]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
fs/proc/task_mmu.c: make the task_mmu walk_page_range() limit in clear_refs_write...
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
ba76149f 38/*
8bfa3f9a
JW
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
ba76149f 45 */
71e3aac0 46unsigned long transparent_hugepage_flags __read_mostly =
13ece886 47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
49#endif
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52#endif
444eb2a4 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 56
9a982250 57static struct shrinker deferred_split_shrinker;
f000565a 58
97ae1749 59static atomic_t huge_zero_refcount;
56873f43 60struct page *huge_zero_page __read_mostly;
4a6c1297 61
fc437044 62struct page *get_huge_zero_page(void)
97ae1749
KS
63{
64 struct page *zero_page;
65retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 67 return READ_ONCE(huge_zero_page);
97ae1749
KS
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 70 HPAGE_PMD_ORDER);
d8a8e1f0
KS
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 73 return NULL;
d8a8e1f0
KS
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 76 preempt_disable();
5918d10a 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 78 preempt_enable();
5ddacbe9 79 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
4db0c3c2 86 return READ_ONCE(huge_zero_page);
4a6c1297
KS
87}
88
aa88b68c 89void put_huge_zero_page(void)
4a6c1297 90{
97ae1749
KS
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
96}
97
48896466
GC
98static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
99 struct shrink_control *sc)
4a6c1297 100{
48896466
GC
101 /* we can free zero page only if last reference remains */
102 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
103}
97ae1749 104
48896466
GC
105static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
106 struct shrink_control *sc)
107{
97ae1749 108 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
109 struct page *zero_page = xchg(&huge_zero_page, NULL);
110 BUG_ON(zero_page == NULL);
5ddacbe9 111 __free_pages(zero_page, compound_order(zero_page));
48896466 112 return HPAGE_PMD_NR;
97ae1749
KS
113 }
114
115 return 0;
4a6c1297
KS
116}
117
97ae1749 118static struct shrinker huge_zero_page_shrinker = {
48896466
GC
119 .count_objects = shrink_huge_zero_page_count,
120 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
121 .seeks = DEFAULT_SEEKS,
122};
123
71e3aac0 124#ifdef CONFIG_SYSFS
ba76149f 125
444eb2a4 126static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
127 struct kobj_attribute *attr,
128 const char *buf, size_t count,
129 enum transparent_hugepage_flag enabled,
444eb2a4 130 enum transparent_hugepage_flag deferred,
71e3aac0
AA
131 enum transparent_hugepage_flag req_madv)
132{
444eb2a4
MG
133 if (!memcmp("defer", buf,
134 min(sizeof("defer")-1, count))) {
135 if (enabled == deferred)
136 return -EINVAL;
137 clear_bit(enabled, &transparent_hugepage_flags);
138 clear_bit(req_madv, &transparent_hugepage_flags);
139 set_bit(deferred, &transparent_hugepage_flags);
140 } else if (!memcmp("always", buf,
71e3aac0 141 min(sizeof("always")-1, count))) {
444eb2a4 142 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 143 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 144 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
145 } else if (!memcmp("madvise", buf,
146 min(sizeof("madvise")-1, count))) {
147 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 148 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
149 set_bit(req_madv, &transparent_hugepage_flags);
150 } else if (!memcmp("never", buf,
151 min(sizeof("never")-1, count))) {
152 clear_bit(enabled, &transparent_hugepage_flags);
153 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 154 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
155 } else
156 return -EINVAL;
157
158 return count;
159}
160
161static ssize_t enabled_show(struct kobject *kobj,
162 struct kobj_attribute *attr, char *buf)
163{
444eb2a4
MG
164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "[always] madvise never\n");
166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "always [madvise] never\n");
168 else
169 return sprintf(buf, "always madvise [never]\n");
71e3aac0 170}
444eb2a4 171
71e3aac0
AA
172static ssize_t enabled_store(struct kobject *kobj,
173 struct kobj_attribute *attr,
174 const char *buf, size_t count)
175{
ba76149f
AA
176 ssize_t ret;
177
444eb2a4
MG
178 ret = triple_flag_store(kobj, attr, buf, count,
179 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
180 TRANSPARENT_HUGEPAGE_FLAG,
181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
182
183 if (ret > 0) {
b46e756f 184 int err = start_stop_khugepaged();
ba76149f
AA
185 if (err)
186 ret = err;
187 }
188
189 return ret;
71e3aac0
AA
190}
191static struct kobj_attribute enabled_attr =
192 __ATTR(enabled, 0644, enabled_show, enabled_store);
193
b46e756f 194ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
195 struct kobj_attribute *attr, char *buf,
196 enum transparent_hugepage_flag flag)
197{
e27e6151
BH
198 return sprintf(buf, "%d\n",
199 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 200}
e27e6151 201
b46e756f 202ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr,
204 const char *buf, size_t count,
205 enum transparent_hugepage_flag flag)
206{
e27e6151
BH
207 unsigned long value;
208 int ret;
209
210 ret = kstrtoul(buf, 10, &value);
211 if (ret < 0)
212 return ret;
213 if (value > 1)
214 return -EINVAL;
215
216 if (value)
71e3aac0 217 set_bit(flag, &transparent_hugepage_flags);
e27e6151 218 else
71e3aac0 219 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
220
221 return count;
222}
223
224/*
225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
227 * memory just to allocate one more hugepage.
228 */
229static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
231{
444eb2a4
MG
232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
233 return sprintf(buf, "[always] defer madvise never\n");
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "always [defer] madvise never\n");
236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always defer [madvise] never\n");
238 else
239 return sprintf(buf, "always defer madvise [never]\n");
240
71e3aac0
AA
241}
242static ssize_t defrag_store(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 const char *buf, size_t count)
245{
444eb2a4
MG
246 return triple_flag_store(kobj, attr, buf, count,
247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
250}
251static struct kobj_attribute defrag_attr =
252 __ATTR(defrag, 0644, defrag_show, defrag_store);
253
79da5407
KS
254static ssize_t use_zero_page_show(struct kobject *kobj,
255 struct kobj_attribute *attr, char *buf)
256{
b46e756f 257 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
259}
260static ssize_t use_zero_page_store(struct kobject *kobj,
261 struct kobj_attribute *attr, const char *buf, size_t count)
262{
b46e756f 263 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
265}
266static struct kobj_attribute use_zero_page_attr =
267 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
268#ifdef CONFIG_DEBUG_VM
269static ssize_t debug_cow_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
271{
b46e756f 272 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
274}
275static ssize_t debug_cow_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
278{
b46e756f 279 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
281}
282static struct kobj_attribute debug_cow_attr =
283 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
284#endif /* CONFIG_DEBUG_VM */
285
286static struct attribute *hugepage_attr[] = {
287 &enabled_attr.attr,
288 &defrag_attr.attr,
79da5407 289 &use_zero_page_attr.attr,
e496cf3d 290#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
291 &shmem_enabled_attr.attr,
292#endif
71e3aac0
AA
293#ifdef CONFIG_DEBUG_VM
294 &debug_cow_attr.attr,
295#endif
296 NULL,
297};
298
299static struct attribute_group hugepage_attr_group = {
300 .attrs = hugepage_attr,
ba76149f
AA
301};
302
569e5590 303static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 304{
71e3aac0
AA
305 int err;
306
569e5590
SL
307 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
308 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 309 pr_err("failed to create transparent hugepage kobject\n");
569e5590 310 return -ENOMEM;
ba76149f
AA
311 }
312
569e5590 313 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 314 if (err) {
ae3a8c1c 315 pr_err("failed to register transparent hugepage group\n");
569e5590 316 goto delete_obj;
ba76149f
AA
317 }
318
569e5590 319 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 320 if (err) {
ae3a8c1c 321 pr_err("failed to register transparent hugepage group\n");
569e5590 322 goto remove_hp_group;
ba76149f 323 }
569e5590
SL
324
325 return 0;
326
327remove_hp_group:
328 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
329delete_obj:
330 kobject_put(*hugepage_kobj);
331 return err;
332}
333
334static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
335{
336 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
337 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
338 kobject_put(hugepage_kobj);
339}
340#else
341static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
342{
343 return 0;
344}
345
346static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
347{
348}
349#endif /* CONFIG_SYSFS */
350
351static int __init hugepage_init(void)
352{
353 int err;
354 struct kobject *hugepage_kobj;
355
356 if (!has_transparent_hugepage()) {
357 transparent_hugepage_flags = 0;
358 return -EINVAL;
359 }
360
ff20c2e0
KS
361 /*
362 * hugepages can't be allocated by the buddy allocator
363 */
364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
365 /*
366 * we use page->mapping and page->index in second tail page
367 * as list_head: assuming THP order >= 2
368 */
369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
370
569e5590
SL
371 err = hugepage_init_sysfs(&hugepage_kobj);
372 if (err)
65ebb64f 373 goto err_sysfs;
ba76149f 374
b46e756f 375 err = khugepaged_init();
ba76149f 376 if (err)
65ebb64f 377 goto err_slab;
ba76149f 378
65ebb64f
KS
379 err = register_shrinker(&huge_zero_page_shrinker);
380 if (err)
381 goto err_hzp_shrinker;
9a982250
KS
382 err = register_shrinker(&deferred_split_shrinker);
383 if (err)
384 goto err_split_shrinker;
97ae1749 385
97562cd2
RR
386 /*
387 * By default disable transparent hugepages on smaller systems,
388 * where the extra memory used could hurt more than TLB overhead
389 * is likely to save. The admin can still enable it through /sys.
