]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
drivers: of: add return value to of_reserved_mem_device_init()
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f
AA
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
878aee7d 21#include <linux/freezer.h>
a664b2d8 22#include <linux/mman.h>
325adeb5 23#include <linux/pagemap.h>
4daae3b4 24#include <linux/migrate.h>
43b5fbbd 25#include <linux/hashtable.h>
97ae1749 26
71e3aac0
AA
27#include <asm/tlb.h>
28#include <asm/pgalloc.h>
29#include "internal.h"
30
ba76149f 31/*
8bfa3f9a
JW
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
ba76149f 38 */
71e3aac0 39unsigned long transparent_hugepage_flags __read_mostly =
13ece886 40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
42#endif
43#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45#endif
d39d33c3 46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
49
50/* default scan 8*512 pte (or vmas) every 30 second */
51static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52static unsigned int khugepaged_pages_collapsed;
53static unsigned int khugepaged_full_scans;
54static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55/* during fragmentation poll the hugepage allocator once every minute */
56static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57static struct task_struct *khugepaged_thread __read_mostly;
58static DEFINE_MUTEX(khugepaged_mutex);
59static DEFINE_SPINLOCK(khugepaged_mm_lock);
60static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61/*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68static int khugepaged(void *none);
ba76149f 69static int khugepaged_slab_init(void);
ba76149f 70
43b5fbbd
SL
71#define MM_SLOTS_HASH_BITS 10
72static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
ba76149f
AA
74static struct kmem_cache *mm_slot_cache __read_mostly;
75
76/**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86};
87
88/**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
2f1da642
HS
100};
101static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103};
104
f000565a
AA
105
106static int set_recommended_min_free_kbytes(void)
107{
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
f000565a 111
17c230af 112 if (!khugepaged_enabled())
f000565a
AA
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
42aa83cb
HP
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
f000565a 141 min_free_kbytes = recommended_min;
42aa83cb 142 }
f000565a
AA
143 setup_per_zone_wmarks();
144 return 0;
145}
146late_initcall(set_recommended_min_free_kbytes);
147
ba76149f
AA
148static int start_khugepaged(void)
149{
150 int err = 0;
151 if (khugepaged_enabled()) {
ba76149f
AA
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
911891af
XG
160
161 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 162 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
163
164 set_recommended_min_free_kbytes();
911891af 165 } else if (khugepaged_thread) {
911891af
XG
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
637e3a27 169
ba76149f
AA
170 return err;
171}
71e3aac0 172
97ae1749 173static atomic_t huge_zero_refcount;
5918d10a 174static struct page *huge_zero_page __read_mostly;
97ae1749 175
5918d10a 176static inline bool is_huge_zero_page(struct page *page)
4a6c1297 177{
5918d10a 178 return ACCESS_ONCE(huge_zero_page) == page;
97ae1749 179}
4a6c1297 180
97ae1749
KS
181static inline bool is_huge_zero_pmd(pmd_t pmd)
182{
5918d10a 183 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
184}
185
5918d10a 186static struct page *get_huge_zero_page(void)
97ae1749
KS
187{
188 struct page *zero_page;
189retry:
190 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 191 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
192
193 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 194 HPAGE_PMD_ORDER);
d8a8e1f0
KS
195 if (!zero_page) {
196 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 197 return NULL;
d8a8e1f0
KS
198 }
199 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 200 preempt_disable();
5918d10a 201 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 202 preempt_enable();
5ddacbe9 203 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
204 goto retry;
205 }
206
207 /* We take additional reference here. It will be put back by shrinker */
208 atomic_set(&huge_zero_refcount, 2);
209 preempt_enable();
5918d10a 210 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
211}
212
97ae1749 213static void put_huge_zero_page(void)
4a6c1297 214{
97ae1749
KS
215 /*
216 * Counter should never go to zero here. Only shrinker can put
217 * last reference.
218 */
219 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
220}
221
48896466
GC
222static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
223 struct shrink_control *sc)
4a6c1297 224{
48896466
GC
225 /* we can free zero page only if last reference remains */
226 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
227}
97ae1749 228
48896466
GC
229static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
230 struct shrink_control *sc)
231{
97ae1749 232 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
233 struct page *zero_page = xchg(&huge_zero_page, NULL);
234 BUG_ON(zero_page == NULL);
5ddacbe9 235 __free_pages(zero_page, compound_order(zero_page));
48896466 236 return HPAGE_PMD_NR;
97ae1749
KS
237 }
238
239 return 0;
4a6c1297
KS
240}
241
97ae1749 242static struct shrinker huge_zero_page_shrinker = {
48896466
GC
243 .count_objects = shrink_huge_zero_page_count,
244 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
245 .seeks = DEFAULT_SEEKS,
246};
247
71e3aac0 248#ifdef CONFIG_SYSFS
ba76149f 249
71e3aac0
AA
250static ssize_t double_flag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf,
252 enum transparent_hugepage_flag enabled,
253 enum transparent_hugepage_flag req_madv)
254{
255 if (test_bit(enabled, &transparent_hugepage_flags)) {
256 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
257 return sprintf(buf, "[always] madvise never\n");
258 } else if (test_bit(req_madv, &transparent_hugepage_flags))
259 return sprintf(buf, "always [madvise] never\n");
260 else
261 return sprintf(buf, "always madvise [never]\n");
262}
263static ssize_t double_flag_store(struct kobject *kobj,
264 struct kobj_attribute *attr,
265 const char *buf, size_t count,
266 enum transparent_hugepage_flag enabled,
267 enum transparent_hugepage_flag req_madv)
268{
269 if (!memcmp("always", buf,
270 min(sizeof("always")-1, count))) {
271 set_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else if (!memcmp("madvise", buf,
274 min(sizeof("madvise")-1, count))) {
275 clear_bit(enabled, &transparent_hugepage_flags);
276 set_bit(req_madv, &transparent_hugepage_flags);
277 } else if (!memcmp("never", buf,
278 min(sizeof("never")-1, count))) {
279 clear_bit(enabled, &transparent_hugepage_flags);
280 clear_bit(req_madv, &transparent_hugepage_flags);
281 } else
282 return -EINVAL;
283
284 return count;
285}
286
287static ssize_t enabled_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
290 return double_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_FLAG,
292 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
293}
294static ssize_t enabled_store(struct kobject *kobj,
295 struct kobj_attribute *attr,
296 const char *buf, size_t count)
297{
ba76149f
AA
298 ssize_t ret;
299
300 ret = double_flag_store(kobj, attr, buf, count,
301 TRANSPARENT_HUGEPAGE_FLAG,
302 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
303
304 if (ret > 0) {
911891af
XG
305 int err;
306
307 mutex_lock(&khugepaged_mutex);
308 err = start_khugepaged();
309 mutex_unlock(&khugepaged_mutex);
310
ba76149f
AA
311 if (err)
312 ret = err;
313 }
314
315 return ret;
71e3aac0
AA
316}
317static struct kobj_attribute enabled_attr =
318 __ATTR(enabled, 0644, enabled_show, enabled_store);
319
320static ssize_t single_flag_show(struct kobject *kobj,
321 struct kobj_attribute *attr, char *buf,
322 enum transparent_hugepage_flag flag)
323{
e27e6151
BH
324 return sprintf(buf, "%d\n",
325 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 326}
e27e6151 327
71e3aac0
AA
328static ssize_t single_flag_store(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 const char *buf, size_t count,
331 enum transparent_hugepage_flag flag)
332{
e27e6151
BH
333 unsigned long value;
334 int ret;
335
336 ret = kstrtoul(buf, 10, &value);
337 if (ret < 0)
338 return ret;
339 if (value > 1)
340 return -EINVAL;
341
342 if (value)
71e3aac0 343 set_bit(flag, &transparent_hugepage_flags);
e27e6151 344 else
71e3aac0 345 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
346
347 return count;
348}
349
350/*
351 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
352 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
353 * memory just to allocate one more hugepage.
354 */
355static ssize_t defrag_show(struct kobject *kobj,
356 struct kobj_attribute *attr, char *buf)
357{
358 return double_flag_show(kobj, attr, buf,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361}
362static ssize_t defrag_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365{
366 return double_flag_store(kobj, attr, buf, count,
367 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
368 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
369}
370static struct kobj_attribute defrag_attr =
371 __ATTR(defrag, 0644, defrag_show, defrag_store);
372
79da5407
KS
373static ssize_t use_zero_page_show(struct kobject *kobj,
374 struct kobj_attribute *attr, char *buf)
375{
376 return single_flag_show(kobj, attr, buf,
377 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
378}
379static ssize_t use_zero_page_store(struct kobject *kobj,
380 struct kobj_attribute *attr, const char *buf, size_t count)
381{
382 return single_flag_store(kobj, attr, buf, count,
383 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
384}
385static struct kobj_attribute use_zero_page_attr =
386 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
387#ifdef CONFIG_DEBUG_VM
388static ssize_t debug_cow_show(struct kobject *kobj,
389 struct kobj_attribute *attr, char *buf)
390{
391 return single_flag_show(kobj, attr, buf,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393}
394static ssize_t debug_cow_store(struct kobject *kobj,
395 struct kobj_attribute *attr,
396 const char *buf, size_t count)
397{
398 return single_flag_store(kobj, attr, buf, count,
399 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
400}
401static struct kobj_attribute debug_cow_attr =
402 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
403#endif /* CONFIG_DEBUG_VM */
404
405static struct attribute *hugepage_attr[] = {
406 &enabled_attr.attr,
407 &defrag_attr.attr,
79da5407 408 &use_zero_page_attr.attr,
71e3aac0
AA
409#ifdef CONFIG_DEBUG_VM
410 &debug_cow_attr.attr,
411#endif
412 NULL,
413};
414
415static struct attribute_group hugepage_attr_group = {
416 .attrs = hugepage_attr,
ba76149f
AA
417};
418
419static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 char *buf)
422{
423 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
424}
425
426static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
429{
430 unsigned long msecs;
431 int err;
432
3dbb95f7 433 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
434 if (err || msecs > UINT_MAX)
435 return -EINVAL;
436
437 khugepaged_scan_sleep_millisecs = msecs;
438 wake_up_interruptible(&khugepaged_wait);
439
440 return count;
441}
442static struct kobj_attribute scan_sleep_millisecs_attr =
443 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
444 scan_sleep_millisecs_store);
445
446static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 char *buf)
449{
450 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
451}
452
453static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
454 struct kobj_attribute *attr,
455 const char *buf, size_t count)
456{
457 unsigned long msecs;
458 int err;
459
3dbb95f7 460 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
461 if (err || msecs > UINT_MAX)
462 return -EINVAL;
463
464 khugepaged_alloc_sleep_millisecs = msecs;
465 wake_up_interruptible(&khugepaged_wait);
466
467 return count;
468}
469static struct kobj_attribute alloc_sleep_millisecs_attr =
470 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
471 alloc_sleep_millisecs_store);
472
473static ssize_t pages_to_scan_show(struct kobject *kobj,
474 struct kobj_attribute *attr,
475 char *buf)
476{
477 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
478}
479static ssize_t pages_to_scan_store(struct kobject *kobj,
480 struct kobj_attribute *attr,
481 const char *buf, size_t count)
482{
483 int err;
484 unsigned long pages;
485
3dbb95f7 486 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
487 if (err || !pages || pages > UINT_MAX)
488 return -EINVAL;
489
490 khugepaged_pages_to_scan = pages;
491
492 return count;
493}
494static struct kobj_attribute pages_to_scan_attr =
495 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
496 pages_to_scan_store);
497
498static ssize_t pages_collapsed_show(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 char *buf)
501{
502 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
503}
504static struct kobj_attribute pages_collapsed_attr =
505 __ATTR_RO(pages_collapsed);
506
507static ssize_t full_scans_show(struct kobject *kobj,
508 struct kobj_attribute *attr,
509 char *buf)
510{
511 return sprintf(buf, "%u\n", khugepaged_full_scans);
512}
513static struct kobj_attribute full_scans_attr =
514 __ATTR_RO(full_scans);
515
516static ssize_t khugepaged_defrag_show(struct kobject *kobj,
517 struct kobj_attribute *attr, char *buf)
518{
519 return single_flag_show(kobj, attr, buf,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521}
522static ssize_t khugepaged_defrag_store(struct kobject *kobj,
523 struct kobj_attribute *attr,
524 const char *buf, size_t count)
525{
526 return single_flag_store(kobj, attr, buf, count,
527 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
528}
529static struct kobj_attribute khugepaged_defrag_attr =
530 __ATTR(defrag, 0644, khugepaged_defrag_show,
531 khugepaged_defrag_store);
532
533/*
534 * max_ptes_none controls if khugepaged should collapse hugepages over
535 * any unmapped ptes in turn potentially increasing the memory
536 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
537 * reduce the available free memory in the system as it
538 * runs. Increasing max_ptes_none will instead potentially reduce the
539 * free memory in the system during the khugepaged scan.
