]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
thp: mm: define MADV_NOHUGEPAGE
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
71e3aac0
AA
19#include <asm/tlb.h>
20#include <asm/pgalloc.h>
21#include "internal.h"
22
ba76149f
AA
23/*
24 * By default transparent hugepage support is enabled for all mappings
25 * and khugepaged scans all mappings. Defrag is only invoked by
26 * khugepaged hugepage allocations and by page faults inside
27 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
28 * allocations.
29 */
71e3aac0 30unsigned long transparent_hugepage_flags __read_mostly =
13ece886 31#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 32 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
33#endif
34#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
35 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
36#endif
d39d33c3 37 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
39
40/* default scan 8*512 pte (or vmas) every 30 second */
41static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
42static unsigned int khugepaged_pages_collapsed;
43static unsigned int khugepaged_full_scans;
44static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
45/* during fragmentation poll the hugepage allocator once every minute */
46static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
47static struct task_struct *khugepaged_thread __read_mostly;
48static DEFINE_MUTEX(khugepaged_mutex);
49static DEFINE_SPINLOCK(khugepaged_mm_lock);
50static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
51/*
52 * default collapse hugepages if there is at least one pte mapped like
53 * it would have happened if the vma was large enough during page
54 * fault.
55 */
56static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
57
58static int khugepaged(void *none);
59static int mm_slots_hash_init(void);
60static int khugepaged_slab_init(void);
61static void khugepaged_slab_free(void);
62
63#define MM_SLOTS_HASH_HEADS 1024
64static struct hlist_head *mm_slots_hash __read_mostly;
65static struct kmem_cache *mm_slot_cache __read_mostly;
66
67/**
68 * struct mm_slot - hash lookup from mm to mm_slot
69 * @hash: hash collision list
70 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
71 * @mm: the mm that this information is valid for
72 */
73struct mm_slot {
74 struct hlist_node hash;
75 struct list_head mm_node;
76 struct mm_struct *mm;
77};
78
79/**
80 * struct khugepaged_scan - cursor for scanning
81 * @mm_head: the head of the mm list to scan
82 * @mm_slot: the current mm_slot we are scanning
83 * @address: the next address inside that to be scanned
84 *
85 * There is only the one khugepaged_scan instance of this cursor structure.
86 */
87struct khugepaged_scan {
88 struct list_head mm_head;
89 struct mm_slot *mm_slot;
90 unsigned long address;
91} khugepaged_scan = {
92 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
93};
94
f000565a
AA
95
96static int set_recommended_min_free_kbytes(void)
97{
98 struct zone *zone;
99 int nr_zones = 0;
100 unsigned long recommended_min;
101 extern int min_free_kbytes;
102
103 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
104 &transparent_hugepage_flags) &&
105 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
106 &transparent_hugepage_flags))
107 return 0;
108
109 for_each_populated_zone(zone)
110 nr_zones++;
111
112 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
113 recommended_min = pageblock_nr_pages * nr_zones * 2;
114
115 /*
116 * Make sure that on average at least two pageblocks are almost free
117 * of another type, one for a migratetype to fall back to and a
118 * second to avoid subsequent fallbacks of other types There are 3
119 * MIGRATE_TYPES we care about.
120 */
121 recommended_min += pageblock_nr_pages * nr_zones *
122 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
123
124 /* don't ever allow to reserve more than 5% of the lowmem */
125 recommended_min = min(recommended_min,
126 (unsigned long) nr_free_buffer_pages() / 20);
127 recommended_min <<= (PAGE_SHIFT-10);
128
129 if (recommended_min > min_free_kbytes)
130 min_free_kbytes = recommended_min;
131 setup_per_zone_wmarks();
132 return 0;
133}
134late_initcall(set_recommended_min_free_kbytes);
135
ba76149f
AA
136static int start_khugepaged(void)
137{
138 int err = 0;
139 if (khugepaged_enabled()) {
140 int wakeup;
141 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
142 err = -ENOMEM;
143 goto out;
144 }
145 mutex_lock(&khugepaged_mutex);
146 if (!khugepaged_thread)
147 khugepaged_thread = kthread_run(khugepaged, NULL,
148 "khugepaged");
149 if (unlikely(IS_ERR(khugepaged_thread))) {
150 printk(KERN_ERR
151 "khugepaged: kthread_run(khugepaged) failed\n");
152 err = PTR_ERR(khugepaged_thread);
153 khugepaged_thread = NULL;
154 }
155 wakeup = !list_empty(&khugepaged_scan.mm_head);
156 mutex_unlock(&khugepaged_mutex);
157 if (wakeup)
158 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
159
160 set_recommended_min_free_kbytes();
ba76149f
AA
161 } else
162 /* wakeup to exit */
163 wake_up_interruptible(&khugepaged_wait);
164out:
165 return err;
166}
71e3aac0
AA
167
168#ifdef CONFIG_SYSFS
ba76149f 169
71e3aac0
AA
170static ssize_t double_flag_show(struct kobject *kobj,
171 struct kobj_attribute *attr, char *buf,
172 enum transparent_hugepage_flag enabled,
173 enum transparent_hugepage_flag req_madv)
174{
175 if (test_bit(enabled, &transparent_hugepage_flags)) {
176 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
177 return sprintf(buf, "[always] madvise never\n");
178 } else if (test_bit(req_madv, &transparent_hugepage_flags))
179 return sprintf(buf, "always [madvise] never\n");
180 else
181 return sprintf(buf, "always madvise [never]\n");
182}
183static ssize_t double_flag_store(struct kobject *kobj,
184 struct kobj_attribute *attr,
185 const char *buf, size_t count,
186 enum transparent_hugepage_flag enabled,
187 enum transparent_hugepage_flag req_madv)
188{
189 if (!memcmp("always", buf,
190 min(sizeof("always")-1, count))) {
191 set_bit(enabled, &transparent_hugepage_flags);
192 clear_bit(req_madv, &transparent_hugepage_flags);
193 } else if (!memcmp("madvise", buf,
194 min(sizeof("madvise")-1, count))) {
195 clear_bit(enabled, &transparent_hugepage_flags);
196 set_bit(req_madv, &transparent_hugepage_flags);
197 } else if (!memcmp("never", buf,
198 min(sizeof("never")-1, count))) {
199 clear_bit(enabled, &transparent_hugepage_flags);
200 clear_bit(req_madv, &transparent_hugepage_flags);
201 } else
202 return -EINVAL;
203
204 return count;
205}
206
207static ssize_t enabled_show(struct kobject *kobj,
208 struct kobj_attribute *attr, char *buf)
209{
210 return double_flag_show(kobj, attr, buf,
211 TRANSPARENT_HUGEPAGE_FLAG,
212 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
213}
214static ssize_t enabled_store(struct kobject *kobj,
215 struct kobj_attribute *attr,
216 const char *buf, size_t count)
217{
ba76149f
AA
218 ssize_t ret;
219
220 ret = double_flag_store(kobj, attr, buf, count,
221 TRANSPARENT_HUGEPAGE_FLAG,
222 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
223
224 if (ret > 0) {
225 int err = start_khugepaged();
226 if (err)
227 ret = err;
228 }
229
f000565a
AA
230 if (ret > 0 &&
231 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
232 &transparent_hugepage_flags) ||
233 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
234 &transparent_hugepage_flags)))
235 set_recommended_min_free_kbytes();
236
ba76149f 237 return ret;
71e3aac0
AA
238}
239static struct kobj_attribute enabled_attr =
240 __ATTR(enabled, 0644, enabled_show, enabled_store);
241
242static ssize_t single_flag_show(struct kobject *kobj,
243 struct kobj_attribute *attr, char *buf,
244 enum transparent_hugepage_flag flag)
245{
246 if (test_bit(flag, &transparent_hugepage_flags))
247 return sprintf(buf, "[yes] no\n");
248 else
249 return sprintf(buf, "yes [no]\n");
250}
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
256 if (!memcmp("yes", buf,
257 min(sizeof("yes")-1, count))) {
258 set_bit(flag, &transparent_hugepage_flags);
259 } else if (!memcmp("no", buf,
260 min(sizeof("no")-1, count))) {
261 clear_bit(flag, &transparent_hugepage_flags);
262 } else
263 return -EINVAL;
264
265 return count;
266}
267
268/*
269 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
270 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
271 * memory just to allocate one more hugepage.
