]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blame - mm/hmm.c
mm/hmm: Poison hmm_range during unregister
[mirror_ubuntu-hirsute-kernel.git] / mm / hmm.c
CommitLineData
c942fddf 1// SPDX-License-Identifier: GPL-2.0-or-later
133ff0ea
JG
2/*
3 * Copyright 2013 Red Hat Inc.
4 *
f813f219 5 * Authors: Jérôme Glisse <jglisse@redhat.com>
133ff0ea
JG
6 */
7/*
8 * Refer to include/linux/hmm.h for information about heterogeneous memory
9 * management or HMM for short.
10 */
11#include <linux/mm.h>
12#include <linux/hmm.h>
858b54da 13#include <linux/init.h>
da4c3c73
JG
14#include <linux/rmap.h>
15#include <linux/swap.h>
133ff0ea
JG
16#include <linux/slab.h>
17#include <linux/sched.h>
4ef589dc
JG
18#include <linux/mmzone.h>
19#include <linux/pagemap.h>
da4c3c73
JG
20#include <linux/swapops.h>
21#include <linux/hugetlb.h>
4ef589dc 22#include <linux/memremap.h>
c8a53b2d 23#include <linux/sched/mm.h>
7b2d55d2 24#include <linux/jump_label.h>
55c0ece8 25#include <linux/dma-mapping.h>
c0b12405 26#include <linux/mmu_notifier.h>
4ef589dc
JG
27#include <linux/memory_hotplug.h>
28
29#define PA_SECTION_SIZE (1UL << PA_SECTION_SHIFT)
133ff0ea 30
6b368cd4 31#if IS_ENABLED(CONFIG_HMM_MIRROR)
c0b12405
JG
32static const struct mmu_notifier_ops hmm_mmu_notifier_ops;
33
704f3f2c
JG
34/**
35 * hmm_get_or_create - register HMM against an mm (HMM internal)
133ff0ea
JG
36 *
37 * @mm: mm struct to attach to
704f3f2c
JG
38 * Returns: returns an HMM object, either by referencing the existing
39 * (per-process) object, or by creating a new one.
133ff0ea 40 *
704f3f2c
JG
41 * This is not intended to be used directly by device drivers. If mm already
42 * has an HMM struct then it get a reference on it and returns it. Otherwise
43 * it allocates an HMM struct, initializes it, associate it with the mm and
44 * returns it.
133ff0ea 45 */
704f3f2c 46static struct hmm *hmm_get_or_create(struct mm_struct *mm)
133ff0ea 47{
8a9320b7
JG
48 struct hmm *hmm;
49
50 lockdep_assert_held_exclusive(&mm->mmap_sem);
133ff0ea 51
8a9320b7
JG
52 /* Abuse the page_table_lock to also protect mm->hmm. */
53 spin_lock(&mm->page_table_lock);
54 hmm = mm->hmm;
55 if (mm->hmm && kref_get_unless_zero(&mm->hmm->kref))
56 goto out_unlock;
57 spin_unlock(&mm->page_table_lock);
c0b12405
JG
58
59 hmm = kmalloc(sizeof(*hmm), GFP_KERNEL);
60 if (!hmm)
61 return NULL;
a3e0d41c 62 init_waitqueue_head(&hmm->wq);
c0b12405
JG
63 INIT_LIST_HEAD(&hmm->mirrors);
64 init_rwsem(&hmm->mirrors_sem);
c0b12405 65 hmm->mmu_notifier.ops = NULL;
da4c3c73 66 INIT_LIST_HEAD(&hmm->ranges);
a3e0d41c 67 mutex_init(&hmm->lock);
704f3f2c 68 kref_init(&hmm->kref);
a3e0d41c 69 hmm->notifiers = 0;
c0b12405
JG
70 hmm->mm = mm;
71
8a9320b7
JG
72 hmm->mmu_notifier.ops = &hmm_mmu_notifier_ops;
73 if (__mmu_notifier_register(&hmm->mmu_notifier, mm)) {
74 kfree(hmm);
75 return NULL;
76 }
c0b12405 77
8a9320b7 78 mmgrab(hmm->mm);
86a2d598
RC
79
80 /*
8a9320b7
JG
81 * We hold the exclusive mmap_sem here so we know that mm->hmm is
82 * still NULL or 0 kref, and is safe to update.
86a2d598 83 */
86a2d598 84 spin_lock(&mm->page_table_lock);
8a9320b7
JG
85 mm->hmm = hmm;
86
87out_unlock:
86a2d598 88 spin_unlock(&mm->page_table_lock);
8a9320b7 89 return hmm;
133ff0ea
JG
90}
91
6d7c3cde
JG
92static void hmm_free_rcu(struct rcu_head *rcu)
93{
8a9320b7
JG
94 struct hmm *hmm = container_of(rcu, struct hmm, rcu);
95
96 mmdrop(hmm->mm);
97 kfree(hmm);
6d7c3cde
JG
98}
99
704f3f2c
JG
100static void hmm_free(struct kref *kref)
101{
102 struct hmm *hmm = container_of(kref, struct hmm, kref);
704f3f2c 103
8a9320b7
JG
104 spin_lock(&hmm->mm->page_table_lock);
105 if (hmm->mm->hmm == hmm)
106 hmm->mm->hmm = NULL;
107 spin_unlock(&hmm->mm->page_table_lock);
704f3f2c 108
8a9320b7 109 mmu_notifier_unregister_no_release(&hmm->mmu_notifier, hmm->mm);
6d7c3cde 110 mmu_notifier_call_srcu(&hmm->rcu, hmm_free_rcu);
704f3f2c
JG
111}
112
113static inline void hmm_put(struct hmm *hmm)
114{
115 kref_put(&hmm->kref, hmm_free);
116}
117
a3e0d41c 118static void hmm_release(struct mmu_notifier *mn, struct mm_struct *mm)
c0b12405 119{
6d7c3cde 120 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 121 struct hmm_mirror *mirror;
da4c3c73 122
6d7c3cde
JG
123 /* Bail out if hmm is in the process of being freed */
124 if (!kref_get_unless_zero(&hmm->kref))
125 return;
126
47f24598
JG
127 /*
128 * Since hmm_range_register() holds the mmget() lock hmm_release() is
129 * prevented as long as a range exists.
130 */
131 WARN_ON(!list_empty_careful(&hmm->ranges));
e1401513
RC
132
133 down_write(&hmm->mirrors_sem);
134 mirror = list_first_entry_or_null(&hmm->mirrors, struct hmm_mirror,
135 list);
136 while (mirror) {
137 list_del_init(&mirror->list);
138 if (mirror->ops->release) {
139 /*
085ea250
RC
140 * Drop mirrors_sem so the release callback can wait
141 * on any pending work that might itself trigger a
142 * mmu_notifier callback and thus would deadlock with
143 * us.
