]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/huge_memory.c
mm/thp: simplify copying of huge zero page pmd when fork
[mirror_ubuntu-kernels.git] / mm / huge_memory.c
CommitLineData
20c8ccb1 1// SPDX-License-Identifier: GPL-2.0-only
71e3aac0
AA
2/*
3 * Copyright (C) 2009 Red Hat, Inc.
71e3aac0
AA
4 */
5
ae3a8c1c
AM
6#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7
71e3aac0
AA
8#include <linux/mm.h>
9#include <linux/sched.h>
fa6c0231 10#include <linux/sched/mm.h>
f7ccbae4 11#include <linux/sched/coredump.h>
6a3827d7 12#include <linux/sched/numa_balancing.h>
71e3aac0
AA
13#include <linux/highmem.h>
14#include <linux/hugetlb.h>
15#include <linux/mmu_notifier.h>
16#include <linux/rmap.h>
17#include <linux/swap.h>
97ae1749 18#include <linux/shrinker.h>
ba76149f 19#include <linux/mm_inline.h>
e9b61f19 20#include <linux/swapops.h>
4897c765 21#include <linux/dax.h>
ba76149f 22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
baa355fd 33#include <linux/shmem_fs.h>
6b31d595 34#include <linux/oom.h>
98fa15f3 35#include <linux/numa.h>
f7da677b 36#include <linux/page_owner.h>
97ae1749 37
71e3aac0
AA
38#include <asm/tlb.h>
39#include <asm/pgalloc.h>
40#include "internal.h"
41
ba76149f 42/*
b14d595a
MD
43 * By default, transparent hugepage support is disabled in order to avoid
44 * risking an increased memory footprint for applications that are not
45 * guaranteed to benefit from it. When transparent hugepage support is
46 * enabled, it is for all mappings, and khugepaged scans all mappings.
8bfa3f9a
JW
47 * Defrag is invoked by khugepaged hugepage allocations and by page faults
48 * for all hugepage allocations.
ba76149f 49 */
71e3aac0 50unsigned long transparent_hugepage_flags __read_mostly =
13ece886 51#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 52 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
53#endif
54#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
55 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
56#endif
444eb2a4 57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
58 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
59 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 60
9a982250 61static struct shrinker deferred_split_shrinker;
f000565a 62
97ae1749 63static atomic_t huge_zero_refcount;
56873f43 64struct page *huge_zero_page __read_mostly;
3b77e8c8 65unsigned long huge_zero_pfn __read_mostly = ~0UL;
4a6c1297 66
e6be37b2
ML
67static inline bool file_thp_enabled(struct vm_area_struct *vma)
68{
69 return transhuge_vma_enabled(vma, vma->vm_flags) && vma->vm_file &&
70 !inode_is_open_for_write(vma->vm_file->f_inode) &&
71 (vma->vm_flags & VM_EXEC);
72}
73
74bool transparent_hugepage_active(struct vm_area_struct *vma)
7635d9cb 75{
c0630669
YS
76 /* The addr is used to check if the vma size fits */
77 unsigned long addr = (vma->vm_end & HPAGE_PMD_MASK) - HPAGE_PMD_SIZE;
78
79 if (!transhuge_vma_suitable(vma, addr))
80 return false;
7635d9cb
MH
81 if (vma_is_anonymous(vma))
82 return __transparent_hugepage_enabled(vma);
c0630669
YS
83 if (vma_is_shmem(vma))
84 return shmem_huge_enabled(vma);
e6be37b2
ML
85 if (IS_ENABLED(CONFIG_READ_ONLY_THP_FOR_FS))
86 return file_thp_enabled(vma);
7635d9cb
MH
87
88 return false;
89}
90
aaa9705b 91static bool get_huge_zero_page(void)
97ae1749
KS
92{
93 struct page *zero_page;
94retry:
95 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
aaa9705b 96 return true;
97ae1749
KS
97
98 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 99 HPAGE_PMD_ORDER);
d8a8e1f0
KS
100 if (!zero_page) {
101 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
aaa9705b 102 return false;
d8a8e1f0
KS
103 }
104 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 105 preempt_disable();
5918d10a 106 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 107 preempt_enable();
5ddacbe9 108 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
109 goto retry;
110 }
3b77e8c8 111 WRITE_ONCE(huge_zero_pfn, page_to_pfn(zero_page));
97ae1749
KS
112
113 /* We take additional reference here. It will be put back by shrinker */
114 atomic_set(&huge_zero_refcount, 2);
115 preempt_enable();
aaa9705b 116 return true;
4a6c1297
KS
117}
118
6fcb52a5 119static void put_huge_zero_page(void)
4a6c1297 120{
97ae1749
KS
121 /*
122 * Counter should never go to zero here. Only shrinker can put
123 * last reference.
