]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/huge_memory.c
memfd: Fix locking when tagging pins
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
be765d99 36#include <linux/page_owner.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
4a6c1297 65
6fcb52a5 66static struct page *get_huge_zero_page(void)
97ae1749
KS
67{
68 struct page *zero_page;
69retry:
70 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 71 return READ_ONCE(huge_zero_page);
97ae1749
KS
72
73 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 74 HPAGE_PMD_ORDER);
d8a8e1f0
KS
75 if (!zero_page) {
76 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 77 return NULL;
d8a8e1f0
KS
78 }
79 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 80 preempt_disable();
5918d10a 81 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 82 preempt_enable();
5ddacbe9 83 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
84 goto retry;
85 }
86
87 /* We take additional reference here. It will be put back by shrinker */
88 atomic_set(&huge_zero_refcount, 2);
89 preempt_enable();
4db0c3c2 90 return READ_ONCE(huge_zero_page);
4a6c1297
KS
91}
92
6fcb52a5 93static void put_huge_zero_page(void)
4a6c1297 94{
97ae1749
KS
95 /*
96 * Counter should never go to zero here. Only shrinker can put
97 * last reference.
98 */
99 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
100}
101
6fcb52a5
AL
102struct page *mm_get_huge_zero_page(struct mm_struct *mm)
103{
104 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
105 return READ_ONCE(huge_zero_page);
106
107 if (!get_huge_zero_page())
108 return NULL;
109
110 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
111 put_huge_zero_page();
112
113 return READ_ONCE(huge_zero_page);
114}
115
116void mm_put_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 put_huge_zero_page();
120}
121
48896466
GC
122static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
123 struct shrink_control *sc)
4a6c1297 124{
48896466
GC
125 /* we can free zero page only if last reference remains */
126 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
127}
97ae1749 128
48896466
GC
129static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
130 struct shrink_control *sc)
131{
97ae1749 132 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
133 struct page *zero_page = xchg(&huge_zero_page, NULL);
134 BUG_ON(zero_page == NULL);
5ddacbe9 135 __free_pages(zero_page, compound_order(zero_page));
48896466 136 return HPAGE_PMD_NR;
97ae1749
KS
137 }
138
139 return 0;
4a6c1297
KS
140}
141
97ae1749 142static struct shrinker huge_zero_page_shrinker = {
48896466
GC
143 .count_objects = shrink_huge_zero_page_count,
144 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
145 .seeks = DEFAULT_SEEKS,
146};
147
71e3aac0 148#ifdef CONFIG_SYSFS
71e3aac0
AA
149static ssize_t enabled_show(struct kobject *kobj,
150 struct kobj_attribute *attr, char *buf)
151{
444eb2a4
MG
152 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
153 return sprintf(buf, "[always] madvise never\n");
154 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
155 return sprintf(buf, "always [madvise] never\n");
156 else
157 return sprintf(buf, "always madvise [never]\n");
71e3aac0 158}
444eb2a4 159
71e3aac0
AA
160static ssize_t enabled_store(struct kobject *kobj,
161 struct kobj_attribute *attr,
162 const char *buf, size_t count)
163{
21440d7e 164 ssize_t ret = count;
ba76149f 165
21440d7e
DR
166 if (!memcmp("always", buf,
167 min(sizeof("always")-1, count))) {
168 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
169 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
170 } else if (!memcmp("madvise", buf,
171 min(sizeof("madvise")-1, count))) {
172 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
173 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
174 } else if (!memcmp("never", buf,
175 min(sizeof("never")-1, count))) {
176 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
177 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
178 } else
179 ret = -EINVAL;
ba76149f
AA
180
181 if (ret > 0) {
b46e756f 182 int err = start_stop_khugepaged();
ba76149f
AA
183 if (err)
184 ret = err;
185 }
ba76149f 186 return ret;
71e3aac0
AA
187}
188static struct kobj_attribute enabled_attr =
189 __ATTR(enabled, 0644, enabled_show, enabled_store);
190
b46e756f 191ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
192 struct kobj_attribute *attr, char *buf,
193 enum transparent_hugepage_flag flag)
194{
e27e6151
BH
195 return sprintf(buf, "%d\n",
196 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 197}
e27e6151 198
b46e756f 199ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
200 struct kobj_attribute *attr,
201 const char *buf, size_t count,
202 enum transparent_hugepage_flag flag)
203{
e27e6151
BH
204 unsigned long value;
205 int ret;
206
207 ret = kstrtoul(buf, 10, &value);
208 if (ret < 0)
209 return ret;
210 if (value > 1)
211 return -EINVAL;
212
213 if (value)
71e3aac0 214 set_bit(flag, &transparent_hugepage_flags);
e27e6151 215 else
71e3aac0 216 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
217
218 return count;
219}
220
71e3aac0
AA
221static ssize_t defrag_show(struct kobject *kobj,
222 struct kobj_attribute *attr, char *buf)
223{
444eb2a4 224 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 225 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 226 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
227 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
228 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
229 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
230 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
231 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
232 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 233}
21440d7e 234
71e3aac0
AA
235static ssize_t defrag_store(struct kobject *kobj,
236 struct kobj_attribute *attr,
237 const char *buf, size_t count)
238{
21440d7e
DR
239 if (!memcmp("always", buf,
240 min(sizeof("always")-1, count))) {
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
243 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
244 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
245 } else if (!memcmp("defer+madvise", buf,
246 min(sizeof("defer+madvise")-1, count))) {
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
249 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
250 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
251 } else if (!memcmp("defer", buf,
252 min(sizeof("defer")-1, count))) {
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
255 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
256 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
257 } else if (!memcmp("madvise", buf,
258 min(sizeof("madvise")-1, count))) {
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
262 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
263 } else if (!memcmp("never", buf,
264 min(sizeof("never")-1, count))) {
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
271
272 return count;
71e3aac0
AA
273}
274static struct kobj_attribute defrag_attr =
275 __ATTR(defrag, 0644, defrag_show, defrag_store);
276
79da5407
KS
277static ssize_t use_zero_page_show(struct kobject *kobj,
278 struct kobj_attribute *attr, char *buf)
279{
b46e756f 280 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
281 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
282}
283static ssize_t use_zero_page_store(struct kobject *kobj,
284 struct kobj_attribute *attr, const char *buf, size_t count)
285{
b46e756f 286 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static struct kobj_attribute use_zero_page_attr =
290 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
291
292static ssize_t hpage_pmd_size_show(struct kobject *kobj,
293 struct kobj_attribute *attr, char *buf)
294{
295 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
296}
297static struct kobj_attribute hpage_pmd_size_attr =
298 __ATTR_RO(hpage_pmd_size);
299
71e3aac0
AA
300#ifdef CONFIG_DEBUG_VM
301static ssize_t debug_cow_show(struct kobject *kobj,
302 struct kobj_attribute *attr, char *buf)
303{
b46e756f 304 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
305 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
306}
307static ssize_t debug_cow_store(struct kobject *kobj,
308 struct kobj_attribute *attr,
309 const char *buf, size_t count)
310{
b46e756f 311 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
312 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
313}
314static struct kobj_attribute debug_cow_attr =
315 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
316#endif /* CONFIG_DEBUG_VM */
317
318static struct attribute *hugepage_attr[] = {
319 &enabled_attr.attr,
320 &defrag_attr.attr,
79da5407 321 &use_zero_page_attr.attr,
49920d28 322 &hpage_pmd_size_attr.attr,
e496cf3d 323#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
324 &shmem_enabled_attr.attr,
325#endif
71e3aac0
AA
326#ifdef CONFIG_DEBUG_VM
327 &debug_cow_attr.attr,
328#endif
329 NULL,
330};
331
8aa95a21 332static const struct attribute_group hugepage_attr_group = {
71e3aac0 333 .attrs = hugepage_attr,
ba76149f
AA
334};
335
569e5590 336static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 337{
71e3aac0
AA
338 int err;
339
569e5590
SL
340 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
341 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 342 pr_err("failed to create transparent hugepage kobject\n");
569e5590 343 return -ENOMEM;
ba76149f
AA
344 }
345
569e5590 346 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 347 if (err) {
ae3a8c1c 348 pr_err("failed to register transparent hugepage group\n");
569e5590 349 goto delete_obj;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto remove_hp_group;
ba76149f 356 }
569e5590
SL
357
358 return 0;
359
360remove_hp_group:
361 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
362delete_obj:
363 kobject_put(*hugepage_kobj);
364 return err;
365}
366
367static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
368{
369 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
370 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
371 kobject_put(hugepage_kobj);
372}
373#else
374static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
375{
376 return 0;
377}
378
379static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380{
381}
382#endif /* CONFIG_SYSFS */
383
384static int __init hugepage_init(void)
385{
386 int err;
387 struct kobject *hugepage_kobj;
388
389 if (!has_transparent_hugepage()) {
390 transparent_hugepage_flags = 0;
391 return -EINVAL;
392 }
393
ff20c2e0
KS
394 /*
395 * hugepages can't be allocated by the buddy allocator
396 */
397 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
398 /*
399 * we use page->mapping and page->index in second tail page
400 * as list_head: assuming THP order >= 2
401 */
402 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
403
569e5590
SL
404 err = hugepage_init_sysfs(&hugepage_kobj);
405 if (err)
65ebb64f 406 goto err_sysfs;
ba76149f 407
b46e756f 408 err = khugepaged_init();
ba76149f 409 if (err)
65ebb64f 410 goto err_slab;
ba76149f 411
65ebb64f
KS
412 err = register_shrinker(&huge_zero_page_shrinker);
413 if (err)
414 goto err_hzp_shrinker;
9a982250
KS
415 err = register_shrinker(&deferred_split_shrinker);
416 if (err)
417 goto err_split_shrinker;
97ae1749 418
97562cd2
RR
419 /*
420 * By default disable transparent hugepages on smaller systems,
421 * where the extra memory used could hurt more than TLB overhead
422 * is likely to save. The admin can still enable it through /sys.
423 */
79553da2 424 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 425 transparent_hugepage_flags = 0;
79553da2
KS
426 return 0;
427 }
97562cd2 428
79553da2 429 err = start_stop_khugepaged();
65ebb64f
KS
430 if (err)
431 goto err_khugepaged;
ba76149f 432
569e5590 433 return 0;
65ebb64f 434err_khugepaged:
9a982250
KS
435 unregister_shrinker(&deferred_split_shrinker);
436err_split_shrinker:
65ebb64f
KS
437 unregister_shrinker(&huge_zero_page_shrinker);
438err_hzp_shrinker:
b46e756f 439 khugepaged_destroy();
65ebb64f 440err_slab:
569e5590 441 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 442err_sysfs:
ba76149f 443 return err;
71e3aac0 444}
a64fb3cd 445subsys_initcall(hugepage_init);
71e3aac0
AA
446
447static int __init setup_transparent_hugepage(char *str)
448{
449 int ret = 0;
450 if (!str)
451 goto out;
452 if (!strcmp(str, "always")) {
453 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
454 &transparent_hugepage_flags);
455 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
456 &transparent_hugepage_flags);
457 ret = 1;
458 } else if (!strcmp(str, "madvise")) {
459 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "never")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 }
471out:
472 if (!ret)
ae3a8c1c 473 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
474 return ret;
475}
476__setup("transparent_hugepage=", setup_transparent_hugepage);
477
f55e1014 478pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 479{
f55e1014 480 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
481 pmd = pmd_mkwrite(pmd);
482 return pmd;
483}
484
9a982250
KS
485static inline struct list_head *page_deferred_list(struct page *page)
486{
487 /*
488 * ->lru in the tail pages is occupied by compound_head.
