]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/huge_memory.c
mm: thp: set THP defrag by default to madvise and add a stall-free defrag option
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61};
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/huge_memory.h>
65
ba76149f 66/*
8bfa3f9a
JW
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
ba76149f 73 */
71e3aac0 74unsigned long transparent_hugepage_flags __read_mostly =
13ece886 75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
77#endif
78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80#endif
444eb2a4 81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
84
85/* default scan 8*512 pte (or vmas) every 30 second */
86static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87static unsigned int khugepaged_pages_collapsed;
88static unsigned int khugepaged_full_scans;
89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90/* during fragmentation poll the hugepage allocator once every minute */
91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92static struct task_struct *khugepaged_thread __read_mostly;
93static DEFINE_MUTEX(khugepaged_mutex);
94static DEFINE_SPINLOCK(khugepaged_mm_lock);
95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96/*
97 * default collapse hugepages if there is at least one pte mapped like
98 * it would have happened if the vma was large enough during page
99 * fault.
100 */
101static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102
103static int khugepaged(void *none);
ba76149f 104static int khugepaged_slab_init(void);
65ebb64f 105static void khugepaged_slab_exit(void);
ba76149f 106
43b5fbbd
SL
107#define MM_SLOTS_HASH_BITS 10
108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
ba76149f
AA
110static struct kmem_cache *mm_slot_cache __read_mostly;
111
112/**
113 * struct mm_slot - hash lookup from mm to mm_slot
114 * @hash: hash collision list
115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116 * @mm: the mm that this information is valid for
117 */
118struct mm_slot {
119 struct hlist_node hash;
120 struct list_head mm_node;
121 struct mm_struct *mm;
122};
123
124/**
125 * struct khugepaged_scan - cursor for scanning
126 * @mm_head: the head of the mm list to scan
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
129 *
130 * There is only the one khugepaged_scan instance of this cursor structure.
131 */
132struct khugepaged_scan {
133 struct list_head mm_head;
134 struct mm_slot *mm_slot;
135 unsigned long address;
2f1da642
HS
136};
137static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
138 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139};
140
9a982250 141static struct shrinker deferred_split_shrinker;
f000565a 142
2c0b80d4 143static void set_recommended_min_free_kbytes(void)
f000565a
AA
144{
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
f000565a 148
f000565a
AA
149 for_each_populated_zone(zone)
150 nr_zones++;
151
974a786e 152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
42aa83cb
HP
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
171 pr_info("raising min_free_kbytes from %d to %lu "
172 "to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
f000565a 175 min_free_kbytes = recommended_min;
42aa83cb 176 }
f000565a 177 setup_per_zone_wmarks();
f000565a 178}
f000565a 179
79553da2 180static int start_stop_khugepaged(void)
ba76149f
AA
181{
182 int err = 0;
183 if (khugepaged_enabled()) {
ba76149f
AA
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
18e8e5c7 187 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
79553da2 191 goto fail;
ba76149f 192 }
911891af
XG
193
194 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 195 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
196
197 set_recommended_min_free_kbytes();
911891af 198 } else if (khugepaged_thread) {
911891af
XG
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
79553da2 202fail:
ba76149f
AA
203 return err;
204}
71e3aac0 205
97ae1749 206static atomic_t huge_zero_refcount;
56873f43 207struct page *huge_zero_page __read_mostly;
4a6c1297 208
fc437044 209struct page *get_huge_zero_page(void)
97ae1749
KS
210{
211 struct page *zero_page;
212retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 214 return READ_ONCE(huge_zero_page);
97ae1749
KS
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 217 HPAGE_PMD_ORDER);
d8a8e1f0
KS
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 220 return NULL;
d8a8e1f0
KS
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 223 preempt_disable();
5918d10a 224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 225 preempt_enable();
5ddacbe9 226 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
4db0c3c2 233 return READ_ONCE(huge_zero_page);
4a6c1297
KS
234}
235
97ae1749 236static void put_huge_zero_page(void)
4a6c1297 237{
97ae1749
KS
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
243}
244
48896466
GC
245static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
4a6c1297 247{
48896466
GC
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250}
97ae1749 251
48896466
GC
252static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254{
97ae1749 255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
5ddacbe9 258 __free_pages(zero_page, compound_order(zero_page));
48896466 259 return HPAGE_PMD_NR;
97ae1749
KS
260 }
261
262 return 0;
4a6c1297
KS
263}
264
97ae1749 265static struct shrinker huge_zero_page_shrinker = {
48896466
GC
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
268 .seeks = DEFAULT_SEEKS,
269};
270
71e3aac0 271#ifdef CONFIG_SYSFS
ba76149f 272
444eb2a4 273static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
274 struct kobj_attribute *attr,
275 const char *buf, size_t count,
276 enum transparent_hugepage_flag enabled,
444eb2a4 277 enum transparent_hugepage_flag deferred,
71e3aac0
AA
278 enum transparent_hugepage_flag req_madv)
279{
444eb2a4
MG
280 if (!memcmp("defer", buf,
281 min(sizeof("defer")-1, count))) {
282 if (enabled == deferred)
283 return -EINVAL;
284 clear_bit(enabled, &transparent_hugepage_flags);
285 clear_bit(req_madv, &transparent_hugepage_flags);
286 set_bit(deferred, &transparent_hugepage_flags);
287 } else if (!memcmp("always", buf,
71e3aac0 288 min(sizeof("always")-1, count))) {
444eb2a4 289 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 290 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 291 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
292 } else if (!memcmp("madvise", buf,
293 min(sizeof("madvise")-1, count))) {
294 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 295 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
296 set_bit(req_madv, &transparent_hugepage_flags);
297 } else if (!memcmp("never", buf,
298 min(sizeof("never")-1, count))) {
299 clear_bit(enabled, &transparent_hugepage_flags);
300 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 301 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
302 } else
303 return -EINVAL;
304
305 return count;
306}
307
308static ssize_t enabled_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf)
310{
444eb2a4
MG
311 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
312 return sprintf(buf, "[always] madvise never\n");
313 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "always [madvise] never\n");
315 else
316 return sprintf(buf, "always madvise [never]\n");
71e3aac0 317}
444eb2a4 318
71e3aac0
AA
319static ssize_t enabled_store(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 const char *buf, size_t count)
322{
ba76149f
AA
323 ssize_t ret;
324
444eb2a4
MG
325 ret = triple_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
327 TRANSPARENT_HUGEPAGE_FLAG,
328 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
329
330 if (ret > 0) {
911891af
XG
331 int err;
332
333 mutex_lock(&khugepaged_mutex);
79553da2 334 err = start_stop_khugepaged();
911891af
XG
335 mutex_unlock(&khugepaged_mutex);
336
ba76149f
AA
337 if (err)
338 ret = err;
339 }
340
341 return ret;
71e3aac0
AA
342}
343static struct kobj_attribute enabled_attr =
344 __ATTR(enabled, 0644, enabled_show, enabled_store);
345
346static ssize_t single_flag_show(struct kobject *kobj,
347 struct kobj_attribute *attr, char *buf,
348 enum transparent_hugepage_flag flag)
349{
e27e6151
BH
350 return sprintf(buf, "%d\n",
351 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 352}
e27e6151 353
71e3aac0
AA
354static ssize_t single_flag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count,
357 enum transparent_hugepage_flag flag)
358{
e27e6151
BH
359 unsigned long value;
360 int ret;
361
362 ret = kstrtoul(buf, 10, &value);
363 if (ret < 0)
364 return ret;
365 if (value > 1)
366 return -EINVAL;
367
368 if (value)
71e3aac0 369 set_bit(flag, &transparent_hugepage_flags);
e27e6151 370 else
71e3aac0 371 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
372
373 return count;
374}
375
376/*
377 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
378 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
379 * memory just to allocate one more hugepage.
380 */
381static ssize_t defrag_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383{
444eb2a4
MG
384 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
385 return sprintf(buf, "[always] defer madvise never\n");
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "always [defer] madvise never\n");
388 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always defer [madvise] never\n");
390 else
391 return sprintf(buf, "always defer madvise [never]\n");
392
71e3aac0
AA
393}
394static ssize_t defrag_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397{
444eb2a4
MG
398 return triple_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
400 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
401 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
402}
403static struct kobj_attribute defrag_attr =
404 __ATTR(defrag, 0644, defrag_show, defrag_store);
405
79da5407
KS
406static ssize_t use_zero_page_show(struct kobject *kobj,
407 struct kobj_attribute *attr, char *buf)
408{
409 return single_flag_show(kobj, attr, buf,
410 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
411}
412static ssize_t use_zero_page_store(struct kobject *kobj,
413 struct kobj_attribute *attr, const char *buf, size_t count)
414{
415 return single_flag_store(kobj, attr, buf, count,
416 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
417}
418static struct kobj_attribute use_zero_page_attr =
419 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
420#ifdef CONFIG_DEBUG_VM
421static ssize_t debug_cow_show(struct kobject *kobj,
422 struct kobj_attribute *attr, char *buf)
423{
424 return single_flag_show(kobj, attr, buf,
425 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
426}
427static ssize_t debug_cow_store(struct kobject *kobj,
428 struct kobj_attribute *attr,
429 const char *buf, size_t count)
430{
431 return single_flag_store(kobj, attr, buf, count,
432 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
433}
434static struct kobj_attribute debug_cow_attr =
435 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
436#endif /* CONFIG_DEBUG_VM */
437
438static struct attribute *hugepage_attr[] = {
439 &enabled_attr.attr,
440 &defrag_attr.attr,
79da5407 441 &use_zero_page_attr.attr,
71e3aac0
AA
442#ifdef CONFIG_DEBUG_VM
443 &debug_cow_attr.attr,
444#endif
445 NULL,
446};
447
448static struct attribute_group hugepage_attr_group = {
449 .attrs = hugepage_attr,
ba76149f
AA
450};
451
452static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
453 struct kobj_attribute *attr,
454 char *buf)
455{
456 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
457}
458
459static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
460 struct kobj_attribute *attr,
461 const char *buf, size_t count)
462{
463 unsigned long msecs;
464 int err;
465
3dbb95f7 466 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
467 if (err || msecs > UINT_MAX)
468 return -EINVAL;
469
470 khugepaged_scan_sleep_millisecs = msecs;
471 wake_up_interruptible(&khugepaged_wait);
472
473 return count;
474}
475static struct kobj_attribute scan_sleep_millisecs_attr =
476 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
477 scan_sleep_millisecs_store);
478
479static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 char *buf)
482{
483 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
484}
485
486static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
487 struct kobj_attribute *attr,
488 const char *buf, size_t count)
489{
490 unsigned long msecs;
491 int err;
492
3dbb95f7 493 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
494 if (err || msecs > UINT_MAX)
495 return -EINVAL;
496
497 khugepaged_alloc_sleep_millisecs = msecs;
498 wake_up_interruptible(&khugepaged_wait);
499
500 return count;
501}
502static struct kobj_attribute alloc_sleep_millisecs_attr =
503 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
504 alloc_sleep_millisecs_store);
505
506static ssize_t pages_to_scan_show(struct kobject *kobj,
507 struct kobj_attribute *attr,
508 char *buf)
509{
510 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
511}
512static ssize_t pages_to_scan_store(struct kobject *kobj,
513 struct kobj_attribute *attr,
514 const char *buf, size_t count)
515{
516 int err;
517 unsigned long pages;
518
3dbb95f7 519 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
520 if (err || !pages || pages > UINT_MAX)
521 return -EINVAL;
522
523 khugepaged_pages_to_scan = pages;
524
525 return count;
526}
527static struct kobj_attribute pages_to_scan_attr =
528 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
529 pages_to_scan_store);
530
531static ssize_t pages_collapsed_show(struct kobject *kobj,
532 struct kobj_attribute *attr,
533 char *buf)
534{
535 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
536}
537static struct kobj_attribute pages_collapsed_attr =
538 __ATTR_RO(pages_collapsed);
539
540static ssize_t full_scans_show(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 char *buf)
543{
544 return sprintf(buf, "%u\n", khugepaged_full_scans);
545}
546static struct kobj_attribute full_scans_attr =
547 __ATTR_RO(full_scans);
548
549static ssize_t khugepaged_defrag_show(struct kobject *kobj,
550 struct kobj_attribute *attr, char *buf)
551{
552 return single_flag_show(kobj, attr, buf,
553 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
554}
555static ssize_t khugepaged_defrag_store(struct kobject *kobj,
556 struct kobj_attribute *attr,
557 const char *buf, size_t count)
558{
559 return single_flag_store(kobj, attr, buf, count,
560 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
561}
562static struct kobj_attribute khugepaged_defrag_attr =
563 __ATTR(defrag, 0644, khugepaged_defrag_show,
564 khugepaged_defrag_store);
565
566/*
567 * max_ptes_none controls if khugepaged should collapse hugepages over
568 * any unmapped ptes in turn potentially increasing the memory
569 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
570 * reduce the available free memory in the system as it
571 * runs. Increasing max_ptes_none will instead potentially reduce the
572 * free memory in the system during the khugepaged scan.
