *
538 * Returns number of pages pinned. This may be fewer than the number
539 * requested. If nr_pages is 0 or negative, returns 0. If no pages
540 * were pinned, returns -errno. Each page returned must be released
541 * with a put_page() call when it is finished with. vmas will only
542 * remain valid while mmap_sem is held.
543 *
9a95f3cf 544 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
545 *
546 * __get_user_pages walks a process's page tables and takes a reference to
547 * each struct page that each user address corresponds to at a given
548 * instant. That is, it takes the page that would be accessed if a user
549 * thread accesses the given user virtual address at that instant.
550 *
551 * This does not guarantee that the page exists in the user mappings when
552 * __get_user_pages returns, and there may even be a completely different
553 * page there in some cases (eg. if mmapped pagecache has been invalidated
554 * and subsequently re faulted). However it does guarantee that the page
555 * won't be freed completely. And mostly callers simply care that the page
556 * contains data that was valid *at some point in time*. Typically, an IO
557 * or similar operation cannot guarantee anything stronger anyway because
558 * locks can't be held over the syscall boundary.
559 *
560 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
561 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
562 * appropriate) must be called after the page is finished with, and
563 * before put_page is called.
564 *
565 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
566 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
567 * *@nonblocking will be set to 0. Further, if @gup_flags does not
568 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
569 * this case.
570 *
571 * A caller using such a combination of @nonblocking and @gup_flags
572 * must therefore hold the mmap_sem for reading only, and recognize
573 * when it's been released. Otherwise, it must be held for either
574 * reading or writing and will not be released.
4bbd4c77
KS
575 *
576 * In most cases, get_user_pages or get_user_pages_fast should be used
577 * instead of __get_user_pages. __get_user_pages should be used only if
578 * you need some special @gup_flags.
579 */
0d731759 580static long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
4bbd4c77
KS
581 unsigned long start, unsigned long nr_pages,
582 unsigned int gup_flags, struct page **pages,
583 struct vm_area_struct **vmas, int *nonblocking)
584{
fa5bb209 585 long i = 0;
4bbd4c77 586 unsigned int page_mask;
fa5bb209 587 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
588
589 if (!nr_pages)
590 return 0;
591
592 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
593
594 /*
595 * If FOLL_FORCE is set then do not force a full fault as the hinting
596 * fault information is unrelated to the reference behaviour of a task
597 * using the address space
598 */
599 if (!(gup_flags & FOLL_FORCE))
600 gup_flags |= FOLL_NUMA;
601
4bbd4c77 602 do {
fa5bb209
KS
603 struct page *page;
604 unsigned int foll_flags = gup_flags;
605 unsigned int page_increm;
606
607 /* first iteration or cross vma bound */
608 if (!vma || start >= vma->vm_end) {
609 vma = find_extend_vma(mm, start);
610 if (!vma && in_gate_area(mm, start)) {
611 int ret;
612 ret = get_gate_page(mm, start & PAGE_MASK,
613 gup_flags, &vma,
614 pages ? &pages[i] : NULL);
615 if (ret)
616 return i ? : ret;
617 page_mask = 0;
618 goto next_page;
619 }
4bbd4c77 620
fa5bb209
KS
621 if (!vma || check_vma_flags(vma, gup_flags))
622 return i ? : -EFAULT;
623 if (is_vm_hugetlb_page(vma)) {
624 i = follow_hugetlb_page(mm, vma, pages, vmas,
625 &start, &nr_pages, i,
87ffc118 626 gup_flags, nonblocking);
fa5bb209 627 continue;
4bbd4c77 628 }
fa5bb209
KS
629 }
630retry:
631 /*
632 * If we have a pending SIGKILL, don't keep faulting pages and
633 * potentially allocating memory.
634 */
635 if (unlikely(fatal_signal_pending(current)))
636 return i ? i : -ERESTARTSYS;
637 cond_resched();
638 page = follow_page_mask(vma, start, foll_flags, &page_mask);
639 if (!page) {
640 int ret;
641 ret = faultin_page(tsk, vma, start, &foll_flags,
642 nonblocking);
643 switch (ret) {
644 case 0:
645 goto retry;
646 case -EFAULT:
647 case -ENOMEM:
648 case -EHWPOISON:
649 return i ? i : ret;
650 case -EBUSY:
651 return i;
652 case -ENOENT:
653 goto next_page;
4bbd4c77 654 }
fa5bb209 655 BUG();
1027e443
KS
656 } else if (PTR_ERR(page) == -EEXIST) {
657 /*
658 * Proper page table entry exists, but no corresponding
659 * struct page.