489 * Let's use ->mapping + ->index in the second tail page as list_head.
490 */
491 return (struct list_head *)&page[2].mapping;
492}
493
494void prep_transhuge_page(struct page *page)
495{
496 /*
497 * we use page->mapping and page->indexlru in second tail page
498 * as list_head: assuming THP order >= 2
499 */
9a982250
KS
500
501 INIT_LIST_HEAD(page_deferred_list(page));
502 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
503}
504
74d2fad1
TK
505unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
506 loff_t off, unsigned long flags, unsigned long size)
507{
508 unsigned long addr;
509 loff_t off_end = off + len;
510 loff_t off_align = round_up(off, size);
511 unsigned long len_pad;
512
513 if (off_end <= off_align || (off_end - off_align) < size)
514 return 0;
515
516 len_pad = len + size;
517 if (len_pad < len || (off + len_pad) < off)
518 return 0;
519
520 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
521 off >> PAGE_SHIFT, flags);
522 if (IS_ERR_VALUE(addr))
523 return 0;
524
525 addr += (off - addr) & (size - 1);
526 return addr;
527}
528
529unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
530 unsigned long len, unsigned long pgoff, unsigned long flags)
531{
532 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
533
534 if (addr)
535 goto out;
536 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
537 goto out;
538
539 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
540 if (addr)
541 return addr;
542
543 out:
544 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
545}
546EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
547
82b0f8c3 548static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 549 gfp_t gfp)
71e3aac0 550{
82b0f8c3 551 struct vm_area_struct *vma = vmf->vma;
00501b53 552 struct mem_cgroup *memcg;
71e3aac0 553 pgtable_t pgtable;
82b0f8c3 554 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
6b31d595 555 int ret = 0;
71e3aac0 556
309381fe 557 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 558
46fe940f
DR
559 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp | __GFP_NORETRY, &memcg,
560 true)) {
6b251fc9
AA
561 put_page(page);
562 count_vm_event(THP_FAULT_FALLBACK);
563 return VM_FAULT_FALLBACK;
564 }
00501b53 565
bae473a4 566 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 567 if (unlikely(!pgtable)) {
6b31d595
MH
568 ret = VM_FAULT_OOM;
569 goto release;
00501b53 570 }
71e3aac0 571
c79b57e4 572 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
573 /*
574 * The memory barrier inside __SetPageUptodate makes sure that
575 * clear_huge_page writes become visible before the set_pmd_at()
576 * write.
577 */
71e3aac0
AA
578 __SetPageUptodate(page);
579
82b0f8c3
JK
580 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
581 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 582 goto unlock_release;
71e3aac0
AA
583 } else {
584 pmd_t entry;
6b251fc9 585
6b31d595
MH
586 ret = check_stable_address_space(vma->vm_mm);
587 if (ret)
588 goto unlock_release;
589
6b251fc9
AA
590 /* Deliver the page fault to userland */
591 if (userfaultfd_missing(vma)) {
592 int ret;
593
82b0f8c3 594 spin_unlock(vmf->ptl);
f627c2f5 595 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 596 put_page(page);
bae473a4 597 pte_free(vma->vm_mm, pgtable);
82b0f8c3 598 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
599 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
600 return ret;
601 }
602
3122359a 603 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 604 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 605 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 606 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 607 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
608 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
609 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 610 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 611 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 612 spin_unlock(vmf->ptl);
6b251fc9 613 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
614 }
615
aa2e878e 616 return 0;
6b31d595
MH
617unlock_release:
618 spin_unlock(vmf->ptl);
619release:
620 if (pgtable)
621 pte_free(vma->vm_mm, pgtable);
622 mem_cgroup_cancel_charge(page, memcg, true);
623 put_page(page);
624 return ret;
625
71e3aac0
AA
626}
627
444eb2a4 628/*
21440d7e
DR
629 * always: directly stall for all thp allocations
630 * defer: wake kswapd and fail if not immediately available
631 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
632 * fail if not immediately available
633 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
634 * available
635 * never: never stall for any thp allocation
444eb2a4
MG
636 */
637static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
638{
21440d7e 639 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 640
21440d7e 641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 642 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
645 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
646 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
647 __GFP_KSWAPD_RECLAIM);
648 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
649 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
650 0);
25160354 651 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
652}
653
c4088ebd 654/* Caller must hold page table lock. */
d295e341 655static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 656 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 657 struct page *zero_page)
fc9fe822
KS
658{
659 pmd_t entry;
7c414164
AM
660 if (!pmd_none(*pmd))
661 return false;
5918d10a 662 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 663 entry = pmd_mkhuge(entry);
12c9d70b
MW
664 if (pgtable)
665 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 666 set_pmd_at(mm, haddr, pmd, entry);
c4812909 667 mm_inc_nr_ptes(mm);
7c414164 668 return true;
fc9fe822
KS
669}
670
82b0f8c3 671int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 672{
82b0f8c3 673 struct vm_area_struct *vma = vmf->vma;
077fcf11 674 gfp_t gfp;
71e3aac0 675 struct page *page;
82b0f8c3 676 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 677
128ec037 678 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 679 return VM_FAULT_FALLBACK;
128ec037
KS
680 if (unlikely(anon_vma_prepare(vma)))
681 return VM_FAULT_OOM;
6d50e60c 682 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 683 return VM_FAULT_OOM;
82b0f8c3 684 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 685 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
686 transparent_hugepage_use_zero_page()) {
687 pgtable_t pgtable;
688 struct page *zero_page;
689 bool set;
6b251fc9 690 int ret;
bae473a4 691 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 692 if (unlikely(!pgtable))
ba76149f 693 return VM_FAULT_OOM;
6fcb52a5 694 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 695 if (unlikely(!zero_page)) {
bae473a4 696 pte_free(vma->vm_mm, pgtable);
81ab4201 697 count_vm_event(THP_FAULT_FALLBACK);
c0292554 698 return VM_FAULT_FALLBACK;
b9bbfbe3 699 }
82b0f8c3 700 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
701 ret = 0;
702 set = false;
82b0f8c3 703 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
704 ret = check_stable_address_space(vma->vm_mm);
705 if (ret) {
706 spin_unlock(vmf->ptl);
707 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
708 spin_unlock(vmf->ptl);
709 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
710 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
711 } else {
bae473a4 712 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
713 haddr, vmf->pmd, zero_page);
714 spin_unlock(vmf->ptl);
6b251fc9
AA
715 set = true;
716 }
717 } else
82b0f8c3 718 spin_unlock(vmf->ptl);
6fcb52a5 719 if (!set)
bae473a4 720 pte_free(vma->vm_mm, pgtable);
6b251fc9 721 return ret;
71e3aac0 722 }
444eb2a4 723 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 724 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
725 if (unlikely(!page)) {
726 count_vm_event(THP_FAULT_FALLBACK);
c0292554 727 return VM_FAULT_FALLBACK;
128ec037 728 }
9a982250 729 prep_transhuge_page(page);
82b0f8c3 730 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
731}
732
ae18d6dc 733static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
734 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
735 pgtable_t pgtable)
5cad465d
MW
736{
737 struct mm_struct *mm = vma->vm_mm;
738 pmd_t entry;
739 spinlock_t *ptl;
740
741 ptl = pmd_lock(mm, pmd);
0da17885
AK
742 if (!pmd_none(*pmd)) {
743 if (write) {
744 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
745 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
746 goto out_unlock;
747 }
748 entry = pmd_mkyoung(*pmd);
749 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
750 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
751 update_mmu_cache_pmd(vma, addr, pmd);
752 }
753
754 goto out_unlock;
755 }
756
f25748e3
DW
757 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
758 if (pfn_t_devmap(pfn))
759 entry = pmd_mkdevmap(entry);
01871e59 760 if (write) {
f55e1014
LT
761 entry = pmd_mkyoung(pmd_mkdirty(entry));
762 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 763 }
3b6521f5
OH
764
765 if (pgtable) {
766 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 767 mm_inc_nr_ptes(mm);
0da17885 768 pgtable = NULL;
3b6521f5
OH
769 }
770
01871e59
RZ
771 set_pmd_at(mm, addr, pmd, entry);
772 update_mmu_cache_pmd(vma, addr, pmd);
0da17885
AK
773
774out_unlock:
5cad465d 775 spin_unlock(ptl);
0da17885
AK
776 if (pgtable)
777 pte_free(mm, pgtable);
5cad465d
MW
778}
779
218fa1c8 780int vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 781{
218fa1c8
DW
782 unsigned long addr = vmf->address & PMD_MASK;
783 struct vm_area_struct *vma = vmf->vma;
5cad465d 784 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 785 pgtable_t pgtable = NULL;
218fa1c8 786
5cad465d
MW
787 /*
788 * If we had pmd_special, we could avoid all these restrictions,
789 * but we need to be consistent with PTEs and architectures that
790 * can't support a 'special' bit.
791 */
792 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
793 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
794 (VM_PFNMAP|VM_MIXEDMAP));
795 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 796 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
797
798 if (addr < vma->vm_start || addr >= vma->vm_end)
799 return VM_FAULT_SIGBUS;
308a047c 800
3b6521f5
OH
801 if (arch_needs_pgtable_deposit()) {
802 pgtable = pte_alloc_one(vma->vm_mm, addr);
803 if (!pgtable)
804 return VM_FAULT_OOM;
805 }
806
308a047c
BP
807 track_pfn_insert(vma, &pgprot, pfn);
808
218fa1c8 809 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 810 return VM_FAULT_NOPAGE;
5cad465d 811}
dee41079 812EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 813
a00cc7d9 814#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 815static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 816{
f55e1014 817 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
818 pud = pud_mkwrite(pud);
819 return pud;
820}
821
822static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
823 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
824{
825 struct mm_struct *mm = vma->vm_mm;
826 pud_t entry;
827 spinlock_t *ptl;
828
829 ptl = pud_lock(mm, pud);
0da17885
AK
830 if (!pud_none(*pud)) {
831 if (write) {
832 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
833 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
834 goto out_unlock;
835 }
836 entry = pud_mkyoung(*pud);
837 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
838 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
839 update_mmu_cache_pud(vma, addr, pud);
840 }
841 goto out_unlock;
842 }
843
a00cc7d9
MW
844 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
845 if (pfn_t_devmap(pfn))
846 entry = pud_mkdevmap(entry);
847 if (write) {
f55e1014
LT
848 entry = pud_mkyoung(pud_mkdirty(entry));
849 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
850 }
851 set_pud_at(mm, addr, pud, entry);
852 update_mmu_cache_pud(vma, addr, pud);
0da17885
AK
853
854out_unlock:
a00cc7d9
MW
855 spin_unlock(ptl);
856}
857
218fa1c8 858int vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 859{
218fa1c8
DW
860 unsigned long addr = vmf->address & PUD_MASK;
861 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 862 pgprot_t pgprot = vma->vm_page_prot;
218fa1c8 863
a00cc7d9
MW
864 /*
865 * If we had pud_special, we could avoid all these restrictions,
866 * but we need to be consistent with PTEs and architectures that
867 * can't support a 'special' bit.
