]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
xfrm: policy: make policy backend const
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
ba76149f 38/*
8bfa3f9a
JW
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
ba76149f 45 */
71e3aac0 46unsigned long transparent_hugepage_flags __read_mostly =
13ece886 47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
49#endif
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52#endif
444eb2a4 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 56
9a982250 57static struct shrinker deferred_split_shrinker;
f000565a 58
97ae1749 59static atomic_t huge_zero_refcount;
56873f43 60struct page *huge_zero_page __read_mostly;
4a6c1297 61
6fcb52a5 62static struct page *get_huge_zero_page(void)
97ae1749
KS
63{
64 struct page *zero_page;
65retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 67 return READ_ONCE(huge_zero_page);
97ae1749
KS
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 70 HPAGE_PMD_ORDER);
d8a8e1f0
KS
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 73 return NULL;
d8a8e1f0
KS
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 76 preempt_disable();
5918d10a 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 78 preempt_enable();
5ddacbe9 79 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
4db0c3c2 86 return READ_ONCE(huge_zero_page);
4a6c1297
KS
87}
88
6fcb52a5 89static void put_huge_zero_page(void)
4a6c1297 90{
97ae1749
KS
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
96}
97
6fcb52a5
AL
98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99{
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110}
111
112void mm_put_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116}
117
48896466
GC
118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
4a6c1297 120{
48896466
GC
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123}
97ae1749 124
48896466
GC
125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127{
97ae1749 128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
5ddacbe9 131 __free_pages(zero_page, compound_order(zero_page));
48896466 132 return HPAGE_PMD_NR;
97ae1749
KS
133 }
134
135 return 0;
4a6c1297
KS
136}
137
97ae1749 138static struct shrinker huge_zero_page_shrinker = {
48896466
GC
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
141 .seeks = DEFAULT_SEEKS,
142};
143
71e3aac0 144#ifdef CONFIG_SYSFS
ba76149f 145
444eb2a4 146static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
444eb2a4 150 enum transparent_hugepage_flag deferred,
71e3aac0
AA
151 enum transparent_hugepage_flag req_madv)
152{
444eb2a4
MG
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
71e3aac0 161 min(sizeof("always")-1, count))) {
444eb2a4 162 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 163 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 164 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 168 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 174 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
175 } else
176 return -EINVAL;
177
178 return count;
179}
180
181static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183{
444eb2a4
MG
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
71e3aac0 190}
444eb2a4 191
71e3aac0
AA
192static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195{
ba76149f
AA
196 ssize_t ret;
197
444eb2a4
MG
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
b46e756f 204 int err = start_stop_khugepaged();
ba76149f
AA
205 if (err)
206 ret = err;
207 }
208
209 return ret;
71e3aac0
AA
210}
211static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
b46e756f 214ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217{
e27e6151
BH
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 220}
e27e6151 221
b46e756f 222ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226{
e27e6151
BH
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
71e3aac0 237 set_bit(flag, &transparent_hugepage_flags);
e27e6151 238 else
71e3aac0 239 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
240
241 return count;
242}
243
244/*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251{
444eb2a4
MG
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
71e3aac0
AA
261}
262static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265{
444eb2a4
MG
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270}
271static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
79da5407
KS
274static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276{
b46e756f 277 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279}
280static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282{
b46e756f 283 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285}
286static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
288
289static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291{
292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
293}
294static struct kobj_attribute hpage_pmd_size_attr =
295 __ATTR_RO(hpage_pmd_size);
296
71e3aac0
AA
297#ifdef CONFIG_DEBUG_VM
298static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
b46e756f 301 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303}
304static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307{
b46e756f 308 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310}
311static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313#endif /* CONFIG_DEBUG_VM */
314
315static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
79da5407 318 &use_zero_page_attr.attr,
49920d28 319 &hpage_pmd_size_attr.attr,
e496cf3d 320#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
321 &shmem_enabled_attr.attr,
322#endif
71e3aac0
AA
323#ifdef CONFIG_DEBUG_VM
324 &debug_cow_attr.attr,
325#endif
326 NULL,
327};
328
329static struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
ba76149f
AA
331};
332
569e5590 333static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 334{
71e3aac0
AA
335 int err;
336
569e5590
SL
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 339 pr_err("failed to create transparent hugepage kobject\n");
569e5590 340 return -ENOMEM;
ba76149f
AA
341 }
342
569e5590 343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 344 if (err) {
ae3a8c1c 345 pr_err("failed to register transparent hugepage group\n");
569e5590 346 goto delete_obj;
ba76149f
AA
347 }
348
569e5590 349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 350 if (err) {
ae3a8c1c 351 pr_err("failed to register transparent hugepage group\n");
569e5590 352 goto remove_hp_group;
ba76149f 353 }
569e5590
SL
354
355 return 0;
356
357remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
362}
363
364static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365{
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
369}
370#else
371static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372{
373 return 0;
374}
375
376static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377{
378}
379#endif /* CONFIG_SYSFS */
380
381static int __init hugepage_init(void)
382{
383 int err;
384 struct kobject *hugepage_kobj;
385
386 if (!has_transparent_hugepage()) {
387 transparent_hugepage_flags = 0;
388 return -EINVAL;
389 }
390
ff20c2e0
KS
391 /*
392 * hugepages can't be allocated by the buddy allocator
393 */
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
395 /*
396 * we use page->mapping and page->index in second tail page
397 * as list_head: assuming THP order >= 2
398 */
399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
400
569e5590
SL
401 err = hugepage_init_sysfs(&hugepage_kobj);
402 if (err)
65ebb64f 403 goto err_sysfs;
ba76149f 404
b46e756f 405 err = khugepaged_init();
ba76149f 406 if (err)
65ebb64f 407 goto err_slab;
ba76149f 408
65ebb64f
KS
409 err = register_shrinker(&huge_zero_page_shrinker);
410 if (err)
411 goto err_hzp_shrinker;
9a982250
KS
412 err = register_shrinker(&deferred_split_shrinker);
413 if (err)
414 goto err_split_shrinker;
97ae1749 415
97562cd2
RR
416 /*
417 * By default disable transparent hugepages on smaller systems,
418 * where the extra memory used could hurt more than TLB overhead
419 * is likely to save. The admin can still enable it through /sys.
420 */
79553da2 421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 422 transparent_hugepage_flags = 0;
79553da2
KS
423 return 0;
424 }
97562cd2 425
79553da2 426 err = start_stop_khugepaged();
65ebb64f
KS
427 if (err)
428 goto err_khugepaged;
ba76149f 429
569e5590 430 return 0;
65ebb64f 431err_khugepaged:
9a982250
KS
432 unregister_shrinker(&deferred_split_shrinker);
433err_split_shrinker:
65ebb64f
KS
434 unregister_shrinker(&huge_zero_page_shrinker);
435err_hzp_shrinker:
b46e756f 436 khugepaged_destroy();
65ebb64f 437err_slab:
569e5590 438 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 439err_sysfs:
ba76149f 440 return err;
71e3aac0 441}
a64fb3cd 442subsys_initcall(hugepage_init);
71e3aac0
AA
443
444static int __init setup_transparent_hugepage(char *str)
445{
446 int ret = 0;
447 if (!str)
448 goto out;
449 if (!strcmp(str, "always")) {
450 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 } else if (!strcmp(str, "madvise")) {
456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "never")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 }
468out:
469 if (!ret)
ae3a8c1c 470 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
471 return ret;
472}
473__setup("transparent_hugepage=", setup_transparent_hugepage);
474
b32967ff 475pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
476{
477 if (likely(vma->vm_flags & VM_WRITE))
478 pmd = pmd_mkwrite(pmd);
479 return pmd;
480}
481
9a982250
KS
482static inline struct list_head *page_deferred_list(struct page *page)
483{
484 /*
485 * ->lru in the tail pages is occupied by compound_head.
486 * Let's use ->mapping + ->index in the second tail page as list_head.