573 */
574static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
575 struct kobj_attribute *attr,
576 char *buf)
577{
578 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
579}
580static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
581 struct kobj_attribute *attr,
582 const char *buf, size_t count)
583{
584 int err;
585 unsigned long max_ptes_none;
586
3dbb95f7 587 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
588 if (err || max_ptes_none > HPAGE_PMD_NR-1)
589 return -EINVAL;
590
591 khugepaged_max_ptes_none = max_ptes_none;
592
593 return count;
594}
595static struct kobj_attribute khugepaged_max_ptes_none_attr =
596 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
597 khugepaged_max_ptes_none_store);
598
599static struct attribute *khugepaged_attr[] = {
600 &khugepaged_defrag_attr.attr,
601 &khugepaged_max_ptes_none_attr.attr,
602 &pages_to_scan_attr.attr,
603 &pages_collapsed_attr.attr,
604 &full_scans_attr.attr,
605 &scan_sleep_millisecs_attr.attr,
606 &alloc_sleep_millisecs_attr.attr,
607 NULL,
608};
609
610static struct attribute_group khugepaged_attr_group = {
611 .attrs = khugepaged_attr,
612 .name = "khugepaged",
71e3aac0 613};
71e3aac0 614
569e5590 615static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 616{
71e3aac0
AA
617 int err;
618
569e5590
SL
619 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
620 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 621 pr_err("failed to create transparent hugepage kobject\n");
569e5590 622 return -ENOMEM;
ba76149f
AA
623 }
624
569e5590 625 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 626 if (err) {
ae3a8c1c 627 pr_err("failed to register transparent hugepage group\n");
569e5590 628 goto delete_obj;
ba76149f
AA
629 }
630
569e5590 631 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 632 if (err) {
ae3a8c1c 633 pr_err("failed to register transparent hugepage group\n");
569e5590 634 goto remove_hp_group;
ba76149f 635 }
569e5590
SL
636
637 return 0;
638
639remove_hp_group:
640 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
641delete_obj:
642 kobject_put(*hugepage_kobj);
643 return err;
644}
645
646static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
647{
648 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
649 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
650 kobject_put(hugepage_kobj);
651}
652#else
653static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
654{
655 return 0;
656}
657
658static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
659{
660}
661#endif /* CONFIG_SYSFS */
662
663static int __init hugepage_init(void)
664{
665 int err;
666 struct kobject *hugepage_kobj;
667
668 if (!has_transparent_hugepage()) {
669 transparent_hugepage_flags = 0;
670 return -EINVAL;
671 }
672
673 err = hugepage_init_sysfs(&hugepage_kobj);
674 if (err)
65ebb64f 675 goto err_sysfs;
ba76149f
AA
676
677 err = khugepaged_slab_init();
678 if (err)
65ebb64f 679 goto err_slab;
ba76149f 680
65ebb64f
KS
681 err = register_shrinker(&huge_zero_page_shrinker);
682 if (err)
683 goto err_hzp_shrinker;
9a982250
KS
684 err = register_shrinker(&deferred_split_shrinker);
685 if (err)
686 goto err_split_shrinker;
97ae1749 687
97562cd2
RR
688 /*
689 * By default disable transparent hugepages on smaller systems,
690 * where the extra memory used could hurt more than TLB overhead
691 * is likely to save. The admin can still enable it through /sys.
692 */
79553da2 693 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 694 transparent_hugepage_flags = 0;
79553da2
KS
695 return 0;
696 }
97562cd2 697
79553da2 698 err = start_stop_khugepaged();
65ebb64f
KS
699 if (err)
700 goto err_khugepaged;
ba76149f 701
569e5590 702 return 0;
65ebb64f 703err_khugepaged:
9a982250
KS
704 unregister_shrinker(&deferred_split_shrinker);
705err_split_shrinker:
65ebb64f
KS
706 unregister_shrinker(&huge_zero_page_shrinker);
707err_hzp_shrinker:
708 khugepaged_slab_exit();
709err_slab:
569e5590 710 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 711err_sysfs:
ba76149f 712 return err;
71e3aac0 713}
a64fb3cd 714subsys_initcall(hugepage_init);
71e3aac0
AA
715
716static int __init setup_transparent_hugepage(char *str)
717{
718 int ret = 0;
719 if (!str)
720 goto out;
721 if (!strcmp(str, "always")) {
722 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
723 &transparent_hugepage_flags);
724 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
725 &transparent_hugepage_flags);
726 ret = 1;
727 } else if (!strcmp(str, "madvise")) {
728 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
729 &transparent_hugepage_flags);
730 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
731 &transparent_hugepage_flags);
732 ret = 1;
733 } else if (!strcmp(str, "never")) {
734 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
735 &transparent_hugepage_flags);
736 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
737 &transparent_hugepage_flags);
738 ret = 1;
739 }
740out:
741 if (!ret)
ae3a8c1c 742 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
743 return ret;
744}
745__setup("transparent_hugepage=", setup_transparent_hugepage);
746
b32967ff 747pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
748{
749 if (likely(vma->vm_flags & VM_WRITE))
750 pmd = pmd_mkwrite(pmd);
751 return pmd;
752}
753
3122359a 754static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
755{
756 pmd_t entry;
3122359a 757 entry = mk_pmd(page, prot);
b3092b3b
BL
758 entry = pmd_mkhuge(entry);
759 return entry;
760}
761
9a982250
KS
762static inline struct list_head *page_deferred_list(struct page *page)
763{
764 /*
765 * ->lru in the tail pages is occupied by compound_head.
766 * Let's use ->mapping + ->index in the second tail page as list_head.
767 */
768 return (struct list_head *)&page[2].mapping;
769}
770
771void prep_transhuge_page(struct page *page)
772{
773 /*
774 * we use page->mapping and page->indexlru in second tail page
775 * as list_head: assuming THP order >= 2
776 */
777 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
778
779 INIT_LIST_HEAD(page_deferred_list(page));
780 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
781}
782
71e3aac0
AA
783static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
784 struct vm_area_struct *vma,
230c92a8 785 unsigned long address, pmd_t *pmd,
6b251fc9
AA
786 struct page *page, gfp_t gfp,
787 unsigned int flags)
71e3aac0 788{
00501b53 789 struct mem_cgroup *memcg;
71e3aac0 790 pgtable_t pgtable;
c4088ebd 791 spinlock_t *ptl;
230c92a8 792 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 793
309381fe 794 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 795
f627c2f5 796 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
797 put_page(page);
798 count_vm_event(THP_FAULT_FALLBACK);
799 return VM_FAULT_FALLBACK;
800 }
00501b53 801
71e3aac0 802 pgtable = pte_alloc_one(mm, haddr);
00501b53 803 if (unlikely(!pgtable)) {
f627c2f5 804 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 805 put_page(page);
71e3aac0 806 return VM_FAULT_OOM;
00501b53 807 }
71e3aac0
AA
808
809 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
810 /*
811 * The memory barrier inside __SetPageUptodate makes sure that
812 * clear_huge_page writes become visible before the set_pmd_at()
813 * write.
814 */
71e3aac0
AA
815 __SetPageUptodate(page);
816
c4088ebd 817 ptl = pmd_lock(mm, pmd);
71e3aac0 818 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 819 spin_unlock(ptl);
f627c2f5 820 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
821 put_page(page);
822 pte_free(mm, pgtable);
823 } else {
824 pmd_t entry;
6b251fc9
AA
825
826 /* Deliver the page fault to userland */
827 if (userfaultfd_missing(vma)) {
828 int ret;
829
830 spin_unlock(ptl);
f627c2f5 831 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
832 put_page(page);
833 pte_free(mm, pgtable);
230c92a8 834 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
835 VM_UFFD_MISSING);
836 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
837 return ret;
838 }
839
3122359a
KS
840 entry = mk_huge_pmd(page, vma->vm_page_prot);
841 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 842 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 843 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 844 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 845 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 846 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 847 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 848 atomic_long_inc(&mm->nr_ptes);
c4088ebd 849 spin_unlock(ptl);
6b251fc9 850 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
851 }
852
aa2e878e 853 return 0;
71e3aac0
AA
854}
855
444eb2a4
MG
856/*
857 * If THP is set to always then directly reclaim/compact as necessary
858 * If set to defer then do no reclaim and defer to khugepaged
859 * If set to madvise and the VMA is flagged then directly reclaim/compact
860 */
861static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
862{
863 gfp_t reclaim_flags = 0;
864
865 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
866 (vma->vm_flags & VM_HUGEPAGE))
867 reclaim_flags = __GFP_DIRECT_RECLAIM;
868 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
869 reclaim_flags = __GFP_KSWAPD_RECLAIM;
870 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
871 reclaim_flags = __GFP_DIRECT_RECLAIM;
872
873 return GFP_TRANSHUGE | reclaim_flags;
874}
875
876/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
877static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
0bbbc0b3 878{
444eb2a4 879 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
0bbbc0b3
AA
880}
881
c4088ebd 882/* Caller must hold page table lock. */
d295e341 883static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 884 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 885 struct page *zero_page)
fc9fe822
KS
886{
887 pmd_t entry;
7c414164
AM
888 if (!pmd_none(*pmd))
889 return false;
5918d10a 890 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 891 entry = pmd_mkhuge(entry);
12c9d70b
MW
892 if (pgtable)
893 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 894 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 895 atomic_long_inc(&mm->nr_ptes);
7c414164 896 return true;
fc9fe822
KS
897}
898
71e3aac0
AA
899int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
900 unsigned long address, pmd_t *pmd,
901 unsigned int flags)
902{
077fcf11 903 gfp_t gfp;
71e3aac0
AA
904 struct page *page;
905 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 906
128ec037 907 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 908 return VM_FAULT_FALLBACK;
128ec037
KS
909 if (unlikely(anon_vma_prepare(vma)))
910 return VM_FAULT_OOM;
6d50e60c 911 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 912 return VM_FAULT_OOM;
593befa6 913 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 914 transparent_hugepage_use_zero_page()) {
c4088ebd 915 spinlock_t *ptl;
128ec037
KS
916 pgtable_t pgtable;
917 struct page *zero_page;
918 bool set;
6b251fc9 919 int ret;
128ec037
KS
920 pgtable = pte_alloc_one(mm, haddr);
921 if (unlikely(!pgtable))
ba76149f 922 return VM_FAULT_OOM;
128ec037
KS
923 zero_page = get_huge_zero_page();
924 if (unlikely(!zero_page)) {
925 pte_free(mm, pgtable);
81ab4201 926 count_vm_event(THP_FAULT_FALLBACK);
c0292554 927 return VM_FAULT_FALLBACK;
b9bbfbe3 928 }
c4088ebd 929 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
930 ret = 0;
931 set = false;
932 if (pmd_none(*pmd)) {
933 if (userfaultfd_missing(vma)) {
934 spin_unlock(ptl);
230c92a8 935 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
936 VM_UFFD_MISSING);
937 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
938 } else {
939 set_huge_zero_page(pgtable, mm, vma,
940 haddr, pmd,
941 zero_page);
942 spin_unlock(ptl);
943 set = true;
944 }
945 } else
946 spin_unlock(ptl);
128ec037
KS
947 if (!set) {
948 pte_free(mm, pgtable);
949 put_huge_zero_page();
edad9d2c 950 }
6b251fc9 951 return ret;
71e3aac0 952 }
444eb2a4 953 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 954 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
955 if (unlikely(!page)) {
956 count_vm_event(THP_FAULT_FALLBACK);
c0292554 957 return VM_FAULT_FALLBACK;
128ec037 958 }
9a982250 959 prep_transhuge_page(page);
230c92a8
AA
960 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
961 flags);
71e3aac0
AA
962}
963
ae18d6dc 964static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 965 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
966{
967 struct mm_struct *mm = vma->vm_mm;
968 pmd_t entry;
969 spinlock_t *ptl;
970
971 ptl = pmd_lock(mm, pmd);
f25748e3
DW
972 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
973 if (pfn_t_devmap(pfn))
974 entry = pmd_mkdevmap(entry);
01871e59
RZ
975 if (write) {
976 entry = pmd_mkyoung(pmd_mkdirty(entry));
977 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 978 }
01871e59
RZ
979 set_pmd_at(mm, addr, pmd, entry);
980 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 981 spin_unlock(ptl);
5cad465d
MW
982}
983
984int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 985 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
986{
987 pgprot_t pgprot = vma->vm_page_prot;
988 /*
989 * If we had pmd_special, we could avoid all these restrictions,
990 * but we need to be consistent with PTEs and architectures that
991 * can't support a 'special' bit.
992 */
993 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
994 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
995 (VM_PFNMAP|VM_MIXEDMAP));
996 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 997 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
998
999 if (addr < vma->vm_start || addr >= vma->vm_end)
1000 return VM_FAULT_SIGBUS;
1001 if (track_pfn_insert(vma, &pgprot, pfn))
1002 return VM_FAULT_SIGBUS;
ae18d6dc
MW
1003 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1004 return VM_FAULT_NOPAGE;
5cad465d
MW
1005}
1006
3565fce3
DW
1007static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1008 pmd_t *pmd)
1009{
1010 pmd_t _pmd;
1011
1012 /*
1013 * We should set the dirty bit only for FOLL_WRITE but for now
1014 * the dirty bit in the pmd is meaningless. And if the dirty
1015 * bit will become meaningful and we'll only set it with
1016 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1017 * set the young bit, instead of the current set_pmd_at.
1018 */
1019 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1020 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1021 pmd, _pmd, 1))
1022 update_mmu_cache_pmd(vma, addr, pmd);
1023}
1024
1025struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1026 pmd_t *pmd, int flags)
1027{
1028 unsigned long pfn = pmd_pfn(*pmd);
1029 struct mm_struct *mm = vma->vm_mm;
1030 struct dev_pagemap *pgmap;
1031 struct page *page;
1032
1033 assert_spin_locked(pmd_lockptr(mm, pmd));
1034
1035 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1036 return NULL;
1037
1038 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1039 /* pass */;
1040 else
1041 return NULL;
1042
1043 if (flags & FOLL_TOUCH)
1044 touch_pmd(vma, addr, pmd);
1045
1046 /*
1047 * device mapped pages can only be returned if the
1048 * caller will manage the page reference count.