868 */
869 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
870 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
871 (VM_PFNMAP|VM_MIXEDMAP));
872 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
873 BUG_ON(!pfn_t_devmap(pfn));
874
875 if (addr < vma->vm_start || addr >= vma->vm_end)
876 return VM_FAULT_SIGBUS;
877
878 track_pfn_insert(vma, &pgprot, pfn);
879
218fa1c8 880 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
881 return VM_FAULT_NOPAGE;
882}
883EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
884#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
885
3565fce3 886static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 887 pmd_t *pmd, int flags)
3565fce3
DW
888{
889 pmd_t _pmd;
890
a8f97366
KS
891 _pmd = pmd_mkyoung(*pmd);
892 if (flags & FOLL_WRITE)
893 _pmd = pmd_mkdirty(_pmd);
3565fce3 894 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 895 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
896 update_mmu_cache_pmd(vma, addr, pmd);
897}
898
899struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
900 pmd_t *pmd, int flags)
901{
902 unsigned long pfn = pmd_pfn(*pmd);
903 struct mm_struct *mm = vma->vm_mm;
904 struct dev_pagemap *pgmap;
905 struct page *page;
906
907 assert_spin_locked(pmd_lockptr(mm, pmd));
908
8310d48b
KF
909 /*
910 * When we COW a devmap PMD entry, we split it into PTEs, so we should
911 * not be in this function with `flags & FOLL_COW` set.
912 */
913 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
914
f6f37321 915 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
916 return NULL;
917
918 if (pmd_present(*pmd) && pmd_devmap(*pmd))
919 /* pass */;
920 else
921 return NULL;
922
923 if (flags & FOLL_TOUCH)
a8f97366 924 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
925
926 /*
927 * device mapped pages can only be returned if the
928 * caller will manage the page reference count.
929 */
930 if (!(flags & FOLL_GET))
931 return ERR_PTR(-EEXIST);
932
933 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
934 pgmap = get_dev_pagemap(pfn, NULL);
935 if (!pgmap)
936 return ERR_PTR(-EFAULT);
937 page = pfn_to_page(pfn);
938 get_page(page);
939 put_dev_pagemap(pgmap);
940
941 return page;
942}
943
71e3aac0
AA
944int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
945 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
946 struct vm_area_struct *vma)
947{
c4088ebd 948 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
949 struct page *src_page;
950 pmd_t pmd;
12c9d70b 951 pgtable_t pgtable = NULL;
628d47ce 952 int ret = -ENOMEM;
71e3aac0 953
628d47ce
KS
954 /* Skip if can be re-fill on fault */
955 if (!vma_is_anonymous(vma))
956 return 0;
957
958 pgtable = pte_alloc_one(dst_mm, addr);
959 if (unlikely(!pgtable))
960 goto out;
71e3aac0 961
c4088ebd
KS
962 dst_ptl = pmd_lock(dst_mm, dst_pmd);
963 src_ptl = pmd_lockptr(src_mm, src_pmd);
964 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
965
966 ret = -EAGAIN;
967 pmd = *src_pmd;
84c3fc4e
ZY
968
969#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
970 if (unlikely(is_swap_pmd(pmd))) {
971 swp_entry_t entry = pmd_to_swp_entry(pmd);
972
973 VM_BUG_ON(!is_pmd_migration_entry(pmd));
974 if (is_write_migration_entry(entry)) {
975 make_migration_entry_read(&entry);
976 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
977 if (pmd_swp_soft_dirty(*src_pmd))
978 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
979 set_pmd_at(src_mm, addr, src_pmd, pmd);
980 }
dd8a67f9 981 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 982 mm_inc_nr_ptes(dst_mm);
dd8a67f9 983 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
984 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
985 ret = 0;
986 goto out_unlock;
987 }
988#endif
989
628d47ce 990 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
991 pte_free(dst_mm, pgtable);
992 goto out_unlock;
993 }
fc9fe822 994 /*
c4088ebd 995 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
996 * under splitting since we don't split the page itself, only pmd to
997 * a page table.
998 */
999 if (is_huge_zero_pmd(pmd)) {
5918d10a 1000 struct page *zero_page;
97ae1749
KS
1001 /*
1002 * get_huge_zero_page() will never allocate a new page here,
1003 * since we already have a zero page to copy. It just takes a
1004 * reference.
1005 */
6fcb52a5 1006 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1007 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1008 zero_page);
fc9fe822
KS
1009 ret = 0;
1010 goto out_unlock;
1011 }
de466bd6 1012
628d47ce
KS
1013 src_page = pmd_page(pmd);
1014 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1015 get_page(src_page);
1016 page_dup_rmap(src_page, true);
1017 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1018 mm_inc_nr_ptes(dst_mm);
628d47ce 1019 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1020
1021 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1022 pmd = pmd_mkold(pmd_wrprotect(pmd));
1023 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1024
1025 ret = 0;
1026out_unlock:
c4088ebd
KS
1027 spin_unlock(src_ptl);
1028 spin_unlock(dst_ptl);
71e3aac0
AA
1029out:
1030 return ret;
1031}
1032
a00cc7d9
MW
1033#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1034static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1035 pud_t *pud, int flags)
a00cc7d9
MW
1036{
1037 pud_t _pud;
1038
a8f97366
KS
1039 _pud = pud_mkyoung(*pud);
1040 if (flags & FOLL_WRITE)
1041 _pud = pud_mkdirty(_pud);
a00cc7d9 1042 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1043 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1044 update_mmu_cache_pud(vma, addr, pud);
1045}
1046
1047struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1048 pud_t *pud, int flags)
1049{
1050 unsigned long pfn = pud_pfn(*pud);
1051 struct mm_struct *mm = vma->vm_mm;
1052 struct dev_pagemap *pgmap;
1053 struct page *page;
1054
1055 assert_spin_locked(pud_lockptr(mm, pud));
1056
f6f37321 1057 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1058 return NULL;
1059
1060 if (pud_present(*pud) && pud_devmap(*pud))
1061 /* pass */;
1062 else
1063 return NULL;
1064
1065 if (flags & FOLL_TOUCH)
a8f97366 1066 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1067
1068 /*
1069 * device mapped pages can only be returned if the
1070 * caller will manage the page reference count.
1071 */
1072 if (!(flags & FOLL_GET))
1073 return ERR_PTR(-EEXIST);
1074
1075 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1076 pgmap = get_dev_pagemap(pfn, NULL);
1077 if (!pgmap)
1078 return ERR_PTR(-EFAULT);
1079 page = pfn_to_page(pfn);
1080 get_page(page);
1081 put_dev_pagemap(pgmap);
1082
1083 return page;
1084}
1085
1086int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1087 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1088 struct vm_area_struct *vma)
1089{
1090 spinlock_t *dst_ptl, *src_ptl;
1091 pud_t pud;
1092 int ret;
1093
1094 dst_ptl = pud_lock(dst_mm, dst_pud);
1095 src_ptl = pud_lockptr(src_mm, src_pud);
1096 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1097
1098 ret = -EAGAIN;
1099 pud = *src_pud;
1100 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1101 goto out_unlock;
1102
1103 /*
1104 * When page table lock is held, the huge zero pud should not be
1105 * under splitting since we don't split the page itself, only pud to
1106 * a page table.
1107 */
1108 if (is_huge_zero_pud(pud)) {
1109 /* No huge zero pud yet */
1110 }
1111
1112 pudp_set_wrprotect(src_mm, addr, src_pud);
1113 pud = pud_mkold(pud_wrprotect(pud));
1114 set_pud_at(dst_mm, addr, dst_pud, pud);
1115
1116 ret = 0;
1117out_unlock:
1118 spin_unlock(src_ptl);
1119 spin_unlock(dst_ptl);
1120 return ret;
1121}
1122
1123void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1124{
1125 pud_t entry;
1126 unsigned long haddr;
1127 bool write = vmf->flags & FAULT_FLAG_WRITE;
1128
1129 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1130 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1131 goto unlock;
1132
1133 entry = pud_mkyoung(orig_pud);
1134 if (write)
1135 entry = pud_mkdirty(entry);
1136 haddr = vmf->address & HPAGE_PUD_MASK;
1137 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1138 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1139
1140unlock:
1141 spin_unlock(vmf->ptl);
1142}
1143#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1144
82b0f8c3 1145void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1146{
1147 pmd_t entry;
1148 unsigned long haddr;
20f664aa 1149 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1150
82b0f8c3
JK
1151 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1152 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1153 goto unlock;
1154
1155 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1156 if (write)
1157 entry = pmd_mkdirty(entry);
82b0f8c3 1158 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1159 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1160 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1161
1162unlock:
82b0f8c3 1163 spin_unlock(vmf->ptl);
a1dd450b
WD
1164}
1165
82b0f8c3 1166static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1167 struct page *page)
71e3aac0 1168{
82b0f8c3
JK
1169 struct vm_area_struct *vma = vmf->vma;
1170 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1171 struct mem_cgroup *memcg;
71e3aac0
AA
1172 pgtable_t pgtable;
1173 pmd_t _pmd;
1174 int ret = 0, i;
1175 struct page **pages;
2ec74c3e
SG
1176 unsigned long mmun_start; /* For mmu_notifiers */
1177 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1178
1179 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1180 GFP_KERNEL);
1181 if (unlikely(!pages)) {
1182 ret |= VM_FAULT_OOM;
1183 goto out;
1184 }
1185
1186 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1187 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1188 vmf->address, page_to_nid(page));
b9bbfbe3 1189 if (unlikely(!pages[i] ||
bae473a4
KS
1190 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1191 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1192 if (pages[i])
71e3aac0 1193 put_page(pages[i]);
b9bbfbe3 1194 while (--i >= 0) {
00501b53
JW
1195 memcg = (void *)page_private(pages[i]);
1196 set_page_private(pages[i], 0);
f627c2f5
KS
1197 mem_cgroup_cancel_charge(pages[i], memcg,
1198 false);
b9bbfbe3
AA
1199 put_page(pages[i]);
1200 }
71e3aac0
AA
1201 kfree(pages);
1202 ret |= VM_FAULT_OOM;
1203 goto out;
1204 }
00501b53 1205 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1206 }
1207
1208 for (i = 0; i < HPAGE_PMD_NR; i++) {
1209 copy_user_highpage(pages[i], page + i,
0089e485 1210 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1211 __SetPageUptodate(pages[i]);
1212 cond_resched();
1213 }
1214
2ec74c3e
SG
1215 mmun_start = haddr;
1216 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1217 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1218
82b0f8c3
JK
1219 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1220 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1221 goto out_free_pages;
309381fe 1222 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1223
0f10851e
JG
1224 /*
1225 * Leave pmd empty until pte is filled note we must notify here as
1226 * concurrent CPU thread might write to new page before the call to
1227 * mmu_notifier_invalidate_range_end() happens which can lead to a
1228 * device seeing memory write in different order than CPU.
1229 *
1230 * See Documentation/vm/mmu_notifier.txt
1231 */
82b0f8c3 1232 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1233
82b0f8c3 1234 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1235 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1236
1237 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1238 pte_t entry;
71e3aac0
AA
1239 entry = mk_pte(pages[i], vma->vm_page_prot);
1240 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1241 memcg = (void *)page_private(pages[i]);
1242 set_page_private(pages[i], 0);
82b0f8c3 1243 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1244 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1245 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1246 vmf->pte = pte_offset_map(&_pmd, haddr);
1247 VM_BUG_ON(!pte_none(*vmf->pte));
1248 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1249 pte_unmap(vmf->pte);
71e3aac0
AA
1250 }
1251 kfree(pages);
1252
71e3aac0 1253 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1254 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1255 page_remove_rmap(page, true);
82b0f8c3 1256 spin_unlock(vmf->ptl);
71e3aac0 1257
4645b9fe
JG
1258 /*
1259 * No need to double call mmu_notifier->invalidate_range() callback as
1260 * the above pmdp_huge_clear_flush_notify() did already call it.