487 */
488 return (struct list_head *)&page[2].mapping;
489}
490
491void prep_transhuge_page(struct page *page)
492{
493 /*
494 * we use page->mapping and page->indexlru in second tail page
495 * as list_head: assuming THP order >= 2
496 */
9a982250
KS
497
498 INIT_LIST_HEAD(page_deferred_list(page));
499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
500}
501
74d2fad1
TK
502unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 loff_t off, unsigned long flags, unsigned long size)
504{
505 unsigned long addr;
506 loff_t off_end = off + len;
507 loff_t off_align = round_up(off, size);
508 unsigned long len_pad;
509
510 if (off_end <= off_align || (off_end - off_align) < size)
511 return 0;
512
513 len_pad = len + size;
514 if (len_pad < len || (off + len_pad) < off)
515 return 0;
516
517 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 off >> PAGE_SHIFT, flags);
519 if (IS_ERR_VALUE(addr))
520 return 0;
521
522 addr += (off - addr) & (size - 1);
523 return addr;
524}
525
526unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 unsigned long len, unsigned long pgoff, unsigned long flags)
528{
529 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530
531 if (addr)
532 goto out;
533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 goto out;
535
536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 if (addr)
538 return addr;
539
540 out:
541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542}
543EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544
82b0f8c3 545static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 546 gfp_t gfp)
71e3aac0 547{
82b0f8c3 548 struct vm_area_struct *vma = vmf->vma;
00501b53 549 struct mem_cgroup *memcg;
71e3aac0 550 pgtable_t pgtable;
82b0f8c3 551 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 552
309381fe 553 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 554
bae473a4 555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
00501b53 560
bae473a4 561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 562 if (unlikely(!pgtable)) {
f627c2f5 563 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 564 put_page(page);
71e3aac0 565 return VM_FAULT_OOM;
00501b53 566 }
71e3aac0
AA
567
568 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
569 /*
570 * The memory barrier inside __SetPageUptodate makes sure that
571 * clear_huge_page writes become visible before the set_pmd_at()
572 * write.
573 */
71e3aac0
AA
574 __SetPageUptodate(page);
575
82b0f8c3
JK
576 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
577 if (unlikely(!pmd_none(*vmf->pmd))) {
578 spin_unlock(vmf->ptl);
f627c2f5 579 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 580 put_page(page);
bae473a4 581 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
582 } else {
583 pmd_t entry;
6b251fc9
AA
584
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
588
82b0f8c3 589 spin_unlock(vmf->ptl);
f627c2f5 590 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 591 put_page(page);
bae473a4 592 pte_free(vma->vm_mm, pgtable);
82b0f8c3 593 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
596 }
597
3122359a
KS
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 600 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 601 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 602 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
603 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4
KS
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 607 spin_unlock(vmf->ptl);
6b251fc9 608 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
609 }
610
aa2e878e 611 return 0;
71e3aac0
AA
612}
613
444eb2a4 614/*
25160354
VB
615 * If THP defrag is set to always then directly reclaim/compact as necessary
616 * If set to defer then do only background reclaim/compact and defer to khugepaged
444eb2a4 617 * If set to madvise and the VMA is flagged then directly reclaim/compact
25160354 618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
444eb2a4
MG
619 */
620static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
621{
25160354
VB
622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
623
624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 &transparent_hugepage_flags) && vma_madvised)
626 return GFP_TRANSHUGE;
627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 &transparent_hugepage_flags))
632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
633
634 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
635}
636
c4088ebd 637/* Caller must hold page table lock. */
d295e341 638static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 640 struct page *zero_page)
fc9fe822
KS
641{
642 pmd_t entry;
7c414164
AM
643 if (!pmd_none(*pmd))
644 return false;
5918d10a 645 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 646 entry = pmd_mkhuge(entry);
12c9d70b
MW
647 if (pgtable)
648 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 649 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 650 atomic_long_inc(&mm->nr_ptes);
7c414164 651 return true;
fc9fe822
KS
652}
653
82b0f8c3 654int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 655{
82b0f8c3 656 struct vm_area_struct *vma = vmf->vma;
077fcf11 657 gfp_t gfp;
71e3aac0 658 struct page *page;
82b0f8c3 659 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 660
128ec037 661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 662 return VM_FAULT_FALLBACK;
128ec037
KS
663 if (unlikely(anon_vma_prepare(vma)))
664 return VM_FAULT_OOM;
6d50e60c 665 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 666 return VM_FAULT_OOM;
82b0f8c3 667 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 668 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
669 transparent_hugepage_use_zero_page()) {
670 pgtable_t pgtable;
671 struct page *zero_page;
672 bool set;
6b251fc9 673 int ret;
bae473a4 674 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 675 if (unlikely(!pgtable))
ba76149f 676 return VM_FAULT_OOM;
6fcb52a5 677 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 678 if (unlikely(!zero_page)) {
bae473a4 679 pte_free(vma->vm_mm, pgtable);
81ab4201 680 count_vm_event(THP_FAULT_FALLBACK);
c0292554 681 return VM_FAULT_FALLBACK;
b9bbfbe3 682 }
82b0f8c3 683 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
684 ret = 0;
685 set = false;
82b0f8c3 686 if (pmd_none(*vmf->pmd)) {
6b251fc9 687 if (userfaultfd_missing(vma)) {
82b0f8c3
JK
688 spin_unlock(vmf->ptl);
689 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
690 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 } else {
bae473a4 692 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
693 haddr, vmf->pmd, zero_page);
694 spin_unlock(vmf->ptl);
6b251fc9
AA
695 set = true;
696 }
697 } else
82b0f8c3 698 spin_unlock(vmf->ptl);
6fcb52a5 699 if (!set)
bae473a4 700 pte_free(vma->vm_mm, pgtable);
6b251fc9 701 return ret;
71e3aac0 702 }
444eb2a4 703 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
705 if (unlikely(!page)) {
706 count_vm_event(THP_FAULT_FALLBACK);
c0292554 707 return VM_FAULT_FALLBACK;
128ec037 708 }
9a982250 709 prep_transhuge_page(page);
82b0f8c3 710 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
711}
712
ae18d6dc 713static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
715{
716 struct mm_struct *mm = vma->vm_mm;
717 pmd_t entry;
718 spinlock_t *ptl;
719
720 ptl = pmd_lock(mm, pmd);
f25748e3
DW
721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 if (pfn_t_devmap(pfn))
723 entry = pmd_mkdevmap(entry);
01871e59
RZ
724 if (write) {
725 entry = pmd_mkyoung(pmd_mkdirty(entry));
726 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 727 }
01871e59
RZ
728 set_pmd_at(mm, addr, pmd, entry);
729 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 730 spin_unlock(ptl);
5cad465d
MW
731}
732
733int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 734 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
735{
736 pgprot_t pgprot = vma->vm_page_prot;
737 /*
738 * If we had pmd_special, we could avoid all these restrictions,
739 * but we need to be consistent with PTEs and architectures that
740 * can't support a 'special' bit.
741 */
742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 (VM_PFNMAP|VM_MIXEDMAP));
745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 746 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
747
748 if (addr < vma->vm_start || addr >= vma->vm_end)
749 return VM_FAULT_SIGBUS;
308a047c
BP
750
751 track_pfn_insert(vma, &pgprot, pfn);
752
ae18d6dc
MW
753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 return VM_FAULT_NOPAGE;
5cad465d 755}
dee41079 756EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 757
3565fce3
DW
758static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd)
760{
761 pmd_t _pmd;
762
763 /*
764 * We should set the dirty bit only for FOLL_WRITE but for now
765 * the dirty bit in the pmd is meaningless. And if the dirty
766 * bit will become meaningful and we'll only set it with
767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 * set the young bit, instead of the current set_pmd_at.
769 */
770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 pmd, _pmd, 1))
773 update_mmu_cache_pmd(vma, addr, pmd);
774}
775
776struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 pmd_t *pmd, int flags)
778{
779 unsigned long pfn = pmd_pfn(*pmd);
780 struct mm_struct *mm = vma->vm_mm;
781 struct dev_pagemap *pgmap;
782 struct page *page;
783
784 assert_spin_locked(pmd_lockptr(mm, pmd));
785
8310d48b
KF
786 /*
787 * When we COW a devmap PMD entry, we split it into PTEs, so we should
788 * not be in this function with `flags & FOLL_COW` set.
789 */
790 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
791
3565fce3
DW
792 if (flags & FOLL_WRITE && !pmd_write(*pmd))
793 return NULL;
794
795 if (pmd_present(*pmd) && pmd_devmap(*pmd))
796 /* pass */;
797 else
798 return NULL;
799
800 if (flags & FOLL_TOUCH)
801 touch_pmd(vma, addr, pmd);
802
803 /*
804 * device mapped pages can only be returned if the
805 * caller will manage the page reference count.
