]> git.proxmox.com Git - mirror_ubuntu-impish-kernel.git/blame - mm/huge_memory.c
UBUNTU: Ubuntu-5.13.0-12.12
[mirror_ubuntu-impish-kernel.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
fa6c0231 10#include <linux/sched/mm.h>
f7ccbae4 11#include <linux/sched/coredump.h>
6a3827d7 12#include <linux/sched/numa_balancing.h>
71e3aac0
AA
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
97ae1749 18#include <linux/shrinker.h>
ba76149f 19#include <linux/mm_inline.h>
e9b61f19 20#include <linux/swapops.h>
4897c765 21#include <linux/dax.h>
ba76149f 22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
baa355fd 33#include <linux/shmem_fs.h>
6b31d595 34#include <linux/oom.h>
98fa15f3 35#include <linux/numa.h>
f7da677b 36#include <linux/page_owner.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
3b77e8c8 65unsigned long huge_zero_pfn __read_mostly = ~0UL;
4a6c1297 66
7635d9cb
MH
67bool transparent_hugepage_enabled(struct vm_area_struct *vma)
68{
c0630669
YS
69 /* The addr is used to check if the vma size fits */
70 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
71
72 if (!transhuge_vma_suitable(vma, addr))
73 return false;
7635d9cb
MH
74 if (vma_is_anonymous(vma))
75 return __transparent_hugepage_enabled(vma);
c0630669
YS
76 if (vma_is_shmem(vma))
77 return shmem_huge_enabled(vma);
7635d9cb
MH
78
79 return false;
80}
81
aaa9705b 82static bool get_huge_zero_page(void)
97ae1749
KS
83{
84 struct page *zero_page;
85retry:
86 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
aaa9705b 87 return true;
97ae1749
KS
88
89 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 90 HPAGE_PMD_ORDER);
d8a8e1f0
KS
91 if (!zero_page) {
92 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
aaa9705b 93 return false;
d8a8e1f0
KS
94 }
95 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 96 preempt_disable();
5918d10a 97 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 98 preempt_enable();
5ddacbe9 99 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
100 goto retry;
101 }
3b77e8c8 102 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
97ae1749
KS
103
104 /* We take additional reference here. It will be put back by shrinker */
105 atomic_set(&huge_zero_refcount, 2);
106 preempt_enable();
aaa9705b 107 return true;
4a6c1297
KS
108}
109
6fcb52a5 110static void put_huge_zero_page(void)
4a6c1297 111{
97ae1749
KS
112 /*
113 * Counter should never go to zero here. Only shrinker can put
114 * last reference.
115 */
116 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
117}
118
6fcb52a5
AL
119struct page *mm_get_huge_zero_page(struct mm_struct *mm)
120{
121 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
122 return READ_ONCE(huge_zero_page);
123
124 if (!get_huge_zero_page())
125 return NULL;
126
127 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
128 put_huge_zero_page();
129
130 return READ_ONCE(huge_zero_page);
131}
132
133void mm_put_huge_zero_page(struct mm_struct *mm)
134{
135 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
136 put_huge_zero_page();
137}
138
48896466
GC
139static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
140 struct shrink_control *sc)
4a6c1297 141{
48896466
GC
142 /* we can free zero page only if last reference remains */
143 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
144}
97ae1749 145
48896466
GC
146static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
147 struct shrink_control *sc)
148{
97ae1749 149 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
150 struct page *zero_page = xchg(&huge_zero_page, NULL);
151 BUG_ON(zero_page == NULL);
3b77e8c8 152 WRITE_ONCE(huge_zero_pfn, ~0UL);
5ddacbe9 153 __free_pages(zero_page, compound_order(zero_page));
48896466 154 return HPAGE_PMD_NR;
97ae1749
KS
155 }
156
157 return 0;
4a6c1297
KS
158}
159
97ae1749 160static struct shrinker huge_zero_page_shrinker = {
48896466
GC
161 .count_objects = shrink_huge_zero_page_count,
162 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
163 .seeks = DEFAULT_SEEKS,
164};
165
71e3aac0 166#ifdef CONFIG_SYSFS
71e3aac0
AA
167static ssize_t enabled_show(struct kobject *kobj,
168 struct kobj_attribute *attr, char *buf)
169{
bfb0ffeb
JP
170 const char *output;
171
444eb2a4 172 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
173 output = "[always] madvise never";
174 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
175 &transparent_hugepage_flags))
176 output = "always [madvise] never";
444eb2a4 177 else
bfb0ffeb
JP
178 output = "always madvise [never]";
179
180 return sysfs_emit(buf, "%s\n", output);
71e3aac0 181}
444eb2a4 182
71e3aac0
AA
183static ssize_t enabled_store(struct kobject *kobj,
184 struct kobj_attribute *attr,
185 const char *buf, size_t count)
186{
21440d7e 187 ssize_t ret = count;
ba76149f 188
f42f2552 189 if (sysfs_streq(buf, "always")) {
21440d7e
DR
190 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
191 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 192 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
193 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
194 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 195 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
196 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
197 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
198 } else
199 ret = -EINVAL;
ba76149f
AA
200
201 if (ret > 0) {
b46e756f 202 int err = start_stop_khugepaged();
ba76149f
AA
203 if (err)
204 ret = err;
205 }
ba76149f 206 return ret;
71e3aac0
AA
207}
208static struct kobj_attribute enabled_attr =
209 __ATTR(enabled, 0644, enabled_show, enabled_store);
210
b46e756f 211ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
212 struct kobj_attribute *attr, char *buf,
213 enum transparent_hugepage_flag flag)
71e3aac0 214{
bfb0ffeb
JP
215 return sysfs_emit(buf, "%d\n",
216 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 217}
e27e6151 218
b46e756f 219ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
220 struct kobj_attribute *attr,
221 const char *buf, size_t count,
222 enum transparent_hugepage_flag flag)
223{
e27e6151
BH
224 unsigned long value;
225 int ret;
226
227 ret = kstrtoul(buf, 10, &value);
228 if (ret < 0)
229 return ret;
230 if (value > 1)
231 return -EINVAL;
232
233 if (value)
71e3aac0 234 set_bit(flag, &transparent_hugepage_flags);
e27e6151 235 else
71e3aac0 236 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
237
238 return count;
239}
240
71e3aac0
AA
241static ssize_t defrag_show(struct kobject *kobj,
242 struct kobj_attribute *attr, char *buf)
243{
bfb0ffeb
JP
244 const char *output;
245
246 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
247 &transparent_hugepage_flags))
248 output = "[always] defer defer+madvise madvise never";
249 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
250 &transparent_hugepage_flags))
251 output = "always [defer] defer+madvise madvise never";
252 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
253 &transparent_hugepage_flags))
254 output = "always defer [defer+madvise] madvise never";
255 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
256 &transparent_hugepage_flags))
257 output = "always defer defer+madvise [madvise] never";
258 else
259 output = "always defer defer+madvise madvise [never]";
260
261 return sysfs_emit(buf, "%s\n", output);
71e3aac0 262}
21440d7e 263
71e3aac0
AA
264static ssize_t defrag_store(struct kobject *kobj,
265 struct kobj_attribute *attr,
266 const char *buf, size_t count)
267{
f42f2552 268 if (sysfs_streq(buf, "always")) {
21440d7e
DR
269 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
270 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
272 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 273 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
275 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
276 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
277 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 278 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
281 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
282 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 283 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
286 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
287 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 288 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
291 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
292 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
293 } else
294 return -EINVAL;
295
296 return count;
71e3aac0
AA
297}
298static struct kobj_attribute defrag_attr =
299 __ATTR(defrag, 0644, defrag_show, defrag_store);
300
79da5407 301static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 302 struct kobj_attribute *attr, char *buf)
79da5407 303{
b46e756f 304 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 305 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
306}
307static ssize_t use_zero_page_store(struct kobject *kobj,
308 struct kobj_attribute *attr, const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
311 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
312}
313static struct kobj_attribute use_zero_page_attr =
314 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
315
316static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 317 struct kobj_attribute *attr, char *buf)
49920d28 318{
ae7a927d 319 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
320}
321static struct kobj_attribute hpage_pmd_size_attr =
322 __ATTR_RO(hpage_pmd_size);
323
71e3aac0
AA
324static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
79da5407 327 &use_zero_page_attr.attr,
49920d28 328 &hpage_pmd_size_attr.attr,
396bcc52 329#ifdef CONFIG_SHMEM
5a6e75f8 330 &shmem_enabled_attr.attr,
71e3aac0
AA
331#endif
332 NULL,
333};
334
8aa95a21 335static const struct attribute_group hugepage_attr_group = {
71e3aac0 336 .attrs = hugepage_attr,
ba76149f
AA
337};
338
569e5590 339static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 340{
71e3aac0
AA
341 int err;
342
569e5590
SL
343 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
344 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 345 pr_err("failed to create transparent hugepage kobject\n");
569e5590 346 return -ENOMEM;
ba76149f
AA
347 }
348
569e5590 349 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 350 if (err) {
ae3a8c1c 351 pr_err("failed to register transparent hugepage group\n");
569e5590 352 goto delete_obj;
ba76149f
AA
353 }
354
569e5590 355 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 356 if (err) {
ae3a8c1c 357 pr_err("failed to register transparent hugepage group\n");
569e5590 358 goto remove_hp_group;
ba76149f 359 }
569e5590
SL
360
361 return 0;
362
363remove_hp_group:
364 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
365delete_obj:
366 kobject_put(*hugepage_kobj);
367 return err;
368}
369
370static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
371{
372 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
373 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
374 kobject_put(hugepage_kobj);
375}
376#else
377static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
378{
379 return 0;
380}
381
382static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
383{
384}
385#endif /* CONFIG_SYSFS */
386
387static int __init hugepage_init(void)
388{
389 int err;
390 struct kobject *hugepage_kobj;
391
392 if (!has_transparent_hugepage()) {
bae84953
AK
393 /*
394 * Hardware doesn't support hugepages, hence disable
395 * DAX PMD support.
396 */
397 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
569e5590
SL
398 return -EINVAL;
399 }
400
ff20c2e0
KS
401 /*
402 * hugepages can't be allocated by the buddy allocator
403 */
404 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
405 /*
406 * we use page->mapping and page->index in second tail page
407 * as list_head: assuming THP order >= 2
408 */
409 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
410
569e5590
SL
411 err = hugepage_init_sysfs(&hugepage_kobj);
412 if (err)
65ebb64f 413 goto err_sysfs;
ba76149f 414
b46e756f 415 err = khugepaged_init();
ba76149f 416 if (err)
65ebb64f 417 goto err_slab;
ba76149f 418
65ebb64f
KS
419 err = register_shrinker(&huge_zero_page_shrinker);
420 if (err)
421 goto err_hzp_shrinker;
9a982250
KS
422 err = register_shrinker(&deferred_split_shrinker);
423 if (err)
424 goto err_split_shrinker;
97ae1749 425
97562cd2
RR
426 /*
427 * By default disable transparent hugepages on smaller systems,
428 * where the extra memory used could hurt more than TLB overhead
429 * is likely to save. The admin can still enable it through /sys.