660 */
661 goto next_page;
662 } else if (IS_ERR(page)) {
fa5bb209 663 return i ? i : PTR_ERR(page);
1027e443 664 }
fa5bb209
KS
665 if (pages) {
666 pages[i] = page;
667 flush_anon_page(vma, page, start);
668 flush_dcache_page(page);
669 page_mask = 0;
4bbd4c77 670 }
4bbd4c77 671next_page:
fa5bb209
KS
672 if (vmas) {
673 vmas[i] = vma;
674 page_mask = 0;
675 }
676 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
677 if (page_increm > nr_pages)
678 page_increm = nr_pages;
679 i += page_increm;
680 start += page_increm * PAGE_SIZE;
681 nr_pages -= page_increm;
4bbd4c77
KS
682 } while (nr_pages);
683 return i;
4bbd4c77 684}
4bbd4c77 685
771ab430
TK
686static bool vma_permits_fault(struct vm_area_struct *vma,
687 unsigned int fault_flags)
d4925e00 688{
1b2ee126
DH
689 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
690 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 691 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
692
693 if (!(vm_flags & vma->vm_flags))
694 return false;
695
33a709b2
DH
696 /*
697 * The architecture might have a hardware protection
1b2ee126 698 * mechanism other than read/write that can deny access.
d61172b4
DH
699 *
700 * gup always represents data access, not instruction
701 * fetches, so execute=false here:
33a709b2 702 */
d61172b4 703 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
704 return false;
705
d4925e00
DH
706 return true;
707}
708
4bbd4c77
KS
709/*
710 * fixup_user_fault() - manually resolve a user page fault
711 * @tsk: the task_struct to use for page fault accounting, or
712 * NULL if faults are not to be recorded.
713 * @mm: mm_struct of target mm
714 * @address: user address
715 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
716 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
717 * does not allow retry
4bbd4c77
KS
718 *
719 * This is meant to be called in the specific scenario where for locking reasons
720 * we try to access user memory in atomic context (within a pagefault_disable()
721 * section), this returns -EFAULT, and we want to resolve the user fault before
722 * trying again.
723 *
724 * Typically this is meant to be used by the futex code.
725 *
726 * The main difference with get_user_pages() is that this function will
727 * unconditionally call handle_mm_fault() which will in turn perform all the
728 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 729 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
730 *
731 * This is important for some architectures where those bits also gate the
732 * access permission to the page because they are maintained in software. On
733 * such architectures, gup() will not be enough to make a subsequent access
734 * succeed.
735 *
4a9e1cda
DD
736 * This function will not return with an unlocked mmap_sem. So it has not the
737 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
738 */
739int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
740 unsigned long address, unsigned int fault_flags,
741 bool *unlocked)
4bbd4c77
KS
742{
743 struct vm_area_struct *vma;
4a9e1cda
DD
744 int ret, major = 0;
745
746 if (unlocked)
747 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 748
4a9e1cda 749retry:
4bbd4c77
KS
750 vma = find_extend_vma(mm, address);
751 if (!vma || address < vma->vm_start)
752 return -EFAULT;
753
d4925e00 754 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
755 return -EFAULT;
756
dcddffd4 757 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 758 major |= ret & VM_FAULT_MAJOR;
4bbd4c77 759 if (ret & VM_FAULT_ERROR) {
9a291a7c
JM
760 int err = vm_fault_to_errno(ret, 0);
761
762 if (err)
763 return err;
4bbd4c77
KS
764 BUG();
765 }
4a9e1cda
DD
766
767 if (ret & VM_FAULT_RETRY) {
768 down_read(&mm->mmap_sem);
769 if (!(fault_flags & FAULT_FLAG_TRIED)) {
770 *unlocked = true;
771 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
772 fault_flags |= FAULT_FLAG_TRIED;
773 goto retry;
774 }
775 }
776
4bbd4c77 777 if (tsk) {
4a9e1cda 778 if (major)
4bbd4c77
KS
779 tsk->maj_flt++;
780 else
781 tsk->min_flt++;
782 }
783 return 0;
784}
add6a0cd 785EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 786
f0818f47
AA
787static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
788 struct mm_struct *mm,
789 unsigned long start,
790 unsigned long nr_pages,
f0818f47
AA
791 struct page **pages,
792 struct vm_area_struct **vmas,
0fd71a56
AA
793 int *locked, bool notify_drop,
794 unsigned int flags)
f0818f47 795{
f0818f47
AA
796 long ret, pages_done;
797 bool lock_dropped;
798
799 if (locked) {
800 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
801 BUG_ON(vmas);
802 /* check caller initialized locked */
803 BUG_ON(*locked != 1);
804 }
805
806 if (pages)
807 flags |= FOLL_GET;
f0818f47
AA
808
809 pages_done = 0;
810 lock_dropped = false;
811 for (;;) {
812 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
813 vmas, locked);
814 if (!locked)
815 /* VM_FAULT_RETRY couldn't trigger, bypass */
816 return ret;
817
818 /* VM_FAULT_RETRY cannot return errors */
819 if (!*locked) {
820 BUG_ON(ret < 0);
821 BUG_ON(ret >= nr_pages);
822 }
823
824 if (!pages)
825 /* If it's a prefault don't insist harder */
826 return ret;
827
828 if (ret > 0) {
829 nr_pages -= ret;
830 pages_done += ret;
831 if (!nr_pages)
832 break;
833 }
834 if (*locked) {
835 /* VM_FAULT_RETRY didn't trigger */
836 if (!pages_done)
837 pages_done = ret;
838 break;
839 }
840 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
841 pages += ret;
842 start += ret << PAGE_SHIFT;
843
844 /*
845 * Repeat on the address that fired VM_FAULT_RETRY
846 * without FAULT_FLAG_ALLOW_RETRY but with
847 * FAULT_FLAG_TRIED.
