]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/huge_memory.c
UBUNTU: Ubuntu-4.15.0-96.97
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
be765d99 36#include <linux/page_owner.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
4a6c1297 65
6fcb52a5 66static struct page *get_huge_zero_page(void)
97ae1749
KS
67{
68 struct page *zero_page;
69retry:
70 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 71 return READ_ONCE(huge_zero_page);
97ae1749
KS
72
73 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 74 HPAGE_PMD_ORDER);
d8a8e1f0
KS
75 if (!zero_page) {
76 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 77 return NULL;
d8a8e1f0
KS
78 }
79 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 80 preempt_disable();
5918d10a 81 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 82 preempt_enable();
5ddacbe9 83 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
84 goto retry;
85 }
86
87 /* We take additional reference here. It will be put back by shrinker */
88 atomic_set(&huge_zero_refcount, 2);
89 preempt_enable();
4db0c3c2 90 return READ_ONCE(huge_zero_page);
4a6c1297
KS
91}
92
6fcb52a5 93static void put_huge_zero_page(void)
4a6c1297 94{
97ae1749
KS
95 /*
96 * Counter should never go to zero here. Only shrinker can put
97 * last reference.
98 */
99 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
100}
101
6fcb52a5
AL
102struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103{
104 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
105 return READ_ONCE(huge_zero_page);
106
107 if (!get_huge_zero_page())
108 return NULL;
109
110 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
111 put_huge_zero_page();
112
113 return READ_ONCE(huge_zero_page);
114}
115
116void mm_put_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 put_huge_zero_page();
120}
121
48896466
GC
122static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
123 struct shrink_control *sc)
4a6c1297 124{
48896466
GC
125 /* we can free zero page only if last reference remains */
126 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
127}
97ae1749 128
48896466
GC
129static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
130 struct shrink_control *sc)
131{
97ae1749 132 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
133 struct page *zero_page = xchg(&huge_zero_page, NULL);
134 BUG_ON(zero_page == NULL);
5ddacbe9 135 __free_pages(zero_page, compound_order(zero_page));
48896466 136 return HPAGE_PMD_NR;
97ae1749
KS
137 }
138
139 return 0;
4a6c1297
KS
140}
141
97ae1749 142static struct shrinker huge_zero_page_shrinker = {
48896466
GC
143 .count_objects = shrink_huge_zero_page_count,
144 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
145 .seeks = DEFAULT_SEEKS,
146};
147
71e3aac0 148#ifdef CONFIG_SYSFS
71e3aac0
AA
149static ssize_t enabled_show(struct kobject *kobj,
150 struct kobj_attribute *attr, char *buf)
151{
444eb2a4
MG
152 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
153 return sprintf(buf, "[always] madvise never\n");
154 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
155 return sprintf(buf, "always [madvise] never\n");
156 else
157 return sprintf(buf, "always madvise [never]\n");
71e3aac0 158}
444eb2a4 159
71e3aac0
AA
160static ssize_t enabled_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
163{
21440d7e 164 ssize_t ret = count;
ba76149f 165
21440d7e
DR
166 if (!memcmp("always", buf,
167 min(sizeof("always")-1, count))) {
168 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
169 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
170 } else if (!memcmp("madvise", buf,
171 min(sizeof("madvise")-1, count))) {
172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 } else if (!memcmp("never", buf,
175 min(sizeof("never")-1, count))) {
176 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
178 } else
179 ret = -EINVAL;
ba76149f
AA
180
181 if (ret > 0) {
b46e756f 182 int err = start_stop_khugepaged();
ba76149f
AA
183 if (err)
184 ret = err;
185 }
ba76149f 186 return ret;
71e3aac0
AA
187}
188static struct kobj_attribute enabled_attr =
189 __ATTR(enabled, 0644, enabled_show, enabled_store);
190
b46e756f 191ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
192 struct kobj_attribute *attr, char *buf,
193 enum transparent_hugepage_flag flag)
194{
e27e6151
BH
195 return sprintf(buf, "%d\n",
196 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 197}
e27e6151 198
b46e756f 199ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
200 struct kobj_attribute *attr,
201 const char *buf, size_t count,
202 enum transparent_hugepage_flag flag)
203{
e27e6151
BH
204 unsigned long value;
205 int ret;
206
207 ret = kstrtoul(buf, 10, &value);
208 if (ret < 0)
209 return ret;
210 if (value > 1)
211 return -EINVAL;
212
213 if (value)
71e3aac0 214 set_bit(flag, &transparent_hugepage_flags);
e27e6151 215 else
71e3aac0 216 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
217
218 return count;
219}
220
71e3aac0
AA
221static ssize_t defrag_show(struct kobject *kobj,
222 struct kobj_attribute *attr, char *buf)
223{
444eb2a4 224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 225 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
227 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
228 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
229 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
230 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
231 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
232 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 233}
21440d7e 234
71e3aac0
AA
235static ssize_t defrag_store(struct kobject *kobj,
236 struct kobj_attribute *attr,
237 const char *buf, size_t count)
238{
21440d7e
DR
239 if (!memcmp("always", buf,
240 min(sizeof("always")-1, count))) {
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
244 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
245 } else if (!memcmp("defer+madvise", buf,
246 min(sizeof("defer+madvise")-1, count))) {
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
250 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
251 } else if (!memcmp("defer", buf,
252 min(sizeof("defer")-1, count))) {
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
256 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
257 } else if (!memcmp("madvise", buf,
258 min(sizeof("madvise")-1, count))) {
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 } else if (!memcmp("never", buf,
264 min(sizeof("never")-1, count))) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
271
272 return count;
71e3aac0
AA
273}
274static struct kobj_attribute defrag_attr =
275 __ATTR(defrag, 0644, defrag_show, defrag_store);
276
79da5407
KS
277static ssize_t use_zero_page_show(struct kobject *kobj,
278 struct kobj_attribute *attr, char *buf)
279{
b46e756f 280 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
281 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282}
283static ssize_t use_zero_page_store(struct kobject *kobj,
284 struct kobj_attribute *attr, const char *buf, size_t count)
285{
b46e756f 286 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static struct kobj_attribute use_zero_page_attr =
290 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
291
292static ssize_t hpage_pmd_size_show(struct kobject *kobj,
293 struct kobj_attribute *attr, char *buf)
294{
295 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296}
297static struct kobj_attribute hpage_pmd_size_attr =
298 __ATTR_RO(hpage_pmd_size);
299
71e3aac0
AA
300#ifdef CONFIG_DEBUG_VM
301static ssize_t debug_cow_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
303{
b46e756f 304 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
305 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306}
307static ssize_t debug_cow_store(struct kobject *kobj,
308 struct kobj_attribute *attr,
309 const char *buf, size_t count)
310{
b46e756f 311 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
312 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313}
314static struct kobj_attribute debug_cow_attr =
315 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
316#endif /* CONFIG_DEBUG_VM */
317
318static struct attribute *hugepage_attr[] = {
319 &enabled_attr.attr,
320 &defrag_attr.attr,
79da5407 321 &use_zero_page_attr.attr,
49920d28 322 &hpage_pmd_size_attr.attr,
e496cf3d 323#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
324 &shmem_enabled_attr.attr,
325#endif
71e3aac0
AA
326#ifdef CONFIG_DEBUG_VM
327 &debug_cow_attr.attr,
328#endif
329 NULL,
330};
331
8aa95a21 332static const struct attribute_group hugepage_attr_group = {
71e3aac0 333 .attrs = hugepage_attr,
ba76149f
AA
334};
335
569e5590 336static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 337{
71e3aac0
AA
338 int err;
339
569e5590
SL
340 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
341 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 342 pr_err("failed to create transparent hugepage kobject\n");
569e5590 343 return -ENOMEM;
ba76149f
AA
344 }
345
569e5590 346 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 347 if (err) {
ae3a8c1c 348 pr_err("failed to register transparent hugepage group\n");
569e5590 349 goto delete_obj;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto remove_hp_group;
ba76149f 356 }
569e5590
SL
357
358 return 0;
359
360remove_hp_group:
361 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362delete_obj:
363 kobject_put(*hugepage_kobj);
364 return err;
365}
366
367static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368{
369 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
370 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
371 kobject_put(hugepage_kobj);
372}
373#else
374static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375{
376 return 0;
377}
378
379static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380{
381}
382#endif /* CONFIG_SYSFS */
383
384static int __init hugepage_init(void)
385{
386 int err;
387 struct kobject *hugepage_kobj;
388
389 if (!has_transparent_hugepage()) {
390 transparent_hugepage_flags = 0;
391 return -EINVAL;
392 }
393
ff20c2e0
KS
394 /*
395 * hugepages can't be allocated by the buddy allocator
396 */
397 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 /*
399 * we use page->mapping and page->index in second tail page
400 * as list_head: assuming THP order >= 2
401 */
402 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403
569e5590
SL
404 err = hugepage_init_sysfs(&hugepage_kobj);
405 if (err)
65ebb64f 406 goto err_sysfs;
ba76149f 407
b46e756f 408 err = khugepaged_init();
ba76149f 409 if (err)
65ebb64f 410 goto err_slab;
ba76149f 411
65ebb64f
KS
412 err = register_shrinker(&huge_zero_page_shrinker);
413 if (err)
414 goto err_hzp_shrinker;
9a982250
KS
415 err = register_shrinker(&deferred_split_shrinker);
416 if (err)
417 goto err_split_shrinker;
97ae1749 418
97562cd2
RR
419 /*
420 * By default disable transparent hugepages on smaller systems,
421 * where the extra memory used could hurt more than TLB overhead
422 * is likely to save. The admin can still enable it through /sys.
423 */
79553da2 424 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 425 transparent_hugepage_flags = 0;
79553da2
KS
426 return 0;
427 }
97562cd2 428
79553da2 429 err = start_stop_khugepaged();
65ebb64f
KS
430 if (err)
431 goto err_khugepaged;
ba76149f 432
569e5590 433 return 0;
65ebb64f 434err_khugepaged:
9a982250
KS
435 unregister_shrinker(&deferred_split_shrinker);
436err_split_shrinker:
65ebb64f
KS
437 unregister_shrinker(&huge_zero_page_shrinker);
438err_hzp_shrinker:
b46e756f 439 khugepaged_destroy();
65ebb64f 440err_slab:
569e5590 441 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 442err_sysfs:
ba76149f 443 return err;
71e3aac0 444}
a64fb3cd 445subsys_initcall(hugepage_init);
71e3aac0
AA
446
447static int __init setup_transparent_hugepage(char *str)
448{
449 int ret = 0;
450 if (!str)
451 goto out;
452 if (!strcmp(str, "always")) {
453 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
454 &transparent_hugepage_flags);
455 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
456 &transparent_hugepage_flags);
457 ret = 1;
458 } else if (!strcmp(str, "madvise")) {
459 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "never")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 }
471out:
472 if (!ret)
ae3a8c1c 473 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
474 return ret;
475}
476__setup("transparent_hugepage=", setup_transparent_hugepage);
477
f55e1014 478pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 479{
f55e1014 480 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
481 pmd = pmd_mkwrite(pmd);
482 return pmd;
483}
484
9a982250
KS
485static inline struct list_head *page_deferred_list(struct page *page)
486{
487 /*
488 * ->lru in the tail pages is occupied by compound_head.
489 * Let's use ->mapping + ->index in the second tail page as list_head.