1049 */
1050 if (!(flags & FOLL_GET))
1051 return ERR_PTR(-EEXIST);
1052
1053 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1054 pgmap = get_dev_pagemap(pfn, NULL);
1055 if (!pgmap)
1056 return ERR_PTR(-EFAULT);
1057 page = pfn_to_page(pfn);
1058 get_page(page);
1059 put_dev_pagemap(pgmap);
1060
1061 return page;
1062}
1063
71e3aac0
AA
1064int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1065 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1066 struct vm_area_struct *vma)
1067{
c4088ebd 1068 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1069 struct page *src_page;
1070 pmd_t pmd;
12c9d70b 1071 pgtable_t pgtable = NULL;
71e3aac0
AA
1072 int ret;
1073
12c9d70b
MW
1074 if (!vma_is_dax(vma)) {
1075 ret = -ENOMEM;
1076 pgtable = pte_alloc_one(dst_mm, addr);
1077 if (unlikely(!pgtable))
1078 goto out;
1079 }
71e3aac0 1080
c4088ebd
KS
1081 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1082 src_ptl = pmd_lockptr(src_mm, src_pmd);
1083 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1084
1085 ret = -EAGAIN;
1086 pmd = *src_pmd;
5c7fb56e 1087 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
1088 pte_free(dst_mm, pgtable);
1089 goto out_unlock;
1090 }
fc9fe822 1091 /*
c4088ebd 1092 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1093 * under splitting since we don't split the page itself, only pmd to
1094 * a page table.
1095 */
1096 if (is_huge_zero_pmd(pmd)) {
5918d10a 1097 struct page *zero_page;
97ae1749
KS
1098 /*
1099 * get_huge_zero_page() will never allocate a new page here,
1100 * since we already have a zero page to copy. It just takes a
1101 * reference.
1102 */
5918d10a 1103 zero_page = get_huge_zero_page();
6b251fc9 1104 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1105 zero_page);
fc9fe822
KS
1106 ret = 0;
1107 goto out_unlock;
1108 }
de466bd6 1109
12c9d70b 1110 if (!vma_is_dax(vma)) {
5c7fb56e
DW
1111 /* thp accounting separate from pmd_devmap accounting */
1112 src_page = pmd_page(pmd);
1113 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1114 get_page(src_page);
1115 page_dup_rmap(src_page, true);
1116 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1117 atomic_long_inc(&dst_mm->nr_ptes);
1118 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1119 }
71e3aac0
AA
1120
1121 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1122 pmd = pmd_mkold(pmd_wrprotect(pmd));
1123 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1124
1125 ret = 0;
1126out_unlock:
c4088ebd
KS
1127 spin_unlock(src_ptl);
1128 spin_unlock(dst_ptl);
71e3aac0
AA
1129out:
1130 return ret;
1131}
1132
a1dd450b
WD
1133void huge_pmd_set_accessed(struct mm_struct *mm,
1134 struct vm_area_struct *vma,
1135 unsigned long address,
1136 pmd_t *pmd, pmd_t orig_pmd,
1137 int dirty)
1138{
c4088ebd 1139 spinlock_t *ptl;
a1dd450b
WD
1140 pmd_t entry;
1141 unsigned long haddr;
1142
c4088ebd 1143 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1144 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1145 goto unlock;
1146
1147 entry = pmd_mkyoung(orig_pmd);
1148 haddr = address & HPAGE_PMD_MASK;
1149 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1150 update_mmu_cache_pmd(vma, address, pmd);
1151
1152unlock:
c4088ebd 1153 spin_unlock(ptl);
a1dd450b
WD
1154}
1155
71e3aac0
AA
1156static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1157 struct vm_area_struct *vma,
1158 unsigned long address,
1159 pmd_t *pmd, pmd_t orig_pmd,
1160 struct page *page,
1161 unsigned long haddr)
1162{
00501b53 1163 struct mem_cgroup *memcg;
c4088ebd 1164 spinlock_t *ptl;
71e3aac0
AA
1165 pgtable_t pgtable;
1166 pmd_t _pmd;
1167 int ret = 0, i;
1168 struct page **pages;
2ec74c3e
SG
1169 unsigned long mmun_start; /* For mmu_notifiers */
1170 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1171
1172 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1173 GFP_KERNEL);
1174 if (unlikely(!pages)) {
1175 ret |= VM_FAULT_OOM;
1176 goto out;
1177 }
1178
1179 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1180 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1181 __GFP_OTHER_NODE,
19ee151e 1182 vma, address, page_to_nid(page));
b9bbfbe3 1183 if (unlikely(!pages[i] ||
00501b53 1184 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1185 &memcg, false))) {
b9bbfbe3 1186 if (pages[i])
71e3aac0 1187 put_page(pages[i]);
b9bbfbe3 1188 while (--i >= 0) {
00501b53
JW
1189 memcg = (void *)page_private(pages[i]);
1190 set_page_private(pages[i], 0);
f627c2f5
KS
1191 mem_cgroup_cancel_charge(pages[i], memcg,
1192 false);
b9bbfbe3
AA
1193 put_page(pages[i]);
1194 }
71e3aac0
AA
1195 kfree(pages);
1196 ret |= VM_FAULT_OOM;
1197 goto out;
1198 }
00501b53 1199 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1200 }
1201
1202 for (i = 0; i < HPAGE_PMD_NR; i++) {
1203 copy_user_highpage(pages[i], page + i,
0089e485 1204 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1205 __SetPageUptodate(pages[i]);
1206 cond_resched();
1207 }
1208
2ec74c3e
SG
1209 mmun_start = haddr;
1210 mmun_end = haddr + HPAGE_PMD_SIZE;
1211 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1212
c4088ebd 1213 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1214 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1215 goto out_free_pages;
309381fe 1216 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1217
8809aa2d 1218 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1219 /* leave pmd empty until pte is filled */
1220
6b0b50b0 1221 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1222 pmd_populate(mm, &_pmd, pgtable);
1223
1224 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1225 pte_t *pte, entry;
1226 entry = mk_pte(pages[i], vma->vm_page_prot);
1227 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1228 memcg = (void *)page_private(pages[i]);
1229 set_page_private(pages[i], 0);
d281ee61 1230 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1231 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1232 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1233 pte = pte_offset_map(&_pmd, haddr);
1234 VM_BUG_ON(!pte_none(*pte));
1235 set_pte_at(mm, haddr, pte, entry);
1236 pte_unmap(pte);
1237 }
1238 kfree(pages);
1239
71e3aac0
AA
1240 smp_wmb(); /* make pte visible before pmd */
1241 pmd_populate(mm, pmd, pgtable);
d281ee61 1242 page_remove_rmap(page, true);
c4088ebd 1243 spin_unlock(ptl);
71e3aac0 1244
2ec74c3e
SG
1245 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1246
71e3aac0
AA
1247 ret |= VM_FAULT_WRITE;
1248 put_page(page);
1249
1250out:
1251 return ret;
1252
1253out_free_pages:
c4088ebd 1254 spin_unlock(ptl);
2ec74c3e 1255 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1256 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1257 memcg = (void *)page_private(pages[i]);
1258 set_page_private(pages[i], 0);
f627c2f5 1259 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1260 put_page(pages[i]);
b9bbfbe3 1261 }
71e3aac0
AA
1262 kfree(pages);
1263 goto out;
1264}
1265
1266int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1267 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1268{
c4088ebd 1269 spinlock_t *ptl;
71e3aac0 1270 int ret = 0;
93b4796d 1271 struct page *page = NULL, *new_page;
00501b53 1272 struct mem_cgroup *memcg;
71e3aac0 1273 unsigned long haddr;
2ec74c3e
SG
1274 unsigned long mmun_start; /* For mmu_notifiers */
1275 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1276 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1277
c4088ebd 1278 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1279 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1280 haddr = address & HPAGE_PMD_MASK;
1281 if (is_huge_zero_pmd(orig_pmd))
1282 goto alloc;
c4088ebd 1283 spin_lock(ptl);
71e3aac0
AA
1284 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1285 goto out_unlock;
1286
1287 page = pmd_page(orig_pmd);
309381fe 1288 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1289 /*
1290 * We can only reuse the page if nobody else maps the huge page or it's
1291 * part. We can do it by checking page_mapcount() on each sub-page, but
1292 * it's expensive.
1293 * The cheaper way is to check page_count() to be equal 1: every
1294 * mapcount takes page reference reference, so this way we can
1295 * guarantee, that the PMD is the only mapping.
1296 * This can give false negative if somebody pinned the page, but that's
1297 * fine.
1298 */
1299 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1300 pmd_t entry;
1301 entry = pmd_mkyoung(orig_pmd);
1302 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1303 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1304 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1305 ret |= VM_FAULT_WRITE;
1306 goto out_unlock;
1307 }
ddc58f27 1308 get_page(page);
c4088ebd 1309 spin_unlock(ptl);
93b4796d 1310alloc:
71e3aac0 1311 if (transparent_hugepage_enabled(vma) &&
077fcf11 1312 !transparent_hugepage_debug_cow()) {
444eb2a4 1313 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1314 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1315 } else
71e3aac0
AA
1316 new_page = NULL;
1317
9a982250
KS
1318 if (likely(new_page)) {
1319 prep_transhuge_page(new_page);
1320 } else {
eecc1e42 1321 if (!page) {
78ddc534 1322 split_huge_pmd(vma, pmd, address);
e9b71ca9 1323 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1324 } else {
1325 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1326 pmd, orig_pmd, page, haddr);
9845cbbd 1327 if (ret & VM_FAULT_OOM) {
78ddc534 1328 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1329 ret |= VM_FAULT_FALLBACK;
1330 }
ddc58f27 1331 put_page(page);
93b4796d 1332 }
17766dde 1333 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1334 goto out;
1335 }
1336
f627c2f5
KS
1337 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1338 true))) {
b9bbfbe3 1339 put_page(new_page);
93b4796d 1340 if (page) {
78ddc534 1341 split_huge_pmd(vma, pmd, address);
ddc58f27 1342 put_page(page);
9845cbbd 1343 } else
78ddc534 1344 split_huge_pmd(vma, pmd, address);
9845cbbd 1345 ret |= VM_FAULT_FALLBACK;
17766dde 1346 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1347 goto out;
1348 }
1349
17766dde
DR
1350 count_vm_event(THP_FAULT_ALLOC);
1351
eecc1e42 1352 if (!page)
93b4796d
KS
1353 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1354 else
1355 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1356 __SetPageUptodate(new_page);
1357
2ec74c3e
SG
1358 mmun_start = haddr;
1359 mmun_end = haddr + HPAGE_PMD_SIZE;
1360 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1361
c4088ebd 1362 spin_lock(ptl);
93b4796d 1363 if (page)
ddc58f27 1364 put_page(page);
b9bbfbe3 1365 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1366 spin_unlock(ptl);
f627c2f5 1367 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1368 put_page(new_page);
2ec74c3e 1369 goto out_mn;
b9bbfbe3 1370 } else {
71e3aac0 1371 pmd_t entry;
3122359a
KS
1372 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1373 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1374 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1375 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1376 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1377 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1378 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1379 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1380 if (!page) {
93b4796d 1381 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1382 put_huge_zero_page();
1383 } else {
309381fe 1384 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1385 page_remove_rmap(page, true);
93b4796d
KS
1386 put_page(page);
1387 }
71e3aac0
AA
1388 ret |= VM_FAULT_WRITE;
1389 }
c4088ebd 1390 spin_unlock(ptl);
2ec74c3e
SG
1391out_mn:
1392 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1393out:
1394 return ret;
2ec74c3e 1395out_unlock:
c4088ebd 1396 spin_unlock(ptl);
2ec74c3e 1397 return ret;
71e3aac0
AA
1398}
1399
b676b293 1400struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1401 unsigned long addr,
1402 pmd_t *pmd,
1403 unsigned int flags)
1404{
b676b293 1405 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1406 struct page *page = NULL;
1407
c4088ebd 1408 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1409
1410 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1411 goto out;
1412
85facf25
KS
1413 /* Avoid dumping huge zero page */
1414 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1415 return ERR_PTR(-EFAULT);
1416
2b4847e7 1417 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1418 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1419 goto out;
1420
71e3aac0 1421 page = pmd_page(*pmd);
309381fe 1422 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1423 if (flags & FOLL_TOUCH)
1424 touch_pmd(vma, addr, pmd);
de60f5f1 1425 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1426 /*
1427 * We don't mlock() pte-mapped THPs. This way we can avoid
1428 * leaking mlocked pages into non-VM_LOCKED VMAs.
1429 *
1430 * In most cases the pmd is the only mapping of the page as we
1431 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1432 * writable private mappings in populate_vma_page_range().
1433 *
1434 * The only scenario when we have the page shared here is if we
1435 * mlocking read-only mapping shared over fork(). We skip
1436 * mlocking such pages.
1437 */
1438 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1439 page->mapping && trylock_page(page)) {
b676b293
DR
1440 lru_add_drain();
1441 if (page->mapping)
1442 mlock_vma_page(page);
1443 unlock_page(page);
1444 }
1445 }
71e3aac0 1446 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1447 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1448 if (flags & FOLL_GET)
ddc58f27 1449 get_page(page);
71e3aac0
AA
1450
1451out:
1452 return page;
1453}
1454
d10e63f2 1455/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1456int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1457 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1458{
c4088ebd 1459 spinlock_t *ptl;
b8916634 1460 struct anon_vma *anon_vma = NULL;
b32967ff 1461 struct page *page;
d10e63f2 1462 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1463 int page_nid = -1, this_nid = numa_node_id();
90572890 1464 int target_nid, last_cpupid = -1;
8191acbd
MG
1465 bool page_locked;
1466 bool migrated = false;
b191f9b1 1467 bool was_writable;
6688cc05 1468 int flags = 0;
d10e63f2 1469
c0e7cad9
MG
1470 /* A PROT_NONE fault should not end up here */
1471 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1472
c4088ebd 1473 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1474 if (unlikely(!pmd_same(pmd, *pmdp)))
1475 goto out_unlock;
1476
de466bd6
MG
1477 /*
1478 * If there are potential migrations, wait for completion and retry
1479 * without disrupting NUMA hinting information. Do not relock and
1480 * check_same as the page may no longer be mapped.