848 */
849 *locked = 1;
850 lock_dropped = true;
851 down_read(&mm->mmap_sem);
852 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
853 pages, NULL, NULL);
854 if (ret != 1) {
855 BUG_ON(ret > 1);
856 if (!pages_done)
857 pages_done = ret;
858 break;
859 }
860 nr_pages--;
861 pages_done++;
862 if (!nr_pages)
863 break;
864 pages++;
865 start += PAGE_SIZE;
866 }
867 if (notify_drop && lock_dropped && *locked) {
868 /*
869 * We must let the caller know we temporarily dropped the lock
870 * and so the critical section protected by it was lost.
871 */
872 up_read(&mm->mmap_sem);
873 *locked = 0;
874 }
875 return pages_done;
876}
877
878/*
879 * We can leverage the VM_FAULT_RETRY functionality in the page fault
880 * paths better by using either get_user_pages_locked() or
881 * get_user_pages_unlocked().
882 *
883 * get_user_pages_locked() is suitable to replace the form:
884 *
885 * down_read(&mm->mmap_sem);
886 * do_something()
887 * get_user_pages(tsk, mm, ..., pages, NULL);
888 * up_read(&mm->mmap_sem);
889 *
890 * to:
891 *
892 * int locked = 1;
893 * down_read(&mm->mmap_sem);
894 * do_something()
895 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
896 * if (locked)
897 * up_read(&mm->mmap_sem);
898 */
c12d2da5 899long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
3b913179 900 unsigned int gup_flags, struct page **pages,
f0818f47
AA
901 int *locked)
902{
cde70140 903 return __get_user_pages_locked(current, current->mm, start, nr_pages,
3b913179
LS
904 pages, NULL, locked, true,
905 gup_flags | FOLL_TOUCH);
f0818f47 906}
c12d2da5 907EXPORT_SYMBOL(get_user_pages_locked);
f0818f47 908
0fd71a56 909/*
80a79516
LS
910 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows for
911 * tsk, mm to be specified.
0fd71a56
AA
912 *
913 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
80a79516
LS
914 * caller if required (just like with __get_user_pages). "FOLL_GET"
915 * is set implicitly if "pages" is non-NULL.
0fd71a56 916 */
8b7457ef
LS
917static __always_inline long __get_user_pages_unlocked(struct task_struct *tsk,
918 struct mm_struct *mm, unsigned long start,
919 unsigned long nr_pages, struct page **pages,
920 unsigned int gup_flags)
0fd71a56
AA
921{
922 long ret;
923 int locked = 1;
859110d7 924
0fd71a56 925 down_read(&mm->mmap_sem);
859110d7
LS
926 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, pages, NULL,
927 &locked, false, gup_flags);
0fd71a56
AA
928 if (locked)
929 up_read(&mm->mmap_sem);
930 return ret;
931}
0fd71a56 932
f0818f47
AA
933/*
934 * get_user_pages_unlocked() is suitable to replace the form:
935 *
936 * down_read(&mm->mmap_sem);
937 * get_user_pages(tsk, mm, ..., pages, NULL);
938 * up_read(&mm->mmap_sem);
939 *
940 * with:
941 *
942 * get_user_pages_unlocked(tsk, mm, ..., pages);
943 *
944 * It is functionally equivalent to get_user_pages_fast so
80a79516
LS
945 * get_user_pages_fast should be used instead if specific gup_flags
946 * (e.g. FOLL_FORCE) are not required.
f0818f47 947 */
c12d2da5 948long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
c164154f 949 struct page **pages, unsigned int gup_flags)
f0818f47 950{
cde70140 951 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
c164154f 952 pages, gup_flags | FOLL_TOUCH);
f0818f47 953}
c12d2da5 954EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 955
4bbd4c77 956/*
1e987790 957 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
958 * @tsk: the task_struct to use for page fault accounting, or
959 * NULL if faults are not to be recorded.
960 * @mm: mm_struct of target mm
961 * @start: starting user address
962 * @nr_pages: number of pages from start to pin
9beae1ea 963 * @gup_flags: flags modifying lookup behaviour
4bbd4c77
KS
964 * @pages: array that receives pointers to the pages pinned.
965 * Should be at least nr_pages long. Or NULL, if caller
966 * only intends to ensure the pages are faulted in.
967 * @vmas: array of pointers to vmas corresponding to each page.
968 * Or NULL if the caller does not require them.
5b56d49f
LS
969 * @locked: pointer to lock flag indicating whether lock is held and
970 * subsequently whether VM_FAULT_RETRY functionality can be
971 * utilised. Lock must initially be held.
4bbd4c77
KS
972 *
973 * Returns number of pages pinned. This may be fewer than the number
974 * requested. If nr_pages is 0 or negative, returns 0. If no pages
975 * were pinned, returns -errno. Each page returned must be released
976 * with a put_page() call when it is finished with. vmas will only
977 * remain valid while mmap_sem is held.