e1401513
RC
144 */
145 up_write(&hmm->mirrors_sem);
146 mirror->ops->release(mirror);
147 down_write(&hmm->mirrors_sem);
148 }
149 mirror = list_first_entry_or_null(&hmm->mirrors,
150 struct hmm_mirror, list);
151 }
152 up_write(&hmm->mirrors_sem);
704f3f2c
JG
153
154 hmm_put(hmm);
e1401513
RC
155}
156
93065ac7 157static int hmm_invalidate_range_start(struct mmu_notifier *mn,
a3e0d41c 158 const struct mmu_notifier_range *nrange)
c0b12405 159{
6d7c3cde 160 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
a3e0d41c 161 struct hmm_mirror *mirror;
ec131b2d 162 struct hmm_update update;
a3e0d41c
JG
163 struct hmm_range *range;
164 int ret = 0;
c0b12405 165
6d7c3cde
JG
166 if (!kref_get_unless_zero(&hmm->kref))
167 return 0;
c0b12405 168
a3e0d41c
JG
169 update.start = nrange->start;
170 update.end = nrange->end;
ec131b2d 171 update.event = HMM_UPDATE_INVALIDATE;
dfcd6660 172 update.blockable = mmu_notifier_range_blockable(nrange);
a3e0d41c 173
dfcd6660 174 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
175 mutex_lock(&hmm->lock);
176 else if (!mutex_trylock(&hmm->lock)) {
177 ret = -EAGAIN;
178 goto out;
179 }
180 hmm->notifiers++;
181 list_for_each_entry(range, &hmm->ranges, list) {
182 if (update.end < range->start || update.start >= range->end)
183 continue;
184
185 range->valid = false;
186 }
187 mutex_unlock(&hmm->lock);
188
dfcd6660 189 if (mmu_notifier_range_blockable(nrange))
a3e0d41c
JG
190 down_read(&hmm->mirrors_sem);
191 else if (!down_read_trylock(&hmm->mirrors_sem)) {
192 ret = -EAGAIN;
193 goto out;
194 }
195 list_for_each_entry(mirror, &hmm->mirrors, list) {
196 int ret;
197
198 ret = mirror->ops->sync_cpu_device_pagetables(mirror, &update);
085ea250
RC
199 if (!update.blockable && ret == -EAGAIN)
200 break;
a3e0d41c
JG
201 }
202 up_read(&hmm->mirrors_sem);
203
204out:
704f3f2c
JG
205 hmm_put(hmm);
206 return ret;
c0b12405
JG
207}
208
209static void hmm_invalidate_range_end(struct mmu_notifier *mn,
a3e0d41c 210 const struct mmu_notifier_range *nrange)
c0b12405 211{
6d7c3cde 212 struct hmm *hmm = container_of(mn, struct hmm, mmu_notifier);
c0b12405 213
6d7c3cde
JG
214 if (!kref_get_unless_zero(&hmm->kref))
215 return;
c0b12405 216
a3e0d41c
JG
217 mutex_lock(&hmm->lock);
218 hmm->notifiers--;
219 if (!hmm->notifiers) {
220 struct hmm_range *range;
221
222 list_for_each_entry(range, &hmm->ranges, list) {
223 if (range->valid)
224 continue;
225 range->valid = true;
226 }
227 wake_up_all(&hmm->wq);
228 }
229 mutex_unlock(&hmm->lock);
230
704f3f2c 231 hmm_put(hmm);
c0b12405
JG
232}
233
234static const struct mmu_notifier_ops hmm_mmu_notifier_ops = {
e1401513 235 .release = hmm_release,
c0b12405
JG
236 .invalidate_range_start = hmm_invalidate_range_start,
237 .invalidate_range_end = hmm_invalidate_range_end,
238};
239
240/*
241 * hmm_mirror_register() - register a mirror against an mm
242 *
243 * @mirror: new mirror struct to register
244 * @mm: mm to register against
085ea250 245 * Return: 0 on success, -ENOMEM if no memory, -EINVAL if invalid arguments
c0b12405
JG
246 *
247 * To start mirroring a process address space, the device driver must register
248 * an HMM mirror struct.
c0b12405
JG
249 */
250int hmm_mirror_register(struct hmm_mirror *mirror, struct mm_struct *mm)
251{
8a1a0cd0
JG
252 lockdep_assert_held_exclusive(&mm->mmap_sem);
253
c0b12405
JG
254 /* Sanity check */
255 if (!mm || !mirror || !mirror->ops)
256 return -EINVAL;
257
704f3f2c 258 mirror->hmm = hmm_get_or_create(mm);
c0b12405
JG
259 if (!mirror->hmm)
260 return -ENOMEM;
261
262 down_write(&mirror->hmm->mirrors_sem);
704f3f2c
JG
263 list_add(&mirror->list, &mirror->hmm->mirrors);
264 up_write(&mirror->hmm->mirrors_sem);
c0b12405
JG
265
266 return 0;
267}
268EXPORT_SYMBOL(hmm_mirror_register);
269
270/*
271 * hmm_mirror_unregister() - unregister a mirror
272 *
085ea250 273 * @mirror: mirror struct to unregister
c0b12405
JG
274 *
275 * Stop mirroring a process address space, and cleanup.
276 */
277void hmm_mirror_unregister(struct hmm_mirror *mirror)
278{
187229c2 279 struct hmm *hmm = mirror->hmm;
c0b12405
JG
280
281 down_write(&hmm->mirrors_sem);
e1401513 282 list_del_init(&mirror->list);
c0b12405 283 up_write(&hmm->mirrors_sem);
704f3f2c 284 hmm_put(hmm);
c0b12405
JG
285}
286EXPORT_SYMBOL(hmm_mirror_unregister);
da4c3c73 287
74eee180
JG
288struct hmm_vma_walk {
289 struct hmm_range *range;
992de9a8 290 struct dev_pagemap *pgmap;
74eee180
JG
291 unsigned long last;
292 bool fault;
293 bool block;
74eee180
JG
294};
295
2aee09d8
JG
296static int hmm_vma_do_fault(struct mm_walk *walk, unsigned long addr,
297 bool write_fault, uint64_t *pfn)
74eee180 298{
9b1ae605 299 unsigned int flags = FAULT_FLAG_REMOTE;
74eee180 300 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 301 struct hmm_range *range = hmm_vma_walk->range;
74eee180 302 struct vm_area_struct *vma = walk->vma;
50a7ca3c 303 vm_fault_t ret;
74eee180
JG
304
305 flags |= hmm_vma_walk->block ? 0 : FAULT_FLAG_ALLOW_RETRY;
2aee09d8 306 flags |= write_fault ? FAULT_FLAG_WRITE : 0;
50a7ca3c
SJ
307 ret = handle_mm_fault(vma, addr, flags);
308 if (ret & VM_FAULT_RETRY)
73231612 309 return -EAGAIN;
50a7ca3c 310 if (ret & VM_FAULT_ERROR) {
f88a1e90 311 *pfn = range->values[HMM_PFN_ERROR];
74eee180
JG
312 return -EFAULT;
313 }
314
73231612 315 return -EBUSY;
74eee180
JG
316}
317
da4c3c73
JG
318static int hmm_pfns_bad(unsigned long addr,
319 unsigned long end,
320 struct mm_walk *walk)
321{
c719547f
JG
322 struct hmm_vma_walk *hmm_vma_walk = walk->private;
323 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 324 uint64_t *pfns = range->pfns;
da4c3c73
JG
325 unsigned long i;
326
327 i = (addr - range->start) >> PAGE_SHIFT;
328 for (; addr < end; addr += PAGE_SIZE, i++)
f88a1e90 329 pfns[i] = range->values[HMM_PFN_ERROR];
da4c3c73
JG
330
331 return 0;
332}
333
5504ed29
JG
334/*
335 * hmm_vma_walk_hole() - handle a range lacking valid pmd or pte(s)
336 * @start: range virtual start address (inclusive)
337 * @end: range virtual end address (exclusive)
2aee09d8
JG
338 * @fault: should we fault or not ?
339 * @write_fault: write fault ?
5504ed29 340 * @walk: mm_walk structure
085ea250 341 * Return: 0 on success, -EBUSY after page fault, or page fault error
5504ed29
JG
342 *
343 * This function will be called whenever pmd_none() or pte_none() returns true,
344 * or whenever there is no page directory covering the virtual address range.
345 */
2aee09d8
JG
346static int hmm_vma_walk_hole_(unsigned long addr, unsigned long end,
347 bool fault, bool write_fault,
348 struct mm_walk *walk)
da4c3c73 349{
74eee180
JG
350 struct hmm_vma_walk *hmm_vma_walk = walk->private;
351 struct hmm_range *range = hmm_vma_walk->range;
ff05c0c6 352 uint64_t *pfns = range->pfns;
63d5066f 353 unsigned long i, page_size;
da4c3c73 354
74eee180 355 hmm_vma_walk->last = addr;
63d5066f
JG
356 page_size = hmm_range_page_size(range);
357 i = (addr - range->start) >> range->page_shift;
358
359 for (; addr < end; addr += page_size, i++) {
f88a1e90 360 pfns[i] = range->values[HMM_PFN_NONE];
2aee09d8 361 if (fault || write_fault) {
74eee180 362 int ret;
da4c3c73 363
2aee09d8
JG
364 ret = hmm_vma_do_fault(walk, addr, write_fault,
365 &pfns[i]);
73231612 366 if (ret != -EBUSY)
74eee180
JG
367 return ret;
368 }
369 }
370
73231612 371 return (fault || write_fault) ? -EBUSY : 0;
2aee09d8
JG
372}
373
374static inline void hmm_pte_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
375 uint64_t pfns, uint64_t cpu_flags,
376 bool *fault, bool *write_fault)
377{
f88a1e90
JG
378 struct hmm_range *range = hmm_vma_walk->range;
379
2aee09d8
JG
380 if (!hmm_vma_walk->fault)
381 return;
382
023a019a
JG
383 /*
384 * So we not only consider the individual per page request we also
385 * consider the default flags requested for the range. The API can
386 * be use in 2 fashions. The first one where the HMM user coalesce
387 * multiple page fault into one request and set flags per pfns for
388 * of those faults. The second one where the HMM user want to pre-
389 * fault a range with specific flags. For the latter one it is a
390 * waste to have the user pre-fill the pfn arrays with a default
391 * flags value.
