]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/huge_memory.c
mm, dax: dax-pmd vs thp-pmd vs hugetlbfs-pmd
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
97ae1749 32
71e3aac0
AA
33#include <asm/tlb.h>
34#include <asm/pgalloc.h>
35#include "internal.h"
36
7d2eba05
EA
37enum scan_result {
38 SCAN_FAIL,
39 SCAN_SUCCEED,
40 SCAN_PMD_NULL,
41 SCAN_EXCEED_NONE_PTE,
42 SCAN_PTE_NON_PRESENT,
43 SCAN_PAGE_RO,
44 SCAN_NO_REFERENCED_PAGE,
45 SCAN_PAGE_NULL,
46 SCAN_SCAN_ABORT,
47 SCAN_PAGE_COUNT,
48 SCAN_PAGE_LRU,
49 SCAN_PAGE_LOCK,
50 SCAN_PAGE_ANON,
b1caa957 51 SCAN_PAGE_COMPOUND,
7d2eba05
EA
52 SCAN_ANY_PROCESS,
53 SCAN_VMA_NULL,
54 SCAN_VMA_CHECK,
55 SCAN_ADDRESS_RANGE,
56 SCAN_SWAP_CACHE_PAGE,
57 SCAN_DEL_PAGE_LRU,
58 SCAN_ALLOC_HUGE_PAGE_FAIL,
59 SCAN_CGROUP_CHARGE_FAIL
60};
61
62#define CREATE_TRACE_POINTS
63#include <trace/events/huge_memory.h>
64
ba76149f 65/*
8bfa3f9a
JW
66 * By default transparent hugepage support is disabled in order that avoid
67 * to risk increase the memory footprint of applications without a guaranteed
68 * benefit. When transparent hugepage support is enabled, is for all mappings,
69 * and khugepaged scans all mappings.
70 * Defrag is invoked by khugepaged hugepage allocations and by page faults
71 * for all hugepage allocations.
ba76149f 72 */
71e3aac0 73unsigned long transparent_hugepage_flags __read_mostly =
13ece886 74#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 75 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
76#endif
77#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
78 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
79#endif
d39d33c3 80 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
82 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
83
84/* default scan 8*512 pte (or vmas) every 30 second */
85static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
86static unsigned int khugepaged_pages_collapsed;
87static unsigned int khugepaged_full_scans;
88static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
89/* during fragmentation poll the hugepage allocator once every minute */
90static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
91static struct task_struct *khugepaged_thread __read_mostly;
92static DEFINE_MUTEX(khugepaged_mutex);
93static DEFINE_SPINLOCK(khugepaged_mm_lock);
94static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
95/*
96 * default collapse hugepages if there is at least one pte mapped like
97 * it would have happened if the vma was large enough during page
98 * fault.
99 */
100static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
101
102static int khugepaged(void *none);
ba76149f 103static int khugepaged_slab_init(void);
65ebb64f 104static void khugepaged_slab_exit(void);
ba76149f 105
43b5fbbd
SL
106#define MM_SLOTS_HASH_BITS 10
107static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
108
ba76149f
AA
109static struct kmem_cache *mm_slot_cache __read_mostly;
110
111/**
112 * struct mm_slot - hash lookup from mm to mm_slot
113 * @hash: hash collision list
114 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
115 * @mm: the mm that this information is valid for
116 */
117struct mm_slot {
118 struct hlist_node hash;
119 struct list_head mm_node;
120 struct mm_struct *mm;
121};
122
123/**
124 * struct khugepaged_scan - cursor for scanning
125 * @mm_head: the head of the mm list to scan
126 * @mm_slot: the current mm_slot we are scanning
127 * @address: the next address inside that to be scanned
128 *
129 * There is only the one khugepaged_scan instance of this cursor structure.
130 */
131struct khugepaged_scan {
132 struct list_head mm_head;
133 struct mm_slot *mm_slot;
134 unsigned long address;
2f1da642
HS
135};
136static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
137 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
138};
139
9a982250
KS
140static DEFINE_SPINLOCK(split_queue_lock);
141static LIST_HEAD(split_queue);
142static unsigned long split_queue_len;
143static struct shrinker deferred_split_shrinker;
f000565a 144
2c0b80d4 145static void set_recommended_min_free_kbytes(void)
f000565a
AA
146{
147 struct zone *zone;
148 int nr_zones = 0;
149 unsigned long recommended_min;
f000565a 150
f000565a
AA
151 for_each_populated_zone(zone)
152 nr_zones++;
153
974a786e 154 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
155 recommended_min = pageblock_nr_pages * nr_zones * 2;
156
157 /*
158 * Make sure that on average at least two pageblocks are almost free
159 * of another type, one for a migratetype to fall back to and a
160 * second to avoid subsequent fallbacks of other types There are 3
161 * MIGRATE_TYPES we care about.
162 */
163 recommended_min += pageblock_nr_pages * nr_zones *
164 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
165
166 /* don't ever allow to reserve more than 5% of the lowmem */
167 recommended_min = min(recommended_min,
168 (unsigned long) nr_free_buffer_pages() / 20);
169 recommended_min <<= (PAGE_SHIFT-10);
170
42aa83cb
HP
171 if (recommended_min > min_free_kbytes) {
172 if (user_min_free_kbytes >= 0)
173 pr_info("raising min_free_kbytes from %d to %lu "
174 "to help transparent hugepage allocations\n",
175 min_free_kbytes, recommended_min);
176
f000565a 177 min_free_kbytes = recommended_min;
42aa83cb 178 }
f000565a 179 setup_per_zone_wmarks();
f000565a 180}
f000565a 181
79553da2 182static int start_stop_khugepaged(void)
ba76149f
AA
183{
184 int err = 0;
185 if (khugepaged_enabled()) {
ba76149f
AA
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
18e8e5c7 189 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
79553da2 193 goto fail;
ba76149f 194 }
911891af
XG
195
196 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 197 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
198
199 set_recommended_min_free_kbytes();
911891af 200 } else if (khugepaged_thread) {
911891af
XG
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
79553da2 204fail:
ba76149f
AA
205 return err;
206}
71e3aac0 207
97ae1749 208static atomic_t huge_zero_refcount;
56873f43 209struct page *huge_zero_page __read_mostly;
4a6c1297 210
fc437044 211struct page *get_huge_zero_page(void)
97ae1749
KS
212{
213 struct page *zero_page;
214retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 216 return READ_ONCE(huge_zero_page);
97ae1749
KS
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 219 HPAGE_PMD_ORDER);
d8a8e1f0
KS
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 222 return NULL;
d8a8e1f0
KS
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 225 preempt_disable();
5918d10a 226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 227 preempt_enable();
5ddacbe9 228 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
4db0c3c2 235 return READ_ONCE(huge_zero_page);
4a6c1297
KS
236}
237
97ae1749 238static void put_huge_zero_page(void)
4a6c1297 239{
97ae1749
KS
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
245}
246
48896466
GC
247static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
4a6c1297 249{
48896466
GC
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252}
97ae1749 253
48896466
GC
254static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256{
97ae1749 257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
5ddacbe9 260 __free_pages(zero_page, compound_order(zero_page));
48896466 261 return HPAGE_PMD_NR;
97ae1749
KS
262 }
263
264 return 0;
4a6c1297
KS
265}
266
97ae1749 267static struct shrinker huge_zero_page_shrinker = {
48896466
GC
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
270 .seeks = DEFAULT_SEEKS,
271};
272
71e3aac0 273#ifdef CONFIG_SYSFS
ba76149f 274
71e3aac0
AA
275static ssize_t double_flag_show(struct kobject *kobj,
276 struct kobj_attribute *attr, char *buf,
277 enum transparent_hugepage_flag enabled,
278 enum transparent_hugepage_flag req_madv)
279{
280 if (test_bit(enabled, &transparent_hugepage_flags)) {
281 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
282 return sprintf(buf, "[always] madvise never\n");
283 } else if (test_bit(req_madv, &transparent_hugepage_flags))
284 return sprintf(buf, "always [madvise] never\n");
285 else
286 return sprintf(buf, "always madvise [never]\n");
287}
288static ssize_t double_flag_store(struct kobject *kobj,
289 struct kobj_attribute *attr,
290 const char *buf, size_t count,
291 enum transparent_hugepage_flag enabled,
292 enum transparent_hugepage_flag req_madv)
293{
294 if (!memcmp("always", buf,
295 min(sizeof("always")-1, count))) {
296 set_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(req_madv, &transparent_hugepage_flags);
298 } else if (!memcmp("madvise", buf,
299 min(sizeof("madvise")-1, count))) {
300 clear_bit(enabled, &transparent_hugepage_flags);
301 set_bit(req_madv, &transparent_hugepage_flags);
302 } else if (!memcmp("never", buf,
303 min(sizeof("never")-1, count))) {
304 clear_bit(enabled, &transparent_hugepage_flags);
305 clear_bit(req_madv, &transparent_hugepage_flags);
306 } else
307 return -EINVAL;
308
309 return count;
310}
311
312static ssize_t enabled_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf)
314{
315 return double_flag_show(kobj, attr, buf,
316 TRANSPARENT_HUGEPAGE_FLAG,
317 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
318}
319static ssize_t enabled_store(struct kobject *kobj,
320 struct kobj_attribute *attr,
321 const char *buf, size_t count)
322{
ba76149f
AA
323 ssize_t ret;
324
325 ret = double_flag_store(kobj, attr, buf, count,
326 TRANSPARENT_HUGEPAGE_FLAG,
327 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
328
329 if (ret > 0) {
911891af
XG
330 int err;
331
332 mutex_lock(&khugepaged_mutex);
79553da2 333 err = start_stop_khugepaged();
911891af
XG
334 mutex_unlock(&khugepaged_mutex);
335
ba76149f
AA
336 if (err)
337 ret = err;
338 }
339
340 return ret;
71e3aac0
AA
341}
342static struct kobj_attribute enabled_attr =
343 __ATTR(enabled, 0644, enabled_show, enabled_store);
344
345static ssize_t single_flag_show(struct kobject *kobj,
346 struct kobj_attribute *attr, char *buf,
347 enum transparent_hugepage_flag flag)
348{
e27e6151
BH
349 return sprintf(buf, "%d\n",
350 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 351}
e27e6151 352
71e3aac0
AA
353static ssize_t single_flag_store(struct kobject *kobj,
354 struct kobj_attribute *attr,
355 const char *buf, size_t count,
356 enum transparent_hugepage_flag flag)
357{
e27e6151
BH
358 unsigned long value;
359 int ret;
360
361 ret = kstrtoul(buf, 10, &value);
362 if (ret < 0)
363 return ret;
364 if (value > 1)
365 return -EINVAL;
366
367 if (value)
71e3aac0 368 set_bit(flag, &transparent_hugepage_flags);
e27e6151 369 else
71e3aac0 370 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
371
372 return count;
373}
374
375/*
376 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
377 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
378 * memory just to allocate one more hugepage.
379 */
380static ssize_t defrag_show(struct kobject *kobj,
381 struct kobj_attribute *attr, char *buf)
382{
383 return double_flag_show(kobj, attr, buf,
384 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
385 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
386}
387static ssize_t defrag_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 return double_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
393 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
394}
395static struct kobj_attribute defrag_attr =
396 __ATTR(defrag, 0644, defrag_show, defrag_store);
397
79da5407
KS
398static ssize_t use_zero_page_show(struct kobject *kobj,
399 struct kobj_attribute *attr, char *buf)
400{
401 return single_flag_show(kobj, attr, buf,
402 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
403}
404static ssize_t use_zero_page_store(struct kobject *kobj,
405 struct kobj_attribute *attr, const char *buf, size_t count)
406{
407 return single_flag_store(kobj, attr, buf, count,
408 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
409}
410static struct kobj_attribute use_zero_page_attr =
411 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
412#ifdef CONFIG_DEBUG_VM
413static ssize_t debug_cow_show(struct kobject *kobj,
414 struct kobj_attribute *attr, char *buf)
415{
416 return single_flag_show(kobj, attr, buf,
417 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
418}
419static ssize_t debug_cow_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
422{
423 return single_flag_store(kobj, attr, buf, count,
424 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
425}
426static struct kobj_attribute debug_cow_attr =
427 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
428#endif /* CONFIG_DEBUG_VM */
429
430static struct attribute *hugepage_attr[] = {
431 &enabled_attr.attr,
432 &defrag_attr.attr,
79da5407 433 &use_zero_page_attr.attr,
71e3aac0
AA
434#ifdef CONFIG_DEBUG_VM
435 &debug_cow_attr.attr,
436#endif
437 NULL,
438};
439
440static struct attribute_group hugepage_attr_group = {
441 .attrs = hugepage_attr,
ba76149f
AA
442};
443
444static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
445 struct kobj_attribute *attr,
446 char *buf)
447{
448 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
449}
450
451static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
452 struct kobj_attribute *attr,
453 const char *buf, size_t count)
454{
455 unsigned long msecs;
456 int err;
457
3dbb95f7 458 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
459 if (err || msecs > UINT_MAX)
460 return -EINVAL;
461
462 khugepaged_scan_sleep_millisecs = msecs;
463 wake_up_interruptible(&khugepaged_wait);
464
465 return count;
466}
467static struct kobj_attribute scan_sleep_millisecs_attr =
468 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
469 scan_sleep_millisecs_store);
470
471static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 char *buf)
474{
475 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
476}
477
478static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
479 struct kobj_attribute *attr,
480 const char *buf, size_t count)
481{
482 unsigned long msecs;
483 int err;
484
3dbb95f7 485 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
486 if (err || msecs > UINT_MAX)
487 return -EINVAL;
488
489 khugepaged_alloc_sleep_millisecs = msecs;
490 wake_up_interruptible(&khugepaged_wait);
491
492 return count;
493}
494static struct kobj_attribute alloc_sleep_millisecs_attr =
495 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
496 alloc_sleep_millisecs_store);
497
498static ssize_t pages_to_scan_show(struct kobject *kobj,
499 struct kobj_attribute *attr,
500 char *buf)
501{
502 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
503}
504static ssize_t pages_to_scan_store(struct kobject *kobj,
505 struct kobj_attribute *attr,
506 const char *buf, size_t count)
507{
508 int err;
509 unsigned long pages;
510
3dbb95f7 511 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
512 if (err || !pages || pages > UINT_MAX)
513 return -EINVAL;
514
515 khugepaged_pages_to_scan = pages;
516
517 return count;
518}
519static struct kobj_attribute pages_to_scan_attr =
520 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
521 pages_to_scan_store);
522
523static ssize_t pages_collapsed_show(struct kobject *kobj,
524 struct kobj_attribute *attr,
525 char *buf)
526{
527 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
528}
529static struct kobj_attribute pages_collapsed_attr =
530 __ATTR_RO(pages_collapsed);
531
532static ssize_t full_scans_show(struct kobject *kobj,
533 struct kobj_attribute *attr,
534 char *buf)
535{
536 return sprintf(buf, "%u\n", khugepaged_full_scans);
537}
538static struct kobj_attribute full_scans_attr =
539 __ATTR_RO(full_scans);
540
541static ssize_t khugepaged_defrag_show(struct kobject *kobj,
542 struct kobj_attribute *attr, char *buf)
543{
544 return single_flag_show(kobj, attr, buf,
545 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
546}
547static ssize_t khugepaged_defrag_store(struct kobject *kobj,
548 struct kobj_attribute *attr,
549 const char *buf, size_t count)
550{
551 return single_flag_store(kobj, attr, buf, count,
552 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
553}
554static struct kobj_attribute khugepaged_defrag_attr =
555 __ATTR(defrag, 0644, khugepaged_defrag_show,
556 khugepaged_defrag_store);
557
558/*
559 * max_ptes_none controls if khugepaged should collapse hugepages over
560 * any unmapped ptes in turn potentially increasing the memory
561 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
562 * reduce the available free memory in the system as it
563 * runs. Increasing max_ptes_none will instead potentially reduce the
564 * free memory in the system during the khugepaged scan.