490 */
491 return (struct list_head *)&page[2].mapping;
492}
493
494void prep_transhuge_page(struct page *page)
495{
496 /*
497 * we use page->mapping and page->indexlru in second tail page
498 * as list_head: assuming THP order >= 2
499 */
9a982250
KS
500
501 INIT_LIST_HEAD(page_deferred_list(page));
502 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
503}
504
1e0f9f66
KS
505static unsigned long __thp_get_unmapped_area(struct file *filp,
506 unsigned long addr, unsigned long len,
74d2fad1
TK
507 loff_t off, unsigned long flags, unsigned long size)
508{
74d2fad1
TK
509 loff_t off_end = off + len;
510 loff_t off_align = round_up(off, size);
1e0f9f66 511 unsigned long len_pad, ret;
74d2fad1
TK
512
513 if (off_end <= off_align || (off_end - off_align) < size)
514 return 0;
515
516 len_pad = len + size;
517 if (len_pad < len || (off + len_pad) < off)
518 return 0;
519
1e0f9f66 520 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 521 off >> PAGE_SHIFT, flags);
1e0f9f66
KS
522
523 /*
524 * The failure might be due to length padding. The caller will retry
525 * without the padding.
526 */
527 if (IS_ERR_VALUE(ret))
74d2fad1
TK
528 return 0;
529
1e0f9f66
KS
530 /*
531 * Do not try to align to THP boundary if allocation at the address
532 * hint succeeds.
533 */
534 if (ret == addr)
535 return addr;
536
537 ret += (off - ret) & (size - 1);
538 return ret;
74d2fad1
TK
539}
540
541unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
542 unsigned long len, unsigned long pgoff, unsigned long flags)
543{
1e0f9f66 544 unsigned long ret;
74d2fad1
TK
545 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
546
74d2fad1
TK
547 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
548 goto out;
549
1e0f9f66
KS
550 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
551 if (ret)
552 return ret;
553out:
74d2fad1
TK
554 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
555}
556EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
557
82b0f8c3 558static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 559 gfp_t gfp)
71e3aac0 560{
82b0f8c3 561 struct vm_area_struct *vma = vmf->vma;
00501b53 562 struct mem_cgroup *memcg;
71e3aac0 563 pgtable_t pgtable;
82b0f8c3 564 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
6b31d595 565 int ret = 0;
71e3aac0 566
309381fe 567 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 568
46fe940f
DR
569 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
570 true)) {
6b251fc9
AA
571 put_page(page);
572 count_vm_event(THP_FAULT_FALLBACK);
573 return VM_FAULT_FALLBACK;
574 }
00501b53 575
bae473a4 576 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 577 if (unlikely(!pgtable)) {
6b31d595
MH
578 ret = VM_FAULT_OOM;
579 goto release;
00501b53 580 }
71e3aac0 581
c79b57e4 582 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
583 /*
584 * The memory barrier inside __SetPageUptodate makes sure that
585 * clear_huge_page writes become visible before the set_pmd_at()
586 * write.
587 */
71e3aac0
AA
588 __SetPageUptodate(page);
589
82b0f8c3
JK
590 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
591 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 592 goto unlock_release;
71e3aac0
AA
593 } else {
594 pmd_t entry;
6b251fc9 595
6b31d595
MH
596 ret = check_stable_address_space(vma->vm_mm);
597 if (ret)
598 goto unlock_release;
599
6b251fc9
AA
600 /* Deliver the page fault to userland */
601 if (userfaultfd_missing(vma)) {
602 int ret;
603
82b0f8c3 604 spin_unlock(vmf->ptl);
f627c2f5 605 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 606 put_page(page);
bae473a4 607 pte_free(vma->vm_mm, pgtable);
82b0f8c3 608 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
609 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
610 return ret;
611 }
612
3122359a 613 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 614 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 615 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 616 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 617 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
618 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
619 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 620 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 621 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 622 spin_unlock(vmf->ptl);
6b251fc9 623 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
624 }
625
aa2e878e 626 return 0;
6b31d595
MH
627unlock_release:
628 spin_unlock(vmf->ptl);
629release:
630 if (pgtable)
631 pte_free(vma->vm_mm, pgtable);
632 mem_cgroup_cancel_charge(page, memcg, true);
633 put_page(page);
634 return ret;
635
71e3aac0
AA
636}
637
444eb2a4 638/*
21440d7e
DR
639 * always: directly stall for all thp allocations
640 * defer: wake kswapd and fail if not immediately available
641 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
642 * fail if not immediately available
643 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
644 * available
645 * never: never stall for any thp allocation
444eb2a4
MG
646 */
647static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
648{
21440d7e 649 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 650
21440d7e 651 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 652 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
653 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
654 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
655 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
656 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
657 __GFP_KSWAPD_RECLAIM);
658 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
659 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
660 0);
25160354 661 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
662}
663
c4088ebd 664/* Caller must hold page table lock. */
d295e341 665static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 666 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 667 struct page *zero_page)
fc9fe822
KS
668{
669 pmd_t entry;
7c414164
AM
670 if (!pmd_none(*pmd))
671 return false;
5918d10a 672 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 673 entry = pmd_mkhuge(entry);
12c9d70b
MW
674 if (pgtable)
675 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 676 set_pmd_at(mm, haddr, pmd, entry);
c4812909 677 mm_inc_nr_ptes(mm);
7c414164 678 return true;
fc9fe822
KS
679}
680
82b0f8c3 681int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 682{
82b0f8c3 683 struct vm_area_struct *vma = vmf->vma;
077fcf11 684 gfp_t gfp;
71e3aac0 685 struct page *page;
82b0f8c3 686 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 687
128ec037 688 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 689 return VM_FAULT_FALLBACK;
128ec037
KS
690 if (unlikely(anon_vma_prepare(vma)))
691 return VM_FAULT_OOM;
6d50e60c 692 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 693 return VM_FAULT_OOM;
82b0f8c3 694 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 695 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
696 transparent_hugepage_use_zero_page()) {
697 pgtable_t pgtable;
698 struct page *zero_page;
699 bool set;
6b251fc9 700 int ret;
bae473a4 701 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 702 if (unlikely(!pgtable))
ba76149f 703 return VM_FAULT_OOM;
6fcb52a5 704 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 705 if (unlikely(!zero_page)) {
bae473a4 706 pte_free(vma->vm_mm, pgtable);
81ab4201 707 count_vm_event(THP_FAULT_FALLBACK);
c0292554 708 return VM_FAULT_FALLBACK;
b9bbfbe3 709 }
82b0f8c3 710 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
711 ret = 0;
712 set = false;
82b0f8c3 713 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
714 ret = check_stable_address_space(vma->vm_mm);
715 if (ret) {
716 spin_unlock(vmf->ptl);
717 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
718 spin_unlock(vmf->ptl);
719 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
720 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
721 } else {
bae473a4 722 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
723 haddr, vmf->pmd, zero_page);
724 spin_unlock(vmf->ptl);
6b251fc9
AA
725 set = true;
726 }
727 } else
82b0f8c3 728 spin_unlock(vmf->ptl);
6fcb52a5 729 if (!set)
bae473a4 730 pte_free(vma->vm_mm, pgtable);
6b251fc9 731 return ret;
71e3aac0 732 }
444eb2a4 733 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 734 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
735 if (unlikely(!page)) {
736 count_vm_event(THP_FAULT_FALLBACK);
c0292554 737 return VM_FAULT_FALLBACK;
128ec037 738 }
9a982250 739 prep_transhuge_page(page);
82b0f8c3 740 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
741}
742
ae18d6dc 743static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
744 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
745 pgtable_t pgtable)
5cad465d
MW
746{
747 struct mm_struct *mm = vma->vm_mm;
748 pmd_t entry;
749 spinlock_t *ptl;
750
751 ptl = pmd_lock(mm, pmd);
0da17885
AK
752 if (!pmd_none(*pmd)) {
753 if (write) {
754 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
755 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
756 goto out_unlock;
757 }
758 entry = pmd_mkyoung(*pmd);
759 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
760 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
761 update_mmu_cache_pmd(vma, addr, pmd);
762 }
763
764 goto out_unlock;
765 }
766
f25748e3
DW
767 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
768 if (pfn_t_devmap(pfn))
769 entry = pmd_mkdevmap(entry);
01871e59 770 if (write) {
f55e1014
LT
771 entry = pmd_mkyoung(pmd_mkdirty(entry));
772 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 773 }
3b6521f5
OH
774
775 if (pgtable) {
776 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 777 mm_inc_nr_ptes(mm);
0da17885 778 pgtable = NULL;
3b6521f5
OH
779 }
780
01871e59
RZ
781 set_pmd_at(mm, addr, pmd, entry);
782 update_mmu_cache_pmd(vma, addr, pmd);
0da17885
AK
783
784out_unlock:
5cad465d 785 spin_unlock(ptl);
0da17885
AK
786 if (pgtable)
787 pte_free(mm, pgtable);
5cad465d
MW
788}
789
218fa1c8 790int vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 791{
218fa1c8
DW
792 unsigned long addr = vmf->address & PMD_MASK;
793 struct vm_area_struct *vma = vmf->vma;
5cad465d 794 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 795 pgtable_t pgtable = NULL;
218fa1c8 796
5cad465d
MW
797 /*
798 * If we had pmd_special, we could avoid all these restrictions,
799 * but we need to be consistent with PTEs and architectures that
800 * can't support a 'special' bit.
801 */
802 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
803 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
804 (VM_PFNMAP|VM_MIXEDMAP));
805 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 806 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
807
808 if (addr < vma->vm_start || addr >= vma->vm_end)
809 return VM_FAULT_SIGBUS;
308a047c 810
3b6521f5
OH
811 if (arch_needs_pgtable_deposit()) {
812 pgtable = pte_alloc_one(vma->vm_mm, addr);
813 if (!pgtable)
814 return VM_FAULT_OOM;
815 }
816
308a047c
BP
817 track_pfn_insert(vma, &pgprot, pfn);
818
218fa1c8 819 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 820 return VM_FAULT_NOPAGE;
5cad465d 821}
dee41079 822EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 823
a00cc7d9 824#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 825static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 826{
f55e1014 827 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
828 pud = pud_mkwrite(pud);
829 return pud;
830}
831
832static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
833 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
834{
835 struct mm_struct *mm = vma->vm_mm;
836 pud_t entry;
837 spinlock_t *ptl;
838
839 ptl = pud_lock(mm, pud);
0da17885
AK
840 if (!pud_none(*pud)) {
841 if (write) {
842 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
843 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
844 goto out_unlock;
845 }
846 entry = pud_mkyoung(*pud);
847 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
848 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
849 update_mmu_cache_pud(vma, addr, pud);
850 }
851 goto out_unlock;
852 }
853
a00cc7d9
MW
854 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
855 if (pfn_t_devmap(pfn))
856 entry = pud_mkdevmap(entry);
857 if (write) {
f55e1014
LT
858 entry = pud_mkyoung(pud_mkdirty(entry));
859 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
860 }
861 set_pud_at(mm, addr, pud, entry);
862 update_mmu_cache_pud(vma, addr, pud);
0da17885
AK
863
864out_unlock:
a00cc7d9
MW
865 spin_unlock(ptl);
866}
867
218fa1c8 868int vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 869{
218fa1c8
DW
870 unsigned long addr = vmf->address & PUD_MASK;
871 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 872 pgprot_t pgprot = vma->vm_page_prot;
218fa1c8 873
a00cc7d9
MW
874 /*
875 * If we had pud_special, we could avoid all these restrictions,
876 * but we need to be consistent with PTEs and architectures that
877 * can't support a 'special' bit.