390 */
79553da2 391 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 392 transparent_hugepage_flags = 0;
79553da2
KS
393 return 0;
394 }
97562cd2 395
79553da2 396 err = start_stop_khugepaged();
65ebb64f
KS
397 if (err)
398 goto err_khugepaged;
ba76149f 399
569e5590 400 return 0;
65ebb64f 401err_khugepaged:
9a982250
KS
402 unregister_shrinker(&deferred_split_shrinker);
403err_split_shrinker:
65ebb64f
KS
404 unregister_shrinker(&huge_zero_page_shrinker);
405err_hzp_shrinker:
b46e756f 406 khugepaged_destroy();
65ebb64f 407err_slab:
569e5590 408 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 409err_sysfs:
ba76149f 410 return err;
71e3aac0 411}
a64fb3cd 412subsys_initcall(hugepage_init);
71e3aac0
AA
413
414static int __init setup_transparent_hugepage(char *str)
415{
416 int ret = 0;
417 if (!str)
418 goto out;
419 if (!strcmp(str, "always")) {
420 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
421 &transparent_hugepage_flags);
422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
423 &transparent_hugepage_flags);
424 ret = 1;
425 } else if (!strcmp(str, "madvise")) {
426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
427 &transparent_hugepage_flags);
428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
429 &transparent_hugepage_flags);
430 ret = 1;
431 } else if (!strcmp(str, "never")) {
432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
433 &transparent_hugepage_flags);
434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
435 &transparent_hugepage_flags);
436 ret = 1;
437 }
438out:
439 if (!ret)
ae3a8c1c 440 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
441 return ret;
442}
443__setup("transparent_hugepage=", setup_transparent_hugepage);
444
b32967ff 445pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
446{
447 if (likely(vma->vm_flags & VM_WRITE))
448 pmd = pmd_mkwrite(pmd);
449 return pmd;
450}
451
9a982250
KS
452static inline struct list_head *page_deferred_list(struct page *page)
453{
454 /*
455 * ->lru in the tail pages is occupied by compound_head.
456 * Let's use ->mapping + ->index in the second tail page as list_head.
457 */
458 return (struct list_head *)&page[2].mapping;
459}
460
461void prep_transhuge_page(struct page *page)
462{
463 /*
464 * we use page->mapping and page->indexlru in second tail page
465 * as list_head: assuming THP order >= 2
466 */
9a982250
KS
467
468 INIT_LIST_HEAD(page_deferred_list(page));
469 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
470}
471
74d2fad1
TK
472unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
473 loff_t off, unsigned long flags, unsigned long size)
474{
475 unsigned long addr;
476 loff_t off_end = off + len;
477 loff_t off_align = round_up(off, size);
478 unsigned long len_pad;
479
480 if (off_end <= off_align || (off_end - off_align) < size)
481 return 0;
482
483 len_pad = len + size;
484 if (len_pad < len || (off + len_pad) < off)
485 return 0;
486
487 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
488 off >> PAGE_SHIFT, flags);
489 if (IS_ERR_VALUE(addr))
490 return 0;
491
492 addr += (off - addr) & (size - 1);
493 return addr;
494}
495
496unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
497 unsigned long len, unsigned long pgoff, unsigned long flags)
498{
499 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
500
501 if (addr)
502 goto out;
503 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
504 goto out;
505
506 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
507 if (addr)
508 return addr;
509
510 out:
511 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
512}
513EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
514
bae473a4
KS
515static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
516 gfp_t gfp)
71e3aac0 517{
bae473a4 518 struct vm_area_struct *vma = fe->vma;
00501b53 519 struct mem_cgroup *memcg;
71e3aac0 520 pgtable_t pgtable;
bae473a4 521 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 522
309381fe 523 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 524
bae473a4 525 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
526 put_page(page);
527 count_vm_event(THP_FAULT_FALLBACK);
528 return VM_FAULT_FALLBACK;
529 }
00501b53 530
bae473a4 531 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 532 if (unlikely(!pgtable)) {
f627c2f5 533 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 534 put_page(page);
71e3aac0 535 return VM_FAULT_OOM;
00501b53 536 }
71e3aac0
AA
537
538 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
539 /*
540 * The memory barrier inside __SetPageUptodate makes sure that
541 * clear_huge_page writes become visible before the set_pmd_at()
542 * write.
543 */
71e3aac0
AA
544 __SetPageUptodate(page);
545
bae473a4
KS
546 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
547 if (unlikely(!pmd_none(*fe->pmd))) {
548 spin_unlock(fe->ptl);
f627c2f5 549 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 550 put_page(page);
bae473a4 551 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
552 } else {
553 pmd_t entry;
6b251fc9
AA
554
555 /* Deliver the page fault to userland */
556 if (userfaultfd_missing(vma)) {
557 int ret;
558
bae473a4 559 spin_unlock(fe->ptl);
f627c2f5 560 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 561 put_page(page);
bae473a4
KS
562 pte_free(vma->vm_mm, pgtable);
563 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
564 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
565 return ret;
566 }
567
3122359a
KS
568 entry = mk_huge_pmd(page, vma->vm_page_prot);
569 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 570 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 571 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 572 lru_cache_add_active_or_unevictable(page, vma);
bae473a4
KS
573 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
574 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
575 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
576 atomic_long_inc(&vma->vm_mm->nr_ptes);
577 spin_unlock(fe->ptl);
6b251fc9 578 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
579 }
580
aa2e878e 581 return 0;
71e3aac0
AA
582}
583
444eb2a4 584/*
25160354
VB
585 * If THP defrag is set to always then directly reclaim/compact as necessary
586 * If set to defer then do only background reclaim/compact and defer to khugepaged
444eb2a4 587 * If set to madvise and the VMA is flagged then directly reclaim/compact
25160354 588 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
444eb2a4
MG
589 */
590static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
591{
25160354
VB
592 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
593
594 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
595 &transparent_hugepage_flags) && vma_madvised)
596 return GFP_TRANSHUGE;
597 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
598 &transparent_hugepage_flags))
599 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
600 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
601 &transparent_hugepage_flags))
602 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
603
604 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
605}
606
c4088ebd 607/* Caller must hold page table lock. */
d295e341 608static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 609 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 610 struct page *zero_page)
fc9fe822
KS
611{
612 pmd_t entry;
7c414164
AM
613 if (!pmd_none(*pmd))
614 return false;
5918d10a 615 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 616 entry = pmd_mkhuge(entry);
12c9d70b
MW
617 if (pgtable)
618 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 619 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 620 atomic_long_inc(&mm->nr_ptes);
7c414164 621 return true;
fc9fe822
KS
622}
623
bae473a4 624int do_huge_pmd_anonymous_page(struct fault_env *fe)
71e3aac0 625{
bae473a4 626 struct vm_area_struct *vma = fe->vma;
077fcf11 627 gfp_t gfp;
71e3aac0 628 struct page *page;
bae473a4 629 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 630
128ec037 631 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 632 return VM_FAULT_FALLBACK;
128ec037
KS
633 if (unlikely(anon_vma_prepare(vma)))
634 return VM_FAULT_OOM;
6d50e60c 635 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 636 return VM_FAULT_OOM;
bae473a4
KS
637 if (!(fe->flags & FAULT_FLAG_WRITE) &&
638 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
639 transparent_hugepage_use_zero_page()) {
640 pgtable_t pgtable;
641 struct page *zero_page;
642 bool set;
6b251fc9 643 int ret;
bae473a4 644 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 645 if (unlikely(!pgtable))
ba76149f 646 return VM_FAULT_OOM;
128ec037
KS
647 zero_page = get_huge_zero_page();
648 if (unlikely(!zero_page)) {
bae473a4 649 pte_free(vma->vm_mm, pgtable);
81ab4201 650 count_vm_event(THP_FAULT_FALLBACK);
c0292554 651 return VM_FAULT_FALLBACK;
b9bbfbe3 652 }
bae473a4 653 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
6b251fc9
AA
654 ret = 0;
655 set = false;
bae473a4 656 if (pmd_none(*fe->pmd)) {
6b251fc9 657 if (userfaultfd_missing(vma)) {
bae473a4
KS
658 spin_unlock(fe->ptl);
659 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
660 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
661 } else {
bae473a4
KS
662 set_huge_zero_page(pgtable, vma->vm_mm, vma,
663 haddr, fe->pmd, zero_page);
664 spin_unlock(fe->ptl);
6b251fc9
AA
665 set = true;
666 }
667 } else
bae473a4 668 spin_unlock(fe->ptl);
128ec037 669 if (!set) {
bae473a4 670 pte_free(vma->vm_mm, pgtable);
128ec037 671 put_huge_zero_page();
edad9d2c 672 }
6b251fc9 673 return ret;
71e3aac0 674 }
444eb2a4 675 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 676 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
677 if (unlikely(!page)) {
678 count_vm_event(THP_FAULT_FALLBACK);
c0292554 679 return VM_FAULT_FALLBACK;
128ec037 680 }
9a982250 681 prep_transhuge_page(page);
bae473a4 682 return __do_huge_pmd_anonymous_page(fe, page, gfp);
71e3aac0
AA
683}
684
ae18d6dc 685static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 686 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
687{
688 struct mm_struct *mm = vma->vm_mm;
689 pmd_t entry;
690 spinlock_t *ptl;
691
692 ptl = pmd_lock(mm, pmd);
f25748e3
DW
693 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
694 if (pfn_t_devmap(pfn))
695 entry = pmd_mkdevmap(entry);
01871e59
RZ
696 if (write) {
697 entry = pmd_mkyoung(pmd_mkdirty(entry));
698 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 699 }
01871e59
RZ
700 set_pmd_at(mm, addr, pmd, entry);
701 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 702 spin_unlock(ptl);
5cad465d
MW
703}
704
705int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 706 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
707{
708 pgprot_t pgprot = vma->vm_page_prot;
709 /*
710 * If we had pmd_special, we could avoid all these restrictions,
711 * but we need to be consistent with PTEs and architectures that
712 * can't support a 'special' bit.
