]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blame - mm/huge_memory.c
mm: memcg/slab: fix root memcg vmstats
[mirror_ubuntu-focal-kernel.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
f7ccbae4 10#include <linux/sched/coredump.h>
6a3827d7 11#include <linux/sched/numa_balancing.h>
71e3aac0
AA
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
6b31d595 33#include <linux/oom.h>
98fa15f3 34#include <linux/numa.h>
f7da677b 35#include <linux/page_owner.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
b14d595a
MD
42 * By default, transparent hugepage support is disabled in order to avoid
43 * risking an increased memory footprint for applications that are not
44 * guaranteed to benefit from it. When transparent hugepage support is
45 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
7635d9cb
MH
65bool transparent_hugepage_enabled(struct vm_area_struct *vma)
66{
c0630669
YS
67 /* The addr is used to check if the vma size fits */
68 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
69
70 if (!transhuge_vma_suitable(vma, addr))
71 return false;
7635d9cb
MH
72 if (vma_is_anonymous(vma))
73 return __transparent_hugepage_enabled(vma);
c0630669
YS
74 if (vma_is_shmem(vma))
75 return shmem_huge_enabled(vma);
7635d9cb
MH
76
77 return false;
78}
79
6fcb52a5 80static struct page *get_huge_zero_page(void)
97ae1749
KS
81{
82 struct page *zero_page;
83retry:
84 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 85 return READ_ONCE(huge_zero_page);
97ae1749
KS
86
87 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 88 HPAGE_PMD_ORDER);
d8a8e1f0
KS
89 if (!zero_page) {
90 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 91 return NULL;
d8a8e1f0
KS
92 }
93 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 94 preempt_disable();
5918d10a 95 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 96 preempt_enable();
5ddacbe9 97 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
98 goto retry;
99 }
100
101 /* We take additional reference here. It will be put back by shrinker */
102 atomic_set(&huge_zero_refcount, 2);
103 preempt_enable();
4db0c3c2 104 return READ_ONCE(huge_zero_page);
4a6c1297
KS
105}
106
6fcb52a5 107static void put_huge_zero_page(void)
4a6c1297 108{
97ae1749
KS
109 /*
110 * Counter should never go to zero here. Only shrinker can put
111 * last reference.
112 */
113 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
114}
115
6fcb52a5
AL
116struct page *mm_get_huge_zero_page(struct mm_struct *mm)
117{
118 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
119 return READ_ONCE(huge_zero_page);
120
121 if (!get_huge_zero_page())
122 return NULL;
123
124 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
125 put_huge_zero_page();
126
127 return READ_ONCE(huge_zero_page);
128}
129
130void mm_put_huge_zero_page(struct mm_struct *mm)
131{
132 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
133 put_huge_zero_page();
134}
135
48896466
GC
136static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
137 struct shrink_control *sc)
4a6c1297 138{
48896466
GC
139 /* we can free zero page only if last reference remains */
140 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
141}
97ae1749 142
48896466
GC
143static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
144 struct shrink_control *sc)
145{
97ae1749 146 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
147 struct page *zero_page = xchg(&huge_zero_page, NULL);
148 BUG_ON(zero_page == NULL);
5ddacbe9 149 __free_pages(zero_page, compound_order(zero_page));
48896466 150 return HPAGE_PMD_NR;
97ae1749
KS
151 }
152
153 return 0;
4a6c1297
KS
154}
155
97ae1749 156static struct shrinker huge_zero_page_shrinker = {
48896466
GC
157 .count_objects = shrink_huge_zero_page_count,
158 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
159 .seeks = DEFAULT_SEEKS,
160};
161
71e3aac0 162#ifdef CONFIG_SYSFS
71e3aac0
AA
163static ssize_t enabled_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf)
165{
444eb2a4
MG
166 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "[always] madvise never\n");
168 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
169 return sprintf(buf, "always [madvise] never\n");
170 else
171 return sprintf(buf, "always madvise [never]\n");
71e3aac0 172}
444eb2a4 173
71e3aac0
AA
174static ssize_t enabled_store(struct kobject *kobj,
175 struct kobj_attribute *attr,
176 const char *buf, size_t count)
177{
21440d7e 178 ssize_t ret = count;
ba76149f 179
9570d539 180 if (sysfs_streq(buf, "always")) {
21440d7e
DR
181 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
182 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
9570d539 183 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
184 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
185 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
9570d539 186 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
187 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
188 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
189 } else
190 ret = -EINVAL;
ba76149f
AA
191
192 if (ret > 0) {
b46e756f 193 int err = start_stop_khugepaged();
ba76149f
AA
194 if (err)
195 ret = err;
196 }
ba76149f 197 return ret;
71e3aac0
AA
198}
199static struct kobj_attribute enabled_attr =
200 __ATTR(enabled, 0644, enabled_show, enabled_store);
201
b46e756f 202ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr, char *buf,
204 enum transparent_hugepage_flag flag)
205{
e27e6151
BH
206 return sprintf(buf, "%d\n",
207 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 208}
e27e6151 209
b46e756f 210ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
211 struct kobj_attribute *attr,
212 const char *buf, size_t count,
213 enum transparent_hugepage_flag flag)
214{
e27e6151
BH
215 unsigned long value;
216 int ret;
217
218 ret = kstrtoul(buf, 10, &value);
219 if (ret < 0)
220 return ret;
221 if (value > 1)
222 return -EINVAL;
223
224 if (value)
71e3aac0 225 set_bit(flag, &transparent_hugepage_flags);
e27e6151 226 else
71e3aac0 227 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
228
229 return count;
230}
231
71e3aac0
AA
232static ssize_t defrag_show(struct kobject *kobj,
233 struct kobj_attribute *attr, char *buf)
234{
444eb2a4 235 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 236 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 237 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
238 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
239 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
240 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
241 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
242 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
243 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 244}
21440d7e 245
71e3aac0
AA
246static ssize_t defrag_store(struct kobject *kobj,
247 struct kobj_attribute *attr,
248 const char *buf, size_t count)
249{
9570d539 250 if (sysfs_streq(buf, "always")) {
21440d7e
DR
251 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
254 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
9570d539 255 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
256 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
257 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
259 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
9570d539 260 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
261 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
262 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
263 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
264 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
9570d539 265 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
268 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
269 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
9570d539 270 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
271 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
272 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
273 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
274 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
275 } else
276 return -EINVAL;
277
278 return count;
71e3aac0
AA
279}
280static struct kobj_attribute defrag_attr =
281 __ATTR(defrag, 0644, defrag_show, defrag_store);
282
79da5407
KS
283static ssize_t use_zero_page_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285{
b46e756f 286 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
287 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
288}
289static ssize_t use_zero_page_store(struct kobject *kobj,
290 struct kobj_attribute *attr, const char *buf, size_t count)
291{
b46e756f 292 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
293 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
294}
295static struct kobj_attribute use_zero_page_attr =
296 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
297
298static ssize_t hpage_pmd_size_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
302}
303static struct kobj_attribute hpage_pmd_size_attr =
304 __ATTR_RO(hpage_pmd_size);
305
71e3aac0
AA
306#ifdef CONFIG_DEBUG_VM
307static ssize_t debug_cow_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
b46e756f 310 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static ssize_t debug_cow_store(struct kobject *kobj,
314 struct kobj_attribute *attr,
315 const char *buf, size_t count)
316{
b46e756f 317 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static struct kobj_attribute debug_cow_attr =
321 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
322#endif /* CONFIG_DEBUG_VM */
323
324static struct attribute *hugepage_attr[] = {
325 &enabled_attr.attr,
326 &defrag_attr.attr,
79da5407 327 &use_zero_page_attr.attr,
49920d28 328 &hpage_pmd_size_attr.attr,
e496cf3d 329#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
330 &shmem_enabled_attr.attr,
331#endif
71e3aac0
AA
332#ifdef CONFIG_DEBUG_VM
333 &debug_cow_attr.attr,
334#endif
335 NULL,
336};
337
8aa95a21 338static const struct attribute_group hugepage_attr_group = {
71e3aac0 339 .attrs = hugepage_attr,
ba76149f
AA
340};
341
569e5590 342static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 343{
71e3aac0
AA
344 int err;
345
569e5590
SL
346 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
347 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 348 pr_err("failed to create transparent hugepage kobject\n");
569e5590 349 return -ENOMEM;
ba76149f
AA
350 }
351
569e5590 352 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 353 if (err) {
ae3a8c1c 354 pr_err("failed to register transparent hugepage group\n");
569e5590 355 goto delete_obj;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto remove_hp_group;
ba76149f 362 }
569e5590
SL
363
364 return 0;
365
366remove_hp_group:
367 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
368delete_obj:
369 kobject_put(*hugepage_kobj);
370 return err;
371}
372
373static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
374{
375 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
376 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
377 kobject_put(hugepage_kobj);
378}
379#else
380static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
381{
382 return 0;
383}
384
385static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
386{
387}
388#endif /* CONFIG_SYSFS */
389
390static int __init hugepage_init(void)
391{
392 int err;
393 struct kobject *hugepage_kobj;
394
395 if (!has_transparent_hugepage()) {
396 transparent_hugepage_flags = 0;
397 return -EINVAL;
398 }
399
ff20c2e0
KS
400 /*
401 * hugepages can't be allocated by the buddy allocator
402 */
403 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
404 /*
405 * we use page->mapping and page->index in second tail page
406 * as list_head: assuming THP order >= 2
407 */
408 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
409
569e5590
SL
410 err = hugepage_init_sysfs(&hugepage_kobj);
411 if (err)
65ebb64f 412 goto err_sysfs;
ba76149f 413
b46e756f 414 err = khugepaged_init();
ba76149f 415 if (err)
65ebb64f 416 goto err_slab;
ba76149f 417
65ebb64f
KS
418 err = register_shrinker(&huge_zero_page_shrinker);
419 if (err)
420 goto err_hzp_shrinker;
9a982250
KS
421 err = register_shrinker(&deferred_split_shrinker);
422 if (err)
423 goto err_split_shrinker;
97ae1749 424
97562cd2
RR
425 /*
426 * By default disable transparent hugepages on smaller systems,
427 * where the extra memory used could hurt more than TLB overhead
428 * is likely to save. The admin can still enable it through /sys.
429 */
ca79b0c2 430 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 431 transparent_hugepage_flags = 0;
79553da2
KS
432 return 0;
433 }
97562cd2 434
79553da2 435 err = start_stop_khugepaged();
65ebb64f
KS
436 if (err)
437 goto err_khugepaged;
ba76149f 438
569e5590 439 return 0;
65ebb64f 440err_khugepaged:
9a982250
KS
441 unregister_shrinker(&deferred_split_shrinker);
442err_split_shrinker:
65ebb64f
KS
443 unregister_shrinker(&huge_zero_page_shrinker);
444err_hzp_shrinker:
b46e756f 445 khugepaged_destroy();
65ebb64f 446err_slab:
569e5590 447 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 448err_sysfs:
ba76149f 449 return err;
71e3aac0 450}
a64fb3cd 451subsys_initcall(hugepage_init);
71e3aac0
AA
452
453static int __init setup_transparent_hugepage(char *str)
454{
455 int ret = 0;
456 if (!str)
457 goto out;
458 if (!strcmp(str, "always")) {
459 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
460 &transparent_hugepage_flags);
461 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
462 &transparent_hugepage_flags);
463 ret = 1;
464 } else if (!strcmp(str, "madvise")) {
465 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
466 &transparent_hugepage_flags);
467 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
468 &transparent_hugepage_flags);
469 ret = 1;
470 } else if (!strcmp(str, "never")) {
471 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
472 &transparent_hugepage_flags);
473 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
474 &transparent_hugepage_flags);
475 ret = 1;
476 }
477out:
478 if (!ret)
ae3a8c1c 479 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
480 return ret;
481}
482__setup("transparent_hugepage=", setup_transparent_hugepage);
483
f55e1014 484pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 485{
f55e1014 486 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
487 pmd = pmd_mkwrite(pmd);
488 return pmd;
489}
490
87eaceb3
YS
491#ifdef CONFIG_MEMCG
492static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 493{
87eaceb3
YS
494 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
495 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
496
497 if (memcg)
498 return &memcg->deferred_split_queue;
499 else
500 return &pgdat->deferred_split_queue;
9a982250 501}
87eaceb3
YS
502#else
503static inline struct deferred_split *get_deferred_split_queue(struct page *page)
504{
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 return &pgdat->deferred_split_queue;
508}
509#endif
9a982250
KS
510
511void prep_transhuge_page(struct page *page)
512{
513 /*
514 * we use page->mapping and page->indexlru in second tail page
515 * as list_head: assuming THP order >= 2
516 */
9a982250
KS
517
518 INIT_LIST_HEAD(page_deferred_list(page));
519 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
520}
521
3424999c
KS
522static unsigned long __thp_get_unmapped_area(struct file *filp,
523 unsigned long addr, unsigned long len,
74d2fad1
TK
524 loff_t off, unsigned long flags, unsigned long size)
525{
74d2fad1
TK
526 loff_t off_end = off + len;
527 loff_t off_align = round_up(off, size);
3424999c 528 unsigned long len_pad, ret;
74d2fad1
TK
529
530 if (off_end <= off_align || (off_end - off_align) < size)
531 return 0;
532
533 len_pad = len + size;
534 if (len_pad < len || (off + len_pad) < off)
535 return 0;
536
3424999c 537 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 538 off >> PAGE_SHIFT, flags);
3424999c
KS
539
540 /*
541 * The failure might be due to length padding. The caller will retry
542 * without the padding.