1261 */
1262 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1263 mmun_end);
2ec74c3e 1264
71e3aac0
AA
1265 ret |= VM_FAULT_WRITE;
1266 put_page(page);
1267
1268out:
1269 return ret;
1270
1271out_free_pages:
82b0f8c3 1272 spin_unlock(vmf->ptl);
bae473a4 1273 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1274 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1275 memcg = (void *)page_private(pages[i]);
1276 set_page_private(pages[i], 0);
f627c2f5 1277 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1278 put_page(pages[i]);
b9bbfbe3 1279 }
71e3aac0
AA
1280 kfree(pages);
1281 goto out;
1282}
1283
82b0f8c3 1284int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1285{
82b0f8c3 1286 struct vm_area_struct *vma = vmf->vma;
93b4796d 1287 struct page *page = NULL, *new_page;
00501b53 1288 struct mem_cgroup *memcg;
82b0f8c3 1289 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1290 unsigned long mmun_start; /* For mmu_notifiers */
1291 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1292 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1293 int ret = 0;
71e3aac0 1294
82b0f8c3 1295 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1296 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1297 if (is_huge_zero_pmd(orig_pmd))
1298 goto alloc;
82b0f8c3
JK
1299 spin_lock(vmf->ptl);
1300 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1301 goto out_unlock;
1302
1303 page = pmd_page(orig_pmd);
309381fe 1304 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1305 /*
1306 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1307 * part.
1f25fe20 1308 */
ba3c4ce6
HY
1309 if (!trylock_page(page)) {
1310 get_page(page);
1311 spin_unlock(vmf->ptl);
1312 lock_page(page);
1313 spin_lock(vmf->ptl);
1314 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1315 unlock_page(page);
1316 put_page(page);
1317 goto out_unlock;
1318 }
1319 put_page(page);
1320 }
1321 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1322 pmd_t entry;
1323 entry = pmd_mkyoung(orig_pmd);
f55e1014 1324 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1325 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1326 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1327 ret |= VM_FAULT_WRITE;
ba3c4ce6 1328 unlock_page(page);
71e3aac0
AA
1329 goto out_unlock;
1330 }
ba3c4ce6 1331 unlock_page(page);
ddc58f27 1332 get_page(page);
82b0f8c3 1333 spin_unlock(vmf->ptl);
93b4796d 1334alloc:
71e3aac0 1335 if (transparent_hugepage_enabled(vma) &&
077fcf11 1336 !transparent_hugepage_debug_cow()) {
444eb2a4 1337 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1338 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1339 } else
71e3aac0
AA
1340 new_page = NULL;
1341
9a982250
KS
1342 if (likely(new_page)) {
1343 prep_transhuge_page(new_page);
1344 } else {
eecc1e42 1345 if (!page) {
82b0f8c3 1346 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1347 ret |= VM_FAULT_FALLBACK;
93b4796d 1348 } else {
82b0f8c3 1349 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1350 if (ret & VM_FAULT_OOM) {
82b0f8c3 1351 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1352 ret |= VM_FAULT_FALLBACK;
1353 }
ddc58f27 1354 put_page(page);
93b4796d 1355 }
17766dde 1356 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1357 goto out;
1358 }
1359
bae473a4 1360 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
46fe940f 1361 huge_gfp | __GFP_NORETRY, &memcg, true))) {
b9bbfbe3 1362 put_page(new_page);
82b0f8c3 1363 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1364 if (page)
ddc58f27 1365 put_page(page);
9845cbbd 1366 ret |= VM_FAULT_FALLBACK;
17766dde 1367 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1368 goto out;
1369 }
1370
17766dde
DR
1371 count_vm_event(THP_FAULT_ALLOC);
1372
eecc1e42 1373 if (!page)
c79b57e4 1374 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d
KS
1375 else
1376 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1377 __SetPageUptodate(new_page);
1378
2ec74c3e
SG
1379 mmun_start = haddr;
1380 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1381 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1382
82b0f8c3 1383 spin_lock(vmf->ptl);
93b4796d 1384 if (page)
ddc58f27 1385 put_page(page);
82b0f8c3
JK
1386 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1387 spin_unlock(vmf->ptl);
f627c2f5 1388 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1389 put_page(new_page);
2ec74c3e 1390 goto out_mn;
b9bbfbe3 1391 } else {
71e3aac0 1392 pmd_t entry;
3122359a 1393 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1394 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1395 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1396 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1397 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1398 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1399 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1400 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1401 if (!page) {
bae473a4 1402 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1403 } else {
309381fe 1404 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1405 page_remove_rmap(page, true);
93b4796d
KS
1406 put_page(page);
1407 }
71e3aac0
AA
1408 ret |= VM_FAULT_WRITE;
1409 }
82b0f8c3 1410 spin_unlock(vmf->ptl);
2ec74c3e 1411out_mn:
4645b9fe
JG
1412 /*
1413 * No need to double call mmu_notifier->invalidate_range() callback as
1414 * the above pmdp_huge_clear_flush_notify() did already call it.
1415 */
1416 mmu_notifier_invalidate_range_only_end(vma->vm_mm, mmun_start,
1417 mmun_end);
71e3aac0
AA
1418out:
1419 return ret;
2ec74c3e 1420out_unlock:
82b0f8c3 1421 spin_unlock(vmf->ptl);
2ec74c3e 1422 return ret;
71e3aac0
AA
1423}
1424
8310d48b
KF
1425/*
1426 * FOLL_FORCE can write to even unwritable pmd's, but only
1427 * after we've gone through a COW cycle and they are dirty.
1428 */
1429static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1430{
f6f37321 1431 return pmd_write(pmd) ||
8310d48b
KF
1432 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1433}
1434
b676b293 1435struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1436 unsigned long addr,
1437 pmd_t *pmd,
1438 unsigned int flags)
1439{
b676b293 1440 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1441 struct page *page = NULL;
1442
c4088ebd 1443 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1444
8310d48b 1445 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1446 goto out;
1447
85facf25
KS
1448 /* Avoid dumping huge zero page */
1449 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1450 return ERR_PTR(-EFAULT);
1451
2b4847e7 1452 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1453 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1454 goto out;
1455
71e3aac0 1456 page = pmd_page(*pmd);
ca120cf6 1457 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1458 if (flags & FOLL_TOUCH)
a8f97366 1459 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1460 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1461 /*
1462 * We don't mlock() pte-mapped THPs. This way we can avoid
1463 * leaking mlocked pages into non-VM_LOCKED VMAs.
1464 *
9a73f61b
KS
1465 * For anon THP:
1466 *
e90309c9
KS
1467 * In most cases the pmd is the only mapping of the page as we
1468 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1469 * writable private mappings in populate_vma_page_range().
1470 *
1471 * The only scenario when we have the page shared here is if we
1472 * mlocking read-only mapping shared over fork(). We skip
1473 * mlocking such pages.
9a73f61b
KS
1474 *
1475 * For file THP:
1476 *
1477 * We can expect PageDoubleMap() to be stable under page lock:
1478 * for file pages we set it in page_add_file_rmap(), which
1479 * requires page to be locked.
e90309c9 1480 */
9a73f61b
KS
1481
1482 if (PageAnon(page) && compound_mapcount(page) != 1)
1483 goto skip_mlock;
1484 if (PageDoubleMap(page) || !page->mapping)
1485 goto skip_mlock;
1486 if (!trylock_page(page))
1487 goto skip_mlock;
1488 lru_add_drain();
1489 if (page->mapping && !PageDoubleMap(page))
1490 mlock_vma_page(page);
1491 unlock_page(page);
b676b293 1492 }
9a73f61b 1493skip_mlock:
71e3aac0 1494 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1495 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1496 if (flags & FOLL_GET)
ddc58f27 1497 get_page(page);
71e3aac0
AA
1498
1499out:
1500 return page;
1501}
1502
d10e63f2 1503/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1504int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1505{
82b0f8c3 1506 struct vm_area_struct *vma = vmf->vma;
b8916634 1507 struct anon_vma *anon_vma = NULL;
b32967ff 1508 struct page *page;
82b0f8c3 1509 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1510 int page_nid = -1, this_nid = numa_node_id();
90572890 1511 int target_nid, last_cpupid = -1;
8191acbd
MG
1512 bool page_locked;
1513 bool migrated = false;
b191f9b1 1514 bool was_writable;
6688cc05 1515 int flags = 0;
d10e63f2 1516
82b0f8c3
JK
1517 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1518 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1519 goto out_unlock;
1520
de466bd6
MG
1521 /*
1522 * If there are potential migrations, wait for completion and retry
1523 * without disrupting NUMA hinting information. Do not relock and
1524 * check_same as the page may no longer be mapped.
1525 */
82b0f8c3
JK
1526 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1527 page = pmd_page(*vmf->pmd);
3c226c63
MR
1528 if (!get_page_unless_zero(page))
1529 goto out_unlock;
82b0f8c3 1530 spin_unlock(vmf->ptl);
5d833062 1531 wait_on_page_locked(page);
3c226c63 1532 put_page(page);
de466bd6
MG
1533 goto out;
1534 }
1535
d10e63f2 1536 page = pmd_page(pmd);
a1a46184 1537 BUG_ON(is_huge_zero_page(page));
8191acbd 1538 page_nid = page_to_nid(page);
90572890 1539 last_cpupid = page_cpupid_last(page);
03c5a6e1 1540 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1541 if (page_nid == this_nid) {
03c5a6e1 1542 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1543 flags |= TNF_FAULT_LOCAL;
1544 }
4daae3b4 1545
bea66fbd 1546 /* See similar comment in do_numa_page for explanation */
288bc549 1547 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1548 flags |= TNF_NO_GROUP;
1549
ff9042b1
MG
1550 /*
1551 * Acquire the page lock to serialise THP migrations but avoid dropping
1552 * page_table_lock if at all possible
1553 */
b8916634
MG
1554 page_locked = trylock_page(page);
1555 target_nid = mpol_misplaced(page, vma, haddr);
1556 if (target_nid == -1) {
1557 /* If the page was locked, there are no parallel migrations */
a54a407f 1558 if (page_locked)
b8916634 1559 goto clear_pmdnuma;
2b4847e7 1560 }
4daae3b4 1561
de466bd6 1562 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1563 if (!page_locked) {
3c226c63
MR
1564 page_nid = -1;
1565 if (!get_page_unless_zero(page))
1566 goto out_unlock;
82b0f8c3 1567 spin_unlock(vmf->ptl);
b8916634 1568 wait_on_page_locked(page);
3c226c63 1569 put_page(page);
b8916634
MG
1570 goto out;
1571 }
1572
2b4847e7
MG
1573 /*
1574 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1575 * to serialises splits
1576 */
b8916634 1577 get_page(page);
82b0f8c3 1578 spin_unlock(vmf->ptl);
b8916634 1579 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1580
c69307d5 1581 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1582 spin_lock(vmf->ptl);
1583 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1584 unlock_page(page);
1585 put_page(page);
a54a407f 1586 page_nid = -1;
4daae3b4 1587 goto out_unlock;
b32967ff 1588 }
ff9042b1 1589
c3a489ca
MG
1590 /* Bail if we fail to protect against THP splits for any reason */
1591 if (unlikely(!anon_vma)) {
1592 put_page(page);
1593 page_nid = -1;
1594 goto clear_pmdnuma;
1595 }
1596
8b1b436d
PZ
1597 /*
1598 * Since we took the NUMA fault, we must have observed the !accessible
1599 * bit. Make sure all other CPUs agree with that, to avoid them
1600 * modifying the page we're about to migrate.