713 */
714 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
715 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
716 (VM_PFNMAP|VM_MIXEDMAP));
717 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 718 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
719
720 if (addr < vma->vm_start || addr >= vma->vm_end)
721 return VM_FAULT_SIGBUS;
722 if (track_pfn_insert(vma, &pgprot, pfn))
723 return VM_FAULT_SIGBUS;
ae18d6dc
MW
724 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
725 return VM_FAULT_NOPAGE;
5cad465d 726}
dee41079 727EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 728
3565fce3
DW
729static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
730 pmd_t *pmd)
731{
732 pmd_t _pmd;
733
734 /*
735 * We should set the dirty bit only for FOLL_WRITE but for now
736 * the dirty bit in the pmd is meaningless. And if the dirty
737 * bit will become meaningful and we'll only set it with
738 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
739 * set the young bit, instead of the current set_pmd_at.
740 */
741 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
742 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
743 pmd, _pmd, 1))
744 update_mmu_cache_pmd(vma, addr, pmd);
745}
746
747struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
748 pmd_t *pmd, int flags)
749{
750 unsigned long pfn = pmd_pfn(*pmd);
751 struct mm_struct *mm = vma->vm_mm;
752 struct dev_pagemap *pgmap;
753 struct page *page;
754
755 assert_spin_locked(pmd_lockptr(mm, pmd));
756
757 if (flags & FOLL_WRITE && !pmd_write(*pmd))
758 return NULL;
759
760 if (pmd_present(*pmd) && pmd_devmap(*pmd))
761 /* pass */;
762 else
763 return NULL;
764
765 if (flags & FOLL_TOUCH)
766 touch_pmd(vma, addr, pmd);
767
768 /*
769 * device mapped pages can only be returned if the
770 * caller will manage the page reference count.
771 */
772 if (!(flags & FOLL_GET))
773 return ERR_PTR(-EEXIST);
774
775 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
776 pgmap = get_dev_pagemap(pfn, NULL);
777 if (!pgmap)
778 return ERR_PTR(-EFAULT);
779 page = pfn_to_page(pfn);
780 get_page(page);
781 put_dev_pagemap(pgmap);
782
783 return page;
784}
785
71e3aac0
AA
786int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
787 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
788 struct vm_area_struct *vma)
789{
c4088ebd 790 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
791 struct page *src_page;
792 pmd_t pmd;
12c9d70b 793 pgtable_t pgtable = NULL;
628d47ce 794 int ret = -ENOMEM;
71e3aac0 795
628d47ce
KS
796 /* Skip if can be re-fill on fault */
797 if (!vma_is_anonymous(vma))
798 return 0;
799
800 pgtable = pte_alloc_one(dst_mm, addr);
801 if (unlikely(!pgtable))
802 goto out;
71e3aac0 803
c4088ebd
KS
804 dst_ptl = pmd_lock(dst_mm, dst_pmd);
805 src_ptl = pmd_lockptr(src_mm, src_pmd);
806 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
807
808 ret = -EAGAIN;
809 pmd = *src_pmd;
628d47ce 810 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
811 pte_free(dst_mm, pgtable);
812 goto out_unlock;
813 }
fc9fe822 814 /*
c4088ebd 815 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
816 * under splitting since we don't split the page itself, only pmd to
817 * a page table.
818 */
819 if (is_huge_zero_pmd(pmd)) {
5918d10a 820 struct page *zero_page;
97ae1749
KS
821 /*
822 * get_huge_zero_page() will never allocate a new page here,
823 * since we already have a zero page to copy. It just takes a
824 * reference.
825 */
5918d10a 826 zero_page = get_huge_zero_page();
6b251fc9 827 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 828 zero_page);
fc9fe822
KS
829 ret = 0;
830 goto out_unlock;
831 }
de466bd6 832
628d47ce
KS
833 src_page = pmd_page(pmd);
834 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
835 get_page(src_page);
836 page_dup_rmap(src_page, true);
837 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
838 atomic_long_inc(&dst_mm->nr_ptes);
839 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
840
841 pmdp_set_wrprotect(src_mm, addr, src_pmd);
842 pmd = pmd_mkold(pmd_wrprotect(pmd));
843 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
844
845 ret = 0;
846out_unlock:
c4088ebd
KS
847 spin_unlock(src_ptl);
848 spin_unlock(dst_ptl);
71e3aac0
AA
849out:
850 return ret;
851}
852
bae473a4 853void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
a1dd450b
WD
854{
855 pmd_t entry;
856 unsigned long haddr;
857
bae473a4
KS
858 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
859 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
a1dd450b
WD
860 goto unlock;
861
862 entry = pmd_mkyoung(orig_pmd);
bae473a4
KS
863 haddr = fe->address & HPAGE_PMD_MASK;
864 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
865 fe->flags & FAULT_FLAG_WRITE))
866 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
a1dd450b
WD
867
868unlock:
bae473a4 869 spin_unlock(fe->ptl);
a1dd450b
WD
870}
871
bae473a4
KS
872static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
873 struct page *page)
71e3aac0 874{
bae473a4
KS
875 struct vm_area_struct *vma = fe->vma;
876 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
00501b53 877 struct mem_cgroup *memcg;
71e3aac0
AA
878 pgtable_t pgtable;
879 pmd_t _pmd;
880 int ret = 0, i;
881 struct page **pages;
2ec74c3e
SG
882 unsigned long mmun_start; /* For mmu_notifiers */
883 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
884
885 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
886 GFP_KERNEL);
887 if (unlikely(!pages)) {
888 ret |= VM_FAULT_OOM;
889 goto out;
890 }
891
892 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f 893 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
bae473a4
KS
894 __GFP_OTHER_NODE, vma,
895 fe->address, page_to_nid(page));
b9bbfbe3 896 if (unlikely(!pages[i] ||
bae473a4
KS
897 mem_cgroup_try_charge(pages[i], vma->vm_mm,
898 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 899 if (pages[i])
71e3aac0 900 put_page(pages[i]);
b9bbfbe3 901 while (--i >= 0) {
00501b53
JW
902 memcg = (void *)page_private(pages[i]);
903 set_page_private(pages[i], 0);
f627c2f5
KS
904 mem_cgroup_cancel_charge(pages[i], memcg,
905 false);
b9bbfbe3
AA
906 put_page(pages[i]);
907 }
71e3aac0
AA
908 kfree(pages);
909 ret |= VM_FAULT_OOM;
910 goto out;
911 }
00501b53 912 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
913 }
914
915 for (i = 0; i < HPAGE_PMD_NR; i++) {
916 copy_user_highpage(pages[i], page + i,
0089e485 917 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
918 __SetPageUptodate(pages[i]);
919 cond_resched();
920 }
921
2ec74c3e
SG
922 mmun_start = haddr;
923 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 924 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 925
bae473a4
KS
926 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
927 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0 928 goto out_free_pages;
309381fe 929 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 930
bae473a4 931 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
71e3aac0
AA
932 /* leave pmd empty until pte is filled */
933
bae473a4
KS
934 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
935 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
936
937 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 938 pte_t entry;
71e3aac0
AA
939 entry = mk_pte(pages[i], vma->vm_page_prot);
940 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
941 memcg = (void *)page_private(pages[i]);
942 set_page_private(pages[i], 0);
bae473a4 943 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
f627c2f5 944 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 945 lru_cache_add_active_or_unevictable(pages[i], vma);
bae473a4
KS
946 fe->pte = pte_offset_map(&_pmd, haddr);
947 VM_BUG_ON(!pte_none(*fe->pte));
948 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
949 pte_unmap(fe->pte);
71e3aac0
AA
950 }
951 kfree(pages);
952
71e3aac0 953 smp_wmb(); /* make pte visible before pmd */
bae473a4 954 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
d281ee61 955 page_remove_rmap(page, true);
bae473a4 956 spin_unlock(fe->ptl);
71e3aac0 957
bae473a4 958 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 959
71e3aac0
AA
960 ret |= VM_FAULT_WRITE;
961 put_page(page);
962
963out:
964 return ret;
965
966out_free_pages:
bae473a4
KS
967 spin_unlock(fe->ptl);
968 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 969 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
970 memcg = (void *)page_private(pages[i]);
971 set_page_private(pages[i], 0);
f627c2f5 972 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 973 put_page(pages[i]);
b9bbfbe3 974 }
71e3aac0
AA
975 kfree(pages);
976 goto out;
977}
978
bae473a4 979int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
71e3aac0 980{
bae473a4 981 struct vm_area_struct *vma = fe->vma;
93b4796d 982 struct page *page = NULL, *new_page;
00501b53 983 struct mem_cgroup *memcg;
bae473a4 984 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2ec74c3e
SG
985 unsigned long mmun_start; /* For mmu_notifiers */
986 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 987 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 988 int ret = 0;
71e3aac0 989
bae473a4 990 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
81d1b09c 991 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
992 if (is_huge_zero_pmd(orig_pmd))
993 goto alloc;
bae473a4
KS
994 spin_lock(fe->ptl);
995 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0
AA
996 goto out_unlock;
997
998 page = pmd_page(orig_pmd);
309381fe 999 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1000 /*
1001 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1002 * part.