543 */
544 if (IS_ERR_VALUE(ret))
74d2fad1
TK
545 return 0;
546
3424999c
KS
547 /*
548 * Do not try to align to THP boundary if allocation at the address
549 * hint succeeds.
550 */
551 if (ret == addr)
552 return addr;
553
554 ret += (off - ret) & (size - 1);
555 return ret;
74d2fad1
TK
556}
557
558unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
559 unsigned long len, unsigned long pgoff, unsigned long flags)
560{
3424999c 561 unsigned long ret;
74d2fad1
TK
562 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
563
74d2fad1
TK
564 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
565 goto out;
566
3424999c
KS
567 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
568 if (ret)
569 return ret;
570out:
74d2fad1
TK
571 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
572}
573EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
574
2b740303
SJ
575static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
576 struct page *page, gfp_t gfp)
71e3aac0 577{
82b0f8c3 578 struct vm_area_struct *vma = vmf->vma;
00501b53 579 struct mem_cgroup *memcg;
71e3aac0 580 pgtable_t pgtable;
82b0f8c3 581 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 582 vm_fault_t ret = 0;
71e3aac0 583
309381fe 584 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 585
2cf85583 586 if (mem_cgroup_try_charge_delay(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
587 put_page(page);
588 count_vm_event(THP_FAULT_FALLBACK);
589 return VM_FAULT_FALLBACK;
590 }
00501b53 591
4cf58924 592 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 593 if (unlikely(!pgtable)) {
6b31d595
MH
594 ret = VM_FAULT_OOM;
595 goto release;
00501b53 596 }
71e3aac0 597
c79b57e4 598 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
599 /*
600 * The memory barrier inside __SetPageUptodate makes sure that
601 * clear_huge_page writes become visible before the set_pmd_at()
602 * write.
603 */
71e3aac0
AA
604 __SetPageUptodate(page);
605
82b0f8c3
JK
606 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
607 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 608 goto unlock_release;
71e3aac0
AA
609 } else {
610 pmd_t entry;
6b251fc9 611
6b31d595
MH
612 ret = check_stable_address_space(vma->vm_mm);
613 if (ret)
614 goto unlock_release;
615
6b251fc9
AA
616 /* Deliver the page fault to userland */
617 if (userfaultfd_missing(vma)) {
2b740303 618 vm_fault_t ret2;
6b251fc9 619
82b0f8c3 620 spin_unlock(vmf->ptl);
f627c2f5 621 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 622 put_page(page);
bae473a4 623 pte_free(vma->vm_mm, pgtable);
2b740303
SJ
624 ret2 = handle_userfault(vmf, VM_UFFD_MISSING);
625 VM_BUG_ON(ret2 & VM_FAULT_FALLBACK);
626 return ret2;
6b251fc9
AA
627 }
628
3122359a 629 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 630 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 631 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 632 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 633 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
634 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
635 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4 636 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 637 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 638 spin_unlock(vmf->ptl);
6b251fc9 639 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 640 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
71e3aac0
AA
641 }
642
aa2e878e 643 return 0;
6b31d595
MH
644unlock_release:
645 spin_unlock(vmf->ptl);
646release:
647 if (pgtable)
648 pte_free(vma->vm_mm, pgtable);
649 mem_cgroup_cancel_charge(page, memcg, true);
650 put_page(page);
651 return ret;
652
71e3aac0
AA
653}
654
444eb2a4 655/*
21440d7e
DR
656 * always: directly stall for all thp allocations
657 * defer: wake kswapd and fail if not immediately available
658 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
659 * fail if not immediately available
660 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
661 * available
662 * never: never stall for any thp allocation
444eb2a4 663 */
19deb769 664static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
444eb2a4 665{
21440d7e 666 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
2f0799a0 667
ac79f78d 668 /* Always do synchronous compaction */
a8282608
AA
669 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
670 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
671
672 /* Kick kcompactd and fail quickly */
21440d7e 673 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 674 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
675
676 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 677 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
678 return GFP_TRANSHUGE_LIGHT |
679 (vma_madvised ? __GFP_DIRECT_RECLAIM :
680 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
681
682 /* Only do synchronous compaction if madvised */
21440d7e 683 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
684 return GFP_TRANSHUGE_LIGHT |
685 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 686
19deb769 687 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
688}
689
c4088ebd 690/* Caller must hold page table lock. */
d295e341 691static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 692 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 693 struct page *zero_page)
fc9fe822
KS
694{
695 pmd_t entry;
7c414164
AM
696 if (!pmd_none(*pmd))
697 return false;
5918d10a 698 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 699 entry = pmd_mkhuge(entry);
12c9d70b
MW
700 if (pgtable)
701 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 702 set_pmd_at(mm, haddr, pmd, entry);
c4812909 703 mm_inc_nr_ptes(mm);
7c414164 704 return true;
fc9fe822
KS
705}
706
2b740303 707vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 708{
82b0f8c3 709 struct vm_area_struct *vma = vmf->vma;
077fcf11 710 gfp_t gfp;
71e3aac0 711 struct page *page;
82b0f8c3 712 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 713
43675e6f 714 if (!transhuge_vma_suitable(vma, haddr))
c0292554 715 return VM_FAULT_FALLBACK;
128ec037
KS
716 if (unlikely(anon_vma_prepare(vma)))
717 return VM_FAULT_OOM;
6d50e60c 718 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 719 return VM_FAULT_OOM;
82b0f8c3 720 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 721 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
722 transparent_hugepage_use_zero_page()) {
723 pgtable_t pgtable;
724 struct page *zero_page;
725 bool set;
2b740303 726 vm_fault_t ret;
4cf58924 727 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 728 if (unlikely(!pgtable))
ba76149f 729 return VM_FAULT_OOM;
6fcb52a5 730 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 731 if (unlikely(!zero_page)) {
bae473a4 732 pte_free(vma->vm_mm, pgtable);
81ab4201 733 count_vm_event(THP_FAULT_FALLBACK);
c0292554 734 return VM_FAULT_FALLBACK;
b9bbfbe3 735 }
82b0f8c3 736 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
737 ret = 0;
738 set = false;
82b0f8c3 739 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
740 ret = check_stable_address_space(vma->vm_mm);
741 if (ret) {
742 spin_unlock(vmf->ptl);
743 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
744 spin_unlock(vmf->ptl);
745 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
746 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
747 } else {
bae473a4 748 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
749 haddr, vmf->pmd, zero_page);
750 spin_unlock(vmf->ptl);
6b251fc9
AA
751 set = true;
752 }
753 } else
82b0f8c3 754 spin_unlock(vmf->ptl);
6fcb52a5 755 if (!set)
bae473a4 756 pte_free(vma->vm_mm, pgtable);
6b251fc9 757 return ret;
71e3aac0 758 }
19deb769
DR
759 gfp = alloc_hugepage_direct_gfpmask(vma);
760 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
761 if (unlikely(!page)) {
762 count_vm_event(THP_FAULT_FALLBACK);
c0292554 763 return VM_FAULT_FALLBACK;
128ec037 764 }
9a982250 765 prep_transhuge_page(page);
82b0f8c3 766 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
767}
768
ae18d6dc 769static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
770 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
771 pgtable_t pgtable)
5cad465d
MW
772{
773 struct mm_struct *mm = vma->vm_mm;
774 pmd_t entry;
775 spinlock_t *ptl;
776
777 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
778 if (!pmd_none(*pmd)) {
779 if (write) {
780 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
781 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
782 goto out_unlock;
783 }
784 entry = pmd_mkyoung(*pmd);
785 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
786 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
787 update_mmu_cache_pmd(vma, addr, pmd);
788 }
789
790 goto out_unlock;
791 }
792
f25748e3
DW
793 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
794 if (pfn_t_devmap(pfn))
795 entry = pmd_mkdevmap(entry);
01871e59 796 if (write) {
f55e1014
LT
797 entry = pmd_mkyoung(pmd_mkdirty(entry));
798 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 799 }
3b6521f5
OH
800
801 if (pgtable) {
802 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 803 mm_inc_nr_ptes(mm);
c6f3c5ee 804 pgtable = NULL;
3b6521f5
OH
805 }
806
01871e59
RZ
807 set_pmd_at(mm, addr, pmd, entry);
808 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
809
810out_unlock:
5cad465d 811 spin_unlock(ptl);
c6f3c5ee
AK
812 if (pgtable)
813 pte_free(mm, pgtable);
5cad465d
MW
814}
815
fce86ff5 816vm_fault_t vmf_insert_pfn_pmd(struct vm_fault *vmf, pfn_t pfn, bool write)
5cad465d 817{
fce86ff5
DW
818 unsigned long addr = vmf->address & PMD_MASK;
819 struct vm_area_struct *vma = vmf->vma;
5cad465d 820 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 821 pgtable_t pgtable = NULL;
fce86ff5 822
5cad465d
MW
823 /*
824 * If we had pmd_special, we could avoid all these restrictions,
825 * but we need to be consistent with PTEs and architectures that
826 * can't support a 'special' bit.
827 */
e1fb4a08
DJ
828 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
829 !pfn_t_devmap(pfn));
5cad465d
MW
830 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
831 (VM_PFNMAP|VM_MIXEDMAP));
832 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
833
834 if (addr < vma->vm_start || addr >= vma->vm_end)
835 return VM_FAULT_SIGBUS;
308a047c 836
3b6521f5 837 if (arch_needs_pgtable_deposit()) {
4cf58924 838 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
839 if (!pgtable)
840 return VM_FAULT_OOM;
841 }
842
308a047c
BP
843 track_pfn_insert(vma, &pgprot, pfn);
844
fce86ff5 845 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 846 return VM_FAULT_NOPAGE;
5cad465d 847}
dee41079 848EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 849
a00cc7d9 850#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 851static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 852{
f55e1014 853 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
854 pud = pud_mkwrite(pud);
855 return pud;
856}
857
858static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
859 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
860{
861 struct mm_struct *mm = vma->vm_mm;
862 pud_t entry;
863 spinlock_t *ptl;
864
865 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
866 if (!pud_none(*pud)) {
867 if (write) {
868 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
869 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
870 goto out_unlock;
871 }
872 entry = pud_mkyoung(*pud);
873 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
874 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
875 update_mmu_cache_pud(vma, addr, pud);
876 }
877 goto out_unlock;
878 }
879
a00cc7d9
MW
880 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
881 if (pfn_t_devmap(pfn))
882 entry = pud_mkdevmap(entry);
883 if (write) {
f55e1014
LT
884 entry = pud_mkyoung(pud_mkdirty(entry));
885 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
886 }
887 set_pud_at(mm, addr, pud, entry);
888 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
889
890out_unlock:
a00cc7d9
MW
891 spin_unlock(ptl);
892}
893
fce86ff5 894vm_fault_t vmf_insert_pfn_pud(struct vm_fault *vmf, pfn_t pfn, bool write)
a00cc7d9 895{
fce86ff5
DW
896 unsigned long addr = vmf->address & PUD_MASK;
897 struct vm_area_struct *vma = vmf->vma;
a00cc7d9 898 pgprot_t pgprot = vma->vm_page_prot;
fce86ff5 899
a00cc7d9
MW
900 /*
901 * If we had pud_special, we could avoid all these restrictions,
902 * but we need to be consistent with PTEs and architectures that
903 * can't support a 'special' bit.
