]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
thp: do_huge_pmd_anonymous_page() cleanup
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
97ae1749 15#include <linux/shrinker.h>
ba76149f
AA
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
878aee7d 19#include <linux/freezer.h>
a664b2d8 20#include <linux/mman.h>
325adeb5 21#include <linux/pagemap.h>
4daae3b4 22#include <linux/migrate.h>
43b5fbbd 23#include <linux/hashtable.h>
97ae1749 24
71e3aac0
AA
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28
ba76149f
AA
29/*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
71e3aac0 36unsigned long transparent_hugepage_flags __read_mostly =
13ece886 37#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
39#endif
40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42#endif
d39d33c3 43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
46
47/* default scan 8*512 pte (or vmas) every 30 second */
48static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49static unsigned int khugepaged_pages_collapsed;
50static unsigned int khugepaged_full_scans;
51static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52/* during fragmentation poll the hugepage allocator once every minute */
53static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54static struct task_struct *khugepaged_thread __read_mostly;
55static DEFINE_MUTEX(khugepaged_mutex);
56static DEFINE_SPINLOCK(khugepaged_mm_lock);
57static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58/*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65static int khugepaged(void *none);
ba76149f 66static int khugepaged_slab_init(void);
ba76149f 67
43b5fbbd
SL
68#define MM_SLOTS_HASH_BITS 10
69static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
ba76149f
AA
71static struct kmem_cache *mm_slot_cache __read_mostly;
72
73/**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83};
84
85/**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
2f1da642
HS
97};
98static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100};
101
f000565a
AA
102
103static int set_recommended_min_free_kbytes(void)
104{
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
f000565a 108
17c230af 109 if (!khugepaged_enabled())
f000565a
AA
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136}
137late_initcall(set_recommended_min_free_kbytes);
138
ba76149f
AA
139static int start_khugepaged(void)
140{
141 int err = 0;
142 if (khugepaged_enabled()) {
ba76149f
AA
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
911891af
XG
152
153 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 154 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
155
156 set_recommended_min_free_kbytes();
911891af 157 } else if (khugepaged_thread) {
911891af
XG
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
637e3a27 161
ba76149f
AA
162 return err;
163}
71e3aac0 164
97ae1749 165static atomic_t huge_zero_refcount;
5918d10a 166static struct page *huge_zero_page __read_mostly;
97ae1749 167
5918d10a 168static inline bool is_huge_zero_page(struct page *page)
4a6c1297 169{
5918d10a 170 return ACCESS_ONCE(huge_zero_page) == page;
97ae1749 171}
4a6c1297 172
97ae1749
KS
173static inline bool is_huge_zero_pmd(pmd_t pmd)
174{
5918d10a 175 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
176}
177
5918d10a 178static struct page *get_huge_zero_page(void)
97ae1749
KS
179{
180 struct page *zero_page;
181retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 183 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
184
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 186 HPAGE_PMD_ORDER);
d8a8e1f0
KS
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 189 return NULL;
d8a8e1f0
KS
190 }
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 192 preempt_disable();
5918d10a 193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749
KS
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
197 }
198
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
5918d10a 202 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
203}
204
97ae1749 205static void put_huge_zero_page(void)
4a6c1297 206{
97ae1749
KS
207 /*
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
210 */
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
212}
213
97ae1749
KS
214static int shrink_huge_zero_page(struct shrinker *shrink,
215 struct shrink_control *sc)
4a6c1297 216{
97ae1749
KS
217 if (!sc->nr_to_scan)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 __free_page(zero_page);
97ae1749
KS
225 }
226
227 return 0;
4a6c1297
KS
228}
229
97ae1749
KS
230static struct shrinker huge_zero_page_shrinker = {
231 .shrink = shrink_huge_zero_page,
232 .seeks = DEFAULT_SEEKS,
233};
234
71e3aac0 235#ifdef CONFIG_SYSFS
ba76149f 236
71e3aac0
AA
237static ssize_t double_flag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf,
239 enum transparent_hugepage_flag enabled,
240 enum transparent_hugepage_flag req_madv)
241{
242 if (test_bit(enabled, &transparent_hugepage_flags)) {
243 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
244 return sprintf(buf, "[always] madvise never\n");
245 } else if (test_bit(req_madv, &transparent_hugepage_flags))
246 return sprintf(buf, "always [madvise] never\n");
247 else
248 return sprintf(buf, "always madvise [never]\n");
249}
250static ssize_t double_flag_store(struct kobject *kobj,
251 struct kobj_attribute *attr,
252 const char *buf, size_t count,
253 enum transparent_hugepage_flag enabled,
254 enum transparent_hugepage_flag req_madv)
255{
256 if (!memcmp("always", buf,
257 min(sizeof("always")-1, count))) {
258 set_bit(enabled, &transparent_hugepage_flags);
259 clear_bit(req_madv, &transparent_hugepage_flags);
260 } else if (!memcmp("madvise", buf,
261 min(sizeof("madvise")-1, count))) {
262 clear_bit(enabled, &transparent_hugepage_flags);
263 set_bit(req_madv, &transparent_hugepage_flags);
264 } else if (!memcmp("never", buf,
265 min(sizeof("never")-1, count))) {
266 clear_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
272}
273
274static ssize_t enabled_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276{
277 return double_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_FLAG,
279 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
280}
281static ssize_t enabled_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
284{
ba76149f
AA
285 ssize_t ret;
286
287 ret = double_flag_store(kobj, attr, buf, count,
288 TRANSPARENT_HUGEPAGE_FLAG,
289 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
290
291 if (ret > 0) {
911891af
XG
292 int err;
293
294 mutex_lock(&khugepaged_mutex);
295 err = start_khugepaged();
296 mutex_unlock(&khugepaged_mutex);
297
ba76149f
AA
298 if (err)
299 ret = err;
300 }
301
302 return ret;
71e3aac0
AA
303}
304static struct kobj_attribute enabled_attr =
305 __ATTR(enabled, 0644, enabled_show, enabled_store);
306
307static ssize_t single_flag_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf,
309 enum transparent_hugepage_flag flag)
310{
e27e6151
BH
311 return sprintf(buf, "%d\n",
312 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 313}
e27e6151 314
71e3aac0
AA
315static ssize_t single_flag_store(struct kobject *kobj,
316 struct kobj_attribute *attr,
317 const char *buf, size_t count,
318 enum transparent_hugepage_flag flag)
319{
e27e6151
BH
320 unsigned long value;
321 int ret;
322
323 ret = kstrtoul(buf, 10, &value);
324 if (ret < 0)
325 return ret;
326 if (value > 1)
327 return -EINVAL;
328
329 if (value)
71e3aac0 330 set_bit(flag, &transparent_hugepage_flags);
e27e6151 331 else
71e3aac0 332 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
333
334 return count;
335}
336
337/*
338 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
339 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
340 * memory just to allocate one more hugepage.
341 */
342static ssize_t defrag_show(struct kobject *kobj,
343 struct kobj_attribute *attr, char *buf)
344{
345 return double_flag_show(kobj, attr, buf,
346 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
347 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
348}
349static ssize_t defrag_store(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 const char *buf, size_t count)
352{
353 return double_flag_store(kobj, attr, buf, count,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356}
357static struct kobj_attribute defrag_attr =
358 __ATTR(defrag, 0644, defrag_show, defrag_store);
359
79da5407
KS
360static ssize_t use_zero_page_show(struct kobject *kobj,
361 struct kobj_attribute *attr, char *buf)
362{
363 return single_flag_show(kobj, attr, buf,
364 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
365}
366static ssize_t use_zero_page_store(struct kobject *kobj,
367 struct kobj_attribute *attr, const char *buf, size_t count)
368{
369 return single_flag_store(kobj, attr, buf, count,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371}
372static struct kobj_attribute use_zero_page_attr =
373 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
374#ifdef CONFIG_DEBUG_VM
375static ssize_t debug_cow_show(struct kobject *kobj,
376 struct kobj_attribute *attr, char *buf)
377{
378 return single_flag_show(kobj, attr, buf,
379 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
380}
381static ssize_t debug_cow_store(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 const char *buf, size_t count)
384{
385 return single_flag_store(kobj, attr, buf, count,
386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387}
388static struct kobj_attribute debug_cow_attr =
389 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
390#endif /* CONFIG_DEBUG_VM */
391
392static struct attribute *hugepage_attr[] = {
393 &enabled_attr.attr,
394 &defrag_attr.attr,
79da5407 395 &use_zero_page_attr.attr,
71e3aac0
AA
396#ifdef CONFIG_DEBUG_VM
397 &debug_cow_attr.attr,
398#endif
399 NULL,
400};
401
402static struct attribute_group hugepage_attr_group = {
403 .attrs = hugepage_attr,
ba76149f
AA
404};
405
406static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
411}
412
413static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 const char *buf, size_t count)
416{
417 unsigned long msecs;
418 int err;
419
3dbb95f7 420 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
421 if (err || msecs > UINT_MAX)
422 return -EINVAL;
423
424 khugepaged_scan_sleep_millisecs = msecs;
425 wake_up_interruptible(&khugepaged_wait);
426
427 return count;
428}
429static struct kobj_attribute scan_sleep_millisecs_attr =
430 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
431 scan_sleep_millisecs_store);
432
433static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
434 struct kobj_attribute *attr,
435 char *buf)
436{
437 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
438}
439
440static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 const char *buf, size_t count)
443{
444 unsigned long msecs;
445 int err;
446
3dbb95f7 447 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
448 if (err || msecs > UINT_MAX)
449 return -EINVAL;
450
451 khugepaged_alloc_sleep_millisecs = msecs;
452 wake_up_interruptible(&khugepaged_wait);
453
454 return count;
455}
456static struct kobj_attribute alloc_sleep_millisecs_attr =
457 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
458 alloc_sleep_millisecs_store);
459
460static ssize_t pages_to_scan_show(struct kobject *kobj,
461 struct kobj_attribute *attr,
462 char *buf)
463{
464 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
465}
466static ssize_t pages_to_scan_store(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 const char *buf, size_t count)
469{
470 int err;
471 unsigned long pages;
472
3dbb95f7 473 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
474 if (err || !pages || pages > UINT_MAX)
475 return -EINVAL;
476
477 khugepaged_pages_to_scan = pages;
478
479 return count;
480}
481static struct kobj_attribute pages_to_scan_attr =
482 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
483 pages_to_scan_store);
484
485static ssize_t pages_collapsed_show(struct kobject *kobj,
486 struct kobj_attribute *attr,
487 char *buf)
488{
489 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
490}
491static struct kobj_attribute pages_collapsed_attr =
492 __ATTR_RO(pages_collapsed);
493
494static ssize_t full_scans_show(struct kobject *kobj,
495 struct kobj_attribute *attr,
496 char *buf)
497{
498 return sprintf(buf, "%u\n", khugepaged_full_scans);
499}
500static struct kobj_attribute full_scans_attr =
501 __ATTR_RO(full_scans);
502
503static ssize_t khugepaged_defrag_show(struct kobject *kobj,
504 struct kobj_attribute *attr, char *buf)
505{
506 return single_flag_show(kobj, attr, buf,
507 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
508}
509static ssize_t khugepaged_defrag_store(struct kobject *kobj,
510 struct kobj_attribute *attr,
511 const char *buf, size_t count)
512{
513 return single_flag_store(kobj, attr, buf, count,
514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515}
516static struct kobj_attribute khugepaged_defrag_attr =
517 __ATTR(defrag, 0644, khugepaged_defrag_show,
518 khugepaged_defrag_store);
519
520/*
521 * max_ptes_none controls if khugepaged should collapse hugepages over
522 * any unmapped ptes in turn potentially increasing the memory
523 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
524 * reduce the available free memory in the system as it
525 * runs. Increasing max_ptes_none will instead potentially reduce the
526 * free memory in the system during the khugepaged scan.