124 */
125 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
126}
127
6fcb52a5
AL
128struct page *mm_get_huge_zero_page(struct mm_struct *mm)
129{
130 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
131 return READ_ONCE(huge_zero_page);
132
133 if (!get_huge_zero_page())
134 return NULL;
135
136 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
137 put_huge_zero_page();
138
139 return READ_ONCE(huge_zero_page);
140}
141
142void mm_put_huge_zero_page(struct mm_struct *mm)
143{
144 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
145 put_huge_zero_page();
146}
147
48896466
GC
148static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
149 struct shrink_control *sc)
4a6c1297 150{
48896466
GC
151 /* we can free zero page only if last reference remains */
152 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
153}
97ae1749 154
48896466
GC
155static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
156 struct shrink_control *sc)
157{
97ae1749 158 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
159 struct page *zero_page = xchg(&huge_zero_page, NULL);
160 BUG_ON(zero_page == NULL);
3b77e8c8 161 WRITE_ONCE(huge_zero_pfn, ~0UL);
5ddacbe9 162 __free_pages(zero_page, compound_order(zero_page));
48896466 163 return HPAGE_PMD_NR;
97ae1749
KS
164 }
165
166 return 0;
4a6c1297
KS
167}
168
97ae1749 169static struct shrinker huge_zero_page_shrinker = {
48896466
GC
170 .count_objects = shrink_huge_zero_page_count,
171 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
172 .seeks = DEFAULT_SEEKS,
173};
174
71e3aac0 175#ifdef CONFIG_SYSFS
71e3aac0
AA
176static ssize_t enabled_show(struct kobject *kobj,
177 struct kobj_attribute *attr, char *buf)
178{
bfb0ffeb
JP
179 const char *output;
180
444eb2a4 181 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
bfb0ffeb
JP
182 output = "[always] madvise never";
183 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
184 &transparent_hugepage_flags))
185 output = "always [madvise] never";
444eb2a4 186 else
bfb0ffeb
JP
187 output = "always madvise [never]";
188
189 return sysfs_emit(buf, "%s\n", output);
71e3aac0 190}
444eb2a4 191
71e3aac0
AA
192static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195{
21440d7e 196 ssize_t ret = count;
ba76149f 197
f42f2552 198 if (sysfs_streq(buf, "always")) {
21440d7e
DR
199 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
200 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
f42f2552 201 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
202 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
203 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 204 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
205 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
206 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
207 } else
208 ret = -EINVAL;
ba76149f
AA
209
210 if (ret > 0) {
b46e756f 211 int err = start_stop_khugepaged();
ba76149f
AA
212 if (err)
213 ret = err;
214 }
ba76149f 215 return ret;
71e3aac0
AA
216}
217static struct kobj_attribute enabled_attr =
218 __ATTR(enabled, 0644, enabled_show, enabled_store);
219
b46e756f 220ssize_t single_hugepage_flag_show(struct kobject *kobj,
bfb0ffeb
JP
221 struct kobj_attribute *attr, char *buf,
222 enum transparent_hugepage_flag flag)
71e3aac0 223{
bfb0ffeb
JP
224 return sysfs_emit(buf, "%d\n",
225 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 226}
e27e6151 227
b46e756f 228ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
229 struct kobj_attribute *attr,
230 const char *buf, size_t count,
231 enum transparent_hugepage_flag flag)
232{
e27e6151
BH
233 unsigned long value;
234 int ret;
235
236 ret = kstrtoul(buf, 10, &value);
237 if (ret < 0)
238 return ret;
239 if (value > 1)
240 return -EINVAL;
241
242 if (value)
71e3aac0 243 set_bit(flag, &transparent_hugepage_flags);
e27e6151 244 else
71e3aac0 245 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
246
247 return count;
248}
249
71e3aac0
AA
250static ssize_t defrag_show(struct kobject *kobj,
251 struct kobj_attribute *attr, char *buf)
252{
bfb0ffeb
JP
253 const char *output;
254
255 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
256 &transparent_hugepage_flags))
257 output = "[always] defer defer+madvise madvise never";
258 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
259 &transparent_hugepage_flags))
260 output = "always [defer] defer+madvise madvise never";
261 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG,
262 &transparent_hugepage_flags))
263 output = "always defer [defer+madvise] madvise never";
264 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
265 &transparent_hugepage_flags))
266 output = "always defer defer+madvise [madvise] never";
267 else
268 output = "always defer defer+madvise madvise [never]";
269
270 return sysfs_emit(buf, "%s\n", output);
71e3aac0 271}
21440d7e 272
71e3aac0
AA
273static ssize_t defrag_store(struct kobject *kobj,
274 struct kobj_attribute *attr,
275 const char *buf, size_t count)
276{
f42f2552 277 if (sysfs_streq(buf, "always")) {
21440d7e
DR
278 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
279 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
280 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
281 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
f42f2552 282 } else if (sysfs_streq(buf, "defer+madvise")) {
21440d7e
DR
283 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
284 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
285 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
286 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 287 } else if (sysfs_streq(buf, "defer")) {
4fad7fb6
DR
288 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
289 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
290 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
291 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
f42f2552 292 } else if (sysfs_streq(buf, "madvise")) {
21440d7e
DR
293 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
294 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
295 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
296 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
f42f2552 297 } else if (sysfs_streq(buf, "never")) {
21440d7e
DR
298 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
299 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
300 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
301 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
302 } else
303 return -EINVAL;
304
305 return count;
71e3aac0
AA
306}
307static struct kobj_attribute defrag_attr =
308 __ATTR(defrag, 0644, defrag_show, defrag_store);
309
79da5407 310static ssize_t use_zero_page_show(struct kobject *kobj,
ae7a927d 311 struct kobj_attribute *attr, char *buf)
79da5407 312{
b46e756f 313 return single_hugepage_flag_show(kobj, attr, buf,
ae7a927d 314 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
79da5407
KS
315}
316static ssize_t use_zero_page_store(struct kobject *kobj,
317 struct kobj_attribute *attr, const char *buf, size_t count)
318{
b46e756f 319 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
320 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
321}
322static struct kobj_attribute use_zero_page_attr =
323 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
324
325static ssize_t hpage_pmd_size_show(struct kobject *kobj,
ae7a927d 326 struct kobj_attribute *attr, char *buf)
49920d28 327{
ae7a927d 328 return sysfs_emit(buf, "%lu\n", HPAGE_PMD_SIZE);
49920d28
HD
329}
330static struct kobj_attribute hpage_pmd_size_attr =
331 __ATTR_RO(hpage_pmd_size);
332
71e3aac0
AA
333static struct attribute *hugepage_attr[] = {
334 &enabled_attr.attr,
335 &defrag_attr.attr,
79da5407 336 &use_zero_page_attr.attr,
49920d28 337 &hpage_pmd_size_attr.attr,
396bcc52 338#ifdef CONFIG_SHMEM
5a6e75f8 339 &shmem_enabled_attr.attr,
71e3aac0
AA
340#endif
341 NULL,
342};
343
8aa95a21 344static const struct attribute_group hugepage_attr_group = {
71e3aac0 345 .attrs = hugepage_attr,
ba76149f
AA
346};
347
569e5590 348static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 349{
71e3aac0
AA
350 int err;
351
569e5590
SL
352 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
353 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 354 pr_err("failed to create transparent hugepage kobject\n");
569e5590 355 return -ENOMEM;
ba76149f
AA
356 }
357
569e5590 358 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 359 if (err) {
ae3a8c1c 360 pr_err("failed to register transparent hugepage group\n");
569e5590 361 goto delete_obj;
ba76149f
AA
362 }
363
569e5590 364 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 365 if (err) {
ae3a8c1c 366 pr_err("failed to register transparent hugepage group\n");
569e5590 367 goto remove_hp_group;
ba76149f 368 }
569e5590
SL
369
370 return 0;
371
372remove_hp_group:
373 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
374delete_obj:
375 kobject_put(*hugepage_kobj);
376 return err;
377}
378
379static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
380{
381 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
382 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
383 kobject_put(hugepage_kobj);
384}
385#else
386static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
387{
388 return 0;
389}
390
391static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
392{
393}
394#endif /* CONFIG_SYSFS */
395
396static int __init hugepage_init(void)
397{
398 int err;
399 struct kobject *hugepage_kobj;
400
401 if (!has_transparent_hugepage()) {
bae84953
AK
402 /*
403 * Hardware doesn't support hugepages, hence disable
404 * DAX PMD support.