904 */
62ec0d8c
DJ
905 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
906 !pfn_t_devmap(pfn));
a00cc7d9
MW
907 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
908 (VM_PFNMAP|VM_MIXEDMAP));
909 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
910
911 if (addr < vma->vm_start || addr >= vma->vm_end)
912 return VM_FAULT_SIGBUS;
913
914 track_pfn_insert(vma, &pgprot, pfn);
915
fce86ff5 916 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
917 return VM_FAULT_NOPAGE;
918}
919EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
920#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
921
3565fce3 922static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 923 pmd_t *pmd, int flags)
3565fce3
DW
924{
925 pmd_t _pmd;
926
a8f97366
KS
927 _pmd = pmd_mkyoung(*pmd);
928 if (flags & FOLL_WRITE)
929 _pmd = pmd_mkdirty(_pmd);
3565fce3 930 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 931 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
932 update_mmu_cache_pmd(vma, addr, pmd);
933}
934
935struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 936 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
937{
938 unsigned long pfn = pmd_pfn(*pmd);
939 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
940 struct page *page;
941
942 assert_spin_locked(pmd_lockptr(mm, pmd));
943
8310d48b
KF
944 /*
945 * When we COW a devmap PMD entry, we split it into PTEs, so we should
946 * not be in this function with `flags & FOLL_COW` set.
947 */
948 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
949
f6f37321 950 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
951 return NULL;
952
953 if (pmd_present(*pmd) && pmd_devmap(*pmd))
954 /* pass */;
955 else
956 return NULL;
957
958 if (flags & FOLL_TOUCH)
a8f97366 959 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
960
961 /*
962 * device mapped pages can only be returned if the
963 * caller will manage the page reference count.
964 */
965 if (!(flags & FOLL_GET))
966 return ERR_PTR(-EEXIST);
967
968 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
969 *pgmap = get_dev_pagemap(pfn, *pgmap);
970 if (!*pgmap)
3565fce3
DW
971 return ERR_PTR(-EFAULT);
972 page = pfn_to_page(pfn);
973 get_page(page);
3565fce3
DW
974
975 return page;
976}
977
71e3aac0
AA
978int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
979 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
980 struct vm_area_struct *vma)
981{
c4088ebd 982 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
983 struct page *src_page;
984 pmd_t pmd;
12c9d70b 985 pgtable_t pgtable = NULL;
628d47ce 986 int ret = -ENOMEM;
71e3aac0 987
628d47ce
KS
988 /* Skip if can be re-fill on fault */
989 if (!vma_is_anonymous(vma))
990 return 0;
991
4cf58924 992 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
993 if (unlikely(!pgtable))
994 goto out;
71e3aac0 995
c4088ebd
KS
996 dst_ptl = pmd_lock(dst_mm, dst_pmd);
997 src_ptl = pmd_lockptr(src_mm, src_pmd);
998 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
999
1000 ret = -EAGAIN;
1001 pmd = *src_pmd;
84c3fc4e
ZY
1002
1003#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1004 if (unlikely(is_swap_pmd(pmd))) {
1005 swp_entry_t entry = pmd_to_swp_entry(pmd);
1006
1007 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1008 if (is_write_migration_entry(entry)) {
1009 make_migration_entry_read(&entry);
1010 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1011 if (pmd_swp_soft_dirty(*src_pmd))
1012 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1013 set_pmd_at(src_mm, addr, src_pmd, pmd);
1014 }
dd8a67f9 1015 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1016 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1017 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1018 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1019 ret = 0;
1020 goto out_unlock;
1021 }
1022#endif
1023
628d47ce 1024 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1025 pte_free(dst_mm, pgtable);
1026 goto out_unlock;
1027 }
fc9fe822 1028 /*
c4088ebd 1029 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1030 * under splitting since we don't split the page itself, only pmd to
1031 * a page table.
1032 */
1033 if (is_huge_zero_pmd(pmd)) {
5918d10a 1034 struct page *zero_page;
97ae1749
KS
1035 /*
1036 * get_huge_zero_page() will never allocate a new page here,
1037 * since we already have a zero page to copy. It just takes a
1038 * reference.
1039 */
6fcb52a5 1040 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 1041 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1042 zero_page);
fc9fe822
KS
1043 ret = 0;
1044 goto out_unlock;
1045 }
de466bd6 1046
628d47ce
KS
1047 src_page = pmd_page(pmd);
1048 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1049 get_page(src_page);
1050 page_dup_rmap(src_page, true);
1051 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 1052 mm_inc_nr_ptes(dst_mm);
628d47ce 1053 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1054
1055 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1056 pmd = pmd_mkold(pmd_wrprotect(pmd));
1057 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1058
1059 ret = 0;
1060out_unlock:
c4088ebd
KS
1061 spin_unlock(src_ptl);
1062 spin_unlock(dst_ptl);
71e3aac0
AA
1063out:
1064 return ret;
1065}
1066
a00cc7d9
MW
1067#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1068static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1069 pud_t *pud, int flags)
a00cc7d9
MW
1070{
1071 pud_t _pud;
1072
a8f97366
KS
1073 _pud = pud_mkyoung(*pud);
1074 if (flags & FOLL_WRITE)
1075 _pud = pud_mkdirty(_pud);
a00cc7d9 1076 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1077 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1078 update_mmu_cache_pud(vma, addr, pud);
1079}
1080
1081struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1082 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1083{
1084 unsigned long pfn = pud_pfn(*pud);
1085 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1086 struct page *page;
1087
1088 assert_spin_locked(pud_lockptr(mm, pud));
1089
f6f37321 1090 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1091 return NULL;
1092
1093 if (pud_present(*pud) && pud_devmap(*pud))
1094 /* pass */;
1095 else
1096 return NULL;
1097
1098 if (flags & FOLL_TOUCH)
a8f97366 1099 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1100
1101 /*
1102 * device mapped pages can only be returned if the
1103 * caller will manage the page reference count.
1104 */
1105 if (!(flags & FOLL_GET))
1106 return ERR_PTR(-EEXIST);
1107
1108 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1109 *pgmap = get_dev_pagemap(pfn, *pgmap);
1110 if (!*pgmap)
a00cc7d9
MW
1111 return ERR_PTR(-EFAULT);
1112 page = pfn_to_page(pfn);
1113 get_page(page);
a00cc7d9
MW
1114
1115 return page;
1116}
1117
1118int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1119 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1120 struct vm_area_struct *vma)
1121{
1122 spinlock_t *dst_ptl, *src_ptl;
1123 pud_t pud;
1124 int ret;
1125
1126 dst_ptl = pud_lock(dst_mm, dst_pud);
1127 src_ptl = pud_lockptr(src_mm, src_pud);
1128 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1129
1130 ret = -EAGAIN;
1131 pud = *src_pud;
1132 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1133 goto out_unlock;
1134
1135 /*
1136 * When page table lock is held, the huge zero pud should not be
1137 * under splitting since we don't split the page itself, only pud to
1138 * a page table.
1139 */
1140 if (is_huge_zero_pud(pud)) {
1141 /* No huge zero pud yet */
1142 }
1143
1144 pudp_set_wrprotect(src_mm, addr, src_pud);
1145 pud = pud_mkold(pud_wrprotect(pud));
1146 set_pud_at(dst_mm, addr, dst_pud, pud);
1147
1148 ret = 0;
1149out_unlock:
1150 spin_unlock(src_ptl);
1151 spin_unlock(dst_ptl);
1152 return ret;
1153}
1154
1155void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1156{
1157 pud_t entry;
1158 unsigned long haddr;
1159 bool write = vmf->flags & FAULT_FLAG_WRITE;
1160
1161 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1162 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1163 goto unlock;
1164
1165 entry = pud_mkyoung(orig_pud);
1166 if (write)
1167 entry = pud_mkdirty(entry);
1168 haddr = vmf->address & HPAGE_PUD_MASK;
1169 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1170 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1171
1172unlock:
1173 spin_unlock(vmf->ptl);
1174}
1175#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1176
82b0f8c3 1177void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1178{
1179 pmd_t entry;
1180 unsigned long haddr;
20f664aa 1181 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1182
82b0f8c3
JK
1183 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1184 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1185 goto unlock;
1186
1187 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1188 if (write)
1189 entry = pmd_mkdirty(entry);
82b0f8c3 1190 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1191 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1192 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1193
1194unlock:
82b0f8c3 1195 spin_unlock(vmf->ptl);
a1dd450b
WD
1196}
1197
2b740303
SJ
1198static vm_fault_t do_huge_pmd_wp_page_fallback(struct vm_fault *vmf,
1199 pmd_t orig_pmd, struct page *page)
71e3aac0 1200{
82b0f8c3
JK
1201 struct vm_area_struct *vma = vmf->vma;
1202 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1203 struct mem_cgroup *memcg;
71e3aac0
AA
1204 pgtable_t pgtable;
1205 pmd_t _pmd;
2b740303
SJ
1206 int i;
1207 vm_fault_t ret = 0;
71e3aac0 1208 struct page **pages;
ac46d4f3 1209 struct mmu_notifier_range range;
71e3aac0 1210
6da2ec56
KC
1211 pages = kmalloc_array(HPAGE_PMD_NR, sizeof(struct page *),
1212 GFP_KERNEL);
71e3aac0
AA
1213 if (unlikely(!pages)) {
1214 ret |= VM_FAULT_OOM;
1215 goto out;
1216 }
1217
1218 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1219 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1220 vmf->address, page_to_nid(page));
b9bbfbe3 1221 if (unlikely(!pages[i] ||
2cf85583 1222 mem_cgroup_try_charge_delay(pages[i], vma->vm_mm,
bae473a4 1223 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1224 if (pages[i])
71e3aac0 1225 put_page(pages[i]);
b9bbfbe3 1226 while (--i >= 0) {
00501b53
JW
1227 memcg = (void *)page_private(pages[i]);
1228 set_page_private(pages[i], 0);
f627c2f5
KS
1229 mem_cgroup_cancel_charge(pages[i], memcg,
1230 false);
b9bbfbe3
AA
1231 put_page(pages[i]);
1232 }
71e3aac0
AA
1233 kfree(pages);
1234 ret |= VM_FAULT_OOM;
1235 goto out;
1236 }
00501b53 1237 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1238 }
1239
1240 for (i = 0; i < HPAGE_PMD_NR; i++) {
1241 copy_user_highpage(pages[i], page + i,
0089e485 1242 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1243 __SetPageUptodate(pages[i]);
1244 cond_resched();
1245 }
1246
7269f999
JG
1247 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1248 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1249 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1250
82b0f8c3
JK
1251 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1252 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1253 goto out_free_pages;
309381fe 1254 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1255
0f10851e
JG
1256 /*
1257 * Leave pmd empty until pte is filled note we must notify here as
1258 * concurrent CPU thread might write to new page before the call to
1259 * mmu_notifier_invalidate_range_end() happens which can lead to a
1260 * device seeing memory write in different order than CPU.
1261 *
ad56b738 1262 * See Documentation/vm/mmu_notifier.rst
0f10851e 1263 */
82b0f8c3 1264 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0 1265
82b0f8c3 1266 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1267 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1268
1269 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1270 pte_t entry;
71e3aac0
AA
1271 entry = mk_pte(pages[i], vma->vm_page_prot);
1272 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1273 memcg = (void *)page_private(pages[i]);
1274 set_page_private(pages[i], 0);
82b0f8c3 1275 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1276 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1277 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1278 vmf->pte = pte_offset_map(&_pmd, haddr);
1279 VM_BUG_ON(!pte_none(*vmf->pte));
1280 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1281 pte_unmap(vmf->pte);
71e3aac0
AA
1282 }
1283 kfree(pages);
1284
71e3aac0 1285 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1286 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1287 page_remove_rmap(page, true);
82b0f8c3 1288 spin_unlock(vmf->ptl);
71e3aac0 1289
4645b9fe
JG
1290 /*
1291 * No need to double call mmu_notifier->invalidate_range() callback as
1292 * the above pmdp_huge_clear_flush_notify() did already call it.