272 */
273static ssize_t defrag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf)
275{
276 return double_flag_show(kobj, attr, buf,
277 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
278 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
279}
280static ssize_t defrag_store(struct kobject *kobj,
281 struct kobj_attribute *attr,
282 const char *buf, size_t count)
283{
284 return double_flag_store(kobj, attr, buf, count,
285 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
286 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
287}
288static struct kobj_attribute defrag_attr =
289 __ATTR(defrag, 0644, defrag_show, defrag_store);
290
291#ifdef CONFIG_DEBUG_VM
292static ssize_t debug_cow_show(struct kobject *kobj,
293 struct kobj_attribute *attr, char *buf)
294{
295 return single_flag_show(kobj, attr, buf,
296 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
297}
298static ssize_t debug_cow_store(struct kobject *kobj,
299 struct kobj_attribute *attr,
300 const char *buf, size_t count)
301{
302 return single_flag_store(kobj, attr, buf, count,
303 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
304}
305static struct kobj_attribute debug_cow_attr =
306 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
307#endif /* CONFIG_DEBUG_VM */
308
309static struct attribute *hugepage_attr[] = {
310 &enabled_attr.attr,
311 &defrag_attr.attr,
312#ifdef CONFIG_DEBUG_VM
313 &debug_cow_attr.attr,
314#endif
315 NULL,
316};
317
318static struct attribute_group hugepage_attr_group = {
319 .attrs = hugepage_attr,
ba76149f
AA
320};
321
322static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
323 struct kobj_attribute *attr,
324 char *buf)
325{
326 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
327}
328
329static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
330 struct kobj_attribute *attr,
331 const char *buf, size_t count)
332{
333 unsigned long msecs;
334 int err;
335
336 err = strict_strtoul(buf, 10, &msecs);
337 if (err || msecs > UINT_MAX)
338 return -EINVAL;
339
340 khugepaged_scan_sleep_millisecs = msecs;
341 wake_up_interruptible(&khugepaged_wait);
342
343 return count;
344}
345static struct kobj_attribute scan_sleep_millisecs_attr =
346 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
347 scan_sleep_millisecs_store);
348
349static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 char *buf)
352{
353 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
354}
355
356static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count)
359{
360 unsigned long msecs;
361 int err;
362
363 err = strict_strtoul(buf, 10, &msecs);
364 if (err || msecs > UINT_MAX)
365 return -EINVAL;
366
367 khugepaged_alloc_sleep_millisecs = msecs;
368 wake_up_interruptible(&khugepaged_wait);
369
370 return count;
371}
372static struct kobj_attribute alloc_sleep_millisecs_attr =
373 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
374 alloc_sleep_millisecs_store);
375
376static ssize_t pages_to_scan_show(struct kobject *kobj,
377 struct kobj_attribute *attr,
378 char *buf)
379{
380 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
381}
382static ssize_t pages_to_scan_store(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 const char *buf, size_t count)
385{
386 int err;
387 unsigned long pages;
388
389 err = strict_strtoul(buf, 10, &pages);
390 if (err || !pages || pages > UINT_MAX)
391 return -EINVAL;
392
393 khugepaged_pages_to_scan = pages;
394
395 return count;
396}
397static struct kobj_attribute pages_to_scan_attr =
398 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
399 pages_to_scan_store);
400
401static ssize_t pages_collapsed_show(struct kobject *kobj,
402 struct kobj_attribute *attr,
403 char *buf)
404{
405 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
406}
407static struct kobj_attribute pages_collapsed_attr =
408 __ATTR_RO(pages_collapsed);
409
410static ssize_t full_scans_show(struct kobject *kobj,
411 struct kobj_attribute *attr,
412 char *buf)
413{
414 return sprintf(buf, "%u\n", khugepaged_full_scans);
415}
416static struct kobj_attribute full_scans_attr =
417 __ATTR_RO(full_scans);
418
419static ssize_t khugepaged_defrag_show(struct kobject *kobj,
420 struct kobj_attribute *attr, char *buf)
421{
422 return single_flag_show(kobj, attr, buf,
423 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
424}
425static ssize_t khugepaged_defrag_store(struct kobject *kobj,
426 struct kobj_attribute *attr,
427 const char *buf, size_t count)
428{
429 return single_flag_store(kobj, attr, buf, count,
430 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
431}
432static struct kobj_attribute khugepaged_defrag_attr =
433 __ATTR(defrag, 0644, khugepaged_defrag_show,
434 khugepaged_defrag_store);
435
436/*
437 * max_ptes_none controls if khugepaged should collapse hugepages over
438 * any unmapped ptes in turn potentially increasing the memory
439 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
440 * reduce the available free memory in the system as it
441 * runs. Increasing max_ptes_none will instead potentially reduce the
442 * free memory in the system during the khugepaged scan.
443 */
444static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
445 struct kobj_attribute *attr,
446 char *buf)
447{
448 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
449}
450static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 const char *buf, size_t count)
453{
454 int err;
455 unsigned long max_ptes_none;
456
457 err = strict_strtoul(buf, 10, &max_ptes_none);
458 if (err || max_ptes_none > HPAGE_PMD_NR-1)
459 return -EINVAL;
460
461 khugepaged_max_ptes_none = max_ptes_none;
462
463 return count;
464}
465static struct kobj_attribute khugepaged_max_ptes_none_attr =
466 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
467 khugepaged_max_ptes_none_store);
468
469static struct attribute *khugepaged_attr[] = {
470 &khugepaged_defrag_attr.attr,
471 &khugepaged_max_ptes_none_attr.attr,
472 &pages_to_scan_attr.attr,
473 &pages_collapsed_attr.attr,
474 &full_scans_attr.attr,
475 &scan_sleep_millisecs_attr.attr,
476 &alloc_sleep_millisecs_attr.attr,
477 NULL,
478};
479
480static struct attribute_group khugepaged_attr_group = {
481 .attrs = khugepaged_attr,
482 .name = "khugepaged",
71e3aac0
AA
483};
484#endif /* CONFIG_SYSFS */
485
486static int __init hugepage_init(void)
487{
71e3aac0 488 int err;
ba76149f
AA
489#ifdef CONFIG_SYSFS
490 static struct kobject *hugepage_kobj;
4b7167b9 491#endif
71e3aac0 492
4b7167b9
AA
493 err = -EINVAL;
494 if (!has_transparent_hugepage()) {
495 transparent_hugepage_flags = 0;
496 goto out;
497 }
498
499#ifdef CONFIG_SYSFS
ba76149f
AA
500 err = -ENOMEM;
501 hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
502 if (unlikely(!hugepage_kobj)) {
503 printk(KERN_ERR "hugepage: failed kobject create\n");
504 goto out;
505 }
506
507 err = sysfs_create_group(hugepage_kobj, &hugepage_attr_group);
508 if (err) {
509 printk(KERN_ERR "hugepage: failed register hugeage group\n");
510 goto out;
511 }
512
513 err = sysfs_create_group(hugepage_kobj, &khugepaged_attr_group);
514 if (err) {
515 printk(KERN_ERR "hugepage: failed register hugeage group\n");
516 goto out;
517 }
71e3aac0 518#endif
ba76149f
AA
519
520 err = khugepaged_slab_init();
521 if (err)
522 goto out;
523
524 err = mm_slots_hash_init();
525 if (err) {
526 khugepaged_slab_free();
527 goto out;
528 }
529
97562cd2
RR
530 /*
531 * By default disable transparent hugepages on smaller systems,
532 * where the extra memory used could hurt more than TLB overhead
533 * is likely to save. The admin can still enable it through /sys.
534 */
535 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
536 transparent_hugepage_flags = 0;
537
ba76149f
AA
538 start_khugepaged();
539
f000565a
AA
540 set_recommended_min_free_kbytes();
541
ba76149f
AA
542out:
543 return err;
71e3aac0
AA
544}
545module_init(hugepage_init)
546
547static int __init setup_transparent_hugepage(char *str)
548{
549 int ret = 0;
550 if (!str)
551 goto out;
552 if (!strcmp(str, "always")) {
553 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
554 &transparent_hugepage_flags);
555 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
556 &transparent_hugepage_flags);
557 ret = 1;
558 } else if (!strcmp(str, "madvise")) {
559 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
560 &transparent_hugepage_flags);
561 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
562 &transparent_hugepage_flags);
563 ret = 1;
564 } else if (!strcmp(str, "never")) {
565 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
566 &transparent_hugepage_flags);
567 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
568 &transparent_hugepage_flags);
569 ret = 1;
570 }
571out:
572 if (!ret)
573 printk(KERN_WARNING
574 "transparent_hugepage= cannot parse, ignored\n");
575 return ret;
576}
577__setup("transparent_hugepage=", setup_transparent_hugepage);
578
579static void prepare_pmd_huge_pte(pgtable_t pgtable,
580 struct mm_struct *mm)
581{
582 assert_spin_locked(&mm->page_table_lock);
583
584 /* FIFO */
585 if (!mm->pmd_huge_pte)
586 INIT_LIST_HEAD(&pgtable->lru);
587 else
588 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
589 mm->pmd_huge_pte = pgtable;
590}
591
592static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
593{
594 if (likely(vma->vm_flags & VM_WRITE))
595 pmd = pmd_mkwrite(pmd);
596 return pmd;
597}
598
599static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
600 struct vm_area_struct *vma,
601 unsigned long haddr, pmd_t *pmd,
602 struct page *page)
603{
604 int ret = 0;
605 pgtable_t pgtable;
606
607 VM_BUG_ON(!PageCompound(page));
608 pgtable = pte_alloc_one(mm, haddr);
609 if (unlikely(!pgtable)) {
b9bbfbe3 610 mem_cgroup_uncharge_page(page);
71e3aac0
AA
611 put_page(page);
612 return VM_FAULT_OOM;
613 }
614
615 clear_huge_page(page, haddr, HPAGE_PMD_NR);
616 __SetPageUptodate(page);
617
618 spin_lock(&mm->page_table_lock);
619 if (unlikely(!pmd_none(*pmd))) {
620 spin_unlock(&mm->page_table_lock);
b9bbfbe3 621 mem_cgroup_uncharge_page(page);
71e3aac0
AA
622 put_page(page);
623 pte_free(mm, pgtable);
624 } else {
625 pmd_t entry;
626 entry = mk_pmd(page, vma->vm_page_prot);
627 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
628 entry = pmd_mkhuge(entry);
629 /*
630 * The spinlocking to take the lru_lock inside
631 * page_add_new_anon_rmap() acts as a full memory
632 * barrier to be sure clear_huge_page writes become
633 * visible after the set_pmd_at() write.