430 */
ca79b0c2 431 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 432 transparent_hugepage_flags = 0;
79553da2
KS
433 return 0;
434 }
97562cd2 435
79553da2 436 err = start_stop_khugepaged();
65ebb64f
KS
437 if (err)
438 goto err_khugepaged;
ba76149f 439
569e5590 440 return 0;
65ebb64f 441err_khugepaged:
9a982250
KS
442 unregister_shrinker(&deferred_split_shrinker);
443err_split_shrinker:
65ebb64f
KS
444 unregister_shrinker(&huge_zero_page_shrinker);
445err_hzp_shrinker:
b46e756f 446 khugepaged_destroy();
65ebb64f 447err_slab:
569e5590 448 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 449err_sysfs:
ba76149f 450 return err;
71e3aac0 451}
a64fb3cd 452subsys_initcall(hugepage_init);
71e3aac0
AA
453
454static int __init setup_transparent_hugepage(char *str)
455{
456 int ret = 0;
457 if (!str)
458 goto out;
459 if (!strcmp(str, "always")) {
460 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
461 &transparent_hugepage_flags);
462 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
463 &transparent_hugepage_flags);
464 ret = 1;
465 } else if (!strcmp(str, "madvise")) {
466 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
467 &transparent_hugepage_flags);
468 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
469 &transparent_hugepage_flags);
470 ret = 1;
471 } else if (!strcmp(str, "never")) {
472 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
473 &transparent_hugepage_flags);
474 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
475 &transparent_hugepage_flags);
476 ret = 1;
477 }
478out:
479 if (!ret)
ae3a8c1c 480 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
481 return ret;
482}
483__setup("transparent_hugepage=", setup_transparent_hugepage);
484
f55e1014 485pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 486{
f55e1014 487 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
488 pmd = pmd_mkwrite(pmd);
489 return pmd;
490}
491
87eaceb3
YS
492#ifdef CONFIG_MEMCG
493static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 494{
bcfe06bf 495 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
496 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
497
498 if (memcg)
499 return &memcg->deferred_split_queue;
500 else
501 return &pgdat->deferred_split_queue;
9a982250 502}
87eaceb3
YS
503#else
504static inline struct deferred_split *get_deferred_split_queue(struct page *page)
505{
506 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
507
508 return &pgdat->deferred_split_queue;
509}
510#endif
9a982250
KS
511
512void prep_transhuge_page(struct page *page)
513{
514 /*
515 * we use page->mapping and page->indexlru in second tail page
516 * as list_head: assuming THP order >= 2
517 */
9a982250
KS
518
519 INIT_LIST_HEAD(page_deferred_list(page));
520 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
521}
522
005ba37c
SC
523bool is_transparent_hugepage(struct page *page)
524{
525 if (!PageCompound(page))
fa1f68cc 526 return false;
005ba37c
SC
527
528 page = compound_head(page);
529 return is_huge_zero_page(page) ||
530 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
531}
532EXPORT_SYMBOL_GPL(is_transparent_hugepage);
533
97d3d0f9
KS
534static unsigned long __thp_get_unmapped_area(struct file *filp,
535 unsigned long addr, unsigned long len,
74d2fad1
TK
536 loff_t off, unsigned long flags, unsigned long size)
537{
74d2fad1
TK
538 loff_t off_end = off + len;
539 loff_t off_align = round_up(off, size);
97d3d0f9 540 unsigned long len_pad, ret;
74d2fad1
TK
541
542 if (off_end <= off_align || (off_end - off_align) < size)
543 return 0;
544
545 len_pad = len + size;
546 if (len_pad < len || (off + len_pad) < off)
547 return 0;
548
97d3d0f9 549 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 550 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
551
552 /*
553 * The failure might be due to length padding. The caller will retry
554 * without the padding.
555 */
556 if (IS_ERR_VALUE(ret))
74d2fad1
TK
557 return 0;
558
97d3d0f9
KS
559 /*
560 * Do not try to align to THP boundary if allocation at the address
561 * hint succeeds.
562 */
563 if (ret == addr)
564 return addr;
565
566 ret += (off - ret) & (size - 1);
567 return ret;
74d2fad1
TK
568}
569
570unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
571 unsigned long len, unsigned long pgoff, unsigned long flags)
572{
97d3d0f9 573 unsigned long ret;
74d2fad1
TK
574 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
575
74d2fad1
TK
576 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
577 goto out;
578
97d3d0f9
KS
579 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
580 if (ret)
581 return ret;
582out:
74d2fad1
TK
583 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
584}
585EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
586
2b740303
SJ
587static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
588 struct page *page, gfp_t gfp)
71e3aac0 589{
82b0f8c3 590 struct vm_area_struct *vma = vmf->vma;
71e3aac0 591 pgtable_t pgtable;
82b0f8c3 592 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 593 vm_fault_t ret = 0;
71e3aac0 594
309381fe 595 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 596
d9eb1ea2 597 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
598 put_page(page);
599 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 600 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
601 return VM_FAULT_FALLBACK;
602 }
9d82c694 603 cgroup_throttle_swaprate(page, gfp);
00501b53 604
4cf58924 605 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 606 if (unlikely(!pgtable)) {
6b31d595
MH
607 ret = VM_FAULT_OOM;
608 goto release;
00501b53 609 }
71e3aac0 610
c79b57e4 611 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
612 /*
613 * The memory barrier inside __SetPageUptodate makes sure that
614 * clear_huge_page writes become visible before the set_pmd_at()
615 * write.
616 */
71e3aac0
AA
617 __SetPageUptodate(page);
618
82b0f8c3
JK
619 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
620 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 621 goto unlock_release;
71e3aac0
AA
622 } else {
623 pmd_t entry;
6b251fc9 624
6b31d595
MH
625 ret = check_stable_address_space(vma->vm_mm);
626 if (ret)
627 goto unlock_release;
628
6b251fc9
AA
629 /* Deliver the page fault to userland */
630 if (userfaultfd_missing(vma)) {
82b0f8c3 631 spin_unlock(vmf->ptl);
6b251fc9 632 put_page(page);
bae473a4 633 pte_free(vma->vm_mm, pgtable);
8fd5eda4
ML
634 ret = handle_userfault(vmf, VM_UFFD_MISSING);
635 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
636 return ret;
6b251fc9
AA
637 }
638
3122359a 639 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 640 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 641 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 642 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
643 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
644 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 645 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 646 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 647 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 648 spin_unlock(vmf->ptl);
6b251fc9 649 count_vm_event(THP_FAULT_ALLOC);
9d82c694 650 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
651 }
652
aa2e878e 653 return 0;
6b31d595
MH
654unlock_release:
655 spin_unlock(vmf->ptl);
656release:
657 if (pgtable)
658 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
659 put_page(page);
660 return ret;
661
71e3aac0
AA
662}
663
444eb2a4 664/*
21440d7e
DR
665 * always: directly stall for all thp allocations
666 * defer: wake kswapd and fail if not immediately available
667 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
668 * fail if not immediately available
669 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
670 * available
671 * never: never stall for any thp allocation
444eb2a4 672 */
164cc4fe 673gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
444eb2a4 674{
164cc4fe 675 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
2f0799a0 676
ac79f78d 677 /* Always do synchronous compaction */
a8282608
AA
678 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
679 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
680
681 /* Kick kcompactd and fail quickly */
21440d7e 682 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 683 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
684
685 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 686 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
687 return GFP_TRANSHUGE_LIGHT |
688 (vma_madvised ? __GFP_DIRECT_RECLAIM :
689 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
690
691 /* Only do synchronous compaction if madvised */
21440d7e 692 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
693 return GFP_TRANSHUGE_LIGHT |
694 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 695
19deb769 696 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
697}
698
c4088ebd 699/* Caller must hold page table lock. */
2efeb8da 700static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 701 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 702 struct page *zero_page)
fc9fe822
KS
703{
704 pmd_t entry;
7c414164 705 if (!pmd_none(*pmd))
2efeb8da 706 return;
5918d10a 707 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 708 entry = pmd_mkhuge(entry);
12c9d70b
MW
709 if (pgtable)
710 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 711 set_pmd_at(mm, haddr, pmd, entry);
c4812909 712 mm_inc_nr_ptes(mm);
fc9fe822
KS
713}
714
2b740303 715vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 716{
82b0f8c3 717 struct vm_area_struct *vma = vmf->vma;
077fcf11 718 gfp_t gfp;
71e3aac0 719 struct page *page;
82b0f8c3 720 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 721
43675e6f 722 if (!transhuge_vma_suitable(vma, haddr))
c0292554 723 return VM_FAULT_FALLBACK;
128ec037
KS
724 if (unlikely(anon_vma_prepare(vma)))
725 return VM_FAULT_OOM;
6d50e60c 726 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 727 return VM_FAULT_OOM;
82b0f8c3 728 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 729 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
730 transparent_hugepage_use_zero_page()) {
731 pgtable_t pgtable;
732 struct page *zero_page;
2b740303 733 vm_fault_t ret;
4cf58924 734 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 735 if (unlikely(!pgtable))
ba76149f 736 return VM_FAULT_OOM;
6fcb52a5 737 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 738 if (unlikely(!zero_page)) {
bae473a4 739 pte_free(vma->vm_mm, pgtable);
81ab4201 740 count_vm_event(THP_FAULT_FALLBACK);
c0292554 741 return VM_FAULT_FALLBACK;
b9bbfbe3 742 }
82b0f8c3 743 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 744 ret = 0;
82b0f8c3 745 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
746 ret = check_stable_address_space(vma->vm_mm);
747 if (ret) {
748 spin_unlock(vmf->ptl);
bfe8cc1d 749 pte_free(vma->vm_mm, pgtable);
6b31d595 750 } else if (userfaultfd_missing(vma)) {
82b0f8c3 751 spin_unlock(vmf->ptl);
bfe8cc1d 752 pte_free(vma->vm_mm, pgtable);
82b0f8c3 753 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
754 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
755 } else {
bae473a4 756 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 757 haddr, vmf->pmd, zero_page);
fca40573 758 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 759 spin_unlock(vmf->ptl);
6b251fc9 760 }
bfe8cc1d 761 } else {
82b0f8c3 762 spin_unlock(vmf->ptl);
bae473a4 763 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 764 }
6b251fc9 765 return ret;
71e3aac0 766 }
164cc4fe 767 gfp = vma_thp_gfp_mask(vma);
19deb769 768 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
769 if (unlikely(!page)) {
770 count_vm_event(THP_FAULT_FALLBACK);
c0292554 771 return VM_FAULT_FALLBACK;
128ec037 772 }
9a982250 773 prep_transhuge_page(page);
82b0f8c3 774 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
775}
776
ae18d6dc 777static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
778 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
779 pgtable_t pgtable)
5cad465d
MW
780{
781 struct mm_struct *mm = vma->vm_mm;
782 pmd_t entry;
783 spinlock_t *ptl;
784
785 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
786 if (!pmd_none(*pmd)) {
787 if (write) {
788 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
789 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
790 goto out_unlock;
791 }
792 entry = pmd_mkyoung(*pmd);
793 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
794 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
795 update_mmu_cache_pmd(vma, addr, pmd);
796 }
797
798 goto out_unlock;
799 }
800
f25748e3
DW
801 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
802 if (pfn_t_devmap(pfn))
803 entry = pmd_mkdevmap(entry);
01871e59 804 if (write) {
f55e1014
LT
805 entry = pmd_mkyoung(pmd_mkdirty(entry));
806 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 807 }
3b6521f5
OH
808
809 if (pgtable) {
810 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 811 mm_inc_nr_ptes(mm);
c6f3c5ee 812 pgtable = NULL;
3b6521f5
OH
813 }
814
01871e59
RZ
815 set_pmd_at(mm, addr, pmd, entry);
816 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
817
818out_unlock:
5cad465d 819 spin_unlock(ptl);
c6f3c5ee
AK
820 if (pgtable)
821 pte_free(mm, pgtable);
5cad465d
MW
822}
823
9a9731b1
THV
824/**
825 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
826 * @vmf: Structure describing the fault
827 * @pfn: pfn to insert
828 * @pgprot: page protection to use
829 * @write: whether it's a write fault
830 *
831 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
832 * also consult the vmf_insert_mixed_prot() documentation when
833 * @pgprot != @vmf->vma->vm_page_prot.
834 *
835 * Return: vm_fault_t value.
836 */
837vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
838 pgprot_t pgprot, bool write)
5cad465d 839{
fce86ff5
DW
840 unsigned long addr = vmf->address & PMD_MASK;
841 struct vm_area_struct *vma = vmf->vma;
3b6521f5 842 pgtable_t pgtable = NULL;
fce86ff5 843
5cad465d
MW
844 /*
845 * If we had pmd_special, we could avoid all these restrictions,
846 * but we need to be consistent with PTEs and architectures that
847 * can't support a 'special' bit.
848 */
e1fb4a08
DJ
849 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
850 !pfn_t_devmap(pfn));
5cad465d
MW
851 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
852 (VM_PFNMAP|VM_MIXEDMAP));
853 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
854
855 if (addr < vma->vm_start || addr >= vma->vm_end)
856 return VM_FAULT_SIGBUS;
308a047c 857
3b6521f5 858 if (arch_needs_pgtable_deposit()) {
4cf58924 859 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
860 if (!pgtable)
861 return VM_FAULT_OOM;
862 }
863
308a047c
BP
864 track_pfn_insert(vma, &pgprot, pfn);
865
fce86ff5 866 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 867 return VM_FAULT_NOPAGE;
5cad465d 868}
9a9731b1 869EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 870
a00cc7d9 871#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 872static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 873{
f55e1014 874 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
875 pud = pud_mkwrite(pud);
876 return pud;
877}
878
879static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
880 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
881{
882 struct mm_struct *mm = vma->vm_mm;
883 pud_t entry;
884 spinlock_t *ptl;
885
886 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
887 if (!pud_none(*pud)) {
888 if (write) {
889 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
890 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
891 goto out_unlock;
892 }
893 entry = pud_mkyoung(*pud);
894 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
895 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
896 update_mmu_cache_pud(vma, addr, pud);
897 }
898 goto out_unlock;
899 }
900
a00cc7d9
MW
901 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
902 if (pfn_t_devmap(pfn))
903 entry = pud_mkdevmap(entry);
904 if (write) {
f55e1014
LT
905 entry = pud_mkyoung(pud_mkdirty(entry));
906 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
907 }
908 set_pud_at(mm, addr, pud, entry);
909 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
910
911out_unlock:
a00cc7d9
MW
912 spin_unlock(ptl);
913}
914
9a9731b1
THV
915/**
916 * vmf_insert_pfn_pud_prot - insert a pud size pfn
917 * @vmf: Structure describing the fault
918 * @pfn: pfn to insert
919 * @pgprot: page protection to use
920 * @write: whether it's a write fault
921 *
922 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
923 * also consult the vmf_insert_mixed_prot() documentation when
924 * @pgprot != @vmf->vma->vm_page_prot.