1f25fe20 1003 */
6d0a07ed 1004 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1005 pmd_t entry;
1006 entry = pmd_mkyoung(orig_pmd);
1007 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4
KS
1008 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1009 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
71e3aac0
AA
1010 ret |= VM_FAULT_WRITE;
1011 goto out_unlock;
1012 }
ddc58f27 1013 get_page(page);
bae473a4 1014 spin_unlock(fe->ptl);
93b4796d 1015alloc:
71e3aac0 1016 if (transparent_hugepage_enabled(vma) &&
077fcf11 1017 !transparent_hugepage_debug_cow()) {
444eb2a4 1018 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1019 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1020 } else
71e3aac0
AA
1021 new_page = NULL;
1022
9a982250
KS
1023 if (likely(new_page)) {
1024 prep_transhuge_page(new_page);
1025 } else {
eecc1e42 1026 if (!page) {
bae473a4 1027 split_huge_pmd(vma, fe->pmd, fe->address);
e9b71ca9 1028 ret |= VM_FAULT_FALLBACK;
93b4796d 1029 } else {
bae473a4 1030 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
9845cbbd 1031 if (ret & VM_FAULT_OOM) {
bae473a4 1032 split_huge_pmd(vma, fe->pmd, fe->address);
9845cbbd
KS
1033 ret |= VM_FAULT_FALLBACK;
1034 }
ddc58f27 1035 put_page(page);
93b4796d 1036 }
17766dde 1037 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1038 goto out;
1039 }
1040
bae473a4
KS
1041 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1042 huge_gfp, &memcg, true))) {
b9bbfbe3 1043 put_page(new_page);
bae473a4
KS
1044 split_huge_pmd(vma, fe->pmd, fe->address);
1045 if (page)
ddc58f27 1046 put_page(page);
9845cbbd 1047 ret |= VM_FAULT_FALLBACK;
17766dde 1048 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1049 goto out;
1050 }
1051
17766dde
DR
1052 count_vm_event(THP_FAULT_ALLOC);
1053
eecc1e42 1054 if (!page)
93b4796d
KS
1055 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1056 else
1057 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1058 __SetPageUptodate(new_page);
1059
2ec74c3e
SG
1060 mmun_start = haddr;
1061 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1062 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1063
bae473a4 1064 spin_lock(fe->ptl);
93b4796d 1065 if (page)
ddc58f27 1066 put_page(page);
bae473a4
KS
1067 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1068 spin_unlock(fe->ptl);
f627c2f5 1069 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1070 put_page(new_page);
2ec74c3e 1071 goto out_mn;
b9bbfbe3 1072 } else {
71e3aac0 1073 pmd_t entry;
3122359a
KS
1074 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1075 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4 1076 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
d281ee61 1077 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1078 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1079 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4
KS
1080 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1081 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
eecc1e42 1082 if (!page) {
bae473a4 1083 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1084 put_huge_zero_page();
1085 } else {
309381fe 1086 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1087 page_remove_rmap(page, true);
93b4796d
KS
1088 put_page(page);
1089 }
71e3aac0
AA
1090 ret |= VM_FAULT_WRITE;
1091 }
bae473a4 1092 spin_unlock(fe->ptl);
2ec74c3e 1093out_mn:
bae473a4 1094 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1095out:
1096 return ret;
2ec74c3e 1097out_unlock:
bae473a4 1098 spin_unlock(fe->ptl);
2ec74c3e 1099 return ret;
71e3aac0
AA
1100}
1101
b676b293 1102struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1103 unsigned long addr,
1104 pmd_t *pmd,
1105 unsigned int flags)
1106{
b676b293 1107 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1108 struct page *page = NULL;
1109
c4088ebd 1110 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1111
1112 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1113 goto out;
1114
85facf25
KS
1115 /* Avoid dumping huge zero page */
1116 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1117 return ERR_PTR(-EFAULT);
1118
2b4847e7 1119 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1120 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1121 goto out;
1122
71e3aac0 1123 page = pmd_page(*pmd);
ca120cf6 1124 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1125 if (flags & FOLL_TOUCH)
1126 touch_pmd(vma, addr, pmd);
de60f5f1 1127 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1128 /*
1129 * We don't mlock() pte-mapped THPs. This way we can avoid
1130 * leaking mlocked pages into non-VM_LOCKED VMAs.
1131 *
9a73f61b
KS
1132 * For anon THP:
1133 *
e90309c9
KS
1134 * In most cases the pmd is the only mapping of the page as we
1135 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1136 * writable private mappings in populate_vma_page_range().
1137 *
1138 * The only scenario when we have the page shared here is if we
1139 * mlocking read-only mapping shared over fork(). We skip
1140 * mlocking such pages.
9a73f61b
KS
1141 *
1142 * For file THP:
1143 *
1144 * We can expect PageDoubleMap() to be stable under page lock:
1145 * for file pages we set it in page_add_file_rmap(), which
1146 * requires page to be locked.
e90309c9 1147 */
9a73f61b
KS
1148
1149 if (PageAnon(page) && compound_mapcount(page) != 1)
1150 goto skip_mlock;
1151 if (PageDoubleMap(page) || !page->mapping)
1152 goto skip_mlock;
1153 if (!trylock_page(page))
1154 goto skip_mlock;
1155 lru_add_drain();
1156 if (page->mapping && !PageDoubleMap(page))
1157 mlock_vma_page(page);
1158 unlock_page(page);
b676b293 1159 }
9a73f61b 1160skip_mlock:
71e3aac0 1161 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1162 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1163 if (flags & FOLL_GET)
ddc58f27 1164 get_page(page);
71e3aac0
AA
1165
1166out:
1167 return page;
1168}
1169
d10e63f2 1170/* NUMA hinting page fault entry point for trans huge pmds */
bae473a4 1171int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
d10e63f2 1172{
bae473a4 1173 struct vm_area_struct *vma = fe->vma;
b8916634 1174 struct anon_vma *anon_vma = NULL;
b32967ff 1175 struct page *page;
bae473a4 1176 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
8191acbd 1177 int page_nid = -1, this_nid = numa_node_id();
90572890 1178 int target_nid, last_cpupid = -1;
8191acbd
MG
1179 bool page_locked;
1180 bool migrated = false;
b191f9b1 1181 bool was_writable;
6688cc05 1182 int flags = 0;
d10e63f2 1183
bae473a4
KS
1184 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1185 if (unlikely(!pmd_same(pmd, *fe->pmd)))
d10e63f2
MG
1186 goto out_unlock;
1187
de466bd6
MG
1188 /*
1189 * If there are potential migrations, wait for completion and retry
1190 * without disrupting NUMA hinting information. Do not relock and
1191 * check_same as the page may no longer be mapped.
