]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm: sched: numa: Implement slow start for working set sampling
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
325adeb5 20#include <linux/pagemap.h>
4daae3b4 21#include <linux/migrate.h>
71e3aac0
AA
22#include <asm/tlb.h>
23#include <asm/pgalloc.h>
24#include "internal.h"
25
ba76149f
AA
26/*
27 * By default transparent hugepage support is enabled for all mappings
28 * and khugepaged scans all mappings. Defrag is only invoked by
29 * khugepaged hugepage allocations and by page faults inside
30 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
31 * allocations.
32 */
71e3aac0 33unsigned long transparent_hugepage_flags __read_mostly =
13ece886 34#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 35 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
36#endif
37#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
38 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
39#endif
d39d33c3 40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
41 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
42
43/* default scan 8*512 pte (or vmas) every 30 second */
44static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
45static unsigned int khugepaged_pages_collapsed;
46static unsigned int khugepaged_full_scans;
47static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
48/* during fragmentation poll the hugepage allocator once every minute */
49static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
50static struct task_struct *khugepaged_thread __read_mostly;
51static DEFINE_MUTEX(khugepaged_mutex);
52static DEFINE_SPINLOCK(khugepaged_mm_lock);
53static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54/*
55 * default collapse hugepages if there is at least one pte mapped like
56 * it would have happened if the vma was large enough during page
57 * fault.
58 */
59static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61static int khugepaged(void *none);
62static int mm_slots_hash_init(void);
63static int khugepaged_slab_init(void);
64static void khugepaged_slab_free(void);
65
66#define MM_SLOTS_HASH_HEADS 1024
67static struct hlist_head *mm_slots_hash __read_mostly;
68static struct kmem_cache *mm_slot_cache __read_mostly;
69
70/**
71 * struct mm_slot - hash lookup from mm to mm_slot
72 * @hash: hash collision list
73 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74 * @mm: the mm that this information is valid for
75 */
76struct mm_slot {
77 struct hlist_node hash;
78 struct list_head mm_node;
79 struct mm_struct *mm;
80};
81
82/**
83 * struct khugepaged_scan - cursor for scanning
84 * @mm_head: the head of the mm list to scan
85 * @mm_slot: the current mm_slot we are scanning
86 * @address: the next address inside that to be scanned
87 *
88 * There is only the one khugepaged_scan instance of this cursor structure.
89 */
90struct khugepaged_scan {
91 struct list_head mm_head;
92 struct mm_slot *mm_slot;
93 unsigned long address;
2f1da642
HS
94};
95static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
96 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97};
98
f000565a
AA
99
100static int set_recommended_min_free_kbytes(void)
101{
102 struct zone *zone;
103 int nr_zones = 0;
104 unsigned long recommended_min;
105 extern int min_free_kbytes;
106
17c230af 107 if (!khugepaged_enabled())
f000565a
AA
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
ba76149f
AA
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
ba76149f
AA
141 if (!khugepaged_thread)
142 khugepaged_thread = kthread_run(khugepaged, NULL,
143 "khugepaged");
144 if (unlikely(IS_ERR(khugepaged_thread))) {
145 printk(KERN_ERR
146 "khugepaged: kthread_run(khugepaged) failed\n");
147 err = PTR_ERR(khugepaged_thread);
148 khugepaged_thread = NULL;
149 }
911891af
XG
150
151 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 152 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
153
154 set_recommended_min_free_kbytes();
911891af 155 } else if (khugepaged_thread) {
911891af
XG
156 kthread_stop(khugepaged_thread);
157 khugepaged_thread = NULL;
158 }
637e3a27 159
ba76149f
AA
160 return err;
161}
71e3aac0
AA
162
163#ifdef CONFIG_SYSFS
ba76149f 164
71e3aac0
AA
165static ssize_t double_flag_show(struct kobject *kobj,
166 struct kobj_attribute *attr, char *buf,
167 enum transparent_hugepage_flag enabled,
168 enum transparent_hugepage_flag req_madv)
169{
170 if (test_bit(enabled, &transparent_hugepage_flags)) {
171 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
172 return sprintf(buf, "[always] madvise never\n");
173 } else if (test_bit(req_madv, &transparent_hugepage_flags))
174 return sprintf(buf, "always [madvise] never\n");
175 else
176 return sprintf(buf, "always madvise [never]\n");
177}
178static ssize_t double_flag_store(struct kobject *kobj,
179 struct kobj_attribute *attr,
180 const char *buf, size_t count,
181 enum transparent_hugepage_flag enabled,
182 enum transparent_hugepage_flag req_madv)
183{
184 if (!memcmp("always", buf,
185 min(sizeof("always")-1, count))) {
186 set_bit(enabled, &transparent_hugepage_flags);
187 clear_bit(req_madv, &transparent_hugepage_flags);
188 } else if (!memcmp("madvise", buf,
189 min(sizeof("madvise")-1, count))) {
190 clear_bit(enabled, &transparent_hugepage_flags);
191 set_bit(req_madv, &transparent_hugepage_flags);
192 } else if (!memcmp("never", buf,
193 min(sizeof("never")-1, count))) {
194 clear_bit(enabled, &transparent_hugepage_flags);
195 clear_bit(req_madv, &transparent_hugepage_flags);
196 } else
197 return -EINVAL;
198
199 return count;
200}
201
202static ssize_t enabled_show(struct kobject *kobj,
203 struct kobj_attribute *attr, char *buf)
204{
205 return double_flag_show(kobj, attr, buf,
206 TRANSPARENT_HUGEPAGE_FLAG,
207 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
208}
209static ssize_t enabled_store(struct kobject *kobj,
210 struct kobj_attribute *attr,
211 const char *buf, size_t count)
212{
ba76149f
AA
213 ssize_t ret;
214
215 ret = double_flag_store(kobj, attr, buf, count,
216 TRANSPARENT_HUGEPAGE_FLAG,
217 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
218
219 if (ret > 0) {
911891af
XG
220 int err;
221
222 mutex_lock(&khugepaged_mutex);
223 err = start_khugepaged();
224 mutex_unlock(&khugepaged_mutex);
225
ba76149f
AA
226 if (err)
227 ret = err;
228 }
229
230 return ret;
71e3aac0
AA
231}
232static struct kobj_attribute enabled_attr =
233 __ATTR(enabled, 0644, enabled_show, enabled_store);
234
235static ssize_t single_flag_show(struct kobject *kobj,
236 struct kobj_attribute *attr, char *buf,
237 enum transparent_hugepage_flag flag)
238{
e27e6151
BH
239 return sprintf(buf, "%d\n",
240 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 241}
e27e6151 242
71e3aac0
AA
243static ssize_t single_flag_store(struct kobject *kobj,
244 struct kobj_attribute *attr,
245 const char *buf, size_t count,
246 enum transparent_hugepage_flag flag)
247{
e27e6151
BH
248 unsigned long value;
249 int ret;
250
251 ret = kstrtoul(buf, 10, &value);
252 if (ret < 0)
253 return ret;
254 if (value > 1)
255 return -EINVAL;
256
257 if (value)
71e3aac0 258 set_bit(flag, &transparent_hugepage_flags);
e27e6151 259 else
71e3aac0 260 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
261
262 return count;
263}
264
265/*
266 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
267 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
268 * memory just to allocate one more hugepage.
269 */
270static ssize_t defrag_show(struct kobject *kobj,
271 struct kobj_attribute *attr, char *buf)
272{
273 return double_flag_show(kobj, attr, buf,
274 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
275 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
276}
277static ssize_t defrag_store(struct kobject *kobj,
278 struct kobj_attribute *attr,
279 const char *buf, size_t count)
280{
281 return double_flag_store(kobj, attr, buf, count,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static struct kobj_attribute defrag_attr =
286 __ATTR(defrag, 0644, defrag_show, defrag_store);
287
288#ifdef CONFIG_DEBUG_VM
289static ssize_t debug_cow_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291{
292 return single_flag_show(kobj, attr, buf,
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294}
295static ssize_t debug_cow_store(struct kobject *kobj,
296 struct kobj_attribute *attr,
297 const char *buf, size_t count)
298{
299 return single_flag_store(kobj, attr, buf, count,
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301}
302static struct kobj_attribute debug_cow_attr =
303 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304#endif /* CONFIG_DEBUG_VM */
305
306static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
309#ifdef CONFIG_DEBUG_VM
310 &debug_cow_attr.attr,
311#endif
312 NULL,
313};
314
315static struct attribute_group hugepage_attr_group = {
316 .attrs = hugepage_attr,
ba76149f
AA
317};
318
319static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 char *buf)
322{
323 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
324}
325
326static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
327 struct kobj_attribute *attr,
328 const char *buf, size_t count)
329{
330 unsigned long msecs;
331 int err;
332
333 err = strict_strtoul(buf, 10, &msecs);
334 if (err || msecs > UINT_MAX)
335 return -EINVAL;
336
337 khugepaged_scan_sleep_millisecs = msecs;
338 wake_up_interruptible(&khugepaged_wait);
339
340 return count;
341}
342static struct kobj_attribute scan_sleep_millisecs_attr =
343 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
344 scan_sleep_millisecs_store);
345
346static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
347 struct kobj_attribute *attr,
348 char *buf)
349{
350 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
351}
352
353static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
354 struct kobj_attribute *attr,
355 const char *buf, size_t count)
356{
357 unsigned long msecs;
358 int err;
359
360 err = strict_strtoul(buf, 10, &msecs);
361 if (err || msecs > UINT_MAX)
362 return -EINVAL;
363
364 khugepaged_alloc_sleep_millisecs = msecs;
365 wake_up_interruptible(&khugepaged_wait);
366
367 return count;
368}
369static struct kobj_attribute alloc_sleep_millisecs_attr =
370 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
371 alloc_sleep_millisecs_store);
372
373static ssize_t pages_to_scan_show(struct kobject *kobj,
374 struct kobj_attribute *attr,
375 char *buf)
376{
377 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
378}
379static ssize_t pages_to_scan_store(struct kobject *kobj,
380 struct kobj_attribute *attr,
381 const char *buf, size_t count)
382{
383 int err;
384 unsigned long pages;
385
386 err = strict_strtoul(buf, 10, &pages);
387 if (err || !pages || pages > UINT_MAX)
388 return -EINVAL;
389
390 khugepaged_pages_to_scan = pages;
391
392 return count;
393}
394static struct kobj_attribute pages_to_scan_attr =
395 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
396 pages_to_scan_store);
397
398static ssize_t pages_collapsed_show(struct kobject *kobj,
399 struct kobj_attribute *attr,
400 char *buf)
401{
402 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
403}
404static struct kobj_attribute pages_collapsed_attr =
405 __ATTR_RO(pages_collapsed);
406
407static ssize_t full_scans_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_full_scans);
412}
413static struct kobj_attribute full_scans_attr =
414 __ATTR_RO(full_scans);
415
416static ssize_t khugepaged_defrag_show(struct kobject *kobj,
417 struct kobj_attribute *attr, char *buf)
418{
419 return single_flag_show(kobj, attr, buf,
420 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
421}
422static ssize_t khugepaged_defrag_store(struct kobject *kobj,
423 struct kobj_attribute *attr,
424 const char *buf, size_t count)
425{
426 return single_flag_store(kobj, attr, buf, count,
427 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
428}
429static struct kobj_attribute khugepaged_defrag_attr =
430 __ATTR(defrag, 0644, khugepaged_defrag_show,
431 khugepaged_defrag_store);
432
433/*
434 * max_ptes_none controls if khugepaged should collapse hugepages over
435 * any unmapped ptes in turn potentially increasing the memory
436 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
437 * reduce the available free memory in the system as it
438 * runs. Increasing max_ptes_none will instead potentially reduce the
439 * free memory in the system during the khugepaged scan.