1481 */
1482 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1483 page = pmd_page(*pmdp);
de466bd6 1484 spin_unlock(ptl);
5d833062 1485 wait_on_page_locked(page);
de466bd6
MG
1486 goto out;
1487 }
1488
d10e63f2 1489 page = pmd_page(pmd);
a1a46184 1490 BUG_ON(is_huge_zero_page(page));
8191acbd 1491 page_nid = page_to_nid(page);
90572890 1492 last_cpupid = page_cpupid_last(page);
03c5a6e1 1493 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1494 if (page_nid == this_nid) {
03c5a6e1 1495 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1496 flags |= TNF_FAULT_LOCAL;
1497 }
4daae3b4 1498
bea66fbd
MG
1499 /* See similar comment in do_numa_page for explanation */
1500 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1501 flags |= TNF_NO_GROUP;
1502
ff9042b1
MG
1503 /*
1504 * Acquire the page lock to serialise THP migrations but avoid dropping
1505 * page_table_lock if at all possible
1506 */
b8916634
MG
1507 page_locked = trylock_page(page);
1508 target_nid = mpol_misplaced(page, vma, haddr);
1509 if (target_nid == -1) {
1510 /* If the page was locked, there are no parallel migrations */
a54a407f 1511 if (page_locked)
b8916634 1512 goto clear_pmdnuma;
2b4847e7 1513 }
4daae3b4 1514
de466bd6 1515 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1516 if (!page_locked) {
c4088ebd 1517 spin_unlock(ptl);
b8916634 1518 wait_on_page_locked(page);
a54a407f 1519 page_nid = -1;
b8916634
MG
1520 goto out;
1521 }
1522
2b4847e7
MG
1523 /*
1524 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1525 * to serialises splits
1526 */
b8916634 1527 get_page(page);
c4088ebd 1528 spin_unlock(ptl);
b8916634 1529 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1530
c69307d5 1531 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1532 spin_lock(ptl);
b32967ff
MG
1533 if (unlikely(!pmd_same(pmd, *pmdp))) {
1534 unlock_page(page);
1535 put_page(page);
a54a407f 1536 page_nid = -1;
4daae3b4 1537 goto out_unlock;
b32967ff 1538 }
ff9042b1 1539
c3a489ca
MG
1540 /* Bail if we fail to protect against THP splits for any reason */
1541 if (unlikely(!anon_vma)) {
1542 put_page(page);
1543 page_nid = -1;
1544 goto clear_pmdnuma;
1545 }
1546
a54a407f
MG
1547 /*
1548 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1549 * and access rights restored.
a54a407f 1550 */
c4088ebd 1551 spin_unlock(ptl);
b32967ff 1552 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1553 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1554 if (migrated) {
1555 flags |= TNF_MIGRATED;
8191acbd 1556 page_nid = target_nid;
074c2381
MG
1557 } else
1558 flags |= TNF_MIGRATE_FAIL;
b32967ff 1559
8191acbd 1560 goto out;
b32967ff 1561clear_pmdnuma:
a54a407f 1562 BUG_ON(!PageLocked(page));
b191f9b1 1563 was_writable = pmd_write(pmd);
4d942466 1564 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1565 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1566 if (was_writable)
1567 pmd = pmd_mkwrite(pmd);
d10e63f2 1568 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1569 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1570 unlock_page(page);
d10e63f2 1571out_unlock:
c4088ebd 1572 spin_unlock(ptl);
b8916634
MG
1573
1574out:
1575 if (anon_vma)
1576 page_unlock_anon_vma_read(anon_vma);
1577
8191acbd 1578 if (page_nid != -1)
6688cc05 1579 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1580
d10e63f2
MG
1581 return 0;
1582}
1583
b8d3c4c3
MK
1584int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1585 pmd_t *pmd, unsigned long addr, unsigned long next)
1586
1587{
1588 spinlock_t *ptl;
1589 pmd_t orig_pmd;
1590 struct page *page;
1591 struct mm_struct *mm = tlb->mm;
1592 int ret = 0;
1593
b6ec57f4
KS
1594 ptl = pmd_trans_huge_lock(pmd, vma);
1595 if (!ptl)
25eedabe 1596 goto out_unlocked;
b8d3c4c3
MK
1597
1598 orig_pmd = *pmd;
1599 if (is_huge_zero_pmd(orig_pmd)) {
1600 ret = 1;
1601 goto out;
1602 }
1603
1604 page = pmd_page(orig_pmd);
1605 /*
1606 * If other processes are mapping this page, we couldn't discard
1607 * the page unless they all do MADV_FREE so let's skip the page.
1608 */
1609 if (page_mapcount(page) != 1)
1610 goto out;
1611
1612 if (!trylock_page(page))
1613 goto out;
1614
1615 /*
1616 * If user want to discard part-pages of THP, split it so MADV_FREE
1617 * will deactivate only them.
1618 */
1619 if (next - addr != HPAGE_PMD_SIZE) {
1620 get_page(page);
1621 spin_unlock(ptl);
1622 if (split_huge_page(page)) {
1623 put_page(page);
1624 unlock_page(page);
1625 goto out_unlocked;
1626 }
1627 put_page(page);
1628 unlock_page(page);
1629 ret = 1;
1630 goto out_unlocked;
1631 }
1632
1633 if (PageDirty(page))
1634 ClearPageDirty(page);
1635 unlock_page(page);
1636
1637 if (PageActive(page))
1638 deactivate_page(page);
1639
1640 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1641 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1642 tlb->fullmm);
1643 orig_pmd = pmd_mkold(orig_pmd);
1644 orig_pmd = pmd_mkclean(orig_pmd);
1645
1646 set_pmd_at(mm, addr, pmd, orig_pmd);
1647 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1648 }
1649 ret = 1;
1650out:
1651 spin_unlock(ptl);
1652out_unlocked:
1653 return ret;
1654}
1655
71e3aac0 1656int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1657 pmd_t *pmd, unsigned long addr)
71e3aac0 1658{
da146769 1659 pmd_t orig_pmd;
bf929152 1660 spinlock_t *ptl;
71e3aac0 1661
b6ec57f4
KS
1662 ptl = __pmd_trans_huge_lock(pmd, vma);
1663 if (!ptl)
da146769
KS
1664 return 0;
1665 /*
1666 * For architectures like ppc64 we look at deposited pgtable
1667 * when calling pmdp_huge_get_and_clear. So do the
1668 * pgtable_trans_huge_withdraw after finishing pmdp related
1669 * operations.
1670 */
1671 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1672 tlb->fullmm);
1673 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1674 if (vma_is_dax(vma)) {
1675 spin_unlock(ptl);
1676 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1677 put_huge_zero_page();
da146769
KS
1678 } else if (is_huge_zero_pmd(orig_pmd)) {
1679 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1680 atomic_long_dec(&tlb->mm->nr_ptes);
1681 spin_unlock(ptl);
1682 put_huge_zero_page();
1683 } else {
1684 struct page *page = pmd_page(orig_pmd);
d281ee61 1685 page_remove_rmap(page, true);
da146769
KS
1686 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1687 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1688 VM_BUG_ON_PAGE(!PageHead(page), page);
1689 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690 atomic_long_dec(&tlb->mm->nr_ptes);
1691 spin_unlock(ptl);
1692 tlb_remove_page(tlb, page);
025c5b24 1693 }
da146769 1694 return 1;
71e3aac0
AA
1695}
1696
4b471e88 1697bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
37a1c49a
AA
1698 unsigned long old_addr,
1699 unsigned long new_addr, unsigned long old_end,
1700 pmd_t *old_pmd, pmd_t *new_pmd)
1701{
bf929152 1702 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1703 pmd_t pmd;
1704
1705 struct mm_struct *mm = vma->vm_mm;
1706
1707 if ((old_addr & ~HPAGE_PMD_MASK) ||
1708 (new_addr & ~HPAGE_PMD_MASK) ||
1709 old_end - old_addr < HPAGE_PMD_SIZE ||
1710 (new_vma->vm_flags & VM_NOHUGEPAGE))
4b471e88 1711 return false;
37a1c49a
AA
1712
1713 /*
1714 * The destination pmd shouldn't be established, free_pgtables()
1715 * should have release it.
1716 */
1717 if (WARN_ON(!pmd_none(*new_pmd))) {
1718 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1719 return false;
37a1c49a
AA
1720 }
1721
bf929152
KS
1722 /*
1723 * We don't have to worry about the ordering of src and dst
1724 * ptlocks because exclusive mmap_sem prevents deadlock.
1725 */
b6ec57f4
KS
1726 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1727 if (old_ptl) {
bf929152
KS
1728 new_ptl = pmd_lockptr(mm, new_pmd);
1729 if (new_ptl != old_ptl)
1730 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1731 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1732 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1733
69a8ec2d
KS
1734 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1735 vma_is_anonymous(vma)) {
b3084f4d 1736 pgtable_t pgtable;
3592806c
KS
1737 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1738 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1739 }
b3084f4d
AK
1740 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1741 if (new_ptl != old_ptl)
1742 spin_unlock(new_ptl);
bf929152 1743 spin_unlock(old_ptl);
4b471e88 1744 return true;
37a1c49a 1745 }
4b471e88 1746 return false;
37a1c49a
AA
1747}
1748
f123d74a
MG
1749/*
1750 * Returns
1751 * - 0 if PMD could not be locked
1752 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1753 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1754 */
cd7548ab 1755int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1756 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1757{
1758 struct mm_struct *mm = vma->vm_mm;
bf929152 1759 spinlock_t *ptl;
cd7548ab
JW
1760 int ret = 0;
1761
b6ec57f4
KS
1762 ptl = __pmd_trans_huge_lock(pmd, vma);
1763 if (ptl) {
025c5b24 1764 pmd_t entry;
b191f9b1 1765 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1766 ret = 1;
e944fd67
MG
1767
1768 /*
1769 * Avoid trapping faults against the zero page. The read-only
1770 * data is likely to be read-cached on the local CPU and
1771 * local/remote hits to the zero page are not interesting.
1772 */
1773 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1774 spin_unlock(ptl);
ba68bc01 1775 return ret;
e944fd67
MG
1776 }
1777
10c1045f 1778 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1779 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1780 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1781 if (preserve_write)
1782 entry = pmd_mkwrite(entry);
10c1045f
MG
1783 ret = HPAGE_PMD_NR;
1784 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1785 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1786 }
bf929152 1787 spin_unlock(ptl);
025c5b24
NH
1788 }
1789
1790 return ret;
1791}
1792
1793/*
4b471e88 1794 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1795 *
4b471e88
KS
1796 * Note that if it returns true, this routine returns without unlocking page
1797 * table lock. So callers must unlock it.
025c5b24 1798 */
b6ec57f4 1799spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1800{
b6ec57f4
KS
1801 spinlock_t *ptl;
1802 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1803 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1804 return ptl;
1805 spin_unlock(ptl);
1806 return NULL;
cd7548ab
JW
1807}
1808
9050d7eb 1809#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1810
60ab3244
AA
1811int hugepage_madvise(struct vm_area_struct *vma,
1812 unsigned long *vm_flags, int advice)
0af4e98b 1813{
a664b2d8
AA
1814 switch (advice) {
1815 case MADV_HUGEPAGE:
1e1836e8
AT
1816#ifdef CONFIG_S390
1817 /*
1818 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1819 * can't handle this properly after s390_enable_sie, so we simply
1820 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1821 */
1822 if (mm_has_pgste(vma->vm_mm))
1823 return 0;
1824#endif
a664b2d8
AA
1825 /*
1826 * Be somewhat over-protective like KSM for now!
1827 */
1a763615 1828 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1829 return -EINVAL;
1830 *vm_flags &= ~VM_NOHUGEPAGE;
1831 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1832 /*
1833 * If the vma become good for khugepaged to scan,
1834 * register it here without waiting a page fault that
1835 * may not happen any time soon.
1836 */
6d50e60c 1837 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1838 return -ENOMEM;
a664b2d8
AA
1839 break;
1840 case MADV_NOHUGEPAGE:
1841 /*
1842 * Be somewhat over-protective like KSM for now!
1843 */
1a763615 1844 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1845 return -EINVAL;
1846 *vm_flags &= ~VM_HUGEPAGE;
1847 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1848 /*
1849 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1850 * this vma even if we leave the mm registered in khugepaged if
1851 * it got registered before VM_NOHUGEPAGE was set.
1852 */
a664b2d8
AA
1853 break;
1854 }
0af4e98b
AA
1855
1856 return 0;
1857}
1858
ba76149f
AA
1859static int __init khugepaged_slab_init(void)
1860{
1861 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1862 sizeof(struct mm_slot),
1863 __alignof__(struct mm_slot), 0, NULL);
1864 if (!mm_slot_cache)
1865 return -ENOMEM;
1866
1867 return 0;
1868}
1869
65ebb64f
KS
1870static void __init khugepaged_slab_exit(void)
1871{
1872 kmem_cache_destroy(mm_slot_cache);
1873}
1874
ba76149f
AA
1875static inline struct mm_slot *alloc_mm_slot(void)
1876{
1877 if (!mm_slot_cache) /* initialization failed */
1878 return NULL;
1879 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1880}
1881
1882static inline void free_mm_slot(struct mm_slot *mm_slot)
1883{
1884 kmem_cache_free(mm_slot_cache, mm_slot);
1885}
1886
ba76149f
AA
1887static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1888{
1889 struct mm_slot *mm_slot;
ba76149f 1890
b67bfe0d 1891 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1892 if (mm == mm_slot->mm)
1893 return mm_slot;
43b5fbbd 1894
ba76149f
AA
1895 return NULL;
1896}
1897
1898static void insert_to_mm_slots_hash(struct mm_struct *mm,
1899 struct mm_slot *mm_slot)
1900{
ba76149f 1901 mm_slot->mm = mm;
43b5fbbd 1902 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1903}
1904
1905static inline int khugepaged_test_exit(struct mm_struct *mm)
1906{
1907 return atomic_read(&mm->mm_users) == 0;
1908}
1909
1910int __khugepaged_enter(struct mm_struct *mm)
1911{
1912 struct mm_slot *mm_slot;
1913 int wakeup;
1914
1915 mm_slot = alloc_mm_slot();
1916 if (!mm_slot)
1917 return -ENOMEM;
1918
1919 /* __khugepaged_exit() must not run from under us */
96dad67f 1920 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1921 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1922 free_mm_slot(mm_slot);
1923 return 0;
1924 }
1925
1926 spin_lock(&khugepaged_mm_lock);
1927 insert_to_mm_slots_hash(mm, mm_slot);
1928 /*
1929 * Insert just behind the scanning cursor, to let the area settle
1930 * down a little.