1192 */
bae473a4
KS
1193 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1194 page = pmd_page(*fe->pmd);
1195 spin_unlock(fe->ptl);
5d833062 1196 wait_on_page_locked(page);
de466bd6
MG
1197 goto out;
1198 }
1199
d10e63f2 1200 page = pmd_page(pmd);
a1a46184 1201 BUG_ON(is_huge_zero_page(page));
8191acbd 1202 page_nid = page_to_nid(page);
90572890 1203 last_cpupid = page_cpupid_last(page);
03c5a6e1 1204 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1205 if (page_nid == this_nid) {
03c5a6e1 1206 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1207 flags |= TNF_FAULT_LOCAL;
1208 }
4daae3b4 1209
bea66fbd 1210 /* See similar comment in do_numa_page for explanation */
d59dc7bc 1211 if (!pmd_write(pmd))
6688cc05
PZ
1212 flags |= TNF_NO_GROUP;
1213
ff9042b1
MG
1214 /*
1215 * Acquire the page lock to serialise THP migrations but avoid dropping
1216 * page_table_lock if at all possible
1217 */
b8916634
MG
1218 page_locked = trylock_page(page);
1219 target_nid = mpol_misplaced(page, vma, haddr);
1220 if (target_nid == -1) {
1221 /* If the page was locked, there are no parallel migrations */
a54a407f 1222 if (page_locked)
b8916634 1223 goto clear_pmdnuma;
2b4847e7 1224 }
4daae3b4 1225
de466bd6 1226 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1227 if (!page_locked) {
bae473a4 1228 spin_unlock(fe->ptl);
b8916634 1229 wait_on_page_locked(page);
a54a407f 1230 page_nid = -1;
b8916634
MG
1231 goto out;
1232 }
1233
2b4847e7
MG
1234 /*
1235 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1236 * to serialises splits
1237 */
b8916634 1238 get_page(page);
bae473a4 1239 spin_unlock(fe->ptl);
b8916634 1240 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1241
c69307d5 1242 /* Confirm the PMD did not change while page_table_lock was released */
bae473a4
KS
1243 spin_lock(fe->ptl);
1244 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
b32967ff
MG
1245 unlock_page(page);
1246 put_page(page);
a54a407f 1247 page_nid = -1;
4daae3b4 1248 goto out_unlock;
b32967ff 1249 }
ff9042b1 1250
c3a489ca
MG
1251 /* Bail if we fail to protect against THP splits for any reason */
1252 if (unlikely(!anon_vma)) {
1253 put_page(page);
1254 page_nid = -1;
1255 goto clear_pmdnuma;
1256 }
1257
a54a407f
MG
1258 /*
1259 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1260 * and access rights restored.
a54a407f 1261 */
bae473a4
KS
1262 spin_unlock(fe->ptl);
1263 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1264 fe->pmd, pmd, fe->address, page, target_nid);
6688cc05
PZ
1265 if (migrated) {
1266 flags |= TNF_MIGRATED;
8191acbd 1267 page_nid = target_nid;
074c2381
MG
1268 } else
1269 flags |= TNF_MIGRATE_FAIL;
b32967ff 1270
8191acbd 1271 goto out;
b32967ff 1272clear_pmdnuma:
a54a407f 1273 BUG_ON(!PageLocked(page));
b191f9b1 1274 was_writable = pmd_write(pmd);
4d942466 1275 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1276 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1277 if (was_writable)
1278 pmd = pmd_mkwrite(pmd);
bae473a4
KS
1279 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1280 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
a54a407f 1281 unlock_page(page);
d10e63f2 1282out_unlock:
bae473a4 1283 spin_unlock(fe->ptl);
b8916634
MG
1284
1285out:
1286 if (anon_vma)
1287 page_unlock_anon_vma_read(anon_vma);
1288
8191acbd 1289 if (page_nid != -1)
bae473a4 1290 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
8191acbd 1291
d10e63f2
MG
1292 return 0;
1293}
1294
319904ad
HY
1295/*
1296 * Return true if we do MADV_FREE successfully on entire pmd page.
1297 * Otherwise, return false.
1298 */
1299bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1300 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1301{
1302 spinlock_t *ptl;
1303 pmd_t orig_pmd;
1304 struct page *page;
1305 struct mm_struct *mm = tlb->mm;
319904ad 1306 bool ret = false;
b8d3c4c3 1307
b6ec57f4
KS
1308 ptl = pmd_trans_huge_lock(pmd, vma);
1309 if (!ptl)
25eedabe 1310 goto out_unlocked;
b8d3c4c3
MK
1311
1312 orig_pmd = *pmd;
319904ad 1313 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1314 goto out;
b8d3c4c3
MK
1315
1316 page = pmd_page(orig_pmd);
1317 /*
1318 * If other processes are mapping this page, we couldn't discard
1319 * the page unless they all do MADV_FREE so let's skip the page.
1320 */
1321 if (page_mapcount(page) != 1)
1322 goto out;
1323
1324 if (!trylock_page(page))
1325 goto out;
1326
1327 /*
1328 * If user want to discard part-pages of THP, split it so MADV_FREE
1329 * will deactivate only them.
1330 */
1331 if (next - addr != HPAGE_PMD_SIZE) {
1332 get_page(page);
1333 spin_unlock(ptl);
9818b8cd 1334 split_huge_page(page);
b8d3c4c3
MK
1335 put_page(page);
1336 unlock_page(page);
b8d3c4c3
MK
1337 goto out_unlocked;
1338 }
1339
1340 if (PageDirty(page))
1341 ClearPageDirty(page);
1342 unlock_page(page);
1343
1344 if (PageActive(page))
1345 deactivate_page(page);
1346
1347 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1348 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1349 tlb->fullmm);
1350 orig_pmd = pmd_mkold(orig_pmd);
1351 orig_pmd = pmd_mkclean(orig_pmd);
1352
1353 set_pmd_at(mm, addr, pmd, orig_pmd);
1354 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1355 }
319904ad 1356 ret = true;
b8d3c4c3
MK
1357out:
1358 spin_unlock(ptl);
1359out_unlocked:
1360 return ret;
1361}
1362
71e3aac0 1363int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1364 pmd_t *pmd, unsigned long addr)
71e3aac0 1365{
da146769 1366 pmd_t orig_pmd;
bf929152 1367 spinlock_t *ptl;
71e3aac0 1368
b6ec57f4
KS
1369 ptl = __pmd_trans_huge_lock(pmd, vma);
1370 if (!ptl)
da146769
KS
1371 return 0;
1372 /*
1373 * For architectures like ppc64 we look at deposited pgtable
1374 * when calling pmdp_huge_get_and_clear. So do the
1375 * pgtable_trans_huge_withdraw after finishing pmdp related
1376 * operations.
1377 */
1378 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1379 tlb->fullmm);
1380 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1381 if (vma_is_dax(vma)) {
1382 spin_unlock(ptl);
1383 if (is_huge_zero_pmd(orig_pmd))
aa88b68c 1384 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1385 } else if (is_huge_zero_pmd(orig_pmd)) {
1386 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1387 atomic_long_dec(&tlb->mm->nr_ptes);
1388 spin_unlock(ptl);
aa88b68c 1389 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1390 } else {
1391 struct page *page = pmd_page(orig_pmd);
d281ee61 1392 page_remove_rmap(page, true);
da146769 1393 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1394 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1395 if (PageAnon(page)) {
1396 pgtable_t pgtable;
1397 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1398 pte_free(tlb->mm, pgtable);
1399 atomic_long_dec(&tlb->mm->nr_ptes);
1400 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1401 } else {
1402 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1403 }
da146769 1404 spin_unlock(ptl);
e77b0852 1405 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1406 }
da146769 1407 return 1;
71e3aac0
AA
1408}
1409
bf8616d5 1410bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a
AA
1411 unsigned long new_addr, unsigned long old_end,
1412 pmd_t *old_pmd, pmd_t *new_pmd)
1413{
bf929152 1414 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1415 pmd_t pmd;
37a1c49a
AA
1416 struct mm_struct *mm = vma->vm_mm;
1417
1418 if ((old_addr & ~HPAGE_PMD_MASK) ||
1419 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1420 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1421 return false;
37a1c49a
AA
1422
1423 /*
1424 * The destination pmd shouldn't be established, free_pgtables()
1425 * should have release it.
1426 */
1427 if (WARN_ON(!pmd_none(*new_pmd))) {
1428 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1429 return false;
37a1c49a
AA
1430 }
1431
bf929152
KS
1432 /*
1433 * We don't have to worry about the ordering of src and dst
1434 * ptlocks because exclusive mmap_sem prevents deadlock.
1435 */
b6ec57f4
KS
1436 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1437 if (old_ptl) {
bf929152
KS
1438 new_ptl = pmd_lockptr(mm, new_pmd);
1439 if (new_ptl != old_ptl)
1440 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1441 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1442 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1443
69a8ec2d
KS
1444 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1445 vma_is_anonymous(vma)) {
b3084f4d 1446 pgtable_t pgtable;
3592806c
KS
1447 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1448 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1449 }
b3084f4d
AK
1450 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1451 if (new_ptl != old_ptl)
1452 spin_unlock(new_ptl);
bf929152 1453 spin_unlock(old_ptl);
4b471e88 1454 return true;
37a1c49a 1455 }
4b471e88 1456 return false;
37a1c49a
AA
1457}
1458
f123d74a
MG
1459/*
1460 * Returns
1461 * - 0 if PMD could not be locked
1462 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1463 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1464 */
cd7548ab 1465int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1466 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1467{
1468 struct mm_struct *mm = vma->vm_mm;
bf929152 1469 spinlock_t *ptl;
cd7548ab
JW
1470 int ret = 0;
1471
b6ec57f4
KS
1472 ptl = __pmd_trans_huge_lock(pmd, vma);
1473 if (ptl) {
025c5b24 1474 pmd_t entry;
b191f9b1 1475 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1476 ret = 1;
e944fd67
MG
1477
1478 /*
1479 * Avoid trapping faults against the zero page. The read-only
1480 * data is likely to be read-cached on the local CPU and
1481 * local/remote hits to the zero page are not interesting.