440 */
441static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444{
445 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
446}
447static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
448 struct kobj_attribute *attr,
449 const char *buf, size_t count)
450{
451 int err;
452 unsigned long max_ptes_none;
453
454 err = strict_strtoul(buf, 10, &max_ptes_none);
455 if (err || max_ptes_none > HPAGE_PMD_NR-1)
456 return -EINVAL;
457
458 khugepaged_max_ptes_none = max_ptes_none;
459
460 return count;
461}
462static struct kobj_attribute khugepaged_max_ptes_none_attr =
463 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
464 khugepaged_max_ptes_none_store);
465
466static struct attribute *khugepaged_attr[] = {
467 &khugepaged_defrag_attr.attr,
468 &khugepaged_max_ptes_none_attr.attr,
469 &pages_to_scan_attr.attr,
470 &pages_collapsed_attr.attr,
471 &full_scans_attr.attr,
472 &scan_sleep_millisecs_attr.attr,
473 &alloc_sleep_millisecs_attr.attr,
474 NULL,
475};
476
477static struct attribute_group khugepaged_attr_group = {
478 .attrs = khugepaged_attr,
479 .name = "khugepaged",
71e3aac0 480};
71e3aac0 481
569e5590 482static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 483{
71e3aac0
AA
484 int err;
485
569e5590
SL
486 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
487 if (unlikely(!*hugepage_kobj)) {
ba76149f 488 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 489 return -ENOMEM;
ba76149f
AA
490 }
491
569e5590 492 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
493 if (err) {
494 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 495 goto delete_obj;
ba76149f
AA
496 }
497
569e5590 498 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
499 if (err) {
500 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 501 goto remove_hp_group;
ba76149f 502 }
569e5590
SL
503
504 return 0;
505
506remove_hp_group:
507 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
508delete_obj:
509 kobject_put(*hugepage_kobj);
510 return err;
511}
512
513static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
514{
515 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
516 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
517 kobject_put(hugepage_kobj);
518}
519#else
520static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
521{
522 return 0;
523}
524
525static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
526{
527}
528#endif /* CONFIG_SYSFS */
529
530static int __init hugepage_init(void)
531{
532 int err;
533 struct kobject *hugepage_kobj;
534
535 if (!has_transparent_hugepage()) {
536 transparent_hugepage_flags = 0;
537 return -EINVAL;
538 }
539
540 err = hugepage_init_sysfs(&hugepage_kobj);
541 if (err)
542 return err;
ba76149f
AA
543
544 err = khugepaged_slab_init();
545 if (err)
546 goto out;
547
548 err = mm_slots_hash_init();
549 if (err) {
550 khugepaged_slab_free();
551 goto out;
552 }
553
97562cd2
RR
554 /*
555 * By default disable transparent hugepages on smaller systems,
556 * where the extra memory used could hurt more than TLB overhead
557 * is likely to save. The admin can still enable it through /sys.
558 */
559 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
560 transparent_hugepage_flags = 0;
561
ba76149f
AA
562 start_khugepaged();
563
569e5590 564 return 0;
ba76149f 565out:
569e5590 566 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 567 return err;
71e3aac0
AA
568}
569module_init(hugepage_init)
570
571static int __init setup_transparent_hugepage(char *str)
572{
573 int ret = 0;
574 if (!str)
575 goto out;
576 if (!strcmp(str, "always")) {
577 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
578 &transparent_hugepage_flags);
579 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
580 &transparent_hugepage_flags);
581 ret = 1;
582 } else if (!strcmp(str, "madvise")) {
583 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
584 &transparent_hugepage_flags);
585 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
586 &transparent_hugepage_flags);
587 ret = 1;
588 } else if (!strcmp(str, "never")) {
589 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
590 &transparent_hugepage_flags);
591 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
592 &transparent_hugepage_flags);
593 ret = 1;
594 }
595out:
596 if (!ret)
597 printk(KERN_WARNING
598 "transparent_hugepage= cannot parse, ignored\n");
599 return ret;
600}
601__setup("transparent_hugepage=", setup_transparent_hugepage);
602
71e3aac0
AA
603static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
604{
605 if (likely(vma->vm_flags & VM_WRITE))
606 pmd = pmd_mkwrite(pmd);
607 return pmd;
608}
609
610static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
611 struct vm_area_struct *vma,
612 unsigned long haddr, pmd_t *pmd,
613 struct page *page)
614{
71e3aac0
AA
615 pgtable_t pgtable;
616
617 VM_BUG_ON(!PageCompound(page));
618 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 619 if (unlikely(!pgtable))
71e3aac0 620 return VM_FAULT_OOM;
71e3aac0
AA
621
622 clear_huge_page(page, haddr, HPAGE_PMD_NR);
623 __SetPageUptodate(page);
624
625 spin_lock(&mm->page_table_lock);
626 if (unlikely(!pmd_none(*pmd))) {
627 spin_unlock(&mm->page_table_lock);
b9bbfbe3 628 mem_cgroup_uncharge_page(page);
71e3aac0
AA
629 put_page(page);
630 pte_free(mm, pgtable);
631 } else {
632 pmd_t entry;
633 entry = mk_pmd(page, vma->vm_page_prot);
634 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
635 entry = pmd_mkhuge(entry);
636 /*
637 * The spinlocking to take the lru_lock inside
638 * page_add_new_anon_rmap() acts as a full memory
639 * barrier to be sure clear_huge_page writes become
640 * visible after the set_pmd_at() write.
641 */
642 page_add_new_anon_rmap(page, vma, haddr);
643 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 644 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 645 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 646 mm->nr_ptes++;
71e3aac0
AA
647 spin_unlock(&mm->page_table_lock);
648 }
649
aa2e878e 650 return 0;
71e3aac0
AA
651}
652
cc5d462f 653static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 654{
cc5d462f 655 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
656}
657
658static inline struct page *alloc_hugepage_vma(int defrag,
659 struct vm_area_struct *vma,
cc5d462f
AK
660 unsigned long haddr, int nd,
661 gfp_t extra_gfp)
0bbbc0b3 662{
cc5d462f 663 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 664 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
665}
666
667#ifndef CONFIG_NUMA
71e3aac0
AA
668static inline struct page *alloc_hugepage(int defrag)
669{
cc5d462f 670 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
671 HPAGE_PMD_ORDER);
672}
0bbbc0b3 673#endif
71e3aac0
AA
674
675int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
676 unsigned long address, pmd_t *pmd,
677 unsigned int flags)
678{
679 struct page *page;
680 unsigned long haddr = address & HPAGE_PMD_MASK;
681 pte_t *pte;
682
683 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
684 if (unlikely(anon_vma_prepare(vma)))
685 return VM_FAULT_OOM;
ba76149f
AA
686 if (unlikely(khugepaged_enter(vma)))
687 return VM_FAULT_OOM;
0bbbc0b3 688 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 689 vma, haddr, numa_node_id(), 0);
81ab4201
AK
690 if (unlikely(!page)) {
691 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 692 goto out;
81ab4201
AK
693 }
694 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
695 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
696 put_page(page);
697 goto out;
698 }
edad9d2c
DR
699 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
700 page))) {
701 mem_cgroup_uncharge_page(page);
702 put_page(page);
703 goto out;
704 }
71e3aac0 705
edad9d2c 706 return 0;
71e3aac0
AA
707 }
708out:
709 /*
710 * Use __pte_alloc instead of pte_alloc_map, because we can't
711 * run pte_offset_map on the pmd, if an huge pmd could
712 * materialize from under us from a different thread.