527 */
528static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
529 struct kobj_attribute *attr,
530 char *buf)
531{
532 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
533}
534static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 const char *buf, size_t count)
537{
538 int err;
539 unsigned long max_ptes_none;
540
3dbb95f7 541 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
542 if (err || max_ptes_none > HPAGE_PMD_NR-1)
543 return -EINVAL;
544
545 khugepaged_max_ptes_none = max_ptes_none;
546
547 return count;
548}
549static struct kobj_attribute khugepaged_max_ptes_none_attr =
550 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
551 khugepaged_max_ptes_none_store);
552
553static struct attribute *khugepaged_attr[] = {
554 &khugepaged_defrag_attr.attr,
555 &khugepaged_max_ptes_none_attr.attr,
556 &pages_to_scan_attr.attr,
557 &pages_collapsed_attr.attr,
558 &full_scans_attr.attr,
559 &scan_sleep_millisecs_attr.attr,
560 &alloc_sleep_millisecs_attr.attr,
561 NULL,
562};
563
564static struct attribute_group khugepaged_attr_group = {
565 .attrs = khugepaged_attr,
566 .name = "khugepaged",
71e3aac0 567};
71e3aac0 568
569e5590 569static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 570{
71e3aac0
AA
571 int err;
572
569e5590
SL
573 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
574 if (unlikely(!*hugepage_kobj)) {
2c79737a 575 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
569e5590 576 return -ENOMEM;
ba76149f
AA
577 }
578
569e5590 579 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 580 if (err) {
2c79737a 581 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 582 goto delete_obj;
ba76149f
AA
583 }
584
569e5590 585 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 586 if (err) {
2c79737a 587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 588 goto remove_hp_group;
ba76149f 589 }
569e5590
SL
590
591 return 0;
592
593remove_hp_group:
594 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
595delete_obj:
596 kobject_put(*hugepage_kobj);
597 return err;
598}
599
600static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
601{
602 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
603 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
604 kobject_put(hugepage_kobj);
605}
606#else
607static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
608{
609 return 0;
610}
611
612static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613{
614}
615#endif /* CONFIG_SYSFS */
616
617static int __init hugepage_init(void)
618{
619 int err;
620 struct kobject *hugepage_kobj;
621
622 if (!has_transparent_hugepage()) {
623 transparent_hugepage_flags = 0;
624 return -EINVAL;
625 }
626
627 err = hugepage_init_sysfs(&hugepage_kobj);
628 if (err)
629 return err;
ba76149f
AA
630
631 err = khugepaged_slab_init();
632 if (err)
633 goto out;
634
97ae1749
KS
635 register_shrinker(&huge_zero_page_shrinker);
636
97562cd2
RR
637 /*
638 * By default disable transparent hugepages on smaller systems,
639 * where the extra memory used could hurt more than TLB overhead
640 * is likely to save. The admin can still enable it through /sys.
641 */
642 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
643 transparent_hugepage_flags = 0;
644
ba76149f
AA
645 start_khugepaged();
646
569e5590 647 return 0;
ba76149f 648out:
569e5590 649 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 650 return err;
71e3aac0
AA
651}
652module_init(hugepage_init)
653
654static int __init setup_transparent_hugepage(char *str)
655{
656 int ret = 0;
657 if (!str)
658 goto out;
659 if (!strcmp(str, "always")) {
660 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
661 &transparent_hugepage_flags);
662 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
663 &transparent_hugepage_flags);
664 ret = 1;
665 } else if (!strcmp(str, "madvise")) {
666 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "never")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 }
678out:
679 if (!ret)
680 printk(KERN_WARNING
681 "transparent_hugepage= cannot parse, ignored\n");
682 return ret;
683}
684__setup("transparent_hugepage=", setup_transparent_hugepage);
685
b32967ff 686pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
687{
688 if (likely(vma->vm_flags & VM_WRITE))
689 pmd = pmd_mkwrite(pmd);
690 return pmd;
691}
692
3122359a 693static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
694{
695 pmd_t entry;
3122359a 696 entry = mk_pmd(page, prot);
b3092b3b
BL
697 entry = pmd_mkhuge(entry);
698 return entry;
699}
700
71e3aac0
AA
701static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
702 struct vm_area_struct *vma,
703 unsigned long haddr, pmd_t *pmd,
704 struct page *page)
705{
71e3aac0
AA
706 pgtable_t pgtable;
707
708 VM_BUG_ON(!PageCompound(page));
709 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 710 if (unlikely(!pgtable))
71e3aac0 711 return VM_FAULT_OOM;
71e3aac0
AA
712
713 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
714 /*
715 * The memory barrier inside __SetPageUptodate makes sure that
716 * clear_huge_page writes become visible before the set_pmd_at()
717 * write.
718 */
71e3aac0
AA
719 __SetPageUptodate(page);
720
721 spin_lock(&mm->page_table_lock);
722 if (unlikely(!pmd_none(*pmd))) {
723 spin_unlock(&mm->page_table_lock);
b9bbfbe3 724 mem_cgroup_uncharge_page(page);
71e3aac0
AA
725 put_page(page);
726 pte_free(mm, pgtable);
727 } else {
728 pmd_t entry;
3122359a
KS
729 entry = mk_huge_pmd(page, vma->vm_page_prot);
730 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 731 page_add_new_anon_rmap(page, vma, haddr);
6b0b50b0 732 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 733 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 734 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 735 mm->nr_ptes++;
71e3aac0
AA
736 spin_unlock(&mm->page_table_lock);
737 }
738
aa2e878e 739 return 0;
71e3aac0
AA
740}
741
cc5d462f 742static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 743{
cc5d462f 744 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
745}
746
747static inline struct page *alloc_hugepage_vma(int defrag,
748 struct vm_area_struct *vma,
cc5d462f
AK
749 unsigned long haddr, int nd,
750 gfp_t extra_gfp)
0bbbc0b3 751{
cc5d462f 752 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 753 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
754}
755
756#ifndef CONFIG_NUMA
71e3aac0
AA
757static inline struct page *alloc_hugepage(int defrag)
758{
cc5d462f 759 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
760 HPAGE_PMD_ORDER);
761}
0bbbc0b3 762#endif
71e3aac0 763
3ea41e62 764static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 766 struct page *zero_page)
fc9fe822
KS
767{
768 pmd_t entry;
3ea41e62
KS
769 if (!pmd_none(*pmd))
770 return false;
5918d10a 771 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822
KS
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
6b0b50b0 774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 775 set_pmd_at(mm, haddr, pmd, entry);
fc9fe822 776 mm->nr_ptes++;
3ea41e62 777 return true;
fc9fe822
KS
778}
779
71e3aac0
AA
780int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783{
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
786 pte_t *pte;
787
128ec037
KS
788 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
789 goto out;
790 if (unlikely(anon_vma_prepare(vma)))
791 return VM_FAULT_OOM;
792 if (unlikely(khugepaged_enter(vma)))
793 return VM_FAULT_OOM;
794 if (!(flags & FAULT_FLAG_WRITE) &&
795 transparent_hugepage_use_zero_page()) {
796 pgtable_t pgtable;
797 struct page *zero_page;
798 bool set;
799 pgtable = pte_alloc_one(mm, haddr);
800 if (unlikely(!pgtable))
ba76149f 801 return VM_FAULT_OOM;
128ec037
KS
802 zero_page = get_huge_zero_page();
803 if (unlikely(!zero_page)) {
804 pte_free(mm, pgtable);
81ab4201 805 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 806 goto out;
81ab4201 807 }
128ec037
KS
808 spin_lock(&mm->page_table_lock);
809 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
810 zero_page);
811 spin_unlock(&mm->page_table_lock);
812 if (!set) {
813 pte_free(mm, pgtable);
814 put_huge_zero_page();
edad9d2c 815 }
edad9d2c 816 return 0;
71e3aac0 817 }
128ec037
KS
818 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
819 vma, haddr, numa_node_id(), 0);
820 if (unlikely(!page)) {
821 count_vm_event(THP_FAULT_FALLBACK);
822 goto out;
823 }
824 count_vm_event(THP_FAULT_ALLOC);
825 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
826 put_page(page);
827 goto out;
828 }
829 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
832 goto out;
833 }
834
835 return 0;
71e3aac0
AA
836out:
837 /*
838 * Use __pte_alloc instead of pte_alloc_map, because we can't
839 * run pte_offset_map on the pmd, if an huge pmd could
840 * materialize from under us from a different thread.
841 */
4fd01770
MG
842 if (unlikely(pmd_none(*pmd)) &&
843 unlikely(__pte_alloc(mm, vma, pmd, address)))
71e3aac0
AA
844 return VM_FAULT_OOM;
845 /* if an huge pmd materialized from under us just retry later */
846 if (unlikely(pmd_trans_huge(*pmd)))
847 return 0;
848 /*
849 * A regular pmd is established and it can't morph into a huge pmd
850 * from under us anymore at this point because we hold the mmap_sem
851 * read mode and khugepaged takes it in write mode. So now it's
852 * safe to run pte_offset_map().
853 */
854 pte = pte_offset_map(pmd, address);
855 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
856}
857
858int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
859 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
860 struct vm_area_struct *vma)
861{
862 struct page *src_page;
863 pmd_t pmd;
864 pgtable_t pgtable;
865 int ret;
866
867 ret = -ENOMEM;
868 pgtable = pte_alloc_one(dst_mm, addr);
869 if (unlikely(!pgtable))
870 goto out;
871
872 spin_lock(&dst_mm->page_table_lock);
873 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
874
875 ret = -EAGAIN;
876 pmd = *src_pmd;
877 if (unlikely(!pmd_trans_huge(pmd))) {
878 pte_free(dst_mm, pgtable);
879 goto out_unlock;
880 }
fc9fe822
KS
881 /*
882 * mm->page_table_lock is enough to be sure that huge zero pmd is not
883 * under splitting since we don't split the page itself, only pmd to
884 * a page table.