978 *
979 * Must be called with mmap_sem held for read or write.
980 *
981 * get_user_pages walks a process's page tables and takes a reference to
982 * each struct page that each user address corresponds to at a given
983 * instant. That is, it takes the page that would be accessed if a user
984 * thread accesses the given user virtual address at that instant.
985 *
986 * This does not guarantee that the page exists in the user mappings when
987 * get_user_pages returns, and there may even be a completely different
988 * page there in some cases (eg. if mmapped pagecache has been invalidated
989 * and subsequently re faulted). However it does guarantee that the page
990 * won't be freed completely. And mostly callers simply care that the page
991 * contains data that was valid *at some point in time*. Typically, an IO
992 * or similar operation cannot guarantee anything stronger anyway because
993 * locks can't be held over the syscall boundary.
994 *
9beae1ea
LS
995 * If gup_flags & FOLL_WRITE == 0, the page must not be written to. If the page
996 * is written to, set_page_dirty (or set_page_dirty_lock, as appropriate) must
997 * be called after the page is finished with, and before put_page is called.
4bbd4c77
KS
998 *
999 * get_user_pages is typically used for fewer-copy IO operations, to get a
1000 * handle on the memory by some means other than accesses via the user virtual
1001 * addresses. The pages may be submitted for DMA to devices or accessed via
1002 * their kernel linear mapping (via the kmap APIs). Care should be taken to
1003 * use the correct cache flushing APIs.
1004 *
1005 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
1006 *
1007 * get_user_pages should be phased out in favor of
1008 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
1009 * should use get_user_pages because it cannot pass
1010 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 1011 */
1e987790
DH
1012long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1013 unsigned long start, unsigned long nr_pages,
9beae1ea 1014 unsigned int gup_flags, struct page **pages,
5b56d49f 1015 struct vm_area_struct **vmas, int *locked)
4bbd4c77 1016{
859110d7 1017 return __get_user_pages_locked(tsk, mm, start, nr_pages, pages, vmas,
5b56d49f 1018 locked, true,
9beae1ea 1019 gup_flags | FOLL_TOUCH | FOLL_REMOTE);
1e987790
DH
1020}
1021EXPORT_SYMBOL(get_user_pages_remote);
1022
1023/*
d4edcf0d
DH
1024 * This is the same as get_user_pages_remote(), just with a
1025 * less-flexible calling convention where we assume that the task
5b56d49f
LS
1026 * and mm being operated on are the current task's and don't allow
1027 * passing of a locked parameter. We also obviously don't pass
1028 * FOLL_REMOTE in here.
1e987790 1029 */
c12d2da5 1030long get_user_pages(unsigned long start, unsigned long nr_pages,
768ae309 1031 unsigned int gup_flags, struct page **pages,
1e987790
DH
1032 struct vm_area_struct **vmas)
1033{
cde70140 1034 return __get_user_pages_locked(current, current->mm, start, nr_pages,
768ae309
LS
1035 pages, vmas, NULL, false,
1036 gup_flags | FOLL_TOUCH);
4bbd4c77 1037}
c12d2da5 1038EXPORT_SYMBOL(get_user_pages);
4bbd4c77 1039
acc3c8d1
KS
1040/**
1041 * populate_vma_page_range() - populate a range of pages in the vma.
1042 * @vma: target vma
1043 * @start: start address
1044 * @end: end address
1045 * @nonblocking:
1046 *
1047 * This takes care of mlocking the pages too if VM_LOCKED is set.
1048 *
1049 * return 0 on success, negative error code on error.
1050 *
1051 * vma->vm_mm->mmap_sem must be held.
1052 *
1053 * If @nonblocking is NULL, it may be held for read or write and will
1054 * be unperturbed.
1055 *
1056 * If @nonblocking is non-NULL, it must held for read only and may be
1057 * released. If it's released, *@nonblocking will be set to 0.
1058 */
1059long populate_vma_page_range(struct vm_area_struct *vma,
1060 unsigned long start, unsigned long end, int *nonblocking)
1061{
1062 struct mm_struct *mm = vma->vm_mm;
1063 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1064 int gup_flags;
1065
1066 VM_BUG_ON(start & ~PAGE_MASK);
1067 VM_BUG_ON(end & ~PAGE_MASK);
1068 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1069 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1070 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1071
de60f5f1
EM
1072 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1073 if (vma->vm_flags & VM_LOCKONFAULT)
1074 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1075 /*
1076 * We want to touch writable mappings with a write fault in order
1077 * to break COW, except for shared mappings because these don't COW
1078 * and we would not want to dirty them for nothing.
1079 */
1080 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1081 gup_flags |= FOLL_WRITE;
1082
1083 /*
1084 * We want mlock to succeed for regions that have any permissions
1085 * other than PROT_NONE.
1086 */
1087 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1088 gup_flags |= FOLL_FORCE;
1089
1090 /*
1091 * We made sure addr is within a VMA, so the following will
1092 * not result in a stack expansion that recurses back here.