878 */
879 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
880 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
881 (VM_PFNMAP|VM_MIXEDMAP));
882 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
883 BUG_ON(!pfn_t_devmap(pfn));
884
885 if (addr < vma->vm_start || addr >= vma->vm_end)
886 return VM_FAULT_SIGBUS;
887
888 track_pfn_insert(vma, &pgprot, pfn);
889
218fa1c8 890 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
891 return VM_FAULT_NOPAGE;
892}
893EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
894#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
895
3565fce3 896static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 897 pmd_t *pmd, int flags)
3565fce3
DW
898{
899 pmd_t _pmd;
900
a8f97366
KS
901 _pmd = pmd_mkyoung(*pmd);
902 if (flags & FOLL_WRITE)
903 _pmd = pmd_mkdirty(_pmd);
3565fce3 904 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 905 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
906 update_mmu_cache_pmd(vma, addr, pmd);
907}
908
909struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
910 pmd_t *pmd, int flags)
911{
912 unsigned long pfn = pmd_pfn(*pmd);
913 struct mm_struct *mm = vma->vm_mm;
914 struct dev_pagemap *pgmap;
915 struct page *page;
916
917 assert_spin_locked(pmd_lockptr(mm, pmd));
918
8310d48b
KF
919 /*
920 * When we COW a devmap PMD entry, we split it into PTEs, so we should
921 * not be in this function with `flags & FOLL_COW` set.
922 */
923 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
924
f6f37321 925 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
926 return NULL;
927
928 if (pmd_present(*pmd) && pmd_devmap(*pmd))
929 /* pass */;
930 else
931 return NULL;
932
933 if (flags & FOLL_TOUCH)
a8f97366 934 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
935
936 /*
937 * device mapped pages can only be returned if the
938 * caller will manage the page reference count.
939 */
940 if (!(flags & FOLL_GET))
941 return ERR_PTR(-EEXIST);
942
943 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
944 pgmap = get_dev_pagemap(pfn, NULL);
945 if (!pgmap)
946 return ERR_PTR(-EFAULT);
947 page = pfn_to_page(pfn);
948 get_page(page);
949 put_dev_pagemap(pgmap);
950
951 return page;
952}
953
71e3aac0
AA
954int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
955 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
956 struct vm_area_struct *vma)
957{
c4088ebd 958 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
959 struct page *src_page;
960 pmd_t pmd;
12c9d70b 961 pgtable_t pgtable = NULL;
628d47ce 962 int ret = -ENOMEM;
71e3aac0 963
628d47ce
KS
964 /* Skip if can be re-fill on fault */
965 if (!vma_is_anonymous(vma))
966 return 0;
967
968 pgtable = pte_alloc_one(dst_mm, addr);
969 if (unlikely(!pgtable))
970 goto out;
71e3aac0 971
c4088ebd
KS
972 dst_ptl = pmd_lock(dst_mm, dst_pmd);
973 src_ptl = pmd_lockptr(src_mm, src_pmd);
974 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
975
976 ret = -EAGAIN;
977 pmd = *src_pmd;
84c3fc4e
ZY
978
979#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
980 if (unlikely(is_swap_pmd(pmd))) {
981 swp_entry_t entry = pmd_to_swp_entry(pmd);
982
983 VM_BUG_ON(!is_pmd_migration_entry(pmd));
984 if (is_write_migration_entry(entry)) {
985 make_migration_entry_read(&entry);
986 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
987 if (pmd_swp_soft_dirty(*src_pmd))
988 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
989 set_pmd_at(src_mm, addr, src_pmd, pmd);
990 }
dd8a67f9 991 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 992 mm_inc_nr_ptes(dst_mm);
dd8a67f9 993 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
994 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
995 ret = 0;
996 goto out_unlock;
997 }
998#endif
999
628d47ce 1000 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1001 pte_free(dst_mm, pgtable);
1002 goto out_unlock;
1003 }
fc9fe822 1004 /*
c4088ebd 1005 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1006 * under splitting since we don't split the page itself, only pmd to
1007 * a page table.
1008 */
1009 if (is_huge_zero_pmd(pmd)) {
5918d10a 1010 struct page *zero_page;
97ae1749
KS
1011 /*
1012 * get_huge_zero_page() will never allocate a new page here,
1013 * since we already have a zero page to copy. It just takes a
1014 * reference.
1015 */
6fcb52a5 1016 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1017 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1018 zero_page);
fc9fe822
KS
1019 ret = 0;
1020 goto out_unlock;
1021 }
de466bd6 1022
628d47ce
KS
1023 src_page = pmd_page(pmd);
1024 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1025 get_page(src_page);
1026 page_dup_rmap(src_page, true);
1027 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1028 mm_inc_nr_ptes(dst_mm);
628d47ce 1029 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1030
1031 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1032 pmd = pmd_mkold(pmd_wrprotect(pmd));
1033 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1034
1035 ret = 0;
1036out_unlock:
c4088ebd
KS
1037 spin_unlock(src_ptl);
1038 spin_unlock(dst_ptl);
71e3aac0
AA
1039out:
1040 return ret;
1041}
1042
a00cc7d9
MW
1043#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1044static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1045 pud_t *pud, int flags)
a00cc7d9
MW
1046{
1047 pud_t _pud;
1048
a8f97366
KS
1049 _pud = pud_mkyoung(*pud);
1050 if (flags & FOLL_WRITE)
1051 _pud = pud_mkdirty(_pud);
a00cc7d9 1052 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1053 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1054 update_mmu_cache_pud(vma, addr, pud);
1055}
1056
1057struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1058 pud_t *pud, int flags)
1059{
1060 unsigned long pfn = pud_pfn(*pud);
1061 struct mm_struct *mm = vma->vm_mm;
1062 struct dev_pagemap *pgmap;
1063 struct page *page;
1064
1065 assert_spin_locked(pud_lockptr(mm, pud));
1066
f6f37321 1067 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1068 return NULL;
1069
1070 if (pud_present(*pud) && pud_devmap(*pud))
1071 /* pass */;
1072 else
1073 return NULL;
1074
1075 if (flags & FOLL_TOUCH)
a8f97366 1076 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1077
1078 /*
1079 * device mapped pages can only be returned if the
1080 * caller will manage the page reference count.
1081 */
1082 if (!(flags & FOLL_GET))
1083 return ERR_PTR(-EEXIST);
1084
1085 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1086 pgmap = get_dev_pagemap(pfn, NULL);
1087 if (!pgmap)
1088 return ERR_PTR(-EFAULT);
1089 page = pfn_to_page(pfn);
1090 get_page(page);
1091 put_dev_pagemap(pgmap);
1092
1093 return page;
1094}
1095
1096int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1097 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1098 struct vm_area_struct *vma)
1099{
1100 spinlock_t *dst_ptl, *src_ptl;
1101 pud_t pud;
1102 int ret;
1103
1104 dst_ptl = pud_lock(dst_mm, dst_pud);
1105 src_ptl = pud_lockptr(src_mm, src_pud);
1106 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1107
1108 ret = -EAGAIN;
1109 pud = *src_pud;
1110 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1111 goto out_unlock;
1112
1113 /*
1114 * When page table lock is held, the huge zero pud should not be
1115 * under splitting since we don't split the page itself, only pud to
1116 * a page table.
1117 */
1118 if (is_huge_zero_pud(pud)) {
1119 /* No huge zero pud yet */
1120 }
1121
1122 pudp_set_wrprotect(src_mm, addr, src_pud);
1123 pud = pud_mkold(pud_wrprotect(pud));
1124 set_pud_at(dst_mm, addr, dst_pud, pud);
1125
1126 ret = 0;
1127out_unlock:
1128 spin_unlock(src_ptl);
1129 spin_unlock(dst_ptl);
1130 return ret;
1131}
1132
1133void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1134{
1135 pud_t entry;
1136 unsigned long haddr;
1137 bool write = vmf->flags & FAULT_FLAG_WRITE;
1138
1139 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1140 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1141 goto unlock;
1142
1143 entry = pud_mkyoung(orig_pud);
1144 if (write)
1145 entry = pud_mkdirty(entry);
1146 haddr = vmf->address & HPAGE_PUD_MASK;
1147 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1148 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1149
1150unlock:
1151 spin_unlock(vmf->ptl);
1152}
1153#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1154
82b0f8c3 1155void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1156{
1157 pmd_t entry;
1158 unsigned long haddr;
20f664aa 1159 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1160
82b0f8c3
JK
1161 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1162 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1163 goto unlock;
1164
1165 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1166 if (write)
1167 entry = pmd_mkdirty(entry);
82b0f8c3 1168 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1169 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1170 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1171
1172unlock:
82b0f8c3 1173 spin_unlock(vmf->ptl);
a1dd450b
WD
1174}
1175
82b0f8c3 1176static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1177 struct page *page)
71e3aac0 1178{
82b0f8c3
JK
1179 struct vm_area_struct *vma = vmf->vma;
1180 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1181 struct mem_cgroup *memcg;
71e3aac0
AA
1182 pgtable_t pgtable;
1183 pmd_t _pmd;
1184 int ret = 0, i;
1185 struct page **pages;
2ec74c3e
SG
1186 unsigned long mmun_start; /* For mmu_notifiers */
1187 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1188
1189 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1190 GFP_KERNEL);
1191 if (unlikely(!pages)) {
1192 ret |= VM_FAULT_OOM;
1193 goto out;
1194 }
1195
1196 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1197 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1198 vmf->address, page_to_nid(page));
b9bbfbe3 1199 if (unlikely(!pages[i] ||
bae473a4
KS
1200 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1201 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1202 if (pages[i])
71e3aac0 1203 put_page(pages[i]);
b9bbfbe3 1204 while (--i >= 0) {
00501b53
JW
1205 memcg = (void *)page_private(pages[i]);
1206 set_page_private(pages[i], 0);
f627c2f5
KS
1207 mem_cgroup_cancel_charge(pages[i], memcg,
1208 false);
b9bbfbe3
AA
1209 put_page(pages[i]);
1210 }
71e3aac0
AA
1211 kfree(pages);
1212 ret |= VM_FAULT_OOM;
1213 goto out;
1214 }
00501b53 1215 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1216 }
1217
1218 for (i = 0; i < HPAGE_PMD_NR; i++) {
1219 copy_user_highpage(pages[i], page + i,
0089e485 1220 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1221 __SetPageUptodate(pages[i]);
1222 cond_resched();
1223 }
1224
2ec74c3e
SG
1225 mmun_start = haddr;
1226 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1227 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1228
82b0f8c3
JK
1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1231 goto out_free_pages;
309381fe 1232 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1233
0f10851e
JG
1234 /*
1235 * Leave pmd empty until pte is filled note we must notify here as
1236 * concurrent CPU thread might write to new page before the call to
1237 * mmu_notifier_invalidate_range_end() happens which can lead to a
1238 * device seeing memory write in different order than CPU.
1239 *
1240 * See Documentation/vm/mmu_notifier.txt
1241 */
82b0f8c3 1242 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1243
82b0f8c3 1244 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1245 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1246
1247 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1248 pte_t entry;
71e3aac0
AA
1249 entry = mk_pte(pages[i], vma->vm_page_prot);
1250 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1251 memcg = (void *)page_private(pages[i]);
1252 set_page_private(pages[i], 0);
82b0f8c3 1253 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1254 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1255 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1256 vmf->pte = pte_offset_map(&_pmd, haddr);
1257 VM_BUG_ON(!pte_none(*vmf->pte));
1258 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1259 pte_unmap(vmf->pte);
71e3aac0
AA
1260 }
1261 kfree(pages);
1262
71e3aac0 1263 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1264 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1265 page_remove_rmap(page, true);
82b0f8c3 1266 spin_unlock(vmf->ptl);
71e3aac0 1267
4645b9fe
JG
1268 /*
1269 * No need to double call mmu_notifier->invalidate_range() callback as
1270 * the above pmdp_huge_clear_flush_notify() did already call it.