540 */
541static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
542 struct kobj_attribute *attr,
543 char *buf)
544{
545 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
546}
547static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
548 struct kobj_attribute *attr,
549 const char *buf, size_t count)
550{
551 int err;
552 unsigned long max_ptes_none;
553
3dbb95f7 554 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
555 if (err || max_ptes_none > HPAGE_PMD_NR-1)
556 return -EINVAL;
557
558 khugepaged_max_ptes_none = max_ptes_none;
559
560 return count;
561}
562static struct kobj_attribute khugepaged_max_ptes_none_attr =
563 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
564 khugepaged_max_ptes_none_store);
565
566static struct attribute *khugepaged_attr[] = {
567 &khugepaged_defrag_attr.attr,
568 &khugepaged_max_ptes_none_attr.attr,
569 &pages_to_scan_attr.attr,
570 &pages_collapsed_attr.attr,
571 &full_scans_attr.attr,
572 &scan_sleep_millisecs_attr.attr,
573 &alloc_sleep_millisecs_attr.attr,
574 NULL,
575};
576
577static struct attribute_group khugepaged_attr_group = {
578 .attrs = khugepaged_attr,
579 .name = "khugepaged",
71e3aac0 580};
71e3aac0 581
569e5590 582static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 583{
71e3aac0
AA
584 int err;
585
569e5590
SL
586 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
587 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 588 pr_err("failed to create transparent hugepage kobject\n");
569e5590 589 return -ENOMEM;
ba76149f
AA
590 }
591
569e5590 592 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 593 if (err) {
ae3a8c1c 594 pr_err("failed to register transparent hugepage group\n");
569e5590 595 goto delete_obj;
ba76149f
AA
596 }
597
569e5590 598 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 599 if (err) {
ae3a8c1c 600 pr_err("failed to register transparent hugepage group\n");
569e5590 601 goto remove_hp_group;
ba76149f 602 }
569e5590
SL
603
604 return 0;
605
606remove_hp_group:
607 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
608delete_obj:
609 kobject_put(*hugepage_kobj);
610 return err;
611}
612
613static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614{
615 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
616 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
617 kobject_put(hugepage_kobj);
618}
619#else
620static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
621{
622 return 0;
623}
624
625static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
626{
627}
628#endif /* CONFIG_SYSFS */
629
630static int __init hugepage_init(void)
631{
632 int err;
633 struct kobject *hugepage_kobj;
634
635 if (!has_transparent_hugepage()) {
636 transparent_hugepage_flags = 0;
637 return -EINVAL;
638 }
639
640 err = hugepage_init_sysfs(&hugepage_kobj);
641 if (err)
642 return err;
ba76149f
AA
643
644 err = khugepaged_slab_init();
645 if (err)
646 goto out;
647
97ae1749
KS
648 register_shrinker(&huge_zero_page_shrinker);
649
97562cd2
RR
650 /*
651 * By default disable transparent hugepages on smaller systems,
652 * where the extra memory used could hurt more than TLB overhead
653 * is likely to save. The admin can still enable it through /sys.
654 */
655 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
656 transparent_hugepage_flags = 0;
657
ba76149f
AA
658 start_khugepaged();
659
569e5590 660 return 0;
ba76149f 661out:
569e5590 662 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 663 return err;
71e3aac0 664}
a64fb3cd 665subsys_initcall(hugepage_init);
71e3aac0
AA
666
667static int __init setup_transparent_hugepage(char *str)
668{
669 int ret = 0;
670 if (!str)
671 goto out;
672 if (!strcmp(str, "always")) {
673 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "madvise")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "never")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
690 }
691out:
692 if (!ret)
ae3a8c1c 693 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
694 return ret;
695}
696__setup("transparent_hugepage=", setup_transparent_hugepage);
697
b32967ff 698pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
699{
700 if (likely(vma->vm_flags & VM_WRITE))
701 pmd = pmd_mkwrite(pmd);
702 return pmd;
703}
704
3122359a 705static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
706{
707 pmd_t entry;
3122359a 708 entry = mk_pmd(page, prot);
b3092b3b
BL
709 entry = pmd_mkhuge(entry);
710 return entry;
711}
712
71e3aac0
AA
713static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
714 struct vm_area_struct *vma,
715 unsigned long haddr, pmd_t *pmd,
716 struct page *page)
717{
00501b53 718 struct mem_cgroup *memcg;
71e3aac0 719 pgtable_t pgtable;
c4088ebd 720 spinlock_t *ptl;
71e3aac0 721
309381fe 722 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53
JW
723
724 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
725 return VM_FAULT_OOM;
726
71e3aac0 727 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
728 if (unlikely(!pgtable)) {
729 mem_cgroup_cancel_charge(page, memcg);
71e3aac0 730 return VM_FAULT_OOM;
00501b53 731 }
71e3aac0
AA
732
733 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
734 /*
735 * The memory barrier inside __SetPageUptodate makes sure that
736 * clear_huge_page writes become visible before the set_pmd_at()
737 * write.
738 */
71e3aac0
AA
739 __SetPageUptodate(page);
740
c4088ebd 741 ptl = pmd_lock(mm, pmd);
71e3aac0 742 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 743 spin_unlock(ptl);
00501b53 744 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
745 put_page(page);
746 pte_free(mm, pgtable);
747 } else {
748 pmd_t entry;
3122359a
KS
749 entry = mk_huge_pmd(page, vma->vm_page_prot);
750 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 751 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
752 mem_cgroup_commit_charge(page, memcg, false);
753 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 754 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 755 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 756 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 757 atomic_long_inc(&mm->nr_ptes);
c4088ebd 758 spin_unlock(ptl);
71e3aac0
AA
759 }
760
aa2e878e 761 return 0;
71e3aac0
AA
762}
763
cc5d462f 764static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 765{
cc5d462f 766 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
767}
768
769static inline struct page *alloc_hugepage_vma(int defrag,
770 struct vm_area_struct *vma,
cc5d462f
AK
771 unsigned long haddr, int nd,
772 gfp_t extra_gfp)
0bbbc0b3 773{
cc5d462f 774 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 775 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
776}
777
c4088ebd 778/* Caller must hold page table lock. */
3ea41e62 779static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 780 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 781 struct page *zero_page)
fc9fe822
KS
782{
783 pmd_t entry;
3ea41e62
KS
784 if (!pmd_none(*pmd))
785 return false;
5918d10a 786 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822
KS
787 entry = pmd_wrprotect(entry);
788 entry = pmd_mkhuge(entry);
6b0b50b0 789 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 790 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 791 atomic_long_inc(&mm->nr_ptes);
3ea41e62 792 return true;
fc9fe822
KS
793}
794
71e3aac0
AA
795int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
796 unsigned long address, pmd_t *pmd,
797 unsigned int flags)
798{
799 struct page *page;
800 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 801
128ec037 802 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 803 return VM_FAULT_FALLBACK;
128ec037
KS
804 if (unlikely(anon_vma_prepare(vma)))
805 return VM_FAULT_OOM;
806 if (unlikely(khugepaged_enter(vma)))
807 return VM_FAULT_OOM;
808 if (!(flags & FAULT_FLAG_WRITE) &&
809 transparent_hugepage_use_zero_page()) {
c4088ebd 810 spinlock_t *ptl;
128ec037
KS
811 pgtable_t pgtable;
812 struct page *zero_page;
813 bool set;
814 pgtable = pte_alloc_one(mm, haddr);
815 if (unlikely(!pgtable))
ba76149f 816 return VM_FAULT_OOM;
128ec037
KS
817 zero_page = get_huge_zero_page();
818 if (unlikely(!zero_page)) {
819 pte_free(mm, pgtable);
81ab4201 820 count_vm_event(THP_FAULT_FALLBACK);
c0292554 821 return VM_FAULT_FALLBACK;
b9bbfbe3 822 }
c4088ebd 823 ptl = pmd_lock(mm, pmd);
128ec037
KS
824 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
825 zero_page);
c4088ebd 826 spin_unlock(ptl);
128ec037
KS
827 if (!set) {
828 pte_free(mm, pgtable);
829 put_huge_zero_page();
edad9d2c 830 }
edad9d2c 831 return 0;
71e3aac0 832 }
128ec037
KS
833 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
834 vma, haddr, numa_node_id(), 0);
835 if (unlikely(!page)) {
836 count_vm_event(THP_FAULT_FALLBACK);
c0292554 837 return VM_FAULT_FALLBACK;
128ec037 838 }
128ec037 839 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
128ec037 840 put_page(page);
17766dde 841 count_vm_event(THP_FAULT_FALLBACK);
c0292554 842 return VM_FAULT_FALLBACK;
128ec037
KS
843 }
844
17766dde 845 count_vm_event(THP_FAULT_ALLOC);
128ec037 846 return 0;
71e3aac0
AA
847}
848
849int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
850 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
851 struct vm_area_struct *vma)
852{
c4088ebd 853 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
854 struct page *src_page;
855 pmd_t pmd;
856 pgtable_t pgtable;
857 int ret;
858
859 ret = -ENOMEM;
860 pgtable = pte_alloc_one(dst_mm, addr);
861 if (unlikely(!pgtable))
862 goto out;
863
c4088ebd
KS
864 dst_ptl = pmd_lock(dst_mm, dst_pmd);
865 src_ptl = pmd_lockptr(src_mm, src_pmd);
866 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
867
868 ret = -EAGAIN;
869 pmd = *src_pmd;
870 if (unlikely(!pmd_trans_huge(pmd))) {
871 pte_free(dst_mm, pgtable);
872 goto out_unlock;
873 }
fc9fe822 874 /*
c4088ebd 875 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
876 * under splitting since we don't split the page itself, only pmd to
877 * a page table.
878 */
879 if (is_huge_zero_pmd(pmd)) {
5918d10a 880 struct page *zero_page;
3ea41e62 881 bool set;
97ae1749
KS
882 /*
883 * get_huge_zero_page() will never allocate a new page here,
884 * since we already have a zero page to copy. It just takes a
885 * reference.