565 */
566static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
567 struct kobj_attribute *attr,
568 char *buf)
569{
570 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
571}
572static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
573 struct kobj_attribute *attr,
574 const char *buf, size_t count)
575{
576 int err;
577 unsigned long max_ptes_none;
578
3dbb95f7 579 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
580 if (err || max_ptes_none > HPAGE_PMD_NR-1)
581 return -EINVAL;
582
583 khugepaged_max_ptes_none = max_ptes_none;
584
585 return count;
586}
587static struct kobj_attribute khugepaged_max_ptes_none_attr =
588 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
589 khugepaged_max_ptes_none_store);
590
591static struct attribute *khugepaged_attr[] = {
592 &khugepaged_defrag_attr.attr,
593 &khugepaged_max_ptes_none_attr.attr,
594 &pages_to_scan_attr.attr,
595 &pages_collapsed_attr.attr,
596 &full_scans_attr.attr,
597 &scan_sleep_millisecs_attr.attr,
598 &alloc_sleep_millisecs_attr.attr,
599 NULL,
600};
601
602static struct attribute_group khugepaged_attr_group = {
603 .attrs = khugepaged_attr,
604 .name = "khugepaged",
71e3aac0 605};
71e3aac0 606
569e5590 607static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 608{
71e3aac0
AA
609 int err;
610
569e5590
SL
611 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
612 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 613 pr_err("failed to create transparent hugepage kobject\n");
569e5590 614 return -ENOMEM;
ba76149f
AA
615 }
616
569e5590 617 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 618 if (err) {
ae3a8c1c 619 pr_err("failed to register transparent hugepage group\n");
569e5590 620 goto delete_obj;
ba76149f
AA
621 }
622
569e5590 623 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 624 if (err) {
ae3a8c1c 625 pr_err("failed to register transparent hugepage group\n");
569e5590 626 goto remove_hp_group;
ba76149f 627 }
569e5590
SL
628
629 return 0;
630
631remove_hp_group:
632 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
633delete_obj:
634 kobject_put(*hugepage_kobj);
635 return err;
636}
637
638static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
639{
640 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
641 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
642 kobject_put(hugepage_kobj);
643}
644#else
645static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
646{
647 return 0;
648}
649
650static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
651{
652}
653#endif /* CONFIG_SYSFS */
654
655static int __init hugepage_init(void)
656{
657 int err;
658 struct kobject *hugepage_kobj;
659
660 if (!has_transparent_hugepage()) {
661 transparent_hugepage_flags = 0;
662 return -EINVAL;
663 }
664
665 err = hugepage_init_sysfs(&hugepage_kobj);
666 if (err)
65ebb64f 667 goto err_sysfs;
ba76149f
AA
668
669 err = khugepaged_slab_init();
670 if (err)
65ebb64f 671 goto err_slab;
ba76149f 672
65ebb64f
KS
673 err = register_shrinker(&huge_zero_page_shrinker);
674 if (err)
675 goto err_hzp_shrinker;
9a982250
KS
676 err = register_shrinker(&deferred_split_shrinker);
677 if (err)
678 goto err_split_shrinker;
97ae1749 679
97562cd2
RR
680 /*
681 * By default disable transparent hugepages on smaller systems,
682 * where the extra memory used could hurt more than TLB overhead
683 * is likely to save. The admin can still enable it through /sys.
684 */
79553da2 685 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 686 transparent_hugepage_flags = 0;
79553da2
KS
687 return 0;
688 }
97562cd2 689
79553da2 690 err = start_stop_khugepaged();
65ebb64f
KS
691 if (err)
692 goto err_khugepaged;
ba76149f 693
569e5590 694 return 0;
65ebb64f 695err_khugepaged:
9a982250
KS
696 unregister_shrinker(&deferred_split_shrinker);
697err_split_shrinker:
65ebb64f
KS
698 unregister_shrinker(&huge_zero_page_shrinker);
699err_hzp_shrinker:
700 khugepaged_slab_exit();
701err_slab:
569e5590 702 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 703err_sysfs:
ba76149f 704 return err;
71e3aac0 705}
a64fb3cd 706subsys_initcall(hugepage_init);
71e3aac0
AA
707
708static int __init setup_transparent_hugepage(char *str)
709{
710 int ret = 0;
711 if (!str)
712 goto out;
713 if (!strcmp(str, "always")) {
714 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
715 &transparent_hugepage_flags);
716 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
717 &transparent_hugepage_flags);
718 ret = 1;
719 } else if (!strcmp(str, "madvise")) {
720 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
721 &transparent_hugepage_flags);
722 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
723 &transparent_hugepage_flags);
724 ret = 1;
725 } else if (!strcmp(str, "never")) {
726 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
727 &transparent_hugepage_flags);
728 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
729 &transparent_hugepage_flags);
730 ret = 1;
731 }
732out:
733 if (!ret)
ae3a8c1c 734 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
735 return ret;
736}
737__setup("transparent_hugepage=", setup_transparent_hugepage);
738
b32967ff 739pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
740{
741 if (likely(vma->vm_flags & VM_WRITE))
742 pmd = pmd_mkwrite(pmd);
743 return pmd;
744}
745
3122359a 746static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
747{
748 pmd_t entry;
3122359a 749 entry = mk_pmd(page, prot);
b3092b3b
BL
750 entry = pmd_mkhuge(entry);
751 return entry;
752}
753
9a982250
KS
754static inline struct list_head *page_deferred_list(struct page *page)
755{
756 /*
757 * ->lru in the tail pages is occupied by compound_head.
758 * Let's use ->mapping + ->index in the second tail page as list_head.
759 */
760 return (struct list_head *)&page[2].mapping;
761}
762
763void prep_transhuge_page(struct page *page)
764{
765 /*
766 * we use page->mapping and page->indexlru in second tail page
767 * as list_head: assuming THP order >= 2
768 */
769 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
770
771 INIT_LIST_HEAD(page_deferred_list(page));
772 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
773}
774
71e3aac0
AA
775static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
776 struct vm_area_struct *vma,
230c92a8 777 unsigned long address, pmd_t *pmd,
6b251fc9
AA
778 struct page *page, gfp_t gfp,
779 unsigned int flags)
71e3aac0 780{
00501b53 781 struct mem_cgroup *memcg;
71e3aac0 782 pgtable_t pgtable;
c4088ebd 783 spinlock_t *ptl;
230c92a8 784 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 785
309381fe 786 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 787
f627c2f5 788 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
789 put_page(page);
790 count_vm_event(THP_FAULT_FALLBACK);
791 return VM_FAULT_FALLBACK;
792 }
00501b53 793
71e3aac0 794 pgtable = pte_alloc_one(mm, haddr);
00501b53 795 if (unlikely(!pgtable)) {
f627c2f5 796 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 797 put_page(page);
71e3aac0 798 return VM_FAULT_OOM;
00501b53 799 }
71e3aac0
AA
800
801 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
802 /*
803 * The memory barrier inside __SetPageUptodate makes sure that
804 * clear_huge_page writes become visible before the set_pmd_at()
805 * write.
806 */
71e3aac0
AA
807 __SetPageUptodate(page);
808
c4088ebd 809 ptl = pmd_lock(mm, pmd);
71e3aac0 810 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 811 spin_unlock(ptl);
f627c2f5 812 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
813 put_page(page);
814 pte_free(mm, pgtable);
815 } else {
816 pmd_t entry;
6b251fc9
AA
817
818 /* Deliver the page fault to userland */
819 if (userfaultfd_missing(vma)) {
820 int ret;
821
822 spin_unlock(ptl);
f627c2f5 823 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
824 put_page(page);
825 pte_free(mm, pgtable);
230c92a8 826 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
827 VM_UFFD_MISSING);
828 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
829 return ret;
830 }
831
3122359a
KS
832 entry = mk_huge_pmd(page, vma->vm_page_prot);
833 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 834 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 835 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 836 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 837 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 838 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 839 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 840 atomic_long_inc(&mm->nr_ptes);
c4088ebd 841 spin_unlock(ptl);
6b251fc9 842 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
843 }
844
aa2e878e 845 return 0;
71e3aac0
AA
846}
847
cc5d462f 848static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 849{
71baba4b 850 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
851}
852
c4088ebd 853/* Caller must hold page table lock. */
d295e341 854static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 855 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 856 struct page *zero_page)
fc9fe822
KS
857{
858 pmd_t entry;
7c414164
AM
859 if (!pmd_none(*pmd))
860 return false;
5918d10a 861 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 862 entry = pmd_mkhuge(entry);
6b0b50b0 863 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 864 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 865 atomic_long_inc(&mm->nr_ptes);
7c414164 866 return true;
fc9fe822
KS
867}
868
71e3aac0
AA
869int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
870 unsigned long address, pmd_t *pmd,
871 unsigned int flags)
872{
077fcf11 873 gfp_t gfp;
71e3aac0
AA
874 struct page *page;
875 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 876
128ec037 877 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 878 return VM_FAULT_FALLBACK;
128ec037
KS
879 if (unlikely(anon_vma_prepare(vma)))
880 return VM_FAULT_OOM;
6d50e60c 881 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 882 return VM_FAULT_OOM;
593befa6 883 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 884 transparent_hugepage_use_zero_page()) {
c4088ebd 885 spinlock_t *ptl;
128ec037
KS
886 pgtable_t pgtable;
887 struct page *zero_page;
888 bool set;
6b251fc9 889 int ret;
128ec037
KS
890 pgtable = pte_alloc_one(mm, haddr);
891 if (unlikely(!pgtable))
ba76149f 892 return VM_FAULT_OOM;
128ec037
KS
893 zero_page = get_huge_zero_page();
894 if (unlikely(!zero_page)) {
895 pte_free(mm, pgtable);
81ab4201 896 count_vm_event(THP_FAULT_FALLBACK);
c0292554 897 return VM_FAULT_FALLBACK;
b9bbfbe3 898 }
c4088ebd 899 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
900 ret = 0;
901 set = false;
902 if (pmd_none(*pmd)) {
903 if (userfaultfd_missing(vma)) {
904 spin_unlock(ptl);
230c92a8 905 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
906 VM_UFFD_MISSING);
907 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
908 } else {
909 set_huge_zero_page(pgtable, mm, vma,
910 haddr, pmd,
911 zero_page);
912 spin_unlock(ptl);
913 set = true;
914 }
915 } else
916 spin_unlock(ptl);
128ec037
KS
917 if (!set) {
918 pte_free(mm, pgtable);
919 put_huge_zero_page();
edad9d2c 920 }
6b251fc9 921 return ret;
71e3aac0 922 }
077fcf11
AK
923 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
924 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
925 if (unlikely(!page)) {
926 count_vm_event(THP_FAULT_FALLBACK);
c0292554 927 return VM_FAULT_FALLBACK;
128ec037 928 }
9a982250 929 prep_transhuge_page(page);
230c92a8
AA
930 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
931 flags);
71e3aac0
AA
932}
933
ae18d6dc 934static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 935 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
936{
937 struct mm_struct *mm = vma->vm_mm;
938 pmd_t entry;
939 spinlock_t *ptl;
940
941 ptl = pmd_lock(mm, pmd);
f25748e3
DW
942 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
943 if (pfn_t_devmap(pfn))
944 entry = pmd_mkdevmap(entry);
01871e59
RZ
945 if (write) {
946 entry = pmd_mkyoung(pmd_mkdirty(entry));
947 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 948 }
01871e59
RZ
949 set_pmd_at(mm, addr, pmd, entry);
950 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 951 spin_unlock(ptl);
5cad465d
MW
952}
953
954int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 955 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
956{
957 pgprot_t pgprot = vma->vm_page_prot;
958 /*
959 * If we had pmd_special, we could avoid all these restrictions,
960 * but we need to be consistent with PTEs and architectures that
961 * can't support a 'special' bit.