1601 *
1602 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1603 * inc_tlb_flush_pending().
1604 *
1605 * We are not sure a pending tlb flush here is for a huge page
1606 * mapping or not. Hence use the tlb range variant
8b1b436d
PZ
1607 */
1608 if (mm_tlb_flush_pending(vma->vm_mm))
ccde85ba 1609 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
8b1b436d 1610
a54a407f
MG
1611 /*
1612 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1613 * and access rights restored.
a54a407f 1614 */
82b0f8c3 1615 spin_unlock(vmf->ptl);
8b1b436d 1616
bae473a4 1617 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1618 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1619 if (migrated) {
1620 flags |= TNF_MIGRATED;
8191acbd 1621 page_nid = target_nid;
074c2381
MG
1622 } else
1623 flags |= TNF_MIGRATE_FAIL;
b32967ff 1624
8191acbd 1625 goto out;
b32967ff 1626clear_pmdnuma:
a54a407f 1627 BUG_ON(!PageLocked(page));
288bc549 1628 was_writable = pmd_savedwrite(pmd);
4d942466 1629 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1630 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1631 if (was_writable)
1632 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1633 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1634 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1635 unlock_page(page);
d10e63f2 1636out_unlock:
82b0f8c3 1637 spin_unlock(vmf->ptl);
b8916634
MG
1638
1639out:
1640 if (anon_vma)
1641 page_unlock_anon_vma_read(anon_vma);
1642
8191acbd 1643 if (page_nid != -1)
82b0f8c3 1644 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1645 flags);
8191acbd 1646
d10e63f2
MG
1647 return 0;
1648}
1649
319904ad
HY
1650/*
1651 * Return true if we do MADV_FREE successfully on entire pmd page.
1652 * Otherwise, return false.
1653 */
1654bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1655 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1656{
1657 spinlock_t *ptl;
1658 pmd_t orig_pmd;
1659 struct page *page;
1660 struct mm_struct *mm = tlb->mm;
319904ad 1661 bool ret = false;
b8d3c4c3 1662
07e32661
AK
1663 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1664
b6ec57f4
KS
1665 ptl = pmd_trans_huge_lock(pmd, vma);
1666 if (!ptl)
25eedabe 1667 goto out_unlocked;
b8d3c4c3
MK
1668
1669 orig_pmd = *pmd;
319904ad 1670 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1671 goto out;
b8d3c4c3 1672
84c3fc4e
ZY
1673 if (unlikely(!pmd_present(orig_pmd))) {
1674 VM_BUG_ON(thp_migration_supported() &&
1675 !is_pmd_migration_entry(orig_pmd));
1676 goto out;
1677 }
1678
b8d3c4c3
MK
1679 page = pmd_page(orig_pmd);
1680 /*
1681 * If other processes are mapping this page, we couldn't discard
1682 * the page unless they all do MADV_FREE so let's skip the page.
1683 */
1684 if (page_mapcount(page) != 1)
1685 goto out;
1686
1687 if (!trylock_page(page))
1688 goto out;
1689
1690 /*
1691 * If user want to discard part-pages of THP, split it so MADV_FREE
1692 * will deactivate only them.
1693 */
1694 if (next - addr != HPAGE_PMD_SIZE) {
1695 get_page(page);
1696 spin_unlock(ptl);
9818b8cd 1697 split_huge_page(page);
b8d3c4c3 1698 unlock_page(page);
bbf29ffc 1699 put_page(page);
b8d3c4c3
MK
1700 goto out_unlocked;
1701 }
1702
1703 if (PageDirty(page))
1704 ClearPageDirty(page);
1705 unlock_page(page);
1706
b8d3c4c3 1707 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1708 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1709 orig_pmd = pmd_mkold(orig_pmd);
1710 orig_pmd = pmd_mkclean(orig_pmd);
1711
1712 set_pmd_at(mm, addr, pmd, orig_pmd);
1713 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1714 }
802a3a92
SL
1715
1716 mark_page_lazyfree(page);
319904ad 1717 ret = true;
b8d3c4c3
MK
1718out:
1719 spin_unlock(ptl);
1720out_unlocked:
1721 return ret;
1722}
1723
953c66c2
AK
1724static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1725{
1726 pgtable_t pgtable;
1727
1728 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1729 pte_free(mm, pgtable);
c4812909 1730 mm_dec_nr_ptes(mm);
953c66c2
AK
1731}
1732
71e3aac0 1733int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1734 pmd_t *pmd, unsigned long addr)
71e3aac0 1735{
da146769 1736 pmd_t orig_pmd;
bf929152 1737 spinlock_t *ptl;
71e3aac0 1738
07e32661
AK
1739 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1740
b6ec57f4
KS
1741 ptl = __pmd_trans_huge_lock(pmd, vma);
1742 if (!ptl)
da146769
KS
1743 return 0;
1744 /*
1745 * For architectures like ppc64 we look at deposited pgtable
1746 * when calling pmdp_huge_get_and_clear. So do the
1747 * pgtable_trans_huge_withdraw after finishing pmdp related
1748 * operations.
1749 */
1750 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1751 tlb->fullmm);
1752 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1753 if (vma_is_dax(vma)) {
3b6521f5
OH
1754 if (arch_needs_pgtable_deposit())
1755 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1756 spin_unlock(ptl);
1757 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1758 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1759 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1760 zap_deposited_table(tlb->mm, pmd);
da146769 1761 spin_unlock(ptl);
c0f2e176 1762 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1763 } else {
616b8371
ZY
1764 struct page *page = NULL;
1765 int flush_needed = 1;
1766
1767 if (pmd_present(orig_pmd)) {
1768 page = pmd_page(orig_pmd);
1769 page_remove_rmap(page, true);
1770 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1771 VM_BUG_ON_PAGE(!PageHead(page), page);
1772 } else if (thp_migration_supported()) {
1773 swp_entry_t entry;
1774
1775 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1776 entry = pmd_to_swp_entry(orig_pmd);
1777 page = pfn_to_page(swp_offset(entry));
1778 flush_needed = 0;
1779 } else
1780 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1781
b5072380 1782 if (PageAnon(page)) {
c14a6eb4 1783 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1784 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1785 } else {
953c66c2
AK
1786 if (arch_needs_pgtable_deposit())
1787 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1788 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1789 }
616b8371 1790
da146769 1791 spin_unlock(ptl);
616b8371
ZY
1792 if (flush_needed)
1793 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1794 }
da146769 1795 return 1;
71e3aac0
AA
1796}
1797
1dd38b6c
AK
1798#ifndef pmd_move_must_withdraw
1799static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1800 spinlock_t *old_pmd_ptl,
1801 struct vm_area_struct *vma)
1802{
1803 /*
1804 * With split pmd lock we also need to move preallocated
1805 * PTE page table if new_pmd is on different PMD page table.
1806 *
1807 * We also don't deposit and withdraw tables for file pages.
1808 */
1809 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1810}
1811#endif
1812
ab6e3d09
NH
1813static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1814{
1815#ifdef CONFIG_MEM_SOFT_DIRTY
1816 if (unlikely(is_pmd_migration_entry(pmd)))
1817 pmd = pmd_swp_mksoft_dirty(pmd);
1818 else if (pmd_present(pmd))
1819 pmd = pmd_mksoft_dirty(pmd);
1820#endif
1821 return pmd;
1822}
1823
bf8616d5 1824bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1825 unsigned long new_addr, unsigned long old_end,
5ad4de30 1826 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1827{
bf929152 1828 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1829 pmd_t pmd;
37a1c49a 1830 struct mm_struct *mm = vma->vm_mm;
5d190420 1831 bool force_flush = false;
37a1c49a
AA
1832
1833 if ((old_addr & ~HPAGE_PMD_MASK) ||
1834 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1835 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1836 return false;
37a1c49a
AA
1837
1838 /*
1839 * The destination pmd shouldn't be established, free_pgtables()
1840 * should have release it.
1841 */
1842 if (WARN_ON(!pmd_none(*new_pmd))) {
1843 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1844 return false;
37a1c49a
AA
1845 }
1846
bf929152
KS
1847 /*
1848 * We don't have to worry about the ordering of src and dst
1849 * ptlocks because exclusive mmap_sem prevents deadlock.
1850 */
b6ec57f4
KS
1851 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1852 if (old_ptl) {
bf929152
KS
1853 new_ptl = pmd_lockptr(mm, new_pmd);
1854 if (new_ptl != old_ptl)
1855 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1856 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
5ad4de30 1857 if (pmd_present(pmd))
a2ce2666 1858 force_flush = true;
025c5b24 1859 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1860
1dd38b6c 1861 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1862 pgtable_t pgtable;
3592806c
KS
1863 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1864 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1865 }
ab6e3d09
NH
1866 pmd = move_soft_dirty_pmd(pmd);
1867 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1868 if (force_flush)
1869 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
5ad4de30
LT
1870 if (new_ptl != old_ptl)
1871 spin_unlock(new_ptl);
bf929152 1872 spin_unlock(old_ptl);
4b471e88 1873 return true;
37a1c49a 1874 }
4b471e88 1875 return false;
37a1c49a
AA
1876}
1877
f123d74a
MG
1878/*
1879 * Returns
1880 * - 0 if PMD could not be locked
1881 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1882 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1883 */
cd7548ab 1884int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1885 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1886{
1887 struct mm_struct *mm = vma->vm_mm;
bf929152 1888 spinlock_t *ptl;
0a85e51d
KS
1889 pmd_t entry;
1890 bool preserve_write;
1891 int ret;
cd7548ab 1892
b6ec57f4 1893 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1894 if (!ptl)
1895 return 0;
e944fd67 1896
0a85e51d
KS
1897 preserve_write = prot_numa && pmd_write(*pmd);
1898 ret = 1;
e944fd67 1899
84c3fc4e
ZY
1900#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1901 if (is_swap_pmd(*pmd)) {
1902 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1903
1904 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1905 if (is_write_migration_entry(entry)) {
1906 pmd_t newpmd;
1907 /*
1908 * A protection check is difficult so
1909 * just be safe and disable write
1910 */
1911 make_migration_entry_read(&entry);
1912 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1913 if (pmd_swp_soft_dirty(*pmd))
1914 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1915 set_pmd_at(mm, addr, pmd, newpmd);
1916 }
1917 goto unlock;
1918 }
1919#endif
1920
0a85e51d
KS
1921 /*
1922 * Avoid trapping faults against the zero page. The read-only
1923 * data is likely to be read-cached on the local CPU and
1924 * local/remote hits to the zero page are not interesting.
1925 */
1926 if (prot_numa && is_huge_zero_pmd(*pmd))
1927 goto unlock;
025c5b24 1928
0a85e51d
KS
1929 if (prot_numa && pmd_protnone(*pmd))
1930 goto unlock;
1931
ced10803
KS
1932 /*
1933 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1934 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1935 * which is also under down_read(mmap_sem):
1936 *
1937 * CPU0: CPU1:
1938 * change_huge_pmd(prot_numa=1)
1939 * pmdp_huge_get_and_clear_notify()
1940 * madvise_dontneed()
1941 * zap_pmd_range()
1942 * pmd_trans_huge(*pmd) == 0 (without ptl)
1943 * // skip the pmd
1944 * set_pmd_at();
1945 * // pmd is re-established
1946 *
1947 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1948 * which may break userspace.