1271 */
1272 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1273 mmun_end);
2ec74c3e 1274
71e3aac0
AA
1275 ret |= VM_FAULT_WRITE;
1276 put_page(page);
1277
1278out:
1279 return ret;
1280
1281out_free_pages:
82b0f8c3 1282 spin_unlock(vmf->ptl);
bae473a4 1283 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1284 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1285 memcg = (void *)page_private(pages[i]);
1286 set_page_private(pages[i], 0);
f627c2f5 1287 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1288 put_page(pages[i]);
b9bbfbe3 1289 }
71e3aac0
AA
1290 kfree(pages);
1291 goto out;
1292}
1293
82b0f8c3 1294int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1295{
82b0f8c3 1296 struct vm_area_struct *vma = vmf->vma;
93b4796d 1297 struct page *page = NULL, *new_page;
00501b53 1298 struct mem_cgroup *memcg;
82b0f8c3 1299 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1300 unsigned long mmun_start; /* For mmu_notifiers */
1301 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1302 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1303 int ret = 0;
71e3aac0 1304
82b0f8c3 1305 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1306 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1307 if (is_huge_zero_pmd(orig_pmd))
1308 goto alloc;
82b0f8c3
JK
1309 spin_lock(vmf->ptl);
1310 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1311 goto out_unlock;
1312
1313 page = pmd_page(orig_pmd);
309381fe 1314 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1315 /*
1316 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1317 * part.
1f25fe20 1318 */
ba3c4ce6
HY
1319 if (!trylock_page(page)) {
1320 get_page(page);
1321 spin_unlock(vmf->ptl);
1322 lock_page(page);
1323 spin_lock(vmf->ptl);
1324 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1325 unlock_page(page);
1326 put_page(page);
1327 goto out_unlock;
1328 }
1329 put_page(page);
1330 }
1331 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1332 pmd_t entry;
1333 entry = pmd_mkyoung(orig_pmd);
f55e1014 1334 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1335 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1336 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1337 ret |= VM_FAULT_WRITE;
ba3c4ce6 1338 unlock_page(page);
71e3aac0
AA
1339 goto out_unlock;
1340 }
ba3c4ce6 1341 unlock_page(page);
ddc58f27 1342 get_page(page);
82b0f8c3 1343 spin_unlock(vmf->ptl);
93b4796d 1344alloc:
71e3aac0 1345 if (transparent_hugepage_enabled(vma) &&
077fcf11 1346 !transparent_hugepage_debug_cow()) {
444eb2a4 1347 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1348 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1349 } else
71e3aac0
AA
1350 new_page = NULL;
1351
9a982250
KS
1352 if (likely(new_page)) {
1353 prep_transhuge_page(new_page);
1354 } else {
eecc1e42 1355 if (!page) {
82b0f8c3 1356 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1357 ret |= VM_FAULT_FALLBACK;
93b4796d 1358 } else {
82b0f8c3 1359 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1360 if (ret & VM_FAULT_OOM) {
82b0f8c3 1361 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1362 ret |= VM_FAULT_FALLBACK;
1363 }
ddc58f27 1364 put_page(page);
93b4796d 1365 }
17766dde 1366 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1367 goto out;
1368 }
1369
bae473a4 1370 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
46fe940f 1371 huge_gfp | __GFP_NORETRY, &memcg, true))) {
b9bbfbe3 1372 put_page(new_page);
82b0f8c3 1373 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1374 if (page)
ddc58f27 1375 put_page(page);
9845cbbd 1376 ret |= VM_FAULT_FALLBACK;
17766dde 1377 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1378 goto out;
1379 }
1380
17766dde
DR
1381 count_vm_event(THP_FAULT_ALLOC);
1382
eecc1e42 1383 if (!page)
c79b57e4 1384 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d
KS
1385 else
1386 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1387 __SetPageUptodate(new_page);
1388
2ec74c3e
SG
1389 mmun_start = haddr;
1390 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1391 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1392
82b0f8c3 1393 spin_lock(vmf->ptl);
93b4796d 1394 if (page)
ddc58f27 1395 put_page(page);
82b0f8c3
JK
1396 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1397 spin_unlock(vmf->ptl);
f627c2f5 1398 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1399 put_page(new_page);
2ec74c3e 1400 goto out_mn;
b9bbfbe3 1401 } else {
71e3aac0 1402 pmd_t entry;
3122359a 1403 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1404 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1405 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1406 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1407 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1408 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1409 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1410 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1411 if (!page) {
bae473a4 1412 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1413 } else {
309381fe 1414 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1415 page_remove_rmap(page, true);
93b4796d
KS
1416 put_page(page);
1417 }
71e3aac0
AA
1418 ret |= VM_FAULT_WRITE;
1419 }
82b0f8c3 1420 spin_unlock(vmf->ptl);
2ec74c3e 1421out_mn:
4645b9fe
JG
1422 /*
1423 * No need to double call mmu_notifier->invalidate_range() callback as
1424 * the above pmdp_huge_clear_flush_notify() did already call it.
1425 */
1426 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1427 mmun_end);
71e3aac0
AA
1428out:
1429 return ret;
2ec74c3e 1430out_unlock:
82b0f8c3 1431 spin_unlock(vmf->ptl);
2ec74c3e 1432 return ret;
71e3aac0
AA
1433}
1434
8310d48b
KF
1435/*
1436 * FOLL_FORCE can write to even unwritable pmd's, but only
1437 * after we've gone through a COW cycle and they are dirty.
1438 */
1439static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1440{
f6f37321 1441 return pmd_write(pmd) ||
8310d48b
KF
1442 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1443}
1444
b676b293 1445struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1446 unsigned long addr,
1447 pmd_t *pmd,
1448 unsigned int flags)
1449{
b676b293 1450 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1451 struct page *page = NULL;
1452
c4088ebd 1453 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1454
8310d48b 1455 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1456 goto out;
1457
85facf25
KS
1458 /* Avoid dumping huge zero page */
1459 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1460 return ERR_PTR(-EFAULT);
1461
2b4847e7 1462 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1463 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1464 goto out;
1465
71e3aac0 1466 page = pmd_page(*pmd);
ca120cf6 1467 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1468 if (flags & FOLL_TOUCH)
a8f97366 1469 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1470 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1471 /*
1472 * We don't mlock() pte-mapped THPs. This way we can avoid
1473 * leaking mlocked pages into non-VM_LOCKED VMAs.
1474 *
9a73f61b
KS
1475 * For anon THP:
1476 *
e90309c9
KS
1477 * In most cases the pmd is the only mapping of the page as we
1478 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1479 * writable private mappings in populate_vma_page_range().
1480 *
1481 * The only scenario when we have the page shared here is if we
1482 * mlocking read-only mapping shared over fork(). We skip
1483 * mlocking such pages.
9a73f61b
KS
1484 *
1485 * For file THP:
1486 *
1487 * We can expect PageDoubleMap() to be stable under page lock:
1488 * for file pages we set it in page_add_file_rmap(), which
1489 * requires page to be locked.
e90309c9 1490 */
9a73f61b
KS
1491
1492 if (PageAnon(page) && compound_mapcount(page) != 1)
1493 goto skip_mlock;
1494 if (PageDoubleMap(page) || !page->mapping)
1495 goto skip_mlock;
1496 if (!trylock_page(page))
1497 goto skip_mlock;
1498 lru_add_drain();
1499 if (page->mapping && !PageDoubleMap(page))
1500 mlock_vma_page(page);
1501 unlock_page(page);
b676b293 1502 }
9a73f61b 1503skip_mlock:
71e3aac0 1504 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1505 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1506 if (flags & FOLL_GET)
ddc58f27 1507 get_page(page);
71e3aac0
AA
1508
1509out:
1510 return page;
1511}
1512
d10e63f2 1513/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1514int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1515{
82b0f8c3 1516 struct vm_area_struct *vma = vmf->vma;
b8916634 1517 struct anon_vma *anon_vma = NULL;
b32967ff 1518 struct page *page;
82b0f8c3 1519 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1520 int page_nid = -1, this_nid = numa_node_id();
90572890 1521 int target_nid, last_cpupid = -1;
8191acbd
MG
1522 bool page_locked;
1523 bool migrated = false;
b191f9b1 1524 bool was_writable;
6688cc05 1525 int flags = 0;
d10e63f2 1526
82b0f8c3
JK
1527 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1528 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1529 goto out_unlock;
1530
de466bd6
MG
1531 /*
1532 * If there are potential migrations, wait for completion and retry
1533 * without disrupting NUMA hinting information. Do not relock and
1534 * check_same as the page may no longer be mapped.
1535 */
82b0f8c3
JK
1536 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1537 page = pmd_page(*vmf->pmd);
3c226c63
MR
1538 if (!get_page_unless_zero(page))
1539 goto out_unlock;
82b0f8c3 1540 spin_unlock(vmf->ptl);
5d833062 1541 wait_on_page_locked(page);
3c226c63 1542 put_page(page);
de466bd6
MG
1543 goto out;
1544 }
1545
d10e63f2 1546 page = pmd_page(pmd);
a1a46184 1547 BUG_ON(is_huge_zero_page(page));
8191acbd 1548 page_nid = page_to_nid(page);
90572890 1549 last_cpupid = page_cpupid_last(page);
03c5a6e1 1550 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1551 if (page_nid == this_nid) {
03c5a6e1 1552 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1553 flags |= TNF_FAULT_LOCAL;
1554 }
4daae3b4 1555
bea66fbd 1556 /* See similar comment in do_numa_page for explanation */
288bc549 1557 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1558 flags |= TNF_NO_GROUP;
1559
ff9042b1
MG
1560 /*
1561 * Acquire the page lock to serialise THP migrations but avoid dropping
1562 * page_table_lock if at all possible
1563 */
b8916634
MG
1564 page_locked = trylock_page(page);
1565 target_nid = mpol_misplaced(page, vma, haddr);
1566 if (target_nid == -1) {
1567 /* If the page was locked, there are no parallel migrations */
a54a407f 1568 if (page_locked)
b8916634 1569 goto clear_pmdnuma;
2b4847e7 1570 }
4daae3b4 1571
de466bd6 1572 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1573 if (!page_locked) {
3c226c63
MR
1574 page_nid = -1;
1575 if (!get_page_unless_zero(page))
1576 goto out_unlock;
82b0f8c3 1577 spin_unlock(vmf->ptl);
b8916634 1578 wait_on_page_locked(page);
3c226c63 1579 put_page(page);
b8916634
MG
1580 goto out;
1581 }
1582
2b4847e7
MG
1583 /*
1584 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1585 * to serialises splits
1586 */
b8916634 1587 get_page(page);
82b0f8c3 1588 spin_unlock(vmf->ptl);
b8916634 1589 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1590
c69307d5 1591 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1592 spin_lock(vmf->ptl);
1593 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1594 unlock_page(page);
1595 put_page(page);
a54a407f 1596 page_nid = -1;
4daae3b4 1597 goto out_unlock;
b32967ff 1598 }
ff9042b1 1599
c3a489ca
MG
1600 /* Bail if we fail to protect against THP splits for any reason */
1601 if (unlikely(!anon_vma)) {
1602 put_page(page);
1603 page_nid = -1;
1604 goto clear_pmdnuma;
1605 }
1606
8b1b436d
PZ
1607 /*
1608 * Since we took the NUMA fault, we must have observed the !accessible
1609 * bit. Make sure all other CPUs agree with that, to avoid them
1610 * modifying the page we're about to migrate.