392 */
393 pfns = (pfns & range->pfn_flags_mask) | range->default_flags;
394
2aee09d8 395 /* We aren't ask to do anything ... */
f88a1e90 396 if (!(pfns & range->flags[HMM_PFN_VALID]))
2aee09d8 397 return;
f88a1e90
JG
398 /* If this is device memory than only fault if explicitly requested */
399 if ((cpu_flags & range->flags[HMM_PFN_DEVICE_PRIVATE])) {
400 /* Do we fault on device memory ? */
401 if (pfns & range->flags[HMM_PFN_DEVICE_PRIVATE]) {
402 *write_fault = pfns & range->flags[HMM_PFN_WRITE];
403 *fault = true;
404 }
2aee09d8
JG
405 return;
406 }
f88a1e90
JG
407
408 /* If CPU page table is not valid then we need to fault */
409 *fault = !(cpu_flags & range->flags[HMM_PFN_VALID]);
410 /* Need to write fault ? */
411 if ((pfns & range->flags[HMM_PFN_WRITE]) &&
412 !(cpu_flags & range->flags[HMM_PFN_WRITE])) {
413 *write_fault = true;
2aee09d8
JG
414 *fault = true;
415 }
416}
417
418static void hmm_range_need_fault(const struct hmm_vma_walk *hmm_vma_walk,
419 const uint64_t *pfns, unsigned long npages,
420 uint64_t cpu_flags, bool *fault,
421 bool *write_fault)
422{
423 unsigned long i;
424
425 if (!hmm_vma_walk->fault) {
426 *fault = *write_fault = false;
427 return;
428 }
429
a3e0d41c 430 *fault = *write_fault = false;
2aee09d8
JG
431 for (i = 0; i < npages; ++i) {
432 hmm_pte_need_fault(hmm_vma_walk, pfns[i], cpu_flags,
433 fault, write_fault);
a3e0d41c 434 if ((*write_fault))
2aee09d8
JG
435 return;
436 }
437}
438
439static int hmm_vma_walk_hole(unsigned long addr, unsigned long end,
440 struct mm_walk *walk)
441{
442 struct hmm_vma_walk *hmm_vma_walk = walk->private;
443 struct hmm_range *range = hmm_vma_walk->range;
444 bool fault, write_fault;
445 unsigned long i, npages;
446 uint64_t *pfns;
447
448 i = (addr - range->start) >> PAGE_SHIFT;
449 npages = (end - addr) >> PAGE_SHIFT;
450 pfns = &range->pfns[i];
451 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
452 0, &fault, &write_fault);
453 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
454}
455
f88a1e90 456static inline uint64_t pmd_to_hmm_pfn_flags(struct hmm_range *range, pmd_t pmd)
2aee09d8
JG
457{
458 if (pmd_protnone(pmd))
459 return 0;
f88a1e90
JG
460 return pmd_write(pmd) ? range->flags[HMM_PFN_VALID] |
461 range->flags[HMM_PFN_WRITE] :
462 range->flags[HMM_PFN_VALID];
da4c3c73
JG
463}
464
992de9a8
JG
465static inline uint64_t pud_to_hmm_pfn_flags(struct hmm_range *range, pud_t pud)
466{
467 if (!pud_present(pud))
468 return 0;
469 return pud_write(pud) ? range->flags[HMM_PFN_VALID] |
470 range->flags[HMM_PFN_WRITE] :
471 range->flags[HMM_PFN_VALID];
472}
473
53f5c3f4
JG
474static int hmm_vma_handle_pmd(struct mm_walk *walk,
475 unsigned long addr,
476 unsigned long end,
477 uint64_t *pfns,
478 pmd_t pmd)
479{
992de9a8 480#ifdef CONFIG_TRANSPARENT_HUGEPAGE
53f5c3f4 481 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 482 struct hmm_range *range = hmm_vma_walk->range;
2aee09d8 483 unsigned long pfn, npages, i;
2aee09d8 484 bool fault, write_fault;
f88a1e90 485 uint64_t cpu_flags;
53f5c3f4 486
2aee09d8 487 npages = (end - addr) >> PAGE_SHIFT;
f88a1e90 488 cpu_flags = pmd_to_hmm_pfn_flags(range, pmd);
2aee09d8
JG
489 hmm_range_need_fault(hmm_vma_walk, pfns, npages, cpu_flags,
490 &fault, &write_fault);
53f5c3f4 491
2aee09d8
JG
492 if (pmd_protnone(pmd) || fault || write_fault)
493 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
494
495 pfn = pmd_pfn(pmd) + pte_index(addr);
992de9a8
JG
496 for (i = 0; addr < end; addr += PAGE_SIZE, i++, pfn++) {
497 if (pmd_devmap(pmd)) {
498 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
499 hmm_vma_walk->pgmap);
500 if (unlikely(!hmm_vma_walk->pgmap))
501 return -EBUSY;
502 }
391aab11 503 pfns[i] = hmm_device_entry_from_pfn(range, pfn) | cpu_flags;
992de9a8
JG
504 }
505 if (hmm_vma_walk->pgmap) {
506 put_dev_pagemap(hmm_vma_walk->pgmap);
507 hmm_vma_walk->pgmap = NULL;
508 }
53f5c3f4
JG
509 hmm_vma_walk->last = end;
510 return 0;
992de9a8
JG
511#else
512 /* If THP is not enabled then we should never reach that code ! */
513 return -EINVAL;
514#endif
53f5c3f4
JG
515}
516
f88a1e90 517static inline uint64_t pte_to_hmm_pfn_flags(struct hmm_range *range, pte_t pte)
2aee09d8 518{
789c2af8 519 if (pte_none(pte) || !pte_present(pte) || pte_protnone(pte))
2aee09d8 520 return 0;
f88a1e90
JG
521 return pte_write(pte) ? range->flags[HMM_PFN_VALID] |
522 range->flags[HMM_PFN_WRITE] :
523 range->flags[HMM_PFN_VALID];
2aee09d8
JG
524}
525
53f5c3f4
JG
526static int hmm_vma_handle_pte(struct mm_walk *walk, unsigned long addr,
527 unsigned long end, pmd_t *pmdp, pte_t *ptep,
528 uint64_t *pfn)
529{
530 struct hmm_vma_walk *hmm_vma_walk = walk->private;
f88a1e90 531 struct hmm_range *range = hmm_vma_walk->range;
53f5c3f4 532 struct vm_area_struct *vma = walk->vma;
2aee09d8
JG
533 bool fault, write_fault;
534 uint64_t cpu_flags;
53f5c3f4 535 pte_t pte = *ptep;
f88a1e90 536 uint64_t orig_pfn = *pfn;
53f5c3f4 537
f88a1e90 538 *pfn = range->values[HMM_PFN_NONE];
73231612 539 fault = write_fault = false;
53f5c3f4
JG
540
541 if (pte_none(pte)) {
73231612
JG
542 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, 0,
543 &fault, &write_fault);
2aee09d8 544 if (fault || write_fault)
53f5c3f4
JG
545 goto fault;
546 return 0;
547 }
548
549 if (!pte_present(pte)) {
550 swp_entry_t entry = pte_to_swp_entry(pte);
551
552 if (!non_swap_entry(entry)) {
2aee09d8 553 if (fault || write_fault)
53f5c3f4
JG
554 goto fault;
555 return 0;
556 }
557
558 /*
559 * This is a special swap entry, ignore migration, use
560 * device and report anything else as error.