886 */
5918d10a 887 zero_page = get_huge_zero_page();
3ea41e62 888 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 889 zero_page);
3ea41e62 890 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
891 ret = 0;
892 goto out_unlock;
893 }
de466bd6 894
71e3aac0
AA
895 if (unlikely(pmd_trans_splitting(pmd))) {
896 /* split huge page running from under us */
c4088ebd
KS
897 spin_unlock(src_ptl);
898 spin_unlock(dst_ptl);
71e3aac0
AA
899 pte_free(dst_mm, pgtable);
900
901 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
902 goto out;
903 }
904 src_page = pmd_page(pmd);
309381fe 905 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
906 get_page(src_page);
907 page_dup_rmap(src_page);
908 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
909
910 pmdp_set_wrprotect(src_mm, addr, src_pmd);
911 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 912 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 913 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 914 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
915
916 ret = 0;
917out_unlock:
c4088ebd
KS
918 spin_unlock(src_ptl);
919 spin_unlock(dst_ptl);
71e3aac0
AA
920out:
921 return ret;
922}
923
a1dd450b
WD
924void huge_pmd_set_accessed(struct mm_struct *mm,
925 struct vm_area_struct *vma,
926 unsigned long address,
927 pmd_t *pmd, pmd_t orig_pmd,
928 int dirty)
929{
c4088ebd 930 spinlock_t *ptl;
a1dd450b
WD
931 pmd_t entry;
932 unsigned long haddr;
933
c4088ebd 934 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
935 if (unlikely(!pmd_same(*pmd, orig_pmd)))
936 goto unlock;
937
938 entry = pmd_mkyoung(orig_pmd);
939 haddr = address & HPAGE_PMD_MASK;
940 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
941 update_mmu_cache_pmd(vma, address, pmd);
942
943unlock:
c4088ebd 944 spin_unlock(ptl);
a1dd450b
WD
945}
946
5338a937
HD
947/*
948 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
949 * during copy_user_huge_page()'s copy_page_rep(): in the case when
950 * the source page gets split and a tail freed before copy completes.
951 * Called under pmd_lock of checked pmd, so safe from splitting itself.
952 */
953static void get_user_huge_page(struct page *page)
954{
955 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
956 struct page *endpage = page + HPAGE_PMD_NR;
957
958 atomic_add(HPAGE_PMD_NR, &page->_count);
959 while (++page < endpage)
960 get_huge_page_tail(page);
961 } else {
962 get_page(page);
963 }
964}
965
966static void put_user_huge_page(struct page *page)
967{
968 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
969 struct page *endpage = page + HPAGE_PMD_NR;
970
971 while (page < endpage)
972 put_page(page++);
973 } else {
974 put_page(page);
975 }
976}
977
71e3aac0
AA
978static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
979 struct vm_area_struct *vma,
980 unsigned long address,
981 pmd_t *pmd, pmd_t orig_pmd,
982 struct page *page,
983 unsigned long haddr)
984{
00501b53 985 struct mem_cgroup *memcg;
c4088ebd 986 spinlock_t *ptl;
71e3aac0
AA
987 pgtable_t pgtable;
988 pmd_t _pmd;
989 int ret = 0, i;
990 struct page **pages;
2ec74c3e
SG
991 unsigned long mmun_start; /* For mmu_notifiers */
992 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
993
994 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
995 GFP_KERNEL);
996 if (unlikely(!pages)) {
997 ret |= VM_FAULT_OOM;
998 goto out;
999 }
1000
1001 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1002 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1003 __GFP_OTHER_NODE,
19ee151e 1004 vma, address, page_to_nid(page));
b9bbfbe3 1005 if (unlikely(!pages[i] ||
00501b53
JW
1006 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1007 &memcg))) {
b9bbfbe3 1008 if (pages[i])
71e3aac0 1009 put_page(pages[i]);
b9bbfbe3 1010 while (--i >= 0) {
00501b53
JW
1011 memcg = (void *)page_private(pages[i]);
1012 set_page_private(pages[i], 0);
1013 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1014 put_page(pages[i]);
1015 }
71e3aac0
AA
1016 kfree(pages);
1017 ret |= VM_FAULT_OOM;
1018 goto out;
1019 }
00501b53 1020 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1021 }
1022
1023 for (i = 0; i < HPAGE_PMD_NR; i++) {
1024 copy_user_highpage(pages[i], page + i,
0089e485 1025 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1026 __SetPageUptodate(pages[i]);
1027 cond_resched();
1028 }
1029
2ec74c3e
SG
1030 mmun_start = haddr;
1031 mmun_end = haddr + HPAGE_PMD_SIZE;
1032 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1033
c4088ebd 1034 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1035 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1036 goto out_free_pages;
309381fe 1037 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1038
2ec74c3e 1039 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1040 /* leave pmd empty until pte is filled */
1041
6b0b50b0 1042 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1043 pmd_populate(mm, &_pmd, pgtable);
1044
1045 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1046 pte_t *pte, entry;
1047 entry = mk_pte(pages[i], vma->vm_page_prot);
1048 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1049 memcg = (void *)page_private(pages[i]);
1050 set_page_private(pages[i], 0);
71e3aac0 1051 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1052 mem_cgroup_commit_charge(pages[i], memcg, false);
1053 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1054 pte = pte_offset_map(&_pmd, haddr);
1055 VM_BUG_ON(!pte_none(*pte));
1056 set_pte_at(mm, haddr, pte, entry);
1057 pte_unmap(pte);
1058 }
1059 kfree(pages);
1060
71e3aac0
AA
1061 smp_wmb(); /* make pte visible before pmd */
1062 pmd_populate(mm, pmd, pgtable);
1063 page_remove_rmap(page);
c4088ebd 1064 spin_unlock(ptl);
71e3aac0 1065
2ec74c3e
SG
1066 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1067
71e3aac0
AA
1068 ret |= VM_FAULT_WRITE;
1069 put_page(page);
1070
1071out:
1072 return ret;
1073
1074out_free_pages:
c4088ebd 1075 spin_unlock(ptl);
2ec74c3e 1076 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1077 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1078 memcg = (void *)page_private(pages[i]);
1079 set_page_private(pages[i], 0);
1080 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1081 put_page(pages[i]);
b9bbfbe3 1082 }
71e3aac0
AA
1083 kfree(pages);
1084 goto out;
1085}
1086
1087int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1088 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1089{
c4088ebd 1090 spinlock_t *ptl;
71e3aac0 1091 int ret = 0;
93b4796d 1092 struct page *page = NULL, *new_page;
00501b53 1093 struct mem_cgroup *memcg;
71e3aac0 1094 unsigned long haddr;
2ec74c3e
SG
1095 unsigned long mmun_start; /* For mmu_notifiers */
1096 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0 1097
c4088ebd 1098 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1099 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1100 haddr = address & HPAGE_PMD_MASK;
1101 if (is_huge_zero_pmd(orig_pmd))
1102 goto alloc;
c4088ebd 1103 spin_lock(ptl);
71e3aac0
AA
1104 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1105 goto out_unlock;
1106
1107 page = pmd_page(orig_pmd);
309381fe 1108 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1109 if (page_mapcount(page) == 1) {
1110 pmd_t entry;
1111 entry = pmd_mkyoung(orig_pmd);
1112 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1113 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1114 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1115 ret |= VM_FAULT_WRITE;
1116 goto out_unlock;
1117 }
5338a937 1118 get_user_huge_page(page);
c4088ebd 1119 spin_unlock(ptl);
93b4796d 1120alloc:
71e3aac0
AA
1121 if (transparent_hugepage_enabled(vma) &&
1122 !transparent_hugepage_debug_cow())
0bbbc0b3 1123 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1124 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1125 else
1126 new_page = NULL;
1127
1128 if (unlikely(!new_page)) {
eecc1e42 1129 if (!page) {
e9b71ca9
KS
1130 split_huge_page_pmd(vma, address, pmd);
1131 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1132 } else {
1133 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1134 pmd, orig_pmd, page, haddr);
9845cbbd 1135 if (ret & VM_FAULT_OOM) {
93b4796d 1136 split_huge_page(page);
9845cbbd
KS
1137 ret |= VM_FAULT_FALLBACK;
1138 }
5338a937 1139 put_user_huge_page(page);
93b4796d 1140 }
17766dde 1141 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1142 goto out;
1143 }
1144
00501b53
JW
1145 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1146 GFP_TRANSHUGE, &memcg))) {
b9bbfbe3 1147 put_page(new_page);
93b4796d
KS
1148 if (page) {
1149 split_huge_page(page);
5338a937 1150 put_user_huge_page(page);
9845cbbd
KS
1151 } else
1152 split_huge_page_pmd(vma, address, pmd);
1153 ret |= VM_FAULT_FALLBACK;
17766dde 1154 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1155 goto out;
1156 }
1157
17766dde
DR
1158 count_vm_event(THP_FAULT_ALLOC);
1159
eecc1e42 1160 if (!page)
93b4796d
KS
1161 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1162 else
1163 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1164 __SetPageUptodate(new_page);
1165
2ec74c3e
SG
1166 mmun_start = haddr;
1167 mmun_end = haddr + HPAGE_PMD_SIZE;
1168 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1169
c4088ebd 1170 spin_lock(ptl);
93b4796d 1171 if (page)
5338a937 1172 put_user_huge_page(page);
b9bbfbe3 1173 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1174 spin_unlock(ptl);
00501b53 1175 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1176 put_page(new_page);
2ec74c3e 1177 goto out_mn;
b9bbfbe3 1178 } else {
71e3aac0 1179 pmd_t entry;
3122359a
KS
1180 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1181 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2ec74c3e 1182 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0 1183 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1184 mem_cgroup_commit_charge(new_page, memcg, false);
1185 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1186 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1187 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1188 if (!page) {
93b4796d 1189 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1190 put_huge_zero_page();
1191 } else {
309381fe 1192 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1193 page_remove_rmap(page);
1194 put_page(page);
1195 }
71e3aac0
AA
1196 ret |= VM_FAULT_WRITE;
1197 }
c4088ebd 1198 spin_unlock(ptl);
2ec74c3e
SG
1199out_mn:
1200 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1201out:
1202 return ret;
2ec74c3e 1203out_unlock:
c4088ebd 1204 spin_unlock(ptl);
2ec74c3e 1205 return ret;
71e3aac0
AA
1206}
1207
b676b293 1208struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1209 unsigned long addr,
1210 pmd_t *pmd,
1211 unsigned int flags)
1212{
b676b293 1213 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1214 struct page *page = NULL;
1215
c4088ebd 1216 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1217
1218 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1219 goto out;
1220
85facf25
KS
1221 /* Avoid dumping huge zero page */
1222 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1223 return ERR_PTR(-EFAULT);
1224
2b4847e7
MG
1225 /* Full NUMA hinting faults to serialise migration in fault paths */
1226 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1227 goto out;
1228
71e3aac0 1229 page = pmd_page(*pmd);
309381fe 1230 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1231 if (flags & FOLL_TOUCH) {
1232 pmd_t _pmd;
1233 /*
1234 * We should set the dirty bit only for FOLL_WRITE but
1235 * for now the dirty bit in the pmd is meaningless.
1236 * And if the dirty bit will become meaningful and
1237 * we'll only set it with FOLL_WRITE, an atomic
1238 * set_bit will be required on the pmd to set the
1239 * young bit, instead of the current set_pmd_at.
1240 */
1241 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1242 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1243 pmd, _pmd, 1))
1244 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1245 }
b676b293
DR
1246 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1247 if (page->mapping && trylock_page(page)) {
1248 lru_add_drain();
1249 if (page->mapping)
1250 mlock_vma_page(page);
1251 unlock_page(page);
1252 }
1253 }
71e3aac0 1254 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1255 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1256 if (flags & FOLL_GET)
70b50f94 1257 get_page_foll(page);
71e3aac0
AA
1258
1259out:
1260 return page;
1261}
1262
d10e63f2 1263/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1264int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1265 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1266{
c4088ebd 1267 spinlock_t *ptl;
b8916634 1268 struct anon_vma *anon_vma = NULL;
b32967ff 1269 struct page *page;
d10e63f2 1270 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1271 int page_nid = -1, this_nid = numa_node_id();
90572890 1272 int target_nid, last_cpupid = -1;
8191acbd
MG
1273 bool page_locked;
1274 bool migrated = false;
6688cc05 1275 int flags = 0;
d10e63f2 1276
c4088ebd 1277 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1278 if (unlikely(!pmd_same(pmd, *pmdp)))
1279 goto out_unlock;
1280
de466bd6
MG
1281 /*
1282 * If there are potential migrations, wait for completion and retry
1283 * without disrupting NUMA hinting information. Do not relock and
1284 * check_same as the page may no longer be mapped.