925 *
926 * Return: vm_fault_t value.
927 */
928vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
929 pgprot_t pgprot, bool write)
a00cc7d9 930{
fce86ff5
DW
931 unsigned long addr = vmf->address & PUD_MASK;
932 struct vm_area_struct *vma = vmf->vma;
fce86ff5 933
a00cc7d9
MW
934 /*
935 * If we had pud_special, we could avoid all these restrictions,
936 * but we need to be consistent with PTEs and architectures that
937 * can't support a 'special' bit.
938 */
62ec0d8c
DJ
939 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
940 !pfn_t_devmap(pfn));
a00cc7d9
MW
941 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
942 (VM_PFNMAP|VM_MIXEDMAP));
943 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
944
945 if (addr < vma->vm_start || addr >= vma->vm_end)
946 return VM_FAULT_SIGBUS;
947
948 track_pfn_insert(vma, &pgprot, pfn);
949
fce86ff5 950 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
951 return VM_FAULT_NOPAGE;
952}
9a9731b1 953EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
954#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
955
3565fce3 956static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 957 pmd_t *pmd, int flags)
3565fce3
DW
958{
959 pmd_t _pmd;
960
a8f97366
KS
961 _pmd = pmd_mkyoung(*pmd);
962 if (flags & FOLL_WRITE)
963 _pmd = pmd_mkdirty(_pmd);
3565fce3 964 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 965 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
966 update_mmu_cache_pmd(vma, addr, pmd);
967}
968
969struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 970 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
971{
972 unsigned long pfn = pmd_pfn(*pmd);
973 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
974 struct page *page;
975
976 assert_spin_locked(pmd_lockptr(mm, pmd));
977
8310d48b
KF
978 /*
979 * When we COW a devmap PMD entry, we split it into PTEs, so we should
980 * not be in this function with `flags & FOLL_COW` set.
981 */
982 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
983
3faa52c0
JH
984 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
985 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
986 (FOLL_PIN | FOLL_GET)))
987 return NULL;
988
f6f37321 989 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
990 return NULL;
991
992 if (pmd_present(*pmd) && pmd_devmap(*pmd))
993 /* pass */;
994 else
995 return NULL;
996
997 if (flags & FOLL_TOUCH)
a8f97366 998 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
999
1000 /*
1001 * device mapped pages can only be returned if the
1002 * caller will manage the page reference count.
1003 */
3faa52c0 1004 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1005 return ERR_PTR(-EEXIST);
1006
1007 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1008 *pgmap = get_dev_pagemap(pfn, *pgmap);
1009 if (!*pgmap)
3565fce3
DW
1010 return ERR_PTR(-EFAULT);
1011 page = pfn_to_page(pfn);
3faa52c0
JH
1012 if (!try_grab_page(page, flags))
1013 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1014
1015 return page;
1016}
1017
71e3aac0
AA
1018int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1019 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1020 struct vm_area_struct *vma)
1021{
c4088ebd 1022 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1023 struct page *src_page;
1024 pmd_t pmd;
12c9d70b 1025 pgtable_t pgtable = NULL;
628d47ce 1026 int ret = -ENOMEM;
71e3aac0 1027
628d47ce
KS
1028 /* Skip if can be re-fill on fault */
1029 if (!vma_is_anonymous(vma))
1030 return 0;
1031
4cf58924 1032 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1033 if (unlikely(!pgtable))
1034 goto out;
71e3aac0 1035
c4088ebd
KS
1036 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1037 src_ptl = pmd_lockptr(src_mm, src_pmd);
1038 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1039
1040 ret = -EAGAIN;
1041 pmd = *src_pmd;
84c3fc4e 1042
b569a176
PX
1043 /*
1044 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1045 * does not have the VM_UFFD_WP, which means that the uffd
1046 * fork event is not enabled.
1047 */
1048 if (!(vma->vm_flags & VM_UFFD_WP))
1049 pmd = pmd_clear_uffd_wp(pmd);
1050
84c3fc4e
ZY
1051#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1052 if (unlikely(is_swap_pmd(pmd))) {
1053 swp_entry_t entry = pmd_to_swp_entry(pmd);
1054
1055 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1056 if (is_write_migration_entry(entry)) {
1057 make_migration_entry_read(&entry);
1058 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1059 if (pmd_swp_soft_dirty(*src_pmd))
1060 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1061 set_pmd_at(src_mm, addr, src_pmd, pmd);
1062 }
dd8a67f9 1063 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1064 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1065 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1066 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1067 ret = 0;
1068 goto out_unlock;
1069 }
1070#endif
1071
628d47ce 1072 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1073 pte_free(dst_mm, pgtable);
1074 goto out_unlock;
1075 }
fc9fe822 1076 /*
c4088ebd 1077 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1078 * under splitting since we don't split the page itself, only pmd to
1079 * a page table.
1080 */
1081 if (is_huge_zero_pmd(pmd)) {
5918d10a 1082 struct page *zero_page;
97ae1749
KS
1083 /*
1084 * get_huge_zero_page() will never allocate a new page here,
1085 * since we already have a zero page to copy. It just takes a
1086 * reference.
1087 */
6fcb52a5 1088 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1089 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1090 zero_page);
fc9fe822
KS
1091 ret = 0;
1092 goto out_unlock;
1093 }
de466bd6 1094
628d47ce
KS
1095 src_page = pmd_page(pmd);
1096 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1097
1098 /*
1099 * If this page is a potentially pinned page, split and retry the fault
1100 * with smaller page size. Normally this should not happen because the
1101 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1102 * best effort that the pinned pages won't be replaced by another
1103 * random page during the coming copy-on-write.
1104 */
97a7e473 1105 if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
d042035e
PX
1106 pte_free(dst_mm, pgtable);
1107 spin_unlock(src_ptl);
1108 spin_unlock(dst_ptl);
1109 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1110 return -EAGAIN;
1111 }
1112
628d47ce
KS
1113 get_page(src_page);
1114 page_dup_rmap(src_page, true);
1115 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1116 mm_inc_nr_ptes(dst_mm);
628d47ce 1117 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1118
1119 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1120 pmd = pmd_mkold(pmd_wrprotect(pmd));
1121 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1122
1123 ret = 0;
1124out_unlock:
c4088ebd
KS
1125 spin_unlock(src_ptl);
1126 spin_unlock(dst_ptl);
71e3aac0
AA
1127out:
1128 return ret;
1129}
1130
a00cc7d9
MW
1131#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1132static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1133 pud_t *pud, int flags)
a00cc7d9
MW
1134{
1135 pud_t _pud;
1136
a8f97366
KS
1137 _pud = pud_mkyoung(*pud);
1138 if (flags & FOLL_WRITE)
1139 _pud = pud_mkdirty(_pud);
a00cc7d9 1140 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1141 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1142 update_mmu_cache_pud(vma, addr, pud);
1143}
1144
1145struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1146 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1147{
1148 unsigned long pfn = pud_pfn(*pud);
1149 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1150 struct page *page;
1151
1152 assert_spin_locked(pud_lockptr(mm, pud));
1153
f6f37321 1154 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1155 return NULL;
1156
3faa52c0
JH
1157 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1158 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1159 (FOLL_PIN | FOLL_GET)))
1160 return NULL;
1161
a00cc7d9
MW
1162 if (pud_present(*pud) && pud_devmap(*pud))
1163 /* pass */;
1164 else
1165 return NULL;
1166
1167 if (flags & FOLL_TOUCH)
a8f97366 1168 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1169
1170 /*
1171 * device mapped pages can only be returned if the
1172 * caller will manage the page reference count.
3faa52c0
JH
1173 *
1174 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1175 */
3faa52c0 1176 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1177 return ERR_PTR(-EEXIST);
1178
1179 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1180 *pgmap = get_dev_pagemap(pfn, *pgmap);
1181 if (!*pgmap)
a00cc7d9
MW
1182 return ERR_PTR(-EFAULT);
1183 page = pfn_to_page(pfn);
3faa52c0
JH
1184 if (!try_grab_page(page, flags))
1185 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1186
1187 return page;
1188}
1189
1190int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1191 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1192 struct vm_area_struct *vma)
1193{
1194 spinlock_t *dst_ptl, *src_ptl;
1195 pud_t pud;
1196 int ret;
1197
1198 dst_ptl = pud_lock(dst_mm, dst_pud);
1199 src_ptl = pud_lockptr(src_mm, src_pud);
1200 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1201
1202 ret = -EAGAIN;
1203 pud = *src_pud;
1204 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1205 goto out_unlock;
1206
1207 /*
1208 * When page table lock is held, the huge zero pud should not be
1209 * under splitting since we don't split the page itself, only pud to
1210 * a page table.
1211 */
1212 if (is_huge_zero_pud(pud)) {
1213 /* No huge zero pud yet */
1214 }
1215
d042035e 1216 /* Please refer to comments in copy_huge_pmd() */
97a7e473 1217 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
d042035e
PX
1218 spin_unlock(src_ptl);
1219 spin_unlock(dst_ptl);
1220 __split_huge_pud(vma, src_pud, addr);
1221 return -EAGAIN;
1222 }
1223
a00cc7d9
MW
1224 pudp_set_wrprotect(src_mm, addr, src_pud);
1225 pud = pud_mkold(pud_wrprotect(pud));
1226 set_pud_at(dst_mm, addr, dst_pud, pud);
1227
1228 ret = 0;
1229out_unlock:
1230 spin_unlock(src_ptl);
1231 spin_unlock(dst_ptl);
1232 return ret;
1233}
1234
1235void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1236{
1237 pud_t entry;
1238 unsigned long haddr;
1239 bool write = vmf->flags & FAULT_FLAG_WRITE;
1240
1241 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1242 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1243 goto unlock;
1244
1245 entry = pud_mkyoung(orig_pud);
1246 if (write)
1247 entry = pud_mkdirty(entry);
1248 haddr = vmf->address & HPAGE_PUD_MASK;
1249 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1250 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1251
1252unlock:
1253 spin_unlock(vmf->ptl);
1254}
1255#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1256
82b0f8c3 1257void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1258{
1259 pmd_t entry;
1260 unsigned long haddr;
20f664aa 1261 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1262
82b0f8c3
JK
1263 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1264 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1265 goto unlock;
1266
1267 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1268 if (write)
1269 entry = pmd_mkdirty(entry);
82b0f8c3 1270 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1271 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1272 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1273
1274unlock:
82b0f8c3 1275 spin_unlock(vmf->ptl);
a1dd450b
WD
1276}
1277
2b740303 1278vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1279{
82b0f8c3 1280 struct vm_area_struct *vma = vmf->vma;
3917c802 1281 struct page *page;
82b0f8c3 1282 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1283
82b0f8c3 1284 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1285 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1286
93b4796d 1287 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1288 goto fallback;
1289
82b0f8c3 1290 spin_lock(vmf->ptl);
3917c802
KS
1291
1292 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1293 spin_unlock(vmf->ptl);
1294 return 0;
1295 }
71e3aac0
AA
1296
1297 page = pmd_page(orig_pmd);
f6004e73 1298 VM_BUG_ON_PAGE(!PageHead(page), page);
3917c802
KS
1299
1300 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1301 if (!trylock_page(page)) {
1302 get_page(page);
1303 spin_unlock(vmf->ptl);
1304 lock_page(page);
1305 spin_lock(vmf->ptl);
1306 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1307 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1308 unlock_page(page);
1309 put_page(page);
3917c802 1310 return 0;
ba3c4ce6
HY
1311 }
1312 put_page(page);
1313 }
3917c802
KS
1314
1315 /*
1316 * We can only reuse the page if nobody else maps the huge page or it's
1317 * part.