1482 */
1483 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1484 spin_unlock(ptl);
ba68bc01 1485 return ret;
e944fd67
MG
1486 }
1487
10c1045f 1488 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1489 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1490 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1491 if (preserve_write)
1492 entry = pmd_mkwrite(entry);
10c1045f
MG
1493 ret = HPAGE_PMD_NR;
1494 set_pmd_at(mm, addr, pmd, entry);
b237aded
KS
1495 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1496 pmd_write(entry));
10c1045f 1497 }
bf929152 1498 spin_unlock(ptl);
025c5b24
NH
1499 }
1500
1501 return ret;
1502}
1503
1504/*
8f19b0c0 1505 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1506 *
8f19b0c0
HY
1507 * Note that if it returns page table lock pointer, this routine returns without
1508 * unlocking page table lock. So callers must unlock it.
025c5b24 1509 */
b6ec57f4 1510spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1511{
b6ec57f4
KS
1512 spinlock_t *ptl;
1513 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1514 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1515 return ptl;
1516 spin_unlock(ptl);
1517 return NULL;
cd7548ab
JW
1518}
1519
eef1b3ba
KS
1520static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1521 unsigned long haddr, pmd_t *pmd)
1522{
1523 struct mm_struct *mm = vma->vm_mm;
1524 pgtable_t pgtable;
1525 pmd_t _pmd;
1526 int i;
1527
1528 /* leave pmd empty until pte is filled */
1529 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1530
1531 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1532 pmd_populate(mm, &_pmd, pgtable);
1533
1534 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1535 pte_t *pte, entry;
1536 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1537 entry = pte_mkspecial(entry);
1538 pte = pte_offset_map(&_pmd, haddr);
1539 VM_BUG_ON(!pte_none(*pte));
1540 set_pte_at(mm, haddr, pte, entry);
1541 pte_unmap(pte);
1542 }
1543 smp_wmb(); /* make pte visible before pmd */
1544 pmd_populate(mm, pmd, pgtable);
1545 put_huge_zero_page();
1546}
1547
1548static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1549 unsigned long haddr, bool freeze)
eef1b3ba
KS
1550{
1551 struct mm_struct *mm = vma->vm_mm;
1552 struct page *page;
1553 pgtable_t pgtable;
1554 pmd_t _pmd;
804dd150 1555 bool young, write, dirty, soft_dirty;
2ac015e2 1556 unsigned long addr;
eef1b3ba
KS
1557 int i;
1558
1559 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1560 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1561 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1562 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1563
1564 count_vm_event(THP_SPLIT_PMD);
1565
d21b9e57
KS
1566 if (!vma_is_anonymous(vma)) {
1567 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
eef1b3ba
KS
1568 if (is_huge_zero_pmd(_pmd))
1569 put_huge_zero_page();
d21b9e57
KS
1570 if (vma_is_dax(vma))
1571 return;
1572 page = pmd_page(_pmd);
1573 if (!PageReferenced(page) && pmd_young(_pmd))
1574 SetPageReferenced(page);
1575 page_remove_rmap(page, true);
1576 put_page(page);
1577 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1578 return;
1579 } else if (is_huge_zero_pmd(*pmd)) {
1580 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1581 }
1582
1583 page = pmd_page(*pmd);
1584 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 1585 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
1586 write = pmd_write(*pmd);
1587 young = pmd_young(*pmd);
b8d3c4c3 1588 dirty = pmd_dirty(*pmd);
804dd150 1589 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 1590
c777e2a8 1591 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
1592 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1593 pmd_populate(mm, &_pmd, pgtable);
1594
2ac015e2 1595 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
1596 pte_t entry, *pte;
1597 /*
1598 * Note that NUMA hinting access restrictions are not
1599 * transferred to avoid any possibility of altering
1600 * permissions across VMAs.
1601 */
ba988280
KS
1602 if (freeze) {
1603 swp_entry_t swp_entry;
1604 swp_entry = make_migration_entry(page + i, write);
1605 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
1606 if (soft_dirty)
1607 entry = pte_swp_mksoft_dirty(entry);
ba988280
KS
1608 } else {
1609 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 1610 entry = maybe_mkwrite(entry, vma);
ba988280
KS
1611 if (!write)
1612 entry = pte_wrprotect(entry);
1613 if (!young)
1614 entry = pte_mkold(entry);
804dd150
AA
1615 if (soft_dirty)
1616 entry = pte_mksoft_dirty(entry);
ba988280 1617 }
b8d3c4c3
MK
1618 if (dirty)
1619 SetPageDirty(page + i);
2ac015e2 1620 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 1621 BUG_ON(!pte_none(*pte));
2ac015e2 1622 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
1623 atomic_inc(&page[i]._mapcount);
1624 pte_unmap(pte);
1625 }
1626
1627 /*
1628 * Set PG_double_map before dropping compound_mapcount to avoid
1629 * false-negative page_mapped().
1630 */
1631 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1632 for (i = 0; i < HPAGE_PMD_NR; i++)
1633 atomic_inc(&page[i]._mapcount);
1634 }
1635
1636 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1637 /* Last compound_mapcount is gone. */
11fb9989 1638 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
1639 if (TestClearPageDoubleMap(page)) {
1640 /* No need in mapcount reference anymore */
1641 for (i = 0; i < HPAGE_PMD_NR; i++)
1642 atomic_dec(&page[i]._mapcount);
1643 }
1644 }
1645
1646 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
1647 /*
1648 * Up to this point the pmd is present and huge and userland has the
1649 * whole access to the hugepage during the split (which happens in
1650 * place). If we overwrite the pmd with the not-huge version pointing
1651 * to the pte here (which of course we could if all CPUs were bug
1652 * free), userland could trigger a small page size TLB miss on the
1653 * small sized TLB while the hugepage TLB entry is still established in
1654 * the huge TLB. Some CPU doesn't like that.
1655 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1656 * 383 on page 93. Intel should be safe but is also warns that it's
1657 * only safe if the permission and cache attributes of the two entries
1658 * loaded in the two TLB is identical (which should be the case here).
1659 * But it is generally safer to never allow small and huge TLB entries
1660 * for the same virtual address to be loaded simultaneously. So instead
1661 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1662 * current pmd notpresent (atomically because here the pmd_trans_huge
1663 * and pmd_trans_splitting must remain set at all times on the pmd
1664 * until the split is complete for this pmd), then we flush the SMP TLB
1665 * and finally we write the non-huge version of the pmd entry with
1666 * pmd_populate.
1667 */
1668 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 1669 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
1670
1671 if (freeze) {
2ac015e2 1672 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
1673 page_remove_rmap(page + i, false);
1674 put_page(page + i);
1675 }
1676 }
eef1b3ba
KS
1677}
1678
1679void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 1680 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
1681{
1682 spinlock_t *ptl;
1683 struct mm_struct *mm = vma->vm_mm;
1684 unsigned long haddr = address & HPAGE_PMD_MASK;
1685
1686 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1687 ptl = pmd_lock(mm, pmd);
33f4751e
NH
1688
1689 /*
1690 * If caller asks to setup a migration entries, we need a page to check
1691 * pmd against. Otherwise we can end up replacing wrong page.
1692 */
1693 VM_BUG_ON(freeze && !page);
1694 if (page && page != pmd_page(*pmd))
1695 goto out;
1696
5c7fb56e 1697 if (pmd_trans_huge(*pmd)) {
33f4751e 1698 page = pmd_page(*pmd);
5c7fb56e 1699 if (PageMlocked(page))
5f737714 1700 clear_page_mlock(page);
5c7fb56e 1701 } else if (!pmd_devmap(*pmd))
e90309c9 1702 goto out;
fec89c10 1703 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 1704out:
eef1b3ba
KS
1705 spin_unlock(ptl);
1706 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1707}
1708
fec89c10
KS
1709void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1710 bool freeze, struct page *page)
94fcc585 1711{
f72e7dcd
HD
1712 pgd_t *pgd;
1713 pud_t *pud;
94fcc585
AA
1714 pmd_t *pmd;
1715
78ddc534 1716 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
1717 if (!pgd_present(*pgd))
1718 return;
1719
1720 pud = pud_offset(pgd, address);
1721 if (!pud_present(*pud))
1722 return;
1723
1724 pmd = pmd_offset(pud, address);
fec89c10 1725
33f4751e 1726 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
1727}
1728
e1b9996b 1729void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
1730 unsigned long start,
1731 unsigned long end,
1732 long adjust_next)
1733{
1734 /*
1735 * If the new start address isn't hpage aligned and it could
1736 * previously contain an hugepage: check if we need to split
1737 * an huge pmd.
1738 */
1739 if (start & ~HPAGE_PMD_MASK &&
1740 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1741 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1742 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
1743
1744 /*
1745 * If the new end address isn't hpage aligned and it could
1746 * previously contain an hugepage: check if we need to split
1747 * an huge pmd.