713 */
4fd01770
MG
714 if (unlikely(pmd_none(*pmd)) &&
715 unlikely(__pte_alloc(mm, vma, pmd, address)))
71e3aac0
AA
716 return VM_FAULT_OOM;
717 /* if an huge pmd materialized from under us just retry later */
718 if (unlikely(pmd_trans_huge(*pmd)))
719 return 0;
720 /*
721 * A regular pmd is established and it can't morph into a huge pmd
722 * from under us anymore at this point because we hold the mmap_sem
723 * read mode and khugepaged takes it in write mode. So now it's
724 * safe to run pte_offset_map().
725 */
726 pte = pte_offset_map(pmd, address);
727 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
728}
729
730int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
731 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
732 struct vm_area_struct *vma)
733{
734 struct page *src_page;
735 pmd_t pmd;
736 pgtable_t pgtable;
737 int ret;
738
739 ret = -ENOMEM;
740 pgtable = pte_alloc_one(dst_mm, addr);
741 if (unlikely(!pgtable))
742 goto out;
743
744 spin_lock(&dst_mm->page_table_lock);
745 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
746
747 ret = -EAGAIN;
748 pmd = *src_pmd;
749 if (unlikely(!pmd_trans_huge(pmd))) {
750 pte_free(dst_mm, pgtable);
751 goto out_unlock;
752 }
753 if (unlikely(pmd_trans_splitting(pmd))) {
754 /* split huge page running from under us */
755 spin_unlock(&src_mm->page_table_lock);
756 spin_unlock(&dst_mm->page_table_lock);
757 pte_free(dst_mm, pgtable);
758
759 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
760 goto out;
761 }
762 src_page = pmd_page(pmd);
763 VM_BUG_ON(!PageHead(src_page));
764 get_page(src_page);
765 page_dup_rmap(src_page);
766 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
767
768 pmdp_set_wrprotect(src_mm, addr, src_pmd);
769 pmd = pmd_mkold(pmd_wrprotect(pmd));
770 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 771 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 772 dst_mm->nr_ptes++;
71e3aac0
AA
773
774 ret = 0;
775out_unlock:
776 spin_unlock(&src_mm->page_table_lock);
777 spin_unlock(&dst_mm->page_table_lock);
778out:
779 return ret;
780}
781
71e3aac0
AA
782static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
783 struct vm_area_struct *vma,
784 unsigned long address,
785 pmd_t *pmd, pmd_t orig_pmd,
786 struct page *page,
787 unsigned long haddr)
788{
789 pgtable_t pgtable;
790 pmd_t _pmd;
791 int ret = 0, i;
792 struct page **pages;
2ec74c3e
SG
793 unsigned long mmun_start; /* For mmu_notifiers */
794 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
795
796 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
797 GFP_KERNEL);
798 if (unlikely(!pages)) {
799 ret |= VM_FAULT_OOM;
800 goto out;
801 }
802
803 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
804 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
805 __GFP_OTHER_NODE,
19ee151e 806 vma, address, page_to_nid(page));
b9bbfbe3
AA
807 if (unlikely(!pages[i] ||
808 mem_cgroup_newpage_charge(pages[i], mm,
809 GFP_KERNEL))) {
810 if (pages[i])
71e3aac0 811 put_page(pages[i]);
b9bbfbe3
AA
812 mem_cgroup_uncharge_start();
813 while (--i >= 0) {
814 mem_cgroup_uncharge_page(pages[i]);
815 put_page(pages[i]);
816 }
817 mem_cgroup_uncharge_end();
71e3aac0
AA
818 kfree(pages);
819 ret |= VM_FAULT_OOM;
820 goto out;
821 }
822 }
823
824 for (i = 0; i < HPAGE_PMD_NR; i++) {
825 copy_user_highpage(pages[i], page + i,
0089e485 826 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
827 __SetPageUptodate(pages[i]);
828 cond_resched();
829 }
830
2ec74c3e
SG
831 mmun_start = haddr;
832 mmun_end = haddr + HPAGE_PMD_SIZE;
833 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
834
71e3aac0
AA
835 spin_lock(&mm->page_table_lock);
836 if (unlikely(!pmd_same(*pmd, orig_pmd)))
837 goto out_free_pages;
838 VM_BUG_ON(!PageHead(page));
839
2ec74c3e 840 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
841 /* leave pmd empty until pte is filled */
842
e3ebcf64 843 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
844 pmd_populate(mm, &_pmd, pgtable);
845
846 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
847 pte_t *pte, entry;
848 entry = mk_pte(pages[i], vma->vm_page_prot);
849 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
850 page_add_new_anon_rmap(pages[i], vma, haddr);
851 pte = pte_offset_map(&_pmd, haddr);
852 VM_BUG_ON(!pte_none(*pte));
853 set_pte_at(mm, haddr, pte, entry);
854 pte_unmap(pte);
855 }
856 kfree(pages);
857
71e3aac0
AA
858 smp_wmb(); /* make pte visible before pmd */
859 pmd_populate(mm, pmd, pgtable);
860 page_remove_rmap(page);
861 spin_unlock(&mm->page_table_lock);
862
2ec74c3e
SG
863 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
864
71e3aac0
AA
865 ret |= VM_FAULT_WRITE;
866 put_page(page);
867
868out:
869 return ret;
870
871out_free_pages:
872 spin_unlock(&mm->page_table_lock);
2ec74c3e 873 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
874 mem_cgroup_uncharge_start();
875 for (i = 0; i < HPAGE_PMD_NR; i++) {
876 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 877 put_page(pages[i]);
b9bbfbe3
AA
878 }
879 mem_cgroup_uncharge_end();
71e3aac0
AA
880 kfree(pages);
881 goto out;
882}
883
884int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
885 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
886{
887 int ret = 0;
888 struct page *page, *new_page;
889 unsigned long haddr;
2ec74c3e
SG
890 unsigned long mmun_start; /* For mmu_notifiers */
891 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
892
893 VM_BUG_ON(!vma->anon_vma);
894 spin_lock(&mm->page_table_lock);
895 if (unlikely(!pmd_same(*pmd, orig_pmd)))
896 goto out_unlock;
897
898 page = pmd_page(orig_pmd);
899 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
900 haddr = address & HPAGE_PMD_MASK;
901 if (page_mapcount(page) == 1) {
902 pmd_t entry;
903 entry = pmd_mkyoung(orig_pmd);
904 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
905 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 906 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
907 ret |= VM_FAULT_WRITE;
908 goto out_unlock;
909 }
910 get_page(page);
911 spin_unlock(&mm->page_table_lock);
912
913 if (transparent_hugepage_enabled(vma) &&
914 !transparent_hugepage_debug_cow())
0bbbc0b3 915 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 916 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
917 else
918 new_page = NULL;
919
920 if (unlikely(!new_page)) {
81ab4201 921 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
922 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
923 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
924 if (ret & VM_FAULT_OOM)
925 split_huge_page(page);
71e3aac0
AA
926 put_page(page);
927 goto out;
928 }
81ab4201 929 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 930
b9bbfbe3
AA
931 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
932 put_page(new_page);
1f1d06c3 933 split_huge_page(page);
b9bbfbe3
AA
934 put_page(page);
935 ret |= VM_FAULT_OOM;
936 goto out;
937 }
938
71e3aac0
AA
939 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
940 __SetPageUptodate(new_page);
941
2ec74c3e
SG
942 mmun_start = haddr;
943 mmun_end = haddr + HPAGE_PMD_SIZE;
944 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
945
71e3aac0
AA
946 spin_lock(&mm->page_table_lock);
947 put_page(page);
b9bbfbe3 948 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 949 spin_unlock(&mm->page_table_lock);
b9bbfbe3 950 mem_cgroup_uncharge_page(new_page);
71e3aac0 951 put_page(new_page);
2ec74c3e 952 goto out_mn;
b9bbfbe3 953 } else {
71e3aac0
AA
954 pmd_t entry;
955 VM_BUG_ON(!PageHead(page));
956 entry = mk_pmd(new_page, vma->vm_page_prot);
957 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
958 entry = pmd_mkhuge(entry);
2ec74c3e 959 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
960 page_add_new_anon_rmap(new_page, vma, haddr);
961 set_pmd_at(mm, haddr, pmd, entry);
b113da65 962 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
963 page_remove_rmap(page);
964 put_page(page);
965 ret |= VM_FAULT_WRITE;
966 }
71e3aac0 967 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
968out_mn:
969 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
970out:
971 return ret;
2ec74c3e
SG
972out_unlock:
973 spin_unlock(&mm->page_table_lock);
974 return ret;
71e3aac0
AA
975}
976
b676b293 977struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
978 unsigned long addr,
979 pmd_t *pmd,
980 unsigned int flags)
981{
b676b293 982 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
983 struct page *page = NULL;
984
985 assert_spin_locked(&mm->page_table_lock);
986
987 if (flags & FOLL_WRITE && !pmd_write(*pmd))
988 goto out;
989
990 page = pmd_page(*pmd);
991 VM_BUG_ON(!PageHead(page));
992 if (flags & FOLL_TOUCH) {
993 pmd_t _pmd;
994 /*
995 * We should set the dirty bit only for FOLL_WRITE but
996 * for now the dirty bit in the pmd is meaningless.
997 * And if the dirty bit will become meaningful and
998 * we'll only set it with FOLL_WRITE, an atomic
999 * set_bit will be required on the pmd to set the
1000 * young bit, instead of the current set_pmd_at.