1318 */
ba3c4ce6 1319 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1320 pmd_t entry;
1321 entry = pmd_mkyoung(orig_pmd);
f55e1014 1322 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1323 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1324 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1325 unlock_page(page);
82b0f8c3 1326 spin_unlock(vmf->ptl);
3917c802 1327 return VM_FAULT_WRITE;
71e3aac0 1328 }
3917c802
KS
1329
1330 unlock_page(page);
82b0f8c3 1331 spin_unlock(vmf->ptl);
3917c802
KS
1332fallback:
1333 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1334 return VM_FAULT_FALLBACK;
71e3aac0
AA
1335}
1336
8310d48b 1337/*
a308c71b
PX
1338 * FOLL_FORCE can write to even unwritable pmd's, but only
1339 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1340 */
1341static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1342{
a308c71b
PX
1343 return pmd_write(pmd) ||
1344 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1345}
1346
b676b293 1347struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1348 unsigned long addr,
1349 pmd_t *pmd,
1350 unsigned int flags)
1351{
b676b293 1352 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1353 struct page *page = NULL;
1354
c4088ebd 1355 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1356
8310d48b 1357 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1358 goto out;
1359
85facf25
KS
1360 /* Avoid dumping huge zero page */
1361 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1362 return ERR_PTR(-EFAULT);
1363
2b4847e7 1364 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1365 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1366 goto out;
1367
71e3aac0 1368 page = pmd_page(*pmd);
ca120cf6 1369 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1370
1371 if (!try_grab_page(page, flags))
1372 return ERR_PTR(-ENOMEM);
1373
3565fce3 1374 if (flags & FOLL_TOUCH)
a8f97366 1375 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1376
de60f5f1 1377 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1378 /*
1379 * We don't mlock() pte-mapped THPs. This way we can avoid
1380 * leaking mlocked pages into non-VM_LOCKED VMAs.
1381 *
9a73f61b
KS
1382 * For anon THP:
1383 *
e90309c9
KS
1384 * In most cases the pmd is the only mapping of the page as we
1385 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1386 * writable private mappings in populate_vma_page_range().
1387 *
1388 * The only scenario when we have the page shared here is if we
1389 * mlocking read-only mapping shared over fork(). We skip
1390 * mlocking such pages.
9a73f61b
KS
1391 *
1392 * For file THP:
1393 *
1394 * We can expect PageDoubleMap() to be stable under page lock:
1395 * for file pages we set it in page_add_file_rmap(), which
1396 * requires page to be locked.
e90309c9 1397 */
9a73f61b
KS
1398
1399 if (PageAnon(page) && compound_mapcount(page) != 1)
1400 goto skip_mlock;
1401 if (PageDoubleMap(page) || !page->mapping)
1402 goto skip_mlock;
1403 if (!trylock_page(page))
1404 goto skip_mlock;
9a73f61b
KS
1405 if (page->mapping && !PageDoubleMap(page))
1406 mlock_vma_page(page);
1407 unlock_page(page);
b676b293 1408 }
9a73f61b 1409skip_mlock:
71e3aac0 1410 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1411 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1412
1413out:
1414 return page;
1415}
1416
d10e63f2 1417/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1418vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1419{
82b0f8c3 1420 struct vm_area_struct *vma = vmf->vma;
b8916634 1421 struct anon_vma *anon_vma = NULL;
b32967ff 1422 struct page *page;
82b0f8c3 1423 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1424 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1425 int target_nid, last_cpupid = -1;
8191acbd
MG
1426 bool page_locked;
1427 bool migrated = false;
b191f9b1 1428 bool was_writable;
6688cc05 1429 int flags = 0;
d10e63f2 1430
82b0f8c3
JK
1431 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1432 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1433 goto out_unlock;
1434
de466bd6
MG
1435 /*
1436 * If there are potential migrations, wait for completion and retry
1437 * without disrupting NUMA hinting information. Do not relock and
1438 * check_same as the page may no longer be mapped.
1439 */
82b0f8c3
JK
1440 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1441 page = pmd_page(*vmf->pmd);
3c226c63
MR
1442 if (!get_page_unless_zero(page))
1443 goto out_unlock;
82b0f8c3 1444 spin_unlock(vmf->ptl);
48054625 1445 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1446 goto out;
1447 }
1448
d10e63f2 1449 page = pmd_page(pmd);
a1a46184 1450 BUG_ON(is_huge_zero_page(page));
8191acbd 1451 page_nid = page_to_nid(page);
90572890 1452 last_cpupid = page_cpupid_last(page);
03c5a6e1 1453 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1454 if (page_nid == this_nid) {
03c5a6e1 1455 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1456 flags |= TNF_FAULT_LOCAL;
1457 }
4daae3b4 1458
bea66fbd 1459 /* See similar comment in do_numa_page for explanation */
288bc549 1460 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1461 flags |= TNF_NO_GROUP;
1462
ff9042b1
MG
1463 /*
1464 * Acquire the page lock to serialise THP migrations but avoid dropping
1465 * page_table_lock if at all possible
1466 */
b8916634
MG
1467 page_locked = trylock_page(page);
1468 target_nid = mpol_misplaced(page, vma, haddr);
de466bd6 1469 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1470 if (!page_locked) {
98fa15f3 1471 page_nid = NUMA_NO_NODE;
3c226c63
MR
1472 if (!get_page_unless_zero(page))
1473 goto out_unlock;
82b0f8c3 1474 spin_unlock(vmf->ptl);
48054625 1475 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634 1476 goto out;
6beb5e8b
ML
1477 } else if (target_nid == NUMA_NO_NODE) {
1478 /* There are no parallel migrations and page is in the right
1479 * node. Clear the numa hinting info in this pmd.
1480 */
1481 goto clear_pmdnuma;
b8916634
MG
1482 }
1483
2b4847e7
MG
1484 /*
1485 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1486 * to serialises splits
1487 */
b8916634 1488 get_page(page);
82b0f8c3 1489 spin_unlock(vmf->ptl);
b8916634 1490 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1491
c69307d5 1492 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1493 spin_lock(vmf->ptl);
1494 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1495 unlock_page(page);
1496 put_page(page);
98fa15f3 1497 page_nid = NUMA_NO_NODE;
4daae3b4 1498 goto out_unlock;
b32967ff 1499 }
ff9042b1 1500
c3a489ca
MG
1501 /* Bail if we fail to protect against THP splits for any reason */
1502 if (unlikely(!anon_vma)) {
1503 put_page(page);
98fa15f3 1504 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1505 goto clear_pmdnuma;
1506 }
1507
8b1b436d
PZ
1508 /*
1509 * Since we took the NUMA fault, we must have observed the !accessible
1510 * bit. Make sure all other CPUs agree with that, to avoid them
1511 * modifying the page we're about to migrate.
1512 *
1513 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1514 * inc_tlb_flush_pending().
1515 *
1516 * We are not sure a pending tlb flush here is for a huge page
1517 * mapping or not. Hence use the tlb range variant
8b1b436d 1518 */
7066f0f9 1519 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1520 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1521 /*
1522 * change_huge_pmd() released the pmd lock before
1523 * invalidating the secondary MMUs sharing the primary
1524 * MMU pagetables (with ->invalidate_range()). The
1525 * mmu_notifier_invalidate_range_end() (which
1526 * internally calls ->invalidate_range()) in
1527 * change_pmd_range() will run after us, so we can't
1528 * rely on it here and we need an explicit invalidate.
1529 */
1530 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1531 haddr + HPAGE_PMD_SIZE);
1532 }
8b1b436d 1533
a54a407f
MG
1534 /*
1535 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1536 * and access rights restored.
a54a407f 1537 */
82b0f8c3 1538 spin_unlock(vmf->ptl);
8b1b436d 1539
bae473a4 1540 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1541 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1542 if (migrated) {
1543 flags |= TNF_MIGRATED;
8191acbd 1544 page_nid = target_nid;
074c2381
MG
1545 } else
1546 flags |= TNF_MIGRATE_FAIL;
b32967ff 1547
8191acbd 1548 goto out;
b32967ff 1549clear_pmdnuma:
a54a407f 1550 BUG_ON(!PageLocked(page));
288bc549 1551 was_writable = pmd_savedwrite(pmd);
4d942466 1552 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1553 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1554 if (was_writable)
1555 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1556 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1557 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1558 unlock_page(page);
d10e63f2 1559out_unlock:
82b0f8c3 1560 spin_unlock(vmf->ptl);
b8916634
MG
1561
1562out:
1563 if (anon_vma)
1564 page_unlock_anon_vma_read(anon_vma);
1565
98fa15f3 1566 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1567 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1568 flags);
8191acbd 1569
d10e63f2
MG
1570 return 0;
1571}
1572
319904ad
HY
1573/*
1574 * Return true if we do MADV_FREE successfully on entire pmd page.
1575 * Otherwise, return false.
1576 */
1577bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1578 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1579{
1580 spinlock_t *ptl;
1581 pmd_t orig_pmd;
1582 struct page *page;
1583 struct mm_struct *mm = tlb->mm;
319904ad 1584 bool ret = false;
b8d3c4c3 1585
ed6a7935 1586 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1587
b6ec57f4
KS
1588 ptl = pmd_trans_huge_lock(pmd, vma);
1589 if (!ptl)
25eedabe 1590 goto out_unlocked;
b8d3c4c3
MK
1591
1592 orig_pmd = *pmd;
319904ad 1593 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1594 goto out;
b8d3c4c3 1595
84c3fc4e
ZY
1596 if (unlikely(!pmd_present(orig_pmd))) {
1597 VM_BUG_ON(thp_migration_supported() &&
1598 !is_pmd_migration_entry(orig_pmd));
1599 goto out;
1600 }
1601
b8d3c4c3
MK
1602 page = pmd_page(orig_pmd);
1603 /*
1604 * If other processes are mapping this page, we couldn't discard
1605 * the page unless they all do MADV_FREE so let's skip the page.
1606 */
1607 if (page_mapcount(page) != 1)
1608 goto out;
1609
1610 if (!trylock_page(page))
1611 goto out;
1612
1613 /*
1614 * If user want to discard part-pages of THP, split it so MADV_FREE
1615 * will deactivate only them.
1616 */
1617 if (next - addr != HPAGE_PMD_SIZE) {
1618 get_page(page);
1619 spin_unlock(ptl);
9818b8cd 1620 split_huge_page(page);
b8d3c4c3 1621 unlock_page(page);
bbf29ffc 1622 put_page(page);
b8d3c4c3
MK
1623 goto out_unlocked;
1624 }
1625
1626 if (PageDirty(page))
1627 ClearPageDirty(page);
1628 unlock_page(page);
1629
b8d3c4c3 1630 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1631 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1632 orig_pmd = pmd_mkold(orig_pmd);
1633 orig_pmd = pmd_mkclean(orig_pmd);
1634
1635 set_pmd_at(mm, addr, pmd, orig_pmd);
1636 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1637 }
802a3a92
SL
1638
1639 mark_page_lazyfree(page);
319904ad 1640 ret = true;
b8d3c4c3
MK
1641out:
1642 spin_unlock(ptl);
1643out_unlocked:
1644 return ret;
1645}
1646
953c66c2
AK
1647static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1648{
1649 pgtable_t pgtable;
1650
1651 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1652 pte_free(mm, pgtable);
c4812909 1653 mm_dec_nr_ptes(mm);
953c66c2
AK
1654}
1655
71e3aac0 1656int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1657 pmd_t *pmd, unsigned long addr)
71e3aac0 1658{
da146769 1659 pmd_t orig_pmd;
bf929152 1660 spinlock_t *ptl;
71e3aac0 1661
ed6a7935 1662 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1663
b6ec57f4
KS
1664 ptl = __pmd_trans_huge_lock(pmd, vma);
1665 if (!ptl)
da146769
KS
1666 return 0;
1667 /*
1668 * For architectures like ppc64 we look at deposited pgtable
1669 * when calling pmdp_huge_get_and_clear. So do the
1670 * pgtable_trans_huge_withdraw after finishing pmdp related
1671 * operations.
1672 */
93a98695
AK
1673 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1674 tlb->fullmm);
da146769 1675 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1676 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1677 if (arch_needs_pgtable_deposit())
1678 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1679 spin_unlock(ptl);
1680 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1681 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1682 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1683 zap_deposited_table(tlb->mm, pmd);
da146769 1684 spin_unlock(ptl);
c0f2e176 1685 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1686 } else {
616b8371
ZY
1687 struct page *page = NULL;
1688 int flush_needed = 1;
1689
1690 if (pmd_present(orig_pmd)) {
1691 page = pmd_page(orig_pmd);
1692 page_remove_rmap(page, true);
1693 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1694 VM_BUG_ON_PAGE(!PageHead(page), page);
1695 } else if (thp_migration_supported()) {
1696 swp_entry_t entry;
1697
1698 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1699 entry = pmd_to_swp_entry(orig_pmd);
a44f89dc 1700 page = migration_entry_to_page(entry);
616b8371
ZY
1701 flush_needed = 0;
1702 } else
1703 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1704
b5072380 1705 if (PageAnon(page)) {
c14a6eb4 1706 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1707 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1708 } else {
953c66c2
AK
1709 if (arch_needs_pgtable_deposit())
1710 zap_deposited_table(tlb->mm, pmd);
fadae295 1711 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1712 }
616b8371 1713
da146769 1714 spin_unlock(ptl);
616b8371
ZY
1715 if (flush_needed)
1716 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1717 }
da146769 1718 return 1;
71e3aac0
AA
1719}
1720
1dd38b6c
AK
1721#ifndef pmd_move_must_withdraw
1722static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1723 spinlock_t *old_pmd_ptl,
1724 struct vm_area_struct *vma)
1725{
1726 /*
1727 * With split pmd lock we also need to move preallocated
1728 * PTE page table if new_pmd is on different PMD page table.