1949 *
1950 * pmdp_invalidate() is required to make sure we don't miss
1951 * dirty/young flags set by hardware.
1952 */
1953 entry = *pmd;
1954 pmdp_invalidate(vma, addr, pmd);
1955
1956 /*
1957 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1958 * corrupt them.
1959 */
1960 if (pmd_dirty(*pmd))
1961 entry = pmd_mkdirty(entry);
1962 if (pmd_young(*pmd))
1963 entry = pmd_mkyoung(entry);
1964
0a85e51d
KS
1965 entry = pmd_modify(entry, newprot);
1966 if (preserve_write)
1967 entry = pmd_mk_savedwrite(entry);
1968 ret = HPAGE_PMD_NR;
1969 set_pmd_at(mm, addr, pmd, entry);
1970 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1971unlock:
1972 spin_unlock(ptl);
025c5b24
NH
1973 return ret;
1974}
1975
1976/*
8f19b0c0 1977 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1978 *
8f19b0c0
HY
1979 * Note that if it returns page table lock pointer, this routine returns without
1980 * unlocking page table lock. So callers must unlock it.
025c5b24 1981 */
b6ec57f4 1982spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1983{
b6ec57f4
KS
1984 spinlock_t *ptl;
1985 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1986 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1987 pmd_devmap(*pmd)))
b6ec57f4
KS
1988 return ptl;
1989 spin_unlock(ptl);
1990 return NULL;
cd7548ab
JW
1991}
1992
a00cc7d9
MW
1993/*
1994 * Returns true if a given pud maps a thp, false otherwise.
1995 *
1996 * Note that if it returns true, this routine returns without unlocking page
1997 * table lock. So callers must unlock it.
1998 */
1999spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2000{
2001 spinlock_t *ptl;
2002
2003 ptl = pud_lock(vma->vm_mm, pud);
2004 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2005 return ptl;
2006 spin_unlock(ptl);
2007 return NULL;
2008}
2009
2010#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2011int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2012 pud_t *pud, unsigned long addr)
2013{
2014 pud_t orig_pud;
2015 spinlock_t *ptl;
2016
2017 ptl = __pud_trans_huge_lock(pud, vma);
2018 if (!ptl)
2019 return 0;
2020 /*
2021 * For architectures like ppc64 we look at deposited pgtable
2022 * when calling pudp_huge_get_and_clear. So do the
2023 * pgtable_trans_huge_withdraw after finishing pudp related
2024 * operations.
2025 */
2026 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
2027 tlb->fullmm);
2028 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2029 if (vma_is_dax(vma)) {
2030 spin_unlock(ptl);
2031 /* No zero page support yet */
2032 } else {
2033 /* No support for anonymous PUD pages yet */
2034 BUG();
2035 }
2036 return 1;
2037}
2038
2039static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2040 unsigned long haddr)
2041{
2042 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2043 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2044 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2045 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2046
ce9311cf 2047 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2048
2049 pudp_huge_clear_flush_notify(vma, haddr, pud);
2050}
2051
2052void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2053 unsigned long address)
2054{
2055 spinlock_t *ptl;
2056 struct mm_struct *mm = vma->vm_mm;
2057 unsigned long haddr = address & HPAGE_PUD_MASK;
2058
2059 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
2060 ptl = pud_lock(mm, pud);
2061 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2062 goto out;
2063 __split_huge_pud_locked(vma, pud, haddr);
2064
2065out:
2066 spin_unlock(ptl);
4645b9fe
JG
2067 /*
2068 * No need to double call mmu_notifier->invalidate_range() callback as
2069 * the above pudp_huge_clear_flush_notify() did already call it.
2070 */
2071 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2072 HPAGE_PUD_SIZE);
a00cc7d9
MW
2073}
2074#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2075
eef1b3ba
KS
2076static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2077 unsigned long haddr, pmd_t *pmd)
2078{
2079 struct mm_struct *mm = vma->vm_mm;
2080 pgtable_t pgtable;
2081 pmd_t _pmd;
2082 int i;
2083
0f10851e
JG
2084 /*
2085 * Leave pmd empty until pte is filled note that it is fine to delay
2086 * notification until mmu_notifier_invalidate_range_end() as we are
2087 * replacing a zero pmd write protected page with a zero pte write
2088 * protected page.
2089 *
2090 * See Documentation/vm/mmu_notifier.txt
2091 */
2092 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2093
2094 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2095 pmd_populate(mm, &_pmd, pgtable);
2096
2097 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2098 pte_t *pte, entry;
2099 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2100 entry = pte_mkspecial(entry);
2101 pte = pte_offset_map(&_pmd, haddr);
2102 VM_BUG_ON(!pte_none(*pte));
2103 set_pte_at(mm, haddr, pte, entry);
2104 pte_unmap(pte);
2105 }
2106 smp_wmb(); /* make pte visible before pmd */
2107 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2108}
2109
2110static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2111 unsigned long haddr, bool freeze)
eef1b3ba
KS
2112{
2113 struct mm_struct *mm = vma->vm_mm;
2114 struct page *page;
2115 pgtable_t pgtable;
2116 pmd_t _pmd;
84c3fc4e 2117 bool young, write, dirty, soft_dirty, pmd_migration = false;
2ac015e2 2118 unsigned long addr;
eef1b3ba
KS
2119 int i;
2120
2121 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2122 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2123 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2124 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2125 && !pmd_devmap(*pmd));
eef1b3ba
KS
2126
2127 count_vm_event(THP_SPLIT_PMD);
2128
d21b9e57
KS
2129 if (!vma_is_anonymous(vma)) {
2130 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2131 /*
2132 * We are going to unmap this huge page. So
2133 * just go ahead and zap it
2134 */
2135 if (arch_needs_pgtable_deposit())
2136 zap_deposited_table(mm, pmd);
d21b9e57
KS
2137 if (vma_is_dax(vma))
2138 return;
2139 page = pmd_page(_pmd);
30820520
HD
2140 if (!PageDirty(page) && pmd_dirty(_pmd))
2141 set_page_dirty(page);
d21b9e57
KS
2142 if (!PageReferenced(page) && pmd_young(_pmd))
2143 SetPageReferenced(page);
2144 page_remove_rmap(page, true);
2145 put_page(page);
2146 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
2147 return;
2148 } else if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2149 /*
2150 * FIXME: Do we want to invalidate secondary mmu by calling
2151 * mmu_notifier_invalidate_range() see comments below inside
2152 * __split_huge_pmd() ?
2153 *
2154 * We are going from a zero huge page write protected to zero
2155 * small page also write protected so it does not seems useful
2156 * to invalidate secondary mmu at this time.
2157 */
eef1b3ba
KS
2158 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2159 }
2160
84c3fc4e
ZY
2161#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2162 pmd_migration = is_pmd_migration_entry(*pmd);
2163 if (pmd_migration) {
2164 swp_entry_t entry;
2165
2166 entry = pmd_to_swp_entry(*pmd);
2167 page = pfn_to_page(swp_offset(entry));
2168 } else
2169#endif
2170 page = pmd_page(*pmd);
eef1b3ba 2171 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2172 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2173 write = pmd_write(*pmd);
2174 young = pmd_young(*pmd);
b8d3c4c3 2175 dirty = pmd_dirty(*pmd);
804dd150 2176 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 2177
c777e2a8 2178 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2179 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2180 pmd_populate(mm, &_pmd, pgtable);
2181
2ac015e2 2182 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2183 pte_t entry, *pte;
2184 /*
2185 * Note that NUMA hinting access restrictions are not
2186 * transferred to avoid any possibility of altering
2187 * permissions across VMAs.
2188 */
84c3fc4e 2189 if (freeze || pmd_migration) {
ba988280
KS
2190 swp_entry_t swp_entry;
2191 swp_entry = make_migration_entry(page + i, write);
2192 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2193 if (soft_dirty)
2194 entry = pte_swp_mksoft_dirty(entry);
ba988280 2195 } else {
6d2329f8 2196 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2197 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2198 if (!write)
2199 entry = pte_wrprotect(entry);
2200 if (!young)
2201 entry = pte_mkold(entry);
804dd150
AA
2202 if (soft_dirty)
2203 entry = pte_mksoft_dirty(entry);
ba988280 2204 }
b8d3c4c3
MK
2205 if (dirty)
2206 SetPageDirty(page + i);
2ac015e2 2207 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2208 BUG_ON(!pte_none(*pte));
2ac015e2 2209 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2210 atomic_inc(&page[i]._mapcount);
2211 pte_unmap(pte);
2212 }
2213
2214 /*
2215 * Set PG_double_map before dropping compound_mapcount to avoid
2216 * false-negative page_mapped().
2217 */
2218 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2219 for (i = 0; i < HPAGE_PMD_NR; i++)
2220 atomic_inc(&page[i]._mapcount);
2221 }
2222
2223 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2224 /* Last compound_mapcount is gone. */
11fb9989 2225 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2226 if (TestClearPageDoubleMap(page)) {
2227 /* No need in mapcount reference anymore */
2228 for (i = 0; i < HPAGE_PMD_NR; i++)
2229 atomic_dec(&page[i]._mapcount);
2230 }
2231 }
2232
2233 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2234 /*
2235 * Up to this point the pmd is present and huge and userland has the
2236 * whole access to the hugepage during the split (which happens in
2237 * place). If we overwrite the pmd with the not-huge version pointing
2238 * to the pte here (which of course we could if all CPUs were bug
2239 * free), userland could trigger a small page size TLB miss on the
2240 * small sized TLB while the hugepage TLB entry is still established in
2241 * the huge TLB. Some CPU doesn't like that.
2242 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2243 * 383 on page 93. Intel should be safe but is also warns that it's
2244 * only safe if the permission and cache attributes of the two entries
2245 * loaded in the two TLB is identical (which should be the case here).
2246 * But it is generally safer to never allow small and huge TLB entries
2247 * for the same virtual address to be loaded simultaneously. So instead
2248 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2249 * current pmd notpresent (atomically because here the pmd_trans_huge
2250 * and pmd_trans_splitting must remain set at all times on the pmd
2251 * until the split is complete for this pmd), then we flush the SMP TLB
2252 * and finally we write the non-huge version of the pmd entry with
2253 * pmd_populate.
2254 */
2255 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2256 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2257
2258 if (freeze) {
2ac015e2 2259 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2260 page_remove_rmap(page + i, false);
2261 put_page(page + i);
2262 }
2263 }
eef1b3ba
KS
2264}
2265
2266void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2267 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2268{
2269 spinlock_t *ptl;
2270 struct mm_struct *mm = vma->vm_mm;
2271 unsigned long haddr = address & HPAGE_PMD_MASK;
2272
2273 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2274 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2275
2276 /*
2277 * If caller asks to setup a migration entries, we need a page to check
2278 * pmd against. Otherwise we can end up replacing wrong page.
2279 */
2280 VM_BUG_ON(freeze && !page);
2281 if (page && page != pmd_page(*pmd))
2282 goto out;
2283
5c7fb56e 2284 if (pmd_trans_huge(*pmd)) {
33f4751e 2285 page = pmd_page(*pmd);
5c7fb56e 2286 if (PageMlocked(page))
5f737714 2287 clear_page_mlock(page);
84c3fc4e 2288 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2289 goto out;
fec89c10 2290 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2291out:
eef1b3ba 2292 spin_unlock(ptl);
4645b9fe
JG
2293 /*
2294 * No need to double call mmu_notifier->invalidate_range() callback.