561 */
562 if (is_device_private_entry(entry)) {
f88a1e90
JG
563 cpu_flags = range->flags[HMM_PFN_VALID] |
564 range->flags[HMM_PFN_DEVICE_PRIVATE];
2aee09d8 565 cpu_flags |= is_write_device_private_entry(entry) ?
f88a1e90
JG
566 range->flags[HMM_PFN_WRITE] : 0;
567 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
568 &fault, &write_fault);
569 if (fault || write_fault)
570 goto fault;
391aab11
JG
571 *pfn = hmm_device_entry_from_pfn(range,
572 swp_offset(entry));
f88a1e90 573 *pfn |= cpu_flags;
53f5c3f4
JG
574 return 0;
575 }
576
577 if (is_migration_entry(entry)) {
2aee09d8 578 if (fault || write_fault) {
53f5c3f4
JG
579 pte_unmap(ptep);
580 hmm_vma_walk->last = addr;
581 migration_entry_wait(vma->vm_mm,
2aee09d8 582 pmdp, addr);
73231612 583 return -EBUSY;
53f5c3f4
JG
584 }
585 return 0;
586 }
587
588 /* Report error for everything else */
f88a1e90 589 *pfn = range->values[HMM_PFN_ERROR];
53f5c3f4 590 return -EFAULT;
73231612
JG
591 } else {
592 cpu_flags = pte_to_hmm_pfn_flags(range, pte);
593 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
594 &fault, &write_fault);
53f5c3f4
JG
595 }
596
2aee09d8 597 if (fault || write_fault)
53f5c3f4
JG
598 goto fault;
599
992de9a8
JG
600 if (pte_devmap(pte)) {
601 hmm_vma_walk->pgmap = get_dev_pagemap(pte_pfn(pte),
602 hmm_vma_walk->pgmap);
603 if (unlikely(!hmm_vma_walk->pgmap))
604 return -EBUSY;
605 } else if (IS_ENABLED(CONFIG_ARCH_HAS_PTE_SPECIAL) && pte_special(pte)) {
606 *pfn = range->values[HMM_PFN_SPECIAL];
607 return -EFAULT;
608 }
609
391aab11 610 *pfn = hmm_device_entry_from_pfn(range, pte_pfn(pte)) | cpu_flags;
53f5c3f4
JG
611 return 0;
612
613fault:
992de9a8
JG
614 if (hmm_vma_walk->pgmap) {
615 put_dev_pagemap(hmm_vma_walk->pgmap);
616 hmm_vma_walk->pgmap = NULL;
617 }
53f5c3f4
JG
618 pte_unmap(ptep);
619 /* Fault any virtual address we were asked to fault */
2aee09d8 620 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
53f5c3f4
JG
621}
622
da4c3c73
JG
623static int hmm_vma_walk_pmd(pmd_t *pmdp,
624 unsigned long start,
625 unsigned long end,
626 struct mm_walk *walk)
627{
74eee180
JG
628 struct hmm_vma_walk *hmm_vma_walk = walk->private;
629 struct hmm_range *range = hmm_vma_walk->range;
d08faca0 630 struct vm_area_struct *vma = walk->vma;
ff05c0c6 631 uint64_t *pfns = range->pfns;
da4c3c73 632 unsigned long addr = start, i;
da4c3c73 633 pte_t *ptep;
d08faca0 634 pmd_t pmd;
da4c3c73 635
da4c3c73
JG
636
637again:
d08faca0
JG
638 pmd = READ_ONCE(*pmdp);
639 if (pmd_none(pmd))
da4c3c73
JG
640 return hmm_vma_walk_hole(start, end, walk);
641
d08faca0 642 if (pmd_huge(pmd) && (range->vma->vm_flags & VM_HUGETLB))
da4c3c73
JG
643 return hmm_pfns_bad(start, end, walk);
644
d08faca0
JG
645 if (thp_migration_supported() && is_pmd_migration_entry(pmd)) {
646 bool fault, write_fault;
647 unsigned long npages;
648 uint64_t *pfns;
649
650 i = (addr - range->start) >> PAGE_SHIFT;
651 npages = (end - addr) >> PAGE_SHIFT;
652 pfns = &range->pfns[i];
653
654 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
655 0, &fault, &write_fault);
656 if (fault || write_fault) {
657 hmm_vma_walk->last = addr;
658 pmd_migration_entry_wait(vma->vm_mm, pmdp);
73231612 659 return -EBUSY;
d08faca0
JG
660 }
661 return 0;
662 } else if (!pmd_present(pmd))
663 return hmm_pfns_bad(start, end, walk);
da4c3c73 664
d08faca0 665 if (pmd_devmap(pmd) || pmd_trans_huge(pmd)) {
da4c3c73
JG
666 /*
667 * No need to take pmd_lock here, even if some other threads
668 * is splitting the huge pmd we will get that event through
669 * mmu_notifier callback.
670 *
671 * So just read pmd value and check again its a transparent
672 * huge or device mapping one and compute corresponding pfn
673 * values.
674 */
675 pmd = pmd_read_atomic(pmdp);
676 barrier();
677 if (!pmd_devmap(pmd) && !pmd_trans_huge(pmd))
678 goto again;
74eee180 679
d08faca0 680 i = (addr - range->start) >> PAGE_SHIFT;
53f5c3f4 681 return hmm_vma_handle_pmd(walk, addr, end, &pfns[i], pmd);
da4c3c73
JG
682 }
683
d08faca0
JG
684 /*
685 * We have handled all the valid case above ie either none, migration,
686 * huge or transparent huge. At this point either it is a valid pmd
687 * entry pointing to pte directory or it is a bad pmd that will not
688 * recover.
689 */
690 if (pmd_bad(pmd))
da4c3c73
JG
691 return hmm_pfns_bad(start, end, walk);
692
693 ptep = pte_offset_map(pmdp, addr);
d08faca0 694 i = (addr - range->start) >> PAGE_SHIFT;
da4c3c73 695 for (; addr < end; addr += PAGE_SIZE, ptep++, i++) {
53f5c3f4 696 int r;
74eee180 697
53f5c3f4
JG
698 r = hmm_vma_handle_pte(walk, addr, end, pmdp, ptep, &pfns[i]);
699 if (r) {
700 /* hmm_vma_handle_pte() did unmap pte directory */
701 hmm_vma_walk->last = addr;
702 return r;
74eee180 703 }
da4c3c73 704 }
992de9a8
JG
705 if (hmm_vma_walk->pgmap) {
706 /*
707 * We do put_dev_pagemap() here and not in hmm_vma_handle_pte()
708 * so that we can leverage get_dev_pagemap() optimization which
709 * will not re-take a reference on a pgmap if we already have
710 * one.