1293 */
ac46d4f3 1294 mmu_notifier_invalidate_range_only_end(&range);
2ec74c3e 1295
71e3aac0
AA
1296 ret |= VM_FAULT_WRITE;
1297 put_page(page);
1298
1299out:
1300 return ret;
1301
1302out_free_pages:
82b0f8c3 1303 spin_unlock(vmf->ptl);
ac46d4f3 1304 mmu_notifier_invalidate_range_end(&range);
b9bbfbe3 1305 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1306 memcg = (void *)page_private(pages[i]);
1307 set_page_private(pages[i], 0);
f627c2f5 1308 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1309 put_page(pages[i]);
b9bbfbe3 1310 }
71e3aac0
AA
1311 kfree(pages);
1312 goto out;
1313}
1314
2b740303 1315vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1316{
82b0f8c3 1317 struct vm_area_struct *vma = vmf->vma;
93b4796d 1318 struct page *page = NULL, *new_page;
00501b53 1319 struct mem_cgroup *memcg;
82b0f8c3 1320 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
ac46d4f3 1321 struct mmu_notifier_range range;
3b363692 1322 gfp_t huge_gfp; /* for allocation and charge */
2b740303 1323 vm_fault_t ret = 0;
71e3aac0 1324
82b0f8c3 1325 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1326 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1327 if (is_huge_zero_pmd(orig_pmd))
1328 goto alloc;
82b0f8c3
JK
1329 spin_lock(vmf->ptl);
1330 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1331 goto out_unlock;
1332
1333 page = pmd_page(orig_pmd);
309381fe 1334 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1335 /*
1336 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1337 * part.
1f25fe20 1338 */
ba3c4ce6
HY
1339 if (!trylock_page(page)) {
1340 get_page(page);
1341 spin_unlock(vmf->ptl);
1342 lock_page(page);
1343 spin_lock(vmf->ptl);
1344 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1345 unlock_page(page);
1346 put_page(page);
1347 goto out_unlock;
1348 }
1349 put_page(page);
1350 }
1351 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1352 pmd_t entry;
1353 entry = pmd_mkyoung(orig_pmd);
f55e1014 1354 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1355 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1356 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1357 ret |= VM_FAULT_WRITE;
ba3c4ce6 1358 unlock_page(page);
71e3aac0
AA
1359 goto out_unlock;
1360 }
ba3c4ce6 1361 unlock_page(page);
ddc58f27 1362 get_page(page);
82b0f8c3 1363 spin_unlock(vmf->ptl);
93b4796d 1364alloc:
7635d9cb 1365 if (__transparent_hugepage_enabled(vma) &&
077fcf11 1366 !transparent_hugepage_debug_cow()) {
19deb769
DR
1367 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1368 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1369 } else
71e3aac0
AA
1370 new_page = NULL;
1371
9a982250
KS
1372 if (likely(new_page)) {
1373 prep_transhuge_page(new_page);
1374 } else {
eecc1e42 1375 if (!page) {
82b0f8c3 1376 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1377 ret |= VM_FAULT_FALLBACK;
93b4796d 1378 } else {
82b0f8c3 1379 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1380 if (ret & VM_FAULT_OOM) {
82b0f8c3 1381 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1382 ret |= VM_FAULT_FALLBACK;
1383 }
ddc58f27 1384 put_page(page);
93b4796d 1385 }
17766dde 1386 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1387 goto out;
1388 }
1389
2cf85583 1390 if (unlikely(mem_cgroup_try_charge_delay(new_page, vma->vm_mm,
2a70f6a7 1391 huge_gfp, &memcg, true))) {
b9bbfbe3 1392 put_page(new_page);
82b0f8c3 1393 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1394 if (page)
ddc58f27 1395 put_page(page);
9845cbbd 1396 ret |= VM_FAULT_FALLBACK;
17766dde 1397 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1398 goto out;
1399 }
1400
17766dde 1401 count_vm_event(THP_FAULT_ALLOC);
1ff9e6e1 1402 count_memcg_events(memcg, THP_FAULT_ALLOC, 1);
17766dde 1403
eecc1e42 1404 if (!page)
c79b57e4 1405 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d 1406 else
c9f4cd71
HY
1407 copy_user_huge_page(new_page, page, vmf->address,
1408 vma, HPAGE_PMD_NR);
71e3aac0
AA
1409 __SetPageUptodate(new_page);
1410
7269f999
JG
1411 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
1412 haddr, haddr + HPAGE_PMD_SIZE);
ac46d4f3 1413 mmu_notifier_invalidate_range_start(&range);
2ec74c3e 1414
82b0f8c3 1415 spin_lock(vmf->ptl);
93b4796d 1416 if (page)
ddc58f27 1417 put_page(page);
82b0f8c3
JK
1418 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1419 spin_unlock(vmf->ptl);
f627c2f5 1420 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1421 put_page(new_page);
2ec74c3e 1422 goto out_mn;
b9bbfbe3 1423 } else {
71e3aac0 1424 pmd_t entry;
3122359a 1425 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
f55e1014 1426 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1427 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1428 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1429 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1430 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1431 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1432 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1433 if (!page) {
bae473a4 1434 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1435 } else {
309381fe 1436 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1437 page_remove_rmap(page, true);
93b4796d
KS
1438 put_page(page);
1439 }
71e3aac0
AA
1440 ret |= VM_FAULT_WRITE;
1441 }
82b0f8c3 1442 spin_unlock(vmf->ptl);
2ec74c3e 1443out_mn:
4645b9fe
JG
1444 /*
1445 * No need to double call mmu_notifier->invalidate_range() callback as
1446 * the above pmdp_huge_clear_flush_notify() did already call it.
1447 */
ac46d4f3 1448 mmu_notifier_invalidate_range_only_end(&range);
71e3aac0
AA
1449out:
1450 return ret;
2ec74c3e 1451out_unlock:
82b0f8c3 1452 spin_unlock(vmf->ptl);
2ec74c3e 1453 return ret;
71e3aac0
AA
1454}
1455
8310d48b 1456/*
89468d80
LT
1457 * FOLL_FORCE or a forced COW break can write even to unwritable pmd's,
1458 * but only after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1459 */
1460static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1461{
89468d80 1462 return pmd_write(pmd) || ((flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1463}
1464
b676b293 1465struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1466 unsigned long addr,
1467 pmd_t *pmd,
1468 unsigned int flags)
1469{
b676b293 1470 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1471 struct page *page = NULL;
1472
c4088ebd 1473 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1474
8310d48b 1475 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1476 goto out;
1477
85facf25
KS
1478 /* Avoid dumping huge zero page */
1479 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1480 return ERR_PTR(-EFAULT);
1481
2b4847e7 1482 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1483 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1484 goto out;
1485
71e3aac0 1486 page = pmd_page(*pmd);
ca120cf6 1487 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3 1488 if (flags & FOLL_TOUCH)
a8f97366 1489 touch_pmd(vma, addr, pmd, flags);
de60f5f1 1490 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1491 /*
1492 * We don't mlock() pte-mapped THPs. This way we can avoid
1493 * leaking mlocked pages into non-VM_LOCKED VMAs.
1494 *
9a73f61b
KS
1495 * For anon THP:
1496 *
e90309c9
KS
1497 * In most cases the pmd is the only mapping of the page as we
1498 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1499 * writable private mappings in populate_vma_page_range().
1500 *
1501 * The only scenario when we have the page shared here is if we
1502 * mlocking read-only mapping shared over fork(). We skip
1503 * mlocking such pages.
9a73f61b
KS
1504 *
1505 * For file THP:
1506 *
1507 * We can expect PageDoubleMap() to be stable under page lock:
1508 * for file pages we set it in page_add_file_rmap(), which
1509 * requires page to be locked.
e90309c9 1510 */
9a73f61b
KS
1511
1512 if (PageAnon(page) && compound_mapcount(page) != 1)
1513 goto skip_mlock;
1514 if (PageDoubleMap(page) || !page->mapping)
1515 goto skip_mlock;
1516 if (!trylock_page(page))
1517 goto skip_mlock;
1518 lru_add_drain();
1519 if (page->mapping && !PageDoubleMap(page))
1520 mlock_vma_page(page);
1521 unlock_page(page);
b676b293 1522 }
9a73f61b 1523skip_mlock:
71e3aac0 1524 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1525 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1526 if (flags & FOLL_GET)
ddc58f27 1527 get_page(page);
71e3aac0
AA
1528
1529out:
1530 return page;
1531}
1532
d10e63f2 1533/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1534vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1535{
82b0f8c3 1536 struct vm_area_struct *vma = vmf->vma;
b8916634 1537 struct anon_vma *anon_vma = NULL;
b32967ff 1538 struct page *page;
82b0f8c3 1539 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1540 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1541 int target_nid, last_cpupid = -1;
8191acbd
MG
1542 bool page_locked;
1543 bool migrated = false;
b191f9b1 1544 bool was_writable;
6688cc05 1545 int flags = 0;
d10e63f2 1546
82b0f8c3
JK
1547 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1548 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1549 goto out_unlock;
1550
de466bd6
MG
1551 /*
1552 * If there are potential migrations, wait for completion and retry
1553 * without disrupting NUMA hinting information. Do not relock and
1554 * check_same as the page may no longer be mapped.
1555 */
82b0f8c3
JK
1556 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1557 page = pmd_page(*vmf->pmd);
3c226c63
MR
1558 if (!get_page_unless_zero(page))
1559 goto out_unlock;
82b0f8c3 1560 spin_unlock(vmf->ptl);
9a1ea439 1561 put_and_wait_on_page_locked(page);
de466bd6
MG
1562 goto out;
1563 }
1564
d10e63f2 1565 page = pmd_page(pmd);
a1a46184 1566 BUG_ON(is_huge_zero_page(page));
8191acbd 1567 page_nid = page_to_nid(page);
90572890 1568 last_cpupid = page_cpupid_last(page);
03c5a6e1 1569 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1570 if (page_nid == this_nid) {
03c5a6e1 1571 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1572 flags |= TNF_FAULT_LOCAL;
1573 }
4daae3b4 1574
bea66fbd 1575 /* See similar comment in do_numa_page for explanation */
288bc549 1576 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1577 flags |= TNF_NO_GROUP;
1578
ff9042b1
MG
1579 /*
1580 * Acquire the page lock to serialise THP migrations but avoid dropping
1581 * page_table_lock if at all possible
1582 */
b8916634
MG
1583 page_locked = trylock_page(page);
1584 target_nid = mpol_misplaced(page, vma, haddr);
98fa15f3 1585 if (target_nid == NUMA_NO_NODE) {
b8916634 1586 /* If the page was locked, there are no parallel migrations */
a54a407f 1587 if (page_locked)
b8916634 1588 goto clear_pmdnuma;
2b4847e7 1589 }
4daae3b4 1590
de466bd6 1591 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1592 if (!page_locked) {
98fa15f3 1593 page_nid = NUMA_NO_NODE;
3c226c63
MR
1594 if (!get_page_unless_zero(page))
1595 goto out_unlock;
82b0f8c3 1596 spin_unlock(vmf->ptl);
9a1ea439 1597 put_and_wait_on_page_locked(page);
b8916634
MG
1598 goto out;
1599 }
1600
2b4847e7
MG
1601 /*
1602 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1603 * to serialises splits
1604 */
b8916634 1605 get_page(page);
82b0f8c3 1606 spin_unlock(vmf->ptl);
b8916634 1607 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1608
c69307d5 1609 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1610 spin_lock(vmf->ptl);
1611 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1612 unlock_page(page);
1613 put_page(page);
98fa15f3 1614 page_nid = NUMA_NO_NODE;
4daae3b4 1615 goto out_unlock;
b32967ff 1616 }
ff9042b1 1617
c3a489ca
MG
1618 /* Bail if we fail to protect against THP splits for any reason */
1619 if (unlikely(!anon_vma)) {
1620 put_page(page);
98fa15f3 1621 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1622 goto clear_pmdnuma;
1623 }
1624
8b1b436d
PZ
1625 /*
1626 * Since we took the NUMA fault, we must have observed the !accessible
1627 * bit. Make sure all other CPUs agree with that, to avoid them
1628 * modifying the page we're about to migrate.
1629 *
1630 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1631 * inc_tlb_flush_pending().
1632 *
1633 * We are not sure a pending tlb flush here is for a huge page
1634 * mapping or not. Hence use the tlb range variant
8b1b436d 1635 */
7066f0f9 1636 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1637 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1638 /*
1639 * change_huge_pmd() released the pmd lock before
1640 * invalidating the secondary MMUs sharing the primary
1641 * MMU pagetables (with ->invalidate_range()). The
1642 * mmu_notifier_invalidate_range_end() (which
1643 * internally calls ->invalidate_range()) in
1644 * change_pmd_range() will run after us, so we can't
1645 * rely on it here and we need an explicit invalidate.