1729 *
1730 * We also don't deposit and withdraw tables for file pages.
1731 */
1732 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1733}
1734#endif
1735
ab6e3d09
NH
1736static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1737{
1738#ifdef CONFIG_MEM_SOFT_DIRTY
1739 if (unlikely(is_pmd_migration_entry(pmd)))
1740 pmd = pmd_swp_mksoft_dirty(pmd);
1741 else if (pmd_present(pmd))
1742 pmd = pmd_mksoft_dirty(pmd);
1743#endif
1744 return pmd;
1745}
1746
bf8616d5 1747bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1748 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1749{
bf929152 1750 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1751 pmd_t pmd;
37a1c49a 1752 struct mm_struct *mm = vma->vm_mm;
5d190420 1753 bool force_flush = false;
37a1c49a 1754
37a1c49a
AA
1755 /*
1756 * The destination pmd shouldn't be established, free_pgtables()
1757 * should have release it.
1758 */
1759 if (WARN_ON(!pmd_none(*new_pmd))) {
1760 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1761 return false;
37a1c49a
AA
1762 }
1763
bf929152
KS
1764 /*
1765 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1766 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1767 */
b6ec57f4
KS
1768 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1769 if (old_ptl) {
bf929152
KS
1770 new_ptl = pmd_lockptr(mm, new_pmd);
1771 if (new_ptl != old_ptl)
1772 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1773 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1774 if (pmd_present(pmd))
a2ce2666 1775 force_flush = true;
025c5b24 1776 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1777
1dd38b6c 1778 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1779 pgtable_t pgtable;
3592806c
KS
1780 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1781 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1782 }
ab6e3d09
NH
1783 pmd = move_soft_dirty_pmd(pmd);
1784 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1785 if (force_flush)
1786 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1787 if (new_ptl != old_ptl)
1788 spin_unlock(new_ptl);
bf929152 1789 spin_unlock(old_ptl);
4b471e88 1790 return true;
37a1c49a 1791 }
4b471e88 1792 return false;
37a1c49a
AA
1793}
1794
f123d74a
MG
1795/*
1796 * Returns
1797 * - 0 if PMD could not be locked
f0953a1b
IM
1798 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1799 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
f123d74a 1800 */
cd7548ab 1801int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1802 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1803{
1804 struct mm_struct *mm = vma->vm_mm;
bf929152 1805 spinlock_t *ptl;
0a85e51d
KS
1806 pmd_t entry;
1807 bool preserve_write;
1808 int ret;
58705444 1809 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1810 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1811 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1812
b6ec57f4 1813 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1814 if (!ptl)
1815 return 0;
e944fd67 1816
0a85e51d
KS
1817 preserve_write = prot_numa && pmd_write(*pmd);
1818 ret = 1;
e944fd67 1819
84c3fc4e
ZY
1820#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1821 if (is_swap_pmd(*pmd)) {
1822 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1823
1824 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1825 if (is_write_migration_entry(entry)) {
1826 pmd_t newpmd;
1827 /*
1828 * A protection check is difficult so
1829 * just be safe and disable write
1830 */
1831 make_migration_entry_read(&entry);
1832 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1833 if (pmd_swp_soft_dirty(*pmd))
1834 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1835 set_pmd_at(mm, addr, pmd, newpmd);
1836 }
1837 goto unlock;
1838 }
1839#endif
1840
0a85e51d
KS
1841 /*
1842 * Avoid trapping faults against the zero page. The read-only
1843 * data is likely to be read-cached on the local CPU and
1844 * local/remote hits to the zero page are not interesting.
1845 */
1846 if (prot_numa && is_huge_zero_pmd(*pmd))
1847 goto unlock;
025c5b24 1848
0a85e51d
KS
1849 if (prot_numa && pmd_protnone(*pmd))
1850 goto unlock;
1851
ced10803 1852 /*
3e4e28c5 1853 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1854 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1855 * which is also under mmap_read_lock(mm):
ced10803
KS
1856 *
1857 * CPU0: CPU1:
1858 * change_huge_pmd(prot_numa=1)
1859 * pmdp_huge_get_and_clear_notify()
1860 * madvise_dontneed()
1861 * zap_pmd_range()
1862 * pmd_trans_huge(*pmd) == 0 (without ptl)
1863 * // skip the pmd
1864 * set_pmd_at();
1865 * // pmd is re-established
1866 *
1867 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1868 * which may break userspace.
1869 *
1870 * pmdp_invalidate() is required to make sure we don't miss
1871 * dirty/young flags set by hardware.
1872 */
a3cf988f 1873 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1874
0a85e51d
KS
1875 entry = pmd_modify(entry, newprot);
1876 if (preserve_write)
1877 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1878 if (uffd_wp) {
1879 entry = pmd_wrprotect(entry);
1880 entry = pmd_mkuffd_wp(entry);
1881 } else if (uffd_wp_resolve) {
1882 /*
1883 * Leave the write bit to be handled by PF interrupt
1884 * handler, then things like COW could be properly
1885 * handled.
1886 */
1887 entry = pmd_clear_uffd_wp(entry);
1888 }
0a85e51d
KS
1889 ret = HPAGE_PMD_NR;
1890 set_pmd_at(mm, addr, pmd, entry);
1891 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1892unlock:
1893 spin_unlock(ptl);
025c5b24
NH
1894 return ret;
1895}
1896
1897/*
8f19b0c0 1898 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1899 *
8f19b0c0
HY
1900 * Note that if it returns page table lock pointer, this routine returns without
1901 * unlocking page table lock. So callers must unlock it.
025c5b24 1902 */
b6ec57f4 1903spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1904{
b6ec57f4
KS
1905 spinlock_t *ptl;
1906 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1907 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1908 pmd_devmap(*pmd)))
b6ec57f4
KS
1909 return ptl;
1910 spin_unlock(ptl);
1911 return NULL;
cd7548ab
JW
1912}
1913
a00cc7d9
MW
1914/*
1915 * Returns true if a given pud maps a thp, false otherwise.
1916 *
1917 * Note that if it returns true, this routine returns without unlocking page
1918 * table lock. So callers must unlock it.
1919 */
1920spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1921{
1922 spinlock_t *ptl;
1923
1924 ptl = pud_lock(vma->vm_mm, pud);
1925 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1926 return ptl;
1927 spin_unlock(ptl);
1928 return NULL;
1929}
1930
1931#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1932int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1933 pud_t *pud, unsigned long addr)
1934{
a00cc7d9
MW
1935 spinlock_t *ptl;
1936
1937 ptl = __pud_trans_huge_lock(pud, vma);
1938 if (!ptl)
1939 return 0;
1940 /*
1941 * For architectures like ppc64 we look at deposited pgtable
1942 * when calling pudp_huge_get_and_clear. So do the
1943 * pgtable_trans_huge_withdraw after finishing pudp related
1944 * operations.
1945 */
70516b93 1946 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1947 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1948 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1949 spin_unlock(ptl);
1950 /* No zero page support yet */
1951 } else {
1952 /* No support for anonymous PUD pages yet */
1953 BUG();
1954 }
1955 return 1;
1956}
1957
1958static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1959 unsigned long haddr)
1960{
1961 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1962 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1963 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1964 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1965
ce9311cf 1966 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1967
1968 pudp_huge_clear_flush_notify(vma, haddr, pud);
1969}
1970
1971void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1972 unsigned long address)
1973{
1974 spinlock_t *ptl;
ac46d4f3 1975 struct mmu_notifier_range range;
a00cc7d9 1976
7269f999 1977 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1978 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1979 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1980 mmu_notifier_invalidate_range_start(&range);
1981 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1982 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1983 goto out;
ac46d4f3 1984 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1985
1986out:
1987 spin_unlock(ptl);
4645b9fe
JG
1988 /*
1989 * No need to double call mmu_notifier->invalidate_range() callback as
1990 * the above pudp_huge_clear_flush_notify() did already call it.
1991 */
ac46d4f3 1992 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1993}
1994#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1995
eef1b3ba
KS
1996static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1997 unsigned long haddr, pmd_t *pmd)
1998{
1999 struct mm_struct *mm = vma->vm_mm;
2000 pgtable_t pgtable;
2001 pmd_t _pmd;
2002 int i;
2003
0f10851e
JG
2004 /*
2005 * Leave pmd empty until pte is filled note that it is fine to delay
2006 * notification until mmu_notifier_invalidate_range_end() as we are
2007 * replacing a zero pmd write protected page with a zero pte write
2008 * protected page.
2009 *
ad56b738 2010 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2011 */
2012 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2013
2014 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2015 pmd_populate(mm, &_pmd, pgtable);
2016
2017 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2018 pte_t *pte, entry;
2019 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2020 entry = pte_mkspecial(entry);
2021 pte = pte_offset_map(&_pmd, haddr);
2022 VM_BUG_ON(!pte_none(*pte));
2023 set_pte_at(mm, haddr, pte, entry);
2024 pte_unmap(pte);
2025 }
2026 smp_wmb(); /* make pte visible before pmd */
2027 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2028}
2029
2030static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2031 unsigned long haddr, bool freeze)
eef1b3ba
KS
2032{
2033 struct mm_struct *mm = vma->vm_mm;
2034 struct page *page;
2035 pgtable_t pgtable;
423ac9af 2036 pmd_t old_pmd, _pmd;
292924b2 2037 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2038 unsigned long addr;
eef1b3ba
KS
2039 int i;
2040
2041 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2042 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2043 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2044 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2045 && !pmd_devmap(*pmd));
eef1b3ba
KS
2046
2047 count_vm_event(THP_SPLIT_PMD);
2048
d21b9e57 2049 if (!vma_is_anonymous(vma)) {
99fa8a48 2050 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2051 /*
2052 * We are going to unmap this huge page. So
2053 * just go ahead and zap it
2054 */
2055 if (arch_needs_pgtable_deposit())
2056 zap_deposited_table(mm, pmd);
2484ca9b 2057 if (vma_is_special_huge(vma))
d21b9e57 2058 return;
99fa8a48
HD
2059 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2060 swp_entry_t entry;
2061
2062 entry = pmd_to_swp_entry(old_pmd);
2063 page = migration_entry_to_page(entry);
2064 } else {
2065 page = pmd_page(old_pmd);
2066 if (!PageDirty(page) && pmd_dirty(old_pmd))
2067 set_page_dirty(page);
2068 if (!PageReferenced(page) && pmd_young(old_pmd))
2069 SetPageReferenced(page);
2070 page_remove_rmap(page, true);
2071 put_page(page);
2072 }
fadae295 2073 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2074 return;
99fa8a48
HD
2075 }
2076
3b77e8c8 2077 if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2078 /*
2079 * FIXME: Do we want to invalidate secondary mmu by calling
2080 * mmu_notifier_invalidate_range() see comments below inside
2081 * __split_huge_pmd() ?
2082 *
2083 * We are going from a zero huge page write protected to zero
2084 * small page also write protected so it does not seems useful
2085 * to invalidate secondary mmu at this time.
2086 */
eef1b3ba
KS
2087 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2088 }
2089
423ac9af
AK
2090 /*
2091 * Up to this point the pmd is present and huge and userland has the
2092 * whole access to the hugepage during the split (which happens in
2093 * place). If we overwrite the pmd with the not-huge version pointing
2094 * to the pte here (which of course we could if all CPUs were bug
2095 * free), userland could trigger a small page size TLB miss on the
2096 * small sized TLB while the hugepage TLB entry is still established in
2097 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2098 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2099 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2100 * only safe if the permission and cache attributes of the two entries
2101 * loaded in the two TLB is identical (which should be the case here).
2102 * But it is generally safer to never allow small and huge TLB entries
2103 * for the same virtual address to be loaded simultaneously. So instead
2104 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2105 * current pmd notpresent (atomically because here the pmd_trans_huge
2106 * must remain set at all times on the pmd until the split is complete
2107 * for this pmd), then we flush the SMP TLB and finally we write the
2108 * non-huge version of the pmd entry with pmd_populate.