711 */
712 put_dev_pagemap(hmm_vma_walk->pgmap);
713 hmm_vma_walk->pgmap = NULL;
714 }
da4c3c73
JG
715 pte_unmap(ptep - 1);
716
53f5c3f4 717 hmm_vma_walk->last = addr;
da4c3c73
JG
718 return 0;
719}
720
992de9a8
JG
721static int hmm_vma_walk_pud(pud_t *pudp,
722 unsigned long start,
723 unsigned long end,
724 struct mm_walk *walk)
725{
726 struct hmm_vma_walk *hmm_vma_walk = walk->private;
727 struct hmm_range *range = hmm_vma_walk->range;
728 unsigned long addr = start, next;
729 pmd_t *pmdp;
730 pud_t pud;
731 int ret;
732
733again:
734 pud = READ_ONCE(*pudp);
735 if (pud_none(pud))
736 return hmm_vma_walk_hole(start, end, walk);
737
738 if (pud_huge(pud) && pud_devmap(pud)) {
739 unsigned long i, npages, pfn;
740 uint64_t *pfns, cpu_flags;
741 bool fault, write_fault;
742
743 if (!pud_present(pud))
744 return hmm_vma_walk_hole(start, end, walk);
745
746 i = (addr - range->start) >> PAGE_SHIFT;
747 npages = (end - addr) >> PAGE_SHIFT;
748 pfns = &range->pfns[i];
749
750 cpu_flags = pud_to_hmm_pfn_flags(range, pud);
751 hmm_range_need_fault(hmm_vma_walk, pfns, npages,
752 cpu_flags, &fault, &write_fault);
753 if (fault || write_fault)
754 return hmm_vma_walk_hole_(addr, end, fault,
755 write_fault, walk);
756
992de9a8
JG
757 pfn = pud_pfn(pud) + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
758 for (i = 0; i < npages; ++i, ++pfn) {
759 hmm_vma_walk->pgmap = get_dev_pagemap(pfn,
760 hmm_vma_walk->pgmap);
761 if (unlikely(!hmm_vma_walk->pgmap))
762 return -EBUSY;
391aab11
JG
763 pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
764 cpu_flags;
992de9a8
JG
765 }
766 if (hmm_vma_walk->pgmap) {
767 put_dev_pagemap(hmm_vma_walk->pgmap);
768 hmm_vma_walk->pgmap = NULL;
769 }
770 hmm_vma_walk->last = end;
771 return 0;
992de9a8
JG
772 }
773
774 split_huge_pud(walk->vma, pudp, addr);
775 if (pud_none(*pudp))
776 goto again;
777
778 pmdp = pmd_offset(pudp, addr);
779 do {
780 next = pmd_addr_end(addr, end);
781 ret = hmm_vma_walk_pmd(pmdp, addr, next, walk);
782 if (ret)
783 return ret;
784 } while (pmdp++, addr = next, addr != end);
785
786 return 0;
787}
788
63d5066f
JG
789static int hmm_vma_walk_hugetlb_entry(pte_t *pte, unsigned long hmask,
790 unsigned long start, unsigned long end,
791 struct mm_walk *walk)
792{
793#ifdef CONFIG_HUGETLB_PAGE
794 unsigned long addr = start, i, pfn, mask, size, pfn_inc;
795 struct hmm_vma_walk *hmm_vma_walk = walk->private;
796 struct hmm_range *range = hmm_vma_walk->range;
797 struct vm_area_struct *vma = walk->vma;
798 struct hstate *h = hstate_vma(vma);
799 uint64_t orig_pfn, cpu_flags;
800 bool fault, write_fault;
801 spinlock_t *ptl;
802 pte_t entry;
803 int ret = 0;
804
805 size = 1UL << huge_page_shift(h);
806 mask = size - 1;
807 if (range->page_shift != PAGE_SHIFT) {
808 /* Make sure we are looking at full page. */
809 if (start & mask)
810 return -EINVAL;
811 if (end < (start + size))
812 return -EINVAL;
813 pfn_inc = size >> PAGE_SHIFT;
814 } else {
815 pfn_inc = 1;
816 size = PAGE_SIZE;
817 }
818
819
820 ptl = huge_pte_lock(hstate_vma(walk->vma), walk->mm, pte);
821 entry = huge_ptep_get(pte);
822
823 i = (start - range->start) >> range->page_shift;
824 orig_pfn = range->pfns[i];
825 range->pfns[i] = range->values[HMM_PFN_NONE];
826 cpu_flags = pte_to_hmm_pfn_flags(range, entry);
827 fault = write_fault = false;
828 hmm_pte_need_fault(hmm_vma_walk, orig_pfn, cpu_flags,
829 &fault, &write_fault);
830 if (fault || write_fault) {
831 ret = -ENOENT;
832 goto unlock;
833 }
834
835 pfn = pte_pfn(entry) + ((start & mask) >> range->page_shift);
836 for (; addr < end; addr += size, i++, pfn += pfn_inc)
391aab11
JG
837 range->pfns[i] = hmm_device_entry_from_pfn(range, pfn) |
838 cpu_flags;
63d5066f
JG
839 hmm_vma_walk->last = end;
840
841unlock:
842 spin_unlock(ptl);
843
844 if (ret == -ENOENT)
845 return hmm_vma_walk_hole_(addr, end, fault, write_fault, walk);
846
847 return ret;
848#else /* CONFIG_HUGETLB_PAGE */
849 return -EINVAL;
850#endif
851}
852
f88a1e90
JG
853static void hmm_pfns_clear(struct hmm_range *range,
854 uint64_t *pfns,
33cd47dc
JG
855 unsigned long addr,
856 unsigned long end)
857{
858 for (; addr < end; addr += PAGE_SIZE, pfns++)
f88a1e90 859 *pfns = range->values[HMM_PFN_NONE];
33cd47dc
JG
860}
861
da4c3c73 862/*
a3e0d41c 863 * hmm_range_register() - start tracking change to CPU page table over a range
25f23a0c 864 * @range: range
a3e0d41c
JG
865 * @mm: the mm struct for the range of virtual address
866 * @start: start virtual address (inclusive)
867 * @end: end virtual address (exclusive)
63d5066f 868 * @page_shift: expect page shift for the range
a3e0d41c 869 * Returns 0 on success, -EFAULT if the address space is no longer valid
25f23a0c 870 *
a3e0d41c 871 * Track updates to the CPU page table see include/linux/hmm.h
da4c3c73 872 */
a3e0d41c 873int hmm_range_register(struct hmm_range *range,
e36acfe6 874 struct hmm_mirror *mirror,
a3e0d41c 875 unsigned long start,
63d5066f
JG
876 unsigned long end,
877 unsigned page_shift)
da4c3c73 878{
63d5066f 879 unsigned long mask = ((1UL << page_shift) - 1UL);
e36acfe6 880 struct hmm *hmm = mirror->hmm;
63d5066f 881
a3e0d41c 882 range->valid = false;
704f3f2c
JG
883 range->hmm = NULL;
884
63d5066f
JG
885 if ((start & mask) || (end & mask))
886 return -EINVAL;
887 if (start >= end)
da4c3c73
JG
888 return -EINVAL;
889
63d5066f 890 range->page_shift = page_shift;
a3e0d41c
JG
891 range->start = start;
892 range->end = end;
893
47f24598
JG
894 /* Prevent hmm_release() from running while the range is valid */
895 if (!mmget_not_zero(hmm->mm))
a3e0d41c 896 return -EFAULT;
da4c3c73 897
085ea250
RC
898 /* Initialize range to track CPU page table updates. */
899 mutex_lock(&hmm->lock);
855ce7d2 900
085ea250 901 range->hmm = hmm;
e36acfe6 902 kref_get(&hmm->kref);
157816f3 903 list_add(&range->list, &hmm->ranges);
86586a41 904
704f3f2c 905 /*
a3e0d41c
JG
906 * If there are any concurrent notifiers we have to wait for them for
907 * the range to be valid (see hmm_range_wait_until_valid()).
704f3f2c 908 */
085ea250 909 if (!hmm->notifiers)
a3e0d41c 910 range->valid = true;
085ea250 911 mutex_unlock(&hmm->lock);
a3e0d41c
JG
912
913 return 0;
da4c3c73 914}
a3e0d41c 915EXPORT_SYMBOL(hmm_range_register);
da4c3c73
JG
916
917/*
a3e0d41c
JG
918 * hmm_range_unregister() - stop tracking change to CPU page table over a range
919 * @range: range
da4c3c73
JG
920 *
921 * Range struct is used to track updates to the CPU page table after a call to
a3e0d41c 922 * hmm_range_register(). See include/linux/hmm.h for how to use it.
da4c3c73 923 */
a3e0d41c 924void hmm_range_unregister(struct hmm_range *range)
da4c3c73 925{
085ea250
RC
926 struct hmm *hmm = range->hmm;
927
085ea250 928 mutex_lock(&hmm->lock);
47f24598 929 list_del_init(&range->list);
085ea250 930 mutex_unlock(&hmm->lock);
da4c3c73 931
a3e0d41c 932 /* Drop reference taken by hmm_range_register() */
47f24598 933 mmput(hmm->mm);
085ea250 934 hmm_put(hmm);
2dcc3eb8
JG
935
936 /*
937 * The range is now invalid and the ref on the hmm is dropped, so
938 * poison the pointer. Leave other fields in place, for the caller's
939 * use.
940 */
941 range->valid = false;
942 memset(&range->hmm, POISON_INUSE, sizeof(range->hmm));
da4c3c73 943}
a3e0d41c
JG
944EXPORT_SYMBOL(hmm_range_unregister);
945
946/*
947 * hmm_range_snapshot() - snapshot CPU page table for a range
948 * @range: range
085ea250 949 * Return: -EINVAL if invalid argument, -ENOMEM out of memory, -EPERM invalid
a3e0d41c
JG
950 * permission (for instance asking for write and range is read only),
951 * -EAGAIN if you need to retry, -EFAULT invalid (ie either no valid
952 * vma or it is illegal to access that range), number of valid pages
953 * in range->pfns[] (from range start address).
954 *
955 * This snapshots the CPU page table for a range of virtual addresses. Snapshot
956 * validity is tracked by range struct. See in include/linux/hmm.h for example
957 * on how to use.