1646 */
1647 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1648 haddr + HPAGE_PMD_SIZE);
1649 }
8b1b436d 1650
a54a407f
MG
1651 /*
1652 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1653 * and access rights restored.
a54a407f 1654 */
82b0f8c3 1655 spin_unlock(vmf->ptl);
8b1b436d 1656
bae473a4 1657 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1658 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1659 if (migrated) {
1660 flags |= TNF_MIGRATED;
8191acbd 1661 page_nid = target_nid;
074c2381
MG
1662 } else
1663 flags |= TNF_MIGRATE_FAIL;
b32967ff 1664
8191acbd 1665 goto out;
b32967ff 1666clear_pmdnuma:
a54a407f 1667 BUG_ON(!PageLocked(page));
288bc549 1668 was_writable = pmd_savedwrite(pmd);
4d942466 1669 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1670 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1671 if (was_writable)
1672 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1673 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1674 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1675 unlock_page(page);
d10e63f2 1676out_unlock:
82b0f8c3 1677 spin_unlock(vmf->ptl);
b8916634
MG
1678
1679out:
1680 if (anon_vma)
1681 page_unlock_anon_vma_read(anon_vma);
1682
98fa15f3 1683 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1684 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1685 flags);
8191acbd 1686
d10e63f2
MG
1687 return 0;
1688}
1689
319904ad
HY
1690/*
1691 * Return true if we do MADV_FREE successfully on entire pmd page.
1692 * Otherwise, return false.
1693 */
1694bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1695 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1696{
1697 spinlock_t *ptl;
1698 pmd_t orig_pmd;
1699 struct page *page;
1700 struct mm_struct *mm = tlb->mm;
319904ad 1701 bool ret = false;
b8d3c4c3 1702
ed6a7935 1703 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1704
b6ec57f4
KS
1705 ptl = pmd_trans_huge_lock(pmd, vma);
1706 if (!ptl)
25eedabe 1707 goto out_unlocked;
b8d3c4c3
MK
1708
1709 orig_pmd = *pmd;
319904ad 1710 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1711 goto out;
b8d3c4c3 1712
84c3fc4e
ZY
1713 if (unlikely(!pmd_present(orig_pmd))) {
1714 VM_BUG_ON(thp_migration_supported() &&
1715 !is_pmd_migration_entry(orig_pmd));
1716 goto out;
1717 }
1718
b8d3c4c3
MK
1719 page = pmd_page(orig_pmd);
1720 /*
1721 * If other processes are mapping this page, we couldn't discard
1722 * the page unless they all do MADV_FREE so let's skip the page.
1723 */
1724 if (page_mapcount(page) != 1)
1725 goto out;
1726
1727 if (!trylock_page(page))
1728 goto out;
1729
1730 /*
1731 * If user want to discard part-pages of THP, split it so MADV_FREE
1732 * will deactivate only them.
1733 */
1734 if (next - addr != HPAGE_PMD_SIZE) {
1735 get_page(page);
1736 spin_unlock(ptl);
9818b8cd 1737 split_huge_page(page);
b8d3c4c3 1738 unlock_page(page);
bbf29ffc 1739 put_page(page);
b8d3c4c3
MK
1740 goto out_unlocked;
1741 }
1742
1743 if (PageDirty(page))
1744 ClearPageDirty(page);
1745 unlock_page(page);
1746
b8d3c4c3 1747 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1748 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1749 orig_pmd = pmd_mkold(orig_pmd);
1750 orig_pmd = pmd_mkclean(orig_pmd);
1751
1752 set_pmd_at(mm, addr, pmd, orig_pmd);
1753 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1754 }
802a3a92
SL
1755
1756 mark_page_lazyfree(page);
319904ad 1757 ret = true;
b8d3c4c3
MK
1758out:
1759 spin_unlock(ptl);
1760out_unlocked:
1761 return ret;
1762}
1763
953c66c2
AK
1764static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1765{
1766 pgtable_t pgtable;
1767
1768 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1769 pte_free(mm, pgtable);
c4812909 1770 mm_dec_nr_ptes(mm);
953c66c2
AK
1771}
1772
71e3aac0 1773int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1774 pmd_t *pmd, unsigned long addr)
71e3aac0 1775{
da146769 1776 pmd_t orig_pmd;
bf929152 1777 spinlock_t *ptl;
71e3aac0 1778
ed6a7935 1779 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1780
b6ec57f4
KS
1781 ptl = __pmd_trans_huge_lock(pmd, vma);
1782 if (!ptl)
da146769
KS
1783 return 0;
1784 /*
1785 * For architectures like ppc64 we look at deposited pgtable
1786 * when calling pmdp_huge_get_and_clear. So do the
1787 * pgtable_trans_huge_withdraw after finishing pmdp related
1788 * operations.
1789 */
1790 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1791 tlb->fullmm);
1792 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1793 if (vma_is_dax(vma)) {
3b6521f5
OH
1794 if (arch_needs_pgtable_deposit())
1795 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1796 spin_unlock(ptl);
1797 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1798 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1799 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1800 zap_deposited_table(tlb->mm, pmd);
da146769 1801 spin_unlock(ptl);
c0f2e176 1802 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1803 } else {
616b8371
ZY
1804 struct page *page = NULL;
1805 int flush_needed = 1;
1806
1807 if (pmd_present(orig_pmd)) {
1808 page = pmd_page(orig_pmd);
1809 page_remove_rmap(page, true);
1810 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1811 VM_BUG_ON_PAGE(!PageHead(page), page);
1812 } else if (thp_migration_supported()) {
1813 swp_entry_t entry;
1814
1815 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1816 entry = pmd_to_swp_entry(orig_pmd);
1817 page = pfn_to_page(swp_offset(entry));
1818 flush_needed = 0;
1819 } else
1820 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1821
b5072380 1822 if (PageAnon(page)) {
c14a6eb4 1823 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1824 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1825 } else {
953c66c2
AK
1826 if (arch_needs_pgtable_deposit())
1827 zap_deposited_table(tlb->mm, pmd);
fadae295 1828 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1829 }
616b8371 1830
da146769 1831 spin_unlock(ptl);
616b8371
ZY
1832 if (flush_needed)
1833 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1834 }
da146769 1835 return 1;
71e3aac0
AA
1836}
1837
1dd38b6c
AK
1838#ifndef pmd_move_must_withdraw
1839static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1840 spinlock_t *old_pmd_ptl,
1841 struct vm_area_struct *vma)
1842{
1843 /*
1844 * With split pmd lock we also need to move preallocated
1845 * PTE page table if new_pmd is on different PMD page table.
1846 *
1847 * We also don't deposit and withdraw tables for file pages.
1848 */
1849 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1850}
1851#endif
1852
ab6e3d09
NH
1853static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1854{
1855#ifdef CONFIG_MEM_SOFT_DIRTY
1856 if (unlikely(is_pmd_migration_entry(pmd)))
1857 pmd = pmd_swp_mksoft_dirty(pmd);
1858 else if (pmd_present(pmd))
1859 pmd = pmd_mksoft_dirty(pmd);
1860#endif
1861 return pmd;
1862}
1863
bf8616d5 1864bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1865 unsigned long new_addr, unsigned long old_end,
eb66ae03 1866 pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1867{
bf929152 1868 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1869 pmd_t pmd;
37a1c49a 1870 struct mm_struct *mm = vma->vm_mm;
5d190420 1871 bool force_flush = false;
37a1c49a
AA
1872
1873 if ((old_addr & ~HPAGE_PMD_MASK) ||
1874 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1875 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1876 return false;
37a1c49a
AA
1877
1878 /*
1879 * The destination pmd shouldn't be established, free_pgtables()
1880 * should have release it.
1881 */
1882 if (WARN_ON(!pmd_none(*new_pmd))) {
1883 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1884 return false;
37a1c49a
AA
1885 }
1886
bf929152
KS
1887 /*
1888 * We don't have to worry about the ordering of src and dst
1889 * ptlocks because exclusive mmap_sem prevents deadlock.
1890 */
b6ec57f4
KS
1891 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1892 if (old_ptl) {
bf929152
KS
1893 new_ptl = pmd_lockptr(mm, new_pmd);
1894 if (new_ptl != old_ptl)
1895 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1896 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1897 if (pmd_present(pmd))
a2ce2666 1898 force_flush = true;
025c5b24 1899 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1900
1dd38b6c 1901 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1902 pgtable_t pgtable;
3592806c
KS
1903 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1904 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1905 }
ab6e3d09
NH
1906 pmd = move_soft_dirty_pmd(pmd);
1907 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1908 if (force_flush)
1909 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1910 if (new_ptl != old_ptl)
1911 spin_unlock(new_ptl);
bf929152 1912 spin_unlock(old_ptl);
4b471e88 1913 return true;
37a1c49a 1914 }
4b471e88 1915 return false;
37a1c49a
AA
1916}
1917
f123d74a
MG
1918/*
1919 * Returns
1920 * - 0 if PMD could not be locked
1921 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1922 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1923 */
cd7548ab 1924int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1925 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1926{
1927 struct mm_struct *mm = vma->vm_mm;
bf929152 1928 spinlock_t *ptl;
0a85e51d
KS
1929 pmd_t entry;
1930 bool preserve_write;
1931 int ret;
cd7548ab 1932
b6ec57f4 1933 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1934 if (!ptl)
1935 return 0;
e944fd67 1936
0a85e51d
KS
1937 preserve_write = prot_numa && pmd_write(*pmd);
1938 ret = 1;
e944fd67 1939
84c3fc4e
ZY
1940#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1941 if (is_swap_pmd(*pmd)) {
1942 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1943
1944 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1945 if (is_write_migration_entry(entry)) {
1946 pmd_t newpmd;
1947 /*
1948 * A protection check is difficult so
1949 * just be safe and disable write
1950 */
1951 make_migration_entry_read(&entry);
1952 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1953 if (pmd_swp_soft_dirty(*pmd))
1954 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1955 set_pmd_at(mm, addr, pmd, newpmd);
1956 }
1957 goto unlock;
1958 }
1959#endif
1960
0a85e51d
KS
1961 /*
1962 * Avoid trapping faults against the zero page. The read-only
1963 * data is likely to be read-cached on the local CPU and
1964 * local/remote hits to the zero page are not interesting.
1965 */
1966 if (prot_numa && is_huge_zero_pmd(*pmd))
1967 goto unlock;
025c5b24 1968
0a85e51d
KS
1969 if (prot_numa && pmd_protnone(*pmd))
1970 goto unlock;
1971
ced10803
KS
1972 /*
1973 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1974 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1975 * which is also under down_read(mmap_sem):
1976 *
1977 * CPU0: CPU1:
1978 * change_huge_pmd(prot_numa=1)
1979 * pmdp_huge_get_and_clear_notify()
1980 * madvise_dontneed()
1981 * zap_pmd_range()
1982 * pmd_trans_huge(*pmd) == 0 (without ptl)
1983 * // skip the pmd
1984 * set_pmd_at();
1985 * // pmd is re-established
1986 *
1987 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1988 * which may break userspace.
1989 *
1990 * pmdp_invalidate() is required to make sure we don't miss
1991 * dirty/young flags set by hardware.
1992 */
a3cf988f 1993 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1994
0a85e51d
KS
1995 entry = pmd_modify(entry, newprot);
1996 if (preserve_write)
1997 entry = pmd_mk_savedwrite(entry);
1998 ret = HPAGE_PMD_NR;
1999 set_pmd_at(mm, addr, pmd, entry);
2000 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
2001unlock:
2002 spin_unlock(ptl);
025c5b24
NH
2003 return ret;
2004}
2005
2006/*
8f19b0c0 2007 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 2008 *
8f19b0c0
HY
2009 * Note that if it returns page table lock pointer, this routine returns without
2010 * unlocking page table lock. So callers must unlock it.
025c5b24 2011 */
b6ec57f4 2012spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 2013{
b6ec57f4
KS
2014 spinlock_t *ptl;
2015 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
2016 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
2017 pmd_devmap(*pmd)))
b6ec57f4
KS
2018 return ptl;
2019 spin_unlock(ptl);
2020 return NULL;
cd7548ab
JW
2021}
2022
a00cc7d9
MW
2023/*
2024 * Returns true if a given pud maps a thp, false otherwise.
2025 *
2026 * Note that if it returns true, this routine returns without unlocking page
2027 * table lock. So callers must unlock it.