806 */
807 if (!(flags & FOLL_GET))
808 return ERR_PTR(-EEXIST);
809
810 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
811 pgmap = get_dev_pagemap(pfn, NULL);
812 if (!pgmap)
813 return ERR_PTR(-EFAULT);
814 page = pfn_to_page(pfn);
815 get_page(page);
816 put_dev_pagemap(pgmap);
817
818 return page;
819}
820
71e3aac0
AA
821int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
822 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
823 struct vm_area_struct *vma)
824{
c4088ebd 825 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
826 struct page *src_page;
827 pmd_t pmd;
12c9d70b 828 pgtable_t pgtable = NULL;
628d47ce 829 int ret = -ENOMEM;
71e3aac0 830
628d47ce
KS
831 /* Skip if can be re-fill on fault */
832 if (!vma_is_anonymous(vma))
833 return 0;
834
835 pgtable = pte_alloc_one(dst_mm, addr);
836 if (unlikely(!pgtable))
837 goto out;
71e3aac0 838
c4088ebd
KS
839 dst_ptl = pmd_lock(dst_mm, dst_pmd);
840 src_ptl = pmd_lockptr(src_mm, src_pmd);
841 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
842
843 ret = -EAGAIN;
844 pmd = *src_pmd;
628d47ce 845 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
846 pte_free(dst_mm, pgtable);
847 goto out_unlock;
848 }
fc9fe822 849 /*
c4088ebd 850 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
851 * under splitting since we don't split the page itself, only pmd to
852 * a page table.
853 */
854 if (is_huge_zero_pmd(pmd)) {
5918d10a 855 struct page *zero_page;
97ae1749
KS
856 /*
857 * get_huge_zero_page() will never allocate a new page here,
858 * since we already have a zero page to copy. It just takes a
859 * reference.
860 */
6fcb52a5 861 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 862 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 863 zero_page);
fc9fe822
KS
864 ret = 0;
865 goto out_unlock;
866 }
de466bd6 867
628d47ce
KS
868 src_page = pmd_page(pmd);
869 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
870 get_page(src_page);
871 page_dup_rmap(src_page, true);
872 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
873 atomic_long_inc(&dst_mm->nr_ptes);
874 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
875
876 pmdp_set_wrprotect(src_mm, addr, src_pmd);
877 pmd = pmd_mkold(pmd_wrprotect(pmd));
878 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
879
880 ret = 0;
881out_unlock:
c4088ebd
KS
882 spin_unlock(src_ptl);
883 spin_unlock(dst_ptl);
71e3aac0
AA
884out:
885 return ret;
886}
887
82b0f8c3 888void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
889{
890 pmd_t entry;
891 unsigned long haddr;
20f664aa 892 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 893
82b0f8c3
JK
894 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
895 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
896 goto unlock;
897
898 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
899 if (write)
900 entry = pmd_mkdirty(entry);
82b0f8c3 901 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 902 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 903 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
904
905unlock:
82b0f8c3 906 spin_unlock(vmf->ptl);
a1dd450b
WD
907}
908
82b0f8c3 909static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 910 struct page *page)
71e3aac0 911{
82b0f8c3
JK
912 struct vm_area_struct *vma = vmf->vma;
913 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 914 struct mem_cgroup *memcg;
71e3aac0
AA
915 pgtable_t pgtable;
916 pmd_t _pmd;
917 int ret = 0, i;
918 struct page **pages;
2ec74c3e
SG
919 unsigned long mmun_start; /* For mmu_notifiers */
920 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
921
922 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
923 GFP_KERNEL);
924 if (unlikely(!pages)) {
925 ret |= VM_FAULT_OOM;
926 goto out;
927 }
928
929 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 930 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 931 vmf->address, page_to_nid(page));
b9bbfbe3 932 if (unlikely(!pages[i] ||
bae473a4
KS
933 mem_cgroup_try_charge(pages[i], vma->vm_mm,
934 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 935 if (pages[i])
71e3aac0 936 put_page(pages[i]);
b9bbfbe3 937 while (--i >= 0) {
00501b53
JW
938 memcg = (void *)page_private(pages[i]);
939 set_page_private(pages[i], 0);
f627c2f5
KS
940 mem_cgroup_cancel_charge(pages[i], memcg,
941 false);
b9bbfbe3
AA
942 put_page(pages[i]);
943 }
71e3aac0
AA
944 kfree(pages);
945 ret |= VM_FAULT_OOM;
946 goto out;
947 }
00501b53 948 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
949 }
950
951 for (i = 0; i < HPAGE_PMD_NR; i++) {
952 copy_user_highpage(pages[i], page + i,
0089e485 953 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
954 __SetPageUptodate(pages[i]);
955 cond_resched();
956 }
957
2ec74c3e
SG
958 mmun_start = haddr;
959 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 960 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 961
82b0f8c3
JK
962 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
963 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 964 goto out_free_pages;
309381fe 965 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 966
82b0f8c3 967 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0
AA
968 /* leave pmd empty until pte is filled */
969
82b0f8c3 970 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 971 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
972
973 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 974 pte_t entry;
71e3aac0
AA
975 entry = mk_pte(pages[i], vma->vm_page_prot);
976 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
977 memcg = (void *)page_private(pages[i]);
978 set_page_private(pages[i], 0);
82b0f8c3 979 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 980 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 981 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
982 vmf->pte = pte_offset_map(&_pmd, haddr);
983 VM_BUG_ON(!pte_none(*vmf->pte));
984 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
985 pte_unmap(vmf->pte);
71e3aac0
AA
986 }
987 kfree(pages);
988
71e3aac0 989 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 990 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 991 page_remove_rmap(page, true);
82b0f8c3 992 spin_unlock(vmf->ptl);
71e3aac0 993
bae473a4 994 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 995
71e3aac0
AA
996 ret |= VM_FAULT_WRITE;
997 put_page(page);
998
999out:
1000 return ret;
1001
1002out_free_pages:
82b0f8c3 1003 spin_unlock(vmf->ptl);
bae473a4 1004 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1005 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1006 memcg = (void *)page_private(pages[i]);
1007 set_page_private(pages[i], 0);
f627c2f5 1008 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1009 put_page(pages[i]);
b9bbfbe3 1010 }
71e3aac0
AA
1011 kfree(pages);
1012 goto out;
1013}
1014
82b0f8c3 1015int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1016{
82b0f8c3 1017 struct vm_area_struct *vma = vmf->vma;
93b4796d 1018 struct page *page = NULL, *new_page;
00501b53 1019 struct mem_cgroup *memcg;
82b0f8c3 1020 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1021 unsigned long mmun_start; /* For mmu_notifiers */
1022 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1023 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1024 int ret = 0;
71e3aac0 1025
82b0f8c3 1026 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1027 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1028 if (is_huge_zero_pmd(orig_pmd))
1029 goto alloc;
82b0f8c3
JK
1030 spin_lock(vmf->ptl);
1031 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1032 goto out_unlock;
1033
1034 page = pmd_page(orig_pmd);
309381fe 1035 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1036 /*
1037 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1038 * part.
1f25fe20 1039 */
6d0a07ed 1040 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1041 pmd_t entry;
1042 entry = pmd_mkyoung(orig_pmd);
1043 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1044 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1045 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0
AA
1046 ret |= VM_FAULT_WRITE;
1047 goto out_unlock;
1048 }
ddc58f27 1049 get_page(page);
82b0f8c3 1050 spin_unlock(vmf->ptl);
93b4796d 1051alloc:
71e3aac0 1052 if (transparent_hugepage_enabled(vma) &&
077fcf11 1053 !transparent_hugepage_debug_cow()) {
444eb2a4 1054 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1055 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1056 } else
71e3aac0
AA
1057 new_page = NULL;
1058
9a982250
KS
1059 if (likely(new_page)) {
1060 prep_transhuge_page(new_page);
1061 } else {
eecc1e42 1062 if (!page) {
82b0f8c3 1063 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1064 ret |= VM_FAULT_FALLBACK;
93b4796d 1065 } else {
82b0f8c3 1066 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1067 if (ret & VM_FAULT_OOM) {
82b0f8c3 1068 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1069 ret |= VM_FAULT_FALLBACK;
1070 }
ddc58f27 1071 put_page(page);
93b4796d 1072 }
17766dde 1073 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1074 goto out;
1075 }
1076
bae473a4
KS
1077 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1078 huge_gfp, &memcg, true))) {
b9bbfbe3 1079 put_page(new_page);
82b0f8c3 1080 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1081 if (page)
ddc58f27 1082 put_page(page);
9845cbbd 1083 ret |= VM_FAULT_FALLBACK;
17766dde 1084 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1085 goto out;
1086 }
1087
17766dde
DR
1088 count_vm_event(THP_FAULT_ALLOC);
1089
eecc1e42 1090 if (!page)
93b4796d
KS
1091 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1092 else
1093 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1094 __SetPageUptodate(new_page);
1095
2ec74c3e
SG
1096 mmun_start = haddr;
1097 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1098 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1099
82b0f8c3 1100 spin_lock(vmf->ptl);
93b4796d 1101 if (page)
ddc58f27 1102 put_page(page);
82b0f8c3
JK
1103 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1104 spin_unlock(vmf->ptl);
f627c2f5 1105 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1106 put_page(new_page);
2ec74c3e 1107 goto out_mn;
b9bbfbe3 1108 } else {
71e3aac0 1109 pmd_t entry;
3122359a
KS
1110 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1111 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1112 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1113 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1114 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1115 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1116 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1117 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1118 if (!page) {
bae473a4 1119 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1120 } else {
309381fe 1121 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1122 page_remove_rmap(page, true);
93b4796d
KS
1123 put_page(page);
1124 }
71e3aac0
AA
1125 ret |= VM_FAULT_WRITE;
1126 }
82b0f8c3 1127 spin_unlock(vmf->ptl);
2ec74c3e 1128out_mn:
bae473a4 1129 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1130out:
1131 return ret;
2ec74c3e 1132out_unlock:
82b0f8c3 1133 spin_unlock(vmf->ptl);
2ec74c3e 1134 return ret;
71e3aac0
AA
1135}
1136
8310d48b
KF
1137/*
1138 * FOLL_FORCE can write to even unwritable pmd's, but only
1139 * after we've gone through a COW cycle and they are dirty.