634 */
635 page_add_new_anon_rmap(page, vma, haddr);
636 set_pmd_at(mm, haddr, pmd, entry);
637 prepare_pmd_huge_pte(pgtable, mm);
638 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
639 spin_unlock(&mm->page_table_lock);
640 }
641
642 return ret;
643}
644
0bbbc0b3
AA
645static inline gfp_t alloc_hugepage_gfpmask(int defrag)
646{
647 return GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT);
648}
649
650static inline struct page *alloc_hugepage_vma(int defrag,
651 struct vm_area_struct *vma,
652 unsigned long haddr)
653{
654 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag),
655 HPAGE_PMD_ORDER, vma, haddr);
656}
657
658#ifndef CONFIG_NUMA
71e3aac0
AA
659static inline struct page *alloc_hugepage(int defrag)
660{
0bbbc0b3 661 return alloc_pages(alloc_hugepage_gfpmask(defrag),
71e3aac0
AA
662 HPAGE_PMD_ORDER);
663}
0bbbc0b3 664#endif
71e3aac0
AA
665
666int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
667 unsigned long address, pmd_t *pmd,
668 unsigned int flags)
669{
670 struct page *page;
671 unsigned long haddr = address & HPAGE_PMD_MASK;
672 pte_t *pte;
673
674 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
675 if (unlikely(anon_vma_prepare(vma)))
676 return VM_FAULT_OOM;
ba76149f
AA
677 if (unlikely(khugepaged_enter(vma)))
678 return VM_FAULT_OOM;
0bbbc0b3
AA
679 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
680 vma, haddr);
71e3aac0
AA
681 if (unlikely(!page))
682 goto out;
b9bbfbe3
AA
683 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
684 put_page(page);
685 goto out;
686 }
71e3aac0
AA
687
688 return __do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page);
689 }
690out:
691 /*
692 * Use __pte_alloc instead of pte_alloc_map, because we can't
693 * run pte_offset_map on the pmd, if an huge pmd could
694 * materialize from under us from a different thread.
695 */
696 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
697 return VM_FAULT_OOM;
698 /* if an huge pmd materialized from under us just retry later */
699 if (unlikely(pmd_trans_huge(*pmd)))
700 return 0;
701 /*
702 * A regular pmd is established and it can't morph into a huge pmd
703 * from under us anymore at this point because we hold the mmap_sem
704 * read mode and khugepaged takes it in write mode. So now it's
705 * safe to run pte_offset_map().
706 */
707 pte = pte_offset_map(pmd, address);
708 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
709}
710
711int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
712 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
713 struct vm_area_struct *vma)
714{
715 struct page *src_page;
716 pmd_t pmd;
717 pgtable_t pgtable;
718 int ret;
719
720 ret = -ENOMEM;
721 pgtable = pte_alloc_one(dst_mm, addr);
722 if (unlikely(!pgtable))
723 goto out;
724
725 spin_lock(&dst_mm->page_table_lock);
726 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
727
728 ret = -EAGAIN;
729 pmd = *src_pmd;
730 if (unlikely(!pmd_trans_huge(pmd))) {
731 pte_free(dst_mm, pgtable);
732 goto out_unlock;
733 }
734 if (unlikely(pmd_trans_splitting(pmd))) {
735 /* split huge page running from under us */
736 spin_unlock(&src_mm->page_table_lock);
737 spin_unlock(&dst_mm->page_table_lock);
738 pte_free(dst_mm, pgtable);
739
740 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
741 goto out;
742 }
743 src_page = pmd_page(pmd);
744 VM_BUG_ON(!PageHead(src_page));
745 get_page(src_page);
746 page_dup_rmap(src_page);
747 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
748
749 pmdp_set_wrprotect(src_mm, addr, src_pmd);
750 pmd = pmd_mkold(pmd_wrprotect(pmd));
751 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
752 prepare_pmd_huge_pte(pgtable, dst_mm);
753
754 ret = 0;
755out_unlock:
756 spin_unlock(&src_mm->page_table_lock);
757 spin_unlock(&dst_mm->page_table_lock);
758out:
759 return ret;
760}
761
762/* no "address" argument so destroys page coloring of some arch */
763pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
764{
765 pgtable_t pgtable;
766
767 assert_spin_locked(&mm->page_table_lock);
768
769 /* FIFO */
770 pgtable = mm->pmd_huge_pte;
771 if (list_empty(&pgtable->lru))
772 mm->pmd_huge_pte = NULL;
773 else {
774 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
775 struct page, lru);
776 list_del(&pgtable->lru);
777 }
778 return pgtable;
779}
780
781static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
782 struct vm_area_struct *vma,
783 unsigned long address,
784 pmd_t *pmd, pmd_t orig_pmd,
785 struct page *page,
786 unsigned long haddr)
787{
788 pgtable_t pgtable;
789 pmd_t _pmd;
790 int ret = 0, i;
791 struct page **pages;
792
793 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
794 GFP_KERNEL);
795 if (unlikely(!pages)) {
796 ret |= VM_FAULT_OOM;
797 goto out;
798 }
799
800 for (i = 0; i < HPAGE_PMD_NR; i++) {
801 pages[i] = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
802 vma, address);
b9bbfbe3
AA
803 if (unlikely(!pages[i] ||
804 mem_cgroup_newpage_charge(pages[i], mm,
805 GFP_KERNEL))) {
806 if (pages[i])
71e3aac0 807 put_page(pages[i]);
b9bbfbe3
AA
808 mem_cgroup_uncharge_start();
809 while (--i >= 0) {
810 mem_cgroup_uncharge_page(pages[i]);
811 put_page(pages[i]);
812 }
813 mem_cgroup_uncharge_end();
71e3aac0
AA
814 kfree(pages);
815 ret |= VM_FAULT_OOM;
816 goto out;
817 }
818 }
819
820 for (i = 0; i < HPAGE_PMD_NR; i++) {
821 copy_user_highpage(pages[i], page + i,
822 haddr + PAGE_SHIFT*i, vma);
823 __SetPageUptodate(pages[i]);
824 cond_resched();
825 }
826
827 spin_lock(&mm->page_table_lock);
828 if (unlikely(!pmd_same(*pmd, orig_pmd)))
829 goto out_free_pages;
830 VM_BUG_ON(!PageHead(page));
831
832 pmdp_clear_flush_notify(vma, haddr, pmd);
833 /* leave pmd empty until pte is filled */
834
835 pgtable = get_pmd_huge_pte(mm);
836 pmd_populate(mm, &_pmd, pgtable);
837
838 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
839 pte_t *pte, entry;
840 entry = mk_pte(pages[i], vma->vm_page_prot);
841 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
842 page_add_new_anon_rmap(pages[i], vma, haddr);
843 pte = pte_offset_map(&_pmd, haddr);
844 VM_BUG_ON(!pte_none(*pte));
845 set_pte_at(mm, haddr, pte, entry);
846 pte_unmap(pte);
847 }
848 kfree(pages);
849
850 mm->nr_ptes++;
851 smp_wmb(); /* make pte visible before pmd */
852 pmd_populate(mm, pmd, pgtable);
853 page_remove_rmap(page);
854 spin_unlock(&mm->page_table_lock);
855
856 ret |= VM_FAULT_WRITE;
857 put_page(page);
858
859out:
860 return ret;
861
862out_free_pages:
863 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
864 mem_cgroup_uncharge_start();
865 for (i = 0; i < HPAGE_PMD_NR; i++) {
866 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 867 put_page(pages[i]);
b9bbfbe3
AA
868 }
869 mem_cgroup_uncharge_end();
71e3aac0
AA
870 kfree(pages);
871 goto out;
872}
873
874int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
875 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
876{
877 int ret = 0;
878 struct page *page, *new_page;
879 unsigned long haddr;
880
881 VM_BUG_ON(!vma->anon_vma);
882 spin_lock(&mm->page_table_lock);
883 if (unlikely(!pmd_same(*pmd, orig_pmd)))
884 goto out_unlock;
885
886 page = pmd_page(orig_pmd);
887 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
888 haddr = address & HPAGE_PMD_MASK;
889 if (page_mapcount(page) == 1) {
890 pmd_t entry;
891 entry = pmd_mkyoung(orig_pmd);
892 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
893 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
894 update_mmu_cache(vma, address, entry);
895 ret |= VM_FAULT_WRITE;
896 goto out_unlock;
897 }
898 get_page(page);
899 spin_unlock(&mm->page_table_lock);
900
901 if (transparent_hugepage_enabled(vma) &&
902 !transparent_hugepage_debug_cow())
0bbbc0b3
AA
903 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
904 vma, haddr);
71e3aac0
AA
905 else
906 new_page = NULL;
907
908 if (unlikely(!new_page)) {
909 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
910 pmd, orig_pmd, page, haddr);
911 put_page(page);
912 goto out;
913 }
914
b9bbfbe3
AA
915 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
916 put_page(new_page);
917 put_page(page);
918 ret |= VM_FAULT_OOM;
919 goto out;
920 }
921
71e3aac0
AA
922 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
923 __SetPageUptodate(new_page);
924
925 spin_lock(&mm->page_table_lock);
926 put_page(page);
b9bbfbe3
AA
927 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
928 mem_cgroup_uncharge_page(new_page);
71e3aac0 929 put_page(new_page);
b9bbfbe3 930 } else {
71e3aac0
AA
931 pmd_t entry;
932 VM_BUG_ON(!PageHead(page));
933 entry = mk_pmd(new_page, vma->vm_page_prot);
934 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
935 entry = pmd_mkhuge(entry);
936 pmdp_clear_flush_notify(vma, haddr, pmd);
937 page_add_new_anon_rmap(new_page, vma, haddr);
938 set_pmd_at(mm, haddr, pmd, entry);
939 update_mmu_cache(vma, address, entry);
940 page_remove_rmap(page);
941 put_page(page);
942 ret |= VM_FAULT_WRITE;
943 }
944out_unlock:
945 spin_unlock(&mm->page_table_lock);
946out:
947 return ret;
948}
949
950struct page *follow_trans_huge_pmd(struct mm_struct *mm,
951 unsigned long addr,
952 pmd_t *pmd,
953 unsigned int flags)
954{
955 struct page *page = NULL;
956
957 assert_spin_locked(&mm->page_table_lock);
958
959 if (flags & FOLL_WRITE && !pmd_write(*pmd))
960 goto out;
961
962 page = pmd_page(*pmd);
963 VM_BUG_ON(!PageHead(page));
964 if (flags & FOLL_TOUCH) {
965 pmd_t _pmd;
966 /*
967 * We should set the dirty bit only for FOLL_WRITE but
968 * for now the dirty bit in the pmd is meaningless.