1931 */
1932 wakeup = list_empty(&khugepaged_scan.mm_head);
1933 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1934 spin_unlock(&khugepaged_mm_lock);
1935
1936 atomic_inc(&mm->mm_count);
1937 if (wakeup)
1938 wake_up_interruptible(&khugepaged_wait);
1939
1940 return 0;
1941}
1942
6d50e60c
DR
1943int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1944 unsigned long vm_flags)
ba76149f
AA
1945{
1946 unsigned long hstart, hend;
1947 if (!vma->anon_vma)
1948 /*
1949 * Not yet faulted in so we will register later in the
1950 * page fault if needed.
1951 */
1952 return 0;
78f11a25 1953 if (vma->vm_ops)
ba76149f
AA
1954 /* khugepaged not yet working on file or special mappings */
1955 return 0;
6d50e60c 1956 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
1957 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1958 hend = vma->vm_end & HPAGE_PMD_MASK;
1959 if (hstart < hend)
6d50e60c 1960 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1961 return 0;
1962}
1963
1964void __khugepaged_exit(struct mm_struct *mm)
1965{
1966 struct mm_slot *mm_slot;
1967 int free = 0;
1968
1969 spin_lock(&khugepaged_mm_lock);
1970 mm_slot = get_mm_slot(mm);
1971 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1972 hash_del(&mm_slot->hash);
ba76149f
AA
1973 list_del(&mm_slot->mm_node);
1974 free = 1;
1975 }
d788e80a 1976 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1977
1978 if (free) {
ba76149f
AA
1979 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1980 free_mm_slot(mm_slot);
1981 mmdrop(mm);
1982 } else if (mm_slot) {
ba76149f
AA
1983 /*
1984 * This is required to serialize against
1985 * khugepaged_test_exit() (which is guaranteed to run
1986 * under mmap sem read mode). Stop here (after we
1987 * return all pagetables will be destroyed) until
1988 * khugepaged has finished working on the pagetables
1989 * under the mmap_sem.
1990 */
1991 down_write(&mm->mmap_sem);
1992 up_write(&mm->mmap_sem);
d788e80a 1993 }
ba76149f
AA
1994}
1995
1996static void release_pte_page(struct page *page)
1997{
1998 /* 0 stands for page_is_file_cache(page) == false */
1999 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2000 unlock_page(page);
2001 putback_lru_page(page);
2002}
2003
2004static void release_pte_pages(pte_t *pte, pte_t *_pte)
2005{
2006 while (--_pte >= pte) {
2007 pte_t pteval = *_pte;
ca0984ca 2008 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2009 release_pte_page(pte_page(pteval));
2010 }
2011}
2012
ba76149f
AA
2013static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2014 unsigned long address,
2015 pte_t *pte)
2016{
7d2eba05 2017 struct page *page = NULL;
ba76149f 2018 pte_t *_pte;
7d2eba05 2019 int none_or_zero = 0, result = 0;
10359213 2020 bool referenced = false, writable = false;
7d2eba05 2021
ba76149f
AA
2022 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2023 _pte++, address += PAGE_SIZE) {
2024 pte_t pteval = *_pte;
47aee4d8
MK
2025 if (pte_none(pteval) || (pte_present(pteval) &&
2026 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2027 if (!userfaultfd_armed(vma) &&
7d2eba05 2028 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2029 continue;
7d2eba05
EA
2030 } else {
2031 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2032 goto out;
7d2eba05 2033 }
ba76149f 2034 }
7d2eba05
EA
2035 if (!pte_present(pteval)) {
2036 result = SCAN_PTE_NON_PRESENT;
ba76149f 2037 goto out;
7d2eba05 2038 }
ba76149f 2039 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2040 if (unlikely(!page)) {
2041 result = SCAN_PAGE_NULL;
ba76149f 2042 goto out;
7d2eba05 2043 }
344aa35c 2044
309381fe
SL
2045 VM_BUG_ON_PAGE(PageCompound(page), page);
2046 VM_BUG_ON_PAGE(!PageAnon(page), page);
2047 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2048
ba76149f
AA
2049 /*
2050 * We can do it before isolate_lru_page because the
2051 * page can't be freed from under us. NOTE: PG_lock
2052 * is needed to serialize against split_huge_page
2053 * when invoked from the VM.
2054 */
7d2eba05
EA
2055 if (!trylock_page(page)) {
2056 result = SCAN_PAGE_LOCK;
ba76149f 2057 goto out;
7d2eba05 2058 }
10359213
EA
2059
2060 /*
2061 * cannot use mapcount: can't collapse if there's a gup pin.
2062 * The page must only be referenced by the scanned process
2063 * and page swap cache.
2064 */
2065 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2066 unlock_page(page);
7d2eba05 2067 result = SCAN_PAGE_COUNT;
10359213
EA
2068 goto out;
2069 }
2070 if (pte_write(pteval)) {
2071 writable = true;
2072 } else {
2073 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2074 unlock_page(page);
7d2eba05 2075 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2076 goto out;
2077 }
2078 /*
2079 * Page is not in the swap cache. It can be collapsed
2080 * into a THP.
2081 */
2082 }
2083
ba76149f
AA
2084 /*
2085 * Isolate the page to avoid collapsing an hugepage
2086 * currently in use by the VM.
2087 */
2088 if (isolate_lru_page(page)) {
2089 unlock_page(page);
7d2eba05 2090 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2091 goto out;
2092 }
2093 /* 0 stands for page_is_file_cache(page) == false */
2094 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2095 VM_BUG_ON_PAGE(!PageLocked(page), page);
2096 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2097
2098 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2099 if (pte_young(pteval) ||
2100 page_is_young(page) || PageReferenced(page) ||
8ee53820 2101 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2102 referenced = true;
ba76149f 2103 }
7d2eba05
EA
2104 if (likely(writable)) {
2105 if (likely(referenced)) {
2106 result = SCAN_SUCCEED;
16fd0fe4 2107 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2108 referenced, writable, result);
2109 return 1;
2110 }
2111 } else {
2112 result = SCAN_PAGE_RO;
2113 }
2114
ba76149f 2115out:
344aa35c 2116 release_pte_pages(pte, _pte);
16fd0fe4 2117 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2118 referenced, writable, result);
344aa35c 2119 return 0;
ba76149f
AA
2120}
2121
2122static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2123 struct vm_area_struct *vma,
2124 unsigned long address,
2125 spinlock_t *ptl)
2126{
2127 pte_t *_pte;
2128 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2129 pte_t pteval = *_pte;
2130 struct page *src_page;
2131
ca0984ca 2132 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2133 clear_user_highpage(page, address);
2134 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2135 if (is_zero_pfn(pte_pfn(pteval))) {
2136 /*
2137 * ptl mostly unnecessary.
2138 */
2139 spin_lock(ptl);
2140 /*
2141 * paravirt calls inside pte_clear here are
2142 * superfluous.
2143 */
2144 pte_clear(vma->vm_mm, address, _pte);
2145 spin_unlock(ptl);
2146 }
ba76149f
AA
2147 } else {
2148 src_page = pte_page(pteval);
2149 copy_user_highpage(page, src_page, address, vma);
309381fe 2150 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2151 release_pte_page(src_page);
2152 /*
2153 * ptl mostly unnecessary, but preempt has to
2154 * be disabled to update the per-cpu stats
2155 * inside page_remove_rmap().
2156 */
2157 spin_lock(ptl);
2158 /*
2159 * paravirt calls inside pte_clear here are
2160 * superfluous.
2161 */
2162 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2163 page_remove_rmap(src_page, false);
ba76149f
AA
2164 spin_unlock(ptl);
2165 free_page_and_swap_cache(src_page);
2166 }
2167
2168 address += PAGE_SIZE;
2169 page++;
2170 }
2171}
2172
26234f36 2173static void khugepaged_alloc_sleep(void)
ba76149f 2174{
bde43c6c
PM
2175 DEFINE_WAIT(wait);
2176
2177 add_wait_queue(&khugepaged_wait, &wait);
2178 freezable_schedule_timeout_interruptible(
2179 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2180 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2181}
ba76149f 2182
9f1b868a
BL
2183static int khugepaged_node_load[MAX_NUMNODES];
2184
14a4e214
DR
2185static bool khugepaged_scan_abort(int nid)
2186{
2187 int i;
2188
2189 /*
2190 * If zone_reclaim_mode is disabled, then no extra effort is made to
2191 * allocate memory locally.
2192 */
2193 if (!zone_reclaim_mode)
2194 return false;
2195
2196 /* If there is a count for this node already, it must be acceptable */
2197 if (khugepaged_node_load[nid])
2198 return false;
2199
2200 for (i = 0; i < MAX_NUMNODES; i++) {
2201 if (!khugepaged_node_load[i])
2202 continue;
2203 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2204 return true;
2205 }
2206 return false;
2207}
2208
26234f36 2209#ifdef CONFIG_NUMA
9f1b868a
BL
2210static int khugepaged_find_target_node(void)
2211{
2212 static int last_khugepaged_target_node = NUMA_NO_NODE;
2213 int nid, target_node = 0, max_value = 0;
2214
2215 /* find first node with max normal pages hit */
2216 for (nid = 0; nid < MAX_NUMNODES; nid++)
2217 if (khugepaged_node_load[nid] > max_value) {
2218 max_value = khugepaged_node_load[nid];
2219 target_node = nid;
2220 }
2221
2222 /* do some balance if several nodes have the same hit record */
2223 if (target_node <= last_khugepaged_target_node)
2224 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2225 nid++)
2226 if (max_value == khugepaged_node_load[nid]) {
2227 target_node = nid;
2228 break;
2229 }
2230
2231 last_khugepaged_target_node = target_node;
2232 return target_node;
2233}
2234
26234f36
XG
2235static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2236{
2237 if (IS_ERR(*hpage)) {
2238 if (!*wait)
2239 return false;
2240
2241 *wait = false;
e3b4126c 2242 *hpage = NULL;
26234f36
XG
2243 khugepaged_alloc_sleep();
2244 } else if (*hpage) {
2245 put_page(*hpage);
2246 *hpage = NULL;
2247 }
2248
2249 return true;
2250}
2251
3b363692
MH
2252static struct page *
2253khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2254 unsigned long address, int node)
26234f36 2255{
309381fe 2256 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2257
ce83d217 2258 /*
8b164568
VB
2259 * Before allocating the hugepage, release the mmap_sem read lock.
2260 * The allocation can take potentially a long time if it involves
2261 * sync compaction, and we do not need to hold the mmap_sem during
2262 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2263 */
8b164568
VB
2264 up_read(&mm->mmap_sem);
2265
96db800f 2266 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2267 if (unlikely(!*hpage)) {
81ab4201 2268 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2269 *hpage = ERR_PTR(-ENOMEM);
26234f36 2270 return NULL;
ce83d217 2271 }
26234f36 2272
9a982250 2273 prep_transhuge_page(*hpage);
65b3c07b 2274 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2275 return *hpage;
2276}
2277#else
9f1b868a
BL
2278static int khugepaged_find_target_node(void)
2279{
2280 return 0;
2281}
2282
444eb2a4 2283static inline struct page *alloc_khugepaged_hugepage(void)
10dc4155 2284{
9a982250
KS
2285 struct page *page;
2286
444eb2a4
MG
2287 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2288 HPAGE_PMD_ORDER);
9a982250
KS
2289 if (page)
2290 prep_transhuge_page(page);
2291 return page;
10dc4155
BL
2292}
2293
26234f36
XG
2294static struct page *khugepaged_alloc_hugepage(bool *wait)
2295{
2296 struct page *hpage;
2297
2298 do {
444eb2a4 2299 hpage = alloc_khugepaged_hugepage();
26234f36
XG
2300 if (!hpage) {
2301 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2302 if (!*wait)
2303 return NULL;
2304
2305 *wait = false;
2306 khugepaged_alloc_sleep();
2307 } else
2308 count_vm_event(THP_COLLAPSE_ALLOC);
2309 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2310
2311 return hpage;
2312}
2313
2314static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2315{
2316 if (!*hpage)
2317 *hpage = khugepaged_alloc_hugepage(wait);
2318
2319 if (unlikely(!*hpage))
2320 return false;
2321
2322 return true;
2323}
2324
3b363692
MH
2325static struct page *
2326khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2327 unsigned long address, int node)
26234f36
XG
2328{
2329 up_read(&mm->mmap_sem);
2330 VM_BUG_ON(!*hpage);
3b363692 2331
26234f36
XG
2332 return *hpage;
2333}
692e0b35
AA
2334#endif
2335
fa475e51
BL
2336static bool hugepage_vma_check(struct vm_area_struct *vma)
2337{
2338 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2339 (vma->vm_flags & VM_NOHUGEPAGE))
2340 return false;
fa475e51
BL
2341 if (!vma->anon_vma || vma->vm_ops)
2342 return false;
2343 if (is_vma_temporary_stack(vma))
2344 return false;
81d1b09c 2345 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2346 return true;
2347}
2348
26234f36
XG
2349static void collapse_huge_page(struct mm_struct *mm,
2350 unsigned long address,
2351 struct page **hpage,
2352 struct vm_area_struct *vma,
2353 int node)
2354{
26234f36
XG
2355 pmd_t *pmd, _pmd;
2356 pte_t *pte;
2357 pgtable_t pgtable;
2358 struct page *new_page;
c4088ebd 2359 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2360 int isolated = 0, result = 0;
26234f36 2361 unsigned long hstart, hend;
00501b53 2362 struct mem_cgroup *memcg;
2ec74c3e
SG
2363 unsigned long mmun_start; /* For mmu_notifiers */
2364 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2365 gfp_t gfp;
26234f36
XG
2366
2367 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2368
3b363692 2369 /* Only allocate from the target node */
444eb2a4 2370 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
3b363692 2371
26234f36 2372 /* release the mmap_sem read lock. */
d6669d68 2373 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2374 if (!new_page) {
2375 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2376 goto out_nolock;
2377 }
26234f36 2378
f627c2f5 2379 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2380 result = SCAN_CGROUP_CHARGE_FAIL;
2381 goto out_nolock;
2382 }
ba76149f
AA
2383
2384 /*
2385 * Prevent all access to pagetables with the exception of
2386 * gup_fast later hanlded by the ptep_clear_flush and the VM
2387 * handled by the anon_vma lock + PG_lock.