1093 */
1094 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1095 NULL, NULL, nonblocking);
1096}
1097
1098/*
1099 * __mm_populate - populate and/or mlock pages within a range of address space.
1100 *
1101 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1102 * flags. VMAs must be already marked with the desired vm_flags, and
1103 * mmap_sem must not be held.
1104 */
1105int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1106{
1107 struct mm_struct *mm = current->mm;
1108 unsigned long end, nstart, nend;
1109 struct vm_area_struct *vma = NULL;
1110 int locked = 0;
1111 long ret = 0;
1112
1113 VM_BUG_ON(start & ~PAGE_MASK);
1114 VM_BUG_ON(len != PAGE_ALIGN(len));
1115 end = start + len;
1116
1117 for (nstart = start; nstart < end; nstart = nend) {
1118 /*
1119 * We want to fault in pages for [nstart; end) address range.
1120 * Find first corresponding VMA.
1121 */
1122 if (!locked) {
1123 locked = 1;
1124 down_read(&mm->mmap_sem);
1125 vma = find_vma(mm, nstart);
1126 } else if (nstart >= vma->vm_end)
1127 vma = vma->vm_next;
1128 if (!vma || vma->vm_start >= end)
1129 break;
1130 /*
1131 * Set [nstart; nend) to intersection of desired address
1132 * range with the first VMA. Also, skip undesirable VMA types.
1133 */
1134 nend = min(end, vma->vm_end);
1135 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1136 continue;
1137 if (nstart < vma->vm_start)
1138 nstart = vma->vm_start;
1139 /*
1140 * Now fault in a range of pages. populate_vma_page_range()
1141 * double checks the vma flags, so that it won't mlock pages
1142 * if the vma was already munlocked.
1143 */
1144 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1145 if (ret < 0) {
1146 if (ignore_errors) {
1147 ret = 0;
1148 continue; /* continue at next VMA */
1149 }
1150 break;
1151 }
1152 nend = nstart + ret * PAGE_SIZE;
1153 ret = 0;
1154 }
1155 if (locked)
1156 up_read(&mm->mmap_sem);
1157 return ret; /* 0 or negative error code */
1158}
1159
4bbd4c77
KS
1160/**
1161 * get_dump_page() - pin user page in memory while writing it to core dump
1162 * @addr: user address
1163 *
1164 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1165 * to be freed afterwards by put_page().
4bbd4c77
KS
1166 *
1167 * Returns NULL on any kind of failure - a hole must then be inserted into
1168 * the corefile, to preserve alignment with its headers; and also returns
1169 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1170 * allowing a hole to be left in the corefile to save diskspace.
1171 *
1172 * Called without mmap_sem, but after all other threads have been killed.
1173 */
1174#ifdef CONFIG_ELF_CORE
1175struct page *get_dump_page(unsigned long addr)
1176{
1177 struct vm_area_struct *vma;
1178 struct page *page;
1179
1180 if (__get_user_pages(current, current->mm, addr, 1,
1181 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1182 NULL) < 1)
1183 return NULL;
1184 flush_cache_page(vma, addr, page_to_pfn(page));
1185 return page;
1186}
1187#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1188
1189/*
e585513b 1190 * Generic Fast GUP
2667f50e
SC
1191 *
1192 * get_user_pages_fast attempts to pin user pages by walking the page
1193 * tables directly and avoids taking locks. Thus the walker needs to be
1194 * protected from page table pages being freed from under it, and should
1195 * block any THP splits.
1196 *
1197 * One way to achieve this is to have the walker disable interrupts, and
1198 * rely on IPIs from the TLB flushing code blocking before the page table
1199 * pages are freed. This is unsuitable for architectures that do not need
1200 * to broadcast an IPI when invalidating TLBs.
1201 *
1202 * Another way to achieve this is to batch up page table containing pages
1203 * belonging to more than one mm_user, then rcu_sched a callback to free those
1204 * pages. Disabling interrupts will allow the fast_gup walker to both block
1205 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1206 * (which is a relatively rare event). The code below adopts this strategy.
1207 *
1208 * Before activating this code, please be aware that the following assumptions
1209 * are currently made:
1210 *
e585513b
KS
1211 * *) Either HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table() is used to
1212 * free pages containing page tables or TLB flushing requires IPI broadcast.
2667f50e 1213 *
2667f50e
SC
1214 * *) ptes can be read atomically by the architecture.
1215 *
1216 * *) access_ok is sufficient to validate userspace address ranges.
1217 *
1218 * The last two assumptions can be relaxed by the addition of helper functions.
1219 *
1220 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1221 */
e585513b 1222#ifdef CONFIG_HAVE_GENERIC_GUP
2667f50e 1223
0005d20b
KS
1224#ifndef gup_get_pte
1225/*
1226 * We assume that the PTE can be read atomically. If this is not the case for
1227 * your architecture, please provide the helper.