1611 *
1612 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1613 * inc_tlb_flush_pending().
1614 *
1615 * We are not sure a pending tlb flush here is for a huge page
1616 * mapping or not. Hence use the tlb range variant
8b1b436d
PZ
1617 */
1618 if (mm_tlb_flush_pending(vma->vm_mm))
ccde85ba 1619 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
8b1b436d 1620
a54a407f
MG
1621 /*
1622 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1623 * and access rights restored.
a54a407f 1624 */
82b0f8c3 1625 spin_unlock(vmf->ptl);
8b1b436d 1626
bae473a4 1627 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1628 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1629 if (migrated) {
1630 flags |= TNF_MIGRATED;
8191acbd 1631 page_nid = target_nid;
074c2381
MG
1632 } else
1633 flags |= TNF_MIGRATE_FAIL;
b32967ff 1634
8191acbd 1635 goto out;
b32967ff 1636clear_pmdnuma:
a54a407f 1637 BUG_ON(!PageLocked(page));
288bc549 1638 was_writable = pmd_savedwrite(pmd);
4d942466 1639 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1640 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1641 if (was_writable)
1642 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1643 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1644 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1645 unlock_page(page);
d10e63f2 1646out_unlock:
82b0f8c3 1647 spin_unlock(vmf->ptl);
b8916634
MG
1648
1649out:
1650 if (anon_vma)
1651 page_unlock_anon_vma_read(anon_vma);
1652
8191acbd 1653 if (page_nid != -1)
82b0f8c3 1654 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1655 flags);
8191acbd 1656
d10e63f2
MG
1657 return 0;
1658}
1659
319904ad
HY
1660/*
1661 * Return true if we do MADV_FREE successfully on entire pmd page.
1662 * Otherwise, return false.
1663 */
1664bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1665 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1666{
1667 spinlock_t *ptl;
1668 pmd_t orig_pmd;
1669 struct page *page;
1670 struct mm_struct *mm = tlb->mm;
319904ad 1671 bool ret = false;
b8d3c4c3 1672
07e32661
AK
1673 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1674
b6ec57f4
KS
1675 ptl = pmd_trans_huge_lock(pmd, vma);
1676 if (!ptl)
25eedabe 1677 goto out_unlocked;
b8d3c4c3
MK
1678
1679 orig_pmd = *pmd;
319904ad 1680 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1681 goto out;
b8d3c4c3 1682
84c3fc4e
ZY
1683 if (unlikely(!pmd_present(orig_pmd))) {
1684 VM_BUG_ON(thp_migration_supported() &&
1685 !is_pmd_migration_entry(orig_pmd));
1686 goto out;
1687 }
1688
b8d3c4c3
MK
1689 page = pmd_page(orig_pmd);
1690 /*
1691 * If other processes are mapping this page, we couldn't discard
1692 * the page unless they all do MADV_FREE so let's skip the page.
1693 */
1694 if (page_mapcount(page) != 1)
1695 goto out;
1696
1697 if (!trylock_page(page))
1698 goto out;
1699
1700 /*
1701 * If user want to discard part-pages of THP, split it so MADV_FREE
1702 * will deactivate only them.
1703 */
1704 if (next - addr != HPAGE_PMD_SIZE) {
1705 get_page(page);
1706 spin_unlock(ptl);
9818b8cd 1707 split_huge_page(page);
b8d3c4c3 1708 unlock_page(page);
bbf29ffc 1709 put_page(page);
b8d3c4c3
MK
1710 goto out_unlocked;
1711 }
1712
1713 if (PageDirty(page))
1714 ClearPageDirty(page);
1715 unlock_page(page);
1716
b8d3c4c3 1717 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1718 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1719 orig_pmd = pmd_mkold(orig_pmd);
1720 orig_pmd = pmd_mkclean(orig_pmd);
1721
1722 set_pmd_at(mm, addr, pmd, orig_pmd);
1723 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1724 }
802a3a92
SL
1725
1726 mark_page_lazyfree(page);
319904ad 1727 ret = true;
b8d3c4c3
MK
1728out:
1729 spin_unlock(ptl);
1730out_unlocked:
1731 return ret;
1732}
1733
953c66c2
AK
1734static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1735{
1736 pgtable_t pgtable;
1737
1738 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1739 pte_free(mm, pgtable);
c4812909 1740 mm_dec_nr_ptes(mm);
953c66c2
AK
1741}
1742
71e3aac0 1743int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1744 pmd_t *pmd, unsigned long addr)
71e3aac0 1745{
da146769 1746 pmd_t orig_pmd;
bf929152 1747 spinlock_t *ptl;
71e3aac0 1748
07e32661
AK
1749 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1750
b6ec57f4
KS
1751 ptl = __pmd_trans_huge_lock(pmd, vma);
1752 if (!ptl)
da146769
KS
1753 return 0;
1754 /*
1755 * For architectures like ppc64 we look at deposited pgtable
1756 * when calling pmdp_huge_get_and_clear. So do the
1757 * pgtable_trans_huge_withdraw after finishing pmdp related
1758 * operations.
1759 */
1760 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1761 tlb->fullmm);
1762 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1763 if (vma_is_dax(vma)) {
3b6521f5
OH
1764 if (arch_needs_pgtable_deposit())
1765 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1766 spin_unlock(ptl);
1767 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1768 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1769 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1770 zap_deposited_table(tlb->mm, pmd);
da146769 1771 spin_unlock(ptl);
c0f2e176 1772 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1773 } else {
616b8371
ZY
1774 struct page *page = NULL;
1775 int flush_needed = 1;
1776
1777 if (pmd_present(orig_pmd)) {
1778 page = pmd_page(orig_pmd);
1779 page_remove_rmap(page, true);
1780 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1781 VM_BUG_ON_PAGE(!PageHead(page), page);
1782 } else if (thp_migration_supported()) {
1783 swp_entry_t entry;
1784
1785 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1786 entry = pmd_to_swp_entry(orig_pmd);
1787 page = pfn_to_page(swp_offset(entry));
1788 flush_needed = 0;
1789 } else
1790 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1791
b5072380 1792 if (PageAnon(page)) {
c14a6eb4 1793 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1794 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1795 } else {
953c66c2
AK
1796 if (arch_needs_pgtable_deposit())
1797 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1798 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1799 }
616b8371 1800
da146769 1801 spin_unlock(ptl);
616b8371
ZY
1802 if (flush_needed)
1803 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1804 }
da146769 1805 return 1;
71e3aac0
AA
1806}
1807
1dd38b6c
AK
1808#ifndef pmd_move_must_withdraw
1809static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1810 spinlock_t *old_pmd_ptl,
1811 struct vm_area_struct *vma)
1812{
1813 /*
1814 * With split pmd lock we also need to move preallocated
1815 * PTE page table if new_pmd is on different PMD page table.
1816 *
1817 * We also don't deposit and withdraw tables for file pages.
1818 */
1819 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1820}
1821#endif
1822
ab6e3d09
NH
1823static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1824{
1825#ifdef CONFIG_MEM_SOFT_DIRTY
1826 if (unlikely(is_pmd_migration_entry(pmd)))
1827 pmd = pmd_swp_mksoft_dirty(pmd);
1828 else if (pmd_present(pmd))
1829 pmd = pmd_mksoft_dirty(pmd);
1830#endif
1831 return pmd;
1832}
1833
bf8616d5 1834bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1835 unsigned long new_addr, unsigned long old_end,
5ad4de30 1836 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1837{
bf929152 1838 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1839 pmd_t pmd;
37a1c49a 1840 struct mm_struct *mm = vma->vm_mm;
5d190420 1841 bool force_flush = false;
37a1c49a
AA
1842
1843 if ((old_addr & ~HPAGE_PMD_MASK) ||
1844 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1845 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1846 return false;
37a1c49a
AA
1847
1848 /*
1849 * The destination pmd shouldn't be established, free_pgtables()
1850 * should have release it.
1851 */
1852 if (WARN_ON(!pmd_none(*new_pmd))) {
1853 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1854 return false;
37a1c49a
AA
1855 }
1856
bf929152
KS
1857 /*
1858 * We don't have to worry about the ordering of src and dst
1859 * ptlocks because exclusive mmap_sem prevents deadlock.
1860 */
b6ec57f4
KS
1861 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1862 if (old_ptl) {
bf929152
KS
1863 new_ptl = pmd_lockptr(mm, new_pmd);
1864 if (new_ptl != old_ptl)
1865 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1866 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
5ad4de30 1867 if (pmd_present(pmd))
a2ce2666 1868 force_flush = true;
025c5b24 1869 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1870
1dd38b6c 1871 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1872 pgtable_t pgtable;
3592806c
KS
1873 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1874 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1875 }
ab6e3d09
NH
1876 pmd = move_soft_dirty_pmd(pmd);
1877 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1878 if (force_flush)
1879 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
5ad4de30
LT
1880 if (new_ptl != old_ptl)
1881 spin_unlock(new_ptl);
bf929152 1882 spin_unlock(old_ptl);
4b471e88 1883 return true;
37a1c49a 1884 }
4b471e88 1885 return false;
37a1c49a
AA
1886}
1887
f123d74a
MG
1888/*
1889 * Returns
1890 * - 0 if PMD could not be locked
1891 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1892 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1893 */
cd7548ab 1894int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1895 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1896{
1897 struct mm_struct *mm = vma->vm_mm;
bf929152 1898 spinlock_t *ptl;
0a85e51d
KS
1899 pmd_t entry;
1900 bool preserve_write;
1901 int ret;
cd7548ab 1902
b6ec57f4 1903 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1904 if (!ptl)
1905 return 0;
e944fd67 1906
0a85e51d
KS
1907 preserve_write = prot_numa && pmd_write(*pmd);
1908 ret = 1;
e944fd67 1909
84c3fc4e
ZY
1910#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1911 if (is_swap_pmd(*pmd)) {
1912 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1913
1914 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1915 if (is_write_migration_entry(entry)) {
1916 pmd_t newpmd;
1917 /*
1918 * A protection check is difficult so
1919 * just be safe and disable write
1920 */
1921 make_migration_entry_read(&entry);
1922 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1923 if (pmd_swp_soft_dirty(*pmd))
1924 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1925 set_pmd_at(mm, addr, pmd, newpmd);
1926 }
1927 goto unlock;
1928 }
1929#endif
1930
0a85e51d
KS
1931 /*
1932 * Avoid trapping faults against the zero page. The read-only
1933 * data is likely to be read-cached on the local CPU and
1934 * local/remote hits to the zero page are not interesting.
1935 */
1936 if (prot_numa && is_huge_zero_pmd(*pmd))
1937 goto unlock;
025c5b24 1938
0a85e51d
KS
1939 if (prot_numa && pmd_protnone(*pmd))
1940 goto unlock;
1941
ced10803
KS
1942 /*
1943 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1944 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1945 * which is also under down_read(mmap_sem):
1946 *
1947 * CPU0: CPU1:
1948 * change_huge_pmd(prot_numa=1)
1949 * pmdp_huge_get_and_clear_notify()
1950 * madvise_dontneed()
1951 * zap_pmd_range()
1952 * pmd_trans_huge(*pmd) == 0 (without ptl)
1953 * // skip the pmd
1954 * set_pmd_at();
1955 * // pmd is re-established
1956 *
1957 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1958 * which may break userspace.