969 * And if the dirty bit will become meaningful and
970 * we'll only set it with FOLL_WRITE, an atomic
971 * set_bit will be required on the pmd to set the
972 * young bit, instead of the current set_pmd_at.
973 */
974 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
975 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
976 }
977 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
978 VM_BUG_ON(!PageCompound(page));
979 if (flags & FOLL_GET)
980 get_page(page);
981
982out:
983 return page;
984}
985
986int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
987 pmd_t *pmd)
988{
989 int ret = 0;
990
991 spin_lock(&tlb->mm->page_table_lock);
992 if (likely(pmd_trans_huge(*pmd))) {
993 if (unlikely(pmd_trans_splitting(*pmd))) {
994 spin_unlock(&tlb->mm->page_table_lock);
995 wait_split_huge_page(vma->anon_vma,
996 pmd);
997 } else {
998 struct page *page;
999 pgtable_t pgtable;
1000 pgtable = get_pmd_huge_pte(tlb->mm);
1001 page = pmd_page(*pmd);
1002 pmd_clear(pmd);
1003 page_remove_rmap(page);
1004 VM_BUG_ON(page_mapcount(page) < 0);
1005 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1006 VM_BUG_ON(!PageHead(page));
1007 spin_unlock(&tlb->mm->page_table_lock);
1008 tlb_remove_page(tlb, page);
1009 pte_free(tlb->mm, pgtable);
1010 ret = 1;
1011 }
1012 } else
1013 spin_unlock(&tlb->mm->page_table_lock);
1014
1015 return ret;
1016}
1017
0ca1634d
JW
1018int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1019 unsigned long addr, unsigned long end,
1020 unsigned char *vec)
1021{
1022 int ret = 0;
1023
1024 spin_lock(&vma->vm_mm->page_table_lock);
1025 if (likely(pmd_trans_huge(*pmd))) {
1026 ret = !pmd_trans_splitting(*pmd);
1027 spin_unlock(&vma->vm_mm->page_table_lock);
1028 if (unlikely(!ret))
1029 wait_split_huge_page(vma->anon_vma, pmd);
1030 else {
1031 /*
1032 * All logical pages in the range are present
1033 * if backed by a huge page.
1034 */
1035 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1036 }
1037 } else
1038 spin_unlock(&vma->vm_mm->page_table_lock);
1039
1040 return ret;
1041}
1042
cd7548ab
JW
1043int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1044 unsigned long addr, pgprot_t newprot)
1045{
1046 struct mm_struct *mm = vma->vm_mm;
1047 int ret = 0;
1048
1049 spin_lock(&mm->page_table_lock);
1050 if (likely(pmd_trans_huge(*pmd))) {
1051 if (unlikely(pmd_trans_splitting(*pmd))) {
1052 spin_unlock(&mm->page_table_lock);
1053 wait_split_huge_page(vma->anon_vma, pmd);
1054 } else {
1055 pmd_t entry;
1056
1057 entry = pmdp_get_and_clear(mm, addr, pmd);
1058 entry = pmd_modify(entry, newprot);
1059 set_pmd_at(mm, addr, pmd, entry);
1060 spin_unlock(&vma->vm_mm->page_table_lock);
1061 flush_tlb_range(vma, addr, addr + HPAGE_PMD_SIZE);
1062 ret = 1;
1063 }
1064 } else
1065 spin_unlock(&vma->vm_mm->page_table_lock);
1066
1067 return ret;
1068}
1069
71e3aac0
AA
1070pmd_t *page_check_address_pmd(struct page *page,
1071 struct mm_struct *mm,
1072 unsigned long address,
1073 enum page_check_address_pmd_flag flag)
1074{
1075 pgd_t *pgd;
1076 pud_t *pud;
1077 pmd_t *pmd, *ret = NULL;
1078
1079 if (address & ~HPAGE_PMD_MASK)
1080 goto out;
1081
1082 pgd = pgd_offset(mm, address);
1083 if (!pgd_present(*pgd))
1084 goto out;
1085
1086 pud = pud_offset(pgd, address);
1087 if (!pud_present(*pud))
1088 goto out;
1089
1090 pmd = pmd_offset(pud, address);
1091 if (pmd_none(*pmd))
1092 goto out;
1093 if (pmd_page(*pmd) != page)
1094 goto out;
94fcc585
AA
1095 /*
1096 * split_vma() may create temporary aliased mappings. There is
1097 * no risk as long as all huge pmd are found and have their
1098 * splitting bit set before __split_huge_page_refcount
1099 * runs. Finding the same huge pmd more than once during the
1100 * same rmap walk is not a problem.
1101 */
1102 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1103 pmd_trans_splitting(*pmd))
1104 goto out;
71e3aac0
AA
1105 if (pmd_trans_huge(*pmd)) {
1106 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1107 !pmd_trans_splitting(*pmd));
1108 ret = pmd;
1109 }
1110out:
1111 return ret;
1112}
1113
1114static int __split_huge_page_splitting(struct page *page,
1115 struct vm_area_struct *vma,
1116 unsigned long address)
1117{
1118 struct mm_struct *mm = vma->vm_mm;
1119 pmd_t *pmd;
1120 int ret = 0;
1121
1122 spin_lock(&mm->page_table_lock);
1123 pmd = page_check_address_pmd(page, mm, address,
1124 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1125 if (pmd) {
1126 /*
1127 * We can't temporarily set the pmd to null in order
1128 * to split it, the pmd must remain marked huge at all
1129 * times or the VM won't take the pmd_trans_huge paths
1130 * and it won't wait on the anon_vma->root->lock to
1131 * serialize against split_huge_page*.
1132 */
1133 pmdp_splitting_flush_notify(vma, address, pmd);
1134 ret = 1;
1135 }
1136 spin_unlock(&mm->page_table_lock);
1137
1138 return ret;
1139}
1140
1141static void __split_huge_page_refcount(struct page *page)
1142{
1143 int i;
1144 unsigned long head_index = page->index;
1145 struct zone *zone = page_zone(page);
2c888cfb 1146 int zonestat;
71e3aac0
AA
1147
1148 /* prevent PageLRU to go away from under us, and freeze lru stats */
1149 spin_lock_irq(&zone->lru_lock);
1150 compound_lock(page);
1151
1152 for (i = 1; i < HPAGE_PMD_NR; i++) {
1153 struct page *page_tail = page + i;
1154
1155 /* tail_page->_count cannot change */
1156 atomic_sub(atomic_read(&page_tail->_count), &page->_count);
1157 BUG_ON(page_count(page) <= 0);
1158 atomic_add(page_mapcount(page) + 1, &page_tail->_count);
1159 BUG_ON(atomic_read(&page_tail->_count) <= 0);
1160
1161 /* after clearing PageTail the gup refcount can be released */
1162 smp_mb();
1163
1164 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1165 page_tail->flags |= (page->flags &
1166 ((1L << PG_referenced) |
1167 (1L << PG_swapbacked) |
1168 (1L << PG_mlocked) |
1169 (1L << PG_uptodate)));
1170 page_tail->flags |= (1L << PG_dirty);
1171
1172 /*
1173 * 1) clear PageTail before overwriting first_page
1174 * 2) clear PageTail before clearing PageHead for VM_BUG_ON
1175 */
1176 smp_wmb();
1177
1178 /*
1179 * __split_huge_page_splitting() already set the
1180 * splitting bit in all pmd that could map this
1181 * hugepage, that will ensure no CPU can alter the
1182 * mapcount on the head page. The mapcount is only
1183 * accounted in the head page and it has to be
1184 * transferred to all tail pages in the below code. So
1185 * for this code to be safe, the split the mapcount
1186 * can't change. But that doesn't mean userland can't
1187 * keep changing and reading the page contents while
1188 * we transfer the mapcount, so the pmd splitting
1189 * status is achieved setting a reserved bit in the
1190 * pmd, not by clearing the present bit.