1228 */
1229static inline pte_t gup_get_pte(pte_t *ptep)
1230{
1231 return READ_ONCE(*ptep);
1232}
1233#endif
1234
b59f65fa
KS
1235static void undo_dev_pagemap(int *nr, int nr_start, struct page **pages)
1236{
1237 while ((*nr) - nr_start) {
1238 struct page *page = pages[--(*nr)];
1239
1240 ClearPageReferenced(page);
1241 put_page(page);
1242 }
1243}
1244
2667f50e
SC
1245#ifdef __HAVE_ARCH_PTE_SPECIAL
1246static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1247 int write, struct page **pages, int *nr)
1248{
b59f65fa
KS
1249 struct dev_pagemap *pgmap = NULL;
1250 int nr_start = *nr, ret = 0;
2667f50e 1251 pte_t *ptep, *ptem;
2667f50e
SC
1252
1253 ptem = ptep = pte_offset_map(&pmd, addr);
1254 do {
0005d20b 1255 pte_t pte = gup_get_pte(ptep);
7aef4172 1256 struct page *head, *page;
2667f50e
SC
1257
1258 /*
1259 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1260 * path using the pte_protnone check.
2667f50e 1261 */
e7884f8e
KS
1262 if (pte_protnone(pte))
1263 goto pte_unmap;
1264
1265 if (!pte_access_permitted(pte, write))
1266 goto pte_unmap;
1267
b59f65fa
KS
1268 if (pte_devmap(pte)) {
1269 pgmap = get_dev_pagemap(pte_pfn(pte), pgmap);
1270 if (unlikely(!pgmap)) {
1271 undo_dev_pagemap(nr, nr_start, pages);
1272 goto pte_unmap;
1273 }
1274 } else if (pte_special(pte))
2667f50e
SC
1275 goto pte_unmap;
1276
1277 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1278 page = pte_page(pte);
7aef4172 1279 head = compound_head(page);
2667f50e 1280
7aef4172 1281 if (!page_cache_get_speculative(head))
2667f50e
SC
1282 goto pte_unmap;
1283
1284 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1285 put_page(head);
2667f50e
SC
1286 goto pte_unmap;
1287 }
1288
7aef4172 1289 VM_BUG_ON_PAGE(compound_head(page) != head, page);
e9348053 1290
b59f65fa 1291 put_dev_pagemap(pgmap);
e9348053 1292 SetPageReferenced(page);
2667f50e
SC
1293 pages[*nr] = page;
1294 (*nr)++;
1295
1296 } while (ptep++, addr += PAGE_SIZE, addr != end);
1297
1298 ret = 1;
1299
1300pte_unmap:
1301 pte_unmap(ptem);
1302 return ret;
1303}
1304#else
1305
1306/*
1307 * If we can't determine whether or not a pte is special, then fail immediately
1308 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1309 * to be special.
1310 *
1311 * For a futex to be placed on a THP tail page, get_futex_key requires a
1312 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1313 * useful to have gup_huge_pmd even if we can't operate on ptes.
1314 */
1315static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1316 int write, struct page **pages, int *nr)
1317{
1318 return 0;
1319}
1320#endif /* __HAVE_ARCH_PTE_SPECIAL */
1321
b59f65fa
KS
1322#ifdef __HAVE_ARCH_PTE_DEVMAP
1323static int __gup_device_huge(unsigned long pfn, unsigned long addr,
1324 unsigned long end, struct page **pages, int *nr)
1325{
1326 int nr_start = *nr;
1327 struct dev_pagemap *pgmap = NULL;
1328
1329 do {
1330 struct page *page = pfn_to_page(pfn);
1331
1332 pgmap = get_dev_pagemap(pfn, pgmap);
1333 if (unlikely(!pgmap)) {
1334 undo_dev_pagemap(nr, nr_start, pages);
1335 return 0;
1336 }
1337 SetPageReferenced(page);
1338 pages[*nr] = page;
1339 get_page(page);
1340 put_dev_pagemap(pgmap);
1341 (*nr)++;
1342 pfn++;
1343 } while (addr += PAGE_SIZE, addr != end);
1344 return 1;
1345}
1346
1347static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1348 unsigned long end, struct page **pages, int *nr)
1349{
1350 unsigned long fault_pfn;
1351
1352 fault_pfn = pmd_pfn(pmd) + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
1353 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1354}
1355
1356static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1357 unsigned long end, struct page **pages, int *nr)
1358{
1359 unsigned long fault_pfn;
1360
1361 fault_pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
1362 return __gup_device_huge(fault_pfn, addr, end, pages, nr);
1363}
1364#else
1365static int __gup_device_huge_pmd(pmd_t pmd, unsigned long addr,
1366 unsigned long end, struct page **pages, int *nr)
1367{
1368 BUILD_BUG();
1369 return 0;
1370}
1371
1372static int __gup_device_huge_pud(pud_t pud, unsigned long addr,
1373 unsigned long end, struct page **pages, int *nr)
1374{
1375 BUILD_BUG();
1376 return 0;
1377}
1378#endif
1379
2667f50e
SC
1380static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1381 unsigned long end, int write, struct page **pages, int *nr)
1382{
ddc58f27 1383 struct page *head, *page;
2667f50e
SC
1384 int refs;
1385
e7884f8e 1386 if (!pmd_access_permitted(orig, write))
2667f50e
SC
1387 return 0;
1388
b59f65fa
KS
1389 if (pmd_devmap(orig))
1390 return __gup_device_huge_pmd(orig, addr, end, pages, nr);
1391
2667f50e
SC
1392 refs = 0;
1393 head = pmd_page(orig);
1394 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1395 do {
1396 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1397 pages[*nr] = page;
1398 (*nr)++;
1399 page++;
1400 refs++;
1401 } while (addr += PAGE_SIZE, addr != end);
1402
1403 if (!page_cache_add_speculative(head, refs)) {
1404 *nr -= refs;
1405 return 0;
1406 }
1407
1408 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1409 *nr -= refs;
1410 while (refs--)