1140 */
1141static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1142{
1143 return pmd_write(pmd) ||
1144 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1145}
1146
b676b293 1147struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1148 unsigned long addr,
1149 pmd_t *pmd,
1150 unsigned int flags)
1151{
b676b293 1152 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1153 struct page *page = NULL;
1154
c4088ebd 1155 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1156
8310d48b 1157 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1158 goto out;
1159
85facf25
KS
1160 /* Avoid dumping huge zero page */
1161 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1162 return ERR_PTR(-EFAULT);
1163
2b4847e7 1164 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1165 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1166 goto out;
1167
71e3aac0 1168 page = pmd_page(*pmd);
ca120cf6 1169 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1170 if (flags & FOLL_TOUCH)
1171 touch_pmd(vma, addr, pmd);
de60f5f1 1172 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1173 /*
1174 * We don't mlock() pte-mapped THPs. This way we can avoid
1175 * leaking mlocked pages into non-VM_LOCKED VMAs.
1176 *
9a73f61b
KS
1177 * For anon THP:
1178 *
e90309c9
KS
1179 * In most cases the pmd is the only mapping of the page as we
1180 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1181 * writable private mappings in populate_vma_page_range().
1182 *
1183 * The only scenario when we have the page shared here is if we
1184 * mlocking read-only mapping shared over fork(). We skip
1185 * mlocking such pages.
9a73f61b
KS
1186 *
1187 * For file THP:
1188 *
1189 * We can expect PageDoubleMap() to be stable under page lock:
1190 * for file pages we set it in page_add_file_rmap(), which
1191 * requires page to be locked.
e90309c9 1192 */
9a73f61b
KS
1193
1194 if (PageAnon(page) && compound_mapcount(page) != 1)
1195 goto skip_mlock;
1196 if (PageDoubleMap(page) || !page->mapping)
1197 goto skip_mlock;
1198 if (!trylock_page(page))
1199 goto skip_mlock;
1200 lru_add_drain();
1201 if (page->mapping && !PageDoubleMap(page))
1202 mlock_vma_page(page);
1203 unlock_page(page);
b676b293 1204 }
9a73f61b 1205skip_mlock:
71e3aac0 1206 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1207 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1208 if (flags & FOLL_GET)
ddc58f27 1209 get_page(page);
71e3aac0
AA
1210
1211out:
1212 return page;
1213}
1214
d10e63f2 1215/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1216int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1217{
82b0f8c3 1218 struct vm_area_struct *vma = vmf->vma;
b8916634 1219 struct anon_vma *anon_vma = NULL;
b32967ff 1220 struct page *page;
82b0f8c3 1221 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1222 int page_nid = -1, this_nid = numa_node_id();
90572890 1223 int target_nid, last_cpupid = -1;
8191acbd
MG
1224 bool page_locked;
1225 bool migrated = false;
b191f9b1 1226 bool was_writable;
6688cc05 1227 int flags = 0;
d10e63f2 1228
82b0f8c3
JK
1229 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1230 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1231 goto out_unlock;
1232
de466bd6
MG
1233 /*
1234 * If there are potential migrations, wait for completion and retry
1235 * without disrupting NUMA hinting information. Do not relock and
1236 * check_same as the page may no longer be mapped.
1237 */
82b0f8c3
JK
1238 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1239 page = pmd_page(*vmf->pmd);
1240 spin_unlock(vmf->ptl);
5d833062 1241 wait_on_page_locked(page);
de466bd6
MG
1242 goto out;
1243 }
1244
d10e63f2 1245 page = pmd_page(pmd);
a1a46184 1246 BUG_ON(is_huge_zero_page(page));
8191acbd 1247 page_nid = page_to_nid(page);
90572890 1248 last_cpupid = page_cpupid_last(page);
03c5a6e1 1249 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1250 if (page_nid == this_nid) {
03c5a6e1 1251 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1252 flags |= TNF_FAULT_LOCAL;
1253 }
4daae3b4 1254
bea66fbd 1255 /* See similar comment in do_numa_page for explanation */
d59dc7bc 1256 if (!pmd_write(pmd))
6688cc05
PZ
1257 flags |= TNF_NO_GROUP;
1258
ff9042b1
MG
1259 /*
1260 * Acquire the page lock to serialise THP migrations but avoid dropping
1261 * page_table_lock if at all possible
1262 */
b8916634
MG
1263 page_locked = trylock_page(page);
1264 target_nid = mpol_misplaced(page, vma, haddr);
1265 if (target_nid == -1) {
1266 /* If the page was locked, there are no parallel migrations */
a54a407f 1267 if (page_locked)
b8916634 1268 goto clear_pmdnuma;
2b4847e7 1269 }
4daae3b4 1270
de466bd6 1271 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1272 if (!page_locked) {
82b0f8c3 1273 spin_unlock(vmf->ptl);
b8916634 1274 wait_on_page_locked(page);
a54a407f 1275 page_nid = -1;
b8916634
MG
1276 goto out;
1277 }
1278
2b4847e7
MG
1279 /*
1280 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1281 * to serialises splits
1282 */
b8916634 1283 get_page(page);
82b0f8c3 1284 spin_unlock(vmf->ptl);
b8916634 1285 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1286
c69307d5 1287 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1288 spin_lock(vmf->ptl);
1289 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1290 unlock_page(page);
1291 put_page(page);
a54a407f 1292 page_nid = -1;
4daae3b4 1293 goto out_unlock;
b32967ff 1294 }
ff9042b1 1295
c3a489ca
MG
1296 /* Bail if we fail to protect against THP splits for any reason */
1297 if (unlikely(!anon_vma)) {
1298 put_page(page);
1299 page_nid = -1;
1300 goto clear_pmdnuma;
1301 }
1302
a54a407f
MG
1303 /*
1304 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1305 * and access rights restored.
a54a407f 1306 */
82b0f8c3 1307 spin_unlock(vmf->ptl);
bae473a4 1308 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1309 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1310 if (migrated) {
1311 flags |= TNF_MIGRATED;
8191acbd 1312 page_nid = target_nid;
074c2381
MG
1313 } else
1314 flags |= TNF_MIGRATE_FAIL;
b32967ff 1315
8191acbd 1316 goto out;
b32967ff 1317clear_pmdnuma:
a54a407f 1318 BUG_ON(!PageLocked(page));
b191f9b1 1319 was_writable = pmd_write(pmd);
4d942466 1320 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1321 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1322 if (was_writable)
1323 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1324 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1325 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1326 unlock_page(page);
d10e63f2 1327out_unlock:
82b0f8c3 1328 spin_unlock(vmf->ptl);
b8916634
MG
1329
1330out:
1331 if (anon_vma)
1332 page_unlock_anon_vma_read(anon_vma);
1333
8191acbd 1334 if (page_nid != -1)
82b0f8c3
JK
1335 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
1336 vmf->flags);
8191acbd 1337
d10e63f2
MG
1338 return 0;
1339}
1340
319904ad
HY
1341/*
1342 * Return true if we do MADV_FREE successfully on entire pmd page.