405 */
406 transparent_hugepage_flags = 1 << TRANSPARENT_HUGEPAGE_NEVER_DAX;
569e5590
SL
407 return -EINVAL;
408 }
409
ff20c2e0
KS
410 /*
411 * hugepages can't be allocated by the buddy allocator
412 */
413 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
414 /*
415 * we use page->mapping and page->index in second tail page
416 * as list_head: assuming THP order >= 2
417 */
418 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
419
569e5590
SL
420 err = hugepage_init_sysfs(&hugepage_kobj);
421 if (err)
65ebb64f 422 goto err_sysfs;
ba76149f 423
b46e756f 424 err = khugepaged_init();
ba76149f 425 if (err)
65ebb64f 426 goto err_slab;
ba76149f 427
65ebb64f
KS
428 err = register_shrinker(&huge_zero_page_shrinker);
429 if (err)
430 goto err_hzp_shrinker;
9a982250
KS
431 err = register_shrinker(&deferred_split_shrinker);
432 if (err)
433 goto err_split_shrinker;
97ae1749 434
97562cd2
RR
435 /*
436 * By default disable transparent hugepages on smaller systems,
437 * where the extra memory used could hurt more than TLB overhead
438 * is likely to save. The admin can still enable it through /sys.
439 */
ca79b0c2 440 if (totalram_pages() < (512 << (20 - PAGE_SHIFT))) {
97562cd2 441 transparent_hugepage_flags = 0;
79553da2
KS
442 return 0;
443 }
97562cd2 444
79553da2 445 err = start_stop_khugepaged();
65ebb64f
KS
446 if (err)
447 goto err_khugepaged;
ba76149f 448
569e5590 449 return 0;
65ebb64f 450err_khugepaged:
9a982250
KS
451 unregister_shrinker(&deferred_split_shrinker);
452err_split_shrinker:
65ebb64f
KS
453 unregister_shrinker(&huge_zero_page_shrinker);
454err_hzp_shrinker:
b46e756f 455 khugepaged_destroy();
65ebb64f 456err_slab:
569e5590 457 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 458err_sysfs:
ba76149f 459 return err;
71e3aac0 460}
a64fb3cd 461subsys_initcall(hugepage_init);
71e3aac0
AA
462
463static int __init setup_transparent_hugepage(char *str)
464{
465 int ret = 0;
466 if (!str)
467 goto out;
468 if (!strcmp(str, "always")) {
469 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
470 &transparent_hugepage_flags);
471 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
472 &transparent_hugepage_flags);
473 ret = 1;
474 } else if (!strcmp(str, "madvise")) {
475 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
476 &transparent_hugepage_flags);
477 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
478 &transparent_hugepage_flags);
479 ret = 1;
480 } else if (!strcmp(str, "never")) {
481 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
482 &transparent_hugepage_flags);
483 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
484 &transparent_hugepage_flags);
485 ret = 1;
486 }
487out:
488 if (!ret)
ae3a8c1c 489 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
490 return ret;
491}
492__setup("transparent_hugepage=", setup_transparent_hugepage);
493
f55e1014 494pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0 495{
f55e1014 496 if (likely(vma->vm_flags & VM_WRITE))
71e3aac0
AA
497 pmd = pmd_mkwrite(pmd);
498 return pmd;
499}
500
87eaceb3
YS
501#ifdef CONFIG_MEMCG
502static inline struct deferred_split *get_deferred_split_queue(struct page *page)
9a982250 503{
bcfe06bf 504 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3
YS
505 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
506
507 if (memcg)
508 return &memcg->deferred_split_queue;
509 else
510 return &pgdat->deferred_split_queue;
9a982250 511}
87eaceb3
YS
512#else
513static inline struct deferred_split *get_deferred_split_queue(struct page *page)
514{
515 struct pglist_data *pgdat = NODE_DATA(page_to_nid(page));
516
517 return &pgdat->deferred_split_queue;
518}
519#endif
9a982250
KS
520
521void prep_transhuge_page(struct page *page)
522{
523 /*
524 * we use page->mapping and page->indexlru in second tail page
525 * as list_head: assuming THP order >= 2
526 */
9a982250
KS
527
528 INIT_LIST_HEAD(page_deferred_list(page));
529 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
530}
531
005ba37c
SC
532bool is_transparent_hugepage(struct page *page)
533{
534 if (!PageCompound(page))
fa1f68cc 535 return false;
005ba37c
SC
536
537 page = compound_head(page);
538 return is_huge_zero_page(page) ||
539 page[1].compound_dtor == TRANSHUGE_PAGE_DTOR;
540}
541EXPORT_SYMBOL_GPL(is_transparent_hugepage);
542
97d3d0f9
KS
543static unsigned long __thp_get_unmapped_area(struct file *filp,
544 unsigned long addr, unsigned long len,
74d2fad1
TK
545 loff_t off, unsigned long flags, unsigned long size)
546{
74d2fad1
TK
547 loff_t off_end = off + len;
548 loff_t off_align = round_up(off, size);
97d3d0f9 549 unsigned long len_pad, ret;
74d2fad1
TK
550
551 if (off_end <= off_align || (off_end - off_align) < size)
552 return 0;
553
554 len_pad = len + size;
555 if (len_pad < len || (off + len_pad) < off)
556 return 0;
557
97d3d0f9 558 ret = current->mm->get_unmapped_area(filp, addr, len_pad,
74d2fad1 559 off >> PAGE_SHIFT, flags);
97d3d0f9
KS
560
561 /*
562 * The failure might be due to length padding. The caller will retry
563 * without the padding.
564 */
565 if (IS_ERR_VALUE(ret))
74d2fad1
TK
566 return 0;
567
97d3d0f9
KS
568 /*
569 * Do not try to align to THP boundary if allocation at the address
570 * hint succeeds.