1001 */
1002 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1003 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1004 }
b676b293
DR
1005 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1006 if (page->mapping && trylock_page(page)) {
1007 lru_add_drain();
1008 if (page->mapping)
1009 mlock_vma_page(page);
1010 unlock_page(page);
1011 }
1012 }
71e3aac0
AA
1013 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1014 VM_BUG_ON(!PageCompound(page));
1015 if (flags & FOLL_GET)
70b50f94 1016 get_page_foll(page);
71e3aac0
AA
1017
1018out:
1019 return page;
1020}
1021
d10e63f2 1022/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1023int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1024 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1025{
4daae3b4 1026 struct page *page = NULL;
d10e63f2 1027 unsigned long haddr = addr & HPAGE_PMD_MASK;
4daae3b4 1028 int target_nid;
d10e63f2
MG
1029
1030 spin_lock(&mm->page_table_lock);
1031 if (unlikely(!pmd_same(pmd, *pmdp)))
1032 goto out_unlock;
1033
1034 page = pmd_page(pmd);
4daae3b4
MG
1035 get_page(page);
1036 spin_unlock(&mm->page_table_lock);
1037
1038 target_nid = mpol_misplaced(page, vma, haddr);
1039 if (target_nid == -1)
1040 goto clear_pmdnuma;
1041
1042 /*
1043 * Due to lacking code to migrate thp pages, we'll split
1044 * (which preserves the special PROT_NONE) and re-take the
1045 * fault on the normal pages.
1046 */
1047 split_huge_page(page);
1048 put_page(page);
cbee9f88 1049
4daae3b4
MG
1050 return 0;
1051
1052clear_pmdnuma:
1053 spin_lock(&mm->page_table_lock);
1054 if (unlikely(!pmd_same(pmd, *pmdp)))
1055 goto out_unlock;
1056
d10e63f2
MG
1057 pmd = pmd_mknonnuma(pmd);
1058 set_pmd_at(mm, haddr, pmdp, pmd);
1059 VM_BUG_ON(pmd_numa(*pmdp));
1060 update_mmu_cache_pmd(vma, addr, pmdp);
1061
1062out_unlock:
1063 spin_unlock(&mm->page_table_lock);
cbee9f88 1064 if (page) {
4daae3b4 1065 put_page(page);
cbee9f88
PZ
1066 task_numa_fault(numa_node_id(), HPAGE_PMD_NR);
1067 }
d10e63f2
MG
1068 return 0;
1069}
1070
71e3aac0 1071int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1072 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1073{
1074 int ret = 0;
1075
025c5b24
NH
1076 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1077 struct page *page;
1078 pgtable_t pgtable;
f5c8ad47 1079 pmd_t orig_pmd;
e3ebcf64 1080 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47
DM
1081 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1082 page = pmd_page(orig_pmd);
025c5b24
NH
1083 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1084 page_remove_rmap(page);
1085 VM_BUG_ON(page_mapcount(page) < 0);
1086 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1087 VM_BUG_ON(!PageHead(page));
1088 tlb->mm->nr_ptes--;
71e3aac0 1089 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1090 tlb_remove_page(tlb, page);
1091 pte_free(tlb->mm, pgtable);
1092 ret = 1;
1093 }
71e3aac0
AA
1094 return ret;
1095}
1096
0ca1634d
JW
1097int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1098 unsigned long addr, unsigned long end,
1099 unsigned char *vec)
1100{
1101 int ret = 0;
1102
025c5b24
NH
1103 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1104 /*
1105 * All logical pages in the range are present
1106 * if backed by a huge page.
1107 */
0ca1634d 1108 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1109 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1110 ret = 1;
1111 }
0ca1634d
JW
1112
1113 return ret;
1114}
1115
37a1c49a
AA
1116int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1117 unsigned long old_addr,
1118 unsigned long new_addr, unsigned long old_end,
1119 pmd_t *old_pmd, pmd_t *new_pmd)
1120{
1121 int ret = 0;
1122 pmd_t pmd;
1123
1124 struct mm_struct *mm = vma->vm_mm;
1125
1126 if ((old_addr & ~HPAGE_PMD_MASK) ||
1127 (new_addr & ~HPAGE_PMD_MASK) ||
1128 old_end - old_addr < HPAGE_PMD_SIZE ||
1129 (new_vma->vm_flags & VM_NOHUGEPAGE))
1130 goto out;
1131
1132 /*
1133 * The destination pmd shouldn't be established, free_pgtables()
1134 * should have release it.
1135 */
1136 if (WARN_ON(!pmd_none(*new_pmd))) {
1137 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1138 goto out;
1139 }
1140
025c5b24
NH
1141 ret = __pmd_trans_huge_lock(old_pmd, vma);
1142 if (ret == 1) {
1143 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1144 VM_BUG_ON(!pmd_none(*new_pmd));
1145 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1146 spin_unlock(&mm->page_table_lock);
1147 }
1148out:
1149 return ret;
1150}
1151
cd7548ab 1152int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1153 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1154{
1155 struct mm_struct *mm = vma->vm_mm;
1156 int ret = 0;
1157
025c5b24
NH
1158 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1159 pmd_t entry;
1160 entry = pmdp_get_and_clear(mm, addr, pmd);
4b10e7d5
MG
1161 if (!prot_numa)
1162 entry = pmd_modify(entry, newprot);
1163 else {
1164 struct page *page = pmd_page(*pmd);
1165
1166 /* only check non-shared pages */
1167 if (page_mapcount(page) == 1 &&
1168 !pmd_numa(*pmd)) {
1169 entry = pmd_mknuma(entry);
1170 }
1171 }
025c5b24
NH
1172 set_pmd_at(mm, addr, pmd, entry);
1173 spin_unlock(&vma->vm_mm->page_table_lock);
1174 ret = 1;
1175 }
1176
1177 return ret;
1178}
1179
1180/*
1181 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1182 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1183 *
1184 * Note that if it returns 1, this routine returns without unlocking page
1185 * table locks. So callers must unlock them.
1186 */
1187int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1188{
1189 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1190 if (likely(pmd_trans_huge(*pmd))) {
1191 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1192 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1193 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1194 return -1;
cd7548ab 1195 } else {
025c5b24
NH
1196 /* Thp mapped by 'pmd' is stable, so we can
1197 * handle it as it is. */
1198 return 1;
cd7548ab 1199 }
025c5b24
NH
1200 }
1201 spin_unlock(&vma->vm_mm->page_table_lock);
1202 return 0;
cd7548ab
JW
1203}
1204
71e3aac0
AA
1205pmd_t *page_check_address_pmd(struct page *page,
1206 struct mm_struct *mm,
1207 unsigned long address,
1208 enum page_check_address_pmd_flag flag)
1209{
1210 pgd_t *pgd;
1211 pud_t *pud;
1212 pmd_t *pmd, *ret = NULL;
1213
1214 if (address & ~HPAGE_PMD_MASK)
1215 goto out;
1216
1217 pgd = pgd_offset(mm, address);
1218 if (!pgd_present(*pgd))
1219 goto out;
1220
1221 pud = pud_offset(pgd, address);
1222 if (!pud_present(*pud))
1223 goto out;
1224
1225 pmd = pmd_offset(pud, address);
1226 if (pmd_none(*pmd))
1227 goto out;
1228 if (pmd_page(*pmd) != page)
1229 goto out;
94fcc585
AA
1230 /*
1231 * split_vma() may create temporary aliased mappings. There is
1232 * no risk as long as all huge pmd are found and have their
1233 * splitting bit set before __split_huge_page_refcount
1234 * runs. Finding the same huge pmd more than once during the
1235 * same rmap walk is not a problem.
1236 */
1237 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1238 pmd_trans_splitting(*pmd))
1239 goto out;
71e3aac0
AA
1240 if (pmd_trans_huge(*pmd)) {
1241 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1242 !pmd_trans_splitting(*pmd));
1243 ret = pmd;
1244 }
1245out:
1246 return ret;
1247}
1248
1249static int __split_huge_page_splitting(struct page *page,
1250 struct vm_area_struct *vma,
1251 unsigned long address)
1252{
1253 struct mm_struct *mm = vma->vm_mm;
1254 pmd_t *pmd;
1255 int ret = 0;
2ec74c3e
SG
1256 /* For mmu_notifiers */
1257 const unsigned long mmun_start = address;
1258 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1259
2ec74c3e 1260 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1261 spin_lock(&mm->page_table_lock);
1262 pmd = page_check_address_pmd(page, mm, address,
1263 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1264 if (pmd) {
1265 /*
1266 * We can't temporarily set the pmd to null in order
1267 * to split it, the pmd must remain marked huge at all
1268 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1269 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1270 * serialize against split_huge_page*.
1271 */
2ec74c3e 1272 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1273 ret = 1;
1274 }
1275 spin_unlock(&mm->page_table_lock);
2ec74c3e 1276 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1277
1278 return ret;
1279}
1280
1281static void __split_huge_page_refcount(struct page *page)
1282{
1283 int i;
71e3aac0 1284 struct zone *zone = page_zone(page);
fa9add64 1285 struct lruvec *lruvec;
70b50f94 1286 int tail_count = 0;
71e3aac0
AA
1287
1288 /* prevent PageLRU to go away from under us, and freeze lru stats */
1289 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1290 lruvec = mem_cgroup_page_lruvec(page, zone);
1291
71e3aac0 1292 compound_lock(page);
e94c8a9c
KH
1293 /* complete memcg works before add pages to LRU */
1294 mem_cgroup_split_huge_fixup(page);
71e3aac0 1295
45676885 1296 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1297 struct page *page_tail = page + i;
1298
70b50f94
AA
1299 /* tail_page->_mapcount cannot change */
1300 BUG_ON(page_mapcount(page_tail) < 0);
1301 tail_count += page_mapcount(page_tail);
1302 /* check for overflow */
1303 BUG_ON(tail_count < 0);
1304 BUG_ON(atomic_read(&page_tail->_count) != 0);
1305 /*
1306 * tail_page->_count is zero and not changing from
1307 * under us. But get_page_unless_zero() may be running
1308 * from under us on the tail_page. If we used
1309 * atomic_set() below instead of atomic_add(), we
1310 * would then run atomic_set() concurrently with
1311 * get_page_unless_zero(), and atomic_set() is
1312 * implemented in C not using locked ops. spin_unlock
1313 * on x86 sometime uses locked ops because of PPro
1314 * errata 66, 92, so unless somebody can guarantee
1315 * atomic_set() here would be safe on all archs (and
1316 * not only on x86), it's safer to use atomic_add().