885 */
886 if (is_huge_zero_pmd(pmd)) {
5918d10a 887 struct page *zero_page;
3ea41e62 888 bool set;
97ae1749
KS
889 /*
890 * get_huge_zero_page() will never allocate a new page here,
891 * since we already have a zero page to copy. It just takes a
892 * reference.
893 */
5918d10a 894 zero_page = get_huge_zero_page();
3ea41e62 895 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 896 zero_page);
3ea41e62 897 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
898 ret = 0;
899 goto out_unlock;
900 }
71e3aac0
AA
901 if (unlikely(pmd_trans_splitting(pmd))) {
902 /* split huge page running from under us */
903 spin_unlock(&src_mm->page_table_lock);
904 spin_unlock(&dst_mm->page_table_lock);
905 pte_free(dst_mm, pgtable);
906
907 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
908 goto out;
909 }
910 src_page = pmd_page(pmd);
911 VM_BUG_ON(!PageHead(src_page));
912 get_page(src_page);
913 page_dup_rmap(src_page);
914 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
915
916 pmdp_set_wrprotect(src_mm, addr, src_pmd);
917 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 918 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 919 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1c641e84 920 dst_mm->nr_ptes++;
71e3aac0
AA
921
922 ret = 0;
923out_unlock:
924 spin_unlock(&src_mm->page_table_lock);
925 spin_unlock(&dst_mm->page_table_lock);
926out:
927 return ret;
928}
929
a1dd450b
WD
930void huge_pmd_set_accessed(struct mm_struct *mm,
931 struct vm_area_struct *vma,
932 unsigned long address,
933 pmd_t *pmd, pmd_t orig_pmd,
934 int dirty)
935{
936 pmd_t entry;
937 unsigned long haddr;
938
939 spin_lock(&mm->page_table_lock);
940 if (unlikely(!pmd_same(*pmd, orig_pmd)))
941 goto unlock;
942
943 entry = pmd_mkyoung(orig_pmd);
944 haddr = address & HPAGE_PMD_MASK;
945 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
946 update_mmu_cache_pmd(vma, address, pmd);
947
948unlock:
949 spin_unlock(&mm->page_table_lock);
950}
951
93b4796d
KS
952static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
953 struct vm_area_struct *vma, unsigned long address,
3ea41e62 954 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
93b4796d
KS
955{
956 pgtable_t pgtable;
957 pmd_t _pmd;
958 struct page *page;
959 int i, ret = 0;
960 unsigned long mmun_start; /* For mmu_notifiers */
961 unsigned long mmun_end; /* For mmu_notifiers */
962
963 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
964 if (!page) {
965 ret |= VM_FAULT_OOM;
966 goto out;
967 }
968
969 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
970 put_page(page);
971 ret |= VM_FAULT_OOM;
972 goto out;
973 }
974
975 clear_user_highpage(page, address);
976 __SetPageUptodate(page);
977
978 mmun_start = haddr;
979 mmun_end = haddr + HPAGE_PMD_SIZE;
980 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
981
982 spin_lock(&mm->page_table_lock);
3ea41e62
KS
983 if (unlikely(!pmd_same(*pmd, orig_pmd)))
984 goto out_free_page;
985
93b4796d
KS
986 pmdp_clear_flush(vma, haddr, pmd);
987 /* leave pmd empty until pte is filled */
988
6b0b50b0 989 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
93b4796d
KS
990 pmd_populate(mm, &_pmd, pgtable);
991
992 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
993 pte_t *pte, entry;
994 if (haddr == (address & PAGE_MASK)) {
995 entry = mk_pte(page, vma->vm_page_prot);
996 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
997 page_add_new_anon_rmap(page, vma, haddr);
998 } else {
999 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1000 entry = pte_mkspecial(entry);
1001 }
1002 pte = pte_offset_map(&_pmd, haddr);
1003 VM_BUG_ON(!pte_none(*pte));
1004 set_pte_at(mm, haddr, pte, entry);
1005 pte_unmap(pte);
1006 }
1007 smp_wmb(); /* make pte visible before pmd */
1008 pmd_populate(mm, pmd, pgtable);
1009 spin_unlock(&mm->page_table_lock);
97ae1749 1010 put_huge_zero_page();
93b4796d
KS
1011 inc_mm_counter(mm, MM_ANONPAGES);
1012
1013 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1014
1015 ret |= VM_FAULT_WRITE;
1016out:
1017 return ret;
3ea41e62
KS
1018out_free_page:
1019 spin_unlock(&mm->page_table_lock);
1020 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1021 mem_cgroup_uncharge_page(page);
1022 put_page(page);
1023 goto out;
93b4796d
KS
1024}
1025
71e3aac0
AA
1026static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1027 struct vm_area_struct *vma,
1028 unsigned long address,
1029 pmd_t *pmd, pmd_t orig_pmd,
1030 struct page *page,
1031 unsigned long haddr)
1032{
1033 pgtable_t pgtable;
1034 pmd_t _pmd;
1035 int ret = 0, i;
1036 struct page **pages;
2ec74c3e
SG
1037 unsigned long mmun_start; /* For mmu_notifiers */
1038 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1039
1040 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1041 GFP_KERNEL);
1042 if (unlikely(!pages)) {
1043 ret |= VM_FAULT_OOM;
1044 goto out;
1045 }
1046
1047 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1048 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1049 __GFP_OTHER_NODE,
19ee151e 1050 vma, address, page_to_nid(page));
b9bbfbe3
AA
1051 if (unlikely(!pages[i] ||
1052 mem_cgroup_newpage_charge(pages[i], mm,
1053 GFP_KERNEL))) {
1054 if (pages[i])
71e3aac0 1055 put_page(pages[i]);
b9bbfbe3
AA
1056 mem_cgroup_uncharge_start();
1057 while (--i >= 0) {
1058 mem_cgroup_uncharge_page(pages[i]);
1059 put_page(pages[i]);
1060 }
1061 mem_cgroup_uncharge_end();
71e3aac0
AA
1062 kfree(pages);
1063 ret |= VM_FAULT_OOM;
1064 goto out;
1065 }
1066 }
1067
1068 for (i = 0; i < HPAGE_PMD_NR; i++) {
1069 copy_user_highpage(pages[i], page + i,
0089e485 1070 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1071 __SetPageUptodate(pages[i]);
1072 cond_resched();
1073 }
1074
2ec74c3e
SG
1075 mmun_start = haddr;
1076 mmun_end = haddr + HPAGE_PMD_SIZE;
1077 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1078
71e3aac0
AA
1079 spin_lock(&mm->page_table_lock);
1080 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1081 goto out_free_pages;
1082 VM_BUG_ON(!PageHead(page));
1083
2ec74c3e 1084 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1085 /* leave pmd empty until pte is filled */
1086
6b0b50b0 1087 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1088 pmd_populate(mm, &_pmd, pgtable);
1089
1090 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1091 pte_t *pte, entry;
1092 entry = mk_pte(pages[i], vma->vm_page_prot);
1093 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1094 page_add_new_anon_rmap(pages[i], vma, haddr);
1095 pte = pte_offset_map(&_pmd, haddr);
1096 VM_BUG_ON(!pte_none(*pte));
1097 set_pte_at(mm, haddr, pte, entry);
1098 pte_unmap(pte);
1099 }
1100 kfree(pages);
1101
71e3aac0
AA
1102 smp_wmb(); /* make pte visible before pmd */
1103 pmd_populate(mm, pmd, pgtable);
1104 page_remove_rmap(page);
1105 spin_unlock(&mm->page_table_lock);
1106
2ec74c3e
SG
1107 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1108
71e3aac0
AA
1109 ret |= VM_FAULT_WRITE;
1110 put_page(page);
1111
1112out:
1113 return ret;
1114
1115out_free_pages:
1116 spin_unlock(&mm->page_table_lock);
2ec74c3e 1117 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1118 mem_cgroup_uncharge_start();
1119 for (i = 0; i < HPAGE_PMD_NR; i++) {
1120 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1121 put_page(pages[i]);
b9bbfbe3
AA
1122 }
1123 mem_cgroup_uncharge_end();
71e3aac0
AA
1124 kfree(pages);
1125 goto out;
1126}
1127
1128int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1129 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1130{
1131 int ret = 0;
93b4796d 1132 struct page *page = NULL, *new_page;
71e3aac0 1133 unsigned long haddr;
2ec74c3e
SG
1134 unsigned long mmun_start; /* For mmu_notifiers */
1135 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1136
1137 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1138 haddr = address & HPAGE_PMD_MASK;
1139 if (is_huge_zero_pmd(orig_pmd))
1140 goto alloc;
71e3aac0
AA
1141 spin_lock(&mm->page_table_lock);
1142 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1143 goto out_unlock;
1144
1145 page = pmd_page(orig_pmd);
1146 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1147 if (page_mapcount(page) == 1) {
1148 pmd_t entry;
1149 entry = pmd_mkyoung(orig_pmd);
1150 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1151 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1152 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1153 ret |= VM_FAULT_WRITE;
1154 goto out_unlock;
1155 }
1156 get_page(page);
1157 spin_unlock(&mm->page_table_lock);
93b4796d 1158alloc:
71e3aac0
AA
1159 if (transparent_hugepage_enabled(vma) &&
1160 !transparent_hugepage_debug_cow())
0bbbc0b3 1161 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1162 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1163 else
1164 new_page = NULL;
1165
1166 if (unlikely(!new_page)) {
81ab4201 1167 count_vm_event(THP_FAULT_FALLBACK);
93b4796d
KS
1168 if (is_huge_zero_pmd(orig_pmd)) {
1169 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
3ea41e62 1170 address, pmd, orig_pmd, haddr);
93b4796d
KS
1171 } else {
1172 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1173 pmd, orig_pmd, page, haddr);
1174 if (ret & VM_FAULT_OOM)
1175 split_huge_page(page);
1176 put_page(page);
1177 }
71e3aac0
AA
1178 goto out;
1179 }
81ab4201 1180 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 1181
b9bbfbe3
AA
1182 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1183 put_page(new_page);
93b4796d
KS
1184 if (page) {
1185 split_huge_page(page);
1186 put_page(page);
1187 }
b9bbfbe3
AA
1188 ret |= VM_FAULT_OOM;
1189 goto out;
1190 }
1191
93b4796d
KS
1192 if (is_huge_zero_pmd(orig_pmd))
1193 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1194 else
1195 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1196 __SetPageUptodate(new_page);
1197
2ec74c3e
SG
1198 mmun_start = haddr;
1199 mmun_end = haddr + HPAGE_PMD_SIZE;
1200 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1201
71e3aac0 1202 spin_lock(&mm->page_table_lock);
93b4796d
KS
1203 if (page)
1204 put_page(page);
b9bbfbe3 1205 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1206 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1207 mem_cgroup_uncharge_page(new_page);
71e3aac0 1208 put_page(new_page);
2ec74c3e 1209 goto out_mn;
b9bbfbe3 1210 } else {
71e3aac0 1211 pmd_t entry;
3122359a
KS
1212 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1213 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2ec74c3e 1214 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1215 page_add_new_anon_rmap(new_page, vma, haddr);
1216 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1217 update_mmu_cache_pmd(vma, address, pmd);
97ae1749 1218 if (is_huge_zero_pmd(orig_pmd)) {
93b4796d 1219 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1220 put_huge_zero_page();
1221 } else {
93b4796d
KS
1222 VM_BUG_ON(!PageHead(page));
1223 page_remove_rmap(page);
1224 put_page(page);
1225 }
71e3aac0
AA
1226 ret |= VM_FAULT_WRITE;
1227 }
71e3aac0 1228 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1229out_mn:
1230 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1231out:
1232 return ret;
2ec74c3e
SG
1233out_unlock:
1234 spin_unlock(&mm->page_table_lock);
1235 return ret;
71e3aac0
AA
1236}
1237
b676b293 1238struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1239 unsigned long addr,
1240 pmd_t *pmd,
1241 unsigned int flags)
1242{
b676b293 1243 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1244 struct page *page = NULL;
1245
1246 assert_spin_locked(&mm->page_table_lock);
1247
1248 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1249 goto out;
1250
85facf25
KS
1251 /* Avoid dumping huge zero page */
1252 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1253 return ERR_PTR(-EFAULT);
1254
71e3aac0
AA
1255 page = pmd_page(*pmd);
1256 VM_BUG_ON(!PageHead(page));
1257 if (flags & FOLL_TOUCH) {
1258 pmd_t _pmd;
1259 /*
1260 * We should set the dirty bit only for FOLL_WRITE but
1261 * for now the dirty bit in the pmd is meaningless.