571 */
572 if (ret == addr)
573 return addr;
574
575 ret += (off - ret) & (size - 1);
576 return ret;
74d2fad1
TK
577}
578
579unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
580 unsigned long len, unsigned long pgoff, unsigned long flags)
581{
97d3d0f9 582 unsigned long ret;
74d2fad1
TK
583 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
584
74d2fad1
TK
585 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
586 goto out;
587
97d3d0f9
KS
588 ret = __thp_get_unmapped_area(filp, addr, len, off, flags, PMD_SIZE);
589 if (ret)
590 return ret;
591out:
74d2fad1
TK
592 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
593}
594EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
595
2b740303
SJ
596static vm_fault_t __do_huge_pmd_anonymous_page(struct vm_fault *vmf,
597 struct page *page, gfp_t gfp)
71e3aac0 598{
82b0f8c3 599 struct vm_area_struct *vma = vmf->vma;
71e3aac0 600 pgtable_t pgtable;
82b0f8c3 601 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2b740303 602 vm_fault_t ret = 0;
71e3aac0 603
309381fe 604 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 605
d9eb1ea2 606 if (mem_cgroup_charge(page, vma->vm_mm, gfp)) {
6b251fc9
AA
607 put_page(page);
608 count_vm_event(THP_FAULT_FALLBACK);
85b9f46e 609 count_vm_event(THP_FAULT_FALLBACK_CHARGE);
6b251fc9
AA
610 return VM_FAULT_FALLBACK;
611 }
9d82c694 612 cgroup_throttle_swaprate(page, gfp);
00501b53 613
4cf58924 614 pgtable = pte_alloc_one(vma->vm_mm);
00501b53 615 if (unlikely(!pgtable)) {
6b31d595
MH
616 ret = VM_FAULT_OOM;
617 goto release;
00501b53 618 }
71e3aac0 619
c79b57e4 620 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
621 /*
622 * The memory barrier inside __SetPageUptodate makes sure that
623 * clear_huge_page writes become visible before the set_pmd_at()
624 * write.
625 */
71e3aac0
AA
626 __SetPageUptodate(page);
627
82b0f8c3
JK
628 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
629 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 630 goto unlock_release;
71e3aac0
AA
631 } else {
632 pmd_t entry;
6b251fc9 633
6b31d595
MH
634 ret = check_stable_address_space(vma->vm_mm);
635 if (ret)
636 goto unlock_release;
637
6b251fc9
AA
638 /* Deliver the page fault to userland */
639 if (userfaultfd_missing(vma)) {
82b0f8c3 640 spin_unlock(vmf->ptl);
6b251fc9 641 put_page(page);
bae473a4 642 pte_free(vma->vm_mm, pgtable);
8fd5eda4
ML
643 ret = handle_userfault(vmf, VM_UFFD_MISSING);
644 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
645 return ret;
6b251fc9
AA
646 }
647
3122359a 648 entry = mk_huge_pmd(page, vma->vm_page_prot);
f55e1014 649 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 650 page_add_new_anon_rmap(page, vma, haddr, true);
b518154e 651 lru_cache_add_inactive_or_unevictable(page, vma);
82b0f8c3
JK
652 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
653 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
fca40573 654 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
bae473a4 655 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
c4812909 656 mm_inc_nr_ptes(vma->vm_mm);
82b0f8c3 657 spin_unlock(vmf->ptl);
6b251fc9 658 count_vm_event(THP_FAULT_ALLOC);
9d82c694 659 count_memcg_event_mm(vma->vm_mm, THP_FAULT_ALLOC);
71e3aac0
AA
660 }
661
aa2e878e 662 return 0;
6b31d595
MH
663unlock_release:
664 spin_unlock(vmf->ptl);
665release:
666 if (pgtable)
667 pte_free(vma->vm_mm, pgtable);
6b31d595
MH
668 put_page(page);
669 return ret;
670
71e3aac0
AA
671}
672
444eb2a4 673/*
21440d7e
DR
674 * always: directly stall for all thp allocations
675 * defer: wake kswapd and fail if not immediately available
676 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
677 * fail if not immediately available
678 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
679 * available
680 * never: never stall for any thp allocation
444eb2a4 681 */
164cc4fe 682gfp_t vma_thp_gfp_mask(struct vm_area_struct *vma)
444eb2a4 683{
164cc4fe 684 const bool vma_madvised = vma && (vma->vm_flags & VM_HUGEPAGE);
2f0799a0 685
ac79f78d 686 /* Always do synchronous compaction */
a8282608
AA
687 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
688 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
ac79f78d
DR
689
690 /* Kick kcompactd and fail quickly */
21440d7e 691 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
19deb769 692 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
ac79f78d
DR
693
694 /* Synchronous compaction if madvised, otherwise kick kcompactd */
21440d7e 695 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
696 return GFP_TRANSHUGE_LIGHT |
697 (vma_madvised ? __GFP_DIRECT_RECLAIM :
698 __GFP_KSWAPD_RECLAIM);
ac79f78d
DR
699
700 /* Only do synchronous compaction if madvised */
21440d7e 701 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
19deb769
DR
702 return GFP_TRANSHUGE_LIGHT |
703 (vma_madvised ? __GFP_DIRECT_RECLAIM : 0);
ac79f78d 704
19deb769 705 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
706}
707
c4088ebd 708/* Caller must hold page table lock. */
2efeb8da 709static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 710 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 711 struct page *zero_page)
fc9fe822
KS
712{
713 pmd_t entry;
7c414164 714 if (!pmd_none(*pmd))
2efeb8da 715 return;
5918d10a 716 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 717 entry = pmd_mkhuge(entry);
12c9d70b
MW
718 if (pgtable)
719 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 720 set_pmd_at(mm, haddr, pmd, entry);
c4812909 721 mm_inc_nr_ptes(mm);
fc9fe822
KS
722}
723
2b740303 724vm_fault_t do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 725{
82b0f8c3 726 struct vm_area_struct *vma = vmf->vma;
077fcf11 727 gfp_t gfp;
71e3aac0 728 struct page *page;
82b0f8c3 729 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 730
43675e6f 731 if (!transhuge_vma_suitable(vma, haddr))
c0292554 732 return VM_FAULT_FALLBACK;
128ec037
KS
733 if (unlikely(anon_vma_prepare(vma)))
734 return VM_FAULT_OOM;
6d50e60c 735 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 736 return VM_FAULT_OOM;
82b0f8c3 737 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 738 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
739 transparent_hugepage_use_zero_page()) {
740 pgtable_t pgtable;
741 struct page *zero_page;
2b740303 742 vm_fault_t ret;
4cf58924 743 pgtable = pte_alloc_one(vma->vm_mm);
128ec037 744 if (unlikely(!pgtable))