1317 */
1318 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1319 &page_tail->_count);
71e3aac0
AA
1320
1321 /* after clearing PageTail the gup refcount can be released */
1322 smp_mb();
1323
a6d30ddd
JD
1324 /*
1325 * retain hwpoison flag of the poisoned tail page:
1326 * fix for the unsuitable process killed on Guest Machine(KVM)
1327 * by the memory-failure.
1328 */
1329 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1330 page_tail->flags |= (page->flags &
1331 ((1L << PG_referenced) |
1332 (1L << PG_swapbacked) |
1333 (1L << PG_mlocked) |
1334 (1L << PG_uptodate)));
1335 page_tail->flags |= (1L << PG_dirty);
1336
70b50f94 1337 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1338 smp_wmb();
1339
1340 /*
1341 * __split_huge_page_splitting() already set the
1342 * splitting bit in all pmd that could map this
1343 * hugepage, that will ensure no CPU can alter the
1344 * mapcount on the head page. The mapcount is only
1345 * accounted in the head page and it has to be
1346 * transferred to all tail pages in the below code. So
1347 * for this code to be safe, the split the mapcount
1348 * can't change. But that doesn't mean userland can't
1349 * keep changing and reading the page contents while
1350 * we transfer the mapcount, so the pmd splitting
1351 * status is achieved setting a reserved bit in the
1352 * pmd, not by clearing the present bit.
1353 */
71e3aac0
AA
1354 page_tail->_mapcount = page->_mapcount;
1355
1356 BUG_ON(page_tail->mapping);
1357 page_tail->mapping = page->mapping;
1358
45676885 1359 page_tail->index = page->index + i;
71e3aac0
AA
1360
1361 BUG_ON(!PageAnon(page_tail));
1362 BUG_ON(!PageUptodate(page_tail));
1363 BUG_ON(!PageDirty(page_tail));
1364 BUG_ON(!PageSwapBacked(page_tail));
1365
fa9add64 1366 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1367 }
70b50f94
AA
1368 atomic_sub(tail_count, &page->_count);
1369 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1370
fa9add64 1371 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1372 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1373
71e3aac0
AA
1374 ClearPageCompound(page);
1375 compound_unlock(page);
1376 spin_unlock_irq(&zone->lru_lock);
1377
1378 for (i = 1; i < HPAGE_PMD_NR; i++) {
1379 struct page *page_tail = page + i;
1380 BUG_ON(page_count(page_tail) <= 0);
1381 /*
1382 * Tail pages may be freed if there wasn't any mapping
1383 * like if add_to_swap() is running on a lru page that
1384 * had its mapping zapped. And freeing these pages
1385 * requires taking the lru_lock so we do the put_page
1386 * of the tail pages after the split is complete.
1387 */
1388 put_page(page_tail);
1389 }
1390
1391 /*
1392 * Only the head page (now become a regular page) is required
1393 * to be pinned by the caller.
1394 */
1395 BUG_ON(page_count(page) <= 0);
1396}
1397
1398static int __split_huge_page_map(struct page *page,
1399 struct vm_area_struct *vma,
1400 unsigned long address)
1401{
1402 struct mm_struct *mm = vma->vm_mm;
1403 pmd_t *pmd, _pmd;
1404 int ret = 0, i;
1405 pgtable_t pgtable;
1406 unsigned long haddr;
1407
1408 spin_lock(&mm->page_table_lock);
1409 pmd = page_check_address_pmd(page, mm, address,
1410 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1411 if (pmd) {
e3ebcf64 1412 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1413 pmd_populate(mm, &_pmd, pgtable);
1414
e3ebcf64
GS
1415 haddr = address;
1416 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1417 pte_t *pte, entry;
1418 BUG_ON(PageCompound(page+i));
1419 entry = mk_pte(page + i, vma->vm_page_prot);
1420 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1421 if (!pmd_write(*pmd))
1422 entry = pte_wrprotect(entry);
1423 else
1424 BUG_ON(page_mapcount(page) != 1);
1425 if (!pmd_young(*pmd))
1426 entry = pte_mkold(entry);
1ba6e0b5
AA
1427 if (pmd_numa(*pmd))
1428 entry = pte_mknuma(entry);
71e3aac0
AA
1429 pte = pte_offset_map(&_pmd, haddr);
1430 BUG_ON(!pte_none(*pte));
1431 set_pte_at(mm, haddr, pte, entry);
1432 pte_unmap(pte);
1433 }
1434
71e3aac0
AA
1435 smp_wmb(); /* make pte visible before pmd */
1436 /*
1437 * Up to this point the pmd is present and huge and
1438 * userland has the whole access to the hugepage
1439 * during the split (which happens in place). If we
1440 * overwrite the pmd with the not-huge version
1441 * pointing to the pte here (which of course we could
1442 * if all CPUs were bug free), userland could trigger
1443 * a small page size TLB miss on the small sized TLB
1444 * while the hugepage TLB entry is still established
1445 * in the huge TLB. Some CPU doesn't like that. See
1446 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1447 * Erratum 383 on page 93. Intel should be safe but is
1448 * also warns that it's only safe if the permission
1449 * and cache attributes of the two entries loaded in
1450 * the two TLB is identical (which should be the case
1451 * here). But it is generally safer to never allow
1452 * small and huge TLB entries for the same virtual
1453 * address to be loaded simultaneously. So instead of
1454 * doing "pmd_populate(); flush_tlb_range();" we first
1455 * mark the current pmd notpresent (atomically because
1456 * here the pmd_trans_huge and pmd_trans_splitting
1457 * must remain set at all times on the pmd until the
1458 * split is complete for this pmd), then we flush the
1459 * SMP TLB and finally we write the non-huge version
1460 * of the pmd entry with pmd_populate.
1461 */
46dcde73 1462 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1463 pmd_populate(mm, pmd, pgtable);
1464 ret = 1;
1465 }
1466 spin_unlock(&mm->page_table_lock);
1467
1468 return ret;
1469}
1470
2b575eb6 1471/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1472static void __split_huge_page(struct page *page,
1473 struct anon_vma *anon_vma)
1474{
1475 int mapcount, mapcount2;
bf181b9f 1476 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1477 struct anon_vma_chain *avc;
1478
1479 BUG_ON(!PageHead(page));
1480 BUG_ON(PageTail(page));
1481
1482 mapcount = 0;
bf181b9f 1483 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1484 struct vm_area_struct *vma = avc->vma;
1485 unsigned long addr = vma_address(page, vma);
1486 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1487 mapcount += __split_huge_page_splitting(page, vma, addr);
1488 }
05759d38
AA
1489 /*
1490 * It is critical that new vmas are added to the tail of the
1491 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1492 * and establishes a child pmd before
1493 * __split_huge_page_splitting() freezes the parent pmd (so if
1494 * we fail to prevent copy_huge_pmd() from running until the
1495 * whole __split_huge_page() is complete), we will still see
1496 * the newly established pmd of the child later during the
1497 * walk, to be able to set it as pmd_trans_splitting too.
1498 */
1499 if (mapcount != page_mapcount(page))
1500 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1501 mapcount, page_mapcount(page));
71e3aac0
AA
1502 BUG_ON(mapcount != page_mapcount(page));
1503
1504 __split_huge_page_refcount(page);
1505
1506 mapcount2 = 0;
bf181b9f 1507 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1508 struct vm_area_struct *vma = avc->vma;
1509 unsigned long addr = vma_address(page, vma);
1510 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1511 mapcount2 += __split_huge_page_map(page, vma, addr);
1512 }
05759d38
AA
1513 if (mapcount != mapcount2)
1514 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1515 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1516 BUG_ON(mapcount != mapcount2);
1517}
1518
1519int split_huge_page(struct page *page)
1520{
1521 struct anon_vma *anon_vma;
1522 int ret = 1;
1523
1524 BUG_ON(!PageAnon(page));
1525 anon_vma = page_lock_anon_vma(page);
1526 if (!anon_vma)
1527 goto out;
1528 ret = 0;
1529 if (!PageCompound(page))
1530 goto out_unlock;
1531
1532 BUG_ON(!PageSwapBacked(page));
1533 __split_huge_page(page, anon_vma);
81ab4201 1534 count_vm_event(THP_SPLIT);
71e3aac0
AA
1535
1536 BUG_ON(PageCompound(page));
1537out_unlock:
1538 page_unlock_anon_vma(anon_vma);
1539out:
1540 return ret;
1541}
1542
4b6e1e37 1543#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1544
60ab3244
AA
1545int hugepage_madvise(struct vm_area_struct *vma,
1546 unsigned long *vm_flags, int advice)
0af4e98b 1547{
8e72033f
GS
1548 struct mm_struct *mm = vma->vm_mm;
1549
a664b2d8
AA
1550 switch (advice) {
1551 case MADV_HUGEPAGE:
1552 /*
1553 * Be somewhat over-protective like KSM for now!
1554 */
78f11a25 1555 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1556 return -EINVAL;
8e72033f
GS
1557 if (mm->def_flags & VM_NOHUGEPAGE)
1558 return -EINVAL;
a664b2d8
AA
1559 *vm_flags &= ~VM_NOHUGEPAGE;
1560 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1561 /*
1562 * If the vma become good for khugepaged to scan,
1563 * register it here without waiting a page fault that
1564 * may not happen any time soon.