1191 */
1192 BUG_ON(page_mapcount(page_tail));
1193 page_tail->_mapcount = page->_mapcount;
1194
1195 BUG_ON(page_tail->mapping);
1196 page_tail->mapping = page->mapping;
1197
1198 page_tail->index = ++head_index;
1199
1200 BUG_ON(!PageAnon(page_tail));
1201 BUG_ON(!PageUptodate(page_tail));
1202 BUG_ON(!PageDirty(page_tail));
1203 BUG_ON(!PageSwapBacked(page_tail));
1204
1205 lru_add_page_tail(zone, page, page_tail);
1206 }
1207
79134171
AA
1208 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1209 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1210
2c888cfb
RR
1211 /*
1212 * A hugepage counts for HPAGE_PMD_NR pages on the LRU statistics,
1213 * so adjust those appropriately if this page is on the LRU.
1214 */
1215 if (PageLRU(page)) {
1216 zonestat = NR_LRU_BASE + page_lru(page);
1217 __mod_zone_page_state(zone, zonestat, -(HPAGE_PMD_NR-1));
1218 }
1219
71e3aac0
AA
1220 ClearPageCompound(page);
1221 compound_unlock(page);
1222 spin_unlock_irq(&zone->lru_lock);
1223
1224 for (i = 1; i < HPAGE_PMD_NR; i++) {
1225 struct page *page_tail = page + i;
1226 BUG_ON(page_count(page_tail) <= 0);
1227 /*
1228 * Tail pages may be freed if there wasn't any mapping
1229 * like if add_to_swap() is running on a lru page that
1230 * had its mapping zapped. And freeing these pages
1231 * requires taking the lru_lock so we do the put_page
1232 * of the tail pages after the split is complete.
1233 */
1234 put_page(page_tail);
1235 }
1236
1237 /*
1238 * Only the head page (now become a regular page) is required
1239 * to be pinned by the caller.
1240 */
1241 BUG_ON(page_count(page) <= 0);
1242}
1243
1244static int __split_huge_page_map(struct page *page,
1245 struct vm_area_struct *vma,
1246 unsigned long address)
1247{
1248 struct mm_struct *mm = vma->vm_mm;
1249 pmd_t *pmd, _pmd;
1250 int ret = 0, i;
1251 pgtable_t pgtable;
1252 unsigned long haddr;
1253
1254 spin_lock(&mm->page_table_lock);
1255 pmd = page_check_address_pmd(page, mm, address,
1256 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1257 if (pmd) {
1258 pgtable = get_pmd_huge_pte(mm);
1259 pmd_populate(mm, &_pmd, pgtable);
1260
1261 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1262 i++, haddr += PAGE_SIZE) {
1263 pte_t *pte, entry;
1264 BUG_ON(PageCompound(page+i));
1265 entry = mk_pte(page + i, vma->vm_page_prot);
1266 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1267 if (!pmd_write(*pmd))
1268 entry = pte_wrprotect(entry);
1269 else
1270 BUG_ON(page_mapcount(page) != 1);
1271 if (!pmd_young(*pmd))
1272 entry = pte_mkold(entry);
1273 pte = pte_offset_map(&_pmd, haddr);
1274 BUG_ON(!pte_none(*pte));
1275 set_pte_at(mm, haddr, pte, entry);
1276 pte_unmap(pte);
1277 }
1278
1279 mm->nr_ptes++;
1280 smp_wmb(); /* make pte visible before pmd */
1281 /*
1282 * Up to this point the pmd is present and huge and
1283 * userland has the whole access to the hugepage
1284 * during the split (which happens in place). If we
1285 * overwrite the pmd with the not-huge version
1286 * pointing to the pte here (which of course we could
1287 * if all CPUs were bug free), userland could trigger
1288 * a small page size TLB miss on the small sized TLB
1289 * while the hugepage TLB entry is still established
1290 * in the huge TLB. Some CPU doesn't like that. See
1291 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1292 * Erratum 383 on page 93. Intel should be safe but is
1293 * also warns that it's only safe if the permission
1294 * and cache attributes of the two entries loaded in
1295 * the two TLB is identical (which should be the case
1296 * here). But it is generally safer to never allow
1297 * small and huge TLB entries for the same virtual
1298 * address to be loaded simultaneously. So instead of
1299 * doing "pmd_populate(); flush_tlb_range();" we first
1300 * mark the current pmd notpresent (atomically because
1301 * here the pmd_trans_huge and pmd_trans_splitting
1302 * must remain set at all times on the pmd until the
1303 * split is complete for this pmd), then we flush the
1304 * SMP TLB and finally we write the non-huge version
1305 * of the pmd entry with pmd_populate.
1306 */
1307 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1308 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1309 pmd_populate(mm, pmd, pgtable);
1310 ret = 1;
1311 }
1312 spin_unlock(&mm->page_table_lock);
1313
1314 return ret;
1315}
1316
1317/* must be called with anon_vma->root->lock hold */
1318static void __split_huge_page(struct page *page,
1319 struct anon_vma *anon_vma)
1320{
1321 int mapcount, mapcount2;
1322 struct anon_vma_chain *avc;
1323
1324 BUG_ON(!PageHead(page));
1325 BUG_ON(PageTail(page));
1326
1327 mapcount = 0;
1328 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1329 struct vm_area_struct *vma = avc->vma;
1330 unsigned long addr = vma_address(page, vma);
1331 BUG_ON(is_vma_temporary_stack(vma));
1332 if (addr == -EFAULT)
1333 continue;
1334 mapcount += __split_huge_page_splitting(page, vma, addr);
1335 }
05759d38
AA
1336 /*
1337 * It is critical that new vmas are added to the tail of the
1338 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1339 * and establishes a child pmd before
1340 * __split_huge_page_splitting() freezes the parent pmd (so if
1341 * we fail to prevent copy_huge_pmd() from running until the
1342 * whole __split_huge_page() is complete), we will still see
1343 * the newly established pmd of the child later during the
1344 * walk, to be able to set it as pmd_trans_splitting too.
1345 */
1346 if (mapcount != page_mapcount(page))
1347 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1348 mapcount, page_mapcount(page));
71e3aac0
AA
1349 BUG_ON(mapcount != page_mapcount(page));
1350
1351 __split_huge_page_refcount(page);
1352
1353 mapcount2 = 0;
1354 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1355 struct vm_area_struct *vma = avc->vma;
1356 unsigned long addr = vma_address(page, vma);
1357 BUG_ON(is_vma_temporary_stack(vma));
1358 if (addr == -EFAULT)
1359 continue;
1360 mapcount2 += __split_huge_page_map(page, vma, addr);
1361 }
05759d38
AA
1362 if (mapcount != mapcount2)
1363 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1364 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1365 BUG_ON(mapcount != mapcount2);
1366}
1367
1368int split_huge_page(struct page *page)
1369{
1370 struct anon_vma *anon_vma;
1371 int ret = 1;
1372
1373 BUG_ON(!PageAnon(page));
1374 anon_vma = page_lock_anon_vma(page);
1375 if (!anon_vma)
1376 goto out;
1377 ret = 0;
1378 if (!PageCompound(page))
1379 goto out_unlock;
1380
1381 BUG_ON(!PageSwapBacked(page));
1382 __split_huge_page(page, anon_vma);
1383
1384 BUG_ON(PageCompound(page));
1385out_unlock:
1386 page_unlock_anon_vma(anon_vma);
1387out:
1388 return ret;
1389}
1390
0af4e98b
AA
1391int hugepage_madvise(unsigned long *vm_flags)
1392{
1393 /*
1394 * Be somewhat over-protective like KSM for now!
1395 */
1396 if (*vm_flags & (VM_HUGEPAGE | VM_SHARED | VM_MAYSHARE |
1397 VM_PFNMAP | VM_IO | VM_DONTEXPAND |
1398 VM_RESERVED | VM_HUGETLB | VM_INSERTPAGE |
1399 VM_MIXEDMAP | VM_SAO))
1400 return -EINVAL;
1401
1402 *vm_flags |= VM_HUGEPAGE;
1403
1404 return 0;
1405}
1406
ba76149f
AA
1407static int __init khugepaged_slab_init(void)
1408{
1409 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1410 sizeof(struct mm_slot),
1411 __alignof__(struct mm_slot), 0, NULL);
1412 if (!mm_slot_cache)
1413 return -ENOMEM;
1414
1415 return 0;
1416}
1417
1418static void __init khugepaged_slab_free(void)
1419{
1420 kmem_cache_destroy(mm_slot_cache);
1421 mm_slot_cache = NULL;
1422}
1423
1424static inline struct mm_slot *alloc_mm_slot(void)
1425{
1426 if (!mm_slot_cache) /* initialization failed */
1427 return NULL;
1428 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1429}
1430
1431static inline void free_mm_slot(struct mm_slot *mm_slot)
1432{
1433 kmem_cache_free(mm_slot_cache, mm_slot);
1434}
1435
1436static int __init mm_slots_hash_init(void)
1437{
1438 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1439 GFP_KERNEL);
1440 if (!mm_slots_hash)
1441 return -ENOMEM;
1442 return 0;
1443}
1444
1445#if 0
1446static void __init mm_slots_hash_free(void)
1447{
1448 kfree(mm_slots_hash);
1449 mm_slots_hash = NULL;
1450}
1451#endif
1452
1453static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1454{
1455 struct mm_slot *mm_slot;
1456 struct hlist_head *bucket;
1457 struct hlist_node *node;
1458
1459 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1460 % MM_SLOTS_HASH_HEADS];
1461 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1462 if (mm == mm_slot->mm)
1463 return mm_slot;
1464 }
1465 return NULL;
1466}
1467
1468static void insert_to_mm_slots_hash(struct mm_struct *mm,
1469 struct mm_slot *mm_slot)
1470{
1471 struct hlist_head *bucket;
1472
1473 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1474 % MM_SLOTS_HASH_HEADS];
1475 mm_slot->mm = mm;
1476 hlist_add_head(&mm_slot->hash, bucket);
1477}
1478
1479static inline int khugepaged_test_exit(struct mm_struct *mm)
1480{
1481 return atomic_read(&mm->mm_users) == 0;
1482}
1483
1484int __khugepaged_enter(struct mm_struct *mm)
1485{
1486 struct mm_slot *mm_slot;
1487 int wakeup;
1488
1489 mm_slot = alloc_mm_slot();
1490 if (!mm_slot)
1491 return -ENOMEM;
1492
1493 /* __khugepaged_exit() must not run from under us */
1494 VM_BUG_ON(khugepaged_test_exit(mm));
1495 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1496 free_mm_slot(mm_slot);
1497 return 0;
1498 }
1499
1500 spin_lock(&khugepaged_mm_lock);
1501 insert_to_mm_slots_hash(mm, mm_slot);
1502 /*
1503 * Insert just behind the scanning cursor, to let the area settle
1504 * down a little.