ba76149f 745 return VM_FAULT_OOM;
6fcb52a5 746 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 747 if (unlikely(!zero_page)) {
bae473a4 748 pte_free(vma->vm_mm, pgtable);
81ab4201 749 count_vm_event(THP_FAULT_FALLBACK);
c0292554 750 return VM_FAULT_FALLBACK;
b9bbfbe3 751 }
82b0f8c3 752 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9 753 ret = 0;
82b0f8c3 754 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
755 ret = check_stable_address_space(vma->vm_mm);
756 if (ret) {
757 spin_unlock(vmf->ptl);
bfe8cc1d 758 pte_free(vma->vm_mm, pgtable);
6b31d595 759 } else if (userfaultfd_missing(vma)) {
82b0f8c3 760 spin_unlock(vmf->ptl);
bfe8cc1d 761 pte_free(vma->vm_mm, pgtable);
82b0f8c3 762 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
763 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
764 } else {
bae473a4 765 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3 766 haddr, vmf->pmd, zero_page);
fca40573 767 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
82b0f8c3 768 spin_unlock(vmf->ptl);
6b251fc9 769 }
bfe8cc1d 770 } else {
82b0f8c3 771 spin_unlock(vmf->ptl);
bae473a4 772 pte_free(vma->vm_mm, pgtable);
bfe8cc1d 773 }
6b251fc9 774 return ret;
71e3aac0 775 }
164cc4fe 776 gfp = vma_thp_gfp_mask(vma);
19deb769 777 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
778 if (unlikely(!page)) {
779 count_vm_event(THP_FAULT_FALLBACK);
c0292554 780 return VM_FAULT_FALLBACK;
128ec037 781 }
9a982250 782 prep_transhuge_page(page);
82b0f8c3 783 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
784}
785
ae18d6dc 786static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
787 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
788 pgtable_t pgtable)
5cad465d
MW
789{
790 struct mm_struct *mm = vma->vm_mm;
791 pmd_t entry;
792 spinlock_t *ptl;
793
794 ptl = pmd_lock(mm, pmd);
c6f3c5ee
AK
795 if (!pmd_none(*pmd)) {
796 if (write) {
797 if (pmd_pfn(*pmd) != pfn_t_to_pfn(pfn)) {
798 WARN_ON_ONCE(!is_huge_zero_pmd(*pmd));
799 goto out_unlock;
800 }
801 entry = pmd_mkyoung(*pmd);
802 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
803 if (pmdp_set_access_flags(vma, addr, pmd, entry, 1))
804 update_mmu_cache_pmd(vma, addr, pmd);
805 }
806
807 goto out_unlock;
808 }
809
f25748e3
DW
810 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
811 if (pfn_t_devmap(pfn))
812 entry = pmd_mkdevmap(entry);
01871e59 813 if (write) {
f55e1014
LT
814 entry = pmd_mkyoung(pmd_mkdirty(entry));
815 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 816 }
3b6521f5
OH
817
818 if (pgtable) {
819 pgtable_trans_huge_deposit(mm, pmd, pgtable);
c4812909 820 mm_inc_nr_ptes(mm);
c6f3c5ee 821 pgtable = NULL;
3b6521f5
OH
822 }
823
01871e59
RZ
824 set_pmd_at(mm, addr, pmd, entry);
825 update_mmu_cache_pmd(vma, addr, pmd);
c6f3c5ee
AK
826
827out_unlock:
5cad465d 828 spin_unlock(ptl);
c6f3c5ee
AK
829 if (pgtable)
830 pte_free(mm, pgtable);
5cad465d
MW
831}
832
9a9731b1
THV
833/**
834 * vmf_insert_pfn_pmd_prot - insert a pmd size pfn
835 * @vmf: Structure describing the fault
836 * @pfn: pfn to insert
837 * @pgprot: page protection to use
838 * @write: whether it's a write fault
839 *
840 * Insert a pmd size pfn. See vmf_insert_pfn() for additional info and
841 * also consult the vmf_insert_mixed_prot() documentation when
842 * @pgprot != @vmf->vma->vm_page_prot.
843 *
844 * Return: vm_fault_t value.
845 */
846vm_fault_t vmf_insert_pfn_pmd_prot(struct vm_fault *vmf, pfn_t pfn,
847 pgprot_t pgprot, bool write)
5cad465d 848{
fce86ff5
DW
849 unsigned long addr = vmf->address & PMD_MASK;
850 struct vm_area_struct *vma = vmf->vma;
3b6521f5 851 pgtable_t pgtable = NULL;
fce86ff5 852
5cad465d
MW
853 /*
854 * If we had pmd_special, we could avoid all these restrictions,
855 * but we need to be consistent with PTEs and architectures that
856 * can't support a 'special' bit.
857 */
e1fb4a08
DJ
858 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
859 !pfn_t_devmap(pfn));
5cad465d
MW
860 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
861 (VM_PFNMAP|VM_MIXEDMAP));
862 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
5cad465d
MW
863
864 if (addr < vma->vm_start || addr >= vma->vm_end)
865 return VM_FAULT_SIGBUS;
308a047c 866
3b6521f5 867 if (arch_needs_pgtable_deposit()) {
4cf58924 868 pgtable = pte_alloc_one(vma->vm_mm);
3b6521f5
OH
869 if (!pgtable)
870 return VM_FAULT_OOM;
871 }
872
308a047c
BP
873 track_pfn_insert(vma, &pgprot, pfn);
874
fce86ff5 875 insert_pfn_pmd(vma, addr, vmf->pmd, pfn, pgprot, write, pgtable);
ae18d6dc 876 return VM_FAULT_NOPAGE;
5cad465d 877}
9a9731b1 878EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd_prot);
5cad465d 879
a00cc7d9 880#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
f55e1014 881static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
a00cc7d9 882{
f55e1014 883 if (likely(vma->vm_flags & VM_WRITE))
a00cc7d9
MW
884 pud = pud_mkwrite(pud);
885 return pud;
886}
887
888static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
889 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
890{
891 struct mm_struct *mm = vma->vm_mm;
892 pud_t entry;
893 spinlock_t *ptl;
894
895 ptl = pud_lock(mm, pud);
c6f3c5ee
AK
896 if (!pud_none(*pud)) {
897 if (write) {
898 if (pud_pfn(*pud) != pfn_t_to_pfn(pfn)) {
899 WARN_ON_ONCE(!is_huge_zero_pud(*pud));
900 goto out_unlock;
901 }
902 entry = pud_mkyoung(*pud);
903 entry = maybe_pud_mkwrite(pud_mkdirty(entry), vma);
904 if (pudp_set_access_flags(vma, addr, pud, entry, 1))
905 update_mmu_cache_pud(vma, addr, pud);
906 }
907 goto out_unlock;
908 }
909
a00cc7d9
MW
910 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
911 if (pfn_t_devmap(pfn))
912 entry = pud_mkdevmap(entry);
913 if (write) {
f55e1014
LT
914 entry = pud_mkyoung(pud_mkdirty(entry));
915 entry = maybe_pud_mkwrite(entry, vma);
a00cc7d9
MW
916 }
917 set_pud_at(mm, addr, pud, entry);
918 update_mmu_cache_pud(vma, addr, pud);
c6f3c5ee
AK
919
920out_unlock:
a00cc7d9
MW
921 spin_unlock(ptl);
922}
923
9a9731b1
THV
924/**
925 * vmf_insert_pfn_pud_prot - insert a pud size pfn
926 * @vmf: Structure describing the fault
927 * @pfn: pfn to insert
928 * @pgprot: page protection to use
929 * @write: whether it's a write fault
930 *
931 * Insert a pud size pfn. See vmf_insert_pfn() for additional info and
932 * also consult the vmf_insert_mixed_prot() documentation when
933 * @pgprot != @vmf->vma->vm_page_prot.