962 */
963 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
964 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
965 (VM_PFNMAP|VM_MIXEDMAP));
966 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 967 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
968
969 if (addr < vma->vm_start || addr >= vma->vm_end)
970 return VM_FAULT_SIGBUS;
971 if (track_pfn_insert(vma, &pgprot, pfn))
972 return VM_FAULT_SIGBUS;
ae18d6dc
MW
973 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
974 return VM_FAULT_NOPAGE;
5cad465d
MW
975}
976
71e3aac0
AA
977int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
978 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
979 struct vm_area_struct *vma)
980{
c4088ebd 981 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
982 struct page *src_page;
983 pmd_t pmd;
984 pgtable_t pgtable;
985 int ret;
986
987 ret = -ENOMEM;
988 pgtable = pte_alloc_one(dst_mm, addr);
989 if (unlikely(!pgtable))
990 goto out;
991
c4088ebd
KS
992 dst_ptl = pmd_lock(dst_mm, dst_pmd);
993 src_ptl = pmd_lockptr(src_mm, src_pmd);
994 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
995
996 ret = -EAGAIN;
997 pmd = *src_pmd;
5c7fb56e 998 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
999 pte_free(dst_mm, pgtable);
1000 goto out_unlock;
1001 }
fc9fe822 1002 /*
c4088ebd 1003 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1004 * under splitting since we don't split the page itself, only pmd to
1005 * a page table.
1006 */
1007 if (is_huge_zero_pmd(pmd)) {
5918d10a 1008 struct page *zero_page;
97ae1749
KS
1009 /*
1010 * get_huge_zero_page() will never allocate a new page here,
1011 * since we already have a zero page to copy. It just takes a
1012 * reference.
1013 */
5918d10a 1014 zero_page = get_huge_zero_page();
6b251fc9 1015 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1016 zero_page);
fc9fe822
KS
1017 ret = 0;
1018 goto out_unlock;
1019 }
de466bd6 1020
5c7fb56e
DW
1021 if (pmd_trans_huge(pmd)) {
1022 /* thp accounting separate from pmd_devmap accounting */
1023 src_page = pmd_page(pmd);
1024 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1025 get_page(src_page);
1026 page_dup_rmap(src_page, true);
1027 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1028 atomic_long_inc(&dst_mm->nr_ptes);
1029 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1030 }
71e3aac0
AA
1031
1032 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1033 pmd = pmd_mkold(pmd_wrprotect(pmd));
1034 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1035
1036 ret = 0;
1037out_unlock:
c4088ebd
KS
1038 spin_unlock(src_ptl);
1039 spin_unlock(dst_ptl);
71e3aac0
AA
1040out:
1041 return ret;
1042}
1043
a1dd450b
WD
1044void huge_pmd_set_accessed(struct mm_struct *mm,
1045 struct vm_area_struct *vma,
1046 unsigned long address,
1047 pmd_t *pmd, pmd_t orig_pmd,
1048 int dirty)
1049{
c4088ebd 1050 spinlock_t *ptl;
a1dd450b
WD
1051 pmd_t entry;
1052 unsigned long haddr;
1053
c4088ebd 1054 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1055 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1056 goto unlock;
1057
1058 entry = pmd_mkyoung(orig_pmd);
1059 haddr = address & HPAGE_PMD_MASK;
1060 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1061 update_mmu_cache_pmd(vma, address, pmd);
1062
1063unlock:
c4088ebd 1064 spin_unlock(ptl);
a1dd450b
WD
1065}
1066
71e3aac0
AA
1067static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1068 struct vm_area_struct *vma,
1069 unsigned long address,
1070 pmd_t *pmd, pmd_t orig_pmd,
1071 struct page *page,
1072 unsigned long haddr)
1073{
00501b53 1074 struct mem_cgroup *memcg;
c4088ebd 1075 spinlock_t *ptl;
71e3aac0
AA
1076 pgtable_t pgtable;
1077 pmd_t _pmd;
1078 int ret = 0, i;
1079 struct page **pages;
2ec74c3e
SG
1080 unsigned long mmun_start; /* For mmu_notifiers */
1081 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1082
1083 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1084 GFP_KERNEL);
1085 if (unlikely(!pages)) {
1086 ret |= VM_FAULT_OOM;
1087 goto out;
1088 }
1089
1090 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1091 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1092 __GFP_OTHER_NODE,
19ee151e 1093 vma, address, page_to_nid(page));
b9bbfbe3 1094 if (unlikely(!pages[i] ||
00501b53 1095 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1096 &memcg, false))) {
b9bbfbe3 1097 if (pages[i])
71e3aac0 1098 put_page(pages[i]);
b9bbfbe3 1099 while (--i >= 0) {
00501b53
JW
1100 memcg = (void *)page_private(pages[i]);
1101 set_page_private(pages[i], 0);
f627c2f5
KS
1102 mem_cgroup_cancel_charge(pages[i], memcg,
1103 false);
b9bbfbe3
AA
1104 put_page(pages[i]);
1105 }
71e3aac0
AA
1106 kfree(pages);
1107 ret |= VM_FAULT_OOM;
1108 goto out;
1109 }
00501b53 1110 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1111 }
1112
1113 for (i = 0; i < HPAGE_PMD_NR; i++) {
1114 copy_user_highpage(pages[i], page + i,
0089e485 1115 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1116 __SetPageUptodate(pages[i]);
1117 cond_resched();
1118 }
1119
2ec74c3e
SG
1120 mmun_start = haddr;
1121 mmun_end = haddr + HPAGE_PMD_SIZE;
1122 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1123
c4088ebd 1124 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1125 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1126 goto out_free_pages;
309381fe 1127 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1128
8809aa2d 1129 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1130 /* leave pmd empty until pte is filled */
1131
6b0b50b0 1132 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1133 pmd_populate(mm, &_pmd, pgtable);
1134
1135 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1136 pte_t *pte, entry;
1137 entry = mk_pte(pages[i], vma->vm_page_prot);
1138 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1139 memcg = (void *)page_private(pages[i]);
1140 set_page_private(pages[i], 0);
d281ee61 1141 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1142 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1143 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1144 pte = pte_offset_map(&_pmd, haddr);
1145 VM_BUG_ON(!pte_none(*pte));
1146 set_pte_at(mm, haddr, pte, entry);
1147 pte_unmap(pte);
1148 }
1149 kfree(pages);
1150
71e3aac0
AA
1151 smp_wmb(); /* make pte visible before pmd */
1152 pmd_populate(mm, pmd, pgtable);
d281ee61 1153 page_remove_rmap(page, true);
c4088ebd 1154 spin_unlock(ptl);
71e3aac0 1155
2ec74c3e
SG
1156 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157
71e3aac0
AA
1158 ret |= VM_FAULT_WRITE;
1159 put_page(page);
1160
1161out:
1162 return ret;
1163
1164out_free_pages:
c4088ebd 1165 spin_unlock(ptl);
2ec74c3e 1166 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1167 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1168 memcg = (void *)page_private(pages[i]);
1169 set_page_private(pages[i], 0);
f627c2f5 1170 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1171 put_page(pages[i]);
b9bbfbe3 1172 }
71e3aac0
AA
1173 kfree(pages);
1174 goto out;
1175}
1176
1177int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1178 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1179{
c4088ebd 1180 spinlock_t *ptl;
71e3aac0 1181 int ret = 0;
93b4796d 1182 struct page *page = NULL, *new_page;
00501b53 1183 struct mem_cgroup *memcg;
71e3aac0 1184 unsigned long haddr;
2ec74c3e
SG
1185 unsigned long mmun_start; /* For mmu_notifiers */
1186 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1187 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1188
c4088ebd 1189 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1190 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1191 haddr = address & HPAGE_PMD_MASK;
1192 if (is_huge_zero_pmd(orig_pmd))
1193 goto alloc;
c4088ebd 1194 spin_lock(ptl);
71e3aac0
AA
1195 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1196 goto out_unlock;
1197
1198 page = pmd_page(orig_pmd);
309381fe 1199 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1200 /*
1201 * We can only reuse the page if nobody else maps the huge page or it's
1202 * part. We can do it by checking page_mapcount() on each sub-page, but
1203 * it's expensive.
1204 * The cheaper way is to check page_count() to be equal 1: every
1205 * mapcount takes page reference reference, so this way we can
1206 * guarantee, that the PMD is the only mapping.
1207 * This can give false negative if somebody pinned the page, but that's
1208 * fine.
1209 */
1210 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1211 pmd_t entry;
1212 entry = pmd_mkyoung(orig_pmd);
1213 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1214 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1215 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1216 ret |= VM_FAULT_WRITE;
1217 goto out_unlock;
1218 }
ddc58f27 1219 get_page(page);
c4088ebd 1220 spin_unlock(ptl);
93b4796d 1221alloc:
71e3aac0 1222 if (transparent_hugepage_enabled(vma) &&
077fcf11 1223 !transparent_hugepage_debug_cow()) {
3b363692
MH
1224 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1225 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1226 } else
71e3aac0
AA
1227 new_page = NULL;
1228
9a982250
KS
1229 if (likely(new_page)) {
1230 prep_transhuge_page(new_page);
1231 } else {
eecc1e42 1232 if (!page) {
78ddc534 1233 split_huge_pmd(vma, pmd, address);
e9b71ca9 1234 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1235 } else {
1236 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1237 pmd, orig_pmd, page, haddr);
9845cbbd 1238 if (ret & VM_FAULT_OOM) {
78ddc534 1239 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1240 ret |= VM_FAULT_FALLBACK;
1241 }
ddc58f27 1242 put_page(page);
93b4796d 1243 }
17766dde 1244 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1245 goto out;
1246 }
1247
f627c2f5
KS
1248 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1249 true))) {
b9bbfbe3 1250 put_page(new_page);
93b4796d 1251 if (page) {
78ddc534 1252 split_huge_pmd(vma, pmd, address);
ddc58f27 1253 put_page(page);
9845cbbd 1254 } else
78ddc534 1255 split_huge_pmd(vma, pmd, address);
9845cbbd 1256 ret |= VM_FAULT_FALLBACK;
17766dde 1257 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1258 goto out;
1259 }
1260
17766dde
DR
1261 count_vm_event(THP_FAULT_ALLOC);
1262
eecc1e42 1263 if (!page)
93b4796d
KS
1264 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1265 else
1266 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1267 __SetPageUptodate(new_page);
1268
2ec74c3e
SG
1269 mmun_start = haddr;
1270 mmun_end = haddr + HPAGE_PMD_SIZE;
1271 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1272
c4088ebd 1273 spin_lock(ptl);
93b4796d 1274 if (page)
ddc58f27 1275 put_page(page);
b9bbfbe3 1276 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1277 spin_unlock(ptl);
f627c2f5 1278 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1279 put_page(new_page);
2ec74c3e 1280 goto out_mn;
b9bbfbe3 1281 } else {
71e3aac0 1282 pmd_t entry;
3122359a
KS
1283 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1284 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1285 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1286 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1287 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1288 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1289 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1290 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1291 if (!page) {
93b4796d 1292 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1293 put_huge_zero_page();
1294 } else {
309381fe 1295 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1296 page_remove_rmap(page, true);
93b4796d
KS
1297 put_page(page);
1298 }
71e3aac0
AA
1299 ret |= VM_FAULT_WRITE;
1300 }
c4088ebd 1301 spin_unlock(ptl);
2ec74c3e
SG
1302out_mn:
1303 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1304out:
1305 return ret;
2ec74c3e 1306out_unlock:
c4088ebd 1307 spin_unlock(ptl);
2ec74c3e 1308 return ret;
71e3aac0
AA
1309}
1310
b676b293 1311struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1312 unsigned long addr,
1313 pmd_t *pmd,
1314 unsigned int flags)
1315{
b676b293 1316 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1317 struct page *page = NULL;
1318
c4088ebd 1319 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1320
1321 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1322 goto out;
1323
85facf25
KS
1324 /* Avoid dumping huge zero page */
1325 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1326 return ERR_PTR(-EFAULT);
1327
2b4847e7 1328 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1329 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1330 goto out;
1331
71e3aac0 1332 page = pmd_page(*pmd);
309381fe 1333 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1334 if (flags & FOLL_TOUCH) {
1335 pmd_t _pmd;
1336 /*
1337 * We should set the dirty bit only for FOLL_WRITE but
1338 * for now the dirty bit in the pmd is meaningless.
1339 * And if the dirty bit will become meaningful and
1340 * we'll only set it with FOLL_WRITE, an atomic
1341 * set_bit will be required on the pmd to set the
1342 * young bit, instead of the current set_pmd_at.
1343 */
1344 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1345 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1346 pmd, _pmd, 1))
1347 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1348 }
de60f5f1 1349 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1350 /*
1351 * We don't mlock() pte-mapped THPs. This way we can avoid
1352 * leaking mlocked pages into non-VM_LOCKED VMAs.
1353 *
1354 * In most cases the pmd is the only mapping of the page as we
1355 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1356 * writable private mappings in populate_vma_page_range().
1357 *
1358 * The only scenario when we have the page shared here is if we
1359 * mlocking read-only mapping shared over fork(). We skip
1360 * mlocking such pages.
1361 */
1362 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1363 page->mapping && trylock_page(page)) {
b676b293
DR
1364 lru_add_drain();
1365 if (page->mapping)
1366 mlock_vma_page(page);
1367 unlock_page(page);
1368 }
1369 }
71e3aac0 1370 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1371 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1372 if (flags & FOLL_GET)
ddc58f27 1373 get_page(page);
71e3aac0
AA
1374
1375out:
1376 return page;
1377}
1378
d10e63f2 1379/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1380int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1381 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1382{
c4088ebd 1383 spinlock_t *ptl;
b8916634 1384 struct anon_vma *anon_vma = NULL;
b32967ff 1385 struct page *page;
d10e63f2 1386 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1387 int page_nid = -1, this_nid = numa_node_id();
90572890 1388 int target_nid, last_cpupid = -1;
8191acbd
MG
1389 bool page_locked;
1390 bool migrated = false;
b191f9b1 1391 bool was_writable;
6688cc05 1392 int flags = 0;
d10e63f2 1393
c0e7cad9
MG
1394 /* A PROT_NONE fault should not end up here */
1395 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1396
c4088ebd 1397 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1398 if (unlikely(!pmd_same(pmd, *pmdp)))
1399 goto out_unlock;
1400
de466bd6
MG
1401 /*
1402 * If there are potential migrations, wait for completion and retry
1403 * without disrupting NUMA hinting information. Do not relock and
1404 * check_same as the page may no longer be mapped.