1411 put_page(head);
1412 return 0;
1413 }
1414
e9348053 1415 SetPageReferenced(head);
2667f50e
SC
1416 return 1;
1417}
1418
1419static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1420 unsigned long end, int write, struct page **pages, int *nr)
1421{
ddc58f27 1422 struct page *head, *page;
2667f50e
SC
1423 int refs;
1424
e7884f8e 1425 if (!pud_access_permitted(orig, write))
2667f50e
SC
1426 return 0;
1427
b59f65fa
KS
1428 if (pud_devmap(orig))
1429 return __gup_device_huge_pud(orig, addr, end, pages, nr);
1430
2667f50e
SC
1431 refs = 0;
1432 head = pud_page(orig);
1433 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1434 do {
1435 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1436 pages[*nr] = page;
1437 (*nr)++;
1438 page++;
1439 refs++;
1440 } while (addr += PAGE_SIZE, addr != end);
1441
1442 if (!page_cache_add_speculative(head, refs)) {
1443 *nr -= refs;
1444 return 0;
1445 }
1446
1447 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1448 *nr -= refs;
1449 while (refs--)
1450 put_page(head);
1451 return 0;
1452 }
1453
e9348053 1454 SetPageReferenced(head);
2667f50e
SC
1455 return 1;
1456}
1457
f30c59e9
AK
1458static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1459 unsigned long end, int write,
1460 struct page **pages, int *nr)
1461{
1462 int refs;
ddc58f27 1463 struct page *head, *page;
f30c59e9 1464
e7884f8e 1465 if (!pgd_access_permitted(orig, write))
f30c59e9
AK
1466 return 0;
1467
b59f65fa 1468 BUILD_BUG_ON(pgd_devmap(orig));
f30c59e9
AK
1469 refs = 0;
1470 head = pgd_page(orig);
1471 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1472 do {
1473 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1474 pages[*nr] = page;
1475 (*nr)++;
1476 page++;
1477 refs++;
1478 } while (addr += PAGE_SIZE, addr != end);
1479
1480 if (!page_cache_add_speculative(head, refs)) {
1481 *nr -= refs;
1482 return 0;
1483 }
1484
1485 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1486 *nr -= refs;
1487 while (refs--)
1488 put_page(head);
1489 return 0;
1490 }
1491
e9348053 1492 SetPageReferenced(head);
f30c59e9
AK
1493 return 1;
1494}
1495
2667f50e
SC
1496static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1497 int write, struct page **pages, int *nr)
1498{
1499 unsigned long next;
1500 pmd_t *pmdp;
1501
1502 pmdp = pmd_offset(&pud, addr);
1503 do {
38c5ce93 1504 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1505
1506 next = pmd_addr_end(addr, end);
4b471e88 1507 if (pmd_none(pmd))
2667f50e
SC
1508 return 0;
1509
1510 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1511 /*
1512 * NUMA hinting faults need to be handled in the GUP
1513 * slowpath for accounting purposes and so that they
1514 * can be serialised against THP migration.
1515 */
8a0516ed 1516 if (pmd_protnone(pmd))
2667f50e
SC
1517 return 0;
1518
1519 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1520 pages, nr))
1521 return 0;
1522
f30c59e9
AK
1523 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1524 /*
1525 * architecture have different format for hugetlbfs
1526 * pmd format and THP pmd format
1527 */
1528 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1529 PMD_SHIFT, next, write, pages, nr))
1530 return 0;
2667f50e
SC
1531 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1532 return 0;
1533 } while (pmdp++, addr = next, addr != end);
1534
1535 return 1;
1536}
1537
c2febafc 1538static int gup_pud_range(p4d_t p4d, unsigned long addr, unsigned long end,
f30c59e9 1539 int write, struct page **pages, int *nr)
2667f50e
SC
1540{
1541 unsigned long next;
1542 pud_t *pudp;
1543
c2febafc 1544 pudp = pud_offset(&p4d, addr);
2667f50e 1545 do {
e37c6982 1546 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1547
1548 next = pud_addr_end(addr, end);
1549 if (pud_none(pud))
1550 return 0;
f30c59e9 1551 if (unlikely(pud_huge(pud))) {
2667f50e 1552 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1553 pages, nr))
1554 return 0;
1555 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1556 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1557 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1558 return 0;
1559 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1560 return 0;
1561 } while (pudp++, addr = next, addr != end);
1562
1563 return 1;
1564}
1565
c2febafc
KS
1566static int gup_p4d_range(pgd_t pgd, unsigned long addr, unsigned long end,
1567 int write, struct page **pages, int *nr)
1568{
1569 unsigned long next;
1570 p4d_t *p4dp;
1571
1572 p4dp = p4d_offset(&pgd, addr);
1573 do {
1574 p4d_t p4d = READ_ONCE(*p4dp);
1575
1576 next = p4d_addr_end(addr, end);
1577 if (p4d_none(p4d))
1578 return 0;
1579 BUILD_BUG_ON(p4d_huge(p4d));
1580 if (unlikely(is_hugepd(__hugepd(p4d_val(p4d))))) {
1581 if (!gup_huge_pd(__hugepd(p4d_val(p4d)), addr,
1582 P4D_SHIFT, next, write, pages, nr))
1583 return 0;
ce70df08 1584 } else if (!gup_pud_range(p4d, addr, next, write, pages, nr))
c2febafc
KS
1585 return 0;
1586 } while (p4dp++, addr = next, addr != end);
1587
1588 return 1;
1589}
1590
2667f50e
SC
1591/*
1592 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1593 * the regular GUP. It will only return non-negative values.