2295 * They are 3 cases to consider inside __split_huge_pmd_locked():
2296 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2297 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2298 * fault will trigger a flush_notify before pointing to a new page
2299 * (it is fine if the secondary mmu keeps pointing to the old zero
2300 * page in the meantime)
2301 * 3) Split a huge pmd into pte pointing to the same page. No need
2302 * to invalidate secondary tlb entry they are all still valid.
2303 * any further changes to individual pte will notify. So no need
2304 * to call mmu_notifier->invalidate_range()
2305 */
2306 mmu_notifier_invalidate_range_only_end(mm, haddr, haddr +
2307 HPAGE_PMD_SIZE);
eef1b3ba
KS
2308}
2309
fec89c10
KS
2310void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2311 bool freeze, struct page *page)
94fcc585 2312{
f72e7dcd 2313 pgd_t *pgd;
c2febafc 2314 p4d_t *p4d;
f72e7dcd 2315 pud_t *pud;
94fcc585
AA
2316 pmd_t *pmd;
2317
78ddc534 2318 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2319 if (!pgd_present(*pgd))
2320 return;
2321
c2febafc
KS
2322 p4d = p4d_offset(pgd, address);
2323 if (!p4d_present(*p4d))
2324 return;
2325
2326 pud = pud_offset(p4d, address);
f72e7dcd
HD
2327 if (!pud_present(*pud))
2328 return;
2329
2330 pmd = pmd_offset(pud, address);
fec89c10 2331
33f4751e 2332 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2333}
2334
e1b9996b 2335void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2336 unsigned long start,
2337 unsigned long end,
2338 long adjust_next)
2339{
2340 /*
2341 * If the new start address isn't hpage aligned and it could
2342 * previously contain an hugepage: check if we need to split
2343 * an huge pmd.
2344 */
2345 if (start & ~HPAGE_PMD_MASK &&
2346 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2347 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2348 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2349
2350 /*
2351 * If the new end address isn't hpage aligned and it could
2352 * previously contain an hugepage: check if we need to split
2353 * an huge pmd.
2354 */
2355 if (end & ~HPAGE_PMD_MASK &&
2356 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2357 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2358 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2359
2360 /*
2361 * If we're also updating the vma->vm_next->vm_start, if the new
2362 * vm_next->vm_start isn't page aligned and it could previously
2363 * contain an hugepage: check if we need to split an huge pmd.
2364 */
2365 if (adjust_next > 0) {
2366 struct vm_area_struct *next = vma->vm_next;
2367 unsigned long nstart = next->vm_start;
2368 nstart += adjust_next << PAGE_SHIFT;
2369 if (nstart & ~HPAGE_PMD_MASK &&
2370 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2371 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2372 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2373 }
2374}
e9b61f19 2375
d7b66bd2 2376static void unmap_page(struct page *page)
e9b61f19 2377{
baa355fd 2378 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2379 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2380 bool unmap_success;
e9b61f19
KS
2381
2382 VM_BUG_ON_PAGE(!PageHead(page), page);
2383
baa355fd 2384 if (PageAnon(page))
b5ff8161 2385 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2386
666e5a40
MK
2387 unmap_success = try_to_unmap(page, ttu_flags);
2388 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2389}
2390
d7b66bd2 2391static void remap_page(struct page *page)
e9b61f19 2392{
fec89c10 2393 int i;
ace71a19
KS
2394 if (PageTransHuge(page)) {
2395 remove_migration_ptes(page, page, true);
2396 } else {
2397 for (i = 0; i < HPAGE_PMD_NR; i++)
2398 remove_migration_ptes(page + i, page + i, true);
2399 }
e9b61f19
KS
2400}
2401
8df651c7 2402static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2403 struct lruvec *lruvec, struct list_head *list)
2404{
e9b61f19
KS
2405 struct page *page_tail = head + tail;
2406
8df651c7 2407 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2408
2409 /*
0eb2c7d7
KK
2410 * Clone page flags before unfreezing refcount.
2411 *
2412 * After successful get_page_unless_zero() might follow flags change,
2413 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2414 */
e9b61f19
KS
2415 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2416 page_tail->flags |= (head->flags &
2417 ((1L << PG_referenced) |
2418 (1L << PG_swapbacked) |
38d8b4e6 2419 (1L << PG_swapcache) |
e9b61f19
KS
2420 (1L << PG_mlocked) |
2421 (1L << PG_uptodate) |
2422 (1L << PG_active) |
2423 (1L << PG_locked) |
b8d3c4c3
MK
2424 (1L << PG_unevictable) |
2425 (1L << PG_dirty)));
e9b61f19 2426
7c34f8cd
HD
2427 /* ->mapping in first tail page is compound_mapcount */
2428 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2429 page_tail);
2430 page_tail->mapping = head->mapping;
2431 page_tail->index = head->index + tail;
2432
0eb2c7d7 2433 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2434 smp_wmb();
2435
0eb2c7d7
KK
2436 /*
2437 * Clear PageTail before unfreezing page refcount.
2438 *
2439 * After successful get_page_unless_zero() might follow put_page()
2440 * which needs correct compound_head().
2441 */
e9b61f19
KS
2442 clear_compound_head(page_tail);
2443
0eb2c7d7
KK
2444 /* Finally unfreeze refcount. Additional reference from page cache. */
2445 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2446 PageSwapCache(head)));
2447
e9b61f19
KS
2448 if (page_is_young(head))
2449 set_page_young(page_tail);
2450 if (page_is_idle(head))
2451 set_page_idle(page_tail);
2452
e9b61f19
KS
2453 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2454 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2455}
2456
baa355fd 2457static void __split_huge_page(struct page *page, struct list_head *list,
5ba09cb7 2458 pgoff_t end, unsigned long flags)
e9b61f19
KS
2459{
2460 struct page *head = compound_head(page);
2461 struct zone *zone = page_zone(head);
2462 struct lruvec *lruvec;
8df651c7 2463 int i;
e9b61f19 2464
599d0c95 2465 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2466
2467 /* complete memcg works before add pages to LRU */
2468 mem_cgroup_split_huge_fixup(head);
2469
baa355fd 2470 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2471 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2472 /* Some pages can be beyond i_size: drop them from page cache */
2473 if (head[i].index >= end) {
8759535b 2474 ClearPageDirty(head + i);
baa355fd 2475 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2476 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2477 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2478 put_page(head + i);
2479 }
2480 }
e9b61f19
KS
2481
2482 ClearPageCompound(head);
be765d99
VB
2483
2484 split_page_owner(head, HPAGE_PMD_ORDER);
2485
baa355fd
KS
2486 /* See comment in __split_huge_page_tail() */
2487 if (PageAnon(head)) {
38d8b4e6
HY
2488 /* Additional pin to radix tree of swap cache */
2489 if (PageSwapCache(head))
2490 page_ref_add(head, 2);
2491 else
2492 page_ref_inc(head);
baa355fd
KS
2493 } else {
2494 /* Additional pin to radix tree */
2495 page_ref_add(head, 2);
2496 spin_unlock(&head->mapping->tree_lock);
2497 }
2498
a52633d8 2499 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2500
d7b66bd2 2501 remap_page(head);
e9b61f19
KS
2502
2503 for (i = 0; i < HPAGE_PMD_NR; i++) {
2504 struct page *subpage = head + i;
2505 if (subpage == page)
2506 continue;
2507 unlock_page(subpage);
2508
2509 /*
2510 * Subpages may be freed if there wasn't any mapping
2511 * like if add_to_swap() is running on a lru page that
2512 * had its mapping zapped. And freeing these pages
2513 * requires taking the lru_lock so we do the put_page
2514 * of the tail pages after the split is complete.
2515 */
2516 put_page(subpage);
2517 }
2518}
2519
b20ce5e0
KS
2520int total_mapcount(struct page *page)
2521{
dd78fedd 2522 int i, compound, ret;
b20ce5e0
KS
2523
2524 VM_BUG_ON_PAGE(PageTail(page), page);
2525
2526 if (likely(!PageCompound(page)))
2527 return atomic_read(&page->_mapcount) + 1;
2528
dd78fedd 2529 compound = compound_mapcount(page);
b20ce5e0 2530 if (PageHuge(page))
dd78fedd
KS
2531 return compound;
2532 ret = compound;
b20ce5e0
KS
2533 for (i = 0; i < HPAGE_PMD_NR; i++)
2534 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2535 /* File pages has compound_mapcount included in _mapcount */
2536 if (!PageAnon(page))
2537 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2538 if (PageDoubleMap(page))
2539 ret -= HPAGE_PMD_NR;
2540 return ret;
2541}
2542
6d0a07ed
AA
2543/*
2544 * This calculates accurately how many mappings a transparent hugepage
2545 * has (unlike page_mapcount() which isn't fully accurate). This full
2546 * accuracy is primarily needed to know if copy-on-write faults can
2547 * reuse the page and change the mapping to read-write instead of
2548 * copying them. At the same time this returns the total_mapcount too.
2549 *
2550 * The function returns the highest mapcount any one of the subpages
2551 * has. If the return value is one, even if different processes are
2552 * mapping different subpages of the transparent hugepage, they can
2553 * all reuse it, because each process is reusing a different subpage.
2554 *
2555 * The total_mapcount is instead counting all virtual mappings of the
2556 * subpages. If the total_mapcount is equal to "one", it tells the
2557 * caller all mappings belong to the same "mm" and in turn the
2558 * anon_vma of the transparent hugepage can become the vma->anon_vma
2559 * local one as no other process may be mapping any of the subpages.
2560 *
2561 * It would be more accurate to replace page_mapcount() with
2562 * page_trans_huge_mapcount(), however we only use
2563 * page_trans_huge_mapcount() in the copy-on-write faults where we
2564 * need full accuracy to avoid breaking page pinning, because
2565 * page_trans_huge_mapcount() is slower than page_mapcount().
2566 */
2567int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2568{
2569 int i, ret, _total_mapcount, mapcount;
2570
2571 /* hugetlbfs shouldn't call it */
2572 VM_BUG_ON_PAGE(PageHuge(page), page);
2573
2574 if (likely(!PageTransCompound(page))) {
2575 mapcount = atomic_read(&page->_mapcount) + 1;
2576 if (total_mapcount)
2577 *total_mapcount = mapcount;
2578 return mapcount;
2579 }
2580
2581 page = compound_head(page);
2582
2583 _total_mapcount = ret = 0;
2584 for (i = 0; i < HPAGE_PMD_NR; i++) {
2585 mapcount = atomic_read(&page[i]._mapcount) + 1;
2586 ret = max(ret, mapcount);
2587 _total_mapcount += mapcount;
2588 }
2589 if (PageDoubleMap(page)) {
2590 ret -= 1;
2591 _total_mapcount -= HPAGE_PMD_NR;
2592 }
2593 mapcount = compound_mapcount(page);
2594 ret += mapcount;
2595 _total_mapcount += mapcount;
2596 if (total_mapcount)
2597 *total_mapcount = _total_mapcount;
2598 return ret;
2599}
2600
b8f593cd
HY
2601/* Racy check whether the huge page can be split */
2602bool can_split_huge_page(struct page *page, int *pextra_pins)
2603{
2604 int extra_pins;
2605
2606 /* Additional pins from radix tree */
2607 if (PageAnon(page))
2608 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2609 else
2610 extra_pins = HPAGE_PMD_NR;
2611 if (pextra_pins)
2612 *pextra_pins = extra_pins;
2613 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2614}
2615
e9b61f19
KS
2616/*
2617 * This function splits huge page into normal pages. @page can point to any
2618 * subpage of huge page to split. Split doesn't change the position of @page.