2028 */
2029spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
2030{
2031 spinlock_t *ptl;
2032
2033 ptl = pud_lock(vma->vm_mm, pud);
2034 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
2035 return ptl;
2036 spin_unlock(ptl);
2037 return NULL;
2038}
2039
2040#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
2041int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
2042 pud_t *pud, unsigned long addr)
2043{
a00cc7d9
MW
2044 spinlock_t *ptl;
2045
2046 ptl = __pud_trans_huge_lock(pud, vma);
2047 if (!ptl)
2048 return 0;
2049 /*
2050 * For architectures like ppc64 we look at deposited pgtable
2051 * when calling pudp_huge_get_and_clear. So do the
2052 * pgtable_trans_huge_withdraw after finishing pudp related
2053 * operations.
2054 */
70516b93 2055 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9
MW
2056 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2057 if (vma_is_dax(vma)) {
2058 spin_unlock(ptl);
2059 /* No zero page support yet */
2060 } else {
2061 /* No support for anonymous PUD pages yet */
2062 BUG();
2063 }
2064 return 1;
2065}
2066
2067static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
2068 unsigned long haddr)
2069{
2070 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
2071 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2072 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
2073 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
2074
ce9311cf 2075 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
2076
2077 pudp_huge_clear_flush_notify(vma, haddr, pud);
2078}
2079
2080void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
2081 unsigned long address)
2082{
2083 spinlock_t *ptl;
ac46d4f3 2084 struct mmu_notifier_range range;
a00cc7d9 2085
7269f999 2086 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2087 address & HPAGE_PUD_MASK,
ac46d4f3
JG
2088 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
2089 mmu_notifier_invalidate_range_start(&range);
2090 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
2091 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
2092 goto out;
ac46d4f3 2093 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
2094
2095out:
2096 spin_unlock(ptl);
4645b9fe
JG
2097 /*
2098 * No need to double call mmu_notifier->invalidate_range() callback as
2099 * the above pudp_huge_clear_flush_notify() did already call it.
2100 */
ac46d4f3 2101 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
2102}
2103#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2104
eef1b3ba
KS
2105static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2106 unsigned long haddr, pmd_t *pmd)
2107{
2108 struct mm_struct *mm = vma->vm_mm;
2109 pgtable_t pgtable;
2110 pmd_t _pmd;
2111 int i;
2112
0f10851e
JG
2113 /*
2114 * Leave pmd empty until pte is filled note that it is fine to delay
2115 * notification until mmu_notifier_invalidate_range_end() as we are
2116 * replacing a zero pmd write protected page with a zero pte write
2117 * protected page.
2118 *
ad56b738 2119 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2120 */
2121 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2122
2123 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2124 pmd_populate(mm, &_pmd, pgtable);
2125
2126 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2127 pte_t *pte, entry;
2128 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2129 entry = pte_mkspecial(entry);
2130 pte = pte_offset_map(&_pmd, haddr);
2131 VM_BUG_ON(!pte_none(*pte));
2132 set_pte_at(mm, haddr, pte, entry);
2133 pte_unmap(pte);
2134 }
2135 smp_wmb(); /* make pte visible before pmd */
2136 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2137}
2138
2139static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2140 unsigned long haddr, bool freeze)
eef1b3ba
KS
2141{
2142 struct mm_struct *mm = vma->vm_mm;
2143 struct page *page;
2144 pgtable_t pgtable;
423ac9af 2145 pmd_t old_pmd, _pmd;
a3cf988f 2146 bool young, write, soft_dirty, pmd_migration = false;
2ac015e2 2147 unsigned long addr;
eef1b3ba
KS
2148 int i;
2149
2150 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2151 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2152 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2153 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2154 && !pmd_devmap(*pmd));
eef1b3ba
KS
2155
2156 count_vm_event(THP_SPLIT_PMD);
2157
d21b9e57
KS
2158 if (!vma_is_anonymous(vma)) {
2159 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2160 /*
2161 * We are going to unmap this huge page. So
2162 * just go ahead and zap it
2163 */
2164 if (arch_needs_pgtable_deposit())
2165 zap_deposited_table(mm, pmd);
d21b9e57
KS
2166 if (vma_is_dax(vma))
2167 return;
2168 page = pmd_page(_pmd);
e1f1b157
HD
2169 if (!PageDirty(page) && pmd_dirty(_pmd))
2170 set_page_dirty(page);
d21b9e57
KS
2171 if (!PageReferenced(page) && pmd_young(_pmd))
2172 SetPageReferenced(page);
2173 page_remove_rmap(page, true);
2174 put_page(page);
fadae295 2175 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2176 return;
83bc7416 2177 } else if (pmd_trans_huge(*pmd) && is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2178 /*
2179 * FIXME: Do we want to invalidate secondary mmu by calling
2180 * mmu_notifier_invalidate_range() see comments below inside
2181 * __split_huge_pmd() ?
2182 *
2183 * We are going from a zero huge page write protected to zero
2184 * small page also write protected so it does not seems useful
2185 * to invalidate secondary mmu at this time.
2186 */
eef1b3ba
KS
2187 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2188 }
2189
423ac9af
AK
2190 /*
2191 * Up to this point the pmd is present and huge and userland has the
2192 * whole access to the hugepage during the split (which happens in
2193 * place). If we overwrite the pmd with the not-huge version pointing
2194 * to the pte here (which of course we could if all CPUs were bug
2195 * free), userland could trigger a small page size TLB miss on the
2196 * small sized TLB while the hugepage TLB entry is still established in
2197 * the huge TLB. Some CPU doesn't like that.
2198 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2199 * 383 on page 93. Intel should be safe but is also warns that it's
2200 * only safe if the permission and cache attributes of the two entries
2201 * loaded in the two TLB is identical (which should be the case here).
2202 * But it is generally safer to never allow small and huge TLB entries
2203 * for the same virtual address to be loaded simultaneously. So instead
2204 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2205 * current pmd notpresent (atomically because here the pmd_trans_huge
2206 * must remain set at all times on the pmd until the split is complete
2207 * for this pmd), then we flush the SMP TLB and finally we write the
2208 * non-huge version of the pmd entry with pmd_populate.
2209 */
2210 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2211
423ac9af 2212 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2213 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2214 swp_entry_t entry;
2215
423ac9af 2216 entry = pmd_to_swp_entry(old_pmd);
84c3fc4e 2217 page = pfn_to_page(swp_offset(entry));
2e83ee1d
PX
2218 write = is_write_migration_entry(entry);
2219 young = false;
2220 soft_dirty = pmd_swp_soft_dirty(old_pmd);
2221 } else {
423ac9af 2222 page = pmd_page(old_pmd);
2e83ee1d
PX
2223 if (pmd_dirty(old_pmd))
2224 SetPageDirty(page);
2225 write = pmd_write(old_pmd);
2226 young = pmd_young(old_pmd);
2227 soft_dirty = pmd_soft_dirty(old_pmd);
2228 }
eef1b3ba 2229 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2230 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2231
423ac9af
AK
2232 /*
2233 * Withdraw the table only after we mark the pmd entry invalid.
2234 * This's critical for some architectures (Power).
2235 */
eef1b3ba
KS
2236 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2237 pmd_populate(mm, &_pmd, pgtable);
2238
2ac015e2 2239 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2240 pte_t entry, *pte;
2241 /*
2242 * Note that NUMA hinting access restrictions are not
2243 * transferred to avoid any possibility of altering
2244 * permissions across VMAs.
2245 */
84c3fc4e 2246 if (freeze || pmd_migration) {
ba988280
KS
2247 swp_entry_t swp_entry;
2248 swp_entry = make_migration_entry(page + i, write);
2249 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2250 if (soft_dirty)
2251 entry = pte_swp_mksoft_dirty(entry);
ba988280 2252 } else {
6d2329f8 2253 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2254 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2255 if (!write)
2256 entry = pte_wrprotect(entry);
2257 if (!young)
2258 entry = pte_mkold(entry);
804dd150
AA
2259 if (soft_dirty)
2260 entry = pte_mksoft_dirty(entry);
ba988280 2261 }
2ac015e2 2262 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2263 BUG_ON(!pte_none(*pte));
2ac015e2 2264 set_pte_at(mm, addr, pte, entry);
83bc7416 2265 if (!pmd_migration)
eef1b3ba 2266 atomic_inc(&page[i]._mapcount);
83bc7416 2267 pte_unmap(pte);
eef1b3ba
KS
2268 }
2269
83bc7416
RC
2270 if (!pmd_migration) {
2271 /*
2272 * Set PG_double_map before dropping compound_mapcount to avoid
2273 * false-negative page_mapped().
2274 */
2275 if (compound_mapcount(page) > 1 &&
2276 !TestSetPageDoubleMap(page)) {
eef1b3ba 2277 for (i = 0; i < HPAGE_PMD_NR; i++)
83bc7416
RC
2278 atomic_inc(&page[i]._mapcount);
2279 }
2280
2281 lock_page_memcg(page);
2282 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2283 /* Last compound_mapcount is gone. */
2284 __dec_lruvec_page_state(page, NR_ANON_THPS);
2285 if (TestClearPageDoubleMap(page)) {
2286 /* No need in mapcount reference anymore */
2287 for (i = 0; i < HPAGE_PMD_NR; i++)
2288 atomic_dec(&page[i]._mapcount);
2289 }
eef1b3ba 2290 }
83bc7416 2291 unlock_page_memcg(page);
eef1b3ba
KS
2292 }
2293
2294 smp_wmb(); /* make pte visible before pmd */
2295 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2296
2297 if (freeze) {
2ac015e2 2298 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2299 page_remove_rmap(page + i, false);
2300 put_page(page + i);
2301 }
2302 }
eef1b3ba
KS
2303}
2304
2305void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2306 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2307{
2308 spinlock_t *ptl;
ac46d4f3 2309 struct mmu_notifier_range range;
484e4094
AA
2310 bool was_locked = false;
2311 pmd_t _pmd;
eef1b3ba 2312
7269f999 2313 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2314 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2315 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2316 mmu_notifier_invalidate_range_start(&range);
2317 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2318
2319 /*
2320 * If caller asks to setup a migration entries, we need a page to check
2321 * pmd against. Otherwise we can end up replacing wrong page.
2322 */
2323 VM_BUG_ON(freeze && !page);
484e4094
AA
2324 if (page) {
2325 VM_WARN_ON_ONCE(!PageLocked(page));
2326 was_locked = true;
2327 if (page != pmd_page(*pmd))
2328 goto out;
2329 }
33f4751e 2330
484e4094 2331repeat:
5c7fb56e 2332 if (pmd_trans_huge(*pmd)) {
484e4094
AA
2333 if (!page) {
2334 page = pmd_page(*pmd);
2335 if (unlikely(!trylock_page(page))) {
2336 get_page(page);
2337 _pmd = *pmd;
2338 spin_unlock(ptl);
2339 lock_page(page);
2340 spin_lock(ptl);
2341 if (unlikely(!pmd_same(*pmd, _pmd))) {
2342 unlock_page(page);
2343 put_page(page);
2344 page = NULL;
2345 goto repeat;
2346 }
2347 put_page(page);
2348 }
2349 }
5c7fb56e 2350 if (PageMlocked(page))
5f737714 2351 clear_page_mlock(page);
84c3fc4e 2352 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2353 goto out;
ac46d4f3 2354 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2355out:
eef1b3ba 2356 spin_unlock(ptl);
484e4094
AA
2357 if (!was_locked && page)
2358 unlock_page(page);
4645b9fe
JG
2359 /*
2360 * No need to double call mmu_notifier->invalidate_range() callback.
2361 * They are 3 cases to consider inside __split_huge_pmd_locked():
2362 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2363 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2364 * fault will trigger a flush_notify before pointing to a new page
2365 * (it is fine if the secondary mmu keeps pointing to the old zero
2366 * page in the meantime)
2367 * 3) Split a huge pmd into pte pointing to the same page. No need
2368 * to invalidate secondary tlb entry they are all still valid.
2369 * any further changes to individual pte will notify. So no need
2370 * to call mmu_notifier->invalidate_range()
2371 */
ac46d4f3 2372 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2373}
2374
fec89c10
KS
2375void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2376 bool freeze, struct page *page)
94fcc585 2377{
f72e7dcd 2378 pgd_t *pgd;
c2febafc 2379 p4d_t *p4d;
f72e7dcd 2380 pud_t *pud;
94fcc585
AA
2381 pmd_t *pmd;
2382
78ddc534 2383 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2384 if (!pgd_present(*pgd))
2385 return;
2386
c2febafc
KS
2387 p4d = p4d_offset(pgd, address);
2388 if (!p4d_present(*p4d))
2389 return;
2390
2391 pud = pud_offset(p4d, address);
f72e7dcd
HD
2392 if (!pud_present(*pud))
2393 return;
2394
2395 pmd = pmd_offset(pud, address);
fec89c10 2396
33f4751e 2397 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2398}
2399
e1b9996b 2400void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2401 unsigned long start,
2402 unsigned long end,
2403 long adjust_next)
2404{
2405 /*
2406 * If the new start address isn't hpage aligned and it could
2407 * previously contain an hugepage: check if we need to split
2408 * an huge pmd.