1505 */
1506 wakeup = list_empty(&khugepaged_scan.mm_head);
1507 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1508 spin_unlock(&khugepaged_mm_lock);
1509
1510 atomic_inc(&mm->mm_count);
1511 if (wakeup)
1512 wake_up_interruptible(&khugepaged_wait);
1513
1514 return 0;
1515}
1516
1517int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1518{
1519 unsigned long hstart, hend;
1520 if (!vma->anon_vma)
1521 /*
1522 * Not yet faulted in so we will register later in the
1523 * page fault if needed.
1524 */
1525 return 0;
1526 if (vma->vm_file || vma->vm_ops)
1527 /* khugepaged not yet working on file or special mappings */
1528 return 0;
1529 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1530 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1531 hend = vma->vm_end & HPAGE_PMD_MASK;
1532 if (hstart < hend)
1533 return khugepaged_enter(vma);
1534 return 0;
1535}
1536
1537void __khugepaged_exit(struct mm_struct *mm)
1538{
1539 struct mm_slot *mm_slot;
1540 int free = 0;
1541
1542 spin_lock(&khugepaged_mm_lock);
1543 mm_slot = get_mm_slot(mm);
1544 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1545 hlist_del(&mm_slot->hash);
1546 list_del(&mm_slot->mm_node);
1547 free = 1;
1548 }
1549
1550 if (free) {
1551 spin_unlock(&khugepaged_mm_lock);
1552 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1553 free_mm_slot(mm_slot);
1554 mmdrop(mm);
1555 } else if (mm_slot) {
1556 spin_unlock(&khugepaged_mm_lock);
1557 /*
1558 * This is required to serialize against
1559 * khugepaged_test_exit() (which is guaranteed to run
1560 * under mmap sem read mode). Stop here (after we
1561 * return all pagetables will be destroyed) until
1562 * khugepaged has finished working on the pagetables
1563 * under the mmap_sem.
1564 */
1565 down_write(&mm->mmap_sem);
1566 up_write(&mm->mmap_sem);
1567 } else
1568 spin_unlock(&khugepaged_mm_lock);
1569}
1570
1571static void release_pte_page(struct page *page)
1572{
1573 /* 0 stands for page_is_file_cache(page) == false */
1574 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1575 unlock_page(page);
1576 putback_lru_page(page);
1577}
1578
1579static void release_pte_pages(pte_t *pte, pte_t *_pte)
1580{
1581 while (--_pte >= pte) {
1582 pte_t pteval = *_pte;
1583 if (!pte_none(pteval))
1584 release_pte_page(pte_page(pteval));
1585 }
1586}
1587
1588static void release_all_pte_pages(pte_t *pte)
1589{
1590 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1591}
1592
1593static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1594 unsigned long address,
1595 pte_t *pte)
1596{
1597 struct page *page;
1598 pte_t *_pte;
1599 int referenced = 0, isolated = 0, none = 0;
1600 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1601 _pte++, address += PAGE_SIZE) {
1602 pte_t pteval = *_pte;
1603 if (pte_none(pteval)) {
1604 if (++none <= khugepaged_max_ptes_none)
1605 continue;
1606 else {
1607 release_pte_pages(pte, _pte);
1608 goto out;
1609 }
1610 }
1611 if (!pte_present(pteval) || !pte_write(pteval)) {
1612 release_pte_pages(pte, _pte);
1613 goto out;
1614 }
1615 page = vm_normal_page(vma, address, pteval);
1616 if (unlikely(!page)) {
1617 release_pte_pages(pte, _pte);
1618 goto out;
1619 }
1620 VM_BUG_ON(PageCompound(page));
1621 BUG_ON(!PageAnon(page));
1622 VM_BUG_ON(!PageSwapBacked(page));
1623
1624 /* cannot use mapcount: can't collapse if there's a gup pin */
1625 if (page_count(page) != 1) {
1626 release_pte_pages(pte, _pte);
1627 goto out;
1628 }
1629 /*
1630 * We can do it before isolate_lru_page because the
1631 * page can't be freed from under us. NOTE: PG_lock
1632 * is needed to serialize against split_huge_page
1633 * when invoked from the VM.
1634 */
1635 if (!trylock_page(page)) {
1636 release_pte_pages(pte, _pte);
1637 goto out;
1638 }
1639 /*
1640 * Isolate the page to avoid collapsing an hugepage
1641 * currently in use by the VM.
1642 */
1643 if (isolate_lru_page(page)) {
1644 unlock_page(page);
1645 release_pte_pages(pte, _pte);
1646 goto out;
1647 }
1648 /* 0 stands for page_is_file_cache(page) == false */
1649 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1650 VM_BUG_ON(!PageLocked(page));
1651 VM_BUG_ON(PageLRU(page));
1652
1653 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1654 if (pte_young(pteval) || PageReferenced(page) ||
1655 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1656 referenced = 1;
1657 }
1658 if (unlikely(!referenced))
1659 release_all_pte_pages(pte);
1660 else
1661 isolated = 1;
1662out:
1663 return isolated;
1664}
1665
1666static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1667 struct vm_area_struct *vma,
1668 unsigned long address,
1669 spinlock_t *ptl)
1670{
1671 pte_t *_pte;
1672 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1673 pte_t pteval = *_pte;
1674 struct page *src_page;
1675
1676 if (pte_none(pteval)) {
1677 clear_user_highpage(page, address);
1678 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1679 } else {
1680 src_page = pte_page(pteval);
1681 copy_user_highpage(page, src_page, address, vma);
1682 VM_BUG_ON(page_mapcount(src_page) != 1);
1683 VM_BUG_ON(page_count(src_page) != 2);
1684 release_pte_page(src_page);
1685 /*
1686 * ptl mostly unnecessary, but preempt has to
1687 * be disabled to update the per-cpu stats
1688 * inside page_remove_rmap().
1689 */
1690 spin_lock(ptl);
1691 /*
1692 * paravirt calls inside pte_clear here are
1693 * superfluous.
1694 */
1695 pte_clear(vma->vm_mm, address, _pte);
1696 page_remove_rmap(src_page);
1697 spin_unlock(ptl);
1698 free_page_and_swap_cache(src_page);
1699 }
1700
1701 address += PAGE_SIZE;
1702 page++;
1703 }
1704}
1705
1706static void collapse_huge_page(struct mm_struct *mm,
1707 unsigned long address,
ce83d217
AA
1708 struct page **hpage,
1709 struct vm_area_struct *vma)
ba76149f 1710{
ba76149f
AA
1711 pgd_t *pgd;
1712 pud_t *pud;
1713 pmd_t *pmd, _pmd;
1714 pte_t *pte;
1715 pgtable_t pgtable;
1716 struct page *new_page;
1717 spinlock_t *ptl;
1718 int isolated;
1719 unsigned long hstart, hend;
1720
1721 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1722#ifndef CONFIG_NUMA
ba76149f 1723 VM_BUG_ON(!*hpage);
ce83d217 1724 new_page = *hpage;
0bbbc0b3
AA
1725#else
1726 VM_BUG_ON(*hpage);
ce83d217
AA
1727 /*
1728 * Allocate the page while the vma is still valid and under
1729 * the mmap_sem read mode so there is no memory allocation
1730 * later when we take the mmap_sem in write mode. This is more
1731 * friendly behavior (OTOH it may actually hide bugs) to
1732 * filesystems in userland with daemons allocating memory in
1733 * the userland I/O paths. Allocating memory with the
1734 * mmap_sem in read mode is good idea also to allow greater
1735 * scalability.
1736 */
1737 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address);
1738 if (unlikely(!new_page)) {
1739 up_read(&mm->mmap_sem);
1740 *hpage = ERR_PTR(-ENOMEM);
1741 return;
1742 }
0bbbc0b3 1743#endif
ce83d217
AA
1744 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1745 up_read(&mm->mmap_sem);
1746 put_page(new_page);
1747 return;
1748 }
1749
1750 /* after allocating the hugepage upgrade to mmap_sem write mode */
1751 up_read(&mm->mmap_sem);
ba76149f
AA
1752
1753 /*
1754 * Prevent all access to pagetables with the exception of
1755 * gup_fast later hanlded by the ptep_clear_flush and the VM
1756 * handled by the anon_vma lock + PG_lock.