1262 * And if the dirty bit will become meaningful and
1263 * we'll only set it with FOLL_WRITE, an atomic
1264 * set_bit will be required on the pmd to set the
1265 * young bit, instead of the current set_pmd_at.
1266 */
1267 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1268 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1269 pmd, _pmd, 1))
1270 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1271 }
b676b293
DR
1272 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1273 if (page->mapping && trylock_page(page)) {
1274 lru_add_drain();
1275 if (page->mapping)
1276 mlock_vma_page(page);
1277 unlock_page(page);
1278 }
1279 }
71e3aac0
AA
1280 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1281 VM_BUG_ON(!PageCompound(page));
1282 if (flags & FOLL_GET)
70b50f94 1283 get_page_foll(page);
71e3aac0
AA
1284
1285out:
1286 return page;
1287}
1288
d10e63f2 1289/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1290int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1291 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1292{
b32967ff 1293 struct page *page;
d10e63f2 1294 unsigned long haddr = addr & HPAGE_PMD_MASK;
4daae3b4 1295 int target_nid;
03c5a6e1 1296 int current_nid = -1;
b32967ff 1297 bool migrated;
d10e63f2
MG
1298
1299 spin_lock(&mm->page_table_lock);
1300 if (unlikely(!pmd_same(pmd, *pmdp)))
1301 goto out_unlock;
1302
1303 page = pmd_page(pmd);
4daae3b4 1304 get_page(page);
03c5a6e1
MG
1305 current_nid = page_to_nid(page);
1306 count_vm_numa_event(NUMA_HINT_FAULTS);
1307 if (current_nid == numa_node_id())
1308 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4daae3b4
MG
1309
1310 target_nid = mpol_misplaced(page, vma, haddr);
b32967ff
MG
1311 if (target_nid == -1) {
1312 put_page(page);
4daae3b4 1313 goto clear_pmdnuma;
b32967ff 1314 }
4daae3b4 1315
b32967ff
MG
1316 /* Acquire the page lock to serialise THP migrations */
1317 spin_unlock(&mm->page_table_lock);
1318 lock_page(page);
4daae3b4 1319
b32967ff 1320 /* Confirm the PTE did not while locked */
4daae3b4 1321 spin_lock(&mm->page_table_lock);
b32967ff
MG
1322 if (unlikely(!pmd_same(pmd, *pmdp))) {
1323 unlock_page(page);
1324 put_page(page);
4daae3b4 1325 goto out_unlock;
b32967ff
MG
1326 }
1327 spin_unlock(&mm->page_table_lock);
4daae3b4 1328
b32967ff
MG
1329 /* Migrate the THP to the requested node */
1330 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390
HD
1331 pmdp, pmd, addr, page, target_nid);
1332 if (!migrated)
1333 goto check_same;
b32967ff 1334
340ef390 1335 task_numa_fault(target_nid, HPAGE_PMD_NR, true);
b32967ff
MG
1336 return 0;
1337
340ef390
HD
1338check_same:
1339 spin_lock(&mm->page_table_lock);
1340 if (unlikely(!pmd_same(pmd, *pmdp)))
1341 goto out_unlock;
b32967ff 1342clear_pmdnuma:
d10e63f2
MG
1343 pmd = pmd_mknonnuma(pmd);
1344 set_pmd_at(mm, haddr, pmdp, pmd);
1345 VM_BUG_ON(pmd_numa(*pmdp));
1346 update_mmu_cache_pmd(vma, addr, pmdp);
d10e63f2
MG
1347out_unlock:
1348 spin_unlock(&mm->page_table_lock);
b32967ff 1349 if (current_nid != -1)
340ef390 1350 task_numa_fault(current_nid, HPAGE_PMD_NR, false);
d10e63f2
MG
1351 return 0;
1352}
1353
71e3aac0 1354int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1355 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1356{
1357 int ret = 0;
1358
025c5b24
NH
1359 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1360 struct page *page;
1361 pgtable_t pgtable;
f5c8ad47 1362 pmd_t orig_pmd;
a6bf2bb0
AK
1363 /*
1364 * For architectures like ppc64 we look at deposited pgtable
1365 * when calling pmdp_get_and_clear. So do the
1366 * pgtable_trans_huge_withdraw after finishing pmdp related
1367 * operations.
1368 */
f5c8ad47 1369 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1370 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1371 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb
KS
1372 if (is_huge_zero_pmd(orig_pmd)) {
1373 tlb->mm->nr_ptes--;
1374 spin_unlock(&tlb->mm->page_table_lock);
97ae1749 1375 put_huge_zero_page();
479f0abb
KS
1376 } else {
1377 page = pmd_page(orig_pmd);
1378 page_remove_rmap(page);
1379 VM_BUG_ON(page_mapcount(page) < 0);
1380 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1381 VM_BUG_ON(!PageHead(page));
1382 tlb->mm->nr_ptes--;
1383 spin_unlock(&tlb->mm->page_table_lock);
1384 tlb_remove_page(tlb, page);
1385 }
025c5b24
NH
1386 pte_free(tlb->mm, pgtable);
1387 ret = 1;
1388 }
71e3aac0
AA
1389 return ret;
1390}
1391
0ca1634d
JW
1392int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1393 unsigned long addr, unsigned long end,
1394 unsigned char *vec)
1395{
1396 int ret = 0;
1397
025c5b24
NH
1398 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1399 /*
1400 * All logical pages in the range are present
1401 * if backed by a huge page.
1402 */
0ca1634d 1403 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1404 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1405 ret = 1;
1406 }
0ca1634d
JW
1407
1408 return ret;
1409}
1410
37a1c49a
AA
1411int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1412 unsigned long old_addr,
1413 unsigned long new_addr, unsigned long old_end,
1414 pmd_t *old_pmd, pmd_t *new_pmd)
1415{
1416 int ret = 0;
1417 pmd_t pmd;
1418
1419 struct mm_struct *mm = vma->vm_mm;
1420
1421 if ((old_addr & ~HPAGE_PMD_MASK) ||
1422 (new_addr & ~HPAGE_PMD_MASK) ||
1423 old_end - old_addr < HPAGE_PMD_SIZE ||
1424 (new_vma->vm_flags & VM_NOHUGEPAGE))
1425 goto out;
1426
1427 /*
1428 * The destination pmd shouldn't be established, free_pgtables()
1429 * should have release it.
1430 */
1431 if (WARN_ON(!pmd_none(*new_pmd))) {
1432 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1433 goto out;
1434 }
1435
025c5b24
NH
1436 ret = __pmd_trans_huge_lock(old_pmd, vma);
1437 if (ret == 1) {
1438 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1439 VM_BUG_ON(!pmd_none(*new_pmd));
0f8975ec 1440 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
37a1c49a
AA
1441 spin_unlock(&mm->page_table_lock);
1442 }
1443out:
1444 return ret;
1445}
1446
cd7548ab 1447int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1448 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1449{
1450 struct mm_struct *mm = vma->vm_mm;
1451 int ret = 0;
1452
025c5b24
NH
1453 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1454 pmd_t entry;
1455 entry = pmdp_get_and_clear(mm, addr, pmd);
a4f1de17 1456 if (!prot_numa) {
4b10e7d5 1457 entry = pmd_modify(entry, newprot);
a4f1de17
HD
1458 BUG_ON(pmd_write(entry));
1459 } else {
4b10e7d5
MG
1460 struct page *page = pmd_page(*pmd);
1461
1462 /* only check non-shared pages */
1463 if (page_mapcount(page) == 1 &&
1464 !pmd_numa(*pmd)) {
1465 entry = pmd_mknuma(entry);
1466 }
1467 }
025c5b24
NH
1468 set_pmd_at(mm, addr, pmd, entry);
1469 spin_unlock(&vma->vm_mm->page_table_lock);
1470 ret = 1;
1471 }
1472
1473 return ret;
1474}
1475
1476/*
1477 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1478 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1479 *
1480 * Note that if it returns 1, this routine returns without unlocking page
1481 * table locks. So callers must unlock them.
1482 */
1483int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1484{
1485 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1486 if (likely(pmd_trans_huge(*pmd))) {
1487 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1488 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1489 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1490 return -1;
cd7548ab 1491 } else {
025c5b24
NH
1492 /* Thp mapped by 'pmd' is stable, so we can
1493 * handle it as it is. */
1494 return 1;
cd7548ab 1495 }
025c5b24
NH
1496 }
1497 spin_unlock(&vma->vm_mm->page_table_lock);
1498 return 0;
cd7548ab
JW
1499}
1500
71e3aac0
AA
1501pmd_t *page_check_address_pmd(struct page *page,
1502 struct mm_struct *mm,
1503 unsigned long address,
1504 enum page_check_address_pmd_flag flag)
1505{
71e3aac0
AA
1506 pmd_t *pmd, *ret = NULL;
1507
1508 if (address & ~HPAGE_PMD_MASK)
1509 goto out;
1510
6219049a
BL
1511 pmd = mm_find_pmd(mm, address);
1512 if (!pmd)
71e3aac0 1513 goto out;
71e3aac0
AA
1514 if (pmd_none(*pmd))
1515 goto out;
1516 if (pmd_page(*pmd) != page)
1517 goto out;
94fcc585
AA
1518 /*
1519 * split_vma() may create temporary aliased mappings. There is
1520 * no risk as long as all huge pmd are found and have their
1521 * splitting bit set before __split_huge_page_refcount
1522 * runs. Finding the same huge pmd more than once during the
1523 * same rmap walk is not a problem.