1343 * Otherwise, return false.
1344 */
1345bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1346 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1347{
1348 spinlock_t *ptl;
1349 pmd_t orig_pmd;
1350 struct page *page;
1351 struct mm_struct *mm = tlb->mm;
319904ad 1352 bool ret = false;
b8d3c4c3 1353
07e32661
AK
1354 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1355
b6ec57f4
KS
1356 ptl = pmd_trans_huge_lock(pmd, vma);
1357 if (!ptl)
25eedabe 1358 goto out_unlocked;
b8d3c4c3
MK
1359
1360 orig_pmd = *pmd;
319904ad 1361 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1362 goto out;
b8d3c4c3
MK
1363
1364 page = pmd_page(orig_pmd);
1365 /*
1366 * If other processes are mapping this page, we couldn't discard
1367 * the page unless they all do MADV_FREE so let's skip the page.
1368 */
1369 if (page_mapcount(page) != 1)
1370 goto out;
1371
1372 if (!trylock_page(page))
1373 goto out;
1374
1375 /*
1376 * If user want to discard part-pages of THP, split it so MADV_FREE
1377 * will deactivate only them.
1378 */
1379 if (next - addr != HPAGE_PMD_SIZE) {
1380 get_page(page);
1381 spin_unlock(ptl);
9818b8cd 1382 split_huge_page(page);
b8d3c4c3
MK
1383 put_page(page);
1384 unlock_page(page);
b8d3c4c3
MK
1385 goto out_unlocked;
1386 }
1387
1388 if (PageDirty(page))
1389 ClearPageDirty(page);
1390 unlock_page(page);
1391
1392 if (PageActive(page))
1393 deactivate_page(page);
1394
1395 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1396 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1397 tlb->fullmm);
1398 orig_pmd = pmd_mkold(orig_pmd);
1399 orig_pmd = pmd_mkclean(orig_pmd);
1400
1401 set_pmd_at(mm, addr, pmd, orig_pmd);
1402 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1403 }
319904ad 1404 ret = true;
b8d3c4c3
MK
1405out:
1406 spin_unlock(ptl);
1407out_unlocked:
1408 return ret;
1409}
1410
953c66c2
AK
1411static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1412{
1413 pgtable_t pgtable;
1414
1415 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1416 pte_free(mm, pgtable);
1417 atomic_long_dec(&mm->nr_ptes);
1418}
1419
71e3aac0 1420int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1421 pmd_t *pmd, unsigned long addr)
71e3aac0 1422{
da146769 1423 pmd_t orig_pmd;
bf929152 1424 spinlock_t *ptl;
71e3aac0 1425
07e32661
AK
1426 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1427
b6ec57f4
KS
1428 ptl = __pmd_trans_huge_lock(pmd, vma);
1429 if (!ptl)
da146769
KS
1430 return 0;
1431 /*
1432 * For architectures like ppc64 we look at deposited pgtable
1433 * when calling pmdp_huge_get_and_clear. So do the
1434 * pgtable_trans_huge_withdraw after finishing pmdp related
1435 * operations.
1436 */
1437 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1438 tlb->fullmm);
1439 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1440 if (vma_is_dax(vma)) {
1441 spin_unlock(ptl);
1442 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1443 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1444 } else if (is_huge_zero_pmd(orig_pmd)) {
1445 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1446 atomic_long_dec(&tlb->mm->nr_ptes);
1447 spin_unlock(ptl);
c0f2e176 1448 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1449 } else {
1450 struct page *page = pmd_page(orig_pmd);
d281ee61 1451 page_remove_rmap(page, true);
da146769 1452 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1453 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1454 if (PageAnon(page)) {
1455 pgtable_t pgtable;
1456 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1457 pte_free(tlb->mm, pgtable);
1458 atomic_long_dec(&tlb->mm->nr_ptes);
1459 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1460 } else {
953c66c2
AK
1461 if (arch_needs_pgtable_deposit())
1462 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1463 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1464 }
da146769 1465 spin_unlock(ptl);
e77b0852 1466 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1467 }
da146769 1468 return 1;
71e3aac0
AA
1469}
1470
1dd38b6c
AK
1471#ifndef pmd_move_must_withdraw
1472static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1473 spinlock_t *old_pmd_ptl,
1474 struct vm_area_struct *vma)
1475{
1476 /*
1477 * With split pmd lock we also need to move preallocated
1478 * PTE page table if new_pmd is on different PMD page table.
1479 *
1480 * We also don't deposit and withdraw tables for file pages.
1481 */
1482 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1483}
1484#endif
1485
bf8616d5 1486bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1487 unsigned long new_addr, unsigned long old_end,
5d190420 1488 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1489{
bf929152 1490 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1491 pmd_t pmd;
37a1c49a 1492 struct mm_struct *mm = vma->vm_mm;
5d190420 1493 bool force_flush = false;
37a1c49a
AA
1494
1495 if ((old_addr & ~HPAGE_PMD_MASK) ||
1496 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1497 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1498 return false;
37a1c49a
AA
1499
1500 /*
1501 * The destination pmd shouldn't be established, free_pgtables()
1502 * should have release it.
1503 */
1504 if (WARN_ON(!pmd_none(*new_pmd))) {
1505 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1506 return false;
37a1c49a
AA
1507 }
1508
bf929152
KS
1509 /*
1510 * We don't have to worry about the ordering of src and dst
1511 * ptlocks because exclusive mmap_sem prevents deadlock.
1512 */
b6ec57f4
KS
1513 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1514 if (old_ptl) {
bf929152
KS
1515 new_ptl = pmd_lockptr(mm, new_pmd);
1516 if (new_ptl != old_ptl)
1517 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1518 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1519 if (pmd_present(pmd) && pmd_dirty(pmd))
1520 force_flush = true;
025c5b24 1521 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1522
1dd38b6c 1523 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1524 pgtable_t pgtable;
3592806c
KS
1525 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1526 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1527 }
b3084f4d
AK
1528 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1529 if (new_ptl != old_ptl)
1530 spin_unlock(new_ptl);
5d190420
AL
1531 if (force_flush)
1532 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1533 else
1534 *need_flush = true;
bf929152 1535 spin_unlock(old_ptl);
4b471e88 1536 return true;
37a1c49a 1537 }
4b471e88 1538 return false;
37a1c49a
AA
1539}
1540
f123d74a
MG
1541/*
1542 * Returns
1543 * - 0 if PMD could not be locked
1544 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1545 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1546 */
cd7548ab 1547int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1548 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1549{
1550 struct mm_struct *mm = vma->vm_mm;
bf929152 1551 spinlock_t *ptl;
cd7548ab
JW
1552 int ret = 0;
1553
b6ec57f4
KS
1554 ptl = __pmd_trans_huge_lock(pmd, vma);
1555 if (ptl) {
025c5b24 1556 pmd_t entry;
b191f9b1 1557 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1558 ret = 1;
e944fd67
MG
1559
1560 /*
1561 * Avoid trapping faults against the zero page. The read-only
1562 * data is likely to be read-cached on the local CPU and
1563 * local/remote hits to the zero page are not interesting.
1564 */
1565 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1566 spin_unlock(ptl);
ba68bc01 1567 return ret;
e944fd67
MG
1568 }
1569
10c1045f 1570 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1571 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1572 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1573 if (preserve_write)
1574 entry = pmd_mkwrite(entry);
10c1045f
MG
1575 ret = HPAGE_PMD_NR;
1576 set_pmd_at(mm, addr, pmd, entry);
b237aded
KS
1577 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1578 pmd_write(entry));
10c1045f 1579 }
bf929152 1580 spin_unlock(ptl);
025c5b24
NH
1581 }
1582
1583 return ret;
1584}
1585
1586/*
8f19b0c0 1587 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1588 *
8f19b0c0
HY
1589 * Note that if it returns page table lock pointer, this routine returns without
1590 * unlocking page table lock. So callers must unlock it.