1285 */
1286 if (unlikely(pmd_trans_migrating(*pmdp))) {
1287 spin_unlock(ptl);
1288 wait_migrate_huge_page(vma->anon_vma, pmdp);
1289 goto out;
1290 }
1291
d10e63f2 1292 page = pmd_page(pmd);
a1a46184 1293 BUG_ON(is_huge_zero_page(page));
8191acbd 1294 page_nid = page_to_nid(page);
90572890 1295 last_cpupid = page_cpupid_last(page);
03c5a6e1 1296 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1297 if (page_nid == this_nid) {
03c5a6e1 1298 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1299 flags |= TNF_FAULT_LOCAL;
1300 }
4daae3b4 1301
6688cc05
PZ
1302 /*
1303 * Avoid grouping on DSO/COW pages in specific and RO pages
1304 * in general, RO pages shouldn't hurt as much anyway since
1305 * they can be in shared cache state.
1306 */
1307 if (!pmd_write(pmd))
1308 flags |= TNF_NO_GROUP;
1309
ff9042b1
MG
1310 /*
1311 * Acquire the page lock to serialise THP migrations but avoid dropping
1312 * page_table_lock if at all possible
1313 */
b8916634
MG
1314 page_locked = trylock_page(page);
1315 target_nid = mpol_misplaced(page, vma, haddr);
1316 if (target_nid == -1) {
1317 /* If the page was locked, there are no parallel migrations */
a54a407f 1318 if (page_locked)
b8916634 1319 goto clear_pmdnuma;
2b4847e7 1320 }
4daae3b4 1321
de466bd6 1322 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1323 if (!page_locked) {
c4088ebd 1324 spin_unlock(ptl);
b8916634 1325 wait_on_page_locked(page);
a54a407f 1326 page_nid = -1;
b8916634
MG
1327 goto out;
1328 }
1329
2b4847e7
MG
1330 /*
1331 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1332 * to serialises splits
1333 */
b8916634 1334 get_page(page);
c4088ebd 1335 spin_unlock(ptl);
b8916634 1336 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1337
c69307d5 1338 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1339 spin_lock(ptl);
b32967ff
MG
1340 if (unlikely(!pmd_same(pmd, *pmdp))) {
1341 unlock_page(page);
1342 put_page(page);
a54a407f 1343 page_nid = -1;
4daae3b4 1344 goto out_unlock;
b32967ff 1345 }
ff9042b1 1346
c3a489ca
MG
1347 /* Bail if we fail to protect against THP splits for any reason */
1348 if (unlikely(!anon_vma)) {
1349 put_page(page);
1350 page_nid = -1;
1351 goto clear_pmdnuma;
1352 }
1353
a54a407f
MG
1354 /*
1355 * Migrate the THP to the requested node, returns with page unlocked
1356 * and pmd_numa cleared.
1357 */
c4088ebd 1358 spin_unlock(ptl);
b32967ff 1359 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1360 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1361 if (migrated) {
1362 flags |= TNF_MIGRATED;
8191acbd 1363 page_nid = target_nid;
6688cc05 1364 }
b32967ff 1365
8191acbd 1366 goto out;
b32967ff 1367clear_pmdnuma:
a54a407f 1368 BUG_ON(!PageLocked(page));
d10e63f2
MG
1369 pmd = pmd_mknonnuma(pmd);
1370 set_pmd_at(mm, haddr, pmdp, pmd);
1371 VM_BUG_ON(pmd_numa(*pmdp));
1372 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1373 unlock_page(page);
d10e63f2 1374out_unlock:
c4088ebd 1375 spin_unlock(ptl);
b8916634
MG
1376
1377out:
1378 if (anon_vma)
1379 page_unlock_anon_vma_read(anon_vma);
1380
8191acbd 1381 if (page_nid != -1)
6688cc05 1382 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1383
d10e63f2
MG
1384 return 0;
1385}
1386
71e3aac0 1387int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1388 pmd_t *pmd, unsigned long addr)
71e3aac0 1389{
bf929152 1390 spinlock_t *ptl;
71e3aac0
AA
1391 int ret = 0;
1392
bf929152 1393 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1394 struct page *page;
1395 pgtable_t pgtable;
f5c8ad47 1396 pmd_t orig_pmd;
a6bf2bb0
AK
1397 /*
1398 * For architectures like ppc64 we look at deposited pgtable
1399 * when calling pmdp_get_and_clear. So do the
1400 * pgtable_trans_huge_withdraw after finishing pmdp related
1401 * operations.
1402 */
f5c8ad47 1403 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1404 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1405 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1406 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1407 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1408 spin_unlock(ptl);
97ae1749 1409 put_huge_zero_page();
479f0abb
KS
1410 } else {
1411 page = pmd_page(orig_pmd);
1412 page_remove_rmap(page);
309381fe 1413 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1414 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1415 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1416 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1417 spin_unlock(ptl);
479f0abb
KS
1418 tlb_remove_page(tlb, page);
1419 }
025c5b24
NH
1420 pte_free(tlb->mm, pgtable);
1421 ret = 1;
1422 }
71e3aac0
AA
1423 return ret;
1424}
1425
0ca1634d
JW
1426int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1427 unsigned long addr, unsigned long end,
1428 unsigned char *vec)
1429{
bf929152 1430 spinlock_t *ptl;
0ca1634d
JW
1431 int ret = 0;
1432
bf929152 1433 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1434 /*
1435 * All logical pages in the range are present
1436 * if backed by a huge page.
1437 */
bf929152 1438 spin_unlock(ptl);
025c5b24
NH
1439 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1440 ret = 1;
1441 }
0ca1634d
JW
1442
1443 return ret;
1444}
1445
37a1c49a
AA
1446int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1447 unsigned long old_addr,
1448 unsigned long new_addr, unsigned long old_end,
1449 pmd_t *old_pmd, pmd_t *new_pmd)
1450{
bf929152 1451 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1452 int ret = 0;
1453 pmd_t pmd;
1454
1455 struct mm_struct *mm = vma->vm_mm;
1456
1457 if ((old_addr & ~HPAGE_PMD_MASK) ||
1458 (new_addr & ~HPAGE_PMD_MASK) ||
1459 old_end - old_addr < HPAGE_PMD_SIZE ||
1460 (new_vma->vm_flags & VM_NOHUGEPAGE))
1461 goto out;
1462
1463 /*
1464 * The destination pmd shouldn't be established, free_pgtables()
1465 * should have release it.
1466 */
1467 if (WARN_ON(!pmd_none(*new_pmd))) {
1468 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1469 goto out;
1470 }
1471
bf929152
KS
1472 /*
1473 * We don't have to worry about the ordering of src and dst
1474 * ptlocks because exclusive mmap_sem prevents deadlock.
1475 */
1476 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1477 if (ret == 1) {
bf929152
KS
1478 new_ptl = pmd_lockptr(mm, new_pmd);
1479 if (new_ptl != old_ptl)
1480 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
025c5b24
NH
1481 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1482 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1483
b3084f4d
AK
1484 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1485 pgtable_t pgtable;
3592806c
KS
1486 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1487 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1488 }
b3084f4d
AK
1489 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1490 if (new_ptl != old_ptl)
1491 spin_unlock(new_ptl);
bf929152 1492 spin_unlock(old_ptl);
37a1c49a
AA
1493 }
1494out:
1495 return ret;
1496}
1497
f123d74a
MG
1498/*
1499 * Returns
1500 * - 0 if PMD could not be locked
1501 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1502 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1503 */
cd7548ab 1504int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1505 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1506{
1507 struct mm_struct *mm = vma->vm_mm;
bf929152 1508 spinlock_t *ptl;
cd7548ab
JW
1509 int ret = 0;
1510
bf929152 1511 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1512 pmd_t entry;
f123d74a 1513 ret = 1;
a4f1de17 1514 if (!prot_numa) {
f123d74a 1515 entry = pmdp_get_and_clear(mm, addr, pmd);
1667918b
MG
1516 if (pmd_numa(entry))
1517 entry = pmd_mknonnuma(entry);
4b10e7d5 1518 entry = pmd_modify(entry, newprot);
f123d74a 1519 ret = HPAGE_PMD_NR;
56eecdb9 1520 set_pmd_at(mm, addr, pmd, entry);
a4f1de17
HD
1521 BUG_ON(pmd_write(entry));
1522 } else {
4b10e7d5
MG
1523 struct page *page = pmd_page(*pmd);
1524
a1a46184 1525 /*
1bc115d8
MG
1526 * Do not trap faults against the zero page. The
1527 * read-only data is likely to be read-cached on the
1528 * local CPU cache and it is less useful to know about
1529 * local vs remote hits on the zero page.
a1a46184 1530 */
1bc115d8 1531 if (!is_huge_zero_page(page) &&
4b10e7d5 1532 !pmd_numa(*pmd)) {
56eecdb9 1533 pmdp_set_numa(mm, addr, pmd);
f123d74a 1534 ret = HPAGE_PMD_NR;
4b10e7d5
MG
1535 }
1536 }
bf929152 1537 spin_unlock(ptl);
025c5b24
NH
1538 }
1539
1540 return ret;
1541}
1542
1543/*
1544 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1545 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1546 *
1547 * Note that if it returns 1, this routine returns without unlocking page
1548 * table locks. So callers must unlock them.
1549 */
bf929152
KS
1550int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1551 spinlock_t **ptl)
025c5b24 1552{
bf929152 1553 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1554 if (likely(pmd_trans_huge(*pmd))) {
1555 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1556 spin_unlock(*ptl);
cd7548ab 1557 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1558 return -1;
cd7548ab 1559 } else {
025c5b24
NH
1560 /* Thp mapped by 'pmd' is stable, so we can
1561 * handle it as it is. */
1562 return 1;
cd7548ab 1563 }
025c5b24 1564 }
bf929152 1565 spin_unlock(*ptl);
025c5b24 1566 return 0;
cd7548ab
JW
1567}
1568
117b0791
KS
1569/*
1570 * This function returns whether a given @page is mapped onto the @address
1571 * in the virtual space of @mm.
1572 *
1573 * When it's true, this function returns *pmd with holding the page table lock
1574 * and passing it back to the caller via @ptl.
1575 * If it's false, returns NULL without holding the page table lock.
1576 */
71e3aac0
AA
1577pmd_t *page_check_address_pmd(struct page *page,
1578 struct mm_struct *mm,
1579 unsigned long address,
117b0791
KS
1580 enum page_check_address_pmd_flag flag,
1581 spinlock_t **ptl)
71e3aac0 1582{
b5a8cad3
KS
1583 pgd_t *pgd;
1584 pud_t *pud;
117b0791 1585 pmd_t *pmd;
71e3aac0
AA
1586
1587 if (address & ~HPAGE_PMD_MASK)
117b0791 1588 return NULL;
71e3aac0 1589
b5a8cad3
KS
1590 pgd = pgd_offset(mm, address);
1591 if (!pgd_present(*pgd))
117b0791 1592 return NULL;
b5a8cad3
KS
1593 pud = pud_offset(pgd, address);
1594 if (!pud_present(*pud))
1595 return NULL;
1596 pmd = pmd_offset(pud, address);
1597
117b0791 1598 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1599 if (!pmd_present(*pmd))
117b0791 1600 goto unlock;
71e3aac0 1601 if (pmd_page(*pmd) != page)
117b0791 1602 goto unlock;
94fcc585
AA
1603 /*
1604 * split_vma() may create temporary aliased mappings. There is
1605 * no risk as long as all huge pmd are found and have their
1606 * splitting bit set before __split_huge_page_refcount
1607 * runs. Finding the same huge pmd more than once during the
1608 * same rmap walk is not a problem.