2409 */
2410 if (start & ~HPAGE_PMD_MASK &&
2411 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2412 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2413 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2414
2415 /*
2416 * If the new end address isn't hpage aligned and it could
2417 * previously contain an hugepage: check if we need to split
2418 * an huge pmd.
2419 */
2420 if (end & ~HPAGE_PMD_MASK &&
2421 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2422 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2423 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2424
2425 /*
2426 * If we're also updating the vma->vm_next->vm_start, if the new
2427 * vm_next->vm_start isn't page aligned and it could previously
2428 * contain an hugepage: check if we need to split an huge pmd.
2429 */
2430 if (adjust_next > 0) {
2431 struct vm_area_struct *next = vma->vm_next;
2432 unsigned long nstart = next->vm_start;
2433 nstart += adjust_next << PAGE_SHIFT;
2434 if (nstart & ~HPAGE_PMD_MASK &&
2435 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2436 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2437 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2438 }
2439}
e9b61f19 2440
906f9cdf 2441static void unmap_page(struct page *page)
e9b61f19 2442{
baa355fd 2443 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2444 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2445 bool unmap_success;
e9b61f19
KS
2446
2447 VM_BUG_ON_PAGE(!PageHead(page), page);
2448
baa355fd 2449 if (PageAnon(page))
b5ff8161 2450 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2451
666e5a40
MK
2452 unmap_success = try_to_unmap(page, ttu_flags);
2453 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2454}
2455
906f9cdf 2456static void remap_page(struct page *page)
e9b61f19 2457{
fec89c10 2458 int i;
ace71a19
KS
2459 if (PageTransHuge(page)) {
2460 remove_migration_ptes(page, page, true);
2461 } else {
2462 for (i = 0; i < HPAGE_PMD_NR; i++)
2463 remove_migration_ptes(page + i, page + i, true);
2464 }
e9b61f19
KS
2465}
2466
8df651c7 2467static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2468 struct lruvec *lruvec, struct list_head *list)
2469{
e9b61f19
KS
2470 struct page *page_tail = head + tail;
2471
8df651c7 2472 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2473
2474 /*
605ca5ed
KK
2475 * Clone page flags before unfreezing refcount.
2476 *
2477 * After successful get_page_unless_zero() might follow flags change,
2478 * for exmaple lock_page() which set PG_waiters.
e9b61f19 2479 */
e9b61f19
KS
2480 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2481 page_tail->flags |= (head->flags &
2482 ((1L << PG_referenced) |
2483 (1L << PG_swapbacked) |
38d8b4e6 2484 (1L << PG_swapcache) |
e9b61f19
KS
2485 (1L << PG_mlocked) |
2486 (1L << PG_uptodate) |
2487 (1L << PG_active) |
1899ad18 2488 (1L << PG_workingset) |
e9b61f19 2489 (1L << PG_locked) |
b8d3c4c3
MK
2490 (1L << PG_unevictable) |
2491 (1L << PG_dirty)));
e9b61f19 2492
173d9d9f
HD
2493 /* ->mapping in first tail page is compound_mapcount */
2494 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2495 page_tail);
2496 page_tail->mapping = head->mapping;
2497 page_tail->index = head->index + tail;
2498
605ca5ed 2499 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2500 smp_wmb();
2501
605ca5ed
KK
2502 /*
2503 * Clear PageTail before unfreezing page refcount.
2504 *
2505 * After successful get_page_unless_zero() might follow put_page()
2506 * which needs correct compound_head().
2507 */
e9b61f19
KS
2508 clear_compound_head(page_tail);
2509
605ca5ed
KK
2510 /* Finally unfreeze refcount. Additional reference from page cache. */
2511 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2512 PageSwapCache(head)));
2513
e9b61f19
KS
2514 if (page_is_young(head))
2515 set_page_young(page_tail);
2516 if (page_is_idle(head))
2517 set_page_idle(page_tail);
2518
e9b61f19 2519 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2520
2521 /*
2522 * always add to the tail because some iterators expect new
2523 * pages to show after the currently processed elements - e.g.
2524 * migrate_pages
2525 */
e9b61f19 2526 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2527}
2528
baa355fd 2529static void __split_huge_page(struct page *page, struct list_head *list,
006d3ff2 2530 pgoff_t end, unsigned long flags)
e9b61f19
KS
2531{
2532 struct page *head = compound_head(page);
f4b7e272 2533 pg_data_t *pgdat = page_pgdat(head);
e9b61f19 2534 struct lruvec *lruvec;
4101196b
MWO
2535 struct address_space *swap_cache = NULL;
2536 unsigned long offset = 0;
8df651c7 2537 int i;
e9b61f19 2538
f4b7e272 2539 lruvec = mem_cgroup_page_lruvec(head, pgdat);
e9b61f19
KS
2540
2541 /* complete memcg works before add pages to LRU */
2542 mem_cgroup_split_huge_fixup(head);
2543
4101196b
MWO
2544 if (PageAnon(head) && PageSwapCache(head)) {
2545 swp_entry_t entry = { .val = page_private(head) };
2546
2547 offset = swp_offset(entry);
2548 swap_cache = swap_address_space(entry);
2549 xa_lock(&swap_cache->i_pages);
2550 }
2551
baa355fd 2552 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2553 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2554 /* Some pages can be beyond i_size: drop them from page cache */
2555 if (head[i].index >= end) {
2d077d4b 2556 ClearPageDirty(head + i);
baa355fd 2557 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2558 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2559 shmem_uncharge(head->mapping->host, 1);
baa355fd 2560 put_page(head + i);
4101196b
MWO
2561 } else if (!PageAnon(page)) {
2562 __xa_store(&head->mapping->i_pages, head[i].index,
2563 head + i, 0);
2564 } else if (swap_cache) {
2565 __xa_store(&swap_cache->i_pages, offset + i,
2566 head + i, 0);
baa355fd
KS
2567 }
2568 }
e9b61f19
KS
2569
2570 ClearPageCompound(head);
f7da677b 2571
a27180e4 2572 split_page_owner(head, HPAGE_PMD_NR);
f7da677b 2573
baa355fd
KS
2574 /* See comment in __split_huge_page_tail() */
2575 if (PageAnon(head)) {
aa5dc07f 2576 /* Additional pin to swap cache */
4101196b 2577 if (PageSwapCache(head)) {
38d8b4e6 2578 page_ref_add(head, 2);
4101196b
MWO
2579 xa_unlock(&swap_cache->i_pages);
2580 } else {
38d8b4e6 2581 page_ref_inc(head);
4101196b 2582 }
baa355fd 2583 } else {
aa5dc07f 2584 /* Additional pin to page cache */
baa355fd 2585 page_ref_add(head, 2);
b93b0163 2586 xa_unlock(&head->mapping->i_pages);
baa355fd
KS
2587 }
2588
f4b7e272 2589 spin_unlock_irqrestore(&pgdat->lru_lock, flags);
e9b61f19 2590
906f9cdf 2591 remap_page(head);
e9b61f19
KS
2592
2593 for (i = 0; i < HPAGE_PMD_NR; i++) {
2594 struct page *subpage = head + i;
2595 if (subpage == page)
2596 continue;
2597 unlock_page(subpage);
2598
2599 /*
2600 * Subpages may be freed if there wasn't any mapping
2601 * like if add_to_swap() is running on a lru page that
2602 * had its mapping zapped. And freeing these pages
2603 * requires taking the lru_lock so we do the put_page
2604 * of the tail pages after the split is complete.
2605 */
2606 put_page(subpage);
2607 }
2608}
2609
b20ce5e0
KS
2610int total_mapcount(struct page *page)
2611{
dd78fedd 2612 int i, compound, ret;
b20ce5e0
KS
2613
2614 VM_BUG_ON_PAGE(PageTail(page), page);
2615
2616 if (likely(!PageCompound(page)))
2617 return atomic_read(&page->_mapcount) + 1;
2618
dd78fedd 2619 compound = compound_mapcount(page);
b20ce5e0 2620 if (PageHuge(page))
dd78fedd
KS
2621 return compound;
2622 ret = compound;
b20ce5e0
KS
2623 for (i = 0; i < HPAGE_PMD_NR; i++)
2624 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2625 /* File pages has compound_mapcount included in _mapcount */
2626 if (!PageAnon(page))
2627 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2628 if (PageDoubleMap(page))
2629 ret -= HPAGE_PMD_NR;
2630 return ret;
2631}
2632
6d0a07ed
AA
2633/*
2634 * This calculates accurately how many mappings a transparent hugepage
2635 * has (unlike page_mapcount() which isn't fully accurate). This full
2636 * accuracy is primarily needed to know if copy-on-write faults can
2637 * reuse the page and change the mapping to read-write instead of
2638 * copying them. At the same time this returns the total_mapcount too.
2639 *
2640 * The function returns the highest mapcount any one of the subpages
2641 * has. If the return value is one, even if different processes are
2642 * mapping different subpages of the transparent hugepage, they can
2643 * all reuse it, because each process is reusing a different subpage.
2644 *
2645 * The total_mapcount is instead counting all virtual mappings of the
2646 * subpages. If the total_mapcount is equal to "one", it tells the
2647 * caller all mappings belong to the same "mm" and in turn the
2648 * anon_vma of the transparent hugepage can become the vma->anon_vma
2649 * local one as no other process may be mapping any of the subpages.
2650 *
2651 * It would be more accurate to replace page_mapcount() with
2652 * page_trans_huge_mapcount(), however we only use
2653 * page_trans_huge_mapcount() in the copy-on-write faults where we
2654 * need full accuracy to avoid breaking page pinning, because
2655 * page_trans_huge_mapcount() is slower than page_mapcount().
2656 */
2657int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2658{
2659 int i, ret, _total_mapcount, mapcount;
2660
2661 /* hugetlbfs shouldn't call it */
2662 VM_BUG_ON_PAGE(PageHuge(page), page);
2663
2664 if (likely(!PageTransCompound(page))) {
2665 mapcount = atomic_read(&page->_mapcount) + 1;
2666 if (total_mapcount)
2667 *total_mapcount = mapcount;
2668 return mapcount;
2669 }
2670
2671 page = compound_head(page);
2672
2673 _total_mapcount = ret = 0;
2674 for (i = 0; i < HPAGE_PMD_NR; i++) {
2675 mapcount = atomic_read(&page[i]._mapcount) + 1;
2676 ret = max(ret, mapcount);
2677 _total_mapcount += mapcount;
2678 }
2679 if (PageDoubleMap(page)) {
2680 ret -= 1;
2681 _total_mapcount -= HPAGE_PMD_NR;
2682 }
2683 mapcount = compound_mapcount(page);
2684 ret += mapcount;
2685 _total_mapcount += mapcount;
2686 if (total_mapcount)
2687 *total_mapcount = _total_mapcount;
2688 return ret;
2689}
2690
b8f593cd
HY
2691/* Racy check whether the huge page can be split */
2692bool can_split_huge_page(struct page *page, int *pextra_pins)
2693{
2694 int extra_pins;
2695
aa5dc07f 2696 /* Additional pins from page cache */
b8f593cd
HY
2697 if (PageAnon(page))
2698 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2699 else
2700 extra_pins = HPAGE_PMD_NR;
2701 if (pextra_pins)
2702 *pextra_pins = extra_pins;
2703 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2704}
2705
e9b61f19
KS
2706/*
2707 * This function splits huge page into normal pages. @page can point to any
2708 * subpage of huge page to split. Split doesn't change the position of @page.
2709 *
2710 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2711 * The huge page must be locked.
2712 *
2713 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2714 *
2715 * Both head page and tail pages will inherit mapping, flags, and so on from
2716 * the hugepage.
2717 *
2718 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2719 * they are not mapped.
2720 *
2721 * Returns 0 if the hugepage is split successfully.
2722 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2723 * us.