025c5b24 1591 */
b6ec57f4 1592spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1593{
b6ec57f4
KS
1594 spinlock_t *ptl;
1595 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1596 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1597 return ptl;
1598 spin_unlock(ptl);
1599 return NULL;
cd7548ab
JW
1600}
1601
eef1b3ba
KS
1602static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1603 unsigned long haddr, pmd_t *pmd)
1604{
1605 struct mm_struct *mm = vma->vm_mm;
1606 pgtable_t pgtable;
1607 pmd_t _pmd;
1608 int i;
1609
1610 /* leave pmd empty until pte is filled */
1611 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1612
1613 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1614 pmd_populate(mm, &_pmd, pgtable);
1615
1616 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1617 pte_t *pte, entry;
1618 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1619 entry = pte_mkspecial(entry);
1620 pte = pte_offset_map(&_pmd, haddr);
1621 VM_BUG_ON(!pte_none(*pte));
1622 set_pte_at(mm, haddr, pte, entry);
1623 pte_unmap(pte);
1624 }
1625 smp_wmb(); /* make pte visible before pmd */
1626 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
1627}
1628
1629static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1630 unsigned long haddr, bool freeze)
eef1b3ba
KS
1631{
1632 struct mm_struct *mm = vma->vm_mm;
1633 struct page *page;
1634 pgtable_t pgtable;
1635 pmd_t _pmd;
804dd150 1636 bool young, write, dirty, soft_dirty;
2ac015e2 1637 unsigned long addr;
eef1b3ba
KS
1638 int i;
1639
1640 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1641 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1642 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1643 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1644
1645 count_vm_event(THP_SPLIT_PMD);
1646
d21b9e57
KS
1647 if (!vma_is_anonymous(vma)) {
1648 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
1649 /*
1650 * We are going to unmap this huge page. So
1651 * just go ahead and zap it
1652 */
1653 if (arch_needs_pgtable_deposit())
1654 zap_deposited_table(mm, pmd);
d21b9e57
KS
1655 if (vma_is_dax(vma))
1656 return;
1657 page = pmd_page(_pmd);
1658 if (!PageReferenced(page) && pmd_young(_pmd))
1659 SetPageReferenced(page);
1660 page_remove_rmap(page, true);
1661 put_page(page);
1662 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1663 return;
1664 } else if (is_huge_zero_pmd(*pmd)) {
1665 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1666 }
1667
1668 page = pmd_page(*pmd);
1669 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 1670 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
1671 write = pmd_write(*pmd);
1672 young = pmd_young(*pmd);
b8d3c4c3 1673 dirty = pmd_dirty(*pmd);
804dd150 1674 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 1675
c777e2a8 1676 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
1677 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1678 pmd_populate(mm, &_pmd, pgtable);
1679
2ac015e2 1680 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
1681 pte_t entry, *pte;
1682 /*
1683 * Note that NUMA hinting access restrictions are not
1684 * transferred to avoid any possibility of altering
1685 * permissions across VMAs.
1686 */
ba988280
KS
1687 if (freeze) {
1688 swp_entry_t swp_entry;
1689 swp_entry = make_migration_entry(page + i, write);
1690 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
1691 if (soft_dirty)
1692 entry = pte_swp_mksoft_dirty(entry);
ba988280 1693 } else {
6d2329f8 1694 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 1695 entry = maybe_mkwrite(entry, vma);
ba988280
KS
1696 if (!write)
1697 entry = pte_wrprotect(entry);
1698 if (!young)
1699 entry = pte_mkold(entry);
804dd150
AA
1700 if (soft_dirty)
1701 entry = pte_mksoft_dirty(entry);
ba988280 1702 }
b8d3c4c3
MK
1703 if (dirty)
1704 SetPageDirty(page + i);
2ac015e2 1705 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 1706 BUG_ON(!pte_none(*pte));
2ac015e2 1707 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
1708 atomic_inc(&page[i]._mapcount);
1709 pte_unmap(pte);
1710 }
1711
1712 /*
1713 * Set PG_double_map before dropping compound_mapcount to avoid
1714 * false-negative page_mapped().
1715 */
1716 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1717 for (i = 0; i < HPAGE_PMD_NR; i++)
1718 atomic_inc(&page[i]._mapcount);
1719 }
1720
1721 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1722 /* Last compound_mapcount is gone. */
11fb9989 1723 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
1724 if (TestClearPageDoubleMap(page)) {
1725 /* No need in mapcount reference anymore */
1726 for (i = 0; i < HPAGE_PMD_NR; i++)
1727 atomic_dec(&page[i]._mapcount);
1728 }
1729 }
1730
1731 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
1732 /*
1733 * Up to this point the pmd is present and huge and userland has the
1734 * whole access to the hugepage during the split (which happens in
1735 * place). If we overwrite the pmd with the not-huge version pointing
1736 * to the pte here (which of course we could if all CPUs were bug
1737 * free), userland could trigger a small page size TLB miss on the
1738 * small sized TLB while the hugepage TLB entry is still established in
1739 * the huge TLB. Some CPU doesn't like that.
1740 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1741 * 383 on page 93. Intel should be safe but is also warns that it's
1742 * only safe if the permission and cache attributes of the two entries
1743 * loaded in the two TLB is identical (which should be the case here).
1744 * But it is generally safer to never allow small and huge TLB entries
1745 * for the same virtual address to be loaded simultaneously. So instead
1746 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1747 * current pmd notpresent (atomically because here the pmd_trans_huge
1748 * and pmd_trans_splitting must remain set at all times on the pmd
1749 * until the split is complete for this pmd), then we flush the SMP TLB
1750 * and finally we write the non-huge version of the pmd entry with
1751 * pmd_populate.
1752 */
1753 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 1754 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
1755
1756 if (freeze) {
2ac015e2 1757 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
1758 page_remove_rmap(page + i, false);
1759 put_page(page + i);
1760 }
1761 }
eef1b3ba
KS
1762}
1763
1764void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 1765 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
1766{
1767 spinlock_t *ptl;
1768 struct mm_struct *mm = vma->vm_mm;
1769 unsigned long haddr = address & HPAGE_PMD_MASK;
1770
1771 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1772 ptl = pmd_lock(mm, pmd);
33f4751e
NH
1773
1774 /*
1775 * If caller asks to setup a migration entries, we need a page to check
1776 * pmd against. Otherwise we can end up replacing wrong page.
1777 */
1778 VM_BUG_ON(freeze && !page);
1779 if (page && page != pmd_page(*pmd))
1780 goto out;
1781
5c7fb56e 1782 if (pmd_trans_huge(*pmd)) {
33f4751e 1783 page = pmd_page(*pmd);
5c7fb56e 1784 if (PageMlocked(page))
5f737714 1785 clear_page_mlock(page);
5c7fb56e 1786 } else if (!pmd_devmap(*pmd))
e90309c9 1787 goto out;
fec89c10 1788 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 1789out:
eef1b3ba
KS
1790 spin_unlock(ptl);
1791 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1792}
1793
fec89c10
KS
1794void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1795 bool freeze, struct page *page)
94fcc585 1796{
f72e7dcd
HD
1797 pgd_t *pgd;
1798 pud_t *pud;
94fcc585
AA
1799 pmd_t *pmd;
1800
78ddc534 1801 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
1802 if (!pgd_present(*pgd))
1803 return;
1804
1805 pud = pud_offset(pgd, address);
1806 if (!pud_present(*pud))
1807 return;
1808
1809 pmd = pmd_offset(pud, address);
fec89c10 1810
33f4751e 1811 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
1812}
1813
e1b9996b 1814void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
1815 unsigned long start,
1816 unsigned long end,
1817 long adjust_next)
1818{
1819 /*
1820 * If the new start address isn't hpage aligned and it could
1821 * previously contain an hugepage: check if we need to split
1822 * an huge pmd.
1823 */
1824 if (start & ~HPAGE_PMD_MASK &&
1825 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1826 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1827 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
1828
1829 /*
1830 * If the new end address isn't hpage aligned and it could
1831 * previously contain an hugepage: check if we need to split
1832 * an huge pmd.
1833 */
1834 if (end & ~HPAGE_PMD_MASK &&
1835 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1836 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1837 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
1838
1839 /*
1840 * If we're also updating the vma->vm_next->vm_start, if the new
1841 * vm_next->vm_start isn't page aligned and it could previously
1842 * contain an hugepage: check if we need to split an huge pmd.