934 *
935 * Return: vm_fault_t value.
936 */
937vm_fault_t vmf_insert_pfn_pud_prot(struct vm_fault *vmf, pfn_t pfn,
938 pgprot_t pgprot, bool write)
a00cc7d9 939{
fce86ff5
DW
940 unsigned long addr = vmf->address & PUD_MASK;
941 struct vm_area_struct *vma = vmf->vma;
fce86ff5 942
a00cc7d9
MW
943 /*
944 * If we had pud_special, we could avoid all these restrictions,
945 * but we need to be consistent with PTEs and architectures that
946 * can't support a 'special' bit.
947 */
62ec0d8c
DJ
948 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) &&
949 !pfn_t_devmap(pfn));
a00cc7d9
MW
950 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
951 (VM_PFNMAP|VM_MIXEDMAP));
952 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
a00cc7d9
MW
953
954 if (addr < vma->vm_start || addr >= vma->vm_end)
955 return VM_FAULT_SIGBUS;
956
957 track_pfn_insert(vma, &pgprot, pfn);
958
fce86ff5 959 insert_pfn_pud(vma, addr, vmf->pud, pfn, pgprot, write);
a00cc7d9
MW
960 return VM_FAULT_NOPAGE;
961}
9a9731b1 962EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud_prot);
a00cc7d9
MW
963#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
964
3565fce3 965static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
a8f97366 966 pmd_t *pmd, int flags)
3565fce3
DW
967{
968 pmd_t _pmd;
969
a8f97366
KS
970 _pmd = pmd_mkyoung(*pmd);
971 if (flags & FOLL_WRITE)
972 _pmd = pmd_mkdirty(_pmd);
3565fce3 973 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
a8f97366 974 pmd, _pmd, flags & FOLL_WRITE))
3565fce3
DW
975 update_mmu_cache_pmd(vma, addr, pmd);
976}
977
978struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
df06b37f 979 pmd_t *pmd, int flags, struct dev_pagemap **pgmap)
3565fce3
DW
980{
981 unsigned long pfn = pmd_pfn(*pmd);
982 struct mm_struct *mm = vma->vm_mm;
3565fce3
DW
983 struct page *page;
984
985 assert_spin_locked(pmd_lockptr(mm, pmd));
986
8310d48b
KF
987 /*
988 * When we COW a devmap PMD entry, we split it into PTEs, so we should
989 * not be in this function with `flags & FOLL_COW` set.
990 */
991 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
992
3faa52c0
JH
993 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
994 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
995 (FOLL_PIN | FOLL_GET)))
996 return NULL;
997
f6f37321 998 if (flags & FOLL_WRITE && !pmd_write(*pmd))
3565fce3
DW
999 return NULL;
1000
1001 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1002 /* pass */;
1003 else
1004 return NULL;
1005
1006 if (flags & FOLL_TOUCH)
a8f97366 1007 touch_pmd(vma, addr, pmd, flags);
3565fce3
DW
1008
1009 /*
1010 * device mapped pages can only be returned if the
1011 * caller will manage the page reference count.
1012 */
3faa52c0 1013 if (!(flags & (FOLL_GET | FOLL_PIN)))
3565fce3
DW
1014 return ERR_PTR(-EEXIST);
1015
1016 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1017 *pgmap = get_dev_pagemap(pfn, *pgmap);
1018 if (!*pgmap)
3565fce3
DW
1019 return ERR_PTR(-EFAULT);
1020 page = pfn_to_page(pfn);
3faa52c0
JH
1021 if (!try_grab_page(page, flags))
1022 page = ERR_PTR(-ENOMEM);
3565fce3
DW
1023
1024 return page;
1025}
1026
71e3aac0
AA
1027int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1028 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1029 struct vm_area_struct *vma)
1030{
c4088ebd 1031 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1032 struct page *src_page;
1033 pmd_t pmd;
12c9d70b 1034 pgtable_t pgtable = NULL;
628d47ce 1035 int ret = -ENOMEM;
71e3aac0 1036
628d47ce
KS
1037 /* Skip if can be re-fill on fault */
1038 if (!vma_is_anonymous(vma))
1039 return 0;
1040
4cf58924 1041 pgtable = pte_alloc_one(dst_mm);
628d47ce
KS
1042 if (unlikely(!pgtable))
1043 goto out;
71e3aac0 1044
c4088ebd
KS
1045 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1046 src_ptl = pmd_lockptr(src_mm, src_pmd);
1047 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1048
1049 ret = -EAGAIN;
1050 pmd = *src_pmd;
84c3fc4e 1051
b569a176
PX
1052 /*
1053 * Make sure the _PAGE_UFFD_WP bit is cleared if the new VMA
1054 * does not have the VM_UFFD_WP, which means that the uffd
1055 * fork event is not enabled.
1056 */
1057 if (!(vma->vm_flags & VM_UFFD_WP))
1058 pmd = pmd_clear_uffd_wp(pmd);
1059
84c3fc4e
ZY
1060#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1061 if (unlikely(is_swap_pmd(pmd))) {
1062 swp_entry_t entry = pmd_to_swp_entry(pmd);
1063
1064 VM_BUG_ON(!is_pmd_migration_entry(pmd));
1065 if (is_write_migration_entry(entry)) {
1066 make_migration_entry_read(&entry);
1067 pmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1068 if (pmd_swp_soft_dirty(*src_pmd))
1069 pmd = pmd_swp_mksoft_dirty(pmd);
84c3fc4e
ZY
1070 set_pmd_at(src_mm, addr, src_pmd, pmd);
1071 }
dd8a67f9 1072 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
af5b0f6a 1073 mm_inc_nr_ptes(dst_mm);
dd8a67f9 1074 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
84c3fc4e
ZY
1075 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1076 ret = 0;
1077 goto out_unlock;
1078 }
1079#endif
1080
628d47ce 1081 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
1082 pte_free(dst_mm, pgtable);
1083 goto out_unlock;
1084 }
fc9fe822 1085 /*
c4088ebd 1086 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1087 * under splitting since we don't split the page itself, only pmd to
1088 * a page table.
1089 */
1090 if (is_huge_zero_pmd(pmd)) {
97ae1749
KS
1091 /*
1092 * get_huge_zero_page() will never allocate a new page here,
1093 * since we already have a zero page to copy. It just takes a
1094 * reference.