958 */
959long hmm_range_snapshot(struct hmm_range *range)
960{
63d5066f 961 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c
JG
962 unsigned long start = range->start, end;
963 struct hmm_vma_walk hmm_vma_walk;
964 struct hmm *hmm = range->hmm;
965 struct vm_area_struct *vma;
966 struct mm_walk mm_walk;
967
47f24598 968 lockdep_assert_held(&hmm->mm->mmap_sem);
a3e0d41c
JG
969 do {
970 /* If range is no longer valid force retry. */
971 if (!range->valid)
972 return -EAGAIN;
973
974 vma = find_vma(hmm->mm, start);
63d5066f 975 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c
JG
976 return -EFAULT;
977
63d5066f 978 if (is_vm_hugetlb_page(vma)) {
1c2308f0
JG
979 if (huge_page_shift(hstate_vma(vma)) !=
980 range->page_shift &&
63d5066f
JG
981 range->page_shift != PAGE_SHIFT)
982 return -EINVAL;
983 } else {
984 if (range->page_shift != PAGE_SHIFT)
985 return -EINVAL;
986 }
987
a3e0d41c
JG
988 if (!(vma->vm_flags & VM_READ)) {
989 /*
990 * If vma do not allow read access, then assume that it
991 * does not allow write access, either. HMM does not
992 * support architecture that allow write without read.
993 */
994 hmm_pfns_clear(range, range->pfns,
995 range->start, range->end);
996 return -EPERM;
997 }
998
999 range->vma = vma;
992de9a8 1000 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1001 hmm_vma_walk.last = start;
1002 hmm_vma_walk.fault = false;
1003 hmm_vma_walk.range = range;
1004 mm_walk.private = &hmm_vma_walk;
1005 end = min(range->end, vma->vm_end);
1006
1007 mm_walk.vma = vma;
1008 mm_walk.mm = vma->vm_mm;
1009 mm_walk.pte_entry = NULL;
1010 mm_walk.test_walk = NULL;
1011 mm_walk.hugetlb_entry = NULL;
992de9a8 1012 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1013 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1014 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1015 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1016
1017 walk_page_range(start, end, &mm_walk);
1018 start = end;
1019 } while (start < range->end);
1020
1021 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1022}
1023EXPORT_SYMBOL(hmm_range_snapshot);
74eee180
JG
1024
1025/*
73231612 1026 * hmm_range_fault() - try to fault some address in a virtual address range
08232a45 1027 * @range: range being faulted
74eee180 1028 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1029 * Return: number of valid pages in range->pfns[] (from range start
73231612
JG
1030 * address). This may be zero. If the return value is negative,
1031 * then one of the following values may be returned:
1032 *
1033 * -EINVAL invalid arguments or mm or virtual address are in an
63d5066f 1034 * invalid vma (for instance device file vma).
73231612
JG
1035 * -ENOMEM: Out of memory.
1036 * -EPERM: Invalid permission (for instance asking for write and
1037 * range is read only).
1038 * -EAGAIN: If you need to retry and mmap_sem was drop. This can only
1039 * happens if block argument is false.
1040 * -EBUSY: If the the range is being invalidated and you should wait
1041 * for invalidation to finish.
1042 * -EFAULT: Invalid (ie either no valid vma or it is illegal to access
1043 * that range), number of valid pages in range->pfns[] (from
1044 * range start address).
74eee180
JG
1045 *
1046 * This is similar to a regular CPU page fault except that it will not trigger
73231612
JG
1047 * any memory migration if the memory being faulted is not accessible by CPUs
1048 * and caller does not ask for migration.
74eee180 1049 *
ff05c0c6
JG
1050 * On error, for one virtual address in the range, the function will mark the
1051 * corresponding HMM pfn entry with an error flag.
74eee180 1052 */
73231612 1053long hmm_range_fault(struct hmm_range *range, bool block)
74eee180 1054{
63d5066f 1055 const unsigned long device_vma = VM_IO | VM_PFNMAP | VM_MIXEDMAP;
a3e0d41c 1056 unsigned long start = range->start, end;
74eee180 1057 struct hmm_vma_walk hmm_vma_walk;
a3e0d41c
JG
1058 struct hmm *hmm = range->hmm;
1059 struct vm_area_struct *vma;
74eee180 1060 struct mm_walk mm_walk;
74eee180
JG
1061 int ret;
1062
47f24598 1063 lockdep_assert_held(&hmm->mm->mmap_sem);
704f3f2c 1064
a3e0d41c
JG
1065 do {
1066 /* If range is no longer valid force retry. */
1067 if (!range->valid) {
1068 up_read(&hmm->mm->mmap_sem);
1069 return -EAGAIN;
1070 }
74eee180 1071
a3e0d41c 1072 vma = find_vma(hmm->mm, start);
63d5066f 1073 if (vma == NULL || (vma->vm_flags & device_vma))
a3e0d41c 1074 return -EFAULT;
704f3f2c 1075
63d5066f
JG
1076 if (is_vm_hugetlb_page(vma)) {
1077 if (huge_page_shift(hstate_vma(vma)) !=
1078 range->page_shift &&
1079 range->page_shift != PAGE_SHIFT)
1080 return -EINVAL;
1081 } else {
1082 if (range->page_shift != PAGE_SHIFT)
1083 return -EINVAL;
1084 }
1085
a3e0d41c
JG
1086 if (!(vma->vm_flags & VM_READ)) {
1087 /*
1088 * If vma do not allow read access, then assume that it
1089 * does not allow write access, either. HMM does not
1090 * support architecture that allow write without read.
1091 */
1092 hmm_pfns_clear(range, range->pfns,
1093 range->start, range->end);
1094 return -EPERM;
1095 }
74eee180 1096
a3e0d41c 1097 range->vma = vma;
992de9a8 1098 hmm_vma_walk.pgmap = NULL;
a3e0d41c
JG
1099 hmm_vma_walk.last = start;
1100 hmm_vma_walk.fault = true;
1101 hmm_vma_walk.block = block;
1102 hmm_vma_walk.range = range;
1103 mm_walk.private = &hmm_vma_walk;
1104 end = min(range->end, vma->vm_end);
1105
1106 mm_walk.vma = vma;
1107 mm_walk.mm = vma->vm_mm;
1108 mm_walk.pte_entry = NULL;
1109 mm_walk.test_walk = NULL;
1110 mm_walk.hugetlb_entry = NULL;
992de9a8 1111 mm_walk.pud_entry = hmm_vma_walk_pud;
a3e0d41c
JG
1112 mm_walk.pmd_entry = hmm_vma_walk_pmd;
1113 mm_walk.pte_hole = hmm_vma_walk_hole;
63d5066f 1114 mm_walk.hugetlb_entry = hmm_vma_walk_hugetlb_entry;
a3e0d41c
JG
1115
1116 do {
1117 ret = walk_page_range(start, end, &mm_walk);
1118 start = hmm_vma_walk.last;
1119
1120 /* Keep trying while the range is valid. */
1121 } while (ret == -EBUSY && range->valid);
1122
1123 if (ret) {
1124 unsigned long i;
1125
1126 i = (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
1127 hmm_pfns_clear(range, &range->pfns[i],
1128 hmm_vma_walk.last, range->end);
1129 return ret;
1130 }
1131 start = end;
74eee180 1132
a3e0d41c 1133 } while (start < range->end);
704f3f2c 1134
73231612 1135 return (hmm_vma_walk.last - range->start) >> PAGE_SHIFT;
74eee180 1136}
73231612 1137EXPORT_SYMBOL(hmm_range_fault);
55c0ece8
JG
1138
1139/**
1140 * hmm_range_dma_map() - hmm_range_fault() and dma map page all in one.
1141 * @range: range being faulted
1142 * @device: device against to dma map page to
1143 * @daddrs: dma address of mapped pages
1144 * @block: allow blocking on fault (if true it sleeps and do not drop mmap_sem)
085ea250 1145 * Return: number of pages mapped on success, -EAGAIN if mmap_sem have been
55c0ece8
JG
1146 * drop and you need to try again, some other error value otherwise
1147 *
1148 * Note same usage pattern as hmm_range_fault().
1149 */
1150long hmm_range_dma_map(struct hmm_range *range,
1151 struct device *device,
1152 dma_addr_t *daddrs,
1153 bool block)
1154{
1155 unsigned long i, npages, mapped;
1156 long ret;
1157
1158 ret = hmm_range_fault(range, block);
1159 if (ret <= 0)
1160 return ret ? ret : -EBUSY;
1161
1162 npages = (range->end - range->start) >> PAGE_SHIFT;
1163 for (i = 0, mapped = 0; i < npages; ++i) {
1164 enum dma_data_direction dir = DMA_TO_DEVICE;
1165 struct page *page;
1166
1167 /*
1168 * FIXME need to update DMA API to provide invalid DMA address
1169 * value instead of a function to test dma address value. This
1170 * would remove lot of dumb code duplicated accross many arch.