1959 *
1960 * pmdp_invalidate() is required to make sure we don't miss
1961 * dirty/young flags set by hardware.
1962 */
1963 entry = *pmd;
1964 pmdp_invalidate(vma, addr, pmd);
1965
1966 /*
1967 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1968 * corrupt them.
1969 */
1970 if (pmd_dirty(*pmd))
1971 entry = pmd_mkdirty(entry);
1972 if (pmd_young(*pmd))
1973 entry = pmd_mkyoung(entry);
1974
0a85e51d
KS
1975 entry = pmd_modify(entry, newprot);
1976 if (preserve_write)
1977 entry = pmd_mk_savedwrite(entry);
1978 ret = HPAGE_PMD_NR;
1979 set_pmd_at(mm, addr, pmd, entry);
1980 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1981unlock:
1982 spin_unlock(ptl);
025c5b24
NH
1983 return ret;
1984}
1985
1986/*
8f19b0c0 1987 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1988 *
8f19b0c0
HY
1989 * Note that if it returns page table lock pointer, this routine returns without
1990 * unlocking page table lock. So callers must unlock it.
025c5b24 1991 */
b6ec57f4 1992spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1993{
b6ec57f4
KS
1994 spinlock_t *ptl;
1995 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1996 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1997 pmd_devmap(*pmd)))
b6ec57f4
KS
1998 return ptl;
1999 spin_unlock(ptl);
2000 return NULL;
cd7548ab
JW
2001}
2002
a00cc7d9
MW
2003/*
2004 * Returns true if a given pud maps a thp, false otherwise.
2005 *
2006 * Note that if it returns true, this routine returns without unlocking page
2007 * table lock. So callers must unlock it.
2008 */
2009spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2010{
2011 spinlock_t *ptl;
2012
2013 ptl = pud_lock(vma->vm_mm, pud);
2014 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2015 return ptl;
2016 spin_unlock(ptl);
2017 return NULL;
2018}
2019
2020#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2021int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2022 pud_t *pud, unsigned long addr)
2023{
2024 pud_t orig_pud;
2025 spinlock_t *ptl;
2026
2027 ptl = __pud_trans_huge_lock(pud, vma);
2028 if (!ptl)
2029 return 0;
2030 /*
2031 * For architectures like ppc64 we look at deposited pgtable
2032 * when calling pudp_huge_get_and_clear. So do the
2033 * pgtable_trans_huge_withdraw after finishing pudp related
2034 * operations.
2035 */
2036 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
2037 tlb->fullmm);
2038 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2039 if (vma_is_dax(vma)) {
2040 spin_unlock(ptl);
2041 /* No zero page support yet */
2042 } else {
2043 /* No support for anonymous PUD pages yet */
2044 BUG();
2045 }
2046 return 1;
2047}
2048
2049static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2050 unsigned long haddr)
2051{
2052 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2053 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2054 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2055 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2056
ce9311cf 2057 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2058
2059 pudp_huge_clear_flush_notify(vma, haddr, pud);
2060}
2061
2062void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2063 unsigned long address)
2064{
2065 spinlock_t *ptl;
2066 struct mm_struct *mm = vma->vm_mm;
2067 unsigned long haddr = address & HPAGE_PUD_MASK;
2068
2069 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2070 ptl = pud_lock(mm, pud);
2071 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2072 goto out;
2073 __split_huge_pud_locked(vma, pud, haddr);
2074
2075out:
2076 spin_unlock(ptl);
4645b9fe
JG
2077 /*
2078 * No need to double call mmu_notifier->invalidate_range() callback as
2079 * the above pudp_huge_clear_flush_notify() did already call it.
2080 */
2081 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2082 HPAGE_PUD_SIZE);
a00cc7d9
MW
2083}
2084#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2085
eef1b3ba
KS
2086static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2087 unsigned long haddr, pmd_t *pmd)
2088{
2089 struct mm_struct *mm = vma->vm_mm;
2090 pgtable_t pgtable;
2091 pmd_t _pmd;
2092 int i;
2093
0f10851e
JG
2094 /*
2095 * Leave pmd empty until pte is filled note that it is fine to delay
2096 * notification until mmu_notifier_invalidate_range_end() as we are
2097 * replacing a zero pmd write protected page with a zero pte write
2098 * protected page.
2099 *
2100 * See Documentation/vm/mmu_notifier.txt
2101 */
2102 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2103
2104 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2105 pmd_populate(mm, &_pmd, pgtable);
2106
2107 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2108 pte_t *pte, entry;
2109 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2110 entry = pte_mkspecial(entry);
2111 pte = pte_offset_map(&_pmd, haddr);
2112 VM_BUG_ON(!pte_none(*pte));
2113 set_pte_at(mm, haddr, pte, entry);
2114 pte_unmap(pte);
2115 }
2116 smp_wmb(); /* make pte visible before pmd */
2117 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2118}
2119
2120static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2121 unsigned long haddr, bool freeze)
eef1b3ba
KS
2122{
2123 struct mm_struct *mm = vma->vm_mm;
2124 struct page *page;
2125 pgtable_t pgtable;
2126 pmd_t _pmd;
84c3fc4e 2127 bool young, write, dirty, soft_dirty, pmd_migration = false;
2ac015e2 2128 unsigned long addr;
eef1b3ba
KS
2129 int i;
2130
2131 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2132 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2133 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2134 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2135 && !pmd_devmap(*pmd));
eef1b3ba
KS
2136
2137 count_vm_event(THP_SPLIT_PMD);
2138
d21b9e57
KS
2139 if (!vma_is_anonymous(vma)) {
2140 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2141 /*
2142 * We are going to unmap this huge page. So
2143 * just go ahead and zap it
2144 */
2145 if (arch_needs_pgtable_deposit())
2146 zap_deposited_table(mm, pmd);
d21b9e57
KS
2147 if (vma_is_dax(vma))
2148 return;
2149 page = pmd_page(_pmd);
30820520
HD
2150 if (!PageDirty(page) && pmd_dirty(_pmd))
2151 set_page_dirty(page);
d21b9e57
KS
2152 if (!PageReferenced(page) && pmd_young(_pmd))
2153 SetPageReferenced(page);
2154 page_remove_rmap(page, true);
2155 put_page(page);
2156 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
2157 return;
2158 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2159 /*
2160 * FIXME: Do we want to invalidate secondary mmu by calling
2161 * mmu_notifier_invalidate_range() see comments below inside
2162 * __split_huge_pmd() ?
2163 *
2164 * We are going from a zero huge page write protected to zero
2165 * small page also write protected so it does not seems useful
2166 * to invalidate secondary mmu at this time.
2167 */
eef1b3ba
KS
2168 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2169 }
2170
84c3fc4e
ZY
2171#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2172 pmd_migration = is_pmd_migration_entry(*pmd);
2173 if (pmd_migration) {
2174 swp_entry_t entry;
2175
2176 entry = pmd_to_swp_entry(*pmd);
2177 page = pfn_to_page(swp_offset(entry));
2178 } else
2179#endif
2180 page = pmd_page(*pmd);
eef1b3ba 2181 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2182 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2183 write = pmd_write(*pmd);
2184 young = pmd_young(*pmd);
b8d3c4c3 2185 dirty = pmd_dirty(*pmd);
804dd150 2186 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 2187
c777e2a8 2188 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2189 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2190 pmd_populate(mm, &_pmd, pgtable);
2191
2ac015e2 2192 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2193 pte_t entry, *pte;
2194 /*
2195 * Note that NUMA hinting access restrictions are not
2196 * transferred to avoid any possibility of altering
2197 * permissions across VMAs.
2198 */
84c3fc4e 2199 if (freeze || pmd_migration) {
ba988280
KS
2200 swp_entry_t swp_entry;
2201 swp_entry = make_migration_entry(page + i, write);
2202 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2203 if (soft_dirty)
2204 entry = pte_swp_mksoft_dirty(entry);
ba988280 2205 } else {
6d2329f8 2206 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2207 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2208 if (!write)
2209 entry = pte_wrprotect(entry);
2210 if (!young)
2211 entry = pte_mkold(entry);
804dd150
AA
2212 if (soft_dirty)
2213 entry = pte_mksoft_dirty(entry);
ba988280 2214 }
b8d3c4c3
MK
2215 if (dirty)
2216 SetPageDirty(page + i);
2ac015e2 2217 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2218 BUG_ON(!pte_none(*pte));
2ac015e2 2219 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2220 atomic_inc(&page[i]._mapcount);
2221 pte_unmap(pte);
2222 }
2223
2224 /*
2225 * Set PG_double_map before dropping compound_mapcount to avoid
2226 * false-negative page_mapped().
2227 */
2228 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2229 for (i = 0; i < HPAGE_PMD_NR; i++)
2230 atomic_inc(&page[i]._mapcount);
2231 }
2232
2233 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2234 /* Last compound_mapcount is gone. */
11fb9989 2235 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2236 if (TestClearPageDoubleMap(page)) {
2237 /* No need in mapcount reference anymore */
2238 for (i = 0; i < HPAGE_PMD_NR; i++)
2239 atomic_dec(&page[i]._mapcount);
2240 }
2241 }
2242
2243 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2244 /*
2245 * Up to this point the pmd is present and huge and userland has the
2246 * whole access to the hugepage during the split (which happens in
2247 * place). If we overwrite the pmd with the not-huge version pointing
2248 * to the pte here (which of course we could if all CPUs were bug
2249 * free), userland could trigger a small page size TLB miss on the
2250 * small sized TLB while the hugepage TLB entry is still established in
2251 * the huge TLB. Some CPU doesn't like that.
2252 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2253 * 383 on page 93. Intel should be safe but is also warns that it's
2254 * only safe if the permission and cache attributes of the two entries
2255 * loaded in the two TLB is identical (which should be the case here).
2256 * But it is generally safer to never allow small and huge TLB entries
2257 * for the same virtual address to be loaded simultaneously. So instead
2258 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2259 * current pmd notpresent (atomically because here the pmd_trans_huge
2260 * and pmd_trans_splitting must remain set at all times on the pmd
2261 * until the split is complete for this pmd), then we flush the SMP TLB
2262 * and finally we write the non-huge version of the pmd entry with
2263 * pmd_populate.
2264 */
2265 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2266 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2267
2268 if (freeze) {
2ac015e2 2269 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2270 page_remove_rmap(page + i, false);
2271 put_page(page + i);
2272 }
2273 }
eef1b3ba
KS
2274}
2275
2276void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2277 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2278{
2279 spinlock_t *ptl;
2280 struct mm_struct *mm = vma->vm_mm;
2281 unsigned long haddr = address & HPAGE_PMD_MASK;
2282
2283 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2284 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2285
2286 /*
2287 * If caller asks to setup a migration entries, we need a page to check
2288 * pmd against. Otherwise we can end up replacing wrong page.
2289 */
2290 VM_BUG_ON(freeze && !page);
2291 if (page && page != pmd_page(*pmd))
2292 goto out;
2293
5c7fb56e 2294 if (pmd_trans_huge(*pmd)) {
33f4751e 2295 page = pmd_page(*pmd);
5c7fb56e 2296 if (PageMlocked(page))
5f737714 2297 clear_page_mlock(page);
84c3fc4e 2298 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2299 goto out;
fec89c10 2300 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2301out:
eef1b3ba 2302 spin_unlock(ptl);
4645b9fe
JG
2303 /*
2304 * No need to double call mmu_notifier->invalidate_range() callback.