1405 */
1406 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1407 page = pmd_page(*pmdp);
de466bd6 1408 spin_unlock(ptl);
5d833062 1409 wait_on_page_locked(page);
de466bd6
MG
1410 goto out;
1411 }
1412
d10e63f2 1413 page = pmd_page(pmd);
a1a46184 1414 BUG_ON(is_huge_zero_page(page));
8191acbd 1415 page_nid = page_to_nid(page);
90572890 1416 last_cpupid = page_cpupid_last(page);
03c5a6e1 1417 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1418 if (page_nid == this_nid) {
03c5a6e1 1419 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1420 flags |= TNF_FAULT_LOCAL;
1421 }
4daae3b4 1422
bea66fbd
MG
1423 /* See similar comment in do_numa_page for explanation */
1424 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1425 flags |= TNF_NO_GROUP;
1426
ff9042b1
MG
1427 /*
1428 * Acquire the page lock to serialise THP migrations but avoid dropping
1429 * page_table_lock if at all possible
1430 */
b8916634
MG
1431 page_locked = trylock_page(page);
1432 target_nid = mpol_misplaced(page, vma, haddr);
1433 if (target_nid == -1) {
1434 /* If the page was locked, there are no parallel migrations */
a54a407f 1435 if (page_locked)
b8916634 1436 goto clear_pmdnuma;
2b4847e7 1437 }
4daae3b4 1438
de466bd6 1439 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1440 if (!page_locked) {
c4088ebd 1441 spin_unlock(ptl);
b8916634 1442 wait_on_page_locked(page);
a54a407f 1443 page_nid = -1;
b8916634
MG
1444 goto out;
1445 }
1446
2b4847e7
MG
1447 /*
1448 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1449 * to serialises splits
1450 */
b8916634 1451 get_page(page);
c4088ebd 1452 spin_unlock(ptl);
b8916634 1453 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1454
c69307d5 1455 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1456 spin_lock(ptl);
b32967ff
MG
1457 if (unlikely(!pmd_same(pmd, *pmdp))) {
1458 unlock_page(page);
1459 put_page(page);
a54a407f 1460 page_nid = -1;
4daae3b4 1461 goto out_unlock;
b32967ff 1462 }
ff9042b1 1463
c3a489ca
MG
1464 /* Bail if we fail to protect against THP splits for any reason */
1465 if (unlikely(!anon_vma)) {
1466 put_page(page);
1467 page_nid = -1;
1468 goto clear_pmdnuma;
1469 }
1470
a54a407f
MG
1471 /*
1472 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1473 * and access rights restored.
a54a407f 1474 */
c4088ebd 1475 spin_unlock(ptl);
b32967ff 1476 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1477 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1478 if (migrated) {
1479 flags |= TNF_MIGRATED;
8191acbd 1480 page_nid = target_nid;
074c2381
MG
1481 } else
1482 flags |= TNF_MIGRATE_FAIL;
b32967ff 1483
8191acbd 1484 goto out;
b32967ff 1485clear_pmdnuma:
a54a407f 1486 BUG_ON(!PageLocked(page));
b191f9b1 1487 was_writable = pmd_write(pmd);
4d942466 1488 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1489 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1490 if (was_writable)
1491 pmd = pmd_mkwrite(pmd);
d10e63f2 1492 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1493 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1494 unlock_page(page);
d10e63f2 1495out_unlock:
c4088ebd 1496 spin_unlock(ptl);
b8916634
MG
1497
1498out:
1499 if (anon_vma)
1500 page_unlock_anon_vma_read(anon_vma);
1501
8191acbd 1502 if (page_nid != -1)
6688cc05 1503 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1504
d10e63f2
MG
1505 return 0;
1506}
1507
b8d3c4c3
MK
1508int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1509 pmd_t *pmd, unsigned long addr, unsigned long next)
1510
1511{
1512 spinlock_t *ptl;
1513 pmd_t orig_pmd;
1514 struct page *page;
1515 struct mm_struct *mm = tlb->mm;
1516 int ret = 0;
1517
1518 if (!pmd_trans_huge_lock(pmd, vma, &ptl))
1519 goto out;
1520
1521 orig_pmd = *pmd;
1522 if (is_huge_zero_pmd(orig_pmd)) {
1523 ret = 1;
1524 goto out;
1525 }
1526
1527 page = pmd_page(orig_pmd);
1528 /*
1529 * If other processes are mapping this page, we couldn't discard
1530 * the page unless they all do MADV_FREE so let's skip the page.
1531 */
1532 if (page_mapcount(page) != 1)
1533 goto out;
1534
1535 if (!trylock_page(page))
1536 goto out;
1537
1538 /*
1539 * If user want to discard part-pages of THP, split it so MADV_FREE
1540 * will deactivate only them.
1541 */
1542 if (next - addr != HPAGE_PMD_SIZE) {
1543 get_page(page);
1544 spin_unlock(ptl);
1545 if (split_huge_page(page)) {
1546 put_page(page);
1547 unlock_page(page);
1548 goto out_unlocked;
1549 }
1550 put_page(page);
1551 unlock_page(page);
1552 ret = 1;
1553 goto out_unlocked;
1554 }
1555
1556 if (PageDirty(page))
1557 ClearPageDirty(page);
1558 unlock_page(page);
1559
1560 if (PageActive(page))
1561 deactivate_page(page);
1562
1563 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1564 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1565 tlb->fullmm);
1566 orig_pmd = pmd_mkold(orig_pmd);
1567 orig_pmd = pmd_mkclean(orig_pmd);
1568
1569 set_pmd_at(mm, addr, pmd, orig_pmd);
1570 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1571 }
1572 ret = 1;
1573out:
1574 spin_unlock(ptl);
1575out_unlocked:
1576 return ret;
1577}
1578
71e3aac0 1579int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1580 pmd_t *pmd, unsigned long addr)
71e3aac0 1581{
da146769 1582 pmd_t orig_pmd;
bf929152 1583 spinlock_t *ptl;
71e3aac0 1584
4b471e88 1585 if (!__pmd_trans_huge_lock(pmd, vma, &ptl))
da146769
KS
1586 return 0;
1587 /*
1588 * For architectures like ppc64 we look at deposited pgtable
1589 * when calling pmdp_huge_get_and_clear. So do the
1590 * pgtable_trans_huge_withdraw after finishing pmdp related
1591 * operations.
1592 */
1593 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1594 tlb->fullmm);
1595 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1596 if (vma_is_dax(vma)) {
1597 spin_unlock(ptl);
1598 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1599 put_huge_zero_page();
da146769
KS
1600 } else if (is_huge_zero_pmd(orig_pmd)) {
1601 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1602 atomic_long_dec(&tlb->mm->nr_ptes);
1603 spin_unlock(ptl);
1604 put_huge_zero_page();
1605 } else {
1606 struct page *page = pmd_page(orig_pmd);
d281ee61 1607 page_remove_rmap(page, true);
da146769
KS
1608 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1609 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1610 VM_BUG_ON_PAGE(!PageHead(page), page);
1611 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1612 atomic_long_dec(&tlb->mm->nr_ptes);
1613 spin_unlock(ptl);
1614 tlb_remove_page(tlb, page);
025c5b24 1615 }
da146769 1616 return 1;
71e3aac0
AA
1617}
1618
4b471e88 1619bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
37a1c49a
AA
1620 unsigned long old_addr,
1621 unsigned long new_addr, unsigned long old_end,
1622 pmd_t *old_pmd, pmd_t *new_pmd)
1623{
bf929152 1624 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1625 pmd_t pmd;
1626
1627 struct mm_struct *mm = vma->vm_mm;
1628
1629 if ((old_addr & ~HPAGE_PMD_MASK) ||
1630 (new_addr & ~HPAGE_PMD_MASK) ||
1631 old_end - old_addr < HPAGE_PMD_SIZE ||
1632 (new_vma->vm_flags & VM_NOHUGEPAGE))
4b471e88 1633 return false;
37a1c49a
AA
1634
1635 /*
1636 * The destination pmd shouldn't be established, free_pgtables()
1637 * should have release it.
1638 */
1639 if (WARN_ON(!pmd_none(*new_pmd))) {
1640 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1641 return false;
37a1c49a
AA
1642 }
1643
bf929152
KS
1644 /*
1645 * We don't have to worry about the ordering of src and dst
1646 * ptlocks because exclusive mmap_sem prevents deadlock.
1647 */
4b471e88 1648 if (__pmd_trans_huge_lock(old_pmd, vma, &old_ptl)) {
bf929152
KS
1649 new_ptl = pmd_lockptr(mm, new_pmd);
1650 if (new_ptl != old_ptl)
1651 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1652 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1653 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1654
b3084f4d
AK
1655 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1656 pgtable_t pgtable;
3592806c
KS
1657 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1658 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1659 }
b3084f4d
AK
1660 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1661 if (new_ptl != old_ptl)
1662 spin_unlock(new_ptl);
bf929152 1663 spin_unlock(old_ptl);
4b471e88 1664 return true;
37a1c49a 1665 }
4b471e88 1666 return false;
37a1c49a
AA
1667}
1668
f123d74a
MG
1669/*
1670 * Returns
1671 * - 0 if PMD could not be locked
1672 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1673 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1674 */
cd7548ab 1675int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1676 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1677{
1678 struct mm_struct *mm = vma->vm_mm;
bf929152 1679 spinlock_t *ptl;
cd7548ab
JW
1680 int ret = 0;
1681
4b471e88 1682 if (__pmd_trans_huge_lock(pmd, vma, &ptl)) {
025c5b24 1683 pmd_t entry;
b191f9b1 1684 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1685 ret = 1;
e944fd67
MG
1686
1687 /*
1688 * Avoid trapping faults against the zero page. The read-only
1689 * data is likely to be read-cached on the local CPU and
1690 * local/remote hits to the zero page are not interesting.
1691 */
1692 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1693 spin_unlock(ptl);
ba68bc01 1694 return ret;
e944fd67
MG
1695 }
1696
10c1045f 1697 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1698 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1699 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1700 if (preserve_write)
1701 entry = pmd_mkwrite(entry);
10c1045f
MG
1702 ret = HPAGE_PMD_NR;
1703 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1704 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1705 }
bf929152 1706 spin_unlock(ptl);
025c5b24
NH
1707 }
1708
1709 return ret;
1710}
1711
1712/*
4b471e88 1713 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1714 *
4b471e88
KS
1715 * Note that if it returns true, this routine returns without unlocking page
1716 * table lock. So callers must unlock it.
025c5b24 1717 */
4b471e88 1718bool __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
bf929152 1719 spinlock_t **ptl)
025c5b24 1720{
bf929152 1721 *ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1722 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
4b471e88 1723 return true;
bf929152 1724 spin_unlock(*ptl);
4b471e88 1725 return false;
cd7548ab
JW
1726}
1727
9050d7eb 1728#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1729
60ab3244
AA
1730int hugepage_madvise(struct vm_area_struct *vma,
1731 unsigned long *vm_flags, int advice)
0af4e98b 1732{
a664b2d8
AA
1733 switch (advice) {
1734 case MADV_HUGEPAGE:
1e1836e8
AT
1735#ifdef CONFIG_S390
1736 /*
1737 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1738 * can't handle this properly after s390_enable_sie, so we simply
1739 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1740 */
1741 if (mm_has_pgste(vma->vm_mm))
1742 return 0;
1743#endif
a664b2d8
AA
1744 /*
1745 * Be somewhat over-protective like KSM for now!
1746 */
1a763615 1747 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1748 return -EINVAL;
1749 *vm_flags &= ~VM_NOHUGEPAGE;
1750 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1751 /*
1752 * If the vma become good for khugepaged to scan,
1753 * register it here without waiting a page fault that
1754 * may not happen any time soon.
1755 */
6d50e60c 1756 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1757 return -ENOMEM;
a664b2d8
AA
1758 break;
1759 case MADV_NOHUGEPAGE:
1760 /*
1761 * Be somewhat over-protective like KSM for now!
1762 */
1a763615 1763 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1764 return -EINVAL;
1765 *vm_flags &= ~VM_HUGEPAGE;
1766 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1767 /*
1768 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1769 * this vma even if we leave the mm registered in khugepaged if
1770 * it got registered before VM_NOHUGEPAGE was set.
1771 */
a664b2d8
AA
1772 break;
1773 }
0af4e98b
AA
1774
1775 return 0;
1776}
1777
ba76149f
AA
1778static int __init khugepaged_slab_init(void)
1779{
1780 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1781 sizeof(struct mm_slot),
1782 __alignof__(struct mm_slot), 0, NULL);
1783 if (!mm_slot_cache)
1784 return -ENOMEM;
1785
1786 return 0;
1787}
1788
65ebb64f
KS
1789static void __init khugepaged_slab_exit(void)
1790{
1791 kmem_cache_destroy(mm_slot_cache);
1792}
1793
ba76149f
AA
1794static inline struct mm_slot *alloc_mm_slot(void)
1795{
1796 if (!mm_slot_cache) /* initialization failed */
1797 return NULL;
1798 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1799}
1800
1801static inline void free_mm_slot(struct mm_slot *mm_slot)
1802{
1803 kmem_cache_free(mm_slot_cache, mm_slot);
1804}
1805
ba76149f
AA
1806static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1807{
1808 struct mm_slot *mm_slot;
ba76149f 1809
b67bfe0d 1810 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1811 if (mm == mm_slot->mm)
1812 return mm_slot;
43b5fbbd 1813
ba76149f
AA
1814 return NULL;
1815}
1816
1817static void insert_to_mm_slots_hash(struct mm_struct *mm,
1818 struct mm_slot *mm_slot)
1819{
ba76149f 1820 mm_slot->mm = mm;
43b5fbbd 1821 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1822}
1823
1824static inline int khugepaged_test_exit(struct mm_struct *mm)
1825{
1826 return atomic_read(&mm->mm_users) == 0;
1827}
1828
1829int __khugepaged_enter(struct mm_struct *mm)
1830{
1831 struct mm_slot *mm_slot;
1832 int wakeup;
1833
1834 mm_slot = alloc_mm_slot();
1835 if (!mm_slot)
1836 return -ENOMEM;
1837
1838 /* __khugepaged_exit() must not run from under us */
96dad67f 1839 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1840 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1841 free_mm_slot(mm_slot);
1842 return 0;
1843 }
1844
1845 spin_lock(&khugepaged_mm_lock);
1846 insert_to_mm_slots_hash(mm, mm_slot);
1847 /*
1848 * Insert just behind the scanning cursor, to let the area settle
1849 * down a little.