1524 */
1525 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1526 pmd_trans_splitting(*pmd))
1527 goto out;
71e3aac0
AA
1528 if (pmd_trans_huge(*pmd)) {
1529 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1530 !pmd_trans_splitting(*pmd));
1531 ret = pmd;
1532 }
1533out:
1534 return ret;
1535}
1536
1537static int __split_huge_page_splitting(struct page *page,
1538 struct vm_area_struct *vma,
1539 unsigned long address)
1540{
1541 struct mm_struct *mm = vma->vm_mm;
1542 pmd_t *pmd;
1543 int ret = 0;
2ec74c3e
SG
1544 /* For mmu_notifiers */
1545 const unsigned long mmun_start = address;
1546 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1547
2ec74c3e 1548 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1549 spin_lock(&mm->page_table_lock);
1550 pmd = page_check_address_pmd(page, mm, address,
1551 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1552 if (pmd) {
1553 /*
1554 * We can't temporarily set the pmd to null in order
1555 * to split it, the pmd must remain marked huge at all
1556 * times or the VM won't take the pmd_trans_huge paths
5a505085 1557 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1558 * serialize against split_huge_page*.
1559 */
2ec74c3e 1560 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1561 ret = 1;
1562 }
1563 spin_unlock(&mm->page_table_lock);
2ec74c3e 1564 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1565
1566 return ret;
1567}
1568
5bc7b8ac
SL
1569static void __split_huge_page_refcount(struct page *page,
1570 struct list_head *list)
71e3aac0
AA
1571{
1572 int i;
71e3aac0 1573 struct zone *zone = page_zone(page);
fa9add64 1574 struct lruvec *lruvec;
70b50f94 1575 int tail_count = 0;
71e3aac0
AA
1576
1577 /* prevent PageLRU to go away from under us, and freeze lru stats */
1578 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1579 lruvec = mem_cgroup_page_lruvec(page, zone);
1580
71e3aac0 1581 compound_lock(page);
e94c8a9c
KH
1582 /* complete memcg works before add pages to LRU */
1583 mem_cgroup_split_huge_fixup(page);
71e3aac0 1584
45676885 1585 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1586 struct page *page_tail = page + i;
1587
70b50f94
AA
1588 /* tail_page->_mapcount cannot change */
1589 BUG_ON(page_mapcount(page_tail) < 0);
1590 tail_count += page_mapcount(page_tail);
1591 /* check for overflow */
1592 BUG_ON(tail_count < 0);
1593 BUG_ON(atomic_read(&page_tail->_count) != 0);
1594 /*
1595 * tail_page->_count is zero and not changing from
1596 * under us. But get_page_unless_zero() may be running
1597 * from under us on the tail_page. If we used
1598 * atomic_set() below instead of atomic_add(), we
1599 * would then run atomic_set() concurrently with
1600 * get_page_unless_zero(), and atomic_set() is
1601 * implemented in C not using locked ops. spin_unlock
1602 * on x86 sometime uses locked ops because of PPro
1603 * errata 66, 92, so unless somebody can guarantee
1604 * atomic_set() here would be safe on all archs (and
1605 * not only on x86), it's safer to use atomic_add().
1606 */
1607 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1608 &page_tail->_count);
71e3aac0
AA
1609
1610 /* after clearing PageTail the gup refcount can be released */
1611 smp_mb();
1612
a6d30ddd
JD
1613 /*
1614 * retain hwpoison flag of the poisoned tail page:
1615 * fix for the unsuitable process killed on Guest Machine(KVM)
1616 * by the memory-failure.
1617 */
1618 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1619 page_tail->flags |= (page->flags &
1620 ((1L << PG_referenced) |
1621 (1L << PG_swapbacked) |
1622 (1L << PG_mlocked) |
e180cf80
KS
1623 (1L << PG_uptodate) |
1624 (1L << PG_active) |
1625 (1L << PG_unevictable)));
71e3aac0
AA
1626 page_tail->flags |= (1L << PG_dirty);
1627
70b50f94 1628 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1629 smp_wmb();
1630
1631 /*
1632 * __split_huge_page_splitting() already set the
1633 * splitting bit in all pmd that could map this
1634 * hugepage, that will ensure no CPU can alter the
1635 * mapcount on the head page. The mapcount is only
1636 * accounted in the head page and it has to be
1637 * transferred to all tail pages in the below code. So
1638 * for this code to be safe, the split the mapcount
1639 * can't change. But that doesn't mean userland can't
1640 * keep changing and reading the page contents while
1641 * we transfer the mapcount, so the pmd splitting
1642 * status is achieved setting a reserved bit in the
1643 * pmd, not by clearing the present bit.
1644 */
71e3aac0
AA
1645 page_tail->_mapcount = page->_mapcount;
1646
1647 BUG_ON(page_tail->mapping);
1648 page_tail->mapping = page->mapping;
1649
45676885 1650 page_tail->index = page->index + i;
22b751c3 1651 page_nid_xchg_last(page_tail, page_nid_last(page));
71e3aac0
AA
1652
1653 BUG_ON(!PageAnon(page_tail));
1654 BUG_ON(!PageUptodate(page_tail));
1655 BUG_ON(!PageDirty(page_tail));
1656 BUG_ON(!PageSwapBacked(page_tail));
1657
5bc7b8ac 1658 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1659 }
70b50f94
AA
1660 atomic_sub(tail_count, &page->_count);
1661 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1662
fa9add64 1663 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1664
71e3aac0
AA
1665 ClearPageCompound(page);
1666 compound_unlock(page);
1667 spin_unlock_irq(&zone->lru_lock);
1668
1669 for (i = 1; i < HPAGE_PMD_NR; i++) {
1670 struct page *page_tail = page + i;
1671 BUG_ON(page_count(page_tail) <= 0);
1672 /*
1673 * Tail pages may be freed if there wasn't any mapping
1674 * like if add_to_swap() is running on a lru page that
1675 * had its mapping zapped. And freeing these pages
1676 * requires taking the lru_lock so we do the put_page
1677 * of the tail pages after the split is complete.
1678 */
1679 put_page(page_tail);
1680 }
1681
1682 /*
1683 * Only the head page (now become a regular page) is required
1684 * to be pinned by the caller.
1685 */
1686 BUG_ON(page_count(page) <= 0);
1687}
1688
1689static int __split_huge_page_map(struct page *page,
1690 struct vm_area_struct *vma,
1691 unsigned long address)
1692{
1693 struct mm_struct *mm = vma->vm_mm;
1694 pmd_t *pmd, _pmd;
1695 int ret = 0, i;
1696 pgtable_t pgtable;
1697 unsigned long haddr;
1698
1699 spin_lock(&mm->page_table_lock);
1700 pmd = page_check_address_pmd(page, mm, address,
1701 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1702 if (pmd) {
6b0b50b0 1703 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1704 pmd_populate(mm, &_pmd, pgtable);
1705
e3ebcf64
GS
1706 haddr = address;
1707 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1708 pte_t *pte, entry;
1709 BUG_ON(PageCompound(page+i));
1710 entry = mk_pte(page + i, vma->vm_page_prot);
1711 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1712 if (!pmd_write(*pmd))
1713 entry = pte_wrprotect(entry);
1714 else
1715 BUG_ON(page_mapcount(page) != 1);
1716 if (!pmd_young(*pmd))
1717 entry = pte_mkold(entry);
1ba6e0b5
AA
1718 if (pmd_numa(*pmd))
1719 entry = pte_mknuma(entry);
71e3aac0
AA
1720 pte = pte_offset_map(&_pmd, haddr);
1721 BUG_ON(!pte_none(*pte));
1722 set_pte_at(mm, haddr, pte, entry);
1723 pte_unmap(pte);
1724 }
1725
71e3aac0
AA
1726 smp_wmb(); /* make pte visible before pmd */
1727 /*
1728 * Up to this point the pmd is present and huge and
1729 * userland has the whole access to the hugepage
1730 * during the split (which happens in place). If we
1731 * overwrite the pmd with the not-huge version
1732 * pointing to the pte here (which of course we could
1733 * if all CPUs were bug free), userland could trigger
1734 * a small page size TLB miss on the small sized TLB
1735 * while the hugepage TLB entry is still established
1736 * in the huge TLB. Some CPU doesn't like that. See
1737 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1738 * Erratum 383 on page 93. Intel should be safe but is
1739 * also warns that it's only safe if the permission
1740 * and cache attributes of the two entries loaded in
1741 * the two TLB is identical (which should be the case
1742 * here). But it is generally safer to never allow
1743 * small and huge TLB entries for the same virtual
1744 * address to be loaded simultaneously. So instead of
1745 * doing "pmd_populate(); flush_tlb_range();" we first
1746 * mark the current pmd notpresent (atomically because
1747 * here the pmd_trans_huge and pmd_trans_splitting
1748 * must remain set at all times on the pmd until the
1749 * split is complete for this pmd), then we flush the
1750 * SMP TLB and finally we write the non-huge version
1751 * of the pmd entry with pmd_populate.
1752 */
46dcde73 1753 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1754 pmd_populate(mm, pmd, pgtable);
1755 ret = 1;
1756 }
1757 spin_unlock(&mm->page_table_lock);
1758
1759 return ret;
1760}
1761
5a505085 1762/* must be called with anon_vma->root->rwsem held */
71e3aac0 1763static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1764 struct anon_vma *anon_vma,
1765 struct list_head *list)
71e3aac0
AA
1766{
1767 int mapcount, mapcount2;
bf181b9f 1768 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1769 struct anon_vma_chain *avc;
1770
1771 BUG_ON(!PageHead(page));
1772 BUG_ON(PageTail(page));
1773
1774 mapcount = 0;
bf181b9f 1775 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1776 struct vm_area_struct *vma = avc->vma;
1777 unsigned long addr = vma_address(page, vma);
1778 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1779 mapcount += __split_huge_page_splitting(page, vma, addr);
1780 }
05759d38
AA
1781 /*
1782 * It is critical that new vmas are added to the tail of the
1783 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1784 * and establishes a child pmd before
1785 * __split_huge_page_splitting() freezes the parent pmd (so if
1786 * we fail to prevent copy_huge_pmd() from running until the
1787 * whole __split_huge_page() is complete), we will still see
1788 * the newly established pmd of the child later during the
1789 * walk, to be able to set it as pmd_trans_splitting too.