1171 *
1172 * For now setting it to 0 here is good enough as the pfns[]
1173 * value is what is use to check what is valid and what isn't.
1174 */
1175 daddrs[i] = 0;
1176
391aab11 1177 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1178 if (page == NULL)
1179 continue;
1180
1181 /* Check if range is being invalidated */
1182 if (!range->valid) {
1183 ret = -EBUSY;
1184 goto unmap;
1185 }
1186
1187 /* If it is read and write than map bi-directional. */
1188 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1189 dir = DMA_BIDIRECTIONAL;
1190
1191 daddrs[i] = dma_map_page(device, page, 0, PAGE_SIZE, dir);
1192 if (dma_mapping_error(device, daddrs[i])) {
1193 ret = -EFAULT;
1194 goto unmap;
1195 }
1196
1197 mapped++;
1198 }
1199
1200 return mapped;
1201
1202unmap:
1203 for (npages = i, i = 0; (i < npages) && mapped; ++i) {
1204 enum dma_data_direction dir = DMA_TO_DEVICE;
1205 struct page *page;
1206
391aab11 1207 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1208 if (page == NULL)
1209 continue;
1210
1211 if (dma_mapping_error(device, daddrs[i]))
1212 continue;
1213
1214 /* If it is read and write than map bi-directional. */
1215 if (range->pfns[i] & range->flags[HMM_PFN_WRITE])
1216 dir = DMA_BIDIRECTIONAL;
1217
1218 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1219 mapped--;
1220 }
1221
1222 return ret;
1223}
1224EXPORT_SYMBOL(hmm_range_dma_map);
1225
1226/**
1227 * hmm_range_dma_unmap() - unmap range of that was map with hmm_range_dma_map()
1228 * @range: range being unmapped
1229 * @vma: the vma against which the range (optional)
1230 * @device: device against which dma map was done
1231 * @daddrs: dma address of mapped pages
1232 * @dirty: dirty page if it had the write flag set
085ea250 1233 * Return: number of page unmapped on success, -EINVAL otherwise
55c0ece8
JG
1234 *
1235 * Note that caller MUST abide by mmu notifier or use HMM mirror and abide
1236 * to the sync_cpu_device_pagetables() callback so that it is safe here to
1237 * call set_page_dirty(). Caller must also take appropriate locks to avoid
1238 * concurrent mmu notifier or sync_cpu_device_pagetables() to make progress.
1239 */
1240long hmm_range_dma_unmap(struct hmm_range *range,
1241 struct vm_area_struct *vma,
1242 struct device *device,
1243 dma_addr_t *daddrs,
1244 bool dirty)
1245{
1246 unsigned long i, npages;
1247 long cpages = 0;
1248
1249 /* Sanity check. */
1250 if (range->end <= range->start)
1251 return -EINVAL;
1252 if (!daddrs)
1253 return -EINVAL;
1254 if (!range->pfns)
1255 return -EINVAL;
1256
1257 npages = (range->end - range->start) >> PAGE_SHIFT;
1258 for (i = 0; i < npages; ++i) {
1259 enum dma_data_direction dir = DMA_TO_DEVICE;
1260 struct page *page;
1261
391aab11 1262 page = hmm_device_entry_to_page(range, range->pfns[i]);
55c0ece8
JG
1263 if (page == NULL)
1264 continue;
1265
1266 /* If it is read and write than map bi-directional. */
1267 if (range->pfns[i] & range->flags[HMM_PFN_WRITE]) {
1268 dir = DMA_BIDIRECTIONAL;
1269
1270 /*
1271 * See comments in function description on why it is
1272 * safe here to call set_page_dirty()
1273 */
1274 if (dirty)
1275 set_page_dirty(page);
1276 }
1277
1278 /* Unmap and clear pfns/dma address */
1279 dma_unmap_page(device, daddrs[i], PAGE_SIZE, dir);
1280 range->pfns[i] = range->values[HMM_PFN_NONE];
1281 /* FIXME see comments in hmm_vma_dma_map() */
1282 daddrs[i] = 0;
1283 cpages++;
1284 }
1285
1286 return cpages;
1287}
1288EXPORT_SYMBOL(hmm_range_dma_unmap);
c0b12405 1289#endif /* IS_ENABLED(CONFIG_HMM_MIRROR) */
4ef589dc
JG
1290
1291
df6ad698 1292#if IS_ENABLED(CONFIG_DEVICE_PRIVATE) || IS_ENABLED(CONFIG_DEVICE_PUBLIC)
4ef589dc
JG
1293struct page *hmm_vma_alloc_locked_page(struct vm_area_struct *vma,
1294 unsigned long addr)
1295{
1296 struct page *page;
1297
1298 page = alloc_page_vma(GFP_HIGHUSER, vma, addr);
1299 if (!page)
1300 return NULL;
1301 lock_page(page);
1302 return page;
1303}
1304EXPORT_SYMBOL(hmm_vma_alloc_locked_page);
1305
1306
1307static void hmm_devmem_ref_release(struct percpu_ref *ref)
1308{
1309 struct hmm_devmem *devmem;
1310
1311 devmem = container_of(ref, struct hmm_devmem, ref);
1312 complete(&devmem->completion);
1313}
1314
1315static void hmm_devmem_ref_exit(void *data)
1316{
1317 struct percpu_ref *ref = data;
1318 struct hmm_devmem *devmem;
1319
1320 devmem = container_of(ref, struct hmm_devmem, ref);
bbecd94e 1321 wait_for_completion(&devmem->completion);
4ef589dc 1322 percpu_ref_exit(ref);
4ef589dc
JG
1323}
1324
bbecd94e 1325static void hmm_devmem_ref_kill(struct percpu_ref *ref)
4ef589dc 1326{
4ef589dc 1327 percpu_ref_kill(ref);
4ef589dc
JG
1328}
1329
b57e622e 1330static vm_fault_t hmm_devmem_fault(struct vm_area_struct *vma,
4ef589dc
JG
1331 unsigned long addr,
1332 const struct page *page,
1333 unsigned int flags,
1334 pmd_t *pmdp)
1335{
1336 struct hmm_devmem *devmem = page->pgmap->data;
1337
1338 return devmem->ops->fault(devmem, vma, addr, page, flags, pmdp);
1339}
1340
1341static void hmm_devmem_free(struct page *page, void *data)
1342{
1343 struct hmm_devmem *devmem = data;
1344
2fa147bd
DW
1345 page->mapping = NULL;
1346
4ef589dc
JG
1347 devmem->ops->free(devmem, page);
1348}
1349
4ef589dc
JG
1350/*
1351 * hmm_devmem_add() - hotplug ZONE_DEVICE memory for device memory
1352 *
1353 * @ops: memory event device driver callback (see struct hmm_devmem_ops)
1354 * @device: device struct to bind the resource too
1355 * @size: size in bytes of the device memory to add
085ea250 1356 * Return: pointer to new hmm_devmem struct ERR_PTR otherwise
4ef589dc
JG
1357 *
1358 * This function first finds an empty range of physical address big enough to
1359 * contain the new resource, and then hotplugs it as ZONE_DEVICE memory, which
1360 * in turn allocates struct pages. It does not do anything beyond that; all
1361 * events affecting the memory will go through the various callbacks provided
1362 * by hmm_devmem_ops struct.
1363 *
1364 * Device driver should call this function during device initialization and
1365 * is then responsible of memory management. HMM only provides helpers.
1366 */
1367struct hmm_devmem *hmm_devmem_add(const struct hmm_devmem_ops *ops,
1368 struct device *device,
1369 unsigned long size)
1370{
1371 struct hmm_devmem *devmem;
1372 resource_size_t addr;
bbecd94e 1373 void *result;
4ef589dc
JG
1374 int ret;
1375
e7638488 1376 dev_pagemap_get_ops();
4ef589dc 1377
58ef15b7 1378 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
4ef589dc
JG
1379 if (!devmem)
1380 return ERR_PTR(-ENOMEM);
1381
1382 init_completion(&devmem->completion);
1383 devmem->pfn_first = -1UL;
1384 devmem->pfn_last = -1UL;
1385 devmem->resource = NULL;
1386 devmem->device = device;
1387 devmem->ops = ops;
1388
1389 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1390 0, GFP_KERNEL);
1391 if (ret)
58ef15b7 1392 return ERR_PTR(ret);
4ef589dc 1393
58ef15b7 1394 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit, &devmem->ref);
4ef589dc 1395 if (ret)
58ef15b7 1396 return ERR_PTR(ret);
4ef589dc
JG
1397
1398 size = ALIGN(size, PA_SECTION_SIZE);
1399 addr = min((unsigned long)iomem_resource.end,
1400 (1UL << MAX_PHYSMEM_BITS) - 1);
1401 addr = addr - size + 1UL;
1402
1403 /*
1404 * FIXME add a new helper to quickly walk resource tree and find free
1405 * range
1406 *
1407 * FIXME what about ioport_resource resource ?