1850 */
1851 wakeup = list_empty(&khugepaged_scan.mm_head);
1852 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1853 spin_unlock(&khugepaged_mm_lock);
1854
1855 atomic_inc(&mm->mm_count);
1856 if (wakeup)
1857 wake_up_interruptible(&khugepaged_wait);
1858
1859 return 0;
1860}
1861
6d50e60c
DR
1862int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1863 unsigned long vm_flags)
ba76149f
AA
1864{
1865 unsigned long hstart, hend;
1866 if (!vma->anon_vma)
1867 /*
1868 * Not yet faulted in so we will register later in the
1869 * page fault if needed.
1870 */
1871 return 0;
78f11a25 1872 if (vma->vm_ops)
ba76149f
AA
1873 /* khugepaged not yet working on file or special mappings */
1874 return 0;
6d50e60c 1875 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
1876 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1877 hend = vma->vm_end & HPAGE_PMD_MASK;
1878 if (hstart < hend)
6d50e60c 1879 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1880 return 0;
1881}
1882
1883void __khugepaged_exit(struct mm_struct *mm)
1884{
1885 struct mm_slot *mm_slot;
1886 int free = 0;
1887
1888 spin_lock(&khugepaged_mm_lock);
1889 mm_slot = get_mm_slot(mm);
1890 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1891 hash_del(&mm_slot->hash);
ba76149f
AA
1892 list_del(&mm_slot->mm_node);
1893 free = 1;
1894 }
d788e80a 1895 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1896
1897 if (free) {
ba76149f
AA
1898 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1899 free_mm_slot(mm_slot);
1900 mmdrop(mm);
1901 } else if (mm_slot) {
ba76149f
AA
1902 /*
1903 * This is required to serialize against
1904 * khugepaged_test_exit() (which is guaranteed to run
1905 * under mmap sem read mode). Stop here (after we
1906 * return all pagetables will be destroyed) until
1907 * khugepaged has finished working on the pagetables
1908 * under the mmap_sem.
1909 */
1910 down_write(&mm->mmap_sem);
1911 up_write(&mm->mmap_sem);
d788e80a 1912 }
ba76149f
AA
1913}
1914
1915static void release_pte_page(struct page *page)
1916{
1917 /* 0 stands for page_is_file_cache(page) == false */
1918 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1919 unlock_page(page);
1920 putback_lru_page(page);
1921}
1922
1923static void release_pte_pages(pte_t *pte, pte_t *_pte)
1924{
1925 while (--_pte >= pte) {
1926 pte_t pteval = *_pte;
ca0984ca 1927 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
1928 release_pte_page(pte_page(pteval));
1929 }
1930}
1931
ba76149f
AA
1932static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1933 unsigned long address,
1934 pte_t *pte)
1935{
7d2eba05 1936 struct page *page = NULL;
ba76149f 1937 pte_t *_pte;
7d2eba05 1938 int none_or_zero = 0, result = 0;
10359213 1939 bool referenced = false, writable = false;
7d2eba05 1940
ba76149f
AA
1941 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1942 _pte++, address += PAGE_SIZE) {
1943 pte_t pteval = *_pte;
47aee4d8
MK
1944 if (pte_none(pteval) || (pte_present(pteval) &&
1945 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 1946 if (!userfaultfd_armed(vma) &&
7d2eba05 1947 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 1948 continue;
7d2eba05
EA
1949 } else {
1950 result = SCAN_EXCEED_NONE_PTE;
ba76149f 1951 goto out;
7d2eba05 1952 }
ba76149f 1953 }
7d2eba05
EA
1954 if (!pte_present(pteval)) {
1955 result = SCAN_PTE_NON_PRESENT;
ba76149f 1956 goto out;
7d2eba05 1957 }
ba76149f 1958 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
1959 if (unlikely(!page)) {
1960 result = SCAN_PAGE_NULL;
ba76149f 1961 goto out;
7d2eba05 1962 }
344aa35c 1963
309381fe
SL
1964 VM_BUG_ON_PAGE(PageCompound(page), page);
1965 VM_BUG_ON_PAGE(!PageAnon(page), page);
1966 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 1967
ba76149f
AA
1968 /*
1969 * We can do it before isolate_lru_page because the
1970 * page can't be freed from under us. NOTE: PG_lock
1971 * is needed to serialize against split_huge_page
1972 * when invoked from the VM.
1973 */
7d2eba05
EA
1974 if (!trylock_page(page)) {
1975 result = SCAN_PAGE_LOCK;
ba76149f 1976 goto out;
7d2eba05 1977 }
10359213
EA
1978
1979 /*
1980 * cannot use mapcount: can't collapse if there's a gup pin.
1981 * The page must only be referenced by the scanned process
1982 * and page swap cache.
1983 */
1984 if (page_count(page) != 1 + !!PageSwapCache(page)) {
1985 unlock_page(page);
7d2eba05 1986 result = SCAN_PAGE_COUNT;
10359213
EA
1987 goto out;
1988 }
1989 if (pte_write(pteval)) {
1990 writable = true;
1991 } else {
1992 if (PageSwapCache(page) && !reuse_swap_page(page)) {
1993 unlock_page(page);
7d2eba05 1994 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
1995 goto out;
1996 }
1997 /*
1998 * Page is not in the swap cache. It can be collapsed
1999 * into a THP.
2000 */
2001 }
2002
ba76149f
AA
2003 /*
2004 * Isolate the page to avoid collapsing an hugepage
2005 * currently in use by the VM.
2006 */
2007 if (isolate_lru_page(page)) {
2008 unlock_page(page);
7d2eba05 2009 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2010 goto out;
2011 }
2012 /* 0 stands for page_is_file_cache(page) == false */
2013 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2014 VM_BUG_ON_PAGE(!PageLocked(page), page);
2015 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2016
2017 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2018 if (pte_young(pteval) ||
2019 page_is_young(page) || PageReferenced(page) ||
8ee53820 2020 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2021 referenced = true;
ba76149f 2022 }
7d2eba05
EA
2023 if (likely(writable)) {
2024 if (likely(referenced)) {
2025 result = SCAN_SUCCEED;
2026 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2027 referenced, writable, result);
2028 return 1;
2029 }
2030 } else {
2031 result = SCAN_PAGE_RO;
2032 }
2033
ba76149f 2034out:
344aa35c 2035 release_pte_pages(pte, _pte);
7d2eba05
EA
2036 trace_mm_collapse_huge_page_isolate(page_to_pfn(page), none_or_zero,
2037 referenced, writable, result);
344aa35c 2038 return 0;
ba76149f
AA
2039}
2040
2041static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2042 struct vm_area_struct *vma,
2043 unsigned long address,
2044 spinlock_t *ptl)
2045{
2046 pte_t *_pte;
2047 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2048 pte_t pteval = *_pte;
2049 struct page *src_page;
2050
ca0984ca 2051 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2052 clear_user_highpage(page, address);
2053 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2054 if (is_zero_pfn(pte_pfn(pteval))) {
2055 /*
2056 * ptl mostly unnecessary.
2057 */
2058 spin_lock(ptl);
2059 /*
2060 * paravirt calls inside pte_clear here are
2061 * superfluous.
2062 */
2063 pte_clear(vma->vm_mm, address, _pte);
2064 spin_unlock(ptl);
2065 }
ba76149f
AA
2066 } else {
2067 src_page = pte_page(pteval);
2068 copy_user_highpage(page, src_page, address, vma);
309381fe 2069 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2070 release_pte_page(src_page);
2071 /*
2072 * ptl mostly unnecessary, but preempt has to
2073 * be disabled to update the per-cpu stats
2074 * inside page_remove_rmap().
2075 */
2076 spin_lock(ptl);
2077 /*
2078 * paravirt calls inside pte_clear here are
2079 * superfluous.
2080 */
2081 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2082 page_remove_rmap(src_page, false);
ba76149f
AA
2083 spin_unlock(ptl);
2084 free_page_and_swap_cache(src_page);
2085 }
2086
2087 address += PAGE_SIZE;
2088 page++;
2089 }
2090}
2091
26234f36 2092static void khugepaged_alloc_sleep(void)
ba76149f 2093{
bde43c6c
PM
2094 DEFINE_WAIT(wait);
2095
2096 add_wait_queue(&khugepaged_wait, &wait);
2097 freezable_schedule_timeout_interruptible(
2098 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2099 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2100}
ba76149f 2101
9f1b868a
BL
2102static int khugepaged_node_load[MAX_NUMNODES];
2103
14a4e214
DR
2104static bool khugepaged_scan_abort(int nid)
2105{
2106 int i;
2107
2108 /*
2109 * If zone_reclaim_mode is disabled, then no extra effort is made to
2110 * allocate memory locally.
2111 */
2112 if (!zone_reclaim_mode)
2113 return false;
2114
2115 /* If there is a count for this node already, it must be acceptable */
2116 if (khugepaged_node_load[nid])
2117 return false;
2118
2119 for (i = 0; i < MAX_NUMNODES; i++) {
2120 if (!khugepaged_node_load[i])
2121 continue;
2122 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2123 return true;
2124 }
2125 return false;
2126}
2127
26234f36 2128#ifdef CONFIG_NUMA
9f1b868a
BL
2129static int khugepaged_find_target_node(void)
2130{
2131 static int last_khugepaged_target_node = NUMA_NO_NODE;
2132 int nid, target_node = 0, max_value = 0;
2133
2134 /* find first node with max normal pages hit */
2135 for (nid = 0; nid < MAX_NUMNODES; nid++)
2136 if (khugepaged_node_load[nid] > max_value) {
2137 max_value = khugepaged_node_load[nid];
2138 target_node = nid;
2139 }
2140
2141 /* do some balance if several nodes have the same hit record */
2142 if (target_node <= last_khugepaged_target_node)
2143 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2144 nid++)
2145 if (max_value == khugepaged_node_load[nid]) {
2146 target_node = nid;
2147 break;
2148 }
2149
2150 last_khugepaged_target_node = target_node;
2151 return target_node;
2152}
2153
26234f36
XG
2154static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2155{
2156 if (IS_ERR(*hpage)) {
2157 if (!*wait)
2158 return false;
2159
2160 *wait = false;
e3b4126c 2161 *hpage = NULL;
26234f36
XG
2162 khugepaged_alloc_sleep();
2163 } else if (*hpage) {
2164 put_page(*hpage);
2165 *hpage = NULL;
2166 }
2167
2168 return true;
2169}
2170
3b363692
MH
2171static struct page *
2172khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2173 unsigned long address, int node)
26234f36 2174{
309381fe 2175 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2176
ce83d217 2177 /*
8b164568
VB
2178 * Before allocating the hugepage, release the mmap_sem read lock.
2179 * The allocation can take potentially a long time if it involves
2180 * sync compaction, and we do not need to hold the mmap_sem during
2181 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2182 */
8b164568
VB
2183 up_read(&mm->mmap_sem);
2184
96db800f 2185 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2186 if (unlikely(!*hpage)) {
81ab4201 2187 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2188 *hpage = ERR_PTR(-ENOMEM);
26234f36 2189 return NULL;
ce83d217 2190 }
26234f36 2191
9a982250 2192 prep_transhuge_page(*hpage);
65b3c07b 2193 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2194 return *hpage;
2195}
2196#else
9f1b868a
BL
2197static int khugepaged_find_target_node(void)
2198{
2199 return 0;
2200}
2201
10dc4155
BL
2202static inline struct page *alloc_hugepage(int defrag)
2203{
9a982250
KS
2204 struct page *page;
2205
2206 page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2207 if (page)
2208 prep_transhuge_page(page);
2209 return page;
10dc4155
BL
2210}
2211
26234f36
XG
2212static struct page *khugepaged_alloc_hugepage(bool *wait)
2213{
2214 struct page *hpage;
2215
2216 do {
2217 hpage = alloc_hugepage(khugepaged_defrag());
2218 if (!hpage) {
2219 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2220 if (!*wait)
2221 return NULL;
2222
2223 *wait = false;
2224 khugepaged_alloc_sleep();
2225 } else
2226 count_vm_event(THP_COLLAPSE_ALLOC);
2227 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2228
2229 return hpage;
2230}
2231
2232static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2233{
2234 if (!*hpage)
2235 *hpage = khugepaged_alloc_hugepage(wait);
2236
2237 if (unlikely(!*hpage))
2238 return false;
2239
2240 return true;
2241}
2242
3b363692
MH
2243static struct page *
2244khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2245 unsigned long address, int node)
26234f36
XG
2246{
2247 up_read(&mm->mmap_sem);
2248 VM_BUG_ON(!*hpage);
3b363692 2249
26234f36
XG
2250 return *hpage;
2251}
692e0b35
AA
2252#endif
2253
fa475e51
BL
2254static bool hugepage_vma_check(struct vm_area_struct *vma)
2255{
2256 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2257 (vma->vm_flags & VM_NOHUGEPAGE))
2258 return false;
fa475e51
BL
2259 if (!vma->anon_vma || vma->vm_ops)
2260 return false;
2261 if (is_vma_temporary_stack(vma))
2262 return false;
81d1b09c 2263 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2264 return true;
2265}
2266
26234f36
XG
2267static void collapse_huge_page(struct mm_struct *mm,
2268 unsigned long address,
2269 struct page **hpage,
2270 struct vm_area_struct *vma,
2271 int node)
2272{
26234f36
XG
2273 pmd_t *pmd, _pmd;
2274 pte_t *pte;
2275 pgtable_t pgtable;
2276 struct page *new_page;
c4088ebd 2277 spinlock_t *pmd_ptl, *pte_ptl;
7d2eba05 2278 int isolated, result = 0;
26234f36 2279 unsigned long hstart, hend;
00501b53 2280 struct mem_cgroup *memcg;
2ec74c3e
SG
2281 unsigned long mmun_start; /* For mmu_notifiers */
2282 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2283 gfp_t gfp;
26234f36
XG
2284
2285 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2286
3b363692
MH
2287 /* Only allocate from the target node */
2288 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2289 __GFP_THISNODE;
2290
26234f36 2291 /* release the mmap_sem read lock. */
d6669d68 2292 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2293 if (!new_page) {
2294 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2295 goto out_nolock;
2296 }
26234f36 2297
f627c2f5 2298 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2299 result = SCAN_CGROUP_CHARGE_FAIL;
2300 goto out_nolock;
2301 }
ba76149f
AA
2302
2303 /*
2304 * Prevent all access to pagetables with the exception of
2305 * gup_fast later hanlded by the ptep_clear_flush and the VM
2306 * handled by the anon_vma lock + PG_lock.