2388 */
2389 down_write(&mm->mmap_sem);
7d2eba05
EA
2390 if (unlikely(khugepaged_test_exit(mm))) {
2391 result = SCAN_ANY_PROCESS;
ba76149f 2392 goto out;
7d2eba05 2393 }
ba76149f
AA
2394
2395 vma = find_vma(mm, address);
7d2eba05
EA
2396 if (!vma) {
2397 result = SCAN_VMA_NULL;
a8f531eb 2398 goto out;
7d2eba05 2399 }
ba76149f
AA
2400 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2401 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2402 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2403 result = SCAN_ADDRESS_RANGE;
ba76149f 2404 goto out;
7d2eba05
EA
2405 }
2406 if (!hugepage_vma_check(vma)) {
2407 result = SCAN_VMA_CHECK;
a7d6e4ec 2408 goto out;
7d2eba05 2409 }
6219049a 2410 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2411 if (!pmd) {
2412 result = SCAN_PMD_NULL;
ba76149f 2413 goto out;
7d2eba05 2414 }
ba76149f 2415
4fc3f1d6 2416 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2417
2418 pte = pte_offset_map(pmd, address);
c4088ebd 2419 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2420
2ec74c3e
SG
2421 mmun_start = address;
2422 mmun_end = address + HPAGE_PMD_SIZE;
2423 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2424 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2425 /*
2426 * After this gup_fast can't run anymore. This also removes
2427 * any huge TLB entry from the CPU so we won't allow
2428 * huge and small TLB entries for the same virtual address
2429 * to avoid the risk of CPU bugs in that area.
2430 */
15a25b2e 2431 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2432 spin_unlock(pmd_ptl);
2ec74c3e 2433 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2434
c4088ebd 2435 spin_lock(pte_ptl);
ba76149f 2436 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2437 spin_unlock(pte_ptl);
ba76149f
AA
2438
2439 if (unlikely(!isolated)) {
453c7192 2440 pte_unmap(pte);
c4088ebd 2441 spin_lock(pmd_ptl);
ba76149f 2442 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2443 /*
2444 * We can only use set_pmd_at when establishing
2445 * hugepmds and never for establishing regular pmds that
2446 * points to regular pagetables. Use pmd_populate for that
2447 */
2448 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2449 spin_unlock(pmd_ptl);
08b52706 2450 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2451 result = SCAN_FAIL;
ce83d217 2452 goto out;
ba76149f
AA
2453 }
2454
2455 /*
2456 * All pages are isolated and locked so anon_vma rmap
2457 * can't run anymore.
2458 */
08b52706 2459 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2460
c4088ebd 2461 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2462 pte_unmap(pte);
ba76149f
AA
2463 __SetPageUptodate(new_page);
2464 pgtable = pmd_pgtable(_pmd);
ba76149f 2465
3122359a
KS
2466 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2467 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2468
2469 /*
2470 * spin_lock() below is not the equivalent of smp_wmb(), so
2471 * this is needed to avoid the copy_huge_page writes to become
2472 * visible after the set_pmd_at() write.
2473 */
2474 smp_wmb();
2475
c4088ebd 2476 spin_lock(pmd_ptl);
ba76149f 2477 BUG_ON(!pmd_none(*pmd));
d281ee61 2478 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2479 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2480 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2481 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2482 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2483 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2484 spin_unlock(pmd_ptl);
ba76149f
AA
2485
2486 *hpage = NULL;
420256ef 2487
ba76149f 2488 khugepaged_pages_collapsed++;
7d2eba05 2489 result = SCAN_SUCCEED;
ce83d217 2490out_up_write:
ba76149f 2491 up_write(&mm->mmap_sem);
7d2eba05 2492 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2493 return;
2494
7d2eba05
EA
2495out_nolock:
2496 trace_mm_collapse_huge_page(mm, isolated, result);
2497 return;
ce83d217 2498out:
f627c2f5 2499 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2500 goto out_up_write;
ba76149f
AA
2501}
2502
2503static int khugepaged_scan_pmd(struct mm_struct *mm,
2504 struct vm_area_struct *vma,
2505 unsigned long address,
2506 struct page **hpage)
2507{
ba76149f
AA
2508 pmd_t *pmd;
2509 pte_t *pte, *_pte;
7d2eba05
EA
2510 int ret = 0, none_or_zero = 0, result = 0;
2511 struct page *page = NULL;
ba76149f
AA
2512 unsigned long _address;
2513 spinlock_t *ptl;
00ef2d2f 2514 int node = NUMA_NO_NODE;
10359213 2515 bool writable = false, referenced = false;
ba76149f
AA
2516
2517 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2518
6219049a 2519 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2520 if (!pmd) {
2521 result = SCAN_PMD_NULL;
ba76149f 2522 goto out;
7d2eba05 2523 }
ba76149f 2524
9f1b868a 2525 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2526 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2527 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2528 _pte++, _address += PAGE_SIZE) {
2529 pte_t pteval = *_pte;
ca0984ca 2530 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2531 if (!userfaultfd_armed(vma) &&
7d2eba05 2532 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2533 continue;
7d2eba05
EA
2534 } else {
2535 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2536 goto out_unmap;
7d2eba05 2537 }
ba76149f 2538 }
7d2eba05
EA
2539 if (!pte_present(pteval)) {
2540 result = SCAN_PTE_NON_PRESENT;
ba76149f 2541 goto out_unmap;
7d2eba05 2542 }
10359213
EA
2543 if (pte_write(pteval))
2544 writable = true;
2545
ba76149f 2546 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2547 if (unlikely(!page)) {
2548 result = SCAN_PAGE_NULL;
ba76149f 2549 goto out_unmap;
7d2eba05 2550 }
b1caa957
KS
2551
2552 /* TODO: teach khugepaged to collapse THP mapped with pte */
2553 if (PageCompound(page)) {
2554 result = SCAN_PAGE_COMPOUND;
2555 goto out_unmap;
2556 }
2557
5c4b4be3 2558 /*
9f1b868a
BL
2559 * Record which node the original page is from and save this
2560 * information to khugepaged_node_load[].
2561 * Khupaged will allocate hugepage from the node has the max
2562 * hit record.
5c4b4be3 2563 */
9f1b868a 2564 node = page_to_nid(page);
7d2eba05
EA
2565 if (khugepaged_scan_abort(node)) {
2566 result = SCAN_SCAN_ABORT;
14a4e214 2567 goto out_unmap;
7d2eba05 2568 }
9f1b868a 2569 khugepaged_node_load[node]++;
7d2eba05
EA
2570 if (!PageLRU(page)) {
2571 result = SCAN_SCAN_ABORT;
2572 goto out_unmap;
2573 }
2574 if (PageLocked(page)) {
2575 result = SCAN_PAGE_LOCK;
ba76149f 2576 goto out_unmap;
7d2eba05
EA
2577 }
2578 if (!PageAnon(page)) {
2579 result = SCAN_PAGE_ANON;
2580 goto out_unmap;
2581 }
2582
10359213
EA
2583 /*
2584 * cannot use mapcount: can't collapse if there's a gup pin.
2585 * The page must only be referenced by the scanned process
2586 * and page swap cache.
2587 */
7d2eba05
EA
2588 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2589 result = SCAN_PAGE_COUNT;
ba76149f 2590 goto out_unmap;
7d2eba05 2591 }
33c3fc71
VD
2592 if (pte_young(pteval) ||
2593 page_is_young(page) || PageReferenced(page) ||
8ee53820 2594 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2595 referenced = true;
ba76149f 2596 }
7d2eba05
EA
2597 if (writable) {
2598 if (referenced) {
2599 result = SCAN_SUCCEED;
2600 ret = 1;
2601 } else {
2602 result = SCAN_NO_REFERENCED_PAGE;
2603 }
2604 } else {
2605 result = SCAN_PAGE_RO;
2606 }
ba76149f
AA
2607out_unmap:
2608 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2609 if (ret) {
2610 node = khugepaged_find_target_node();
ce83d217 2611 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2612 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2613 }
ba76149f 2614out:
16fd0fe4 2615 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
7d2eba05 2616 none_or_zero, result);
ba76149f
AA
2617 return ret;
2618}
2619
2620static void collect_mm_slot(struct mm_slot *mm_slot)
2621{
2622 struct mm_struct *mm = mm_slot->mm;
2623
b9980cdc 2624 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2625
2626 if (khugepaged_test_exit(mm)) {
2627 /* free mm_slot */
43b5fbbd 2628 hash_del(&mm_slot->hash);
ba76149f
AA
2629 list_del(&mm_slot->mm_node);
2630
2631 /*
2632 * Not strictly needed because the mm exited already.
2633 *
2634 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2635 */
2636
2637 /* khugepaged_mm_lock actually not necessary for the below */
2638 free_mm_slot(mm_slot);
2639 mmdrop(mm);
2640 }
2641}
2642
2643static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2644 struct page **hpage)
2f1da642
HS
2645 __releases(&khugepaged_mm_lock)
2646 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2647{
2648 struct mm_slot *mm_slot;
2649 struct mm_struct *mm;
2650 struct vm_area_struct *vma;
2651 int progress = 0;
2652
2653 VM_BUG_ON(!pages);
b9980cdc 2654 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2655
2656 if (khugepaged_scan.mm_slot)
2657 mm_slot = khugepaged_scan.mm_slot;
2658 else {
2659 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2660 struct mm_slot, mm_node);
2661 khugepaged_scan.address = 0;
2662 khugepaged_scan.mm_slot = mm_slot;
2663 }
2664 spin_unlock(&khugepaged_mm_lock);
2665
2666 mm = mm_slot->mm;
2667 down_read(&mm->mmap_sem);
2668 if (unlikely(khugepaged_test_exit(mm)))
2669 vma = NULL;
2670 else
2671 vma = find_vma(mm, khugepaged_scan.address);
2672
2673 progress++;
2674 for (; vma; vma = vma->vm_next) {
2675 unsigned long hstart, hend;
2676
2677 cond_resched();
2678 if (unlikely(khugepaged_test_exit(mm))) {
2679 progress++;
2680 break;
2681 }
fa475e51
BL
2682 if (!hugepage_vma_check(vma)) {
2683skip:
ba76149f
AA
2684 progress++;
2685 continue;
2686 }
ba76149f
AA
2687 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2688 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2689 if (hstart >= hend)
2690 goto skip;
2691 if (khugepaged_scan.address > hend)
2692 goto skip;
ba76149f
AA
2693 if (khugepaged_scan.address < hstart)
2694 khugepaged_scan.address = hstart;
a7d6e4ec 2695 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2696
2697 while (khugepaged_scan.address < hend) {
2698 int ret;
2699 cond_resched();
2700 if (unlikely(khugepaged_test_exit(mm)))
2701 goto breakouterloop;
2702
2703 VM_BUG_ON(khugepaged_scan.address < hstart ||
2704 khugepaged_scan.address + HPAGE_PMD_SIZE >
2705 hend);
2706 ret = khugepaged_scan_pmd(mm, vma,
2707 khugepaged_scan.address,
2708 hpage);
2709 /* move to next address */
2710 khugepaged_scan.address += HPAGE_PMD_SIZE;
2711 progress += HPAGE_PMD_NR;
2712 if (ret)
2713 /* we released mmap_sem so break loop */
2714 goto breakouterloop_mmap_sem;
2715 if (progress >= pages)
2716 goto breakouterloop;
2717 }
2718 }
2719breakouterloop:
2720 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2721breakouterloop_mmap_sem:
2722
2723 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2724 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2725 /*
2726 * Release the current mm_slot if this mm is about to die, or
2727 * if we scanned all vmas of this mm.
2728 */
2729 if (khugepaged_test_exit(mm) || !vma) {
2730 /*
2731 * Make sure that if mm_users is reaching zero while
2732 * khugepaged runs here, khugepaged_exit will find
2733 * mm_slot not pointing to the exiting mm.