1609 */
1610 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1611 pmd_trans_splitting(*pmd))
117b0791 1612 goto unlock;
71e3aac0
AA
1613 if (pmd_trans_huge(*pmd)) {
1614 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1615 !pmd_trans_splitting(*pmd));
117b0791 1616 return pmd;
71e3aac0 1617 }
117b0791
KS
1618unlock:
1619 spin_unlock(*ptl);
1620 return NULL;
71e3aac0
AA
1621}
1622
1623static int __split_huge_page_splitting(struct page *page,
1624 struct vm_area_struct *vma,
1625 unsigned long address)
1626{
1627 struct mm_struct *mm = vma->vm_mm;
117b0791 1628 spinlock_t *ptl;
71e3aac0
AA
1629 pmd_t *pmd;
1630 int ret = 0;
2ec74c3e
SG
1631 /* For mmu_notifiers */
1632 const unsigned long mmun_start = address;
1633 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1634
2ec74c3e 1635 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1636 pmd = page_check_address_pmd(page, mm, address,
117b0791 1637 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1638 if (pmd) {
1639 /*
1640 * We can't temporarily set the pmd to null in order
1641 * to split it, the pmd must remain marked huge at all
1642 * times or the VM won't take the pmd_trans_huge paths
5a505085 1643 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1644 * serialize against split_huge_page*.
1645 */
2ec74c3e 1646 pmdp_splitting_flush(vma, address, pmd);
71e3aac0 1647 ret = 1;
117b0791 1648 spin_unlock(ptl);
71e3aac0 1649 }
2ec74c3e 1650 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1651
1652 return ret;
1653}
1654
5bc7b8ac
SL
1655static void __split_huge_page_refcount(struct page *page,
1656 struct list_head *list)
71e3aac0
AA
1657{
1658 int i;
71e3aac0 1659 struct zone *zone = page_zone(page);
fa9add64 1660 struct lruvec *lruvec;
70b50f94 1661 int tail_count = 0;
71e3aac0
AA
1662
1663 /* prevent PageLRU to go away from under us, and freeze lru stats */
1664 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1665 lruvec = mem_cgroup_page_lruvec(page, zone);
1666
71e3aac0 1667 compound_lock(page);
e94c8a9c
KH
1668 /* complete memcg works before add pages to LRU */
1669 mem_cgroup_split_huge_fixup(page);
71e3aac0 1670
45676885 1671 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1672 struct page *page_tail = page + i;
1673
70b50f94
AA
1674 /* tail_page->_mapcount cannot change */
1675 BUG_ON(page_mapcount(page_tail) < 0);
1676 tail_count += page_mapcount(page_tail);
1677 /* check for overflow */
1678 BUG_ON(tail_count < 0);
1679 BUG_ON(atomic_read(&page_tail->_count) != 0);
1680 /*
1681 * tail_page->_count is zero and not changing from
1682 * under us. But get_page_unless_zero() may be running
1683 * from under us on the tail_page. If we used
1684 * atomic_set() below instead of atomic_add(), we
1685 * would then run atomic_set() concurrently with
1686 * get_page_unless_zero(), and atomic_set() is
1687 * implemented in C not using locked ops. spin_unlock
1688 * on x86 sometime uses locked ops because of PPro
1689 * errata 66, 92, so unless somebody can guarantee
1690 * atomic_set() here would be safe on all archs (and
1691 * not only on x86), it's safer to use atomic_add().
1692 */
1693 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1694 &page_tail->_count);
71e3aac0
AA
1695
1696 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1697 smp_mb__after_atomic();
71e3aac0 1698
a6d30ddd
JD
1699 /*
1700 * retain hwpoison flag of the poisoned tail page:
1701 * fix for the unsuitable process killed on Guest Machine(KVM)
1702 * by the memory-failure.
1703 */
1704 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1705 page_tail->flags |= (page->flags &
1706 ((1L << PG_referenced) |
1707 (1L << PG_swapbacked) |
1708 (1L << PG_mlocked) |
e180cf80
KS
1709 (1L << PG_uptodate) |
1710 (1L << PG_active) |
1711 (1L << PG_unevictable)));
71e3aac0
AA
1712 page_tail->flags |= (1L << PG_dirty);
1713
70b50f94 1714 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1715 smp_wmb();
1716
1717 /*
1718 * __split_huge_page_splitting() already set the
1719 * splitting bit in all pmd that could map this
1720 * hugepage, that will ensure no CPU can alter the
1721 * mapcount on the head page. The mapcount is only
1722 * accounted in the head page and it has to be
1723 * transferred to all tail pages in the below code. So
1724 * for this code to be safe, the split the mapcount
1725 * can't change. But that doesn't mean userland can't
1726 * keep changing and reading the page contents while
1727 * we transfer the mapcount, so the pmd splitting
1728 * status is achieved setting a reserved bit in the
1729 * pmd, not by clearing the present bit.
1730 */
71e3aac0
AA
1731 page_tail->_mapcount = page->_mapcount;
1732
1733 BUG_ON(page_tail->mapping);
1734 page_tail->mapping = page->mapping;
1735
45676885 1736 page_tail->index = page->index + i;
90572890 1737 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1738
1739 BUG_ON(!PageAnon(page_tail));
1740 BUG_ON(!PageUptodate(page_tail));
1741 BUG_ON(!PageDirty(page_tail));
1742 BUG_ON(!PageSwapBacked(page_tail));
1743
5bc7b8ac 1744 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1745 }
70b50f94
AA
1746 atomic_sub(tail_count, &page->_count);
1747 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1748
fa9add64 1749 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1750
71e3aac0
AA
1751 ClearPageCompound(page);
1752 compound_unlock(page);
1753 spin_unlock_irq(&zone->lru_lock);
1754
1755 for (i = 1; i < HPAGE_PMD_NR; i++) {
1756 struct page *page_tail = page + i;
1757 BUG_ON(page_count(page_tail) <= 0);
1758 /*
1759 * Tail pages may be freed if there wasn't any mapping
1760 * like if add_to_swap() is running on a lru page that
1761 * had its mapping zapped. And freeing these pages
1762 * requires taking the lru_lock so we do the put_page
1763 * of the tail pages after the split is complete.
1764 */
1765 put_page(page_tail);
1766 }
1767
1768 /*
1769 * Only the head page (now become a regular page) is required
1770 * to be pinned by the caller.
1771 */
1772 BUG_ON(page_count(page) <= 0);
1773}
1774
1775static int __split_huge_page_map(struct page *page,
1776 struct vm_area_struct *vma,
1777 unsigned long address)
1778{
1779 struct mm_struct *mm = vma->vm_mm;
117b0791 1780 spinlock_t *ptl;
71e3aac0
AA
1781 pmd_t *pmd, _pmd;
1782 int ret = 0, i;
1783 pgtable_t pgtable;
1784 unsigned long haddr;
1785
71e3aac0 1786 pmd = page_check_address_pmd(page, mm, address,
117b0791 1787 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1788 if (pmd) {
6b0b50b0 1789 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1790 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1791 if (pmd_write(*pmd))
1792 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1793
e3ebcf64
GS
1794 haddr = address;
1795 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1796 pte_t *pte, entry;
1797 BUG_ON(PageCompound(page+i));
abc40bd2
MG
1798 /*
1799 * Note that pmd_numa is not transferred deliberately
1800 * to avoid any possibility that pte_numa leaks to
1801 * a PROT_NONE VMA by accident.
1802 */
71e3aac0
AA
1803 entry = mk_pte(page + i, vma->vm_page_prot);
1804 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1805 if (!pmd_write(*pmd))
1806 entry = pte_wrprotect(entry);
71e3aac0
AA
1807 if (!pmd_young(*pmd))
1808 entry = pte_mkold(entry);
1809 pte = pte_offset_map(&_pmd, haddr);
1810 BUG_ON(!pte_none(*pte));
1811 set_pte_at(mm, haddr, pte, entry);
1812 pte_unmap(pte);
1813 }
1814
71e3aac0
AA
1815 smp_wmb(); /* make pte visible before pmd */
1816 /*
1817 * Up to this point the pmd is present and huge and
1818 * userland has the whole access to the hugepage
1819 * during the split (which happens in place). If we
1820 * overwrite the pmd with the not-huge version
1821 * pointing to the pte here (which of course we could
1822 * if all CPUs were bug free), userland could trigger
1823 * a small page size TLB miss on the small sized TLB
1824 * while the hugepage TLB entry is still established
1825 * in the huge TLB. Some CPU doesn't like that. See
1826 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1827 * Erratum 383 on page 93. Intel should be safe but is
1828 * also warns that it's only safe if the permission
1829 * and cache attributes of the two entries loaded in
1830 * the two TLB is identical (which should be the case
1831 * here). But it is generally safer to never allow
1832 * small and huge TLB entries for the same virtual
1833 * address to be loaded simultaneously. So instead of
1834 * doing "pmd_populate(); flush_tlb_range();" we first
1835 * mark the current pmd notpresent (atomically because
1836 * here the pmd_trans_huge and pmd_trans_splitting
1837 * must remain set at all times on the pmd until the
1838 * split is complete for this pmd), then we flush the
1839 * SMP TLB and finally we write the non-huge version
1840 * of the pmd entry with pmd_populate.
1841 */
46dcde73 1842 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1843 pmd_populate(mm, pmd, pgtable);
1844 ret = 1;
117b0791 1845 spin_unlock(ptl);
71e3aac0 1846 }
71e3aac0
AA
1847
1848 return ret;
1849}
1850
5a505085 1851/* must be called with anon_vma->root->rwsem held */
71e3aac0 1852static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1853 struct anon_vma *anon_vma,
1854 struct list_head *list)
71e3aac0
AA
1855{
1856 int mapcount, mapcount2;
bf181b9f 1857 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1858 struct anon_vma_chain *avc;
1859
1860 BUG_ON(!PageHead(page));
1861 BUG_ON(PageTail(page));
1862
1863 mapcount = 0;
bf181b9f 1864 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1865 struct vm_area_struct *vma = avc->vma;
1866 unsigned long addr = vma_address(page, vma);
1867 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1868 mapcount += __split_huge_page_splitting(page, vma, addr);
1869 }
05759d38
AA
1870 /*
1871 * It is critical that new vmas are added to the tail of the
1872 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1873 * and establishes a child pmd before
1874 * __split_huge_page_splitting() freezes the parent pmd (so if
1875 * we fail to prevent copy_huge_pmd() from running until the
1876 * whole __split_huge_page() is complete), we will still see
1877 * the newly established pmd of the child later during the
1878 * walk, to be able to set it as pmd_trans_splitting too.