1565 */
1566 if (unlikely(khugepaged_enter_vma_merge(vma)))
1567 return -ENOMEM;
a664b2d8
AA
1568 break;
1569 case MADV_NOHUGEPAGE:
1570 /*
1571 * Be somewhat over-protective like KSM for now!
1572 */
78f11a25 1573 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1574 return -EINVAL;
1575 *vm_flags &= ~VM_HUGEPAGE;
1576 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1577 /*
1578 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1579 * this vma even if we leave the mm registered in khugepaged if
1580 * it got registered before VM_NOHUGEPAGE was set.
1581 */
a664b2d8
AA
1582 break;
1583 }
0af4e98b
AA
1584
1585 return 0;
1586}
1587
ba76149f
AA
1588static int __init khugepaged_slab_init(void)
1589{
1590 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1591 sizeof(struct mm_slot),
1592 __alignof__(struct mm_slot), 0, NULL);
1593 if (!mm_slot_cache)
1594 return -ENOMEM;
1595
1596 return 0;
1597}
1598
1599static void __init khugepaged_slab_free(void)
1600{
1601 kmem_cache_destroy(mm_slot_cache);
1602 mm_slot_cache = NULL;
1603}
1604
1605static inline struct mm_slot *alloc_mm_slot(void)
1606{
1607 if (!mm_slot_cache) /* initialization failed */
1608 return NULL;
1609 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1610}
1611
1612static inline void free_mm_slot(struct mm_slot *mm_slot)
1613{
1614 kmem_cache_free(mm_slot_cache, mm_slot);
1615}
1616
1617static int __init mm_slots_hash_init(void)
1618{
1619 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1620 GFP_KERNEL);
1621 if (!mm_slots_hash)
1622 return -ENOMEM;
1623 return 0;
1624}
1625
1626#if 0
1627static void __init mm_slots_hash_free(void)
1628{
1629 kfree(mm_slots_hash);
1630 mm_slots_hash = NULL;
1631}
1632#endif
1633
1634static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1635{
1636 struct mm_slot *mm_slot;
1637 struct hlist_head *bucket;
1638 struct hlist_node *node;
1639
1640 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1641 % MM_SLOTS_HASH_HEADS];
1642 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1643 if (mm == mm_slot->mm)
1644 return mm_slot;
1645 }
1646 return NULL;
1647}
1648
1649static void insert_to_mm_slots_hash(struct mm_struct *mm,
1650 struct mm_slot *mm_slot)
1651{
1652 struct hlist_head *bucket;
1653
1654 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1655 % MM_SLOTS_HASH_HEADS];
1656 mm_slot->mm = mm;
1657 hlist_add_head(&mm_slot->hash, bucket);
1658}
1659
1660static inline int khugepaged_test_exit(struct mm_struct *mm)
1661{
1662 return atomic_read(&mm->mm_users) == 0;
1663}
1664
1665int __khugepaged_enter(struct mm_struct *mm)
1666{
1667 struct mm_slot *mm_slot;
1668 int wakeup;
1669
1670 mm_slot = alloc_mm_slot();
1671 if (!mm_slot)
1672 return -ENOMEM;
1673
1674 /* __khugepaged_exit() must not run from under us */
1675 VM_BUG_ON(khugepaged_test_exit(mm));
1676 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1677 free_mm_slot(mm_slot);
1678 return 0;
1679 }
1680
1681 spin_lock(&khugepaged_mm_lock);
1682 insert_to_mm_slots_hash(mm, mm_slot);
1683 /*
1684 * Insert just behind the scanning cursor, to let the area settle
1685 * down a little.
1686 */
1687 wakeup = list_empty(&khugepaged_scan.mm_head);
1688 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1689 spin_unlock(&khugepaged_mm_lock);
1690
1691 atomic_inc(&mm->mm_count);
1692 if (wakeup)
1693 wake_up_interruptible(&khugepaged_wait);
1694
1695 return 0;
1696}
1697
1698int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1699{
1700 unsigned long hstart, hend;
1701 if (!vma->anon_vma)
1702 /*
1703 * Not yet faulted in so we will register later in the
1704 * page fault if needed.
1705 */
1706 return 0;
78f11a25 1707 if (vma->vm_ops)
ba76149f
AA
1708 /* khugepaged not yet working on file or special mappings */
1709 return 0;
b3b9c293 1710 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1711 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1712 hend = vma->vm_end & HPAGE_PMD_MASK;
1713 if (hstart < hend)
1714 return khugepaged_enter(vma);
1715 return 0;
1716}
1717
1718void __khugepaged_exit(struct mm_struct *mm)
1719{
1720 struct mm_slot *mm_slot;
1721 int free = 0;
1722
1723 spin_lock(&khugepaged_mm_lock);
1724 mm_slot = get_mm_slot(mm);
1725 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1726 hlist_del(&mm_slot->hash);
1727 list_del(&mm_slot->mm_node);
1728 free = 1;
1729 }
d788e80a 1730 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1731
1732 if (free) {
ba76149f
AA
1733 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1734 free_mm_slot(mm_slot);
1735 mmdrop(mm);
1736 } else if (mm_slot) {
ba76149f
AA
1737 /*
1738 * This is required to serialize against
1739 * khugepaged_test_exit() (which is guaranteed to run
1740 * under mmap sem read mode). Stop here (after we
1741 * return all pagetables will be destroyed) until
1742 * khugepaged has finished working on the pagetables
1743 * under the mmap_sem.
1744 */
1745 down_write(&mm->mmap_sem);
1746 up_write(&mm->mmap_sem);
d788e80a 1747 }
ba76149f
AA
1748}
1749
1750static void release_pte_page(struct page *page)
1751{
1752 /* 0 stands for page_is_file_cache(page) == false */
1753 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1754 unlock_page(page);
1755 putback_lru_page(page);
1756}
1757
1758static void release_pte_pages(pte_t *pte, pte_t *_pte)
1759{
1760 while (--_pte >= pte) {
1761 pte_t pteval = *_pte;
1762 if (!pte_none(pteval))
1763 release_pte_page(pte_page(pteval));
1764 }
1765}
1766
1767static void release_all_pte_pages(pte_t *pte)
1768{
1769 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1770}
1771
1772static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1773 unsigned long address,
1774 pte_t *pte)
1775{
1776 struct page *page;
1777 pte_t *_pte;
1778 int referenced = 0, isolated = 0, none = 0;
1779 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1780 _pte++, address += PAGE_SIZE) {
1781 pte_t pteval = *_pte;
1782 if (pte_none(pteval)) {
1783 if (++none <= khugepaged_max_ptes_none)
1784 continue;
1785 else {
1786 release_pte_pages(pte, _pte);
1787 goto out;
1788 }
1789 }
1790 if (!pte_present(pteval) || !pte_write(pteval)) {
1791 release_pte_pages(pte, _pte);
1792 goto out;
1793 }
1794 page = vm_normal_page(vma, address, pteval);
1795 if (unlikely(!page)) {
1796 release_pte_pages(pte, _pte);
1797 goto out;
1798 }
1799 VM_BUG_ON(PageCompound(page));
1800 BUG_ON(!PageAnon(page));
1801 VM_BUG_ON(!PageSwapBacked(page));
1802
1803 /* cannot use mapcount: can't collapse if there's a gup pin */
1804 if (page_count(page) != 1) {
1805 release_pte_pages(pte, _pte);
1806 goto out;
1807 }
1808 /*
1809 * We can do it before isolate_lru_page because the
1810 * page can't be freed from under us. NOTE: PG_lock
1811 * is needed to serialize against split_huge_page
1812 * when invoked from the VM.
1813 */
1814 if (!trylock_page(page)) {
1815 release_pte_pages(pte, _pte);
1816 goto out;
1817 }
1818 /*
1819 * Isolate the page to avoid collapsing an hugepage
1820 * currently in use by the VM.
1821 */
1822 if (isolate_lru_page(page)) {
1823 unlock_page(page);
1824 release_pte_pages(pte, _pte);
1825 goto out;
1826 }
1827 /* 0 stands for page_is_file_cache(page) == false */
1828 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1829 VM_BUG_ON(!PageLocked(page));
1830 VM_BUG_ON(PageLRU(page));
1831
1832 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1833 if (pte_young(pteval) || PageReferenced(page) ||
1834 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1835 referenced = 1;
1836 }
1837 if (unlikely(!referenced))
1838 release_all_pte_pages(pte);
1839 else
1840 isolated = 1;
1841out:
1842 return isolated;
1843}
1844
1845static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1846 struct vm_area_struct *vma,
1847 unsigned long address,
1848 spinlock_t *ptl)
1849{
1850 pte_t *_pte;
1851 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1852 pte_t pteval = *_pte;
1853 struct page *src_page;
1854
1855 if (pte_none(pteval)) {
1856 clear_user_highpage(page, address);
1857 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1858 } else {
1859 src_page = pte_page(pteval);
1860 copy_user_highpage(page, src_page, address, vma);
1861 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1862 release_pte_page(src_page);
1863 /*
1864 * ptl mostly unnecessary, but preempt has to
1865 * be disabled to update the per-cpu stats
1866 * inside page_remove_rmap().
1867 */
1868 spin_lock(ptl);
1869 /*
1870 * paravirt calls inside pte_clear here are
1871 * superfluous.