2734 */
2735 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2736 khugepaged_scan.mm_slot = list_entry(
2737 mm_slot->mm_node.next,
2738 struct mm_slot, mm_node);
2739 khugepaged_scan.address = 0;
2740 } else {
2741 khugepaged_scan.mm_slot = NULL;
2742 khugepaged_full_scans++;
2743 }
2744
2745 collect_mm_slot(mm_slot);
2746 }
2747
2748 return progress;
2749}
2750
2751static int khugepaged_has_work(void)
2752{
2753 return !list_empty(&khugepaged_scan.mm_head) &&
2754 khugepaged_enabled();
2755}
2756
2757static int khugepaged_wait_event(void)
2758{
2759 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2760 kthread_should_stop();
ba76149f
AA
2761}
2762
d516904b 2763static void khugepaged_do_scan(void)
ba76149f 2764{
d516904b 2765 struct page *hpage = NULL;
ba76149f
AA
2766 unsigned int progress = 0, pass_through_head = 0;
2767 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2768 bool wait = true;
ba76149f
AA
2769
2770 barrier(); /* write khugepaged_pages_to_scan to local stack */
2771
2772 while (progress < pages) {
26234f36 2773 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2774 break;
26234f36 2775
420256ef 2776 cond_resched();
ba76149f 2777
cd092411 2778 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2779 break;
2780
ba76149f
AA
2781 spin_lock(&khugepaged_mm_lock);
2782 if (!khugepaged_scan.mm_slot)
2783 pass_through_head++;
2784 if (khugepaged_has_work() &&
2785 pass_through_head < 2)
2786 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2787 &hpage);
ba76149f
AA
2788 else
2789 progress = pages;
2790 spin_unlock(&khugepaged_mm_lock);
2791 }
ba76149f 2792
d516904b
XG
2793 if (!IS_ERR_OR_NULL(hpage))
2794 put_page(hpage);
0bbbc0b3
AA
2795}
2796
2017c0bf
XG
2797static void khugepaged_wait_work(void)
2798{
2017c0bf
XG
2799 if (khugepaged_has_work()) {
2800 if (!khugepaged_scan_sleep_millisecs)
2801 return;
2802
2803 wait_event_freezable_timeout(khugepaged_wait,
2804 kthread_should_stop(),
2805 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2806 return;
2807 }
2808
2809 if (khugepaged_enabled())
2810 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2811}
2812
ba76149f
AA
2813static int khugepaged(void *none)
2814{
2815 struct mm_slot *mm_slot;
2816
878aee7d 2817 set_freezable();
8698a745 2818 set_user_nice(current, MAX_NICE);
ba76149f 2819
b7231789
XG
2820 while (!kthread_should_stop()) {
2821 khugepaged_do_scan();
2822 khugepaged_wait_work();
2823 }
ba76149f
AA
2824
2825 spin_lock(&khugepaged_mm_lock);
2826 mm_slot = khugepaged_scan.mm_slot;
2827 khugepaged_scan.mm_slot = NULL;
2828 if (mm_slot)
2829 collect_mm_slot(mm_slot);
2830 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2831 return 0;
2832}
2833
eef1b3ba
KS
2834static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2835 unsigned long haddr, pmd_t *pmd)
2836{
2837 struct mm_struct *mm = vma->vm_mm;
2838 pgtable_t pgtable;
2839 pmd_t _pmd;
2840 int i;
2841
2842 /* leave pmd empty until pte is filled */
2843 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2844
2845 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2846 pmd_populate(mm, &_pmd, pgtable);
2847
2848 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2849 pte_t *pte, entry;
2850 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2851 entry = pte_mkspecial(entry);
2852 pte = pte_offset_map(&_pmd, haddr);
2853 VM_BUG_ON(!pte_none(*pte));
2854 set_pte_at(mm, haddr, pte, entry);
2855 pte_unmap(pte);
2856 }
2857 smp_wmb(); /* make pte visible before pmd */
2858 pmd_populate(mm, pmd, pgtable);
2859 put_huge_zero_page();
2860}
2861
2862static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2863 unsigned long haddr, bool freeze)
eef1b3ba
KS
2864{
2865 struct mm_struct *mm = vma->vm_mm;
2866 struct page *page;
2867 pgtable_t pgtable;
2868 pmd_t _pmd;
b8d3c4c3 2869 bool young, write, dirty;
2ac015e2 2870 unsigned long addr;
eef1b3ba
KS
2871 int i;
2872
2873 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2874 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2875 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2876 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2877
2878 count_vm_event(THP_SPLIT_PMD);
2879
2880 if (vma_is_dax(vma)) {
2881 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2882 if (is_huge_zero_pmd(_pmd))
2883 put_huge_zero_page();
2884 return;
2885 } else if (is_huge_zero_pmd(*pmd)) {
2886 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2887 }
2888
2889 page = pmd_page(*pmd);
2890 VM_BUG_ON_PAGE(!page_count(page), page);
2891 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2892 write = pmd_write(*pmd);
2893 young = pmd_young(*pmd);
b8d3c4c3 2894 dirty = pmd_dirty(*pmd);
eef1b3ba 2895
c777e2a8 2896 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2897 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2898 pmd_populate(mm, &_pmd, pgtable);
2899
2ac015e2 2900 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2901 pte_t entry, *pte;
2902 /*
2903 * Note that NUMA hinting access restrictions are not
2904 * transferred to avoid any possibility of altering
2905 * permissions across VMAs.
2906 */
ba988280
KS
2907 if (freeze) {
2908 swp_entry_t swp_entry;
2909 swp_entry = make_migration_entry(page + i, write);
2910 entry = swp_entry_to_pte(swp_entry);
2911 } else {
2912 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 2913 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2914 if (!write)
2915 entry = pte_wrprotect(entry);
2916 if (!young)
2917 entry = pte_mkold(entry);
2918 }
b8d3c4c3
MK
2919 if (dirty)
2920 SetPageDirty(page + i);
2ac015e2 2921 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2922 BUG_ON(!pte_none(*pte));
2ac015e2 2923 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2924 atomic_inc(&page[i]._mapcount);
2925 pte_unmap(pte);
2926 }
2927
2928 /*
2929 * Set PG_double_map before dropping compound_mapcount to avoid
2930 * false-negative page_mapped().
2931 */
2932 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2933 for (i = 0; i < HPAGE_PMD_NR; i++)
2934 atomic_inc(&page[i]._mapcount);
2935 }
2936
2937 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2938 /* Last compound_mapcount is gone. */
2939 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2940 if (TestClearPageDoubleMap(page)) {
2941 /* No need in mapcount reference anymore */
2942 for (i = 0; i < HPAGE_PMD_NR; i++)
2943 atomic_dec(&page[i]._mapcount);
2944 }
2945 }
2946
2947 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2948 /*
2949 * Up to this point the pmd is present and huge and userland has the
2950 * whole access to the hugepage during the split (which happens in
2951 * place). If we overwrite the pmd with the not-huge version pointing
2952 * to the pte here (which of course we could if all CPUs were bug
2953 * free), userland could trigger a small page size TLB miss on the
2954 * small sized TLB while the hugepage TLB entry is still established in
2955 * the huge TLB. Some CPU doesn't like that.
2956 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2957 * 383 on page 93. Intel should be safe but is also warns that it's
2958 * only safe if the permission and cache attributes of the two entries
2959 * loaded in the two TLB is identical (which should be the case here).
2960 * But it is generally safer to never allow small and huge TLB entries
2961 * for the same virtual address to be loaded simultaneously. So instead
2962 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2963 * current pmd notpresent (atomically because here the pmd_trans_huge
2964 * and pmd_trans_splitting must remain set at all times on the pmd
2965 * until the split is complete for this pmd), then we flush the SMP TLB
2966 * and finally we write the non-huge version of the pmd entry with
2967 * pmd_populate.
2968 */
2969 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2970 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2971
2972 if (freeze) {
2ac015e2 2973 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2974 page_remove_rmap(page + i, false);
2975 put_page(page + i);
2976 }
2977 }
eef1b3ba
KS
2978}
2979
2980void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2981 unsigned long address)
2982{
2983 spinlock_t *ptl;
2984 struct mm_struct *mm = vma->vm_mm;
e90309c9 2985 struct page *page = NULL;
eef1b3ba
KS
2986 unsigned long haddr = address & HPAGE_PMD_MASK;
2987
2988 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2989 ptl = pmd_lock(mm, pmd);
5c7fb56e
DW
2990 if (pmd_trans_huge(*pmd)) {
2991 page = pmd_page(*pmd);
2992 if (PageMlocked(page))
2993 get_page(page);
2994 else
2995 page = NULL;
2996 } else if (!pmd_devmap(*pmd))
e90309c9 2997 goto out;
e90309c9 2998 __split_huge_pmd_locked(vma, pmd, haddr, false);
e90309c9 2999out:
eef1b3ba
KS
3000 spin_unlock(ptl);
3001 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
e90309c9
KS
3002 if (page) {
3003 lock_page(page);
3004 munlock_vma_page(page);
3005 unlock_page(page);
3006 put_page(page);
3007 }
eef1b3ba
KS
3008}
3009
78ddc534 3010static void split_huge_pmd_address(struct vm_area_struct *vma,
94fcc585
AA
3011 unsigned long address)
3012{
f72e7dcd
HD
3013 pgd_t *pgd;
3014 pud_t *pud;
94fcc585
AA
3015 pmd_t *pmd;
3016
3017 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
3018
78ddc534 3019 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
3020 if (!pgd_present(*pgd))
3021 return;
3022
3023 pud = pud_offset(pgd, address);
3024 if (!pud_present(*pud))
3025 return;
3026
3027 pmd = pmd_offset(pud, address);
5c7fb56e 3028 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
94fcc585
AA
3029 return;
3030 /*
3031 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3032 * materialize from under us.
3033 */
ad0bed24 3034 split_huge_pmd(vma, pmd, address);
94fcc585
AA
3035}
3036
e1b9996b 3037void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3038 unsigned long start,
3039 unsigned long end,
3040 long adjust_next)
3041{
3042 /*
3043 * If the new start address isn't hpage aligned and it could
3044 * previously contain an hugepage: check if we need to split
3045 * an huge pmd.
3046 */
3047 if (start & ~HPAGE_PMD_MASK &&
3048 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3049 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 3050 split_huge_pmd_address(vma, start);
94fcc585
AA
3051
3052 /*
3053 * If the new end address isn't hpage aligned and it could
3054 * previously contain an hugepage: check if we need to split
3055 * an huge pmd.
3056 */
3057 if (end & ~HPAGE_PMD_MASK &&
3058 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3059 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 3060 split_huge_pmd_address(vma, end);
94fcc585
AA
3061
3062 /*
3063 * If we're also updating the vma->vm_next->vm_start, if the new
3064 * vm_next->vm_start isn't page aligned and it could previously
3065 * contain an hugepage: check if we need to split an huge pmd.
3066 */
3067 if (adjust_next > 0) {
3068 struct vm_area_struct *next = vma->vm_next;
3069 unsigned long nstart = next->vm_start;
3070 nstart += adjust_next << PAGE_SHIFT;
3071 if (nstart & ~HPAGE_PMD_MASK &&
3072 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3073 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
78ddc534 3074 split_huge_pmd_address(next, nstart);
94fcc585
AA
3075 }
3076}
e9b61f19
KS
3077
3078static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3079 unsigned long address)
3080{
bd56086f 3081 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
3082 spinlock_t *ptl;
3083 pgd_t *pgd;
3084 pud_t *pud;
3085 pmd_t *pmd;
3086 pte_t *pte;
3087 int i, nr = HPAGE_PMD_NR;
3088
3089 /* Skip pages which doesn't belong to the VMA */
3090 if (address < vma->vm_start) {
3091 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3092 page += off;
3093 nr -= off;
3094 address = vma->vm_start;
3095 }
3096
3097 pgd = pgd_offset(vma->vm_mm, address);
3098 if (!pgd_present(*pgd))
3099 return;
3100 pud = pud_offset(pgd, address);
3101 if (!pud_present(*pud))
3102 return;
3103 pmd = pmd_offset(pud, address);
3104 ptl = pmd_lock(vma->vm_mm, pmd);
3105 if (!pmd_present(*pmd)) {
3106 spin_unlock(ptl);
3107 return;
3108 }
3109 if (pmd_trans_huge(*pmd)) {
3110 if (page == pmd_page(*pmd))
bd56086f 3111 __split_huge_pmd_locked(vma, pmd, haddr, true);
e9b61f19
KS
3112 spin_unlock(ptl);
3113 return;
3114 }
3115 spin_unlock(ptl);
3116
3117 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f 3118 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
e9b61f19
KS
3119 pte_t entry, swp_pte;
3120 swp_entry_t swp_entry;
3121
bd56086f
KS
3122 /*
3123 * We've just crossed page table boundary: need to map next one.
3124 * It can happen if THP was mremaped to non PMD-aligned address.
3125 */
3126 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3127 pte_unmap_unlock(pte - 1, ptl);
3128 pmd = mm_find_pmd(vma->vm_mm, address);
3129 if (!pmd)
3130 return;
3131 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3132 address, &ptl);
3133 }
3134
3135 if (!pte_present(*pte))
e9b61f19 3136 continue;
bd56086f 3137 if (page_to_pfn(page) != pte_pfn(*pte))
e9b61f19
KS
3138 continue;
3139 flush_cache_page(vma, address, page_to_pfn(page));
bd56086f 3140 entry = ptep_clear_flush(vma, address, pte);
b8d3c4c3
MK
3141 if (pte_dirty(entry))
3142 SetPageDirty(page);
e9b61f19
KS
3143 swp_entry = make_migration_entry(page, pte_write(entry));
3144 swp_pte = swp_entry_to_pte(swp_entry);
3145 if (pte_soft_dirty(entry))
3146 swp_pte = pte_swp_mksoft_dirty(swp_pte);
bd56086f 3147 set_pte_at(vma->vm_mm, address, pte, swp_pte);
e9b61f19
KS
3148 page_remove_rmap(page, false);
3149 put_page(page);
3150 }
bd56086f 3151 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3152}
3153
3154static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3155{
3156 struct anon_vma_chain *avc;
3157 pgoff_t pgoff = page_to_pgoff(page);
3158
3159 VM_BUG_ON_PAGE(!PageHead(page), page);
3160
3161 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3162 pgoff + HPAGE_PMD_NR - 1) {
bd56086f 3163 unsigned long address = __vma_address(page, avc->vma);
e9b61f19 3164
e9b61f19 3165 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
bd56086f
KS
3166 address, address + HPAGE_PMD_SIZE);
3167 freeze_page_vma(avc->vma, page, address);
e9b61f19 3168 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
bd56086f 3169 address, address + HPAGE_PMD_SIZE);
e9b61f19
KS
3170 }
3171}
3172
3173static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3174 unsigned long address)
3175{
3176 spinlock_t *ptl;
3177 pmd_t *pmd;
3178 pte_t *pte, entry;
3179 swp_entry_t swp_entry;
bd56086f 3180 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
3181 int i, nr = HPAGE_PMD_NR;
3182
3183 /* Skip pages which doesn't belong to the VMA */
3184 if (address < vma->vm_start) {
3185 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3186 page += off;
3187 nr -= off;
3188 address = vma->vm_start;
3189 }
3190
3191 pmd = mm_find_pmd(vma->vm_mm, address);
3192 if (!pmd)
3193 return;
bd56086f 3194
e9b61f19 3195 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f
KS
3196 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3197 /*
3198 * We've just crossed page table boundary: need to map next one.