2305 * They are 3 cases to consider inside __split_huge_pmd_locked():
2306 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2307 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2308 * fault will trigger a flush_notify before pointing to a new page
2309 * (it is fine if the secondary mmu keeps pointing to the old zero
2310 * page in the meantime)
2311 * 3) Split a huge pmd into pte pointing to the same page. No need
2312 * to invalidate secondary tlb entry they are all still valid.
2313 * any further changes to individual pte will notify. So no need
2314 * to call mmu_notifier->invalidate_range()
2315 */
2316 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2317 HPAGE_PMD_SIZE);
eef1b3ba
KS
2318}
2319
fec89c10
KS
2320void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2321 bool freeze, struct page *page)
94fcc585 2322{
f72e7dcd 2323 pgd_t *pgd;
c2febafc 2324 p4d_t *p4d;
f72e7dcd 2325 pud_t *pud;
94fcc585
AA
2326 pmd_t *pmd;
2327
78ddc534 2328 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2329 if (!pgd_present(*pgd))
2330 return;
2331
c2febafc
KS
2332 p4d = p4d_offset(pgd, address);
2333 if (!p4d_present(*p4d))
2334 return;
2335
2336 pud = pud_offset(p4d, address);
f72e7dcd
HD
2337 if (!pud_present(*pud))
2338 return;
2339
2340 pmd = pmd_offset(pud, address);
fec89c10 2341
33f4751e 2342 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2343}
2344
e1b9996b 2345void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2346 unsigned long start,
2347 unsigned long end,
2348 long adjust_next)
2349{
2350 /*
2351 * If the new start address isn't hpage aligned and it could
2352 * previously contain an hugepage: check if we need to split
2353 * an huge pmd.
2354 */
2355 if (start & ~HPAGE_PMD_MASK &&
2356 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2357 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2358 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2359
2360 /*
2361 * If the new end address isn't hpage aligned and it could
2362 * previously contain an hugepage: check if we need to split
2363 * an huge pmd.
2364 */
2365 if (end & ~HPAGE_PMD_MASK &&
2366 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2367 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2368 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2369
2370 /*
2371 * If we're also updating the vma->vm_next->vm_start, if the new
2372 * vm_next->vm_start isn't page aligned and it could previously
2373 * contain an hugepage: check if we need to split an huge pmd.
2374 */
2375 if (adjust_next > 0) {
2376 struct vm_area_struct *next = vma->vm_next;
2377 unsigned long nstart = next->vm_start;
2378 nstart += adjust_next << PAGE_SHIFT;
2379 if (nstart & ~HPAGE_PMD_MASK &&
2380 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2381 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2382 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2383 }
2384}
e9b61f19 2385
d7b66bd2 2386static void unmap_page(struct page *page)
e9b61f19 2387{
baa355fd 2388 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2389 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2390 bool unmap_success;
e9b61f19
KS
2391
2392 VM_BUG_ON_PAGE(!PageHead(page), page);
2393
baa355fd 2394 if (PageAnon(page))
b5ff8161 2395 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2396
666e5a40
MK
2397 unmap_success = try_to_unmap(page, ttu_flags);
2398 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2399}
2400
d7b66bd2 2401static void remap_page(struct page *page)
e9b61f19 2402{
fec89c10 2403 int i;
ace71a19
KS
2404 if (PageTransHuge(page)) {
2405 remove_migration_ptes(page, page, true);
2406 } else {
2407 for (i = 0; i < HPAGE_PMD_NR; i++)
2408 remove_migration_ptes(page + i, page + i, true);
2409 }
e9b61f19
KS
2410}
2411
8df651c7 2412static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2413 struct lruvec *lruvec, struct list_head *list)
2414{
e9b61f19
KS
2415 struct page *page_tail = head + tail;
2416
8df651c7 2417 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2418
2419 /*
0eb2c7d7
KK
2420 * Clone page flags before unfreezing refcount.
2421 *
2422 * After successful get_page_unless_zero() might follow flags change,
2423 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2424 */
e9b61f19
KS
2425 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2426 page_tail->flags |= (head->flags &
2427 ((1L << PG_referenced) |
2428 (1L << PG_swapbacked) |
38d8b4e6 2429 (1L << PG_swapcache) |
e9b61f19
KS
2430 (1L << PG_mlocked) |
2431 (1L << PG_uptodate) |
2432 (1L << PG_active) |
2433 (1L << PG_locked) |
b8d3c4c3
MK
2434 (1L << PG_unevictable) |
2435 (1L << PG_dirty)));
e9b61f19 2436
7c34f8cd
HD
2437 /* ->mapping in first tail page is compound_mapcount */
2438 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2439 page_tail);
2440 page_tail->mapping = head->mapping;
2441 page_tail->index = head->index + tail;
2442
0eb2c7d7 2443 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2444 smp_wmb();
2445
0eb2c7d7
KK
2446 /*
2447 * Clear PageTail before unfreezing page refcount.
2448 *
2449 * After successful get_page_unless_zero() might follow put_page()
2450 * which needs correct compound_head().
2451 */
e9b61f19
KS
2452 clear_compound_head(page_tail);
2453
0eb2c7d7
KK
2454 /* Finally unfreeze refcount. Additional reference from page cache. */
2455 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2456 PageSwapCache(head)));
2457
e9b61f19
KS
2458 if (page_is_young(head))
2459 set_page_young(page_tail);
2460 if (page_is_idle(head))
2461 set_page_idle(page_tail);
2462
e9b61f19
KS
2463 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2464 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2465}
2466
baa355fd 2467static void __split_huge_page(struct page *page, struct list_head *list,
5ba09cb7 2468 pgoff_t end, unsigned long flags)
e9b61f19
KS
2469{
2470 struct page *head = compound_head(page);
2471 struct zone *zone = page_zone(head);
2472 struct lruvec *lruvec;
8df651c7 2473 int i;
e9b61f19 2474
599d0c95 2475 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2476
2477 /* complete memcg works before add pages to LRU */
2478 mem_cgroup_split_huge_fixup(head);
2479
baa355fd 2480 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2481 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2482 /* Some pages can be beyond i_size: drop them from page cache */
2483 if (head[i].index >= end) {
8759535b 2484 ClearPageDirty(head + i);
baa355fd 2485 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2486 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2487 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2488 put_page(head + i);
2489 }
2490 }
e9b61f19
KS
2491
2492 ClearPageCompound(head);
be765d99
VB
2493
2494 split_page_owner(head, HPAGE_PMD_ORDER);
2495
baa355fd
KS
2496 /* See comment in __split_huge_page_tail() */
2497 if (PageAnon(head)) {
38d8b4e6
HY
2498 /* Additional pin to radix tree of swap cache */
2499 if (PageSwapCache(head))
2500 page_ref_add(head, 2);
2501 else
2502 page_ref_inc(head);
baa355fd
KS
2503 } else {
2504 /* Additional pin to radix tree */
2505 page_ref_add(head, 2);
2506 spin_unlock(&head->mapping->tree_lock);
2507 }
2508
a52633d8 2509 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2510
d7b66bd2 2511 remap_page(head);
e9b61f19
KS
2512
2513 for (i = 0; i < HPAGE_PMD_NR; i++) {
2514 struct page *subpage = head + i;
2515 if (subpage == page)
2516 continue;
2517 unlock_page(subpage);
2518
2519 /*
2520 * Subpages may be freed if there wasn't any mapping
2521 * like if add_to_swap() is running on a lru page that
2522 * had its mapping zapped. And freeing these pages
2523 * requires taking the lru_lock so we do the put_page
2524 * of the tail pages after the split is complete.
2525 */
2526 put_page(subpage);
2527 }
2528}
2529
b20ce5e0
KS
2530int total_mapcount(struct page *page)
2531{
dd78fedd 2532 int i, compound, ret;
b20ce5e0
KS
2533
2534 VM_BUG_ON_PAGE(PageTail(page), page);
2535
2536 if (likely(!PageCompound(page)))
2537 return atomic_read(&page->_mapcount) + 1;
2538
dd78fedd 2539 compound = compound_mapcount(page);
b20ce5e0 2540 if (PageHuge(page))
dd78fedd
KS
2541 return compound;
2542 ret = compound;
b20ce5e0
KS
2543 for (i = 0; i < HPAGE_PMD_NR; i++)
2544 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2545 /* File pages has compound_mapcount included in _mapcount */
2546 if (!PageAnon(page))
2547 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2548 if (PageDoubleMap(page))
2549 ret -= HPAGE_PMD_NR;
2550 return ret;
2551}
2552
6d0a07ed
AA
2553/*
2554 * This calculates accurately how many mappings a transparent hugepage
2555 * has (unlike page_mapcount() which isn't fully accurate). This full
2556 * accuracy is primarily needed to know if copy-on-write faults can
2557 * reuse the page and change the mapping to read-write instead of
2558 * copying them. At the same time this returns the total_mapcount too.
2559 *
2560 * The function returns the highest mapcount any one of the subpages
2561 * has. If the return value is one, even if different processes are
2562 * mapping different subpages of the transparent hugepage, they can
2563 * all reuse it, because each process is reusing a different subpage.
2564 *
2565 * The total_mapcount is instead counting all virtual mappings of the
2566 * subpages. If the total_mapcount is equal to "one", it tells the
2567 * caller all mappings belong to the same "mm" and in turn the
2568 * anon_vma of the transparent hugepage can become the vma->anon_vma
2569 * local one as no other process may be mapping any of the subpages.
2570 *
2571 * It would be more accurate to replace page_mapcount() with
2572 * page_trans_huge_mapcount(), however we only use
2573 * page_trans_huge_mapcount() in the copy-on-write faults where we
2574 * need full accuracy to avoid breaking page pinning, because
2575 * page_trans_huge_mapcount() is slower than page_mapcount().
2576 */
2577int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2578{
2579 int i, ret, _total_mapcount, mapcount;
2580
2581 /* hugetlbfs shouldn't call it */
2582 VM_BUG_ON_PAGE(PageHuge(page), page);
2583
2584 if (likely(!PageTransCompound(page))) {
2585 mapcount = atomic_read(&page->_mapcount) + 1;
2586 if (total_mapcount)
2587 *total_mapcount = mapcount;
2588 return mapcount;
2589 }
2590
2591 page = compound_head(page);
2592
2593 _total_mapcount = ret = 0;
2594 for (i = 0; i < HPAGE_PMD_NR; i++) {
2595 mapcount = atomic_read(&page[i]._mapcount) + 1;
2596 ret = max(ret, mapcount);
2597 _total_mapcount += mapcount;
2598 }
2599 if (PageDoubleMap(page)) {
2600 ret -= 1;
2601 _total_mapcount -= HPAGE_PMD_NR;
2602 }
2603 mapcount = compound_mapcount(page);
2604 ret += mapcount;
2605 _total_mapcount += mapcount;
2606 if (total_mapcount)
2607 *total_mapcount = _total_mapcount;
2608 return ret;
2609}
2610
b8f593cd
HY
2611/* Racy check whether the huge page can be split */
2612bool can_split_huge_page(struct page *page, int *pextra_pins)
2613{
2614 int extra_pins;
2615
2616 /* Additional pins from radix tree */
2617 if (PageAnon(page))
2618 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2619 else
2620 extra_pins = HPAGE_PMD_NR;
2621 if (pextra_pins)
2622 *pextra_pins = extra_pins;
2623 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2624}
2625
e9b61f19
KS
2626/*
2627 * This function splits huge page into normal pages. @page can point to any
2628 * subpage of huge page to split. Split doesn't change the position of @page.