1095 */
5fc7a5f6
PX
1096 mm_get_huge_zero_page(dst_mm);
1097 goto out_zero_page;
fc9fe822 1098 }
de466bd6 1099
628d47ce
KS
1100 src_page = pmd_page(pmd);
1101 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
d042035e
PX
1102
1103 /*
1104 * If this page is a potentially pinned page, split and retry the fault
1105 * with smaller page size. Normally this should not happen because the
1106 * userspace should use MADV_DONTFORK upon pinned regions. This is a
1107 * best effort that the pinned pages won't be replaced by another
1108 * random page during the coming copy-on-write.
1109 */
97a7e473 1110 if (unlikely(page_needs_cow_for_dma(vma, src_page))) {
d042035e
PX
1111 pte_free(dst_mm, pgtable);
1112 spin_unlock(src_ptl);
1113 spin_unlock(dst_ptl);
1114 __split_huge_pmd(vma, src_pmd, addr, false, NULL);
1115 return -EAGAIN;
1116 }
1117
628d47ce
KS
1118 get_page(src_page);
1119 page_dup_rmap(src_page, true);
1120 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
5fc7a5f6 1121out_zero_page:
c4812909 1122 mm_inc_nr_ptes(dst_mm);
628d47ce 1123 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
1124
1125 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1126 pmd = pmd_mkold(pmd_wrprotect(pmd));
1127 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1128
1129 ret = 0;
1130out_unlock:
c4088ebd
KS
1131 spin_unlock(src_ptl);
1132 spin_unlock(dst_ptl);
71e3aac0
AA
1133out:
1134 return ret;
1135}
1136
a00cc7d9
MW
1137#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1138static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
a8f97366 1139 pud_t *pud, int flags)
a00cc7d9
MW
1140{
1141 pud_t _pud;
1142
a8f97366
KS
1143 _pud = pud_mkyoung(*pud);
1144 if (flags & FOLL_WRITE)
1145 _pud = pud_mkdirty(_pud);
a00cc7d9 1146 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
a8f97366 1147 pud, _pud, flags & FOLL_WRITE))
a00cc7d9
MW
1148 update_mmu_cache_pud(vma, addr, pud);
1149}
1150
1151struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
df06b37f 1152 pud_t *pud, int flags, struct dev_pagemap **pgmap)
a00cc7d9
MW
1153{
1154 unsigned long pfn = pud_pfn(*pud);
1155 struct mm_struct *mm = vma->vm_mm;
a00cc7d9
MW
1156 struct page *page;
1157
1158 assert_spin_locked(pud_lockptr(mm, pud));
1159
f6f37321 1160 if (flags & FOLL_WRITE && !pud_write(*pud))
a00cc7d9
MW
1161 return NULL;
1162
3faa52c0
JH
1163 /* FOLL_GET and FOLL_PIN are mutually exclusive. */
1164 if (WARN_ON_ONCE((flags & (FOLL_PIN | FOLL_GET)) ==
1165 (FOLL_PIN | FOLL_GET)))
1166 return NULL;
1167
a00cc7d9
MW
1168 if (pud_present(*pud) && pud_devmap(*pud))
1169 /* pass */;
1170 else
1171 return NULL;
1172
1173 if (flags & FOLL_TOUCH)
a8f97366 1174 touch_pud(vma, addr, pud, flags);
a00cc7d9
MW
1175
1176 /*
1177 * device mapped pages can only be returned if the
1178 * caller will manage the page reference count.
3faa52c0
JH
1179 *
1180 * At least one of FOLL_GET | FOLL_PIN must be set, so assert that here:
a00cc7d9 1181 */
3faa52c0 1182 if (!(flags & (FOLL_GET | FOLL_PIN)))
a00cc7d9
MW
1183 return ERR_PTR(-EEXIST);
1184
1185 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
df06b37f
KB
1186 *pgmap = get_dev_pagemap(pfn, *pgmap);
1187 if (!*pgmap)
a00cc7d9
MW
1188 return ERR_PTR(-EFAULT);
1189 page = pfn_to_page(pfn);
3faa52c0
JH
1190 if (!try_grab_page(page, flags))
1191 page = ERR_PTR(-ENOMEM);
a00cc7d9
MW
1192
1193 return page;
1194}
1195
1196int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1197 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1198 struct vm_area_struct *vma)
1199{
1200 spinlock_t *dst_ptl, *src_ptl;
1201 pud_t pud;
1202 int ret;
1203
1204 dst_ptl = pud_lock(dst_mm, dst_pud);
1205 src_ptl = pud_lockptr(src_mm, src_pud);
1206 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1207
1208 ret = -EAGAIN;
1209 pud = *src_pud;
1210 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1211 goto out_unlock;
1212
1213 /*
1214 * When page table lock is held, the huge zero pud should not be
1215 * under splitting since we don't split the page itself, only pud to
1216 * a page table.
1217 */
1218 if (is_huge_zero_pud(pud)) {
1219 /* No huge zero pud yet */
1220 }
1221
d042035e 1222 /* Please refer to comments in copy_huge_pmd() */
97a7e473 1223 if (unlikely(page_needs_cow_for_dma(vma, pud_page(pud)))) {
d042035e
PX
1224 spin_unlock(src_ptl);
1225 spin_unlock(dst_ptl);
1226 __split_huge_pud(vma, src_pud, addr);
1227 return -EAGAIN;
1228 }
1229
a00cc7d9
MW
1230 pudp_set_wrprotect(src_mm, addr, src_pud);
1231 pud = pud_mkold(pud_wrprotect(pud));
1232 set_pud_at(dst_mm, addr, dst_pud, pud);
1233
1234 ret = 0;
1235out_unlock:
1236 spin_unlock(src_ptl);
1237 spin_unlock(dst_ptl);
1238 return ret;
1239}
1240
1241void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1242{
1243 pud_t entry;
1244 unsigned long haddr;
1245 bool write = vmf->flags & FAULT_FLAG_WRITE;
1246
1247 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1248 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1249 goto unlock;
1250
1251 entry = pud_mkyoung(orig_pud);
1252 if (write)
1253 entry = pud_mkdirty(entry);
1254 haddr = vmf->address & HPAGE_PUD_MASK;
1255 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1256 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1257
1258unlock:
1259 spin_unlock(vmf->ptl);
1260}
1261#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1262
82b0f8c3 1263void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1264{
1265 pmd_t entry;
1266 unsigned long haddr;
20f664aa 1267 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1268
82b0f8c3
JK
1269 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1270 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1271 goto unlock;
1272
1273 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1274 if (write)
1275 entry = pmd_mkdirty(entry);
82b0f8c3 1276 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1277 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1278 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1279
1280unlock:
82b0f8c3 1281 spin_unlock(vmf->ptl);
a1dd450b
WD
1282}
1283
2b740303 1284vm_fault_t do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1285{
82b0f8c3 1286 struct vm_area_struct *vma = vmf->vma;
3917c802 1287 struct page *page;
82b0f8c3 1288 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 1289
82b0f8c3 1290 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1291 VM_BUG_ON_VMA(!vma->anon_vma, vma);
3917c802 1292
93b4796d 1293 if (is_huge_zero_pmd(orig_pmd))
3917c802
KS
1294 goto fallback;
1295
82b0f8c3 1296 spin_lock(vmf->ptl);
3917c802
KS
1297
1298 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1299 spin_unlock(vmf->ptl);
1300 return 0;
1301 }
71e3aac0
AA
1302
1303 page = pmd_page(orig_pmd);
f6004e73 1304 VM_BUG_ON_PAGE(!PageHead(page), page);
3917c802
KS
1305
1306 /* Lock page for reuse_swap_page() */
ba3c4ce6
HY
1307 if (!trylock_page(page)) {
1308 get_page(page);
1309 spin_unlock(vmf->ptl);
1310 lock_page(page);
1311 spin_lock(vmf->ptl);
1312 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
3917c802 1313 spin_unlock(vmf->ptl);
ba3c4ce6
HY
1314 unlock_page(page);
1315 put_page(page);
3917c802 1316 return 0;
ba3c4ce6
HY
1317 }
1318 put_page(page);
1319 }
3917c802
KS
1320
1321 /*
1322 * We can only reuse the page if nobody else maps the huge page or it's
1323 * part.