1748 */
1749 if (end & ~HPAGE_PMD_MASK &&
1750 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1751 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1752 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
1753
1754 /*
1755 * If we're also updating the vma->vm_next->vm_start, if the new
1756 * vm_next->vm_start isn't page aligned and it could previously
1757 * contain an hugepage: check if we need to split an huge pmd.
1758 */
1759 if (adjust_next > 0) {
1760 struct vm_area_struct *next = vma->vm_next;
1761 unsigned long nstart = next->vm_start;
1762 nstart += adjust_next << PAGE_SHIFT;
1763 if (nstart & ~HPAGE_PMD_MASK &&
1764 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1765 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 1766 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
1767 }
1768}
e9b61f19 1769
fec89c10 1770static void freeze_page(struct page *page)
e9b61f19 1771{
baa355fd
KS
1772 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1773 TTU_RMAP_LOCKED;
fec89c10 1774 int i, ret;
e9b61f19
KS
1775
1776 VM_BUG_ON_PAGE(!PageHead(page), page);
1777
baa355fd
KS
1778 if (PageAnon(page))
1779 ttu_flags |= TTU_MIGRATION;
1780
fec89c10
KS
1781 /* We only need TTU_SPLIT_HUGE_PMD once */
1782 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1783 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1784 /* Cut short if the page is unmapped */
1785 if (page_count(page) == 1)
1786 return;
e9b61f19 1787
fec89c10 1788 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 1789 }
baa355fd 1790 VM_BUG_ON_PAGE(ret, page + i - 1);
e9b61f19
KS
1791}
1792
fec89c10 1793static void unfreeze_page(struct page *page)
e9b61f19 1794{
fec89c10 1795 int i;
e9b61f19 1796
fec89c10
KS
1797 for (i = 0; i < HPAGE_PMD_NR; i++)
1798 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
1799}
1800
8df651c7 1801static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
1802 struct lruvec *lruvec, struct list_head *list)
1803{
e9b61f19
KS
1804 struct page *page_tail = head + tail;
1805
8df651c7 1806 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 1807 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
1808
1809 /*
0139aa7b 1810 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 1811 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
1812 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1813 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
1814 * get_page_unless_zero(), and atomic_set() is implemented in C not
1815 * using locked ops. spin_unlock on x86 sometime uses locked ops
1816 * because of PPro errata 66, 92, so unless somebody can guarantee
1817 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 1818 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 1819 */
baa355fd
KS
1820 if (PageAnon(head)) {
1821 page_ref_inc(page_tail);
1822 } else {
1823 /* Additional pin to radix tree */
1824 page_ref_add(page_tail, 2);
1825 }
e9b61f19
KS
1826
1827 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1828 page_tail->flags |= (head->flags &
1829 ((1L << PG_referenced) |
1830 (1L << PG_swapbacked) |
1831 (1L << PG_mlocked) |
1832 (1L << PG_uptodate) |
1833 (1L << PG_active) |
1834 (1L << PG_locked) |
b8d3c4c3
MK
1835 (1L << PG_unevictable) |
1836 (1L << PG_dirty)));
e9b61f19
KS
1837
1838 /*
1839 * After clearing PageTail the gup refcount can be released.
1840 * Page flags also must be visible before we make the page non-compound.
1841 */
1842 smp_wmb();
1843
1844 clear_compound_head(page_tail);
1845
1846 if (page_is_young(head))
1847 set_page_young(page_tail);
1848 if (page_is_idle(head))
1849 set_page_idle(page_tail);
1850
1851 /* ->mapping in first tail page is compound_mapcount */
9a982250 1852 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
1853 page_tail);
1854 page_tail->mapping = head->mapping;
1855
1856 page_tail->index = head->index + tail;
1857 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1858 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
1859}
1860
baa355fd
KS
1861static void __split_huge_page(struct page *page, struct list_head *list,
1862 unsigned long flags)
e9b61f19
KS
1863{
1864 struct page *head = compound_head(page);
1865 struct zone *zone = page_zone(head);
1866 struct lruvec *lruvec;
baa355fd 1867 pgoff_t end = -1;
8df651c7 1868 int i;
e9b61f19 1869
599d0c95 1870 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
1871
1872 /* complete memcg works before add pages to LRU */
1873 mem_cgroup_split_huge_fixup(head);
1874
baa355fd
KS
1875 if (!PageAnon(page))
1876 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1877
1878 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 1879 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
1880 /* Some pages can be beyond i_size: drop them from page cache */
1881 if (head[i].index >= end) {
1882 __ClearPageDirty(head + i);
1883 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
1884 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1885 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
1886 put_page(head + i);
1887 }
1888 }
e9b61f19
KS
1889
1890 ClearPageCompound(head);
baa355fd
KS
1891 /* See comment in __split_huge_page_tail() */
1892 if (PageAnon(head)) {
1893 page_ref_inc(head);
1894 } else {
1895 /* Additional pin to radix tree */
1896 page_ref_add(head, 2);
1897 spin_unlock(&head->mapping->tree_lock);
1898 }
1899
a52633d8 1900 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 1901
fec89c10 1902 unfreeze_page(head);
e9b61f19
KS
1903
1904 for (i = 0; i < HPAGE_PMD_NR; i++) {
1905 struct page *subpage = head + i;
1906 if (subpage == page)
1907 continue;
1908 unlock_page(subpage);
1909
1910 /*
1911 * Subpages may be freed if there wasn't any mapping
1912 * like if add_to_swap() is running on a lru page that
1913 * had its mapping zapped. And freeing these pages
1914 * requires taking the lru_lock so we do the put_page
1915 * of the tail pages after the split is complete.
1916 */
1917 put_page(subpage);
1918 }
1919}
1920
b20ce5e0
KS
1921int total_mapcount(struct page *page)
1922{
dd78fedd 1923 int i, compound, ret;
b20ce5e0
KS
1924
1925 VM_BUG_ON_PAGE(PageTail(page), page);
1926
1927 if (likely(!PageCompound(page)))
1928 return atomic_read(&page->_mapcount) + 1;
1929
dd78fedd 1930 compound = compound_mapcount(page);
b20ce5e0 1931 if (PageHuge(page))
dd78fedd
KS
1932 return compound;
1933 ret = compound;
b20ce5e0
KS
1934 for (i = 0; i < HPAGE_PMD_NR; i++)
1935 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
1936 /* File pages has compound_mapcount included in _mapcount */
1937 if (!PageAnon(page))
1938 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
1939 if (PageDoubleMap(page))
1940 ret -= HPAGE_PMD_NR;
1941 return ret;
1942}
1943
6d0a07ed
AA
1944/*
1945 * This calculates accurately how many mappings a transparent hugepage
1946 * has (unlike page_mapcount() which isn't fully accurate). This full
1947 * accuracy is primarily needed to know if copy-on-write faults can
1948 * reuse the page and change the mapping to read-write instead of
1949 * copying them. At the same time this returns the total_mapcount too.
1950 *
1951 * The function returns the highest mapcount any one of the subpages
1952 * has. If the return value is one, even if different processes are
1953 * mapping different subpages of the transparent hugepage, they can
1954 * all reuse it, because each process is reusing a different subpage.
1955 *
1956 * The total_mapcount is instead counting all virtual mappings of the
1957 * subpages. If the total_mapcount is equal to "one", it tells the
1958 * caller all mappings belong to the same "mm" and in turn the
1959 * anon_vma of the transparent hugepage can become the vma->anon_vma
1960 * local one as no other process may be mapping any of the subpages.
1961 *
1962 * It would be more accurate to replace page_mapcount() with
1963 * page_trans_huge_mapcount(), however we only use
1964 * page_trans_huge_mapcount() in the copy-on-write faults where we
1965 * need full accuracy to avoid breaking page pinning, because
1966 * page_trans_huge_mapcount() is slower than page_mapcount().
1967 */
1968int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1969{
1970 int i, ret, _total_mapcount, mapcount;
1971
1972 /* hugetlbfs shouldn't call it */
1973 VM_BUG_ON_PAGE(PageHuge(page), page);
1974
1975 if (likely(!PageTransCompound(page))) {
1976 mapcount = atomic_read(&page->_mapcount) + 1;
1977 if (total_mapcount)
1978 *total_mapcount = mapcount;
1979 return mapcount;
1980 }
1981
1982 page = compound_head(page);
1983
1984 _total_mapcount = ret = 0;
1985 for (i = 0; i < HPAGE_PMD_NR; i++) {
1986 mapcount = atomic_read(&page[i]._mapcount) + 1;
1987 ret = max(ret, mapcount);
1988 _total_mapcount += mapcount;
1989 }
1990 if (PageDoubleMap(page)) {
1991 ret -= 1;
1992 _total_mapcount -= HPAGE_PMD_NR;
1993 }
1994 mapcount = compound_mapcount(page);
1995 ret += mapcount;
1996 _total_mapcount += mapcount;
1997 if (total_mapcount)
1998 *total_mapcount = _total_mapcount;
1999 return ret;
2000}
2001
e9b61f19
KS
2002/*
2003 * This function splits huge page into normal pages. @page can point to any
2004 * subpage of huge page to split. Split doesn't change the position of @page.