2629 *
2630 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2631 * The huge page must be locked.
2632 *
2633 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2634 *
2635 * Both head page and tail pages will inherit mapping, flags, and so on from
2636 * the hugepage.
2637 *
2638 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2639 * they are not mapped.
2640 *
2641 * Returns 0 if the hugepage is split successfully.
2642 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2643 * us.
2644 */
2645int split_huge_page_to_list(struct page *page, struct list_head *list)
2646{
2647 struct page *head = compound_head(page);
a3d0a918 2648 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2649 struct anon_vma *anon_vma = NULL;
2650 struct address_space *mapping = NULL;
2651 int count, mapcount, extra_pins, ret;
d9654322 2652 bool mlocked;
0b9b6fff 2653 unsigned long flags;
5ba09cb7 2654 pgoff_t end;
e9b61f19
KS
2655
2656 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2657 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2658 VM_BUG_ON_PAGE(!PageCompound(page), page);
2659
59807685
HY
2660 if (PageWriteback(page))
2661 return -EBUSY;
2662
baa355fd
KS
2663 if (PageAnon(head)) {
2664 /*
2665 * The caller does not necessarily hold an mmap_sem that would
2666 * prevent the anon_vma disappearing so we first we take a
2667 * reference to it and then lock the anon_vma for write. This
2668 * is similar to page_lock_anon_vma_read except the write lock
2669 * is taken to serialise against parallel split or collapse
2670 * operations.
2671 */
2672 anon_vma = page_get_anon_vma(head);
2673 if (!anon_vma) {
2674 ret = -EBUSY;
2675 goto out;
2676 }
5ba09cb7 2677 end = -1;
baa355fd
KS
2678 mapping = NULL;
2679 anon_vma_lock_write(anon_vma);
2680 } else {
2681 mapping = head->mapping;
2682
2683 /* Truncated ? */
2684 if (!mapping) {
2685 ret = -EBUSY;
2686 goto out;
2687 }
2688
baa355fd
KS
2689 anon_vma = NULL;
2690 i_mmap_lock_read(mapping);
5ba09cb7
HD
2691
2692 /*
2693 *__split_huge_page() may need to trim off pages beyond EOF:
2694 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2695 * which cannot be nested inside the page tree lock. So note
2696 * end now: i_size itself may be changed at any moment, but
2697 * head page lock is good enough to serialize the trimming.
2698 */
2699 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2700 }
e9b61f19
KS
2701
2702 /*
d7b66bd2 2703 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2704 * split PMDs
2705 */
b8f593cd 2706 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2707 ret = -EBUSY;
2708 goto out_unlock;
2709 }
2710
d9654322 2711 mlocked = PageMlocked(page);
d7b66bd2 2712 unmap_page(head);
e9b61f19
KS
2713 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2714
d9654322
KS
2715 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2716 if (mlocked)
2717 lru_add_drain();
2718
baa355fd 2719 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2720 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2721
2722 if (mapping) {
2723 void **pslot;
2724
2725 spin_lock(&mapping->tree_lock);
2726 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2727 page_index(head));
2728 /*
2729 * Check if the head page is present in radix tree.
2730 * We assume all tail are present too, if head is there.
2731 */
2732 if (radix_tree_deref_slot_protected(pslot,
2733 &mapping->tree_lock) != head)
2734 goto fail;
2735 }
2736
0139aa7b 2737 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2738 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2739 count = page_count(head);
2740 mapcount = total_mapcount(head);
baa355fd 2741 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2742 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2743 pgdata->split_queue_len--;
9a982250
KS
2744 list_del(page_deferred_list(head));
2745 }
65c45377 2746 if (mapping)
11fb9989 2747 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2748 spin_unlock(&pgdata->split_queue_lock);
5ba09cb7 2749 __split_huge_page(page, list, end, flags);
59807685
HY
2750 if (PageSwapCache(head)) {
2751 swp_entry_t entry = { .val = page_private(head) };
2752
2753 ret = split_swap_cluster(entry);
2754 } else
2755 ret = 0;
e9b61f19 2756 } else {
baa355fd
KS
2757 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2758 pr_alert("total_mapcount: %u, page_count(): %u\n",
2759 mapcount, count);
2760 if (PageTail(page))
2761 dump_page(head, NULL);
2762 dump_page(page, "total_mapcount(head) > 0");
2763 BUG();
2764 }
2765 spin_unlock(&pgdata->split_queue_lock);
2766fail: if (mapping)
2767 spin_unlock(&mapping->tree_lock);
a52633d8 2768 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
d7b66bd2 2769 remap_page(head);
e9b61f19
KS
2770 ret = -EBUSY;
2771 }
2772
2773out_unlock:
baa355fd
KS
2774 if (anon_vma) {
2775 anon_vma_unlock_write(anon_vma);
2776 put_anon_vma(anon_vma);
2777 }
2778 if (mapping)
2779 i_mmap_unlock_read(mapping);
e9b61f19
KS
2780out:
2781 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2782 return ret;
2783}
9a982250
KS
2784
2785void free_transhuge_page(struct page *page)
2786{
a3d0a918 2787 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2788 unsigned long flags;
2789
a3d0a918 2790 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2791 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2792 pgdata->split_queue_len--;
9a982250
KS
2793 list_del(page_deferred_list(page));
2794 }
a3d0a918 2795 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2796 free_compound_page(page);
2797}
2798
2799void deferred_split_huge_page(struct page *page)
2800{
a3d0a918 2801 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2802 unsigned long flags;
2803
2804 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2805
a3d0a918 2806 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2807 if (list_empty(page_deferred_list(page))) {
f9719a03 2808 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2809 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2810 pgdata->split_queue_len++;
9a982250 2811 }
a3d0a918 2812 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2813}
2814
2815static unsigned long deferred_split_count(struct shrinker *shrink,
2816 struct shrink_control *sc)
2817{
a3d0a918 2818 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2819 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2820}
2821
2822static unsigned long deferred_split_scan(struct shrinker *shrink,
2823 struct shrink_control *sc)
2824{
a3d0a918 2825 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2826 unsigned long flags;
2827 LIST_HEAD(list), *pos, *next;
2828 struct page *page;
2829 int split = 0;
2830
a3d0a918 2831 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2832 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2833 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2834 page = list_entry((void *)pos, struct page, mapping);
2835 page = compound_head(page);
e3ae1953
KS
2836 if (get_page_unless_zero(page)) {
2837 list_move(page_deferred_list(page), &list);
2838 } else {
2839 /* We lost race with put_compound_page() */
9a982250 2840 list_del_init(page_deferred_list(page));
a3d0a918 2841 pgdata->split_queue_len--;
9a982250 2842 }
e3ae1953
KS
2843 if (!--sc->nr_to_scan)
2844 break;
9a982250 2845 }
a3d0a918 2846 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2847
2848 list_for_each_safe(pos, next, &list) {
2849 page = list_entry((void *)pos, struct page, mapping);
002fe7f9
KS
2850 if (!trylock_page(page))
2851 goto next;
9a982250
KS
2852 /* split_huge_page() removes page from list on success */
2853 if (!split_huge_page(page))
2854 split++;
2855 unlock_page(page);
002fe7f9 2856next:
9a982250
KS
2857 put_page(page);
2858 }
2859
a3d0a918
KS
2860 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2861 list_splice_tail(&list, &pgdata->split_queue);
2862 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2863
cb8d68ec
KS
2864 /*
2865 * Stop shrinker if we didn't split any page, but the queue is empty.
2866 * This can happen if pages were freed under us.
2867 */
2868 if (!split && list_empty(&pgdata->split_queue))
2869 return SHRINK_STOP;
2870 return split;
9a982250
KS
2871}
2872
2873static struct shrinker deferred_split_shrinker = {
2874 .count_objects = deferred_split_count,
2875 .scan_objects = deferred_split_scan,
2876 .seeks = DEFAULT_SEEKS,
a3d0a918 2877 .flags = SHRINKER_NUMA_AWARE,
9a982250 2878};
49071d43
KS
2879
2880#ifdef CONFIG_DEBUG_FS
2881static int split_huge_pages_set(void *data, u64 val)
2882{
2883 struct zone *zone;
2884 struct page *page;
2885 unsigned long pfn, max_zone_pfn;
2886 unsigned long total = 0, split = 0;
2887
2888 if (val != 1)
2889 return -EINVAL;
2890
2891 for_each_populated_zone(zone) {
2892 max_zone_pfn = zone_end_pfn(zone);
2893 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2894 if (!pfn_valid(pfn))
2895 continue;
2896
2897 page = pfn_to_page(pfn);
2898 if (!get_page_unless_zero(page))
2899 continue;
2900
2901 if (zone != page_zone(page))
2902 goto next;
2903
baa355fd 2904 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2905 goto next;
2906
2907 total++;
2908 lock_page(page);
2909 if (!split_huge_page(page))
2910 split++;
2911 unlock_page(page);
2912next:
2913 put_page(page);
2914 }
2915 }
2916
145bdaa1 2917 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2918
2919 return 0;
2920}
2921DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2922 "%llu\n");
2923
2924static int __init split_huge_pages_debugfs(void)
2925{
2926 void *ret;
2927
145bdaa1 2928 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2929 &split_huge_pages_fops);
2930 if (!ret)
2931 pr_warn("Failed to create split_huge_pages in debugfs");
2932 return 0;
2933}
2934late_initcall(split_huge_pages_debugfs);
2935#endif
616b8371
ZY
2936
2937#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2938void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2939 struct page *page)
2940{
2941 struct vm_area_struct *vma = pvmw->vma;
2942 struct mm_struct *mm = vma->vm_mm;
2943 unsigned long address = pvmw->address;
2944 pmd_t pmdval;
2945 swp_entry_t entry;
ab6e3d09 2946 pmd_t pmdswp;
616b8371
ZY
2947
2948 if (!(pvmw->pmd && !pvmw->pte))
2949 return;
2950
616b8371
ZY
2951 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2952 pmdval = *pvmw->pmd;
2953 pmdp_invalidate(vma, address, pvmw->pmd);
2954 if (pmd_dirty(pmdval))
2955 set_page_dirty(page);
2956 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2957 pmdswp = swp_entry_to_pmd(entry);
2958 if (pmd_soft_dirty(pmdval))
2959 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2960 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2961 page_remove_rmap(page, true);
2962 put_page(page);
616b8371
ZY
2963}
2964
2965void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2966{
2967 struct vm_area_struct *vma = pvmw->vma;
2968 struct mm_struct *mm = vma->vm_mm;
2969 unsigned long address = pvmw->address;
2970 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2971 pmd_t pmde;
2972 swp_entry_t entry;
2973
2974 if (!(pvmw->pmd && !pvmw->pte))
2975 return;
2976
2977 entry = pmd_to_swp_entry(*pvmw->pmd);
2978 get_page(new);
2979 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2980 if (pmd_swp_soft_dirty(*pvmw->pmd))
2981 pmde = pmd_mksoft_dirty(pmde);
616b8371 2982 if (is_write_migration_entry(entry))
f55e1014 2983 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2984
2985 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2986 page_add_anon_rmap(new, vma, mmun_start, true);
2987 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
0e1e3cac 2988 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2989 mlock_vma_page(new);
2990 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2991}
2992#endif