1843 */
1844 if (adjust_next > 0) {
1845 struct vm_area_struct *next = vma->vm_next;
1846 unsigned long nstart = next->vm_start;
1847 nstart += adjust_next << PAGE_SHIFT;
1848 if (nstart & ~HPAGE_PMD_MASK &&
1849 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1850 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 1851 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
1852 }
1853}
e9b61f19 1854
fec89c10 1855static void freeze_page(struct page *page)
e9b61f19 1856{
baa355fd
KS
1857 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1858 TTU_RMAP_LOCKED;
fec89c10 1859 int i, ret;
e9b61f19
KS
1860
1861 VM_BUG_ON_PAGE(!PageHead(page), page);
1862
baa355fd
KS
1863 if (PageAnon(page))
1864 ttu_flags |= TTU_MIGRATION;
1865
fec89c10
KS
1866 /* We only need TTU_SPLIT_HUGE_PMD once */
1867 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1868 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1869 /* Cut short if the page is unmapped */
1870 if (page_count(page) == 1)
1871 return;
e9b61f19 1872
fec89c10 1873 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 1874 }
baa355fd 1875 VM_BUG_ON_PAGE(ret, page + i - 1);
e9b61f19
KS
1876}
1877
fec89c10 1878static void unfreeze_page(struct page *page)
e9b61f19 1879{
fec89c10 1880 int i;
e9b61f19 1881
fec89c10
KS
1882 for (i = 0; i < HPAGE_PMD_NR; i++)
1883 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
1884}
1885
8df651c7 1886static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
1887 struct lruvec *lruvec, struct list_head *list)
1888{
e9b61f19
KS
1889 struct page *page_tail = head + tail;
1890
8df651c7 1891 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 1892 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
1893
1894 /*
0139aa7b 1895 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 1896 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
1897 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1898 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
1899 * get_page_unless_zero(), and atomic_set() is implemented in C not
1900 * using locked ops. spin_unlock on x86 sometime uses locked ops
1901 * because of PPro errata 66, 92, so unless somebody can guarantee
1902 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 1903 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 1904 */
baa355fd
KS
1905 if (PageAnon(head)) {
1906 page_ref_inc(page_tail);
1907 } else {
1908 /* Additional pin to radix tree */
1909 page_ref_add(page_tail, 2);
1910 }
e9b61f19
KS
1911
1912 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1913 page_tail->flags |= (head->flags &
1914 ((1L << PG_referenced) |
1915 (1L << PG_swapbacked) |
1916 (1L << PG_mlocked) |
1917 (1L << PG_uptodate) |
1918 (1L << PG_active) |
1919 (1L << PG_locked) |
b8d3c4c3
MK
1920 (1L << PG_unevictable) |
1921 (1L << PG_dirty)));
e9b61f19
KS
1922
1923 /*
1924 * After clearing PageTail the gup refcount can be released.
1925 * Page flags also must be visible before we make the page non-compound.
1926 */
1927 smp_wmb();
1928
1929 clear_compound_head(page_tail);
1930
1931 if (page_is_young(head))
1932 set_page_young(page_tail);
1933 if (page_is_idle(head))
1934 set_page_idle(page_tail);
1935
1936 /* ->mapping in first tail page is compound_mapcount */
9a982250 1937 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
1938 page_tail);
1939 page_tail->mapping = head->mapping;
1940
1941 page_tail->index = head->index + tail;
1942 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1943 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
1944}
1945
baa355fd
KS
1946static void __split_huge_page(struct page *page, struct list_head *list,
1947 unsigned long flags)
e9b61f19
KS
1948{
1949 struct page *head = compound_head(page);
1950 struct zone *zone = page_zone(head);
1951 struct lruvec *lruvec;
baa355fd 1952 pgoff_t end = -1;
8df651c7 1953 int i;
e9b61f19 1954
599d0c95 1955 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
1956
1957 /* complete memcg works before add pages to LRU */
1958 mem_cgroup_split_huge_fixup(head);
1959
baa355fd
KS
1960 if (!PageAnon(page))
1961 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1962
1963 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 1964 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
1965 /* Some pages can be beyond i_size: drop them from page cache */
1966 if (head[i].index >= end) {
1967 __ClearPageDirty(head + i);
1968 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
1969 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1970 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
1971 put_page(head + i);
1972 }
1973 }
e9b61f19
KS
1974
1975 ClearPageCompound(head);
baa355fd
KS
1976 /* See comment in __split_huge_page_tail() */
1977 if (PageAnon(head)) {
1978 page_ref_inc(head);
1979 } else {
1980 /* Additional pin to radix tree */
1981 page_ref_add(head, 2);
1982 spin_unlock(&head->mapping->tree_lock);
1983 }
1984
a52633d8 1985 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 1986
fec89c10 1987 unfreeze_page(head);
e9b61f19
KS
1988
1989 for (i = 0; i < HPAGE_PMD_NR; i++) {
1990 struct page *subpage = head + i;
1991 if (subpage == page)
1992 continue;
1993 unlock_page(subpage);
1994
1995 /*
1996 * Subpages may be freed if there wasn't any mapping
1997 * like if add_to_swap() is running on a lru page that
1998 * had its mapping zapped. And freeing these pages
1999 * requires taking the lru_lock so we do the put_page
2000 * of the tail pages after the split is complete.
2001 */
2002 put_page(subpage);
2003 }
2004}
2005
b20ce5e0
KS
2006int total_mapcount(struct page *page)
2007{
dd78fedd 2008 int i, compound, ret;
b20ce5e0
KS
2009
2010 VM_BUG_ON_PAGE(PageTail(page), page);
2011
2012 if (likely(!PageCompound(page)))
2013 return atomic_read(&page->_mapcount) + 1;
2014
dd78fedd 2015 compound = compound_mapcount(page);
b20ce5e0 2016 if (PageHuge(page))
dd78fedd
KS
2017 return compound;
2018 ret = compound;
b20ce5e0
KS
2019 for (i = 0; i < HPAGE_PMD_NR; i++)
2020 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2021 /* File pages has compound_mapcount included in _mapcount */
2022 if (!PageAnon(page))
2023 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2024 if (PageDoubleMap(page))
2025 ret -= HPAGE_PMD_NR;
2026 return ret;
2027}
2028
6d0a07ed
AA
2029/*
2030 * This calculates accurately how many mappings a transparent hugepage
2031 * has (unlike page_mapcount() which isn't fully accurate). This full
2032 * accuracy is primarily needed to know if copy-on-write faults can
2033 * reuse the page and change the mapping to read-write instead of
2034 * copying them. At the same time this returns the total_mapcount too.
2035 *
2036 * The function returns the highest mapcount any one of the subpages
2037 * has. If the return value is one, even if different processes are
2038 * mapping different subpages of the transparent hugepage, they can
2039 * all reuse it, because each process is reusing a different subpage.
2040 *
2041 * The total_mapcount is instead counting all virtual mappings of the
2042 * subpages. If the total_mapcount is equal to "one", it tells the
2043 * caller all mappings belong to the same "mm" and in turn the
2044 * anon_vma of the transparent hugepage can become the vma->anon_vma
2045 * local one as no other process may be mapping any of the subpages.
2046 *
2047 * It would be more accurate to replace page_mapcount() with
2048 * page_trans_huge_mapcount(), however we only use
2049 * page_trans_huge_mapcount() in the copy-on-write faults where we
2050 * need full accuracy to avoid breaking page pinning, because
2051 * page_trans_huge_mapcount() is slower than page_mapcount().
2052 */
2053int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2054{
2055 int i, ret, _total_mapcount, mapcount;
2056
2057 /* hugetlbfs shouldn't call it */
2058 VM_BUG_ON_PAGE(PageHuge(page), page);
2059
2060 if (likely(!PageTransCompound(page))) {
2061 mapcount = atomic_read(&page->_mapcount) + 1;
2062 if (total_mapcount)
2063 *total_mapcount = mapcount;
2064 return mapcount;
2065 }
2066
2067 page = compound_head(page);
2068
2069 _total_mapcount = ret = 0;
2070 for (i = 0; i < HPAGE_PMD_NR; i++) {
2071 mapcount = atomic_read(&page[i]._mapcount) + 1;
2072 ret = max(ret, mapcount);
2073 _total_mapcount += mapcount;
2074 }
2075 if (PageDoubleMap(page)) {
2076 ret -= 1;
2077 _total_mapcount -= HPAGE_PMD_NR;
2078 }
2079 mapcount = compound_mapcount(page);
2080 ret += mapcount;
2081 _total_mapcount += mapcount;
2082 if (total_mapcount)
2083 *total_mapcount = _total_mapcount;
2084 return ret;
2085}
2086
e9b61f19
KS
2087/*
2088 * This function splits huge page into normal pages. @page can point to any
2089 * subpage of huge page to split. Split doesn't change the position of @page.
2090 *
2091 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2092 * The huge page must be locked.
2093 *
2094 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2095 *
2096 * Both head page and tail pages will inherit mapping, flags, and so on from
2097 * the hugepage.
2098 *
2099 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2100 * they are not mapped.
2101 *
2102 * Returns 0 if the hugepage is split successfully.
2103 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2104 * us.