1790 */
1791 if (mapcount != page_mapcount(page))
1792 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1793 mapcount, page_mapcount(page));
71e3aac0
AA
1794 BUG_ON(mapcount != page_mapcount(page));
1795
5bc7b8ac 1796 __split_huge_page_refcount(page, list);
71e3aac0
AA
1797
1798 mapcount2 = 0;
bf181b9f 1799 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1800 struct vm_area_struct *vma = avc->vma;
1801 unsigned long addr = vma_address(page, vma);
1802 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1803 mapcount2 += __split_huge_page_map(page, vma, addr);
1804 }
05759d38
AA
1805 if (mapcount != mapcount2)
1806 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1807 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1808 BUG_ON(mapcount != mapcount2);
1809}
1810
5bc7b8ac
SL
1811/*
1812 * Split a hugepage into normal pages. This doesn't change the position of head
1813 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1814 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1815 * from the hugepage.
1816 * Return 0 if the hugepage is split successfully otherwise return 1.
1817 */
1818int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1819{
1820 struct anon_vma *anon_vma;
1821 int ret = 1;
1822
5918d10a 1823 BUG_ON(is_huge_zero_page(page));
71e3aac0 1824 BUG_ON(!PageAnon(page));
062f1af2
MG
1825
1826 /*
1827 * The caller does not necessarily hold an mmap_sem that would prevent
1828 * the anon_vma disappearing so we first we take a reference to it
1829 * and then lock the anon_vma for write. This is similar to
1830 * page_lock_anon_vma_read except the write lock is taken to serialise
1831 * against parallel split or collapse operations.
1832 */
1833 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1834 if (!anon_vma)
1835 goto out;
062f1af2
MG
1836 anon_vma_lock_write(anon_vma);
1837
71e3aac0
AA
1838 ret = 0;
1839 if (!PageCompound(page))
1840 goto out_unlock;
1841
1842 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1843 __split_huge_page(page, anon_vma, list);
81ab4201 1844 count_vm_event(THP_SPLIT);
71e3aac0
AA
1845
1846 BUG_ON(PageCompound(page));
1847out_unlock:
08b52706 1848 anon_vma_unlock_write(anon_vma);
062f1af2 1849 put_anon_vma(anon_vma);
71e3aac0
AA
1850out:
1851 return ret;
1852}
1853
4b6e1e37 1854#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1855
60ab3244
AA
1856int hugepage_madvise(struct vm_area_struct *vma,
1857 unsigned long *vm_flags, int advice)
0af4e98b 1858{
8e72033f
GS
1859 struct mm_struct *mm = vma->vm_mm;
1860
a664b2d8
AA
1861 switch (advice) {
1862 case MADV_HUGEPAGE:
1863 /*
1864 * Be somewhat over-protective like KSM for now!
1865 */
78f11a25 1866 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1867 return -EINVAL;
8e72033f
GS
1868 if (mm->def_flags & VM_NOHUGEPAGE)
1869 return -EINVAL;
a664b2d8
AA
1870 *vm_flags &= ~VM_NOHUGEPAGE;
1871 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1872 /*
1873 * If the vma become good for khugepaged to scan,
1874 * register it here without waiting a page fault that
1875 * may not happen any time soon.
1876 */
1877 if (unlikely(khugepaged_enter_vma_merge(vma)))
1878 return -ENOMEM;
a664b2d8
AA
1879 break;
1880 case MADV_NOHUGEPAGE:
1881 /*
1882 * Be somewhat over-protective like KSM for now!
1883 */
78f11a25 1884 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1885 return -EINVAL;
1886 *vm_flags &= ~VM_HUGEPAGE;
1887 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1888 /*
1889 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1890 * this vma even if we leave the mm registered in khugepaged if
1891 * it got registered before VM_NOHUGEPAGE was set.
1892 */
a664b2d8
AA
1893 break;
1894 }
0af4e98b
AA
1895
1896 return 0;
1897}
1898
ba76149f
AA
1899static int __init khugepaged_slab_init(void)
1900{
1901 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1902 sizeof(struct mm_slot),
1903 __alignof__(struct mm_slot), 0, NULL);
1904 if (!mm_slot_cache)
1905 return -ENOMEM;
1906
1907 return 0;
1908}
1909
ba76149f
AA
1910static inline struct mm_slot *alloc_mm_slot(void)
1911{
1912 if (!mm_slot_cache) /* initialization failed */
1913 return NULL;
1914 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1915}
1916
1917static inline void free_mm_slot(struct mm_slot *mm_slot)
1918{
1919 kmem_cache_free(mm_slot_cache, mm_slot);
1920}
1921
ba76149f
AA
1922static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1923{
1924 struct mm_slot *mm_slot;
ba76149f 1925
b67bfe0d 1926 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1927 if (mm == mm_slot->mm)
1928 return mm_slot;
43b5fbbd 1929
ba76149f
AA
1930 return NULL;
1931}
1932
1933static void insert_to_mm_slots_hash(struct mm_struct *mm,
1934 struct mm_slot *mm_slot)
1935{
ba76149f 1936 mm_slot->mm = mm;
43b5fbbd 1937 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1938}
1939
1940static inline int khugepaged_test_exit(struct mm_struct *mm)
1941{
1942 return atomic_read(&mm->mm_users) == 0;
1943}
1944
1945int __khugepaged_enter(struct mm_struct *mm)
1946{
1947 struct mm_slot *mm_slot;
1948 int wakeup;
1949
1950 mm_slot = alloc_mm_slot();
1951 if (!mm_slot)
1952 return -ENOMEM;
1953
1954 /* __khugepaged_exit() must not run from under us */
1955 VM_BUG_ON(khugepaged_test_exit(mm));
1956 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1957 free_mm_slot(mm_slot);
1958 return 0;
1959 }
1960
1961 spin_lock(&khugepaged_mm_lock);
1962 insert_to_mm_slots_hash(mm, mm_slot);
1963 /*
1964 * Insert just behind the scanning cursor, to let the area settle
1965 * down a little.
1966 */
1967 wakeup = list_empty(&khugepaged_scan.mm_head);
1968 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1969 spin_unlock(&khugepaged_mm_lock);
1970
1971 atomic_inc(&mm->mm_count);
1972 if (wakeup)
1973 wake_up_interruptible(&khugepaged_wait);
1974
1975 return 0;
1976}
1977
1978int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1979{
1980 unsigned long hstart, hend;
1981 if (!vma->anon_vma)
1982 /*
1983 * Not yet faulted in so we will register later in the
1984 * page fault if needed.
1985 */
1986 return 0;
78f11a25 1987 if (vma->vm_ops)
ba76149f
AA
1988 /* khugepaged not yet working on file or special mappings */
1989 return 0;
b3b9c293 1990 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1991 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1992 hend = vma->vm_end & HPAGE_PMD_MASK;
1993 if (hstart < hend)
1994 return khugepaged_enter(vma);
1995 return 0;
1996}
1997
1998void __khugepaged_exit(struct mm_struct *mm)
1999{
2000 struct mm_slot *mm_slot;
2001 int free = 0;
2002
2003 spin_lock(&khugepaged_mm_lock);
2004 mm_slot = get_mm_slot(mm);
2005 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2006 hash_del(&mm_slot->hash);
ba76149f
AA
2007 list_del(&mm_slot->mm_node);
2008 free = 1;
2009 }
d788e80a 2010 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2011
2012 if (free) {
ba76149f
AA
2013 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2014 free_mm_slot(mm_slot);
2015 mmdrop(mm);
2016 } else if (mm_slot) {
ba76149f
AA
2017 /*
2018 * This is required to serialize against
2019 * khugepaged_test_exit() (which is guaranteed to run
2020 * under mmap sem read mode). Stop here (after we
2021 * return all pagetables will be destroyed) until
2022 * khugepaged has finished working on the pagetables
2023 * under the mmap_sem.
2024 */
2025 down_write(&mm->mmap_sem);
2026 up_write(&mm->mmap_sem);
d788e80a 2027 }
ba76149f
AA
2028}
2029
2030static void release_pte_page(struct page *page)
2031{
2032 /* 0 stands for page_is_file_cache(page) == false */
2033 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2034 unlock_page(page);
2035 putback_lru_page(page);
2036}
2037
2038static void release_pte_pages(pte_t *pte, pte_t *_pte)
2039{
2040 while (--_pte >= pte) {
2041 pte_t pteval = *_pte;
2042 if (!pte_none(pteval))
2043 release_pte_page(pte_page(pteval));
2044 }
2045}
2046
ba76149f
AA
2047static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2048 unsigned long address,
2049 pte_t *pte)
2050{
2051 struct page *page;
2052 pte_t *_pte;
344aa35c 2053 int referenced = 0, none = 0;
ba76149f
AA
2054 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2055 _pte++, address += PAGE_SIZE) {
2056 pte_t pteval = *_pte;
2057 if (pte_none(pteval)) {
2058 if (++none <= khugepaged_max_ptes_none)
2059 continue;
344aa35c 2060 else
ba76149f 2061 goto out;
ba76149f 2062 }
344aa35c 2063 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2064 goto out;
ba76149f 2065 page = vm_normal_page(vma, address, pteval);
344aa35c 2066 if (unlikely(!page))
ba76149f 2067 goto out;
344aa35c 2068
ba76149f
AA
2069 VM_BUG_ON(PageCompound(page));
2070 BUG_ON(!PageAnon(page));
2071 VM_BUG_ON(!PageSwapBacked(page));
2072
2073 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2074 if (page_count(page) != 1)
ba76149f 2075 goto out;
ba76149f
AA
2076 /*
2077 * We can do it before isolate_lru_page because the
2078 * page can't be freed from under us. NOTE: PG_lock
2079 * is needed to serialize against split_huge_page
2080 * when invoked from the VM.
2081 */
344aa35c 2082 if (!trylock_page(page))
ba76149f 2083 goto out;
ba76149f
AA
2084 /*
2085 * Isolate the page to avoid collapsing an hugepage
2086 * currently in use by the VM.
2087 */
2088 if (isolate_lru_page(page)) {
2089 unlock_page(page);
ba76149f
AA
2090 goto out;
2091 }
2092 /* 0 stands for page_is_file_cache(page) == false */
2093 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2094 VM_BUG_ON(!PageLocked(page));
2095 VM_BUG_ON(PageLRU(page));
2096
2097 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2098 if (pte_young(pteval) || PageReferenced(page) ||
2099 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2100 referenced = 1;
2101 }
344aa35c
BL
2102 if (likely(referenced))
2103 return 1;
ba76149f 2104out:
344aa35c
BL
2105 release_pte_pages(pte, _pte);
2106 return 0;
ba76149f
AA
2107}
2108
2109static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2110 struct vm_area_struct *vma,
2111 unsigned long address,
2112 spinlock_t *ptl)
2113{
2114 pte_t *_pte;
2115 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2116 pte_t pteval = *_pte;
2117 struct page *src_page;
2118
2119 if (pte_none(pteval)) {
2120 clear_user_highpage(page, address);
2121 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2122 } else {
2123 src_page = pte_page(pteval);
2124 copy_user_highpage(page, src_page, address, vma);
2125 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
2126 release_pte_page(src_page);
2127 /*
2128 * ptl mostly unnecessary, but preempt has to
2129 * be disabled to update the per-cpu stats
2130 * inside page_remove_rmap().