1872 */
1873 pte_clear(vma->vm_mm, address, _pte);
1874 page_remove_rmap(src_page);
1875 spin_unlock(ptl);
1876 free_page_and_swap_cache(src_page);
1877 }
1878
1879 address += PAGE_SIZE;
1880 page++;
1881 }
1882}
1883
26234f36 1884static void khugepaged_alloc_sleep(void)
ba76149f 1885{
26234f36
XG
1886 wait_event_freezable_timeout(khugepaged_wait, false,
1887 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1888}
ba76149f 1889
26234f36
XG
1890#ifdef CONFIG_NUMA
1891static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1892{
1893 if (IS_ERR(*hpage)) {
1894 if (!*wait)
1895 return false;
1896
1897 *wait = false;
e3b4126c 1898 *hpage = NULL;
26234f36
XG
1899 khugepaged_alloc_sleep();
1900 } else if (*hpage) {
1901 put_page(*hpage);
1902 *hpage = NULL;
1903 }
1904
1905 return true;
1906}
1907
1908static struct page
1909*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1910 struct vm_area_struct *vma, unsigned long address,
1911 int node)
1912{
0bbbc0b3 1913 VM_BUG_ON(*hpage);
ce83d217
AA
1914 /*
1915 * Allocate the page while the vma is still valid and under
1916 * the mmap_sem read mode so there is no memory allocation
1917 * later when we take the mmap_sem in write mode. This is more
1918 * friendly behavior (OTOH it may actually hide bugs) to
1919 * filesystems in userland with daemons allocating memory in
1920 * the userland I/O paths. Allocating memory with the
1921 * mmap_sem in read mode is good idea also to allow greater
1922 * scalability.
1923 */
26234f36 1924 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1925 node, __GFP_OTHER_NODE);
692e0b35
AA
1926
1927 /*
1928 * After allocating the hugepage, release the mmap_sem read lock in
1929 * preparation for taking it in write mode.
1930 */
1931 up_read(&mm->mmap_sem);
26234f36 1932 if (unlikely(!*hpage)) {
81ab4201 1933 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 1934 *hpage = ERR_PTR(-ENOMEM);
26234f36 1935 return NULL;
ce83d217 1936 }
26234f36 1937
65b3c07b 1938 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
1939 return *hpage;
1940}
1941#else
1942static struct page *khugepaged_alloc_hugepage(bool *wait)
1943{
1944 struct page *hpage;
1945
1946 do {
1947 hpage = alloc_hugepage(khugepaged_defrag());
1948 if (!hpage) {
1949 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1950 if (!*wait)
1951 return NULL;
1952
1953 *wait = false;
1954 khugepaged_alloc_sleep();
1955 } else
1956 count_vm_event(THP_COLLAPSE_ALLOC);
1957 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1958
1959 return hpage;
1960}
1961
1962static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1963{
1964 if (!*hpage)
1965 *hpage = khugepaged_alloc_hugepage(wait);
1966
1967 if (unlikely(!*hpage))
1968 return false;
1969
1970 return true;
1971}
1972
1973static struct page
1974*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1975 struct vm_area_struct *vma, unsigned long address,
1976 int node)
1977{
1978 up_read(&mm->mmap_sem);
1979 VM_BUG_ON(!*hpage);
1980 return *hpage;
1981}
692e0b35
AA
1982#endif
1983
26234f36
XG
1984static void collapse_huge_page(struct mm_struct *mm,
1985 unsigned long address,
1986 struct page **hpage,
1987 struct vm_area_struct *vma,
1988 int node)
1989{
1990 pgd_t *pgd;
1991 pud_t *pud;
1992 pmd_t *pmd, _pmd;
1993 pte_t *pte;
1994 pgtable_t pgtable;
1995 struct page *new_page;
1996 spinlock_t *ptl;
1997 int isolated;
1998 unsigned long hstart, hend;
2ec74c3e
SG
1999 unsigned long mmun_start; /* For mmu_notifiers */
2000 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2001
2002 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2003
2004 /* release the mmap_sem read lock. */
2005 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2006 if (!new_page)
2007 return;
2008
420256ef 2009 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2010 return;
ba76149f
AA
2011
2012 /*
2013 * Prevent all access to pagetables with the exception of
2014 * gup_fast later hanlded by the ptep_clear_flush and the VM
2015 * handled by the anon_vma lock + PG_lock.
2016 */
2017 down_write(&mm->mmap_sem);
2018 if (unlikely(khugepaged_test_exit(mm)))
2019 goto out;
2020
2021 vma = find_vma(mm, address);
2022 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2023 hend = vma->vm_end & HPAGE_PMD_MASK;
2024 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2025 goto out;
2026
60ab3244
AA
2027 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2028 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
2029 goto out;
2030
78f11a25 2031 if (!vma->anon_vma || vma->vm_ops)
ba76149f 2032 goto out;
a7d6e4ec
AA
2033 if (is_vma_temporary_stack(vma))
2034 goto out;
b3b9c293 2035 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2036
2037 pgd = pgd_offset(mm, address);
2038 if (!pgd_present(*pgd))
2039 goto out;
2040
2041 pud = pud_offset(pgd, address);
2042 if (!pud_present(*pud))
2043 goto out;
2044
2045 pmd = pmd_offset(pud, address);
2046 /* pmd can't go away or become huge under us */
2047 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2048 goto out;
2049
ba76149f
AA
2050 anon_vma_lock(vma->anon_vma);
2051
2052 pte = pte_offset_map(pmd, address);
2053 ptl = pte_lockptr(mm, pmd);
2054
2ec74c3e
SG
2055 mmun_start = address;
2056 mmun_end = address + HPAGE_PMD_SIZE;
2057 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2058 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2059 /*
2060 * After this gup_fast can't run anymore. This also removes
2061 * any huge TLB entry from the CPU so we won't allow
2062 * huge and small TLB entries for the same virtual address
2063 * to avoid the risk of CPU bugs in that area.
2064 */
2ec74c3e 2065 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2066 spin_unlock(&mm->page_table_lock);
2ec74c3e 2067 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2068
2069 spin_lock(ptl);
2070 isolated = __collapse_huge_page_isolate(vma, address, pte);
2071 spin_unlock(ptl);
ba76149f
AA
2072
2073 if (unlikely(!isolated)) {
453c7192 2074 pte_unmap(pte);
ba76149f
AA
2075 spin_lock(&mm->page_table_lock);
2076 BUG_ON(!pmd_none(*pmd));
2077 set_pmd_at(mm, address, pmd, _pmd);
2078 spin_unlock(&mm->page_table_lock);
2079 anon_vma_unlock(vma->anon_vma);
ce83d217 2080 goto out;
ba76149f
AA
2081 }
2082
2083 /*
2084 * All pages are isolated and locked so anon_vma rmap
2085 * can't run anymore.
2086 */
2087 anon_vma_unlock(vma->anon_vma);
2088
2089 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2090 pte_unmap(pte);
ba76149f
AA
2091 __SetPageUptodate(new_page);
2092 pgtable = pmd_pgtable(_pmd);
ba76149f
AA
2093
2094 _pmd = mk_pmd(new_page, vma->vm_page_prot);
2095 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2096 _pmd = pmd_mkhuge(_pmd);
2097
2098 /*
2099 * spin_lock() below is not the equivalent of smp_wmb(), so
2100 * this is needed to avoid the copy_huge_page writes to become
2101 * visible after the set_pmd_at() write.
2102 */
2103 smp_wmb();
2104
2105 spin_lock(&mm->page_table_lock);
2106 BUG_ON(!pmd_none(*pmd));
2107 page_add_new_anon_rmap(new_page, vma, address);
2108 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2109 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2110 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2111 spin_unlock(&mm->page_table_lock);
2112
2113 *hpage = NULL;
420256ef 2114
ba76149f 2115 khugepaged_pages_collapsed++;
ce83d217 2116out_up_write:
ba76149f 2117 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2118 return;
2119
ce83d217 2120out:
678ff896 2121 mem_cgroup_uncharge_page(new_page);
ce83d217 2122 goto out_up_write;
ba76149f
AA
2123}
2124
2125static int khugepaged_scan_pmd(struct mm_struct *mm,
2126 struct vm_area_struct *vma,
2127 unsigned long address,
2128 struct page **hpage)
2129{
2130 pgd_t *pgd;
2131 pud_t *pud;
2132 pmd_t *pmd;
2133 pte_t *pte, *_pte;
2134 int ret = 0, referenced = 0, none = 0;
2135 struct page *page;
2136 unsigned long _address;
2137 spinlock_t *ptl;
5c4b4be3 2138 int node = -1;
ba76149f
AA
2139
2140 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2141
2142 pgd = pgd_offset(mm, address);
2143 if (!pgd_present(*pgd))
2144 goto out;
2145
2146 pud = pud_offset(pgd, address);
2147 if (!pud_present(*pud))
2148 goto out;
2149
2150 pmd = pmd_offset(pud, address);
2151 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2152 goto out;
2153
2154 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2155 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2156 _pte++, _address += PAGE_SIZE) {
2157 pte_t pteval = *_pte;
2158 if (pte_none(pteval)) {
2159 if (++none <= khugepaged_max_ptes_none)
2160 continue;
2161 else
2162 goto out_unmap;
2163 }
2164 if (!pte_present(pteval) || !pte_write(pteval))
2165 goto out_unmap;
2166 page = vm_normal_page(vma, _address, pteval);
2167 if (unlikely(!page))
2168 goto out_unmap;
5c4b4be3
AK
2169 /*
2170 * Chose the node of the first page. This could
2171 * be more sophisticated and look at more pages,
2172 * but isn't for now.
2173 */
2174 if (node == -1)
2175 node = page_to_nid(page);
ba76149f
AA
2176 VM_BUG_ON(PageCompound(page));
2177 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2178 goto out_unmap;
2179 /* cannot use mapcount: can't collapse if there's a gup pin */
2180 if (page_count(page) != 1)
2181 goto out_unmap;
8ee53820
AA
2182 if (pte_young(pteval) || PageReferenced(page) ||
2183 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2184 referenced = 1;
2185 }
2186 if (referenced)
2187 ret = 1;
2188out_unmap:
2189 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2190 if (ret)
2191 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2192 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2193out:
2194 return ret;
2195}
2196
2197static void collect_mm_slot(struct mm_slot *mm_slot)
2198{
2199 struct mm_struct *mm = mm_slot->mm;
2200
b9980cdc 2201 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2202
2203 if (khugepaged_test_exit(mm)) {
2204 /* free mm_slot */
2205 hlist_del(&mm_slot->hash);
2206 list_del(&mm_slot->mm_node);
2207
2208 /*
2209 * Not strictly needed because the mm exited already.