2105 */
2106int split_huge_page_to_list(struct page *page, struct list_head *list)
2107{
2108 struct page *head = compound_head(page);
a3d0a918 2109 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2110 struct anon_vma *anon_vma = NULL;
2111 struct address_space *mapping = NULL;
2112 int count, mapcount, extra_pins, ret;
d9654322 2113 bool mlocked;
0b9b6fff 2114 unsigned long flags;
e9b61f19
KS
2115
2116 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19
KS
2117 VM_BUG_ON_PAGE(!PageLocked(page), page);
2118 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119 VM_BUG_ON_PAGE(!PageCompound(page), page);
2120
baa355fd
KS
2121 if (PageAnon(head)) {
2122 /*
2123 * The caller does not necessarily hold an mmap_sem that would
2124 * prevent the anon_vma disappearing so we first we take a
2125 * reference to it and then lock the anon_vma for write. This
2126 * is similar to page_lock_anon_vma_read except the write lock
2127 * is taken to serialise against parallel split or collapse
2128 * operations.
2129 */
2130 anon_vma = page_get_anon_vma(head);
2131 if (!anon_vma) {
2132 ret = -EBUSY;
2133 goto out;
2134 }
2135 extra_pins = 0;
2136 mapping = NULL;
2137 anon_vma_lock_write(anon_vma);
2138 } else {
2139 mapping = head->mapping;
2140
2141 /* Truncated ? */
2142 if (!mapping) {
2143 ret = -EBUSY;
2144 goto out;
2145 }
2146
2147 /* Addidional pins from radix tree */
2148 extra_pins = HPAGE_PMD_NR;
2149 anon_vma = NULL;
2150 i_mmap_lock_read(mapping);
e9b61f19 2151 }
e9b61f19
KS
2152
2153 /*
2154 * Racy check if we can split the page, before freeze_page() will
2155 * split PMDs
2156 */
baa355fd 2157 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
e9b61f19
KS
2158 ret = -EBUSY;
2159 goto out_unlock;
2160 }
2161
d9654322 2162 mlocked = PageMlocked(page);
fec89c10 2163 freeze_page(head);
e9b61f19
KS
2164 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2165
d9654322
KS
2166 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2167 if (mlocked)
2168 lru_add_drain();
2169
baa355fd 2170 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2171 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2172
2173 if (mapping) {
2174 void **pslot;
2175
2176 spin_lock(&mapping->tree_lock);
2177 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2178 page_index(head));
2179 /*
2180 * Check if the head page is present in radix tree.
2181 * We assume all tail are present too, if head is there.
2182 */
2183 if (radix_tree_deref_slot_protected(pslot,
2184 &mapping->tree_lock) != head)
2185 goto fail;
2186 }
2187
0139aa7b 2188 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2189 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2190 count = page_count(head);
2191 mapcount = total_mapcount(head);
baa355fd 2192 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2193 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2194 pgdata->split_queue_len--;
9a982250
KS
2195 list_del(page_deferred_list(head));
2196 }
65c45377 2197 if (mapping)
11fb9989 2198 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2199 spin_unlock(&pgdata->split_queue_lock);
2200 __split_huge_page(page, list, flags);
e9b61f19 2201 ret = 0;
e9b61f19 2202 } else {
baa355fd
KS
2203 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2204 pr_alert("total_mapcount: %u, page_count(): %u\n",
2205 mapcount, count);
2206 if (PageTail(page))
2207 dump_page(head, NULL);
2208 dump_page(page, "total_mapcount(head) > 0");
2209 BUG();
2210 }
2211 spin_unlock(&pgdata->split_queue_lock);
2212fail: if (mapping)
2213 spin_unlock(&mapping->tree_lock);
a52633d8 2214 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2215 unfreeze_page(head);
e9b61f19
KS
2216 ret = -EBUSY;
2217 }
2218
2219out_unlock:
baa355fd
KS
2220 if (anon_vma) {
2221 anon_vma_unlock_write(anon_vma);
2222 put_anon_vma(anon_vma);
2223 }
2224 if (mapping)
2225 i_mmap_unlock_read(mapping);
e9b61f19
KS
2226out:
2227 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2228 return ret;
2229}
9a982250
KS
2230
2231void free_transhuge_page(struct page *page)
2232{
a3d0a918 2233 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2234 unsigned long flags;
2235
a3d0a918 2236 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2237 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2238 pgdata->split_queue_len--;
9a982250
KS
2239 list_del(page_deferred_list(page));
2240 }
a3d0a918 2241 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2242 free_compound_page(page);
2243}
2244
2245void deferred_split_huge_page(struct page *page)
2246{
a3d0a918 2247 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2248 unsigned long flags;
2249
2250 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2251
a3d0a918 2252 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2253 if (list_empty(page_deferred_list(page))) {
f9719a03 2254 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2255 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2256 pgdata->split_queue_len++;
9a982250 2257 }
a3d0a918 2258 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2259}
2260
2261static unsigned long deferred_split_count(struct shrinker *shrink,
2262 struct shrink_control *sc)
2263{
a3d0a918 2264 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2265 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2266}
2267
2268static unsigned long deferred_split_scan(struct shrinker *shrink,
2269 struct shrink_control *sc)
2270{
a3d0a918 2271 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2272 unsigned long flags;
2273 LIST_HEAD(list), *pos, *next;
2274 struct page *page;
2275 int split = 0;
2276
a3d0a918 2277 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2278 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2279 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2280 page = list_entry((void *)pos, struct page, mapping);
2281 page = compound_head(page);
e3ae1953
KS
2282 if (get_page_unless_zero(page)) {
2283 list_move(page_deferred_list(page), &list);
2284 } else {
2285 /* We lost race with put_compound_page() */
9a982250 2286 list_del_init(page_deferred_list(page));
a3d0a918 2287 pgdata->split_queue_len--;
9a982250 2288 }
e3ae1953
KS
2289 if (!--sc->nr_to_scan)
2290 break;
9a982250 2291 }
a3d0a918 2292 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2293
2294 list_for_each_safe(pos, next, &list) {
2295 page = list_entry((void *)pos, struct page, mapping);
2296 lock_page(page);
2297 /* split_huge_page() removes page from list on success */
2298 if (!split_huge_page(page))
2299 split++;
2300 unlock_page(page);
2301 put_page(page);
2302 }
2303
a3d0a918
KS
2304 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2305 list_splice_tail(&list, &pgdata->split_queue);
2306 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2307
cb8d68ec
KS
2308 /*
2309 * Stop shrinker if we didn't split any page, but the queue is empty.
2310 * This can happen if pages were freed under us.
2311 */
2312 if (!split && list_empty(&pgdata->split_queue))
2313 return SHRINK_STOP;
2314 return split;
9a982250
KS
2315}
2316
2317static struct shrinker deferred_split_shrinker = {
2318 .count_objects = deferred_split_count,
2319 .scan_objects = deferred_split_scan,
2320 .seeks = DEFAULT_SEEKS,
a3d0a918 2321 .flags = SHRINKER_NUMA_AWARE,
9a982250 2322};
49071d43
KS
2323
2324#ifdef CONFIG_DEBUG_FS
2325static int split_huge_pages_set(void *data, u64 val)
2326{
2327 struct zone *zone;
2328 struct page *page;
2329 unsigned long pfn, max_zone_pfn;
2330 unsigned long total = 0, split = 0;
2331
2332 if (val != 1)
2333 return -EINVAL;
2334
2335 for_each_populated_zone(zone) {
2336 max_zone_pfn = zone_end_pfn(zone);
2337 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2338 if (!pfn_valid(pfn))
2339 continue;
2340
2341 page = pfn_to_page(pfn);
2342 if (!get_page_unless_zero(page))
2343 continue;
2344
2345 if (zone != page_zone(page))
2346 goto next;
2347
baa355fd 2348 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2349 goto next;
2350
2351 total++;
2352 lock_page(page);
2353 if (!split_huge_page(page))
2354 split++;
2355 unlock_page(page);
2356next:
2357 put_page(page);
2358 }
2359 }
2360
145bdaa1 2361 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2362
2363 return 0;
2364}
2365DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2366 "%llu\n");
2367
2368static int __init split_huge_pages_debugfs(void)
2369{
2370 void *ret;
2371
145bdaa1 2372 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2373 &split_huge_pages_fops);
2374 if (!ret)
2375 pr_warn("Failed to create split_huge_pages in debugfs");
2376 return 0;
2377}
2378late_initcall(split_huge_pages_debugfs);
2379#endif