2131 */
2132 spin_lock(ptl);
2133 /*
2134 * paravirt calls inside pte_clear here are
2135 * superfluous.
2136 */
2137 pte_clear(vma->vm_mm, address, _pte);
2138 page_remove_rmap(src_page);
2139 spin_unlock(ptl);
2140 free_page_and_swap_cache(src_page);
2141 }
2142
2143 address += PAGE_SIZE;
2144 page++;
2145 }
2146}
2147
26234f36 2148static void khugepaged_alloc_sleep(void)
ba76149f 2149{
26234f36
XG
2150 wait_event_freezable_timeout(khugepaged_wait, false,
2151 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2152}
ba76149f 2153
26234f36
XG
2154#ifdef CONFIG_NUMA
2155static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2156{
2157 if (IS_ERR(*hpage)) {
2158 if (!*wait)
2159 return false;
2160
2161 *wait = false;
e3b4126c 2162 *hpage = NULL;
26234f36
XG
2163 khugepaged_alloc_sleep();
2164 } else if (*hpage) {
2165 put_page(*hpage);
2166 *hpage = NULL;
2167 }
2168
2169 return true;
2170}
2171
2172static struct page
2173*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2174 struct vm_area_struct *vma, unsigned long address,
2175 int node)
2176{
0bbbc0b3 2177 VM_BUG_ON(*hpage);
ce83d217
AA
2178 /*
2179 * Allocate the page while the vma is still valid and under
2180 * the mmap_sem read mode so there is no memory allocation
2181 * later when we take the mmap_sem in write mode. This is more
2182 * friendly behavior (OTOH it may actually hide bugs) to
2183 * filesystems in userland with daemons allocating memory in
2184 * the userland I/O paths. Allocating memory with the
2185 * mmap_sem in read mode is good idea also to allow greater
2186 * scalability.
2187 */
26234f36 2188 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 2189 node, __GFP_OTHER_NODE);
692e0b35
AA
2190
2191 /*
2192 * After allocating the hugepage, release the mmap_sem read lock in
2193 * preparation for taking it in write mode.
2194 */
2195 up_read(&mm->mmap_sem);
26234f36 2196 if (unlikely(!*hpage)) {
81ab4201 2197 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2198 *hpage = ERR_PTR(-ENOMEM);
26234f36 2199 return NULL;
ce83d217 2200 }
26234f36 2201
65b3c07b 2202 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2203 return *hpage;
2204}
2205#else
2206static struct page *khugepaged_alloc_hugepage(bool *wait)
2207{
2208 struct page *hpage;
2209
2210 do {
2211 hpage = alloc_hugepage(khugepaged_defrag());
2212 if (!hpage) {
2213 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2214 if (!*wait)
2215 return NULL;
2216
2217 *wait = false;
2218 khugepaged_alloc_sleep();
2219 } else
2220 count_vm_event(THP_COLLAPSE_ALLOC);
2221 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2222
2223 return hpage;
2224}
2225
2226static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2227{
2228 if (!*hpage)
2229 *hpage = khugepaged_alloc_hugepage(wait);
2230
2231 if (unlikely(!*hpage))
2232 return false;
2233
2234 return true;
2235}
2236
2237static struct page
2238*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2239 struct vm_area_struct *vma, unsigned long address,
2240 int node)
2241{
2242 up_read(&mm->mmap_sem);
2243 VM_BUG_ON(!*hpage);
2244 return *hpage;
2245}
692e0b35
AA
2246#endif
2247
fa475e51
BL
2248static bool hugepage_vma_check(struct vm_area_struct *vma)
2249{
2250 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2251 (vma->vm_flags & VM_NOHUGEPAGE))
2252 return false;
2253
2254 if (!vma->anon_vma || vma->vm_ops)
2255 return false;
2256 if (is_vma_temporary_stack(vma))
2257 return false;
2258 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2259 return true;
2260}
2261
26234f36
XG
2262static void collapse_huge_page(struct mm_struct *mm,
2263 unsigned long address,
2264 struct page **hpage,
2265 struct vm_area_struct *vma,
2266 int node)
2267{
26234f36
XG
2268 pmd_t *pmd, _pmd;
2269 pte_t *pte;
2270 pgtable_t pgtable;
2271 struct page *new_page;
2272 spinlock_t *ptl;
2273 int isolated;
2274 unsigned long hstart, hend;
2ec74c3e
SG
2275 unsigned long mmun_start; /* For mmu_notifiers */
2276 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2277
2278 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2279
2280 /* release the mmap_sem read lock. */
2281 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2282 if (!new_page)
2283 return;
2284
420256ef 2285 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2286 return;
ba76149f
AA
2287
2288 /*
2289 * Prevent all access to pagetables with the exception of
2290 * gup_fast later hanlded by the ptep_clear_flush and the VM
2291 * handled by the anon_vma lock + PG_lock.
2292 */
2293 down_write(&mm->mmap_sem);
2294 if (unlikely(khugepaged_test_exit(mm)))
2295 goto out;
2296
2297 vma = find_vma(mm, address);
a8f531eb
L
2298 if (!vma)
2299 goto out;
ba76149f
AA
2300 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2301 hend = vma->vm_end & HPAGE_PMD_MASK;
2302 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2303 goto out;
fa475e51 2304 if (!hugepage_vma_check(vma))
a7d6e4ec 2305 goto out;
6219049a
BL
2306 pmd = mm_find_pmd(mm, address);
2307 if (!pmd)
ba76149f 2308 goto out;
6219049a 2309 if (pmd_trans_huge(*pmd))
ba76149f
AA
2310 goto out;
2311
4fc3f1d6 2312 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2313
2314 pte = pte_offset_map(pmd, address);
2315 ptl = pte_lockptr(mm, pmd);
2316
2ec74c3e
SG
2317 mmun_start = address;
2318 mmun_end = address + HPAGE_PMD_SIZE;
2319 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2320 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2321 /*
2322 * After this gup_fast can't run anymore. This also removes
2323 * any huge TLB entry from the CPU so we won't allow
2324 * huge and small TLB entries for the same virtual address
2325 * to avoid the risk of CPU bugs in that area.
2326 */
2ec74c3e 2327 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2328 spin_unlock(&mm->page_table_lock);
2ec74c3e 2329 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2330
2331 spin_lock(ptl);
2332 isolated = __collapse_huge_page_isolate(vma, address, pte);
2333 spin_unlock(ptl);
ba76149f
AA
2334
2335 if (unlikely(!isolated)) {
453c7192 2336 pte_unmap(pte);
ba76149f
AA
2337 spin_lock(&mm->page_table_lock);
2338 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2339 /*
2340 * We can only use set_pmd_at when establishing
2341 * hugepmds and never for establishing regular pmds that
2342 * points to regular pagetables. Use pmd_populate for that
2343 */
2344 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
ba76149f 2345 spin_unlock(&mm->page_table_lock);
08b52706 2346 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2347 goto out;
ba76149f
AA
2348 }
2349
2350 /*
2351 * All pages are isolated and locked so anon_vma rmap
2352 * can't run anymore.
2353 */
08b52706 2354 anon_vma_unlock_write(vma->anon_vma);
ba76149f
AA
2355
2356 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2357 pte_unmap(pte);
ba76149f
AA
2358 __SetPageUptodate(new_page);
2359 pgtable = pmd_pgtable(_pmd);
ba76149f 2360
3122359a
KS
2361 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2362 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2363
2364 /*
2365 * spin_lock() below is not the equivalent of smp_wmb(), so
2366 * this is needed to avoid the copy_huge_page writes to become
2367 * visible after the set_pmd_at() write.
2368 */
2369 smp_wmb();
2370
2371 spin_lock(&mm->page_table_lock);
2372 BUG_ON(!pmd_none(*pmd));
2373 page_add_new_anon_rmap(new_page, vma, address);
fce144b4 2374 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2375 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2376 update_mmu_cache_pmd(vma, address, pmd);
ba76149f
AA
2377 spin_unlock(&mm->page_table_lock);
2378
2379 *hpage = NULL;
420256ef 2380
ba76149f 2381 khugepaged_pages_collapsed++;
ce83d217 2382out_up_write:
ba76149f 2383 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2384 return;
2385
ce83d217 2386out:
678ff896 2387 mem_cgroup_uncharge_page(new_page);
ce83d217 2388 goto out_up_write;
ba76149f
AA
2389}
2390
2391static int khugepaged_scan_pmd(struct mm_struct *mm,
2392 struct vm_area_struct *vma,
2393 unsigned long address,
2394 struct page **hpage)
2395{
ba76149f
AA
2396 pmd_t *pmd;
2397 pte_t *pte, *_pte;
2398 int ret = 0, referenced = 0, none = 0;
2399 struct page *page;
2400 unsigned long _address;
2401 spinlock_t *ptl;
00ef2d2f 2402 int node = NUMA_NO_NODE;
ba76149f
AA
2403
2404 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2405
6219049a
BL
2406 pmd = mm_find_pmd(mm, address);
2407 if (!pmd)
ba76149f 2408 goto out;
6219049a 2409 if (pmd_trans_huge(*pmd))
ba76149f
AA
2410 goto out;
2411
2412 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2413 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2414 _pte++, _address += PAGE_SIZE) {
2415 pte_t pteval = *_pte;
2416 if (pte_none(pteval)) {
2417 if (++none <= khugepaged_max_ptes_none)
2418 continue;
2419 else
2420 goto out_unmap;
2421 }
2422 if (!pte_present(pteval) || !pte_write(pteval))
2423 goto out_unmap;
2424 page = vm_normal_page(vma, _address, pteval);
2425 if (unlikely(!page))
2426 goto out_unmap;
5c4b4be3
AK
2427 /*
2428 * Chose the node of the first page. This could
2429 * be more sophisticated and look at more pages,
2430 * but isn't for now.
2431 */
00ef2d2f 2432 if (node == NUMA_NO_NODE)
5c4b4be3 2433 node = page_to_nid(page);
ba76149f
AA
2434 VM_BUG_ON(PageCompound(page));
2435 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2436 goto out_unmap;
2437 /* cannot use mapcount: can't collapse if there's a gup pin */
2438 if (page_count(page) != 1)
2439 goto out_unmap;
8ee53820
AA
2440 if (pte_young(pteval) || PageReferenced(page) ||
2441 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2442 referenced = 1;
2443 }
2444 if (referenced)
2445 ret = 1;
2446out_unmap:
2447 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2448 if (ret)
2449 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2450 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2451out:
2452 return ret;
2453}
2454
2455static void collect_mm_slot(struct mm_slot *mm_slot)
2456{
2457 struct mm_struct *mm = mm_slot->mm;
2458
b9980cdc 2459 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2460
2461 if (khugepaged_test_exit(mm)) {
2462 /* free mm_slot */
43b5fbbd 2463 hash_del(&mm_slot->hash);
ba76149f
AA
2464 list_del(&mm_slot->mm_node);
2465
2466 /*
2467 * Not strictly needed because the mm exited already.