2005 *
2006 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2007 * The huge page must be locked.
2008 *
2009 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2010 *
2011 * Both head page and tail pages will inherit mapping, flags, and so on from
2012 * the hugepage.
2013 *
2014 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2015 * they are not mapped.
2016 *
2017 * Returns 0 if the hugepage is split successfully.
2018 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2019 * us.
2020 */
2021int split_huge_page_to_list(struct page *page, struct list_head *list)
2022{
2023 struct page *head = compound_head(page);
a3d0a918 2024 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2025 struct anon_vma *anon_vma = NULL;
2026 struct address_space *mapping = NULL;
2027 int count, mapcount, extra_pins, ret;
d9654322 2028 bool mlocked;
0b9b6fff 2029 unsigned long flags;
e9b61f19
KS
2030
2031 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19
KS
2032 VM_BUG_ON_PAGE(!PageLocked(page), page);
2033 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2034 VM_BUG_ON_PAGE(!PageCompound(page), page);
2035
baa355fd
KS
2036 if (PageAnon(head)) {
2037 /*
2038 * The caller does not necessarily hold an mmap_sem that would
2039 * prevent the anon_vma disappearing so we first we take a
2040 * reference to it and then lock the anon_vma for write. This
2041 * is similar to page_lock_anon_vma_read except the write lock
2042 * is taken to serialise against parallel split or collapse
2043 * operations.
2044 */
2045 anon_vma = page_get_anon_vma(head);
2046 if (!anon_vma) {
2047 ret = -EBUSY;
2048 goto out;
2049 }
2050 extra_pins = 0;
2051 mapping = NULL;
2052 anon_vma_lock_write(anon_vma);
2053 } else {
2054 mapping = head->mapping;
2055
2056 /* Truncated ? */
2057 if (!mapping) {
2058 ret = -EBUSY;
2059 goto out;
2060 }
2061
2062 /* Addidional pins from radix tree */
2063 extra_pins = HPAGE_PMD_NR;
2064 anon_vma = NULL;
2065 i_mmap_lock_read(mapping);
e9b61f19 2066 }
e9b61f19
KS
2067
2068 /*
2069 * Racy check if we can split the page, before freeze_page() will
2070 * split PMDs
2071 */
baa355fd 2072 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
e9b61f19
KS
2073 ret = -EBUSY;
2074 goto out_unlock;
2075 }
2076
d9654322 2077 mlocked = PageMlocked(page);
fec89c10 2078 freeze_page(head);
e9b61f19
KS
2079 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2080
d9654322
KS
2081 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2082 if (mlocked)
2083 lru_add_drain();
2084
baa355fd 2085 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2086 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2087
2088 if (mapping) {
2089 void **pslot;
2090
2091 spin_lock(&mapping->tree_lock);
2092 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2093 page_index(head));
2094 /*
2095 * Check if the head page is present in radix tree.
2096 * We assume all tail are present too, if head is there.
2097 */
2098 if (radix_tree_deref_slot_protected(pslot,
2099 &mapping->tree_lock) != head)
2100 goto fail;
2101 }
2102
0139aa7b 2103 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2104 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2105 count = page_count(head);
2106 mapcount = total_mapcount(head);
baa355fd 2107 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2108 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2109 pgdata->split_queue_len--;
9a982250
KS
2110 list_del(page_deferred_list(head));
2111 }
65c45377 2112 if (mapping)
11fb9989 2113 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2114 spin_unlock(&pgdata->split_queue_lock);
2115 __split_huge_page(page, list, flags);
e9b61f19 2116 ret = 0;
e9b61f19 2117 } else {
baa355fd
KS
2118 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2119 pr_alert("total_mapcount: %u, page_count(): %u\n",
2120 mapcount, count);
2121 if (PageTail(page))
2122 dump_page(head, NULL);
2123 dump_page(page, "total_mapcount(head) > 0");
2124 BUG();
2125 }
2126 spin_unlock(&pgdata->split_queue_lock);
2127fail: if (mapping)
2128 spin_unlock(&mapping->tree_lock);
a52633d8 2129 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2130 unfreeze_page(head);
e9b61f19
KS
2131 ret = -EBUSY;
2132 }
2133
2134out_unlock:
baa355fd
KS
2135 if (anon_vma) {
2136 anon_vma_unlock_write(anon_vma);
2137 put_anon_vma(anon_vma);
2138 }
2139 if (mapping)
2140 i_mmap_unlock_read(mapping);
e9b61f19
KS
2141out:
2142 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2143 return ret;
2144}
9a982250
KS
2145
2146void free_transhuge_page(struct page *page)
2147{
a3d0a918 2148 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2149 unsigned long flags;
2150
a3d0a918 2151 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2152 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2153 pgdata->split_queue_len--;
9a982250
KS
2154 list_del(page_deferred_list(page));
2155 }
a3d0a918 2156 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2157 free_compound_page(page);
2158}
2159
2160void deferred_split_huge_page(struct page *page)
2161{
a3d0a918 2162 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2163 unsigned long flags;
2164
2165 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2166
a3d0a918 2167 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2168 if (list_empty(page_deferred_list(page))) {
f9719a03 2169 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2170 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2171 pgdata->split_queue_len++;
9a982250 2172 }
a3d0a918 2173 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2174}
2175
2176static unsigned long deferred_split_count(struct shrinker *shrink,
2177 struct shrink_control *sc)
2178{
a3d0a918 2179 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2180 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2181}
2182
2183static unsigned long deferred_split_scan(struct shrinker *shrink,
2184 struct shrink_control *sc)
2185{
a3d0a918 2186 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2187 unsigned long flags;
2188 LIST_HEAD(list), *pos, *next;
2189 struct page *page;
2190 int split = 0;
2191
a3d0a918 2192 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2193 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2194 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2195 page = list_entry((void *)pos, struct page, mapping);
2196 page = compound_head(page);
e3ae1953
KS
2197 if (get_page_unless_zero(page)) {
2198 list_move(page_deferred_list(page), &list);
2199 } else {
2200 /* We lost race with put_compound_page() */
9a982250 2201 list_del_init(page_deferred_list(page));
a3d0a918 2202 pgdata->split_queue_len--;
9a982250 2203 }
e3ae1953
KS
2204 if (!--sc->nr_to_scan)
2205 break;
9a982250 2206 }
a3d0a918 2207 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2208
2209 list_for_each_safe(pos, next, &list) {
2210 page = list_entry((void *)pos, struct page, mapping);
2211 lock_page(page);
2212 /* split_huge_page() removes page from list on success */
2213 if (!split_huge_page(page))
2214 split++;
2215 unlock_page(page);
2216 put_page(page);
2217 }
2218
a3d0a918
KS
2219 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2220 list_splice_tail(&list, &pgdata->split_queue);
2221 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2222
cb8d68ec
KS
2223 /*
2224 * Stop shrinker if we didn't split any page, but the queue is empty.
2225 * This can happen if pages were freed under us.
2226 */
2227 if (!split && list_empty(&pgdata->split_queue))
2228 return SHRINK_STOP;
2229 return split;
9a982250
KS
2230}
2231
2232static struct shrinker deferred_split_shrinker = {
2233 .count_objects = deferred_split_count,
2234 .scan_objects = deferred_split_scan,
2235 .seeks = DEFAULT_SEEKS,
a3d0a918 2236 .flags = SHRINKER_NUMA_AWARE,
9a982250 2237};
49071d43
KS
2238
2239#ifdef CONFIG_DEBUG_FS
2240static int split_huge_pages_set(void *data, u64 val)
2241{
2242 struct zone *zone;
2243 struct page *page;
2244 unsigned long pfn, max_zone_pfn;
2245 unsigned long total = 0, split = 0;
2246
2247 if (val != 1)
2248 return -EINVAL;
2249
2250 for_each_populated_zone(zone) {
2251 max_zone_pfn = zone_end_pfn(zone);
2252 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2253 if (!pfn_valid(pfn))
2254 continue;
2255
2256 page = pfn_to_page(pfn);
2257 if (!get_page_unless_zero(page))
2258 continue;
2259
2260 if (zone != page_zone(page))
2261 goto next;
2262
baa355fd 2263 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2264 goto next;
2265
2266 total++;
2267 lock_page(page);
2268 if (!split_huge_page(page))
2269 split++;
2270 unlock_page(page);
2271next:
2272 put_page(page);
2273 }
2274 }
2275
145bdaa1 2276 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2277
2278 return 0;
2279}
2280DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2281 "%llu\n");
2282
2283static int __init split_huge_pages_debugfs(void)
2284{
2285 void *ret;
2286
145bdaa1 2287 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2288 &split_huge_pages_fops);
2289 if (!ret)
2290 pr_warn("Failed to create split_huge_pages in debugfs");
2291 return 0;
2292}
2293late_initcall(split_huge_pages_debugfs);
2294#endif