1594 */
1595int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1596 struct page **pages)
1597{
1598 struct mm_struct *mm = current->mm;
1599 unsigned long addr, len, end;
1600 unsigned long next, flags;
1601 pgd_t *pgdp;
1602 int nr = 0;
1603
1604 start &= PAGE_MASK;
1605 addr = start;
1606 len = (unsigned long) nr_pages << PAGE_SHIFT;
1607 end = start + len;
1608
1609 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
aa2369f1 1610 (void __user *)start, len)))
2667f50e
SC
1611 return 0;
1612
1613 /*
1614 * Disable interrupts. We use the nested form as we can already have
1615 * interrupts disabled by get_futex_key.
1616 *
1617 * With interrupts disabled, we block page table pages from being
1618 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1619 * for more details.
1620 *
1621 * We do not adopt an rcu_read_lock(.) here as we also want to
1622 * block IPIs that come from THPs splitting.
1623 */
1624
1625 local_irq_save(flags);
1626 pgdp = pgd_offset(mm, addr);
1627 do {
9d8c47e4 1628 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1629
2667f50e 1630 next = pgd_addr_end(addr, end);
f30c59e9 1631 if (pgd_none(pgd))
2667f50e 1632 break;
f30c59e9
AK
1633 if (unlikely(pgd_huge(pgd))) {
1634 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1635 pages, &nr))
1636 break;
1637 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1638 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1639 PGDIR_SHIFT, next, write, pages, &nr))
1640 break;
c2febafc 1641 } else if (!gup_p4d_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1642 break;
1643 } while (pgdp++, addr = next, addr != end);
1644 local_irq_restore(flags);
1645
1646 return nr;
1647}
1648
73e10a61
KS
1649#ifndef gup_fast_permitted
1650/*
1651 * Check if it's allowed to use __get_user_pages_fast() for the range, or
1652 * we need to fall back to the slow version:
1653 */
1654bool gup_fast_permitted(unsigned long start, int nr_pages, int write)
1655{
1656 unsigned long len, end;
1657
1658 len = (unsigned long) nr_pages << PAGE_SHIFT;
1659 end = start + len;
1660 return end >= start;
1661}
1662#endif
1663
2667f50e
SC
1664/**
1665 * get_user_pages_fast() - pin user pages in memory
1666 * @start: starting user address
1667 * @nr_pages: number of pages from start to pin
1668 * @write: whether pages will be written to
1669 * @pages: array that receives pointers to the pages pinned.
1670 * Should be at least nr_pages long.
1671 *
1672 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1673 * If not successful, it will fall back to taking the lock and
1674 * calling get_user_pages().
1675 *
1676 * Returns number of pages pinned. This may be fewer than the number
1677 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1678 * were pinned, returns -errno.
1679 */
1680int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1681 struct page **pages)
1682{
73e10a61 1683 int nr = 0, ret = 0;
2667f50e
SC
1684
1685 start &= PAGE_MASK;
73e10a61
KS
1686
1687 if (gup_fast_permitted(start, nr_pages, write)) {
1688 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1689 ret = nr;
1690 }
2667f50e
SC
1691
1692 if (nr < nr_pages) {
1693 /* Try to get the remaining pages with get_user_pages */
1694 start += nr << PAGE_SHIFT;
1695 pages += nr;
1696
c164154f
LS
1697 ret = get_user_pages_unlocked(start, nr_pages - nr, pages,
1698 write ? FOLL_WRITE : 0);
2667f50e
SC
1699
1700 /* Have to be a bit careful with return values */
1701 if (nr > 0) {
1702 if (ret < 0)
1703 ret = nr;
1704 else
1705 ret += nr;
1706 }
1707 }
1708
1709 return ret;
1710}
1711
e585513b 1712#endif /* CONFIG_HAVE_GENERIC_GUP */