2468 *
2469 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2470 */
2471
2472 /* khugepaged_mm_lock actually not necessary for the below */
2473 free_mm_slot(mm_slot);
2474 mmdrop(mm);
2475 }
2476}
2477
2478static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2479 struct page **hpage)
2f1da642
HS
2480 __releases(&khugepaged_mm_lock)
2481 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2482{
2483 struct mm_slot *mm_slot;
2484 struct mm_struct *mm;
2485 struct vm_area_struct *vma;
2486 int progress = 0;
2487
2488 VM_BUG_ON(!pages);
b9980cdc 2489 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2490
2491 if (khugepaged_scan.mm_slot)
2492 mm_slot = khugepaged_scan.mm_slot;
2493 else {
2494 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2495 struct mm_slot, mm_node);
2496 khugepaged_scan.address = 0;
2497 khugepaged_scan.mm_slot = mm_slot;
2498 }
2499 spin_unlock(&khugepaged_mm_lock);
2500
2501 mm = mm_slot->mm;
2502 down_read(&mm->mmap_sem);
2503 if (unlikely(khugepaged_test_exit(mm)))
2504 vma = NULL;
2505 else
2506 vma = find_vma(mm, khugepaged_scan.address);
2507
2508 progress++;
2509 for (; vma; vma = vma->vm_next) {
2510 unsigned long hstart, hend;
2511
2512 cond_resched();
2513 if (unlikely(khugepaged_test_exit(mm))) {
2514 progress++;
2515 break;
2516 }
fa475e51
BL
2517 if (!hugepage_vma_check(vma)) {
2518skip:
ba76149f
AA
2519 progress++;
2520 continue;
2521 }
ba76149f
AA
2522 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2523 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2524 if (hstart >= hend)
2525 goto skip;
2526 if (khugepaged_scan.address > hend)
2527 goto skip;
ba76149f
AA
2528 if (khugepaged_scan.address < hstart)
2529 khugepaged_scan.address = hstart;
a7d6e4ec 2530 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2531
2532 while (khugepaged_scan.address < hend) {
2533 int ret;
2534 cond_resched();
2535 if (unlikely(khugepaged_test_exit(mm)))
2536 goto breakouterloop;
2537
2538 VM_BUG_ON(khugepaged_scan.address < hstart ||
2539 khugepaged_scan.address + HPAGE_PMD_SIZE >
2540 hend);
2541 ret = khugepaged_scan_pmd(mm, vma,
2542 khugepaged_scan.address,
2543 hpage);
2544 /* move to next address */
2545 khugepaged_scan.address += HPAGE_PMD_SIZE;
2546 progress += HPAGE_PMD_NR;
2547 if (ret)
2548 /* we released mmap_sem so break loop */
2549 goto breakouterloop_mmap_sem;
2550 if (progress >= pages)
2551 goto breakouterloop;
2552 }
2553 }
2554breakouterloop:
2555 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2556breakouterloop_mmap_sem:
2557
2558 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2559 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2560 /*
2561 * Release the current mm_slot if this mm is about to die, or
2562 * if we scanned all vmas of this mm.
2563 */
2564 if (khugepaged_test_exit(mm) || !vma) {
2565 /*
2566 * Make sure that if mm_users is reaching zero while
2567 * khugepaged runs here, khugepaged_exit will find
2568 * mm_slot not pointing to the exiting mm.
2569 */
2570 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2571 khugepaged_scan.mm_slot = list_entry(
2572 mm_slot->mm_node.next,
2573 struct mm_slot, mm_node);
2574 khugepaged_scan.address = 0;
2575 } else {
2576 khugepaged_scan.mm_slot = NULL;
2577 khugepaged_full_scans++;
2578 }
2579
2580 collect_mm_slot(mm_slot);
2581 }
2582
2583 return progress;
2584}
2585
2586static int khugepaged_has_work(void)
2587{
2588 return !list_empty(&khugepaged_scan.mm_head) &&
2589 khugepaged_enabled();
2590}
2591
2592static int khugepaged_wait_event(void)
2593{
2594 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2595 kthread_should_stop();
ba76149f
AA
2596}
2597
d516904b 2598static void khugepaged_do_scan(void)
ba76149f 2599{
d516904b 2600 struct page *hpage = NULL;
ba76149f
AA
2601 unsigned int progress = 0, pass_through_head = 0;
2602 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2603 bool wait = true;
ba76149f
AA
2604
2605 barrier(); /* write khugepaged_pages_to_scan to local stack */
2606
2607 while (progress < pages) {
26234f36 2608 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2609 break;
26234f36 2610
420256ef 2611 cond_resched();
ba76149f 2612
878aee7d
AA
2613 if (unlikely(kthread_should_stop() || freezing(current)))
2614 break;
2615
ba76149f
AA
2616 spin_lock(&khugepaged_mm_lock);
2617 if (!khugepaged_scan.mm_slot)
2618 pass_through_head++;
2619 if (khugepaged_has_work() &&
2620 pass_through_head < 2)
2621 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2622 &hpage);
ba76149f
AA
2623 else
2624 progress = pages;
2625 spin_unlock(&khugepaged_mm_lock);
2626 }
ba76149f 2627
d516904b
XG
2628 if (!IS_ERR_OR_NULL(hpage))
2629 put_page(hpage);
0bbbc0b3
AA
2630}
2631
2017c0bf
XG
2632static void khugepaged_wait_work(void)
2633{
2634 try_to_freeze();
2635
2636 if (khugepaged_has_work()) {
2637 if (!khugepaged_scan_sleep_millisecs)
2638 return;
2639
2640 wait_event_freezable_timeout(khugepaged_wait,
2641 kthread_should_stop(),
2642 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2643 return;
2644 }
2645
2646 if (khugepaged_enabled())
2647 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2648}
2649
ba76149f
AA
2650static int khugepaged(void *none)
2651{
2652 struct mm_slot *mm_slot;
2653
878aee7d 2654 set_freezable();
ba76149f
AA
2655 set_user_nice(current, 19);
2656
b7231789
XG
2657 while (!kthread_should_stop()) {
2658 khugepaged_do_scan();
2659 khugepaged_wait_work();
2660 }
ba76149f
AA
2661
2662 spin_lock(&khugepaged_mm_lock);
2663 mm_slot = khugepaged_scan.mm_slot;
2664 khugepaged_scan.mm_slot = NULL;
2665 if (mm_slot)
2666 collect_mm_slot(mm_slot);
2667 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2668 return 0;
2669}
2670
c5a647d0
KS
2671static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2672 unsigned long haddr, pmd_t *pmd)
2673{
2674 struct mm_struct *mm = vma->vm_mm;
2675 pgtable_t pgtable;
2676 pmd_t _pmd;
2677 int i;
2678
2679 pmdp_clear_flush(vma, haddr, pmd);
2680 /* leave pmd empty until pte is filled */
2681
6b0b50b0 2682 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2683 pmd_populate(mm, &_pmd, pgtable);
2684
2685 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2686 pte_t *pte, entry;
2687 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2688 entry = pte_mkspecial(entry);
2689 pte = pte_offset_map(&_pmd, haddr);
2690 VM_BUG_ON(!pte_none(*pte));
2691 set_pte_at(mm, haddr, pte, entry);
2692 pte_unmap(pte);
2693 }
2694 smp_wmb(); /* make pte visible before pmd */
2695 pmd_populate(mm, pmd, pgtable);
97ae1749 2696 put_huge_zero_page();
c5a647d0
KS
2697}
2698
e180377f
KS
2699void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2700 pmd_t *pmd)
71e3aac0
AA
2701{
2702 struct page *page;
e180377f 2703 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2704 unsigned long haddr = address & HPAGE_PMD_MASK;
2705 unsigned long mmun_start; /* For mmu_notifiers */
2706 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2707
2708 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2709
c5a647d0
KS
2710 mmun_start = haddr;
2711 mmun_end = haddr + HPAGE_PMD_SIZE;
2712 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
2713 spin_lock(&mm->page_table_lock);
2714 if (unlikely(!pmd_trans_huge(*pmd))) {
2715 spin_unlock(&mm->page_table_lock);
c5a647d0
KS
2716 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2717 return;
2718 }
2719 if (is_huge_zero_pmd(*pmd)) {
2720 __split_huge_zero_page_pmd(vma, haddr, pmd);
2721 spin_unlock(&mm->page_table_lock);
2722 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2723 return;
2724 }
2725 page = pmd_page(*pmd);
2726 VM_BUG_ON(!page_count(page));
2727 get_page(page);
2728 spin_unlock(&mm->page_table_lock);
c5a647d0 2729 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2730
2731 split_huge_page(page);
2732
2733 put_page(page);
2734 BUG_ON(pmd_trans_huge(*pmd));
2735}
94fcc585 2736
e180377f
KS
2737void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2738 pmd_t *pmd)
2739{
2740 struct vm_area_struct *vma;
2741
2742 vma = find_vma(mm, address);
2743 BUG_ON(vma == NULL);
2744 split_huge_page_pmd(vma, address, pmd);
2745}
2746
94fcc585
AA
2747static void split_huge_page_address(struct mm_struct *mm,
2748 unsigned long address)
2749{
94fcc585
AA
2750 pmd_t *pmd;
2751
2752 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2753
6219049a
BL
2754 pmd = mm_find_pmd(mm, address);
2755 if (!pmd)
94fcc585
AA
2756 return;
2757 /*
2758 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2759 * materialize from under us.
2760 */
e180377f 2761 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2762}
2763
2764void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2765 unsigned long start,
2766 unsigned long end,
2767 long adjust_next)
2768{
2769 /*
2770 * If the new start address isn't hpage aligned and it could
2771 * previously contain an hugepage: check if we need to split
2772 * an huge pmd.
2773 */
2774 if (start & ~HPAGE_PMD_MASK &&
2775 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2776 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2777 split_huge_page_address(vma->vm_mm, start);
2778
2779 /*
2780 * If the new end address isn't hpage aligned and it could
2781 * previously contain an hugepage: check if we need to split
2782 * an huge pmd.
2783 */
2784 if (end & ~HPAGE_PMD_MASK &&
2785 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2786 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2787 split_huge_page_address(vma->vm_mm, end);
2788
2789 /*
2790 * If we're also updating the vma->vm_next->vm_start, if the new
2791 * vm_next->vm_start isn't page aligned and it could previously
2792 * contain an hugepage: check if we need to split an huge pmd.
2793 */
2794 if (adjust_next > 0) {
2795 struct vm_area_struct *next = vma->vm_next;
2796 unsigned long nstart = next->vm_start;
2797 nstart += adjust_next << PAGE_SHIFT;
2798 if (nstart & ~HPAGE_PMD_MASK &&
2799 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2800 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2801 split_huge_page_address(next->vm_mm, nstart);
2802 }
2803}