1757 */
1758 down_write(&mm->mmap_sem);
1759 if (unlikely(khugepaged_test_exit(mm)))
1760 goto out;
1761
1762 vma = find_vma(mm, address);
1763 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1764 hend = vma->vm_end & HPAGE_PMD_MASK;
1765 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1766 goto out;
1767
1768 if (!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always())
1769 goto out;
1770
1771 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1772 if (!vma->anon_vma || vma->vm_ops || vma->vm_file)
1773 goto out;
1774 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
1775
1776 pgd = pgd_offset(mm, address);
1777 if (!pgd_present(*pgd))
1778 goto out;
1779
1780 pud = pud_offset(pgd, address);
1781 if (!pud_present(*pud))
1782 goto out;
1783
1784 pmd = pmd_offset(pud, address);
1785 /* pmd can't go away or become huge under us */
1786 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1787 goto out;
1788
ba76149f
AA
1789 anon_vma_lock(vma->anon_vma);
1790
1791 pte = pte_offset_map(pmd, address);
1792 ptl = pte_lockptr(mm, pmd);
1793
1794 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1795 /*
1796 * After this gup_fast can't run anymore. This also removes
1797 * any huge TLB entry from the CPU so we won't allow
1798 * huge and small TLB entries for the same virtual address
1799 * to avoid the risk of CPU bugs in that area.
1800 */
1801 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1802 spin_unlock(&mm->page_table_lock);
1803
1804 spin_lock(ptl);
1805 isolated = __collapse_huge_page_isolate(vma, address, pte);
1806 spin_unlock(ptl);
1807 pte_unmap(pte);
1808
1809 if (unlikely(!isolated)) {
1810 spin_lock(&mm->page_table_lock);
1811 BUG_ON(!pmd_none(*pmd));
1812 set_pmd_at(mm, address, pmd, _pmd);
1813 spin_unlock(&mm->page_table_lock);
1814 anon_vma_unlock(vma->anon_vma);
1815 mem_cgroup_uncharge_page(new_page);
ce83d217 1816 goto out;
ba76149f
AA
1817 }
1818
1819 /*
1820 * All pages are isolated and locked so anon_vma rmap
1821 * can't run anymore.
1822 */
1823 anon_vma_unlock(vma->anon_vma);
1824
1825 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
1826 __SetPageUptodate(new_page);
1827 pgtable = pmd_pgtable(_pmd);
1828 VM_BUG_ON(page_count(pgtable) != 1);
1829 VM_BUG_ON(page_mapcount(pgtable) != 0);
1830
1831 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1832 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1833 _pmd = pmd_mkhuge(_pmd);
1834
1835 /*
1836 * spin_lock() below is not the equivalent of smp_wmb(), so
1837 * this is needed to avoid the copy_huge_page writes to become
1838 * visible after the set_pmd_at() write.
1839 */
1840 smp_wmb();
1841
1842 spin_lock(&mm->page_table_lock);
1843 BUG_ON(!pmd_none(*pmd));
1844 page_add_new_anon_rmap(new_page, vma, address);
1845 set_pmd_at(mm, address, pmd, _pmd);
1846 update_mmu_cache(vma, address, entry);
1847 prepare_pmd_huge_pte(pgtable, mm);
1848 mm->nr_ptes--;
1849 spin_unlock(&mm->page_table_lock);
1850
0bbbc0b3 1851#ifndef CONFIG_NUMA
ba76149f 1852 *hpage = NULL;
0bbbc0b3 1853#endif
ba76149f 1854 khugepaged_pages_collapsed++;
ce83d217 1855out_up_write:
ba76149f 1856 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1857 return;
1858
ce83d217 1859out:
0bbbc0b3
AA
1860#ifdef CONFIG_NUMA
1861 put_page(new_page);
1862#endif
ce83d217 1863 goto out_up_write;
ba76149f
AA
1864}
1865
1866static int khugepaged_scan_pmd(struct mm_struct *mm,
1867 struct vm_area_struct *vma,
1868 unsigned long address,
1869 struct page **hpage)
1870{
1871 pgd_t *pgd;
1872 pud_t *pud;
1873 pmd_t *pmd;
1874 pte_t *pte, *_pte;
1875 int ret = 0, referenced = 0, none = 0;
1876 struct page *page;
1877 unsigned long _address;
1878 spinlock_t *ptl;
1879
1880 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1881
1882 pgd = pgd_offset(mm, address);
1883 if (!pgd_present(*pgd))
1884 goto out;
1885
1886 pud = pud_offset(pgd, address);
1887 if (!pud_present(*pud))
1888 goto out;
1889
1890 pmd = pmd_offset(pud, address);
1891 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1892 goto out;
1893
1894 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
1895 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
1896 _pte++, _address += PAGE_SIZE) {
1897 pte_t pteval = *_pte;
1898 if (pte_none(pteval)) {
1899 if (++none <= khugepaged_max_ptes_none)
1900 continue;
1901 else
1902 goto out_unmap;
1903 }
1904 if (!pte_present(pteval) || !pte_write(pteval))
1905 goto out_unmap;
1906 page = vm_normal_page(vma, _address, pteval);
1907 if (unlikely(!page))
1908 goto out_unmap;
1909 VM_BUG_ON(PageCompound(page));
1910 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
1911 goto out_unmap;
1912 /* cannot use mapcount: can't collapse if there's a gup pin */
1913 if (page_count(page) != 1)
1914 goto out_unmap;
8ee53820
AA
1915 if (pte_young(pteval) || PageReferenced(page) ||
1916 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1917 referenced = 1;
1918 }
1919 if (referenced)
1920 ret = 1;
1921out_unmap:
1922 pte_unmap_unlock(pte, ptl);
ce83d217
AA
1923 if (ret)
1924 /* collapse_huge_page will return with the mmap_sem released */
1925 collapse_huge_page(mm, address, hpage, vma);
ba76149f
AA
1926out:
1927 return ret;
1928}
1929
1930static void collect_mm_slot(struct mm_slot *mm_slot)
1931{
1932 struct mm_struct *mm = mm_slot->mm;
1933
1934 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1935
1936 if (khugepaged_test_exit(mm)) {
1937 /* free mm_slot */
1938 hlist_del(&mm_slot->hash);
1939 list_del(&mm_slot->mm_node);
1940
1941 /*
1942 * Not strictly needed because the mm exited already.
1943 *
1944 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1945 */
1946
1947 /* khugepaged_mm_lock actually not necessary for the below */
1948 free_mm_slot(mm_slot);
1949 mmdrop(mm);
1950 }
1951}
1952
1953static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
1954 struct page **hpage)
1955{
1956 struct mm_slot *mm_slot;
1957 struct mm_struct *mm;
1958 struct vm_area_struct *vma;
1959 int progress = 0;
1960
1961 VM_BUG_ON(!pages);
1962 VM_BUG_ON(!spin_is_locked(&khugepaged_mm_lock));
1963
1964 if (khugepaged_scan.mm_slot)
1965 mm_slot = khugepaged_scan.mm_slot;
1966 else {
1967 mm_slot = list_entry(khugepaged_scan.mm_head.next,
1968 struct mm_slot, mm_node);
1969 khugepaged_scan.address = 0;
1970 khugepaged_scan.mm_slot = mm_slot;
1971 }
1972 spin_unlock(&khugepaged_mm_lock);
1973
1974 mm = mm_slot->mm;
1975 down_read(&mm->mmap_sem);
1976 if (unlikely(khugepaged_test_exit(mm)))
1977 vma = NULL;
1978 else
1979 vma = find_vma(mm, khugepaged_scan.address);
1980
1981 progress++;
1982 for (; vma; vma = vma->vm_next) {
1983 unsigned long hstart, hend;
1984
1985 cond_resched();
1986 if (unlikely(khugepaged_test_exit(mm))) {
1987 progress++;
1988 break;
1989 }
1990
1991 if (!(vma->vm_flags & VM_HUGEPAGE) &&
1992 !khugepaged_always()) {
1993 progress++;
1994 continue;
1995 }
1996
1997 /* VM_PFNMAP vmas may have vm_ops null but vm_file set */
1998 if (!vma->anon_vma || vma->vm_ops || vma->vm_file) {
1999 khugepaged_scan.address = vma->vm_end;
2000 progress++;
2001 continue;
2002 }
2003 VM_BUG_ON(is_linear_pfn_mapping(vma) || is_pfn_mapping(vma));
2004
2005 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2006 hend = vma->vm_end & HPAGE_PMD_MASK;
2007 if (hstart >= hend) {
2008 progress++;
2009 continue;
2010 }
2011 if (khugepaged_scan.address < hstart)
2012 khugepaged_scan.address = hstart;
2013 if (khugepaged_scan.address > hend) {
2014 khugepaged_scan.address = hend + HPAGE_PMD_SIZE;
2015 progress++;
2016 continue;
2017 }
2018 BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2019
2020 while (khugepaged_scan.address < hend) {
2021 int ret;
2022 cond_resched();
2023 if (unlikely(khugepaged_test_exit(mm)))
2024 goto breakouterloop;
2025
2026 VM_BUG_ON(khugepaged_scan.address < hstart ||
2027 khugepaged_scan.address + HPAGE_PMD_SIZE >
2028 hend);
2029 ret = khugepaged_scan_pmd(mm, vma,
2030 khugepaged_scan.address,
2031 hpage);
2032 /* move to next address */
2033 khugepaged_scan.address += HPAGE_PMD_SIZE;
2034 progress += HPAGE_PMD_NR;
2035 if (ret)
2036 /* we released mmap_sem so break loop */
2037 goto breakouterloop_mmap_sem;
2038 if (progress >= pages)
2039 goto breakouterloop;
2040 }
2041 }
2042breakouterloop:
2043 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2044breakouterloop_mmap_sem:
2045
2046 spin_lock(&khugepaged_mm_lock);
2047 BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2048 /*
2049 * Release the current mm_slot if this mm is about to die, or
2050 * if we scanned all vmas of this mm.