1879 */
ff9e43eb 1880 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1881 pr_err("mapcount %d page_mapcount %d\n",
1882 mapcount, page_mapcount(page));
ff9e43eb
KS
1883 BUG();
1884 }
71e3aac0 1885
5bc7b8ac 1886 __split_huge_page_refcount(page, list);
71e3aac0
AA
1887
1888 mapcount2 = 0;
bf181b9f 1889 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1890 struct vm_area_struct *vma = avc->vma;
1891 unsigned long addr = vma_address(page, vma);
1892 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1893 mapcount2 += __split_huge_page_map(page, vma, addr);
1894 }
ff9e43eb 1895 if (mapcount != mapcount2) {
ae3a8c1c
AM
1896 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1897 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1898 BUG();
1899 }
71e3aac0
AA
1900}
1901
5bc7b8ac
SL
1902/*
1903 * Split a hugepage into normal pages. This doesn't change the position of head
1904 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1905 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1906 * from the hugepage.
1907 * Return 0 if the hugepage is split successfully otherwise return 1.
1908 */
1909int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1910{
1911 struct anon_vma *anon_vma;
1912 int ret = 1;
1913
5918d10a 1914 BUG_ON(is_huge_zero_page(page));
71e3aac0 1915 BUG_ON(!PageAnon(page));
062f1af2
MG
1916
1917 /*
1918 * The caller does not necessarily hold an mmap_sem that would prevent
1919 * the anon_vma disappearing so we first we take a reference to it
1920 * and then lock the anon_vma for write. This is similar to
1921 * page_lock_anon_vma_read except the write lock is taken to serialise
1922 * against parallel split or collapse operations.
1923 */
1924 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1925 if (!anon_vma)
1926 goto out;
062f1af2
MG
1927 anon_vma_lock_write(anon_vma);
1928
71e3aac0
AA
1929 ret = 0;
1930 if (!PageCompound(page))
1931 goto out_unlock;
1932
1933 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1934 __split_huge_page(page, anon_vma, list);
81ab4201 1935 count_vm_event(THP_SPLIT);
71e3aac0
AA
1936
1937 BUG_ON(PageCompound(page));
1938out_unlock:
08b52706 1939 anon_vma_unlock_write(anon_vma);
062f1af2 1940 put_anon_vma(anon_vma);
71e3aac0
AA
1941out:
1942 return ret;
1943}
1944
9050d7eb 1945#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1946
60ab3244
AA
1947int hugepage_madvise(struct vm_area_struct *vma,
1948 unsigned long *vm_flags, int advice)
0af4e98b 1949{
a664b2d8
AA
1950 switch (advice) {
1951 case MADV_HUGEPAGE:
1e1836e8
AT
1952#ifdef CONFIG_S390
1953 /*
1954 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1955 * can't handle this properly after s390_enable_sie, so we simply
1956 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1957 */
1958 if (mm_has_pgste(vma->vm_mm))
1959 return 0;
1960#endif
a664b2d8
AA
1961 /*
1962 * Be somewhat over-protective like KSM for now!
1963 */
78f11a25 1964 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1965 return -EINVAL;
1966 *vm_flags &= ~VM_NOHUGEPAGE;
1967 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1968 /*
1969 * If the vma become good for khugepaged to scan,
1970 * register it here without waiting a page fault that
1971 * may not happen any time soon.
1972 */
1973 if (unlikely(khugepaged_enter_vma_merge(vma)))
1974 return -ENOMEM;
a664b2d8
AA
1975 break;
1976 case MADV_NOHUGEPAGE:
1977 /*
1978 * Be somewhat over-protective like KSM for now!
1979 */
78f11a25 1980 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1981 return -EINVAL;
1982 *vm_flags &= ~VM_HUGEPAGE;
1983 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1984 /*
1985 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1986 * this vma even if we leave the mm registered in khugepaged if
1987 * it got registered before VM_NOHUGEPAGE was set.
1988 */
a664b2d8
AA
1989 break;
1990 }
0af4e98b
AA
1991
1992 return 0;
1993}
1994
ba76149f
AA
1995static int __init khugepaged_slab_init(void)
1996{
1997 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1998 sizeof(struct mm_slot),
1999 __alignof__(struct mm_slot), 0, NULL);
2000 if (!mm_slot_cache)
2001 return -ENOMEM;
2002
2003 return 0;
2004}
2005
ba76149f
AA
2006static inline struct mm_slot *alloc_mm_slot(void)
2007{
2008 if (!mm_slot_cache) /* initialization failed */
2009 return NULL;
2010 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2011}
2012
2013static inline void free_mm_slot(struct mm_slot *mm_slot)
2014{
2015 kmem_cache_free(mm_slot_cache, mm_slot);
2016}
2017
ba76149f
AA
2018static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2019{
2020 struct mm_slot *mm_slot;
ba76149f 2021
b67bfe0d 2022 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2023 if (mm == mm_slot->mm)
2024 return mm_slot;
43b5fbbd 2025
ba76149f
AA
2026 return NULL;
2027}
2028
2029static void insert_to_mm_slots_hash(struct mm_struct *mm,
2030 struct mm_slot *mm_slot)
2031{
ba76149f 2032 mm_slot->mm = mm;
43b5fbbd 2033 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2034}
2035
2036static inline int khugepaged_test_exit(struct mm_struct *mm)
2037{
2038 return atomic_read(&mm->mm_users) == 0;
2039}
2040
2041int __khugepaged_enter(struct mm_struct *mm)
2042{
2043 struct mm_slot *mm_slot;
2044 int wakeup;
2045
2046 mm_slot = alloc_mm_slot();
2047 if (!mm_slot)
2048 return -ENOMEM;
2049
2050 /* __khugepaged_exit() must not run from under us */
96dad67f 2051 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2052 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2053 free_mm_slot(mm_slot);
2054 return 0;
2055 }
2056
2057 spin_lock(&khugepaged_mm_lock);
2058 insert_to_mm_slots_hash(mm, mm_slot);
2059 /*
2060 * Insert just behind the scanning cursor, to let the area settle
2061 * down a little.
2062 */
2063 wakeup = list_empty(&khugepaged_scan.mm_head);
2064 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2065 spin_unlock(&khugepaged_mm_lock);
2066
2067 atomic_inc(&mm->mm_count);
2068 if (wakeup)
2069 wake_up_interruptible(&khugepaged_wait);
2070
2071 return 0;
2072}
2073
2074int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2075{
2076 unsigned long hstart, hend;
2077 if (!vma->anon_vma)
2078 /*
2079 * Not yet faulted in so we will register later in the
2080 * page fault if needed.
2081 */
2082 return 0;
78f11a25 2083 if (vma->vm_ops)
ba76149f
AA
2084 /* khugepaged not yet working on file or special mappings */
2085 return 0;
81d1b09c 2086 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
ba76149f
AA
2087 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2088 hend = vma->vm_end & HPAGE_PMD_MASK;
2089 if (hstart < hend)
2090 return khugepaged_enter(vma);
2091 return 0;
2092}
2093
2094void __khugepaged_exit(struct mm_struct *mm)
2095{
2096 struct mm_slot *mm_slot;
2097 int free = 0;
2098
2099 spin_lock(&khugepaged_mm_lock);
2100 mm_slot = get_mm_slot(mm);
2101 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2102 hash_del(&mm_slot->hash);
ba76149f
AA
2103 list_del(&mm_slot->mm_node);
2104 free = 1;
2105 }
d788e80a 2106 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2107
2108 if (free) {
ba76149f
AA
2109 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2110 free_mm_slot(mm_slot);
2111 mmdrop(mm);
2112 } else if (mm_slot) {
ba76149f
AA
2113 /*
2114 * This is required to serialize against
2115 * khugepaged_test_exit() (which is guaranteed to run
2116 * under mmap sem read mode). Stop here (after we
2117 * return all pagetables will be destroyed) until
2118 * khugepaged has finished working on the pagetables
2119 * under the mmap_sem.
2120 */
2121 down_write(&mm->mmap_sem);
2122 up_write(&mm->mmap_sem);
d788e80a 2123 }
ba76149f
AA
2124}
2125
2126static void release_pte_page(struct page *page)
2127{
2128 /* 0 stands for page_is_file_cache(page) == false */
2129 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2130 unlock_page(page);
2131 putback_lru_page(page);
2132}
2133
2134static void release_pte_pages(pte_t *pte, pte_t *_pte)
2135{
2136 while (--_pte >= pte) {
2137 pte_t pteval = *_pte;
2138 if (!pte_none(pteval))
2139 release_pte_page(pte_page(pteval));
2140 }
2141}
2142
ba76149f
AA
2143static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2144 unsigned long address,
2145 pte_t *pte)
2146{
2147 struct page *page;
2148 pte_t *_pte;
344aa35c 2149 int referenced = 0, none = 0;
ba76149f
AA
2150 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2151 _pte++, address += PAGE_SIZE) {
2152 pte_t pteval = *_pte;
2153 if (pte_none(pteval)) {
2154 if (++none <= khugepaged_max_ptes_none)
2155 continue;
344aa35c 2156 else
ba76149f 2157 goto out;
ba76149f 2158 }
344aa35c 2159 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2160 goto out;
ba76149f 2161 page = vm_normal_page(vma, address, pteval);
344aa35c 2162 if (unlikely(!page))
ba76149f 2163 goto out;
344aa35c 2164
309381fe
SL
2165 VM_BUG_ON_PAGE(PageCompound(page), page);
2166 VM_BUG_ON_PAGE(!PageAnon(page), page);
2167 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f
AA
2168
2169 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2170 if (page_count(page) != 1)
ba76149f 2171 goto out;
ba76149f
AA
2172 /*
2173 * We can do it before isolate_lru_page because the
2174 * page can't be freed from under us. NOTE: PG_lock
2175 * is needed to serialize against split_huge_page
2176 * when invoked from the VM.
2177 */
344aa35c 2178 if (!trylock_page(page))
ba76149f 2179 goto out;
ba76149f
AA
2180 /*
2181 * Isolate the page to avoid collapsing an hugepage
2182 * currently in use by the VM.
2183 */
2184 if (isolate_lru_page(page)) {
2185 unlock_page(page);
ba76149f
AA
2186 goto out;
2187 }
2188 /* 0 stands for page_is_file_cache(page) == false */
2189 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2190 VM_BUG_ON_PAGE(!PageLocked(page), page);
2191 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2192
2193 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2194 if (pte_young(pteval) || PageReferenced(page) ||
2195 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2196 referenced = 1;
2197 }
344aa35c
BL
2198 if (likely(referenced))
2199 return 1;
ba76149f 2200out:
344aa35c
BL
2201 release_pte_pages(pte, _pte);
2202 return 0;
ba76149f
AA
2203}
2204
2205static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2206 struct vm_area_struct *vma,
2207 unsigned long address,
2208 spinlock_t *ptl)
2209{
2210 pte_t *_pte;
2211 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2212 pte_t pteval = *_pte;
2213 struct page *src_page;
2214
2215 if (pte_none(pteval)) {
2216 clear_user_highpage(page, address);
2217 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2218 } else {
2219 src_page = pte_page(pteval);
2220 copy_user_highpage(page, src_page, address, vma);
309381fe 2221 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2222 release_pte_page(src_page);
2223 /*
2224 * ptl mostly unnecessary, but preempt has to
2225 * be disabled to update the per-cpu stats
2226 * inside page_remove_rmap().
2227 */
2228 spin_lock(ptl);
2229 /*
2230 * paravirt calls inside pte_clear here are
2231 * superfluous.
2232 */
2233 pte_clear(vma->vm_mm, address, _pte);
2234 page_remove_rmap(src_page);
2235 spin_unlock(ptl);
2236 free_page_and_swap_cache(src_page);
2237 }
2238
2239 address += PAGE_SIZE;
2240 page++;
2241 }
2242}
2243
26234f36 2244static void khugepaged_alloc_sleep(void)
ba76149f 2245{
26234f36
XG
2246 wait_event_freezable_timeout(khugepaged_wait, false,
2247 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2248}
ba76149f 2249
9f1b868a
BL
2250static int khugepaged_node_load[MAX_NUMNODES];
2251
14a4e214
DR
2252static bool khugepaged_scan_abort(int nid)
2253{
2254 int i;
2255
2256 /*
2257 * If zone_reclaim_mode is disabled, then no extra effort is made to
2258 * allocate memory locally.