2210 *
2211 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2212 */
2213
2214 /* khugepaged_mm_lock actually not necessary for the below */
2215 free_mm_slot(mm_slot);
2216 mmdrop(mm);
2217 }
2218}
2219
2220static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2221 struct page **hpage)
2f1da642
HS
2222 __releases(&khugepaged_mm_lock)
2223 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2224{
2225 struct mm_slot *mm_slot;
2226 struct mm_struct *mm;
2227 struct vm_area_struct *vma;
2228 int progress = 0;
2229
2230 VM_BUG_ON(!pages);
b9980cdc 2231 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2232
2233 if (khugepaged_scan.mm_slot)
2234 mm_slot = khugepaged_scan.mm_slot;
2235 else {
2236 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2237 struct mm_slot, mm_node);
2238 khugepaged_scan.address = 0;
2239 khugepaged_scan.mm_slot = mm_slot;
2240 }
2241 spin_unlock(&khugepaged_mm_lock);
2242
2243 mm = mm_slot->mm;
2244 down_read(&mm->mmap_sem);
2245 if (unlikely(khugepaged_test_exit(mm)))
2246 vma = NULL;
2247 else
2248 vma = find_vma(mm, khugepaged_scan.address);
2249
2250 progress++;
2251 for (; vma; vma = vma->vm_next) {
2252 unsigned long hstart, hend;
2253
2254 cond_resched();
2255 if (unlikely(khugepaged_test_exit(mm))) {
2256 progress++;
2257 break;
2258 }
2259
60ab3244
AA
2260 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2261 !khugepaged_always()) ||
2262 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2263 skip:
ba76149f
AA
2264 progress++;
2265 continue;
2266 }
78f11a25 2267 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2268 goto skip;
2269 if (is_vma_temporary_stack(vma))
2270 goto skip;
b3b9c293 2271 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2272
2273 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2274 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2275 if (hstart >= hend)
2276 goto skip;
2277 if (khugepaged_scan.address > hend)
2278 goto skip;
ba76149f
AA
2279 if (khugepaged_scan.address < hstart)
2280 khugepaged_scan.address = hstart;
a7d6e4ec 2281 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2282
2283 while (khugepaged_scan.address < hend) {
2284 int ret;
2285 cond_resched();
2286 if (unlikely(khugepaged_test_exit(mm)))
2287 goto breakouterloop;
2288
2289 VM_BUG_ON(khugepaged_scan.address < hstart ||
2290 khugepaged_scan.address + HPAGE_PMD_SIZE >
2291 hend);
2292 ret = khugepaged_scan_pmd(mm, vma,
2293 khugepaged_scan.address,
2294 hpage);
2295 /* move to next address */
2296 khugepaged_scan.address += HPAGE_PMD_SIZE;
2297 progress += HPAGE_PMD_NR;
2298 if (ret)
2299 /* we released mmap_sem so break loop */
2300 goto breakouterloop_mmap_sem;
2301 if (progress >= pages)
2302 goto breakouterloop;
2303 }
2304 }
2305breakouterloop:
2306 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2307breakouterloop_mmap_sem:
2308
2309 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2310 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2311 /*
2312 * Release the current mm_slot if this mm is about to die, or
2313 * if we scanned all vmas of this mm.
2314 */
2315 if (khugepaged_test_exit(mm) || !vma) {
2316 /*
2317 * Make sure that if mm_users is reaching zero while
2318 * khugepaged runs here, khugepaged_exit will find
2319 * mm_slot not pointing to the exiting mm.
2320 */
2321 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2322 khugepaged_scan.mm_slot = list_entry(
2323 mm_slot->mm_node.next,
2324 struct mm_slot, mm_node);
2325 khugepaged_scan.address = 0;
2326 } else {
2327 khugepaged_scan.mm_slot = NULL;
2328 khugepaged_full_scans++;
2329 }
2330
2331 collect_mm_slot(mm_slot);
2332 }
2333
2334 return progress;
2335}
2336
2337static int khugepaged_has_work(void)
2338{
2339 return !list_empty(&khugepaged_scan.mm_head) &&
2340 khugepaged_enabled();
2341}
2342
2343static int khugepaged_wait_event(void)
2344{
2345 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2346 kthread_should_stop();
ba76149f
AA
2347}
2348
d516904b 2349static void khugepaged_do_scan(void)
ba76149f 2350{
d516904b 2351 struct page *hpage = NULL;
ba76149f
AA
2352 unsigned int progress = 0, pass_through_head = 0;
2353 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2354 bool wait = true;
ba76149f
AA
2355
2356 barrier(); /* write khugepaged_pages_to_scan to local stack */
2357
2358 while (progress < pages) {
26234f36 2359 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2360 break;
26234f36 2361
420256ef 2362 cond_resched();
ba76149f 2363
878aee7d
AA
2364 if (unlikely(kthread_should_stop() || freezing(current)))
2365 break;
2366
ba76149f
AA
2367 spin_lock(&khugepaged_mm_lock);
2368 if (!khugepaged_scan.mm_slot)
2369 pass_through_head++;
2370 if (khugepaged_has_work() &&
2371 pass_through_head < 2)
2372 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2373 &hpage);
ba76149f
AA
2374 else
2375 progress = pages;
2376 spin_unlock(&khugepaged_mm_lock);
2377 }
ba76149f 2378
d516904b
XG
2379 if (!IS_ERR_OR_NULL(hpage))
2380 put_page(hpage);
0bbbc0b3
AA
2381}
2382
2017c0bf
XG
2383static void khugepaged_wait_work(void)
2384{
2385 try_to_freeze();
2386
2387 if (khugepaged_has_work()) {
2388 if (!khugepaged_scan_sleep_millisecs)
2389 return;
2390
2391 wait_event_freezable_timeout(khugepaged_wait,
2392 kthread_should_stop(),
2393 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2394 return;
2395 }
2396
2397 if (khugepaged_enabled())
2398 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2399}
2400
ba76149f
AA
2401static int khugepaged(void *none)
2402{
2403 struct mm_slot *mm_slot;
2404
878aee7d 2405 set_freezable();
ba76149f
AA
2406 set_user_nice(current, 19);
2407
b7231789
XG
2408 while (!kthread_should_stop()) {
2409 khugepaged_do_scan();
2410 khugepaged_wait_work();
2411 }
ba76149f
AA
2412
2413 spin_lock(&khugepaged_mm_lock);
2414 mm_slot = khugepaged_scan.mm_slot;
2415 khugepaged_scan.mm_slot = NULL;
2416 if (mm_slot)
2417 collect_mm_slot(mm_slot);
2418 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2419 return 0;
2420}
2421
71e3aac0
AA
2422void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2423{
2424 struct page *page;
2425
2426 spin_lock(&mm->page_table_lock);
2427 if (unlikely(!pmd_trans_huge(*pmd))) {
2428 spin_unlock(&mm->page_table_lock);
2429 return;
2430 }
2431 page = pmd_page(*pmd);
2432 VM_BUG_ON(!page_count(page));
2433 get_page(page);
2434 spin_unlock(&mm->page_table_lock);
2435
2436 split_huge_page(page);
2437
2438 put_page(page);
2439 BUG_ON(pmd_trans_huge(*pmd));
2440}
94fcc585
AA
2441
2442static void split_huge_page_address(struct mm_struct *mm,
2443 unsigned long address)
2444{
2445 pgd_t *pgd;
2446 pud_t *pud;
2447 pmd_t *pmd;
2448
2449 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2450
2451 pgd = pgd_offset(mm, address);
2452 if (!pgd_present(*pgd))
2453 return;
2454
2455 pud = pud_offset(pgd, address);
2456 if (!pud_present(*pud))
2457 return;
2458
2459 pmd = pmd_offset(pud, address);
2460 if (!pmd_present(*pmd))
2461 return;
2462 /*
2463 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2464 * materialize from under us.
2465 */
2466 split_huge_page_pmd(mm, pmd);
2467}
2468
2469void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2470 unsigned long start,
2471 unsigned long end,
2472 long adjust_next)
2473{
2474 /*
2475 * If the new start address isn't hpage aligned and it could
2476 * previously contain an hugepage: check if we need to split
2477 * an huge pmd.
2478 */
2479 if (start & ~HPAGE_PMD_MASK &&
2480 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2481 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2482 split_huge_page_address(vma->vm_mm, start);
2483
2484 /*
2485 * If the new end address isn't hpage aligned and it could
2486 * previously contain an hugepage: check if we need to split
2487 * an huge pmd.
2488 */
2489 if (end & ~HPAGE_PMD_MASK &&
2490 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2491 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2492 split_huge_page_address(vma->vm_mm, end);
2493
2494 /*
2495 * If we're also updating the vma->vm_next->vm_start, if the new
2496 * vm_next->vm_start isn't page aligned and it could previously
2497 * contain an hugepage: check if we need to split an huge pmd.
2498 */
2499 if (adjust_next > 0) {
2500 struct vm_area_struct *next = vma->vm_next;
2501 unsigned long nstart = next->vm_start;
2502 nstart += adjust_next << PAGE_SHIFT;
2503 if (nstart & ~HPAGE_PMD_MASK &&
2504 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2505 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2506 split_huge_page_address(next->vm_mm, nstart);
2507 }
2508}