2619 *
2620 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2621 * The huge page must be locked.
2622 *
2623 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2624 *
2625 * Both head page and tail pages will inherit mapping, flags, and so on from
2626 * the hugepage.
2627 *
2628 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2629 * they are not mapped.
2630 *
2631 * Returns 0 if the hugepage is split successfully.
2632 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2633 * us.
2634 */
2635int split_huge_page_to_list(struct page *page, struct list_head *list)
2636{
2637 struct page *head = compound_head(page);
a3d0a918 2638 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2639 struct anon_vma *anon_vma = NULL;
2640 struct address_space *mapping = NULL;
2641 int count, mapcount, extra_pins, ret;
d9654322 2642 bool mlocked;
0b9b6fff 2643 unsigned long flags;
5ba09cb7 2644 pgoff_t end;
e9b61f19
KS
2645
2646 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2647 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2648 VM_BUG_ON_PAGE(!PageCompound(page), page);
2649
59807685
HY
2650 if (PageWriteback(page))
2651 return -EBUSY;
2652
baa355fd
KS
2653 if (PageAnon(head)) {
2654 /*
2655 * The caller does not necessarily hold an mmap_sem that would
2656 * prevent the anon_vma disappearing so we first we take a
2657 * reference to it and then lock the anon_vma for write. This
2658 * is similar to page_lock_anon_vma_read except the write lock
2659 * is taken to serialise against parallel split or collapse
2660 * operations.
2661 */
2662 anon_vma = page_get_anon_vma(head);
2663 if (!anon_vma) {
2664 ret = -EBUSY;
2665 goto out;
2666 }
5ba09cb7 2667 end = -1;
baa355fd
KS
2668 mapping = NULL;
2669 anon_vma_lock_write(anon_vma);
2670 } else {
2671 mapping = head->mapping;
2672
2673 /* Truncated ? */
2674 if (!mapping) {
2675 ret = -EBUSY;
2676 goto out;
2677 }
2678
baa355fd
KS
2679 anon_vma = NULL;
2680 i_mmap_lock_read(mapping);
5ba09cb7
HD
2681
2682 /*
2683 *__split_huge_page() may need to trim off pages beyond EOF:
2684 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2685 * which cannot be nested inside the page tree lock. So note
2686 * end now: i_size itself may be changed at any moment, but
2687 * head page lock is good enough to serialize the trimming.
2688 */
2689 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2690 }
e9b61f19
KS
2691
2692 /*
d7b66bd2 2693 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2694 * split PMDs
2695 */
b8f593cd 2696 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2697 ret = -EBUSY;
2698 goto out_unlock;
2699 }
2700
d9654322 2701 mlocked = PageMlocked(page);
d7b66bd2 2702 unmap_page(head);
e9b61f19
KS
2703 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2704
d9654322
KS
2705 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2706 if (mlocked)
2707 lru_add_drain();
2708
baa355fd 2709 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2710 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2711
2712 if (mapping) {
2713 void **pslot;
2714
2715 spin_lock(&mapping->tree_lock);
2716 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2717 page_index(head));
2718 /*
2719 * Check if the head page is present in radix tree.
2720 * We assume all tail are present too, if head is there.
2721 */
2722 if (radix_tree_deref_slot_protected(pslot,
2723 &mapping->tree_lock) != head)
2724 goto fail;
2725 }
2726
0139aa7b 2727 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2728 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2729 count = page_count(head);
2730 mapcount = total_mapcount(head);
baa355fd 2731 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2732 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2733 pgdata->split_queue_len--;
9a982250
KS
2734 list_del(page_deferred_list(head));
2735 }
65c45377 2736 if (mapping)
11fb9989 2737 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd 2738 spin_unlock(&pgdata->split_queue_lock);
5ba09cb7 2739 __split_huge_page(page, list, end, flags);
59807685
HY
2740 if (PageSwapCache(head)) {
2741 swp_entry_t entry = { .val = page_private(head) };
2742
2743 ret = split_swap_cluster(entry);
2744 } else
2745 ret = 0;
e9b61f19 2746 } else {
baa355fd
KS
2747 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2748 pr_alert("total_mapcount: %u, page_count(): %u\n",
2749 mapcount, count);
2750 if (PageTail(page))
2751 dump_page(head, NULL);
2752 dump_page(page, "total_mapcount(head) > 0");
2753 BUG();
2754 }
2755 spin_unlock(&pgdata->split_queue_lock);
2756fail: if (mapping)
2757 spin_unlock(&mapping->tree_lock);
a52633d8 2758 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
d7b66bd2 2759 remap_page(head);
e9b61f19
KS
2760 ret = -EBUSY;
2761 }
2762
2763out_unlock:
baa355fd
KS
2764 if (anon_vma) {
2765 anon_vma_unlock_write(anon_vma);
2766 put_anon_vma(anon_vma);
2767 }
2768 if (mapping)
2769 i_mmap_unlock_read(mapping);
e9b61f19
KS
2770out:
2771 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2772 return ret;
2773}
9a982250
KS
2774
2775void free_transhuge_page(struct page *page)
2776{
a3d0a918 2777 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2778 unsigned long flags;
2779
a3d0a918 2780 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2781 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2782 pgdata->split_queue_len--;
9a982250
KS
2783 list_del(page_deferred_list(page));
2784 }
a3d0a918 2785 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2786 free_compound_page(page);
2787}
2788
2789void deferred_split_huge_page(struct page *page)
2790{
a3d0a918 2791 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2792 unsigned long flags;
2793
2794 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2795
a3d0a918 2796 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2797 if (list_empty(page_deferred_list(page))) {
f9719a03 2798 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2799 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2800 pgdata->split_queue_len++;
9a982250 2801 }
a3d0a918 2802 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2803}
2804
2805static unsigned long deferred_split_count(struct shrinker *shrink,
2806 struct shrink_control *sc)
2807{
a3d0a918 2808 struct pglist_data *pgdata = NODE_DATA(sc->nid);
6aa7de05 2809 return READ_ONCE(pgdata->split_queue_len);
9a982250
KS
2810}
2811
2812static unsigned long deferred_split_scan(struct shrinker *shrink,
2813 struct shrink_control *sc)
2814{
a3d0a918 2815 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2816 unsigned long flags;
2817 LIST_HEAD(list), *pos, *next;
2818 struct page *page;
2819 int split = 0;
2820
a3d0a918 2821 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2822 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2823 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2824 page = list_entry((void *)pos, struct page, mapping);
2825 page = compound_head(page);
e3ae1953
KS
2826 if (get_page_unless_zero(page)) {
2827 list_move(page_deferred_list(page), &list);
2828 } else {
2829 /* We lost race with put_compound_page() */
9a982250 2830 list_del_init(page_deferred_list(page));
a3d0a918 2831 pgdata->split_queue_len--;
9a982250 2832 }
e3ae1953
KS
2833 if (!--sc->nr_to_scan)
2834 break;
9a982250 2835 }
a3d0a918 2836 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2837
2838 list_for_each_safe(pos, next, &list) {
2839 page = list_entry((void *)pos, struct page, mapping);
002fe7f9
KS
2840 if (!trylock_page(page))
2841 goto next;
9a982250
KS
2842 /* split_huge_page() removes page from list on success */
2843 if (!split_huge_page(page))
2844 split++;
2845 unlock_page(page);
002fe7f9 2846next:
9a982250
KS
2847 put_page(page);
2848 }
2849
a3d0a918
KS
2850 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2851 list_splice_tail(&list, &pgdata->split_queue);
2852 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2853
cb8d68ec
KS
2854 /*
2855 * Stop shrinker if we didn't split any page, but the queue is empty.
2856 * This can happen if pages were freed under us.
2857 */
2858 if (!split && list_empty(&pgdata->split_queue))
2859 return SHRINK_STOP;
2860 return split;
9a982250
KS
2861}
2862
2863static struct shrinker deferred_split_shrinker = {
2864 .count_objects = deferred_split_count,
2865 .scan_objects = deferred_split_scan,
2866 .seeks = DEFAULT_SEEKS,
a3d0a918 2867 .flags = SHRINKER_NUMA_AWARE,
9a982250 2868};
49071d43
KS
2869
2870#ifdef CONFIG_DEBUG_FS
2871static int split_huge_pages_set(void *data, u64 val)
2872{
2873 struct zone *zone;
2874 struct page *page;
2875 unsigned long pfn, max_zone_pfn;
2876 unsigned long total = 0, split = 0;
2877
2878 if (val != 1)
2879 return -EINVAL;
2880
2881 for_each_populated_zone(zone) {
2882 max_zone_pfn = zone_end_pfn(zone);
2883 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2884 if (!pfn_valid(pfn))
2885 continue;
2886
2887 page = pfn_to_page(pfn);
2888 if (!get_page_unless_zero(page))
2889 continue;
2890
2891 if (zone != page_zone(page))
2892 goto next;
2893
baa355fd 2894 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2895 goto next;
2896
2897 total++;
2898 lock_page(page);
2899 if (!split_huge_page(page))
2900 split++;
2901 unlock_page(page);
2902next:
2903 put_page(page);
2904 }
2905 }
2906
145bdaa1 2907 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2908
2909 return 0;
2910}
2911DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2912 "%llu\n");
2913
2914static int __init split_huge_pages_debugfs(void)
2915{
2916 void *ret;
2917
145bdaa1 2918 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2919 &split_huge_pages_fops);
2920 if (!ret)
2921 pr_warn("Failed to create split_huge_pages in debugfs");
2922 return 0;
2923}
2924late_initcall(split_huge_pages_debugfs);
2925#endif
616b8371
ZY
2926
2927#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2928void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2929 struct page *page)
2930{
2931 struct vm_area_struct *vma = pvmw->vma;
2932 struct mm_struct *mm = vma->vm_mm;
2933 unsigned long address = pvmw->address;
2934 pmd_t pmdval;
2935 swp_entry_t entry;
ab6e3d09 2936 pmd_t pmdswp;
616b8371
ZY
2937
2938 if (!(pvmw->pmd && !pvmw->pte))
2939 return;
2940
616b8371
ZY
2941 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2942 pmdval = *pvmw->pmd;
2943 pmdp_invalidate(vma, address, pvmw->pmd);
2944 if (pmd_dirty(pmdval))
2945 set_page_dirty(page);
2946 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
2947 pmdswp = swp_entry_to_pmd(entry);
2948 if (pmd_soft_dirty(pmdval))
2949 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
2950 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
2951 page_remove_rmap(page, true);
2952 put_page(page);
616b8371
ZY
2953}
2954
2955void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2956{
2957 struct vm_area_struct *vma = pvmw->vma;
2958 struct mm_struct *mm = vma->vm_mm;
2959 unsigned long address = pvmw->address;
2960 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2961 pmd_t pmde;
2962 swp_entry_t entry;
2963
2964 if (!(pvmw->pmd && !pvmw->pte))
2965 return;
2966
2967 entry = pmd_to_swp_entry(*pvmw->pmd);
2968 get_page(new);
2969 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
2970 if (pmd_swp_soft_dirty(*pvmw->pmd))
2971 pmde = pmd_mksoft_dirty(pmde);
616b8371 2972 if (is_write_migration_entry(entry))
f55e1014 2973 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
2974
2975 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2976 page_add_anon_rmap(new, vma, mmun_start, true);
2977 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
0e1e3cac 2978 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
2979 mlock_vma_page(new);
2980 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2981}
2982#endif