3199 * It can happen if THP was mremaped to non-PMD aligned address.
3200 */
3201 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3202 pte_unmap_unlock(pte - 1, ptl);
3203 pmd = mm_find_pmd(vma->vm_mm, address);
3204 if (!pmd)
3205 return;
3206 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3207 address, &ptl);
3208 }
3209
3210 if (!is_swap_pte(*pte))
e9b61f19
KS
3211 continue;
3212
bd56086f 3213 swp_entry = pte_to_swp_entry(*pte);
e9b61f19
KS
3214 if (!is_migration_entry(swp_entry))
3215 continue;
3216 if (migration_entry_to_page(swp_entry) != page)
3217 continue;
3218
3219 get_page(page);
3220 page_add_anon_rmap(page, vma, address, false);
3221
3222 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
b8d3c4c3
MK
3223 if (PageDirty(page))
3224 entry = pte_mkdirty(entry);
e9b61f19
KS
3225 if (is_write_migration_entry(swp_entry))
3226 entry = maybe_mkwrite(entry, vma);
3227
3228 flush_dcache_page(page);
bd56086f 3229 set_pte_at(vma->vm_mm, address, pte, entry);
e9b61f19
KS
3230
3231 /* No need to invalidate - it was non-present before */
bd56086f 3232 update_mmu_cache(vma, address, pte);
e9b61f19 3233 }
bd56086f 3234 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3235}
3236
3237static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3238{
3239 struct anon_vma_chain *avc;
3240 pgoff_t pgoff = page_to_pgoff(page);
3241
3242 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3243 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3244 unsigned long address = __vma_address(page, avc->vma);
3245
3246 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3247 address, address + HPAGE_PMD_SIZE);
3248 unfreeze_page_vma(avc->vma, page, address);
3249 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3250 address, address + HPAGE_PMD_SIZE);
3251 }
3252}
3253
8df651c7 3254static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
3255 struct lruvec *lruvec, struct list_head *list)
3256{
e9b61f19
KS
3257 struct page *page_tail = head + tail;
3258
8df651c7 3259 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
3260 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3261
3262 /*
3263 * tail_page->_count is zero and not changing from under us. But
3264 * get_page_unless_zero() may be running from under us on the
8df651c7 3265 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
e9b61f19
KS
3266 * would then run atomic_set() concurrently with
3267 * get_page_unless_zero(), and atomic_set() is implemented in C not
3268 * using locked ops. spin_unlock on x86 sometime uses locked ops
3269 * because of PPro errata 66, 92, so unless somebody can guarantee
3270 * atomic_set() here would be safe on all archs (and not only on x86),
8df651c7 3271 * it's safer to use atomic_inc().
e9b61f19 3272 */
8df651c7 3273 atomic_inc(&page_tail->_count);
e9b61f19
KS
3274
3275 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3276 page_tail->flags |= (head->flags &
3277 ((1L << PG_referenced) |
3278 (1L << PG_swapbacked) |
3279 (1L << PG_mlocked) |
3280 (1L << PG_uptodate) |
3281 (1L << PG_active) |
3282 (1L << PG_locked) |
b8d3c4c3
MK
3283 (1L << PG_unevictable) |
3284 (1L << PG_dirty)));
e9b61f19
KS
3285
3286 /*
3287 * After clearing PageTail the gup refcount can be released.
3288 * Page flags also must be visible before we make the page non-compound.
3289 */
3290 smp_wmb();
3291
3292 clear_compound_head(page_tail);
3293
3294 if (page_is_young(head))
3295 set_page_young(page_tail);
3296 if (page_is_idle(head))
3297 set_page_idle(page_tail);
3298
3299 /* ->mapping in first tail page is compound_mapcount */
9a982250 3300 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3301 page_tail);
3302 page_tail->mapping = head->mapping;
3303
3304 page_tail->index = head->index + tail;
3305 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3306 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
3307}
3308
3309static void __split_huge_page(struct page *page, struct list_head *list)
3310{
3311 struct page *head = compound_head(page);
3312 struct zone *zone = page_zone(head);
3313 struct lruvec *lruvec;
8df651c7 3314 int i;
e9b61f19
KS
3315
3316 /* prevent PageLRU to go away from under us, and freeze lru stats */
3317 spin_lock_irq(&zone->lru_lock);
3318 lruvec = mem_cgroup_page_lruvec(head, zone);
3319
3320 /* complete memcg works before add pages to LRU */
3321 mem_cgroup_split_huge_fixup(head);
3322
e9b61f19 3323 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
8df651c7 3324 __split_huge_page_tail(head, i, lruvec, list);
e9b61f19
KS
3325
3326 ClearPageCompound(head);
3327 spin_unlock_irq(&zone->lru_lock);
3328
3329 unfreeze_page(page_anon_vma(head), head);
3330
3331 for (i = 0; i < HPAGE_PMD_NR; i++) {
3332 struct page *subpage = head + i;
3333 if (subpage == page)
3334 continue;
3335 unlock_page(subpage);
3336
3337 /*
3338 * Subpages may be freed if there wasn't any mapping
3339 * like if add_to_swap() is running on a lru page that
3340 * had its mapping zapped. And freeing these pages
3341 * requires taking the lru_lock so we do the put_page
3342 * of the tail pages after the split is complete.
3343 */
3344 put_page(subpage);
3345 }
3346}
3347
b20ce5e0
KS
3348int total_mapcount(struct page *page)
3349{
3350 int i, ret;
3351
3352 VM_BUG_ON_PAGE(PageTail(page), page);
3353
3354 if (likely(!PageCompound(page)))
3355 return atomic_read(&page->_mapcount) + 1;
3356
3357 ret = compound_mapcount(page);
3358 if (PageHuge(page))
3359 return ret;
3360 for (i = 0; i < HPAGE_PMD_NR; i++)
3361 ret += atomic_read(&page[i]._mapcount) + 1;
3362 if (PageDoubleMap(page))
3363 ret -= HPAGE_PMD_NR;
3364 return ret;
3365}
3366
e9b61f19
KS
3367/*
3368 * This function splits huge page into normal pages. @page can point to any
3369 * subpage of huge page to split. Split doesn't change the position of @page.
3370 *
3371 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3372 * The huge page must be locked.
3373 *
3374 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3375 *
3376 * Both head page and tail pages will inherit mapping, flags, and so on from
3377 * the hugepage.
3378 *
3379 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3380 * they are not mapped.
3381 *
3382 * Returns 0 if the hugepage is split successfully.
3383 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3384 * us.
3385 */
3386int split_huge_page_to_list(struct page *page, struct list_head *list)
3387{
3388 struct page *head = compound_head(page);
a3d0a918 3389 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3390 struct anon_vma *anon_vma;
3391 int count, mapcount, ret;
d9654322 3392 bool mlocked;
0b9b6fff 3393 unsigned long flags;
e9b61f19
KS
3394
3395 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3396 VM_BUG_ON_PAGE(!PageAnon(page), page);
3397 VM_BUG_ON_PAGE(!PageLocked(page), page);
3398 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3399 VM_BUG_ON_PAGE(!PageCompound(page), page);
3400
3401 /*
3402 * The caller does not necessarily hold an mmap_sem that would prevent
3403 * the anon_vma disappearing so we first we take a reference to it
3404 * and then lock the anon_vma for write. This is similar to
3405 * page_lock_anon_vma_read except the write lock is taken to serialise
3406 * against parallel split or collapse operations.
3407 */
3408 anon_vma = page_get_anon_vma(head);
3409 if (!anon_vma) {
3410 ret = -EBUSY;
3411 goto out;
3412 }
3413 anon_vma_lock_write(anon_vma);
3414
3415 /*
3416 * Racy check if we can split the page, before freeze_page() will
3417 * split PMDs
3418 */
3419 if (total_mapcount(head) != page_count(head) - 1) {
3420 ret = -EBUSY;
3421 goto out_unlock;
3422 }
3423
d9654322 3424 mlocked = PageMlocked(page);
e9b61f19
KS
3425 freeze_page(anon_vma, head);
3426 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3427
d9654322
KS
3428 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3429 if (mlocked)
3430 lru_add_drain();
3431
9a982250 3432 /* Prevent deferred_split_scan() touching ->_count */
a3d0a918 3433 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3434 count = page_count(head);
3435 mapcount = total_mapcount(head);
bd56086f 3436 if (!mapcount && count == 1) {
9a982250 3437 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3438 pgdata->split_queue_len--;
9a982250
KS
3439 list_del(page_deferred_list(head));
3440 }
a3d0a918 3441 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3442 __split_huge_page(page, list);
3443 ret = 0;
bd56086f 3444 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3445 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3446 pr_alert("total_mapcount: %u, page_count(): %u\n",
3447 mapcount, count);
3448 if (PageTail(page))
3449 dump_page(head, NULL);
bd56086f 3450 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3451 BUG();
3452 } else {
a3d0a918 3453 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3454 unfreeze_page(anon_vma, head);
3455 ret = -EBUSY;
3456 }
3457
3458out_unlock:
3459 anon_vma_unlock_write(anon_vma);
3460 put_anon_vma(anon_vma);
3461out:
3462 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3463 return ret;
3464}
9a982250
KS
3465
3466void free_transhuge_page(struct page *page)
3467{
a3d0a918 3468 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3469 unsigned long flags;
3470
a3d0a918 3471 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3472 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3473 pgdata->split_queue_len--;
9a982250
KS
3474 list_del(page_deferred_list(page));
3475 }
a3d0a918 3476 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3477 free_compound_page(page);
3478}
3479
3480void deferred_split_huge_page(struct page *page)
3481{
a3d0a918 3482 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3483 unsigned long flags;
3484
3485 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3486
a3d0a918 3487 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3488 if (list_empty(page_deferred_list(page))) {
f9719a03 3489 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
3490 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3491 pgdata->split_queue_len++;
9a982250 3492 }
a3d0a918 3493 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3494}
3495
3496static unsigned long deferred_split_count(struct shrinker *shrink,
3497 struct shrink_control *sc)
3498{
a3d0a918 3499 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3500 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3501}
3502
3503static unsigned long deferred_split_scan(struct shrinker *shrink,
3504 struct shrink_control *sc)
3505{
a3d0a918 3506 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3507 unsigned long flags;
3508 LIST_HEAD(list), *pos, *next;
3509 struct page *page;
3510 int split = 0;
3511
a3d0a918 3512 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3513 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3514 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3515 page = list_entry((void *)pos, struct page, mapping);
3516 page = compound_head(page);
e3ae1953
KS
3517 if (get_page_unless_zero(page)) {
3518 list_move(page_deferred_list(page), &list);
3519 } else {
3520 /* We lost race with put_compound_page() */
9a982250 3521 list_del_init(page_deferred_list(page));
a3d0a918 3522 pgdata->split_queue_len--;
9a982250 3523 }
e3ae1953
KS
3524 if (!--sc->nr_to_scan)
3525 break;
9a982250 3526 }
a3d0a918 3527 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3528
3529 list_for_each_safe(pos, next, &list) {
3530 page = list_entry((void *)pos, struct page, mapping);
3531 lock_page(page);
3532 /* split_huge_page() removes page from list on success */
3533 if (!split_huge_page(page))
3534 split++;
3535 unlock_page(page);
3536 put_page(page);
3537 }
3538
a3d0a918
KS
3539 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3540 list_splice_tail(&list, &pgdata->split_queue);
3541 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3542
cb8d68ec
KS
3543 /*
3544 * Stop shrinker if we didn't split any page, but the queue is empty.
3545 * This can happen if pages were freed under us.
3546 */
3547 if (!split && list_empty(&pgdata->split_queue))
3548 return SHRINK_STOP;
3549 return split;
9a982250
KS
3550}
3551
3552static struct shrinker deferred_split_shrinker = {
3553 .count_objects = deferred_split_count,
3554 .scan_objects = deferred_split_scan,
3555 .seeks = DEFAULT_SEEKS,
a3d0a918 3556 .flags = SHRINKER_NUMA_AWARE,
9a982250 3557};
49071d43
KS
3558
3559#ifdef CONFIG_DEBUG_FS
3560static int split_huge_pages_set(void *data, u64 val)
3561{
3562 struct zone *zone;
3563 struct page *page;
3564 unsigned long pfn, max_zone_pfn;
3565 unsigned long total = 0, split = 0;
3566
3567 if (val != 1)
3568 return -EINVAL;
3569
3570 for_each_populated_zone(zone) {
3571 max_zone_pfn = zone_end_pfn(zone);
3572 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3573 if (!pfn_valid(pfn))
3574 continue;
3575
3576 page = pfn_to_page(pfn);
3577 if (!get_page_unless_zero(page))
3578 continue;
3579
3580 if (zone != page_zone(page))
3581 goto next;
3582
3583 if (!PageHead(page) || !PageAnon(page) ||
3584 PageHuge(page))
3585 goto next;
3586
3587 total++;
3588 lock_page(page);
3589 if (!split_huge_page(page))
3590 split++;
3591 unlock_page(page);
3592next:
3593 put_page(page);
3594 }
3595 }
3596
3597 pr_info("%lu of %lu THP split", split, total);
3598
3599 return 0;
3600}
3601DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3602 "%llu\n");
3603
3604static int __init split_huge_pages_debugfs(void)
3605{
3606 void *ret;
3607
3608 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3609 &split_huge_pages_fops);
3610 if (!ret)
3611 pr_warn("Failed to create split_huge_pages in debugfs");
3612 return 0;
3613}
3614late_initcall(split_huge_pages_debugfs);
3615#endif