2109 */
2110 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2111
423ac9af 2112 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2113 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2114 swp_entry_t entry;
2115
423ac9af 2116 entry = pmd_to_swp_entry(old_pmd);
a44f89dc 2117 page = migration_entry_to_page(entry);
2e83ee1d
PX
2118 write = is_write_migration_entry(entry);
2119 young = false;
2120 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2121 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2122 } else {
423ac9af 2123 page = pmd_page(old_pmd);
2e83ee1d
PX
2124 if (pmd_dirty(old_pmd))
2125 SetPageDirty(page);
2126 write = pmd_write(old_pmd);
2127 young = pmd_young(old_pmd);
2128 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2129 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2130 }
eef1b3ba 2131 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2132 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2133
423ac9af
AK
2134 /*
2135 * Withdraw the table only after we mark the pmd entry invalid.
2136 * This's critical for some architectures (Power).
2137 */
eef1b3ba
KS
2138 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2139 pmd_populate(mm, &_pmd, pgtable);
2140
2ac015e2 2141 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2142 pte_t entry, *pte;
2143 /*
2144 * Note that NUMA hinting access restrictions are not
2145 * transferred to avoid any possibility of altering
2146 * permissions across VMAs.
2147 */
84c3fc4e 2148 if (freeze || pmd_migration) {
ba988280
KS
2149 swp_entry_t swp_entry;
2150 swp_entry = make_migration_entry(page + i, write);
2151 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2152 if (soft_dirty)
2153 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2154 if (uffd_wp)
2155 entry = pte_swp_mkuffd_wp(entry);
ba988280 2156 } else {
6d2329f8 2157 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2158 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2159 if (!write)
2160 entry = pte_wrprotect(entry);
2161 if (!young)
2162 entry = pte_mkold(entry);
804dd150
AA
2163 if (soft_dirty)
2164 entry = pte_mksoft_dirty(entry);
292924b2
PX
2165 if (uffd_wp)
2166 entry = pte_mkuffd_wp(entry);
ba988280 2167 }
2ac015e2 2168 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2169 BUG_ON(!pte_none(*pte));
2ac015e2 2170 set_pte_at(mm, addr, pte, entry);
ec0abae6 2171 if (!pmd_migration)
eef1b3ba 2172 atomic_inc(&page[i]._mapcount);
ec0abae6 2173 pte_unmap(pte);
eef1b3ba
KS
2174 }
2175
ec0abae6
RC
2176 if (!pmd_migration) {
2177 /*
2178 * Set PG_double_map before dropping compound_mapcount to avoid
2179 * false-negative page_mapped().
2180 */
2181 if (compound_mapcount(page) > 1 &&
2182 !TestSetPageDoubleMap(page)) {
eef1b3ba 2183 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2184 atomic_inc(&page[i]._mapcount);
2185 }
2186
2187 lock_page_memcg(page);
2188 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2189 /* Last compound_mapcount is gone. */
69473e5d
MS
2190 __mod_lruvec_page_state(page, NR_ANON_THPS,
2191 -HPAGE_PMD_NR);
ec0abae6
RC
2192 if (TestClearPageDoubleMap(page)) {
2193 /* No need in mapcount reference anymore */
2194 for (i = 0; i < HPAGE_PMD_NR; i++)
2195 atomic_dec(&page[i]._mapcount);
2196 }
eef1b3ba 2197 }
ec0abae6 2198 unlock_page_memcg(page);
eef1b3ba
KS
2199 }
2200
2201 smp_wmb(); /* make pte visible before pmd */
2202 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2203
2204 if (freeze) {
2ac015e2 2205 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2206 page_remove_rmap(page + i, false);
2207 put_page(page + i);
2208 }
2209 }
eef1b3ba
KS
2210}
2211
2212void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2213 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2214{
2215 spinlock_t *ptl;
ac46d4f3 2216 struct mmu_notifier_range range;
1c2f6730 2217 bool do_unlock_page = false;
c444eb56 2218 pmd_t _pmd;
eef1b3ba 2219
7269f999 2220 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2221 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2222 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2223 mmu_notifier_invalidate_range_start(&range);
2224 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2225
2226 /*
2227 * If caller asks to setup a migration entries, we need a page to check
2228 * pmd against. Otherwise we can end up replacing wrong page.
2229 */
2230 VM_BUG_ON(freeze && !page);
c444eb56
AA
2231 if (page) {
2232 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2233 if (page != pmd_page(*pmd))
2234 goto out;
2235 }
33f4751e 2236
c444eb56 2237repeat:
5c7fb56e 2238 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2239 if (!page) {
2240 page = pmd_page(*pmd);
1c2f6730
HD
2241 /*
2242 * An anonymous page must be locked, to ensure that a
2243 * concurrent reuse_swap_page() sees stable mapcount;
2244 * but reuse_swap_page() is not used on shmem or file,
2245 * and page lock must not be taken when zap_pmd_range()
2246 * calls __split_huge_pmd() while i_mmap_lock is held.
2247 */
2248 if (PageAnon(page)) {
2249 if (unlikely(!trylock_page(page))) {
2250 get_page(page);
2251 _pmd = *pmd;
2252 spin_unlock(ptl);
2253 lock_page(page);
2254 spin_lock(ptl);
2255 if (unlikely(!pmd_same(*pmd, _pmd))) {
2256 unlock_page(page);
2257 put_page(page);
2258 page = NULL;
2259 goto repeat;
2260 }
c444eb56 2261 put_page(page);
c444eb56 2262 }
1c2f6730 2263 do_unlock_page = true;
c444eb56
AA
2264 }
2265 }
5c7fb56e 2266 if (PageMlocked(page))
5f737714 2267 clear_page_mlock(page);
84c3fc4e 2268 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2269 goto out;
ac46d4f3 2270 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2271out:
eef1b3ba 2272 spin_unlock(ptl);
1c2f6730 2273 if (do_unlock_page)
c444eb56 2274 unlock_page(page);
4645b9fe
JG
2275 /*
2276 * No need to double call mmu_notifier->invalidate_range() callback.
2277 * They are 3 cases to consider inside __split_huge_pmd_locked():
2278 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2279 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2280 * fault will trigger a flush_notify before pointing to a new page
2281 * (it is fine if the secondary mmu keeps pointing to the old zero
2282 * page in the meantime)
2283 * 3) Split a huge pmd into pte pointing to the same page. No need
2284 * to invalidate secondary tlb entry they are all still valid.
2285 * any further changes to individual pte will notify. So no need
2286 * to call mmu_notifier->invalidate_range()
2287 */
ac46d4f3 2288 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2289}
2290
fec89c10
KS
2291void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2292 bool freeze, struct page *page)
94fcc585 2293{
f72e7dcd 2294 pgd_t *pgd;
c2febafc 2295 p4d_t *p4d;
f72e7dcd 2296 pud_t *pud;
94fcc585
AA
2297 pmd_t *pmd;
2298
78ddc534 2299 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2300 if (!pgd_present(*pgd))
2301 return;
2302
c2febafc
KS
2303 p4d = p4d_offset(pgd, address);
2304 if (!p4d_present(*p4d))
2305 return;
2306
2307 pud = pud_offset(p4d, address);
f72e7dcd
HD
2308 if (!pud_present(*pud))
2309 return;
2310
2311 pmd = pmd_offset(pud, address);
fec89c10 2312
33f4751e 2313 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2314}
2315
71f9e58e
ML
2316static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2317{
2318 /*
2319 * If the new address isn't hpage aligned and it could previously
2320 * contain an hugepage: check if we need to split an huge pmd.
2321 */
2322 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2323 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2324 ALIGN(address, HPAGE_PMD_SIZE)))
2325 split_huge_pmd_address(vma, address, false, NULL);
2326}
2327
e1b9996b 2328void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2329 unsigned long start,
2330 unsigned long end,
2331 long adjust_next)
2332{
71f9e58e
ML
2333 /* Check if we need to split start first. */
2334 split_huge_pmd_if_needed(vma, start);
94fcc585 2335
71f9e58e
ML
2336 /* Check if we need to split end next. */
2337 split_huge_pmd_if_needed(vma, end);
94fcc585
AA
2338
2339 /*
71f9e58e
ML
2340 * If we're also updating the vma->vm_next->vm_start,
2341 * check if we need to split it.
94fcc585
AA
2342 */
2343 if (adjust_next > 0) {
2344 struct vm_area_struct *next = vma->vm_next;
2345 unsigned long nstart = next->vm_start;
f9d86a60 2346 nstart += adjust_next;
71f9e58e 2347 split_huge_pmd_if_needed(next, nstart);
94fcc585
AA
2348 }
2349}
e9b61f19 2350
906f9cdf 2351static void unmap_page(struct page *page)
e9b61f19 2352{
732ed558 2353 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
c7ab0d2f 2354 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
e9b61f19
KS
2355
2356 VM_BUG_ON_PAGE(!PageHead(page), page);
2357
baa355fd 2358 if (PageAnon(page))
b5ff8161 2359 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2360
504e070d
YS
2361 try_to_unmap(page, ttu_flags);
2362
2363 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
e9b61f19
KS
2364}
2365
8cce5475 2366static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2367{
fec89c10 2368 int i;
ace71a19
KS
2369 if (PageTransHuge(page)) {
2370 remove_migration_ptes(page, page, true);
2371 } else {
8cce5475 2372 for (i = 0; i < nr; i++)
ace71a19
KS
2373 remove_migration_ptes(page + i, page + i, true);
2374 }
e9b61f19
KS
2375}
2376
94866635 2377static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2378 struct lruvec *lruvec, struct list_head *list)
2379{
94866635
AS
2380 VM_BUG_ON_PAGE(!PageHead(head), head);
2381 VM_BUG_ON_PAGE(PageCompound(tail), head);
2382 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2383 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2384
6dbb5741 2385 if (list) {
88dcb9a3 2386 /* page reclaim is reclaiming a huge page */
6dbb5741 2387 VM_WARN_ON(PageLRU(head));
94866635
AS
2388 get_page(tail);
2389 list_add_tail(&tail->lru, list);
88dcb9a3 2390 } else {
6dbb5741
AS
2391 /* head is still on lru (and we have it frozen) */
2392 VM_WARN_ON(!PageLRU(head));
2393 SetPageLRU(tail);
2394 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2395 }
2396}
2397
8df651c7 2398static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2399 struct lruvec *lruvec, struct list_head *list)
2400{
e9b61f19
KS
2401 struct page *page_tail = head + tail;
2402
8df651c7 2403 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2404
2405 /*
605ca5ed
KK
2406 * Clone page flags before unfreezing refcount.
2407 *
2408 * After successful get_page_unless_zero() might follow flags change,
8958b249 2409 * for example lock_page() which set PG_waiters.
e9b61f19 2410 */
e9b61f19
KS
2411 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2412 page_tail->flags |= (head->flags &
2413 ((1L << PG_referenced) |
2414 (1L << PG_swapbacked) |
38d8b4e6 2415 (1L << PG_swapcache) |
e9b61f19
KS
2416 (1L << PG_mlocked) |
2417 (1L << PG_uptodate) |
2418 (1L << PG_active) |
1899ad18 2419 (1L << PG_workingset) |
e9b61f19 2420 (1L << PG_locked) |
b8d3c4c3 2421 (1L << PG_unevictable) |
72e6afa0
CM
2422#ifdef CONFIG_64BIT
2423 (1L << PG_arch_2) |
2424#endif
b8d3c4c3 2425 (1L << PG_dirty)));
e9b61f19 2426
173d9d9f
HD
2427 /* ->mapping in first tail page is compound_mapcount */
2428 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2429 page_tail);
2430 page_tail->mapping = head->mapping;
2431 page_tail->index = head->index + tail;
2432
605ca5ed 2433 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2434 smp_wmb();
2435
605ca5ed
KK
2436 /*
2437 * Clear PageTail before unfreezing page refcount.
2438 *
2439 * After successful get_page_unless_zero() might follow put_page()
2440 * which needs correct compound_head().
2441 */
e9b61f19
KS
2442 clear_compound_head(page_tail);
2443
605ca5ed
KK
2444 /* Finally unfreeze refcount. Additional reference from page cache. */
2445 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2446 PageSwapCache(head)));
2447
e9b61f19
KS
2448 if (page_is_young(head))
2449 set_page_young(page_tail);
2450 if (page_is_idle(head))
2451 set_page_idle(page_tail);
2452
e9b61f19 2453 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2454
2455 /*
2456 * always add to the tail because some iterators expect new
2457 * pages to show after the currently processed elements - e.g.