2259 */
2260 if (!zone_reclaim_mode)
2261 return false;
2262
2263 /* If there is a count for this node already, it must be acceptable */
2264 if (khugepaged_node_load[nid])
2265 return false;
2266
2267 for (i = 0; i < MAX_NUMNODES; i++) {
2268 if (!khugepaged_node_load[i])
2269 continue;
2270 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2271 return true;
2272 }
2273 return false;
2274}
2275
26234f36 2276#ifdef CONFIG_NUMA
9f1b868a
BL
2277static int khugepaged_find_target_node(void)
2278{
2279 static int last_khugepaged_target_node = NUMA_NO_NODE;
2280 int nid, target_node = 0, max_value = 0;
2281
2282 /* find first node with max normal pages hit */
2283 for (nid = 0; nid < MAX_NUMNODES; nid++)
2284 if (khugepaged_node_load[nid] > max_value) {
2285 max_value = khugepaged_node_load[nid];
2286 target_node = nid;
2287 }
2288
2289 /* do some balance if several nodes have the same hit record */
2290 if (target_node <= last_khugepaged_target_node)
2291 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2292 nid++)
2293 if (max_value == khugepaged_node_load[nid]) {
2294 target_node = nid;
2295 break;
2296 }
2297
2298 last_khugepaged_target_node = target_node;
2299 return target_node;
2300}
2301
26234f36
XG
2302static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2303{
2304 if (IS_ERR(*hpage)) {
2305 if (!*wait)
2306 return false;
2307
2308 *wait = false;
e3b4126c 2309 *hpage = NULL;
26234f36
XG
2310 khugepaged_alloc_sleep();
2311 } else if (*hpage) {
2312 put_page(*hpage);
2313 *hpage = NULL;
2314 }
2315
2316 return true;
2317}
2318
2319static struct page
2320*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2321 struct vm_area_struct *vma, unsigned long address,
2322 int node)
2323{
309381fe 2324 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2325
ce83d217 2326 /*
8b164568
VB
2327 * Before allocating the hugepage, release the mmap_sem read lock.
2328 * The allocation can take potentially a long time if it involves
2329 * sync compaction, and we do not need to hold the mmap_sem during
2330 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2331 */
8b164568
VB
2332 up_read(&mm->mmap_sem);
2333
9f1b868a
BL
2334 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2335 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
26234f36 2336 if (unlikely(!*hpage)) {
81ab4201 2337 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2338 *hpage = ERR_PTR(-ENOMEM);
26234f36 2339 return NULL;
ce83d217 2340 }
26234f36 2341
65b3c07b 2342 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2343 return *hpage;
2344}
2345#else
9f1b868a
BL
2346static int khugepaged_find_target_node(void)
2347{
2348 return 0;
2349}
2350
10dc4155
BL
2351static inline struct page *alloc_hugepage(int defrag)
2352{
2353 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2354 HPAGE_PMD_ORDER);
2355}
2356
26234f36
XG
2357static struct page *khugepaged_alloc_hugepage(bool *wait)
2358{
2359 struct page *hpage;
2360
2361 do {
2362 hpage = alloc_hugepage(khugepaged_defrag());
2363 if (!hpage) {
2364 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2365 if (!*wait)
2366 return NULL;
2367
2368 *wait = false;
2369 khugepaged_alloc_sleep();
2370 } else
2371 count_vm_event(THP_COLLAPSE_ALLOC);
2372 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2373
2374 return hpage;
2375}
2376
2377static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2378{
2379 if (!*hpage)
2380 *hpage = khugepaged_alloc_hugepage(wait);
2381
2382 if (unlikely(!*hpage))
2383 return false;
2384
2385 return true;
2386}
2387
2388static struct page
2389*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2390 struct vm_area_struct *vma, unsigned long address,
2391 int node)
2392{
2393 up_read(&mm->mmap_sem);
2394 VM_BUG_ON(!*hpage);
2395 return *hpage;
2396}
692e0b35
AA
2397#endif
2398
fa475e51
BL
2399static bool hugepage_vma_check(struct vm_area_struct *vma)
2400{
2401 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2402 (vma->vm_flags & VM_NOHUGEPAGE))
2403 return false;
2404
2405 if (!vma->anon_vma || vma->vm_ops)
2406 return false;
2407 if (is_vma_temporary_stack(vma))
2408 return false;
81d1b09c 2409 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2410 return true;
2411}
2412
26234f36
XG
2413static void collapse_huge_page(struct mm_struct *mm,
2414 unsigned long address,
2415 struct page **hpage,
2416 struct vm_area_struct *vma,
2417 int node)
2418{
26234f36
XG
2419 pmd_t *pmd, _pmd;
2420 pte_t *pte;
2421 pgtable_t pgtable;
2422 struct page *new_page;
c4088ebd 2423 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2424 int isolated;
2425 unsigned long hstart, hend;
00501b53 2426 struct mem_cgroup *memcg;
2ec74c3e
SG
2427 unsigned long mmun_start; /* For mmu_notifiers */
2428 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2429
2430 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2431
2432 /* release the mmap_sem read lock. */
2433 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2434 if (!new_page)
2435 return;
2436
00501b53
JW
2437 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2438 GFP_TRANSHUGE, &memcg)))
ce83d217 2439 return;
ba76149f
AA
2440
2441 /*
2442 * Prevent all access to pagetables with the exception of
2443 * gup_fast later hanlded by the ptep_clear_flush and the VM
2444 * handled by the anon_vma lock + PG_lock.
2445 */
2446 down_write(&mm->mmap_sem);
2447 if (unlikely(khugepaged_test_exit(mm)))
2448 goto out;
2449
2450 vma = find_vma(mm, address);
a8f531eb
L
2451 if (!vma)
2452 goto out;
ba76149f
AA
2453 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2454 hend = vma->vm_end & HPAGE_PMD_MASK;
2455 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2456 goto out;
fa475e51 2457 if (!hugepage_vma_check(vma))
a7d6e4ec 2458 goto out;
6219049a
BL
2459 pmd = mm_find_pmd(mm, address);
2460 if (!pmd)
ba76149f 2461 goto out;
ba76149f 2462
4fc3f1d6 2463 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2464
2465 pte = pte_offset_map(pmd, address);
c4088ebd 2466 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2467
2ec74c3e
SG
2468 mmun_start = address;
2469 mmun_end = address + HPAGE_PMD_SIZE;
2470 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2471 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2472 /*
2473 * After this gup_fast can't run anymore. This also removes
2474 * any huge TLB entry from the CPU so we won't allow
2475 * huge and small TLB entries for the same virtual address
2476 * to avoid the risk of CPU bugs in that area.
2477 */
2ec74c3e 2478 _pmd = pmdp_clear_flush(vma, address, pmd);
c4088ebd 2479 spin_unlock(pmd_ptl);
2ec74c3e 2480 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2481
c4088ebd 2482 spin_lock(pte_ptl);
ba76149f 2483 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2484 spin_unlock(pte_ptl);
ba76149f
AA
2485
2486 if (unlikely(!isolated)) {
453c7192 2487 pte_unmap(pte);
c4088ebd 2488 spin_lock(pmd_ptl);
ba76149f 2489 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2490 /*
2491 * We can only use set_pmd_at when establishing
2492 * hugepmds and never for establishing regular pmds that
2493 * points to regular pagetables. Use pmd_populate for that
2494 */
2495 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2496 spin_unlock(pmd_ptl);
08b52706 2497 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2498 goto out;
ba76149f
AA
2499 }
2500
2501 /*
2502 * All pages are isolated and locked so anon_vma rmap
2503 * can't run anymore.
2504 */
08b52706 2505 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2506
c4088ebd 2507 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2508 pte_unmap(pte);
ba76149f
AA
2509 __SetPageUptodate(new_page);
2510 pgtable = pmd_pgtable(_pmd);
ba76149f 2511
3122359a
KS
2512 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2513 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2514
2515 /*
2516 * spin_lock() below is not the equivalent of smp_wmb(), so
2517 * this is needed to avoid the copy_huge_page writes to become
2518 * visible after the set_pmd_at() write.
2519 */
2520 smp_wmb();
2521
c4088ebd 2522 spin_lock(pmd_ptl);
ba76149f
AA
2523 BUG_ON(!pmd_none(*pmd));
2524 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2525 mem_cgroup_commit_charge(new_page, memcg, false);
2526 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2527 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2528 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2529 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2530 spin_unlock(pmd_ptl);
ba76149f
AA
2531
2532 *hpage = NULL;
420256ef 2533
ba76149f 2534 khugepaged_pages_collapsed++;
ce83d217 2535out_up_write:
ba76149f 2536 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2537 return;
2538
ce83d217 2539out:
00501b53 2540 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2541 goto out_up_write;
ba76149f
AA
2542}
2543
2544static int khugepaged_scan_pmd(struct mm_struct *mm,
2545 struct vm_area_struct *vma,
2546 unsigned long address,
2547 struct page **hpage)
2548{
ba76149f
AA
2549 pmd_t *pmd;
2550 pte_t *pte, *_pte;
2551 int ret = 0, referenced = 0, none = 0;
2552 struct page *page;
2553 unsigned long _address;
2554 spinlock_t *ptl;
00ef2d2f 2555 int node = NUMA_NO_NODE;
ba76149f
AA
2556
2557 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2558
6219049a
BL
2559 pmd = mm_find_pmd(mm, address);
2560 if (!pmd)
ba76149f 2561 goto out;
ba76149f 2562
9f1b868a 2563 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2564 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2565 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2566 _pte++, _address += PAGE_SIZE) {
2567 pte_t pteval = *_pte;
2568 if (pte_none(pteval)) {
2569 if (++none <= khugepaged_max_ptes_none)
2570 continue;
2571 else
2572 goto out_unmap;
2573 }
2574 if (!pte_present(pteval) || !pte_write(pteval))
2575 goto out_unmap;
2576 page = vm_normal_page(vma, _address, pteval);
2577 if (unlikely(!page))
2578 goto out_unmap;
5c4b4be3 2579 /*
9f1b868a
BL
2580 * Record which node the original page is from and save this
2581 * information to khugepaged_node_load[].
2582 * Khupaged will allocate hugepage from the node has the max
2583 * hit record.
5c4b4be3 2584 */
9f1b868a 2585 node = page_to_nid(page);
14a4e214
DR
2586 if (khugepaged_scan_abort(node))
2587 goto out_unmap;
9f1b868a 2588 khugepaged_node_load[node]++;
309381fe 2589 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2590 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2591 goto out_unmap;
2592 /* cannot use mapcount: can't collapse if there's a gup pin */
2593 if (page_count(page) != 1)
2594 goto out_unmap;
8ee53820
AA
2595 if (pte_young(pteval) || PageReferenced(page) ||
2596 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2597 referenced = 1;
2598 }
2599 if (referenced)
2600 ret = 1;
2601out_unmap:
2602 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2603 if (ret) {
2604 node = khugepaged_find_target_node();
ce83d217 2605 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2606 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2607 }
ba76149f
AA
2608out:
2609 return ret;
2610}
2611
2612static void collect_mm_slot(struct mm_slot *mm_slot)
2613{
2614 struct mm_struct *mm = mm_slot->mm;
2615
b9980cdc 2616 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2617
2618 if (khugepaged_test_exit(mm)) {
2619 /* free mm_slot */
43b5fbbd 2620 hash_del(&mm_slot->hash);
ba76149f
AA
2621 list_del(&mm_slot->mm_node);
2622
2623 /*
2624 * Not strictly needed because the mm exited already.