1408 */
1409 for (; addr > size && addr >= iomem_resource.start; addr -= size) {
1410 ret = region_intersects(addr, size, 0, IORES_DESC_NONE);
1411 if (ret != REGION_DISJOINT)
1412 continue;
1413
1414 devmem->resource = devm_request_mem_region(device, addr, size,
1415 dev_name(device));
58ef15b7
DW
1416 if (!devmem->resource)
1417 return ERR_PTR(-ENOMEM);
4ef589dc
JG
1418 break;
1419 }
58ef15b7
DW
1420 if (!devmem->resource)
1421 return ERR_PTR(-ERANGE);
4ef589dc
JG
1422
1423 devmem->resource->desc = IORES_DESC_DEVICE_PRIVATE_MEMORY;
1424 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1425 devmem->pfn_last = devmem->pfn_first +
1426 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1427 devmem->page_fault = hmm_devmem_fault;
4ef589dc 1428
bbecd94e
DW
1429 devmem->pagemap.type = MEMORY_DEVICE_PRIVATE;
1430 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1431 devmem->pagemap.page_free = hmm_devmem_free;
1432 devmem->pagemap.altmap_valid = false;
1433 devmem->pagemap.ref = &devmem->ref;
1434 devmem->pagemap.data = devmem;
1435 devmem->pagemap.kill = hmm_devmem_ref_kill;
4ef589dc 1436
bbecd94e
DW
1437 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1438 if (IS_ERR(result))
1439 return result;
4ef589dc 1440 return devmem;
4ef589dc 1441}
02917e9f 1442EXPORT_SYMBOL_GPL(hmm_devmem_add);
4ef589dc 1443
d3df0a42
JG
1444struct hmm_devmem *hmm_devmem_add_resource(const struct hmm_devmem_ops *ops,
1445 struct device *device,
1446 struct resource *res)
1447{
1448 struct hmm_devmem *devmem;
bbecd94e 1449 void *result;
d3df0a42
JG
1450 int ret;
1451
1452 if (res->desc != IORES_DESC_DEVICE_PUBLIC_MEMORY)
1453 return ERR_PTR(-EINVAL);
1454
e7638488 1455 dev_pagemap_get_ops();
d3df0a42 1456
58ef15b7 1457 devmem = devm_kzalloc(device, sizeof(*devmem), GFP_KERNEL);
d3df0a42
JG
1458 if (!devmem)
1459 return ERR_PTR(-ENOMEM);
1460
1461 init_completion(&devmem->completion);
1462 devmem->pfn_first = -1UL;
1463 devmem->pfn_last = -1UL;
1464 devmem->resource = res;
1465 devmem->device = device;
1466 devmem->ops = ops;
1467
1468 ret = percpu_ref_init(&devmem->ref, &hmm_devmem_ref_release,
1469 0, GFP_KERNEL);
1470 if (ret)
58ef15b7 1471 return ERR_PTR(ret);
d3df0a42 1472
58ef15b7
DW
1473 ret = devm_add_action_or_reset(device, hmm_devmem_ref_exit,
1474 &devmem->ref);
d3df0a42 1475 if (ret)
58ef15b7 1476 return ERR_PTR(ret);
d3df0a42
JG
1477
1478 devmem->pfn_first = devmem->resource->start >> PAGE_SHIFT;
1479 devmem->pfn_last = devmem->pfn_first +
1480 (resource_size(devmem->resource) >> PAGE_SHIFT);
063a7d1d 1481 devmem->page_fault = hmm_devmem_fault;
d3df0a42 1482
bbecd94e
DW
1483 devmem->pagemap.type = MEMORY_DEVICE_PUBLIC;
1484 devmem->pagemap.res = *devmem->resource;
bbecd94e
DW
1485 devmem->pagemap.page_free = hmm_devmem_free;
1486 devmem->pagemap.altmap_valid = false;
1487 devmem->pagemap.ref = &devmem->ref;
1488 devmem->pagemap.data = devmem;
1489 devmem->pagemap.kill = hmm_devmem_ref_kill;
d3df0a42 1490
bbecd94e
DW
1491 result = devm_memremap_pages(devmem->device, &devmem->pagemap);
1492 if (IS_ERR(result))
1493 return result;
d3df0a42 1494 return devmem;
d3df0a42 1495}
02917e9f 1496EXPORT_SYMBOL_GPL(hmm_devmem_add_resource);
d3df0a42 1497
858b54da
JG
1498/*
1499 * A device driver that wants to handle multiple devices memory through a
1500 * single fake device can use hmm_device to do so. This is purely a helper
1501 * and it is not needed to make use of any HMM functionality.
1502 */
1503#define HMM_DEVICE_MAX 256
1504
1505static DECLARE_BITMAP(hmm_device_mask, HMM_DEVICE_MAX);
1506static DEFINE_SPINLOCK(hmm_device_lock);
1507static struct class *hmm_device_class;
1508static dev_t hmm_device_devt;
1509
1510static void hmm_device_release(struct device *device)
1511{
1512 struct hmm_device *hmm_device;
1513
1514 hmm_device = container_of(device, struct hmm_device, device);
1515 spin_lock(&hmm_device_lock);
1516 clear_bit(hmm_device->minor, hmm_device_mask);
1517 spin_unlock(&hmm_device_lock);
1518
1519 kfree(hmm_device);
1520}
1521
1522struct hmm_device *hmm_device_new(void *drvdata)
1523{
1524 struct hmm_device *hmm_device;
1525
1526 hmm_device = kzalloc(sizeof(*hmm_device), GFP_KERNEL);
1527 if (!hmm_device)
1528 return ERR_PTR(-ENOMEM);
1529
1530 spin_lock(&hmm_device_lock);
1531 hmm_device->minor = find_first_zero_bit(hmm_device_mask, HMM_DEVICE_MAX);
1532 if (hmm_device->minor >= HMM_DEVICE_MAX) {
1533 spin_unlock(&hmm_device_lock);
1534 kfree(hmm_device);
1535 return ERR_PTR(-EBUSY);
1536 }
1537 set_bit(hmm_device->minor, hmm_device_mask);
1538 spin_unlock(&hmm_device_lock);
1539
1540 dev_set_name(&hmm_device->device, "hmm_device%d", hmm_device->minor);
1541 hmm_device->device.devt = MKDEV(MAJOR(hmm_device_devt),
1542 hmm_device->minor);
1543 hmm_device->device.release = hmm_device_release;
1544 dev_set_drvdata(&hmm_device->device, drvdata);
1545 hmm_device->device.class = hmm_device_class;
1546 device_initialize(&hmm_device->device);
1547
1548 return hmm_device;
1549}
1550EXPORT_SYMBOL(hmm_device_new);
1551
1552void hmm_device_put(struct hmm_device *hmm_device)
1553{
1554 put_device(&hmm_device->device);
1555}
1556EXPORT_SYMBOL(hmm_device_put);
1557
1558static int __init hmm_init(void)
1559{
1560 int ret;
1561
1562 ret = alloc_chrdev_region(&hmm_device_devt, 0,
1563 HMM_DEVICE_MAX,
1564 "hmm_device");
1565 if (ret)
1566 return ret;
1567
1568 hmm_device_class = class_create(THIS_MODULE, "hmm_device");
1569 if (IS_ERR(hmm_device_class)) {
1570 unregister_chrdev_region(hmm_device_devt, HMM_DEVICE_MAX);
1571 return PTR_ERR(hmm_device_class);
1572 }
1573 return 0;
1574}
1575
1576device_initcall(hmm_init);
df6ad698 1577#endif /* CONFIG_DEVICE_PRIVATE || CONFIG_DEVICE_PUBLIC */