2051 */
2052 if (khugepaged_test_exit(mm) || !vma) {
2053 /*
2054 * Make sure that if mm_users is reaching zero while
2055 * khugepaged runs here, khugepaged_exit will find
2056 * mm_slot not pointing to the exiting mm.
2057 */
2058 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2059 khugepaged_scan.mm_slot = list_entry(
2060 mm_slot->mm_node.next,
2061 struct mm_slot, mm_node);
2062 khugepaged_scan.address = 0;
2063 } else {
2064 khugepaged_scan.mm_slot = NULL;
2065 khugepaged_full_scans++;
2066 }
2067
2068 collect_mm_slot(mm_slot);
2069 }
2070
2071 return progress;
2072}
2073
2074static int khugepaged_has_work(void)
2075{
2076 return !list_empty(&khugepaged_scan.mm_head) &&
2077 khugepaged_enabled();
2078}
2079
2080static int khugepaged_wait_event(void)
2081{
2082 return !list_empty(&khugepaged_scan.mm_head) ||
2083 !khugepaged_enabled();
2084}
2085
2086static void khugepaged_do_scan(struct page **hpage)
2087{
2088 unsigned int progress = 0, pass_through_head = 0;
2089 unsigned int pages = khugepaged_pages_to_scan;
2090
2091 barrier(); /* write khugepaged_pages_to_scan to local stack */
2092
2093 while (progress < pages) {
2094 cond_resched();
2095
0bbbc0b3 2096#ifndef CONFIG_NUMA
ba76149f
AA
2097 if (!*hpage) {
2098 *hpage = alloc_hugepage(khugepaged_defrag());
2099 if (unlikely(!*hpage))
2100 break;
2101 }
0bbbc0b3
AA
2102#else
2103 if (IS_ERR(*hpage))
2104 break;
2105#endif
ba76149f 2106
878aee7d
AA
2107 if (unlikely(kthread_should_stop() || freezing(current)))
2108 break;
2109
ba76149f
AA
2110 spin_lock(&khugepaged_mm_lock);
2111 if (!khugepaged_scan.mm_slot)
2112 pass_through_head++;
2113 if (khugepaged_has_work() &&
2114 pass_through_head < 2)
2115 progress += khugepaged_scan_mm_slot(pages - progress,
2116 hpage);
2117 else
2118 progress = pages;
2119 spin_unlock(&khugepaged_mm_lock);
2120 }
2121}
2122
0bbbc0b3
AA
2123static void khugepaged_alloc_sleep(void)
2124{
2125 DEFINE_WAIT(wait);
2126 add_wait_queue(&khugepaged_wait, &wait);
2127 schedule_timeout_interruptible(
2128 msecs_to_jiffies(
2129 khugepaged_alloc_sleep_millisecs));
2130 remove_wait_queue(&khugepaged_wait, &wait);
2131}
2132
2133#ifndef CONFIG_NUMA
ba76149f
AA
2134static struct page *khugepaged_alloc_hugepage(void)
2135{
2136 struct page *hpage;
2137
2138 do {
2139 hpage = alloc_hugepage(khugepaged_defrag());
0bbbc0b3
AA
2140 if (!hpage)
2141 khugepaged_alloc_sleep();
ba76149f
AA
2142 } while (unlikely(!hpage) &&
2143 likely(khugepaged_enabled()));
2144 return hpage;
2145}
0bbbc0b3 2146#endif
ba76149f
AA
2147
2148static void khugepaged_loop(void)
2149{
2150 struct page *hpage;
2151
0bbbc0b3
AA
2152#ifdef CONFIG_NUMA
2153 hpage = NULL;
2154#endif
ba76149f 2155 while (likely(khugepaged_enabled())) {
0bbbc0b3 2156#ifndef CONFIG_NUMA
ba76149f
AA
2157 hpage = khugepaged_alloc_hugepage();
2158 if (unlikely(!hpage))
2159 break;
0bbbc0b3
AA
2160#else
2161 if (IS_ERR(hpage)) {
2162 khugepaged_alloc_sleep();
2163 hpage = NULL;
2164 }
2165#endif
ba76149f
AA
2166
2167 khugepaged_do_scan(&hpage);
0bbbc0b3 2168#ifndef CONFIG_NUMA
ba76149f
AA
2169 if (hpage)
2170 put_page(hpage);
0bbbc0b3 2171#endif
878aee7d
AA
2172 try_to_freeze();
2173 if (unlikely(kthread_should_stop()))
2174 break;
ba76149f
AA
2175 if (khugepaged_has_work()) {
2176 DEFINE_WAIT(wait);
2177 if (!khugepaged_scan_sleep_millisecs)
2178 continue;
2179 add_wait_queue(&khugepaged_wait, &wait);
2180 schedule_timeout_interruptible(
2181 msecs_to_jiffies(
2182 khugepaged_scan_sleep_millisecs));
2183 remove_wait_queue(&khugepaged_wait, &wait);
2184 } else if (khugepaged_enabled())
878aee7d
AA
2185 wait_event_freezable(khugepaged_wait,
2186 khugepaged_wait_event());
ba76149f
AA
2187 }
2188}
2189
2190static int khugepaged(void *none)
2191{
2192 struct mm_slot *mm_slot;
2193
878aee7d 2194 set_freezable();
ba76149f
AA
2195 set_user_nice(current, 19);
2196
2197 /* serialize with start_khugepaged() */
2198 mutex_lock(&khugepaged_mutex);
2199
2200 for (;;) {
2201 mutex_unlock(&khugepaged_mutex);
2202 BUG_ON(khugepaged_thread != current);
2203 khugepaged_loop();
2204 BUG_ON(khugepaged_thread != current);
2205
2206 mutex_lock(&khugepaged_mutex);
2207 if (!khugepaged_enabled())
2208 break;
878aee7d
AA
2209 if (unlikely(kthread_should_stop()))
2210 break;
ba76149f
AA
2211 }
2212
2213 spin_lock(&khugepaged_mm_lock);
2214 mm_slot = khugepaged_scan.mm_slot;
2215 khugepaged_scan.mm_slot = NULL;
2216 if (mm_slot)
2217 collect_mm_slot(mm_slot);
2218 spin_unlock(&khugepaged_mm_lock);
2219
2220 khugepaged_thread = NULL;
2221 mutex_unlock(&khugepaged_mutex);
2222
2223 return 0;
2224}
2225
71e3aac0
AA
2226void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2227{
2228 struct page *page;
2229
2230 spin_lock(&mm->page_table_lock);
2231 if (unlikely(!pmd_trans_huge(*pmd))) {
2232 spin_unlock(&mm->page_table_lock);
2233 return;
2234 }
2235 page = pmd_page(*pmd);
2236 VM_BUG_ON(!page_count(page));
2237 get_page(page);
2238 spin_unlock(&mm->page_table_lock);
2239
2240 split_huge_page(page);
2241
2242 put_page(page);
2243 BUG_ON(pmd_trans_huge(*pmd));
2244}
94fcc585
AA
2245
2246static void split_huge_page_address(struct mm_struct *mm,
2247 unsigned long address)
2248{
2249 pgd_t *pgd;
2250 pud_t *pud;
2251 pmd_t *pmd;
2252
2253 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2254
2255 pgd = pgd_offset(mm, address);
2256 if (!pgd_present(*pgd))
2257 return;
2258
2259 pud = pud_offset(pgd, address);
2260 if (!pud_present(*pud))
2261 return;
2262
2263 pmd = pmd_offset(pud, address);
2264 if (!pmd_present(*pmd))
2265 return;
2266 /*
2267 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2268 * materialize from under us.
2269 */
2270 split_huge_page_pmd(mm, pmd);
2271}
2272
2273void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2274 unsigned long start,
2275 unsigned long end,
2276 long adjust_next)
2277{
2278 /*
2279 * If the new start address isn't hpage aligned and it could
2280 * previously contain an hugepage: check if we need to split
2281 * an huge pmd.
2282 */
2283 if (start & ~HPAGE_PMD_MASK &&
2284 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2285 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2286 split_huge_page_address(vma->vm_mm, start);
2287
2288 /*
2289 * If the new end address isn't hpage aligned and it could
2290 * previously contain an hugepage: check if we need to split
2291 * an huge pmd.
2292 */
2293 if (end & ~HPAGE_PMD_MASK &&
2294 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2295 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2296 split_huge_page_address(vma->vm_mm, end);
2297
2298 /*
2299 * If we're also updating the vma->vm_next->vm_start, if the new
2300 * vm_next->vm_start isn't page aligned and it could previously
2301 * contain an hugepage: check if we need to split an huge pmd.
2302 */
2303 if (adjust_next > 0) {
2304 struct vm_area_struct *next = vma->vm_next;
2305 unsigned long nstart = next->vm_start;
2306 nstart += adjust_next << PAGE_SHIFT;
2307 if (nstart & ~HPAGE_PMD_MASK &&
2308 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2309 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2310 split_huge_page_address(next->vm_mm, nstart);
2311 }
2312}