2625 *
2626 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2627 */
2628
2629 /* khugepaged_mm_lock actually not necessary for the below */
2630 free_mm_slot(mm_slot);
2631 mmdrop(mm);
2632 }
2633}
2634
2635static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2636 struct page **hpage)
2f1da642
HS
2637 __releases(&khugepaged_mm_lock)
2638 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2639{
2640 struct mm_slot *mm_slot;
2641 struct mm_struct *mm;
2642 struct vm_area_struct *vma;
2643 int progress = 0;
2644
2645 VM_BUG_ON(!pages);
b9980cdc 2646 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2647
2648 if (khugepaged_scan.mm_slot)
2649 mm_slot = khugepaged_scan.mm_slot;
2650 else {
2651 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2652 struct mm_slot, mm_node);
2653 khugepaged_scan.address = 0;
2654 khugepaged_scan.mm_slot = mm_slot;
2655 }
2656 spin_unlock(&khugepaged_mm_lock);
2657
2658 mm = mm_slot->mm;
2659 down_read(&mm->mmap_sem);
2660 if (unlikely(khugepaged_test_exit(mm)))
2661 vma = NULL;
2662 else
2663 vma = find_vma(mm, khugepaged_scan.address);
2664
2665 progress++;
2666 for (; vma; vma = vma->vm_next) {
2667 unsigned long hstart, hend;
2668
2669 cond_resched();
2670 if (unlikely(khugepaged_test_exit(mm))) {
2671 progress++;
2672 break;
2673 }
fa475e51
BL
2674 if (!hugepage_vma_check(vma)) {
2675skip:
ba76149f
AA
2676 progress++;
2677 continue;
2678 }
ba76149f
AA
2679 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2680 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2681 if (hstart >= hend)
2682 goto skip;
2683 if (khugepaged_scan.address > hend)
2684 goto skip;
ba76149f
AA
2685 if (khugepaged_scan.address < hstart)
2686 khugepaged_scan.address = hstart;
a7d6e4ec 2687 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2688
2689 while (khugepaged_scan.address < hend) {
2690 int ret;
2691 cond_resched();
2692 if (unlikely(khugepaged_test_exit(mm)))
2693 goto breakouterloop;
2694
2695 VM_BUG_ON(khugepaged_scan.address < hstart ||
2696 khugepaged_scan.address + HPAGE_PMD_SIZE >
2697 hend);
2698 ret = khugepaged_scan_pmd(mm, vma,
2699 khugepaged_scan.address,
2700 hpage);
2701 /* move to next address */
2702 khugepaged_scan.address += HPAGE_PMD_SIZE;
2703 progress += HPAGE_PMD_NR;
2704 if (ret)
2705 /* we released mmap_sem so break loop */
2706 goto breakouterloop_mmap_sem;
2707 if (progress >= pages)
2708 goto breakouterloop;
2709 }
2710 }
2711breakouterloop:
2712 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2713breakouterloop_mmap_sem:
2714
2715 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2716 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2717 /*
2718 * Release the current mm_slot if this mm is about to die, or
2719 * if we scanned all vmas of this mm.
2720 */
2721 if (khugepaged_test_exit(mm) || !vma) {
2722 /*
2723 * Make sure that if mm_users is reaching zero while
2724 * khugepaged runs here, khugepaged_exit will find
2725 * mm_slot not pointing to the exiting mm.
2726 */
2727 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2728 khugepaged_scan.mm_slot = list_entry(
2729 mm_slot->mm_node.next,
2730 struct mm_slot, mm_node);
2731 khugepaged_scan.address = 0;
2732 } else {
2733 khugepaged_scan.mm_slot = NULL;
2734 khugepaged_full_scans++;
2735 }
2736
2737 collect_mm_slot(mm_slot);
2738 }
2739
2740 return progress;
2741}
2742
2743static int khugepaged_has_work(void)
2744{
2745 return !list_empty(&khugepaged_scan.mm_head) &&
2746 khugepaged_enabled();
2747}
2748
2749static int khugepaged_wait_event(void)
2750{
2751 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2752 kthread_should_stop();
ba76149f
AA
2753}
2754
d516904b 2755static void khugepaged_do_scan(void)
ba76149f 2756{
d516904b 2757 struct page *hpage = NULL;
ba76149f
AA
2758 unsigned int progress = 0, pass_through_head = 0;
2759 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2760 bool wait = true;
ba76149f
AA
2761
2762 barrier(); /* write khugepaged_pages_to_scan to local stack */
2763
2764 while (progress < pages) {
26234f36 2765 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2766 break;
26234f36 2767
420256ef 2768 cond_resched();
ba76149f 2769
878aee7d
AA
2770 if (unlikely(kthread_should_stop() || freezing(current)))
2771 break;
2772
ba76149f
AA
2773 spin_lock(&khugepaged_mm_lock);
2774 if (!khugepaged_scan.mm_slot)
2775 pass_through_head++;
2776 if (khugepaged_has_work() &&
2777 pass_through_head < 2)
2778 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2779 &hpage);
ba76149f
AA
2780 else
2781 progress = pages;
2782 spin_unlock(&khugepaged_mm_lock);
2783 }
ba76149f 2784
d516904b
XG
2785 if (!IS_ERR_OR_NULL(hpage))
2786 put_page(hpage);
0bbbc0b3
AA
2787}
2788
2017c0bf
XG
2789static void khugepaged_wait_work(void)
2790{
2791 try_to_freeze();
2792
2793 if (khugepaged_has_work()) {
2794 if (!khugepaged_scan_sleep_millisecs)
2795 return;
2796
2797 wait_event_freezable_timeout(khugepaged_wait,
2798 kthread_should_stop(),
2799 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2800 return;
2801 }
2802
2803 if (khugepaged_enabled())
2804 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2805}
2806
ba76149f
AA
2807static int khugepaged(void *none)
2808{
2809 struct mm_slot *mm_slot;
2810
878aee7d 2811 set_freezable();
8698a745 2812 set_user_nice(current, MAX_NICE);
ba76149f 2813
b7231789
XG
2814 while (!kthread_should_stop()) {
2815 khugepaged_do_scan();
2816 khugepaged_wait_work();
2817 }
ba76149f
AA
2818
2819 spin_lock(&khugepaged_mm_lock);
2820 mm_slot = khugepaged_scan.mm_slot;
2821 khugepaged_scan.mm_slot = NULL;
2822 if (mm_slot)
2823 collect_mm_slot(mm_slot);
2824 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2825 return 0;
2826}
2827
c5a647d0
KS
2828static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2829 unsigned long haddr, pmd_t *pmd)
2830{
2831 struct mm_struct *mm = vma->vm_mm;
2832 pgtable_t pgtable;
2833 pmd_t _pmd;
2834 int i;
2835
2836 pmdp_clear_flush(vma, haddr, pmd);
2837 /* leave pmd empty until pte is filled */
2838
6b0b50b0 2839 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2840 pmd_populate(mm, &_pmd, pgtable);
2841
2842 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2843 pte_t *pte, entry;
2844 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2845 entry = pte_mkspecial(entry);
2846 pte = pte_offset_map(&_pmd, haddr);
2847 VM_BUG_ON(!pte_none(*pte));
2848 set_pte_at(mm, haddr, pte, entry);
2849 pte_unmap(pte);
2850 }
2851 smp_wmb(); /* make pte visible before pmd */
2852 pmd_populate(mm, pmd, pgtable);
97ae1749 2853 put_huge_zero_page();
c5a647d0
KS
2854}
2855
e180377f
KS
2856void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2857 pmd_t *pmd)
71e3aac0 2858{
c4088ebd 2859 spinlock_t *ptl;
71e3aac0 2860 struct page *page;
e180377f 2861 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2862 unsigned long haddr = address & HPAGE_PMD_MASK;
2863 unsigned long mmun_start; /* For mmu_notifiers */
2864 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2865
2866 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2867
c5a647d0
KS
2868 mmun_start = haddr;
2869 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2870again:
c5a647d0 2871 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2872 ptl = pmd_lock(mm, pmd);
71e3aac0 2873 if (unlikely(!pmd_trans_huge(*pmd))) {
c4088ebd 2874 spin_unlock(ptl);
c5a647d0
KS
2875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2876 return;
2877 }
2878 if (is_huge_zero_pmd(*pmd)) {
2879 __split_huge_zero_page_pmd(vma, haddr, pmd);
c4088ebd 2880 spin_unlock(ptl);
c5a647d0 2881 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2882 return;
2883 }
2884 page = pmd_page(*pmd);
309381fe 2885 VM_BUG_ON_PAGE(!page_count(page), page);
71e3aac0 2886 get_page(page);
c4088ebd 2887 spin_unlock(ptl);
c5a647d0 2888 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2889
2890 split_huge_page(page);
2891
2892 put_page(page);
750e8165
HD
2893
2894 /*
2895 * We don't always have down_write of mmap_sem here: a racing
2896 * do_huge_pmd_wp_page() might have copied-on-write to another
2897 * huge page before our split_huge_page() got the anon_vma lock.
2898 */
2899 if (unlikely(pmd_trans_huge(*pmd)))
2900 goto again;
71e3aac0 2901}
94fcc585 2902
e180377f
KS
2903void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2904 pmd_t *pmd)
2905{
2906 struct vm_area_struct *vma;
2907
2908 vma = find_vma(mm, address);
2909 BUG_ON(vma == NULL);
2910 split_huge_page_pmd(vma, address, pmd);
2911}
2912
94fcc585
AA
2913static void split_huge_page_address(struct mm_struct *mm,
2914 unsigned long address)
2915{
f72e7dcd
HD
2916 pgd_t *pgd;
2917 pud_t *pud;
94fcc585
AA
2918 pmd_t *pmd;
2919
2920 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2921
f72e7dcd
HD
2922 pgd = pgd_offset(mm, address);
2923 if (!pgd_present(*pgd))
2924 return;
2925
2926 pud = pud_offset(pgd, address);
2927 if (!pud_present(*pud))
2928 return;
2929
2930 pmd = pmd_offset(pud, address);
2931 if (!pmd_present(*pmd))
94fcc585
AA
2932 return;
2933 /*
2934 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2935 * materialize from under us.
2936 */
e180377f 2937 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2938}
2939
2940void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2941 unsigned long start,
2942 unsigned long end,
2943 long adjust_next)
2944{
2945 /*
2946 * If the new start address isn't hpage aligned and it could
2947 * previously contain an hugepage: check if we need to split
2948 * an huge pmd.
2949 */
2950 if (start & ~HPAGE_PMD_MASK &&
2951 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2952 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2953 split_huge_page_address(vma->vm_mm, start);
2954
2955 /*
2956 * If the new end address isn't hpage aligned and it could
2957 * previously contain an hugepage: check if we need to split
2958 * an huge pmd.
2959 */
2960 if (end & ~HPAGE_PMD_MASK &&
2961 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2962 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2963 split_huge_page_address(vma->vm_mm, end);
2964
2965 /*
2966 * If we're also updating the vma->vm_next->vm_start, if the new
2967 * vm_next->vm_start isn't page aligned and it could previously
2968 * contain an hugepage: check if we need to split an huge pmd.
2969 */
2970 if (adjust_next > 0) {
2971 struct vm_area_struct *next = vma->vm_next;
2972 unsigned long nstart = next->vm_start;
2973 nstart += adjust_next << PAGE_SHIFT;
2974 if (nstart & ~HPAGE_PMD_MASK &&
2975 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2976 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2977 split_huge_page_address(next->vm_mm, nstart);
2978 }
2979}