2307 */
2308 down_write(&mm->mmap_sem);
7d2eba05
EA
2309 if (unlikely(khugepaged_test_exit(mm))) {
2310 result = SCAN_ANY_PROCESS;
ba76149f 2311 goto out;
7d2eba05 2312 }
ba76149f
AA
2313
2314 vma = find_vma(mm, address);
7d2eba05
EA
2315 if (!vma) {
2316 result = SCAN_VMA_NULL;
a8f531eb 2317 goto out;
7d2eba05 2318 }
ba76149f
AA
2319 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2320 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2321 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2322 result = SCAN_ADDRESS_RANGE;
ba76149f 2323 goto out;
7d2eba05
EA
2324 }
2325 if (!hugepage_vma_check(vma)) {
2326 result = SCAN_VMA_CHECK;
a7d6e4ec 2327 goto out;
7d2eba05 2328 }
6219049a 2329 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2330 if (!pmd) {
2331 result = SCAN_PMD_NULL;
ba76149f 2332 goto out;
7d2eba05 2333 }
ba76149f 2334
4fc3f1d6 2335 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2336
2337 pte = pte_offset_map(pmd, address);
c4088ebd 2338 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2339
2ec74c3e
SG
2340 mmun_start = address;
2341 mmun_end = address + HPAGE_PMD_SIZE;
2342 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2343 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2344 /*
2345 * After this gup_fast can't run anymore. This also removes
2346 * any huge TLB entry from the CPU so we won't allow
2347 * huge and small TLB entries for the same virtual address
2348 * to avoid the risk of CPU bugs in that area.
2349 */
15a25b2e 2350 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2351 spin_unlock(pmd_ptl);
2ec74c3e 2352 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2353
c4088ebd 2354 spin_lock(pte_ptl);
ba76149f 2355 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2356 spin_unlock(pte_ptl);
ba76149f
AA
2357
2358 if (unlikely(!isolated)) {
453c7192 2359 pte_unmap(pte);
c4088ebd 2360 spin_lock(pmd_ptl);
ba76149f 2361 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2362 /*
2363 * We can only use set_pmd_at when establishing
2364 * hugepmds and never for establishing regular pmds that
2365 * points to regular pagetables. Use pmd_populate for that
2366 */
2367 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2368 spin_unlock(pmd_ptl);
08b52706 2369 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2370 result = SCAN_FAIL;
ce83d217 2371 goto out;
ba76149f
AA
2372 }
2373
2374 /*
2375 * All pages are isolated and locked so anon_vma rmap
2376 * can't run anymore.
2377 */
08b52706 2378 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2379
c4088ebd 2380 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2381 pte_unmap(pte);
ba76149f
AA
2382 __SetPageUptodate(new_page);
2383 pgtable = pmd_pgtable(_pmd);
ba76149f 2384
3122359a
KS
2385 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2386 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2387
2388 /*
2389 * spin_lock() below is not the equivalent of smp_wmb(), so
2390 * this is needed to avoid the copy_huge_page writes to become
2391 * visible after the set_pmd_at() write.
2392 */
2393 smp_wmb();
2394
c4088ebd 2395 spin_lock(pmd_ptl);
ba76149f 2396 BUG_ON(!pmd_none(*pmd));
d281ee61 2397 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2398 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2399 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2400 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2401 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2402 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2403 spin_unlock(pmd_ptl);
ba76149f
AA
2404
2405 *hpage = NULL;
420256ef 2406
ba76149f 2407 khugepaged_pages_collapsed++;
7d2eba05 2408 result = SCAN_SUCCEED;
ce83d217 2409out_up_write:
ba76149f 2410 up_write(&mm->mmap_sem);
7d2eba05 2411 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2412 return;
2413
7d2eba05
EA
2414out_nolock:
2415 trace_mm_collapse_huge_page(mm, isolated, result);
2416 return;
ce83d217 2417out:
f627c2f5 2418 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2419 goto out_up_write;
ba76149f
AA
2420}
2421
2422static int khugepaged_scan_pmd(struct mm_struct *mm,
2423 struct vm_area_struct *vma,
2424 unsigned long address,
2425 struct page **hpage)
2426{
ba76149f
AA
2427 pmd_t *pmd;
2428 pte_t *pte, *_pte;
7d2eba05
EA
2429 int ret = 0, none_or_zero = 0, result = 0;
2430 struct page *page = NULL;
ba76149f
AA
2431 unsigned long _address;
2432 spinlock_t *ptl;
00ef2d2f 2433 int node = NUMA_NO_NODE;
10359213 2434 bool writable = false, referenced = false;
ba76149f
AA
2435
2436 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2437
6219049a 2438 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2439 if (!pmd) {
2440 result = SCAN_PMD_NULL;
ba76149f 2441 goto out;
7d2eba05 2442 }
ba76149f 2443
9f1b868a 2444 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2445 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2446 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2447 _pte++, _address += PAGE_SIZE) {
2448 pte_t pteval = *_pte;
ca0984ca 2449 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2450 if (!userfaultfd_armed(vma) &&
7d2eba05 2451 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2452 continue;
7d2eba05
EA
2453 } else {
2454 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2455 goto out_unmap;
7d2eba05 2456 }
ba76149f 2457 }
7d2eba05
EA
2458 if (!pte_present(pteval)) {
2459 result = SCAN_PTE_NON_PRESENT;
ba76149f 2460 goto out_unmap;
7d2eba05 2461 }
10359213
EA
2462 if (pte_write(pteval))
2463 writable = true;
2464
ba76149f 2465 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2466 if (unlikely(!page)) {
2467 result = SCAN_PAGE_NULL;
ba76149f 2468 goto out_unmap;
7d2eba05 2469 }
b1caa957
KS
2470
2471 /* TODO: teach khugepaged to collapse THP mapped with pte */
2472 if (PageCompound(page)) {
2473 result = SCAN_PAGE_COMPOUND;
2474 goto out_unmap;
2475 }
2476
5c4b4be3 2477 /*
9f1b868a
BL
2478 * Record which node the original page is from and save this
2479 * information to khugepaged_node_load[].
2480 * Khupaged will allocate hugepage from the node has the max
2481 * hit record.
5c4b4be3 2482 */
9f1b868a 2483 node = page_to_nid(page);
7d2eba05
EA
2484 if (khugepaged_scan_abort(node)) {
2485 result = SCAN_SCAN_ABORT;
14a4e214 2486 goto out_unmap;
7d2eba05 2487 }
9f1b868a 2488 khugepaged_node_load[node]++;
7d2eba05
EA
2489 if (!PageLRU(page)) {
2490 result = SCAN_SCAN_ABORT;
2491 goto out_unmap;
2492 }
2493 if (PageLocked(page)) {
2494 result = SCAN_PAGE_LOCK;
ba76149f 2495 goto out_unmap;
7d2eba05
EA
2496 }
2497 if (!PageAnon(page)) {
2498 result = SCAN_PAGE_ANON;
2499 goto out_unmap;
2500 }
2501
10359213
EA
2502 /*
2503 * cannot use mapcount: can't collapse if there's a gup pin.
2504 * The page must only be referenced by the scanned process
2505 * and page swap cache.
2506 */
7d2eba05
EA
2507 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2508 result = SCAN_PAGE_COUNT;
ba76149f 2509 goto out_unmap;
7d2eba05 2510 }
33c3fc71
VD
2511 if (pte_young(pteval) ||
2512 page_is_young(page) || PageReferenced(page) ||
8ee53820 2513 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2514 referenced = true;
ba76149f 2515 }
7d2eba05
EA
2516 if (writable) {
2517 if (referenced) {
2518 result = SCAN_SUCCEED;
2519 ret = 1;
2520 } else {
2521 result = SCAN_NO_REFERENCED_PAGE;
2522 }
2523 } else {
2524 result = SCAN_PAGE_RO;
2525 }
ba76149f
AA
2526out_unmap:
2527 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2528 if (ret) {
2529 node = khugepaged_find_target_node();
ce83d217 2530 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2531 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2532 }
ba76149f 2533out:
7d2eba05
EA
2534 trace_mm_khugepaged_scan_pmd(mm, page_to_pfn(page), writable, referenced,
2535 none_or_zero, result);
ba76149f
AA
2536 return ret;
2537}
2538
2539static void collect_mm_slot(struct mm_slot *mm_slot)
2540{
2541 struct mm_struct *mm = mm_slot->mm;
2542
b9980cdc 2543 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2544
2545 if (khugepaged_test_exit(mm)) {
2546 /* free mm_slot */
43b5fbbd 2547 hash_del(&mm_slot->hash);
ba76149f
AA
2548 list_del(&mm_slot->mm_node);
2549
2550 /*
2551 * Not strictly needed because the mm exited already.
2552 *
2553 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2554 */
2555
2556 /* khugepaged_mm_lock actually not necessary for the below */
2557 free_mm_slot(mm_slot);
2558 mmdrop(mm);
2559 }
2560}
2561
2562static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2563 struct page **hpage)
2f1da642
HS
2564 __releases(&khugepaged_mm_lock)
2565 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2566{
2567 struct mm_slot *mm_slot;
2568 struct mm_struct *mm;
2569 struct vm_area_struct *vma;
2570 int progress = 0;
2571
2572 VM_BUG_ON(!pages);
b9980cdc 2573 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2574
2575 if (khugepaged_scan.mm_slot)
2576 mm_slot = khugepaged_scan.mm_slot;
2577 else {
2578 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2579 struct mm_slot, mm_node);
2580 khugepaged_scan.address = 0;
2581 khugepaged_scan.mm_slot = mm_slot;
2582 }
2583 spin_unlock(&khugepaged_mm_lock);
2584
2585 mm = mm_slot->mm;
2586 down_read(&mm->mmap_sem);
2587 if (unlikely(khugepaged_test_exit(mm)))
2588 vma = NULL;
2589 else
2590 vma = find_vma(mm, khugepaged_scan.address);
2591
2592 progress++;
2593 for (; vma; vma = vma->vm_next) {
2594 unsigned long hstart, hend;
2595
2596 cond_resched();
2597 if (unlikely(khugepaged_test_exit(mm))) {
2598 progress++;
2599 break;
2600 }
fa475e51
BL
2601 if (!hugepage_vma_check(vma)) {
2602skip:
ba76149f
AA
2603 progress++;
2604 continue;
2605 }
ba76149f
AA
2606 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2607 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2608 if (hstart >= hend)
2609 goto skip;
2610 if (khugepaged_scan.address > hend)
2611 goto skip;
ba76149f
AA
2612 if (khugepaged_scan.address < hstart)
2613 khugepaged_scan.address = hstart;
a7d6e4ec 2614 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2615
2616 while (khugepaged_scan.address < hend) {
2617 int ret;
2618 cond_resched();
2619 if (unlikely(khugepaged_test_exit(mm)))
2620 goto breakouterloop;
2621
2622 VM_BUG_ON(khugepaged_scan.address < hstart ||
2623 khugepaged_scan.address + HPAGE_PMD_SIZE >
2624 hend);
2625 ret = khugepaged_scan_pmd(mm, vma,
2626 khugepaged_scan.address,
2627 hpage);
2628 /* move to next address */
2629 khugepaged_scan.address += HPAGE_PMD_SIZE;
2630 progress += HPAGE_PMD_NR;
2631 if (ret)
2632 /* we released mmap_sem so break loop */
2633 goto breakouterloop_mmap_sem;
2634 if (progress >= pages)
2635 goto breakouterloop;
2636 }
2637 }
2638breakouterloop:
2639 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2640breakouterloop_mmap_sem:
2641
2642 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2643 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2644 /*
2645 * Release the current mm_slot if this mm is about to die, or
2646 * if we scanned all vmas of this mm.
2647 */
2648 if (khugepaged_test_exit(mm) || !vma) {
2649 /*
2650 * Make sure that if mm_users is reaching zero while
2651 * khugepaged runs here, khugepaged_exit will find
2652 * mm_slot not pointing to the exiting mm.