2458 * migrate_pages
2459 */
e9b61f19 2460 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2461}
2462
baa355fd 2463static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2464 pgoff_t end)
e9b61f19
KS
2465{
2466 struct page *head = compound_head(page);
e9b61f19 2467 struct lruvec *lruvec;
4101196b
MWO
2468 struct address_space *swap_cache = NULL;
2469 unsigned long offset = 0;
8cce5475 2470 unsigned int nr = thp_nr_pages(head);
8df651c7 2471 int i;
e9b61f19 2472
e9b61f19 2473 /* complete memcg works before add pages to LRU */
be6c8982 2474 split_page_memcg(head, nr);
e9b61f19 2475
4101196b
MWO
2476 if (PageAnon(head) && PageSwapCache(head)) {
2477 swp_entry_t entry = { .val = page_private(head) };
2478
2479 offset = swp_offset(entry);
2480 swap_cache = swap_address_space(entry);
2481 xa_lock(&swap_cache->i_pages);
2482 }
2483
f0953a1b 2484 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
6168d0da 2485 lruvec = lock_page_lruvec(head);
b6769834 2486
8cce5475 2487 for (i = nr - 1; i >= 1; i--) {
8df651c7 2488 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2489 /* Some pages can be beyond i_size: drop them from page cache */
2490 if (head[i].index >= end) {
2d077d4b 2491 ClearPageDirty(head + i);
baa355fd 2492 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2493 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2494 shmem_uncharge(head->mapping->host, 1);
baa355fd 2495 put_page(head + i);
4101196b
MWO
2496 } else if (!PageAnon(page)) {
2497 __xa_store(&head->mapping->i_pages, head[i].index,
2498 head + i, 0);
2499 } else if (swap_cache) {
2500 __xa_store(&swap_cache->i_pages, offset + i,
2501 head + i, 0);
baa355fd
KS
2502 }
2503 }
e9b61f19
KS
2504
2505 ClearPageCompound(head);
6168d0da 2506 unlock_page_lruvec(lruvec);
b6769834 2507 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2508
8cce5475 2509 split_page_owner(head, nr);
f7da677b 2510
baa355fd
KS
2511 /* See comment in __split_huge_page_tail() */
2512 if (PageAnon(head)) {
aa5dc07f 2513 /* Additional pin to swap cache */
4101196b 2514 if (PageSwapCache(head)) {
38d8b4e6 2515 page_ref_add(head, 2);
4101196b
MWO
2516 xa_unlock(&swap_cache->i_pages);
2517 } else {
38d8b4e6 2518 page_ref_inc(head);
4101196b 2519 }
baa355fd 2520 } else {
aa5dc07f 2521 /* Additional pin to page cache */
baa355fd 2522 page_ref_add(head, 2);
b93b0163 2523 xa_unlock(&head->mapping->i_pages);
baa355fd 2524 }
b6769834 2525 local_irq_enable();
e9b61f19 2526
8cce5475 2527 remap_page(head, nr);
e9b61f19 2528
c4f9c701
HY
2529 if (PageSwapCache(head)) {
2530 swp_entry_t entry = { .val = page_private(head) };
2531
2532 split_swap_cluster(entry);
2533 }
2534
8cce5475 2535 for (i = 0; i < nr; i++) {
e9b61f19
KS
2536 struct page *subpage = head + i;
2537 if (subpage == page)
2538 continue;
2539 unlock_page(subpage);
2540
2541 /*
2542 * Subpages may be freed if there wasn't any mapping
2543 * like if add_to_swap() is running on a lru page that
2544 * had its mapping zapped. And freeing these pages
2545 * requires taking the lru_lock so we do the put_page
2546 * of the tail pages after the split is complete.
2547 */
2548 put_page(subpage);
2549 }
2550}
2551
b20ce5e0
KS
2552int total_mapcount(struct page *page)
2553{
86b562b6 2554 int i, compound, nr, ret;
b20ce5e0
KS
2555
2556 VM_BUG_ON_PAGE(PageTail(page), page);
2557
2558 if (likely(!PageCompound(page)))
2559 return atomic_read(&page->_mapcount) + 1;
2560
dd78fedd 2561 compound = compound_mapcount(page);
86b562b6 2562 nr = compound_nr(page);
b20ce5e0 2563 if (PageHuge(page))
dd78fedd
KS
2564 return compound;
2565 ret = compound;
86b562b6 2566 for (i = 0; i < nr; i++)
b20ce5e0 2567 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2568 /* File pages has compound_mapcount included in _mapcount */
2569 if (!PageAnon(page))
86b562b6 2570 return ret - compound * nr;
b20ce5e0 2571 if (PageDoubleMap(page))
86b562b6 2572 ret -= nr;
b20ce5e0
KS
2573 return ret;
2574}
2575
6d0a07ed
AA
2576/*
2577 * This calculates accurately how many mappings a transparent hugepage
2578 * has (unlike page_mapcount() which isn't fully accurate). This full
2579 * accuracy is primarily needed to know if copy-on-write faults can
2580 * reuse the page and change the mapping to read-write instead of
2581 * copying them. At the same time this returns the total_mapcount too.
2582 *
2583 * The function returns the highest mapcount any one of the subpages
2584 * has. If the return value is one, even if different processes are
2585 * mapping different subpages of the transparent hugepage, they can
2586 * all reuse it, because each process is reusing a different subpage.
2587 *
2588 * The total_mapcount is instead counting all virtual mappings of the
2589 * subpages. If the total_mapcount is equal to "one", it tells the
2590 * caller all mappings belong to the same "mm" and in turn the
2591 * anon_vma of the transparent hugepage can become the vma->anon_vma
2592 * local one as no other process may be mapping any of the subpages.
2593 *
2594 * It would be more accurate to replace page_mapcount() with
2595 * page_trans_huge_mapcount(), however we only use
2596 * page_trans_huge_mapcount() in the copy-on-write faults where we
2597 * need full accuracy to avoid breaking page pinning, because
2598 * page_trans_huge_mapcount() is slower than page_mapcount().
2599 */
2600int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2601{
2602 int i, ret, _total_mapcount, mapcount;
2603
2604 /* hugetlbfs shouldn't call it */
2605 VM_BUG_ON_PAGE(PageHuge(page), page);
2606
2607 if (likely(!PageTransCompound(page))) {
2608 mapcount = atomic_read(&page->_mapcount) + 1;
2609 if (total_mapcount)
2610 *total_mapcount = mapcount;
2611 return mapcount;
2612 }
2613
2614 page = compound_head(page);
2615
2616 _total_mapcount = ret = 0;
65dfe3c3 2617 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2618 mapcount = atomic_read(&page[i]._mapcount) + 1;
2619 ret = max(ret, mapcount);
2620 _total_mapcount += mapcount;
2621 }
2622 if (PageDoubleMap(page)) {
2623 ret -= 1;
65dfe3c3 2624 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2625 }
2626 mapcount = compound_mapcount(page);
2627 ret += mapcount;
2628 _total_mapcount += mapcount;
2629 if (total_mapcount)
2630 *total_mapcount = _total_mapcount;
2631 return ret;
2632}
2633
b8f593cd
HY
2634/* Racy check whether the huge page can be split */
2635bool can_split_huge_page(struct page *page, int *pextra_pins)
2636{
2637 int extra_pins;
2638
aa5dc07f 2639 /* Additional pins from page cache */
b8f593cd 2640 if (PageAnon(page))
e2333dad 2641 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2642 else
e2333dad 2643 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2644 if (pextra_pins)
2645 *pextra_pins = extra_pins;
2646 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2647}
2648
e9b61f19
KS
2649/*
2650 * This function splits huge page into normal pages. @page can point to any
2651 * subpage of huge page to split. Split doesn't change the position of @page.
2652 *
2653 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2654 * The huge page must be locked.
2655 *
2656 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2657 *
2658 * Both head page and tail pages will inherit mapping, flags, and so on from
2659 * the hugepage.
2660 *
2661 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2662 * they are not mapped.
2663 *
2664 * Returns 0 if the hugepage is split successfully.
2665 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2666 * us.
2667 */
2668int split_huge_page_to_list(struct page *page, struct list_head *list)
2669{
2670 struct page *head = compound_head(page);
a8803e6c 2671 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2672 struct anon_vma *anon_vma = NULL;
2673 struct address_space *mapping = NULL;
504e070d 2674 int extra_pins, ret;
006d3ff2 2675 pgoff_t end;
e9b61f19 2676
cb829624 2677 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2678 VM_BUG_ON_PAGE(!PageLocked(head), head);
2679 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2680
a8803e6c 2681 if (PageWriteback(head))
59807685
HY
2682 return -EBUSY;
2683
baa355fd
KS
2684 if (PageAnon(head)) {
2685 /*
c1e8d7c6 2686 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2687 * prevent the anon_vma disappearing so we first we take a
2688 * reference to it and then lock the anon_vma for write. This
2689 * is similar to page_lock_anon_vma_read except the write lock
2690 * is taken to serialise against parallel split or collapse
2691 * operations.
2692 */
2693 anon_vma = page_get_anon_vma(head);
2694 if (!anon_vma) {
2695 ret = -EBUSY;
2696 goto out;
2697 }
006d3ff2 2698 end = -1;
baa355fd
KS
2699 mapping = NULL;
2700 anon_vma_lock_write(anon_vma);
2701 } else {
2702 mapping = head->mapping;
2703
2704 /* Truncated ? */
2705 if (!mapping) {
2706 ret = -EBUSY;
2707 goto out;
2708 }
2709
baa355fd
KS
2710 anon_vma = NULL;
2711 i_mmap_lock_read(mapping);
006d3ff2
HD
2712
2713 /*
2714 *__split_huge_page() may need to trim off pages beyond EOF:
2715 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2716 * which cannot be nested inside the page tree lock. So note
2717 * end now: i_size itself may be changed at any moment, but
2718 * head page lock is good enough to serialize the trimming.
2719 */
2720 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2721 }
e9b61f19
KS
2722
2723 /*
906f9cdf 2724 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2725 * split PMDs
2726 */
b8f593cd 2727 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2728 ret = -EBUSY;
2729 goto out_unlock;
2730 }
2731
906f9cdf 2732 unmap_page(head);
e9b61f19 2733
b6769834
AS
2734 /* block interrupt reentry in xa_lock and spinlock */
2735 local_irq_disable();
baa355fd 2736 if (mapping) {
aa5dc07f 2737 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2738
baa355fd 2739 /*
aa5dc07f 2740 * Check if the head page is present in page cache.
baa355fd
KS
2741 * We assume all tail are present too, if head is there.
2742 */
aa5dc07f
MW
2743 xa_lock(&mapping->i_pages);
2744 if (xas_load(&xas) != head)
baa355fd
KS
2745 goto fail;
2746 }
2747
0139aa7b 2748 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2749 spin_lock(&ds_queue->split_queue_lock);
504e070d 2750 if (page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2751 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2752 ds_queue->split_queue_len--;
9a982250
KS
2753 list_del(page_deferred_list(head));
2754 }
afb97172 2755 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2756 if (mapping) {
bf9ecead
MS
2757 int nr = thp_nr_pages(head);
2758
a8803e6c 2759 if (PageSwapBacked(head))
57b2847d
MS
2760 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2761 -nr);
06d3eff6 2762 else
bf9ecead
MS
2763 __mod_lruvec_page_state(head, NR_FILE_THPS,
2764 -nr);
06d3eff6
KS
2765 }
2766
b6769834 2767 __split_huge_page(page, list, end);
c4f9c701 2768 ret = 0;
e9b61f19 2769 } else {
364c1eeb 2770 spin_unlock(&ds_queue->split_queue_lock);
504e070d
YS
2771fail:
2772 if (mapping)
b93b0163 2773 xa_unlock(&mapping->i_pages);
b6769834 2774 local_irq_enable();
8cce5475 2775 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2776 ret = -EBUSY;
2777 }
2778
2779out_unlock:
baa355fd
KS
2780 if (anon_vma) {
2781 anon_vma_unlock_write(anon_vma);
2782 put_anon_vma(anon_vma);
2783 }
2784 if (mapping)
2785 i_mmap_unlock_read(mapping);
e9b61f19
KS
2786out:
2787 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2788 return ret;
2789}
9a982250
KS
2790
2791void free_transhuge_page(struct page *page)
2792{
87eaceb3 2793 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2794 unsigned long flags;
2795
364c1eeb 2796 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2797 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2798 ds_queue->split_queue_len--;
9a982250
KS
2799 list_del(page_deferred_list(page));
2800 }
364c1eeb 2801 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2802 free_compound_page(page);
2803}
2804
2805void deferred_split_huge_page(struct page *page)
2806{
87eaceb3
YS
2807 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2808#ifdef CONFIG_MEMCG
bcfe06bf 2809 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2810#endif
9a982250
KS
2811 unsigned long flags;
2812
2813 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2814
87eaceb3
YS
2815 /*
2816 * The try_to_unmap() in page reclaim path might reach here too,
2817 * this may cause a race condition to corrupt deferred split queue.
2818 * And, if page reclaim is already handling the same page, it is
2819 * unnecessary to handle it again in shrinker.