2724 */
2725int split_huge_page_to_list(struct page *page, struct list_head *list)
2726{
2727 struct page *head = compound_head(page);
a3d0a918 2728 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
87eaceb3 2729 struct deferred_split *ds_queue = get_deferred_split_queue(page);
baa355fd
KS
2730 struct anon_vma *anon_vma = NULL;
2731 struct address_space *mapping = NULL;
2732 int count, mapcount, extra_pins, ret;
d9654322 2733 bool mlocked;
0b9b6fff 2734 unsigned long flags;
006d3ff2 2735 pgoff_t end;
e9b61f19 2736
d50c7e25 2737 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
e9b61f19 2738 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2739 VM_BUG_ON_PAGE(!PageCompound(page), page);
2740
59807685
HY
2741 if (PageWriteback(page))
2742 return -EBUSY;
2743
baa355fd
KS
2744 if (PageAnon(head)) {
2745 /*
2746 * The caller does not necessarily hold an mmap_sem that would
2747 * prevent the anon_vma disappearing so we first we take a
2748 * reference to it and then lock the anon_vma for write. This
2749 * is similar to page_lock_anon_vma_read except the write lock
2750 * is taken to serialise against parallel split or collapse
2751 * operations.
2752 */
2753 anon_vma = page_get_anon_vma(head);
2754 if (!anon_vma) {
2755 ret = -EBUSY;
2756 goto out;
2757 }
006d3ff2 2758 end = -1;
baa355fd
KS
2759 mapping = NULL;
2760 anon_vma_lock_write(anon_vma);
2761 } else {
2762 mapping = head->mapping;
2763
2764 /* Truncated ? */
2765 if (!mapping) {
2766 ret = -EBUSY;
2767 goto out;
2768 }
2769
baa355fd
KS
2770 anon_vma = NULL;
2771 i_mmap_lock_read(mapping);
006d3ff2
HD
2772
2773 /*
2774 *__split_huge_page() may need to trim off pages beyond EOF:
2775 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2776 * which cannot be nested inside the page tree lock. So note
2777 * end now: i_size itself may be changed at any moment, but
2778 * head page lock is good enough to serialize the trimming.
2779 */
2780 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2781 }
e9b61f19
KS
2782
2783 /*
906f9cdf 2784 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2785 * split PMDs
2786 */
b8f593cd 2787 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2788 ret = -EBUSY;
2789 goto out_unlock;
2790 }
2791
d9654322 2792 mlocked = PageMlocked(page);
906f9cdf 2793 unmap_page(head);
e9b61f19
KS
2794 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2795
d9654322
KS
2796 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2797 if (mlocked)
2798 lru_add_drain();
2799
baa355fd 2800 /* prevent PageLRU to go away from under us, and freeze lru stats */
f4b7e272 2801 spin_lock_irqsave(&pgdata->lru_lock, flags);
baa355fd
KS
2802
2803 if (mapping) {
aa5dc07f 2804 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2805
baa355fd 2806 /*
aa5dc07f 2807 * Check if the head page is present in page cache.
baa355fd
KS
2808 * We assume all tail are present too, if head is there.
2809 */
aa5dc07f
MW
2810 xa_lock(&mapping->i_pages);
2811 if (xas_load(&xas) != head)
baa355fd
KS
2812 goto fail;
2813 }
2814
0139aa7b 2815 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2816 spin_lock(&ds_queue->split_queue_lock);
e9b61f19
KS
2817 count = page_count(head);
2818 mapcount = total_mapcount(head);
baa355fd 2819 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2820 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2821 ds_queue->split_queue_len--;
9a982250
KS
2822 list_del(page_deferred_list(head));
2823 }
06d3eff6
KS
2824 if (mapping) {
2825 if (PageSwapBacked(page))
2826 __dec_node_page_state(page, NR_SHMEM_THPS);
2827 else
2828 __dec_node_page_state(page, NR_FILE_THPS);
2829 }
2830
364c1eeb 2831 spin_unlock(&ds_queue->split_queue_lock);
006d3ff2 2832 __split_huge_page(page, list, end, flags);
59807685
HY
2833 if (PageSwapCache(head)) {
2834 swp_entry_t entry = { .val = page_private(head) };
2835
2836 ret = split_swap_cluster(entry);
2837 } else
2838 ret = 0;
e9b61f19 2839 } else {
baa355fd
KS
2840 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2841 pr_alert("total_mapcount: %u, page_count(): %u\n",
2842 mapcount, count);
2843 if (PageTail(page))
2844 dump_page(head, NULL);
2845 dump_page(page, "total_mapcount(head) > 0");
2846 BUG();
2847 }
364c1eeb 2848 spin_unlock(&ds_queue->split_queue_lock);
baa355fd 2849fail: if (mapping)
b93b0163 2850 xa_unlock(&mapping->i_pages);
f4b7e272 2851 spin_unlock_irqrestore(&pgdata->lru_lock, flags);
906f9cdf 2852 remap_page(head);
e9b61f19
KS
2853 ret = -EBUSY;
2854 }
2855
2856out_unlock:
baa355fd
KS
2857 if (anon_vma) {
2858 anon_vma_unlock_write(anon_vma);
2859 put_anon_vma(anon_vma);
2860 }
2861 if (mapping)
2862 i_mmap_unlock_read(mapping);
e9b61f19
KS
2863out:
2864 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2865 return ret;
2866}
9a982250
KS
2867
2868void free_transhuge_page(struct page *page)
2869{
87eaceb3 2870 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2871 unsigned long flags;
2872
364c1eeb 2873 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2874 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2875 ds_queue->split_queue_len--;
9a982250
KS
2876 list_del(page_deferred_list(page));
2877 }
364c1eeb 2878 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2879 free_compound_page(page);
2880}
2881
2882void deferred_split_huge_page(struct page *page)
2883{
87eaceb3
YS
2884 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2885#ifdef CONFIG_MEMCG
2886 struct mem_cgroup *memcg = compound_head(page)->mem_cgroup;
2887#endif
9a982250
KS
2888 unsigned long flags;
2889
2890 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2891
87eaceb3
YS
2892 /*
2893 * The try_to_unmap() in page reclaim path might reach here too,
2894 * this may cause a race condition to corrupt deferred split queue.
2895 * And, if page reclaim is already handling the same page, it is
2896 * unnecessary to handle it again in shrinker.
2897 *
2898 * Check PageSwapCache to determine if the page is being
2899 * handled by page reclaim since THP swap would add the page into
2900 * swap cache before calling try_to_unmap().
2901 */
2902 if (PageSwapCache(page))
2903 return;
2904
364c1eeb 2905 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2906 if (list_empty(page_deferred_list(page))) {
f9719a03 2907 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2908 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2909 ds_queue->split_queue_len++;
87eaceb3
YS
2910#ifdef CONFIG_MEMCG
2911 if (memcg)
2912 memcg_set_shrinker_bit(memcg, page_to_nid(page),
2913 deferred_split_shrinker.id);
2914#endif
9a982250 2915 }
364c1eeb 2916 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2917}
2918
2919static unsigned long deferred_split_count(struct shrinker *shrink,
2920 struct shrink_control *sc)
2921{
a3d0a918 2922 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2923 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2924
2925#ifdef CONFIG_MEMCG
2926 if (sc->memcg)
2927 ds_queue = &sc->memcg->deferred_split_queue;
2928#endif
364c1eeb 2929 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2930}
2931
2932static unsigned long deferred_split_scan(struct shrinker *shrink,
2933 struct shrink_control *sc)
2934{
a3d0a918 2935 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2936 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2937 unsigned long flags;
2938 LIST_HEAD(list), *pos, *next;
2939 struct page *page;
2940 int split = 0;
2941
87eaceb3
YS
2942#ifdef CONFIG_MEMCG
2943 if (sc->memcg)
2944 ds_queue = &sc->memcg->deferred_split_queue;
2945#endif
2946
364c1eeb 2947 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2948 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2949 list_for_each_safe(pos, next, &ds_queue->split_queue) {
9a982250
KS
2950 page = list_entry((void *)pos, struct page, mapping);
2951 page = compound_head(page);
e3ae1953
KS
2952 if (get_page_unless_zero(page)) {
2953 list_move(page_deferred_list(page), &list);
2954 } else {
2955 /* We lost race with put_compound_page() */
9a982250 2956 list_del_init(page_deferred_list(page));
364c1eeb 2957 ds_queue->split_queue_len--;
9a982250 2958 }
e3ae1953
KS
2959 if (!--sc->nr_to_scan)
2960 break;
9a982250 2961 }
364c1eeb 2962 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2963
2964 list_for_each_safe(pos, next, &list) {
2965 page = list_entry((void *)pos, struct page, mapping);
fa41b900
KS
2966 if (!trylock_page(page))
2967 goto next;
9a982250
KS
2968 /* split_huge_page() removes page from list on success */
2969 if (!split_huge_page(page))
2970 split++;
2971 unlock_page(page);
fa41b900 2972next:
9a982250
KS
2973 put_page(page);
2974 }
2975
364c1eeb
YS
2976 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2977 list_splice_tail(&list, &ds_queue->split_queue);
2978 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2979
cb8d68ec
KS
2980 /*
2981 * Stop shrinker if we didn't split any page, but the queue is empty.
2982 * This can happen if pages were freed under us.
2983 */
364c1eeb 2984 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2985 return SHRINK_STOP;
2986 return split;
9a982250
KS
2987}
2988
2989static struct shrinker deferred_split_shrinker = {
2990 .count_objects = deferred_split_count,
2991 .scan_objects = deferred_split_scan,
2992 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2993 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2994 SHRINKER_NONSLAB,
9a982250 2995};
49071d43
KS
2996
2997#ifdef CONFIG_DEBUG_FS
2998static int split_huge_pages_set(void *data, u64 val)
2999{
3000 struct zone *zone;
3001 struct page *page;
3002 unsigned long pfn, max_zone_pfn;
3003 unsigned long total = 0, split = 0;
3004
3005 if (val != 1)
3006 return -EINVAL;
3007
3008 for_each_populated_zone(zone) {
3009 max_zone_pfn = zone_end_pfn(zone);
3010 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3011 if (!pfn_valid(pfn))
3012 continue;
3013
3014 page = pfn_to_page(pfn);
3015 if (!get_page_unless_zero(page))
3016 continue;
3017
3018 if (zone != page_zone(page))
3019 goto next;
3020
baa355fd 3021 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
3022 goto next;
3023
3024 total++;
3025 lock_page(page);
3026 if (!split_huge_page(page))
3027 split++;
3028 unlock_page(page);
3029next:
3030 put_page(page);
3031 }
3032 }
3033
145bdaa1 3034 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3035
3036 return 0;
3037}
3038DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3039 "%llu\n");
3040
3041static int __init split_huge_pages_debugfs(void)
3042{
d9f7979c
GKH
3043 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3044 &split_huge_pages_fops);
49071d43
KS
3045 return 0;
3046}
3047late_initcall(split_huge_pages_debugfs);
3048#endif
616b8371
ZY
3049
3050#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3051void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3052 struct page *page)
3053{
3054 struct vm_area_struct *vma = pvmw->vma;
3055 struct mm_struct *mm = vma->vm_mm;
3056 unsigned long address = pvmw->address;
3057 pmd_t pmdval;
3058 swp_entry_t entry;
ab6e3d09 3059 pmd_t pmdswp;
616b8371
ZY
3060
3061 if (!(pvmw->pmd && !pvmw->pte))
3062 return;
3063
616b8371 3064 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
db25db7b 3065 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3066 if (pmd_dirty(pmdval))
3067 set_page_dirty(page);
3068 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3069 pmdswp = swp_entry_to_pmd(entry);
3070 if (pmd_soft_dirty(pmdval))
3071 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3072 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3073 page_remove_rmap(page, true);
3074 put_page(page);
616b8371
ZY
3075}
3076
3077void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3078{
3079 struct vm_area_struct *vma = pvmw->vma;
3080 struct mm_struct *mm = vma->vm_mm;
3081 unsigned long address = pvmw->address;
3082 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3083 pmd_t pmde;
3084 swp_entry_t entry;
3085
3086 if (!(pvmw->pmd && !pvmw->pte))
3087 return;
3088
3089 entry = pmd_to_swp_entry(*pvmw->pmd);
3090 get_page(new);
3091 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3092 if (pmd_swp_soft_dirty(*pvmw->pmd))
3093 pmde = pmd_mksoft_dirty(pmde);
616b8371 3094 if (is_write_migration_entry(entry))
f55e1014 3095 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3096
3097 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3098 if (PageAnon(new))
3099 page_add_anon_rmap(new, vma, mmun_start, true);
3100 else
3101 page_add_file_rmap(new, true);
616b8371 3102 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3103 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3104 mlock_vma_page(new);
3105 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3106}
3107#endif