2653 */
2654 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2655 khugepaged_scan.mm_slot = list_entry(
2656 mm_slot->mm_node.next,
2657 struct mm_slot, mm_node);
2658 khugepaged_scan.address = 0;
2659 } else {
2660 khugepaged_scan.mm_slot = NULL;
2661 khugepaged_full_scans++;
2662 }
2663
2664 collect_mm_slot(mm_slot);
2665 }
2666
2667 return progress;
2668}
2669
2670static int khugepaged_has_work(void)
2671{
2672 return !list_empty(&khugepaged_scan.mm_head) &&
2673 khugepaged_enabled();
2674}
2675
2676static int khugepaged_wait_event(void)
2677{
2678 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2679 kthread_should_stop();
ba76149f
AA
2680}
2681
d516904b 2682static void khugepaged_do_scan(void)
ba76149f 2683{
d516904b 2684 struct page *hpage = NULL;
ba76149f
AA
2685 unsigned int progress = 0, pass_through_head = 0;
2686 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2687 bool wait = true;
ba76149f
AA
2688
2689 barrier(); /* write khugepaged_pages_to_scan to local stack */
2690
2691 while (progress < pages) {
26234f36 2692 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2693 break;
26234f36 2694
420256ef 2695 cond_resched();
ba76149f 2696
cd092411 2697 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2698 break;
2699
ba76149f
AA
2700 spin_lock(&khugepaged_mm_lock);
2701 if (!khugepaged_scan.mm_slot)
2702 pass_through_head++;
2703 if (khugepaged_has_work() &&
2704 pass_through_head < 2)
2705 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2706 &hpage);
ba76149f
AA
2707 else
2708 progress = pages;
2709 spin_unlock(&khugepaged_mm_lock);
2710 }
ba76149f 2711
d516904b
XG
2712 if (!IS_ERR_OR_NULL(hpage))
2713 put_page(hpage);
0bbbc0b3
AA
2714}
2715
2017c0bf
XG
2716static void khugepaged_wait_work(void)
2717{
2017c0bf
XG
2718 if (khugepaged_has_work()) {
2719 if (!khugepaged_scan_sleep_millisecs)
2720 return;
2721
2722 wait_event_freezable_timeout(khugepaged_wait,
2723 kthread_should_stop(),
2724 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2725 return;
2726 }
2727
2728 if (khugepaged_enabled())
2729 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2730}
2731
ba76149f
AA
2732static int khugepaged(void *none)
2733{
2734 struct mm_slot *mm_slot;
2735
878aee7d 2736 set_freezable();
8698a745 2737 set_user_nice(current, MAX_NICE);
ba76149f 2738
b7231789
XG
2739 while (!kthread_should_stop()) {
2740 khugepaged_do_scan();
2741 khugepaged_wait_work();
2742 }
ba76149f
AA
2743
2744 spin_lock(&khugepaged_mm_lock);
2745 mm_slot = khugepaged_scan.mm_slot;
2746 khugepaged_scan.mm_slot = NULL;
2747 if (mm_slot)
2748 collect_mm_slot(mm_slot);
2749 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2750 return 0;
2751}
2752
eef1b3ba
KS
2753static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2754 unsigned long haddr, pmd_t *pmd)
2755{
2756 struct mm_struct *mm = vma->vm_mm;
2757 pgtable_t pgtable;
2758 pmd_t _pmd;
2759 int i;
2760
2761 /* leave pmd empty until pte is filled */
2762 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2763
2764 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2765 pmd_populate(mm, &_pmd, pgtable);
2766
2767 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2768 pte_t *pte, entry;
2769 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2770 entry = pte_mkspecial(entry);
2771 pte = pte_offset_map(&_pmd, haddr);
2772 VM_BUG_ON(!pte_none(*pte));
2773 set_pte_at(mm, haddr, pte, entry);
2774 pte_unmap(pte);
2775 }
2776 smp_wmb(); /* make pte visible before pmd */
2777 pmd_populate(mm, pmd, pgtable);
2778 put_huge_zero_page();
2779}
2780
2781static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2782 unsigned long haddr, bool freeze)
eef1b3ba
KS
2783{
2784 struct mm_struct *mm = vma->vm_mm;
2785 struct page *page;
2786 pgtable_t pgtable;
2787 pmd_t _pmd;
b8d3c4c3 2788 bool young, write, dirty;
eef1b3ba
KS
2789 int i;
2790
2791 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2792 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2793 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2794 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2795
2796 count_vm_event(THP_SPLIT_PMD);
2797
2798 if (vma_is_dax(vma)) {
2799 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2800 if (is_huge_zero_pmd(_pmd))
2801 put_huge_zero_page();
2802 return;
2803 } else if (is_huge_zero_pmd(*pmd)) {
2804 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2805 }
2806
2807 page = pmd_page(*pmd);
2808 VM_BUG_ON_PAGE(!page_count(page), page);
2809 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2810 write = pmd_write(*pmd);
2811 young = pmd_young(*pmd);
b8d3c4c3 2812 dirty = pmd_dirty(*pmd);
eef1b3ba 2813
eef1b3ba
KS
2814 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2815 pmd_populate(mm, &_pmd, pgtable);
2816
2817 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2818 pte_t entry, *pte;
2819 /*
2820 * Note that NUMA hinting access restrictions are not
2821 * transferred to avoid any possibility of altering
2822 * permissions across VMAs.
2823 */
ba988280
KS
2824 if (freeze) {
2825 swp_entry_t swp_entry;
2826 swp_entry = make_migration_entry(page + i, write);
2827 entry = swp_entry_to_pte(swp_entry);
2828 } else {
2829 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 2830 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2831 if (!write)
2832 entry = pte_wrprotect(entry);
2833 if (!young)
2834 entry = pte_mkold(entry);
2835 }
b8d3c4c3
MK
2836 if (dirty)
2837 SetPageDirty(page + i);
eef1b3ba
KS
2838 pte = pte_offset_map(&_pmd, haddr);
2839 BUG_ON(!pte_none(*pte));
2840 set_pte_at(mm, haddr, pte, entry);
2841 atomic_inc(&page[i]._mapcount);
2842 pte_unmap(pte);
2843 }
2844
2845 /*
2846 * Set PG_double_map before dropping compound_mapcount to avoid
2847 * false-negative page_mapped().
2848 */
2849 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2850 for (i = 0; i < HPAGE_PMD_NR; i++)
2851 atomic_inc(&page[i]._mapcount);
2852 }
2853
2854 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2855 /* Last compound_mapcount is gone. */
2856 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2857 if (TestClearPageDoubleMap(page)) {
2858 /* No need in mapcount reference anymore */
2859 for (i = 0; i < HPAGE_PMD_NR; i++)
2860 atomic_dec(&page[i]._mapcount);
2861 }
2862 }
2863
2864 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2865 /*
2866 * Up to this point the pmd is present and huge and userland has the
2867 * whole access to the hugepage during the split (which happens in
2868 * place). If we overwrite the pmd with the not-huge version pointing
2869 * to the pte here (which of course we could if all CPUs were bug
2870 * free), userland could trigger a small page size TLB miss on the
2871 * small sized TLB while the hugepage TLB entry is still established in
2872 * the huge TLB. Some CPU doesn't like that.
2873 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2874 * 383 on page 93. Intel should be safe but is also warns that it's
2875 * only safe if the permission and cache attributes of the two entries
2876 * loaded in the two TLB is identical (which should be the case here).
2877 * But it is generally safer to never allow small and huge TLB entries
2878 * for the same virtual address to be loaded simultaneously. So instead
2879 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2880 * current pmd notpresent (atomically because here the pmd_trans_huge
2881 * and pmd_trans_splitting must remain set at all times on the pmd
2882 * until the split is complete for this pmd), then we flush the SMP TLB
2883 * and finally we write the non-huge version of the pmd entry with
2884 * pmd_populate.
2885 */
2886 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2887 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2888
2889 if (freeze) {
2890 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2891 page_remove_rmap(page + i, false);
2892 put_page(page + i);
2893 }
2894 }
eef1b3ba
KS
2895}
2896
2897void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2898 unsigned long address)
2899{
2900 spinlock_t *ptl;
2901 struct mm_struct *mm = vma->vm_mm;
e90309c9 2902 struct page *page = NULL;
eef1b3ba
KS
2903 unsigned long haddr = address & HPAGE_PMD_MASK;
2904
2905 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2906 ptl = pmd_lock(mm, pmd);
5c7fb56e
DW
2907 if (pmd_trans_huge(*pmd)) {
2908 page = pmd_page(*pmd);
2909 if (PageMlocked(page))
2910 get_page(page);
2911 else
2912 page = NULL;
2913 } else if (!pmd_devmap(*pmd))
e90309c9 2914 goto out;
e90309c9 2915 __split_huge_pmd_locked(vma, pmd, haddr, false);
e90309c9 2916out:
eef1b3ba
KS
2917 spin_unlock(ptl);
2918 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
e90309c9
KS
2919 if (page) {
2920 lock_page(page);
2921 munlock_vma_page(page);
2922 unlock_page(page);
2923 put_page(page);
2924 }
eef1b3ba
KS
2925}
2926
78ddc534 2927static void split_huge_pmd_address(struct vm_area_struct *vma,
94fcc585
AA
2928 unsigned long address)
2929{
f72e7dcd
HD
2930 pgd_t *pgd;
2931 pud_t *pud;
94fcc585
AA
2932 pmd_t *pmd;
2933
2934 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2935
78ddc534 2936 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2937 if (!pgd_present(*pgd))
2938 return;
2939
2940 pud = pud_offset(pgd, address);
2941 if (!pud_present(*pud))
2942 return;
2943
2944 pmd = pmd_offset(pud, address);
5c7fb56e 2945 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
94fcc585
AA
2946 return;
2947 /*
2948 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2949 * materialize from under us.
2950 */
ad0bed24 2951 split_huge_pmd(vma, pmd, address);
94fcc585
AA
2952}
2953
e1b9996b 2954void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2955 unsigned long start,
2956 unsigned long end,
2957 long adjust_next)
2958{
2959 /*
2960 * If the new start address isn't hpage aligned and it could
2961 * previously contain an hugepage: check if we need to split
2962 * an huge pmd.
2963 */
2964 if (start & ~HPAGE_PMD_MASK &&
2965 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2966 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2967 split_huge_pmd_address(vma, start);
94fcc585
AA
2968
2969 /*
2970 * If the new end address isn't hpage aligned and it could
2971 * previously contain an hugepage: check if we need to split
2972 * an huge pmd.
2973 */
2974 if (end & ~HPAGE_PMD_MASK &&
2975 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2976 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 2977 split_huge_pmd_address(vma, end);
94fcc585
AA
2978
2979 /*
2980 * If we're also updating the vma->vm_next->vm_start, if the new
2981 * vm_next->vm_start isn't page aligned and it could previously
2982 * contain an hugepage: check if we need to split an huge pmd.
2983 */
2984 if (adjust_next > 0) {
2985 struct vm_area_struct *next = vma->vm_next;
2986 unsigned long nstart = next->vm_start;
2987 nstart += adjust_next << PAGE_SHIFT;
2988 if (nstart & ~HPAGE_PMD_MASK &&
2989 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2990 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
78ddc534 2991 split_huge_pmd_address(next, nstart);
94fcc585
AA
2992 }
2993}
e9b61f19
KS
2994
2995static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
2996 unsigned long address)
2997{
bd56086f 2998 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
2999 spinlock_t *ptl;
3000 pgd_t *pgd;
3001 pud_t *pud;
3002 pmd_t *pmd;
3003 pte_t *pte;
3004 int i, nr = HPAGE_PMD_NR;
3005
3006 /* Skip pages which doesn't belong to the VMA */
3007 if (address < vma->vm_start) {
3008 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3009 page += off;
3010 nr -= off;
3011 address = vma->vm_start;
3012 }
3013
3014 pgd = pgd_offset(vma->vm_mm, address);
3015 if (!pgd_present(*pgd))
3016 return;
3017 pud = pud_offset(pgd, address);
3018 if (!pud_present(*pud))
3019 return;
3020 pmd = pmd_offset(pud, address);
3021 ptl = pmd_lock(vma->vm_mm, pmd);
3022 if (!pmd_present(*pmd)) {
3023 spin_unlock(ptl);
3024 return;
3025 }
3026 if (pmd_trans_huge(*pmd)) {
3027 if (page == pmd_page(*pmd))
bd56086f 3028 __split_huge_pmd_locked(vma, pmd, haddr, true);
e9b61f19
KS
3029 spin_unlock(ptl);
3030 return;
3031 }
3032 spin_unlock(ptl);
3033
3034 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f 3035 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
e9b61f19
KS
3036 pte_t entry, swp_pte;
3037 swp_entry_t swp_entry;
3038
bd56086f
KS
3039 /*
3040 * We've just crossed page table boundary: need to map next one.
3041 * It can happen if THP was mremaped to non PMD-aligned address.
3042 */
3043 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3044 pte_unmap_unlock(pte - 1, ptl);
3045 pmd = mm_find_pmd(vma->vm_mm, address);
3046 if (!pmd)
3047 return;
3048 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3049 address, &ptl);
3050 }
3051
3052 if (!pte_present(*pte))
e9b61f19 3053 continue;
bd56086f 3054 if (page_to_pfn(page) != pte_pfn(*pte))
e9b61f19
KS
3055 continue;
3056 flush_cache_page(vma, address, page_to_pfn(page));
bd56086f 3057 entry = ptep_clear_flush(vma, address, pte);
b8d3c4c3
MK
3058 if (pte_dirty(entry))
3059 SetPageDirty(page);
e9b61f19
KS
3060 swp_entry = make_migration_entry(page, pte_write(entry));
3061 swp_pte = swp_entry_to_pte(swp_entry);
3062 if (pte_soft_dirty(entry))
3063 swp_pte = pte_swp_mksoft_dirty(swp_pte);
bd56086f 3064 set_pte_at(vma->vm_mm, address, pte, swp_pte);
e9b61f19
KS
3065 page_remove_rmap(page, false);
3066 put_page(page);
3067 }
bd56086f 3068 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3069}
3070
3071static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3072{
3073 struct anon_vma_chain *avc;
3074 pgoff_t pgoff = page_to_pgoff(page);
3075
3076 VM_BUG_ON_PAGE(!PageHead(page), page);
3077
3078 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3079 pgoff + HPAGE_PMD_NR - 1) {
bd56086f 3080 unsigned long address = __vma_address(page, avc->vma);
e9b61f19 3081
e9b61f19 3082 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
bd56086f
KS
3083 address, address + HPAGE_PMD_SIZE);
3084 freeze_page_vma(avc->vma, page, address);
e9b61f19 3085 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
bd56086f 3086 address, address + HPAGE_PMD_SIZE);
e9b61f19
KS
3087 }
3088}
3089
3090static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3091 unsigned long address)
3092{
3093 spinlock_t *ptl;
3094 pmd_t *pmd;
3095 pte_t *pte, entry;
3096 swp_entry_t swp_entry;
bd56086f 3097 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
3098 int i, nr = HPAGE_PMD_NR;
3099
3100 /* Skip pages which doesn't belong to the VMA */
3101 if (address < vma->vm_start) {
3102 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3103 page += off;
3104 nr -= off;
3105 address = vma->vm_start;
3106 }
3107
3108 pmd = mm_find_pmd(vma->vm_mm, address);
3109 if (!pmd)
3110 return;
bd56086f 3111
e9b61f19 3112 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f
KS
3113 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3114 /*
3115 * We've just crossed page table boundary: need to map next one.