2820 *
2821 * Check PageSwapCache to determine if the page is being
2822 * handled by page reclaim since THP swap would add the page into
2823 * swap cache before calling try_to_unmap().
2824 */
2825 if (PageSwapCache(page))
2826 return;
2827
364c1eeb 2828 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2829 if (list_empty(page_deferred_list(page))) {
f9719a03 2830 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2831 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2832 ds_queue->split_queue_len++;
87eaceb3
YS
2833#ifdef CONFIG_MEMCG
2834 if (memcg)
2bfd3637
YS
2835 set_shrinker_bit(memcg, page_to_nid(page),
2836 deferred_split_shrinker.id);
87eaceb3 2837#endif
9a982250 2838 }
364c1eeb 2839 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2840}
2841
2842static unsigned long deferred_split_count(struct shrinker *shrink,
2843 struct shrink_control *sc)
2844{
a3d0a918 2845 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2846 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2847
2848#ifdef CONFIG_MEMCG
2849 if (sc->memcg)
2850 ds_queue = &sc->memcg->deferred_split_queue;
2851#endif
364c1eeb 2852 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2853}
2854
2855static unsigned long deferred_split_scan(struct shrinker *shrink,
2856 struct shrink_control *sc)
2857{
a3d0a918 2858 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2859 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2860 unsigned long flags;
2861 LIST_HEAD(list), *pos, *next;
2862 struct page *page;
2863 int split = 0;
2864
87eaceb3
YS
2865#ifdef CONFIG_MEMCG
2866 if (sc->memcg)
2867 ds_queue = &sc->memcg->deferred_split_queue;
2868#endif
2869
364c1eeb 2870 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2871 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2872 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2873 page = list_entry((void *)pos, struct page, mapping);
2874 page = compound_head(page);
e3ae1953
KS
2875 if (get_page_unless_zero(page)) {
2876 list_move(page_deferred_list(page), &list);
2877 } else {
2878 /* We lost race with put_compound_page() */
9a982250 2879 list_del_init(page_deferred_list(page));
364c1eeb 2880 ds_queue->split_queue_len--;
9a982250 2881 }
e3ae1953
KS
2882 if (!--sc->nr_to_scan)
2883 break;
9a982250 2884 }
364c1eeb 2885 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2886
2887 list_for_each_safe(pos, next, &list) {
2888 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2889 if (!trylock_page(page))
2890 goto next;
9a982250
KS
2891 /* split_huge_page() removes page from list on success */
2892 if (!split_huge_page(page))
2893 split++;
2894 unlock_page(page);
fa41b900 2895next:
9a982250
KS
2896 put_page(page);
2897 }
2898
364c1eeb
YS
2899 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2900 list_splice_tail(&list, &ds_queue->split_queue);
2901 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2902
cb8d68ec
KS
2903 /*
2904 * Stop shrinker if we didn't split any page, but the queue is empty.
2905 * This can happen if pages were freed under us.
2906 */
364c1eeb 2907 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2908 return SHRINK_STOP;
2909 return split;
9a982250
KS
2910}
2911
2912static struct shrinker deferred_split_shrinker = {
2913 .count_objects = deferred_split_count,
2914 .scan_objects = deferred_split_scan,
2915 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2916 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2917 SHRINKER_NONSLAB,
9a982250 2918};
49071d43
KS
2919
2920#ifdef CONFIG_DEBUG_FS
fa6c0231 2921static void split_huge_pages_all(void)
49071d43
KS
2922{
2923 struct zone *zone;
2924 struct page *page;
2925 unsigned long pfn, max_zone_pfn;
2926 unsigned long total = 0, split = 0;
2927
fa6c0231 2928 pr_debug("Split all THPs\n");
49071d43
KS
2929 for_each_populated_zone(zone) {
2930 max_zone_pfn = zone_end_pfn(zone);
2931 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2932 if (!pfn_valid(pfn))
2933 continue;
2934
2935 page = pfn_to_page(pfn);
2936 if (!get_page_unless_zero(page))
2937 continue;
2938
2939 if (zone != page_zone(page))
2940 goto next;
2941
baa355fd 2942 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2943 goto next;
2944
2945 total++;
2946 lock_page(page);
2947 if (!split_huge_page(page))
2948 split++;
2949 unlock_page(page);
2950next:
2951 put_page(page);
fa6c0231 2952 cond_resched();
49071d43
KS
2953 }
2954 }
2955
fa6c0231
ZY
2956 pr_debug("%lu of %lu THP split\n", split, total);
2957}
49071d43 2958
fa6c0231
ZY
2959static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2960{
2961 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2962 is_vm_hugetlb_page(vma);
2963}
2964
2965static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2966 unsigned long vaddr_end)
2967{
2968 int ret = 0;
2969 struct task_struct *task;
2970 struct mm_struct *mm;
2971 unsigned long total = 0, split = 0;
2972 unsigned long addr;
2973
2974 vaddr_start &= PAGE_MASK;
2975 vaddr_end &= PAGE_MASK;
2976
2977 /* Find the task_struct from pid */
2978 rcu_read_lock();
2979 task = find_task_by_vpid(pid);
2980 if (!task) {
2981 rcu_read_unlock();
2982 ret = -ESRCH;
2983 goto out;
2984 }
2985 get_task_struct(task);
2986 rcu_read_unlock();
2987
2988 /* Find the mm_struct */
2989 mm = get_task_mm(task);
2990 put_task_struct(task);
2991
2992 if (!mm) {
2993 ret = -EINVAL;
2994 goto out;
2995 }
2996
2997 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
2998 pid, vaddr_start, vaddr_end);
2999
3000 mmap_read_lock(mm);
3001 /*
3002 * always increase addr by PAGE_SIZE, since we could have a PTE page
3003 * table filled with PTE-mapped THPs, each of which is distinct.
3004 */
3005 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3006 struct vm_area_struct *vma = find_vma(mm, addr);
3007 unsigned int follflags;
3008 struct page *page;
3009
3010 if (!vma || addr < vma->vm_start)
3011 break;
3012
3013 /* skip special VMA and hugetlb VMA */
3014 if (vma_not_suitable_for_thp_split(vma)) {
3015 addr = vma->vm_end;
3016 continue;
3017 }
3018
3019 /* FOLL_DUMP to ignore special (like zero) pages */
3020 follflags = FOLL_GET | FOLL_DUMP;
3021 page = follow_page(vma, addr, follflags);
3022
3023 if (IS_ERR(page))
3024 continue;
3025 if (!page)
3026 continue;
3027
3028 if (!is_transparent_hugepage(page))
3029 goto next;
3030
3031 total++;
3032 if (!can_split_huge_page(compound_head(page), NULL))
3033 goto next;
3034
3035 if (!trylock_page(page))
3036 goto next;
3037
3038 if (!split_huge_page(page))
3039 split++;
3040
3041 unlock_page(page);
3042next:
3043 put_page(page);
3044 cond_resched();
3045 }
3046 mmap_read_unlock(mm);
3047 mmput(mm);
3048
3049 pr_debug("%lu of %lu THP split\n", split, total);
3050
3051out:
3052 return ret;
49071d43 3053}
fa6c0231 3054
fbe37501
ZY
3055static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3056 pgoff_t off_end)
3057{
3058 struct filename *file;
3059 struct file *candidate;
3060 struct address_space *mapping;
3061 int ret = -EINVAL;
3062 pgoff_t index;
3063 int nr_pages = 1;
3064 unsigned long total = 0, split = 0;
3065
3066 file = getname_kernel(file_path);
3067 if (IS_ERR(file))
3068 return ret;
3069
3070 candidate = file_open_name(file, O_RDONLY, 0);
3071 if (IS_ERR(candidate))
3072 goto out;
3073
3074 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3075 file_path, off_start, off_end);
3076
3077 mapping = candidate->f_mapping;
3078
3079 for (index = off_start; index < off_end; index += nr_pages) {
3080 struct page *fpage = pagecache_get_page(mapping, index,
3081 FGP_ENTRY | FGP_HEAD, 0);
3082
3083 nr_pages = 1;
3084 if (xa_is_value(fpage) || !fpage)
3085 continue;
3086
3087 if (!is_transparent_hugepage(fpage))
3088 goto next;
3089
3090 total++;
3091 nr_pages = thp_nr_pages(fpage);
3092
3093 if (!trylock_page(fpage))
3094 goto next;
3095
3096 if (!split_huge_page(fpage))
3097 split++;
3098
3099 unlock_page(fpage);
3100next:
3101 put_page(fpage);
3102 cond_resched();
3103 }
3104
3105 filp_close(candidate, NULL);
3106 ret = 0;
3107
3108 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3109out:
3110 putname(file);
3111 return ret;
3112}
3113
fa6c0231
ZY
3114#define MAX_INPUT_BUF_SZ 255
3115
3116static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3117 size_t count, loff_t *ppops)
3118{
3119 static DEFINE_MUTEX(split_debug_mutex);
3120 ssize_t ret;
fbe37501
ZY
3121 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3122 char input_buf[MAX_INPUT_BUF_SZ];
fa6c0231
ZY
3123 int pid;
3124 unsigned long vaddr_start, vaddr_end;
3125
3126 ret = mutex_lock_interruptible(&split_debug_mutex);
3127 if (ret)
3128 return ret;
3129
3130 ret = -EFAULT;
3131
3132 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3133 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3134 goto out;
3135
3136 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
fbe37501
ZY
3137
3138 if (input_buf[0] == '/') {
3139 char *tok;
3140 char *buf = input_buf;
3141 char file_path[MAX_INPUT_BUF_SZ];
3142 pgoff_t off_start = 0, off_end = 0;
3143 size_t input_len = strlen(input_buf);
3144
3145 tok = strsep(&buf, ",");
3146 if (tok) {
3147 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3148 } else {
3149 ret = -EINVAL;
3150 goto out;
3151 }
3152
3153 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3154 if (ret != 2) {
3155 ret = -EINVAL;
3156 goto out;
3157 }
3158 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3159 if (!ret)
3160 ret = input_len;
3161
3162 goto out;
3163 }
3164
fa6c0231
ZY
3165 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3166 if (ret == 1 && pid == 1) {
3167 split_huge_pages_all();
3168 ret = strlen(input_buf);
3169 goto out;
3170 } else if (ret != 3) {
3171 ret = -EINVAL;
3172 goto out;
3173 }
3174
3175 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3176 if (!ret)
3177 ret = strlen(input_buf);
3178out:
3179 mutex_unlock(&split_debug_mutex);
3180 return ret;
3181
3182}
3183
3184static const struct file_operations split_huge_pages_fops = {
3185 .owner = THIS_MODULE,
3186 .write = split_huge_pages_write,
3187 .llseek = no_llseek,
3188};
49071d43
KS
3189
3190static int __init split_huge_pages_debugfs(void)
3191{
d9f7979c
GKH
3192 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3193 &split_huge_pages_fops);
49071d43
KS
3194 return 0;
3195}
3196late_initcall(split_huge_pages_debugfs);
3197#endif
616b8371
ZY
3198
3199#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3200void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3201 struct page *page)
3202{
3203 struct vm_area_struct *vma = pvmw->vma;
3204 struct mm_struct *mm = vma->vm_mm;
3205 unsigned long address = pvmw->address;
3206 pmd_t pmdval;
3207 swp_entry_t entry;
ab6e3d09 3208 pmd_t pmdswp;
616b8371
ZY
3209
3210 if (!(pvmw->pmd && !pvmw->pte))
3211 return;
3212
616b8371 3213 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3214 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3215 if (pmd_dirty(pmdval))
3216 set_page_dirty(page);
3217 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3218 pmdswp = swp_entry_to_pmd(entry);
3219 if (pmd_soft_dirty(pmdval))
3220 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3221 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3222 page_remove_rmap(page, true);
3223 put_page(page);
616b8371
ZY
3224}
3225
3226void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3227{
3228 struct vm_area_struct *vma = pvmw->vma;
3229 struct mm_struct *mm = vma->vm_mm;
3230 unsigned long address = pvmw->address;
3231 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3232 pmd_t pmde;
3233 swp_entry_t entry;
3234
3235 if (!(pvmw->pmd && !pvmw->pte))
3236 return;
3237
3238 entry = pmd_to_swp_entry(*pvmw->pmd);
3239 get_page(new);
3240 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3241 if (pmd_swp_soft_dirty(*pvmw->pmd))
3242 pmde = pmd_mksoft_dirty(pmde);
616b8371 3243 if (is_write_migration_entry(entry))
f55e1014 3244 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3245
3246 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3247 if (PageAnon(new))
3248 page_add_anon_rmap(new, vma, mmun_start, true);
3249 else
3250 page_add_file_rmap(new, true);
616b8371 3251 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3252 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3253 mlock_vma_page(new);
3254 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3255}
3256#endif