3116 * It can happen if THP was mremaped to non-PMD aligned address.
3117 */
3118 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3119 pte_unmap_unlock(pte - 1, ptl);
3120 pmd = mm_find_pmd(vma->vm_mm, address);
3121 if (!pmd)
3122 return;
3123 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3124 address, &ptl);
3125 }
3126
3127 if (!is_swap_pte(*pte))
e9b61f19
KS
3128 continue;
3129
bd56086f 3130 swp_entry = pte_to_swp_entry(*pte);
e9b61f19
KS
3131 if (!is_migration_entry(swp_entry))
3132 continue;
3133 if (migration_entry_to_page(swp_entry) != page)
3134 continue;
3135
3136 get_page(page);
3137 page_add_anon_rmap(page, vma, address, false);
3138
3139 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
b8d3c4c3
MK
3140 if (PageDirty(page))
3141 entry = pte_mkdirty(entry);
e9b61f19
KS
3142 if (is_write_migration_entry(swp_entry))
3143 entry = maybe_mkwrite(entry, vma);
3144
3145 flush_dcache_page(page);
bd56086f 3146 set_pte_at(vma->vm_mm, address, pte, entry);
e9b61f19
KS
3147
3148 /* No need to invalidate - it was non-present before */
bd56086f 3149 update_mmu_cache(vma, address, pte);
e9b61f19 3150 }
bd56086f 3151 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3152}
3153
3154static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3155{
3156 struct anon_vma_chain *avc;
3157 pgoff_t pgoff = page_to_pgoff(page);
3158
3159 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3160 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3161 unsigned long address = __vma_address(page, avc->vma);
3162
3163 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3164 address, address + HPAGE_PMD_SIZE);
3165 unfreeze_page_vma(avc->vma, page, address);
3166 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3167 address, address + HPAGE_PMD_SIZE);
3168 }
3169}
3170
e9b61f19
KS
3171static int __split_huge_page_tail(struct page *head, int tail,
3172 struct lruvec *lruvec, struct list_head *list)
3173{
3174 int mapcount;
3175 struct page *page_tail = head + tail;
3176
3177 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3178 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3179
3180 /*
3181 * tail_page->_count is zero and not changing from under us. But
3182 * get_page_unless_zero() may be running from under us on the
3183 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3184 * would then run atomic_set() concurrently with
3185 * get_page_unless_zero(), and atomic_set() is implemented in C not
3186 * using locked ops. spin_unlock on x86 sometime uses locked ops
3187 * because of PPro errata 66, 92, so unless somebody can guarantee
3188 * atomic_set() here would be safe on all archs (and not only on x86),
3189 * it's safer to use atomic_add().
3190 */
3191 atomic_add(mapcount + 1, &page_tail->_count);
3192
3193
3194 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3195 page_tail->flags |= (head->flags &
3196 ((1L << PG_referenced) |
3197 (1L << PG_swapbacked) |
3198 (1L << PG_mlocked) |
3199 (1L << PG_uptodate) |
3200 (1L << PG_active) |
3201 (1L << PG_locked) |
b8d3c4c3
MK
3202 (1L << PG_unevictable) |
3203 (1L << PG_dirty)));
e9b61f19
KS
3204
3205 /*
3206 * After clearing PageTail the gup refcount can be released.
3207 * Page flags also must be visible before we make the page non-compound.
3208 */
3209 smp_wmb();
3210
3211 clear_compound_head(page_tail);
3212
3213 if (page_is_young(head))
3214 set_page_young(page_tail);
3215 if (page_is_idle(head))
3216 set_page_idle(page_tail);
3217
3218 /* ->mapping in first tail page is compound_mapcount */
9a982250 3219 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3220 page_tail);
3221 page_tail->mapping = head->mapping;
3222
3223 page_tail->index = head->index + tail;
3224 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3225 lru_add_page_tail(head, page_tail, lruvec, list);
3226
3227 return mapcount;
3228}
3229
3230static void __split_huge_page(struct page *page, struct list_head *list)
3231{
3232 struct page *head = compound_head(page);
3233 struct zone *zone = page_zone(head);
3234 struct lruvec *lruvec;
3235 int i, tail_mapcount;
3236
3237 /* prevent PageLRU to go away from under us, and freeze lru stats */
3238 spin_lock_irq(&zone->lru_lock);
3239 lruvec = mem_cgroup_page_lruvec(head, zone);
3240
3241 /* complete memcg works before add pages to LRU */
3242 mem_cgroup_split_huge_fixup(head);
3243
3244 tail_mapcount = 0;
3245 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3246 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3247 atomic_sub(tail_mapcount, &head->_count);
3248
3249 ClearPageCompound(head);
3250 spin_unlock_irq(&zone->lru_lock);
3251
3252 unfreeze_page(page_anon_vma(head), head);
3253
3254 for (i = 0; i < HPAGE_PMD_NR; i++) {
3255 struct page *subpage = head + i;
3256 if (subpage == page)
3257 continue;
3258 unlock_page(subpage);
3259
3260 /*
3261 * Subpages may be freed if there wasn't any mapping
3262 * like if add_to_swap() is running on a lru page that
3263 * had its mapping zapped. And freeing these pages
3264 * requires taking the lru_lock so we do the put_page
3265 * of the tail pages after the split is complete.
3266 */
3267 put_page(subpage);
3268 }
3269}
3270
b20ce5e0
KS
3271int total_mapcount(struct page *page)
3272{
3273 int i, ret;
3274
3275 VM_BUG_ON_PAGE(PageTail(page), page);
3276
3277 if (likely(!PageCompound(page)))
3278 return atomic_read(&page->_mapcount) + 1;
3279
3280 ret = compound_mapcount(page);
3281 if (PageHuge(page))
3282 return ret;
3283 for (i = 0; i < HPAGE_PMD_NR; i++)
3284 ret += atomic_read(&page[i]._mapcount) + 1;
3285 if (PageDoubleMap(page))
3286 ret -= HPAGE_PMD_NR;
3287 return ret;
3288}
3289
e9b61f19
KS
3290/*
3291 * This function splits huge page into normal pages. @page can point to any
3292 * subpage of huge page to split. Split doesn't change the position of @page.
3293 *
3294 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3295 * The huge page must be locked.
3296 *
3297 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3298 *
3299 * Both head page and tail pages will inherit mapping, flags, and so on from
3300 * the hugepage.
3301 *
3302 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3303 * they are not mapped.
3304 *
3305 * Returns 0 if the hugepage is split successfully.
3306 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3307 * us.
3308 */
3309int split_huge_page_to_list(struct page *page, struct list_head *list)
3310{
3311 struct page *head = compound_head(page);
3312 struct anon_vma *anon_vma;
3313 int count, mapcount, ret;
d9654322 3314 bool mlocked;
e9b61f19
KS
3315
3316 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3317 VM_BUG_ON_PAGE(!PageAnon(page), page);
3318 VM_BUG_ON_PAGE(!PageLocked(page), page);
3319 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3320 VM_BUG_ON_PAGE(!PageCompound(page), page);
3321
3322 /*
3323 * The caller does not necessarily hold an mmap_sem that would prevent
3324 * the anon_vma disappearing so we first we take a reference to it
3325 * and then lock the anon_vma for write. This is similar to
3326 * page_lock_anon_vma_read except the write lock is taken to serialise
3327 * against parallel split or collapse operations.
3328 */
3329 anon_vma = page_get_anon_vma(head);
3330 if (!anon_vma) {
3331 ret = -EBUSY;
3332 goto out;
3333 }
3334 anon_vma_lock_write(anon_vma);
3335
3336 /*
3337 * Racy check if we can split the page, before freeze_page() will
3338 * split PMDs
3339 */
3340 if (total_mapcount(head) != page_count(head) - 1) {
3341 ret = -EBUSY;
3342 goto out_unlock;
3343 }
3344
d9654322 3345 mlocked = PageMlocked(page);
e9b61f19
KS
3346 freeze_page(anon_vma, head);
3347 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3348
d9654322
KS
3349 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3350 if (mlocked)
3351 lru_add_drain();
3352
9a982250
KS
3353 /* Prevent deferred_split_scan() touching ->_count */
3354 spin_lock(&split_queue_lock);
e9b61f19
KS
3355 count = page_count(head);
3356 mapcount = total_mapcount(head);
bd56086f 3357 if (!mapcount && count == 1) {
9a982250
KS
3358 if (!list_empty(page_deferred_list(head))) {
3359 split_queue_len--;
3360 list_del(page_deferred_list(head));
3361 }
3362 spin_unlock(&split_queue_lock);
e9b61f19
KS
3363 __split_huge_page(page, list);
3364 ret = 0;
bd56086f 3365 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
9a982250 3366 spin_unlock(&split_queue_lock);
e9b61f19
KS
3367 pr_alert("total_mapcount: %u, page_count(): %u\n",
3368 mapcount, count);
3369 if (PageTail(page))
3370 dump_page(head, NULL);
bd56086f 3371 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3372 BUG();
3373 } else {
9a982250 3374 spin_unlock(&split_queue_lock);
e9b61f19
KS
3375 unfreeze_page(anon_vma, head);
3376 ret = -EBUSY;
3377 }
3378
3379out_unlock:
3380 anon_vma_unlock_write(anon_vma);
3381 put_anon_vma(anon_vma);
3382out:
3383 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3384 return ret;
3385}
9a982250
KS
3386
3387void free_transhuge_page(struct page *page)
3388{
3389 unsigned long flags;
3390
3391 spin_lock_irqsave(&split_queue_lock, flags);
3392 if (!list_empty(page_deferred_list(page))) {
3393 split_queue_len--;
3394 list_del(page_deferred_list(page));
3395 }
3396 spin_unlock_irqrestore(&split_queue_lock, flags);
3397 free_compound_page(page);
3398}
3399
3400void deferred_split_huge_page(struct page *page)
3401{
3402 unsigned long flags;
3403
3404 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3405
3406 spin_lock_irqsave(&split_queue_lock, flags);
3407 if (list_empty(page_deferred_list(page))) {
3408 list_add_tail(page_deferred_list(page), &split_queue);
3409 split_queue_len++;
3410 }
3411 spin_unlock_irqrestore(&split_queue_lock, flags);
3412}
3413
3414static unsigned long deferred_split_count(struct shrinker *shrink,
3415 struct shrink_control *sc)
3416{
3417 /*
3418 * Split a page from split_queue will free up at least one page,
3419 * at most HPAGE_PMD_NR - 1. We don't track exact number.
3420 * Let's use HPAGE_PMD_NR / 2 as ballpark.
3421 */
3422 return ACCESS_ONCE(split_queue_len) * HPAGE_PMD_NR / 2;
3423}
3424
3425static unsigned long deferred_split_scan(struct shrinker *shrink,
3426 struct shrink_control *sc)
3427{
3428 unsigned long flags;
3429 LIST_HEAD(list), *pos, *next;
3430 struct page *page;
3431 int split = 0;
3432
3433 spin_lock_irqsave(&split_queue_lock, flags);
3434 list_splice_init(&split_queue, &list);
3435
3436 /* Take pin on all head pages to avoid freeing them under us */
3437 list_for_each_safe(pos, next, &list) {
3438 page = list_entry((void *)pos, struct page, mapping);
3439 page = compound_head(page);
3440 /* race with put_compound_page() */
3441 if (!get_page_unless_zero(page)) {
3442 list_del_init(page_deferred_list(page));
3443 split_queue_len--;
3444 }
3445 }
3446 spin_unlock_irqrestore(&split_queue_lock, flags);
3447
3448 list_for_each_safe(pos, next, &list) {
3449 page = list_entry((void *)pos, struct page, mapping);
3450 lock_page(page);
3451 /* split_huge_page() removes page from list on success */
3452 if (!split_huge_page(page))
3453 split++;
3454 unlock_page(page);
3455 put_page(page);
3456 }
3457
3458 spin_lock_irqsave(&split_queue_lock, flags);
3459 list_splice_tail(&list, &split_queue);
3460 spin_unlock_irqrestore(&split_queue_lock, flags);
3461
3462 return split * HPAGE_PMD_NR / 2;
3463}
3464
3465static struct shrinker deferred_split_shrinker = {
3466 .count_objects = deferred_split_count,
3467 .scan_objects = deferred_split_scan,
3468 .seeks = DEFAULT_SEEKS,
3469};
49071d43
KS
3470
3471#ifdef CONFIG_DEBUG_FS
3472static int split_huge_pages_set(void *data, u64 val)
3473{
3474 struct zone *zone;
3475 struct page *page;
3476 unsigned long pfn, max_zone_pfn;
3477 unsigned long total = 0, split = 0;
3478
3479 if (val != 1)
3480 return -EINVAL;
3481
3482 for_each_populated_zone(zone) {
3483 max_zone_pfn = zone_end_pfn(zone);
3484 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3485 if (!pfn_valid(pfn))
3486 continue;
3487
3488 page = pfn_to_page(pfn);
3489 if (!get_page_unless_zero(page))
3490 continue;
3491
3492 if (zone != page_zone(page))
3493 goto next;
3494
3495 if (!PageHead(page) || !PageAnon(page) ||
3496 PageHuge(page))
3497 goto next;
3498
3499 total++;
3500 lock_page(page);
3501 if (!split_huge_page(page))
3502 split++;
3503 unlock_page(page);
3504next:
3505 put_page(page);
3506 }
3507 }
3508
3509 pr_info("%lu of %lu THP split", split, total);
3510
3511 return 0;
3512}
3513DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3514 "%llu\n");
3515
3516static int __init split_huge_pages_debugfs(void)
3517{
3518 void *ret;
3519
3520 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3521 &split_huge_pages_fops);
3522 if (!ret)
3523 pr_warn("Failed to create split_huge_pages in debugfs");
3524 return 0;
3525}
3526late_initcall(split_huge_pages_debugfs);
3527#endif