1324 */
ba3c4ce6 1325 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1326 pmd_t entry;
1327 entry = pmd_mkyoung(orig_pmd);
f55e1014 1328 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
3917c802 1329 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
82b0f8c3 1330 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
ba3c4ce6 1331 unlock_page(page);
82b0f8c3 1332 spin_unlock(vmf->ptl);
3917c802 1333 return VM_FAULT_WRITE;
71e3aac0 1334 }
3917c802
KS
1335
1336 unlock_page(page);
82b0f8c3 1337 spin_unlock(vmf->ptl);
3917c802
KS
1338fallback:
1339 __split_huge_pmd(vma, vmf->pmd, vmf->address, false, NULL);
1340 return VM_FAULT_FALLBACK;
71e3aac0
AA
1341}
1342
8310d48b 1343/*
a308c71b
PX
1344 * FOLL_FORCE can write to even unwritable pmd's, but only
1345 * after we've gone through a COW cycle and they are dirty.
8310d48b
KF
1346 */
1347static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1348{
a308c71b
PX
1349 return pmd_write(pmd) ||
1350 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
8310d48b
KF
1351}
1352
b676b293 1353struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1354 unsigned long addr,
1355 pmd_t *pmd,
1356 unsigned int flags)
1357{
b676b293 1358 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1359 struct page *page = NULL;
1360
c4088ebd 1361 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1362
8310d48b 1363 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1364 goto out;
1365
85facf25
KS
1366 /* Avoid dumping huge zero page */
1367 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1368 return ERR_PTR(-EFAULT);
1369
2b4847e7 1370 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1371 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1372 goto out;
1373
71e3aac0 1374 page = pmd_page(*pmd);
ca120cf6 1375 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3faa52c0
JH
1376
1377 if (!try_grab_page(page, flags))
1378 return ERR_PTR(-ENOMEM);
1379
3565fce3 1380 if (flags & FOLL_TOUCH)
a8f97366 1381 touch_pmd(vma, addr, pmd, flags);
3faa52c0 1382
de60f5f1 1383 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1384 /*
1385 * We don't mlock() pte-mapped THPs. This way we can avoid
1386 * leaking mlocked pages into non-VM_LOCKED VMAs.
1387 *
9a73f61b
KS
1388 * For anon THP:
1389 *
e90309c9
KS
1390 * In most cases the pmd is the only mapping of the page as we
1391 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1392 * writable private mappings in populate_vma_page_range().
1393 *
1394 * The only scenario when we have the page shared here is if we
1395 * mlocking read-only mapping shared over fork(). We skip
1396 * mlocking such pages.
9a73f61b
KS
1397 *
1398 * For file THP:
1399 *
1400 * We can expect PageDoubleMap() to be stable under page lock:
1401 * for file pages we set it in page_add_file_rmap(), which
1402 * requires page to be locked.
e90309c9 1403 */
9a73f61b
KS
1404
1405 if (PageAnon(page) && compound_mapcount(page) != 1)
1406 goto skip_mlock;
1407 if (PageDoubleMap(page) || !page->mapping)
1408 goto skip_mlock;
1409 if (!trylock_page(page))
1410 goto skip_mlock;
9a73f61b
KS
1411 if (page->mapping && !PageDoubleMap(page))
1412 mlock_vma_page(page);
1413 unlock_page(page);
b676b293 1414 }
9a73f61b 1415skip_mlock:
71e3aac0 1416 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1417 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0
AA
1418
1419out:
1420 return page;
1421}
1422
d10e63f2 1423/* NUMA hinting page fault entry point for trans huge pmds */
2b740303 1424vm_fault_t do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1425{
82b0f8c3 1426 struct vm_area_struct *vma = vmf->vma;
b8916634 1427 struct anon_vma *anon_vma = NULL;
b32967ff 1428 struct page *page;
82b0f8c3 1429 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
98fa15f3 1430 int page_nid = NUMA_NO_NODE, this_nid = numa_node_id();
90572890 1431 int target_nid, last_cpupid = -1;
8191acbd
MG
1432 bool page_locked;
1433 bool migrated = false;
b191f9b1 1434 bool was_writable;
6688cc05 1435 int flags = 0;
d10e63f2 1436
82b0f8c3
JK
1437 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1438 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1439 goto out_unlock;
1440
de466bd6
MG
1441 /*
1442 * If there are potential migrations, wait for completion and retry
1443 * without disrupting NUMA hinting information. Do not relock and
1444 * check_same as the page may no longer be mapped.
1445 */
82b0f8c3
JK
1446 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1447 page = pmd_page(*vmf->pmd);
3c226c63
MR
1448 if (!get_page_unless_zero(page))
1449 goto out_unlock;
82b0f8c3 1450 spin_unlock(vmf->ptl);
48054625 1451 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
de466bd6
MG
1452 goto out;
1453 }
1454
d10e63f2 1455 page = pmd_page(pmd);
a1a46184 1456 BUG_ON(is_huge_zero_page(page));
8191acbd 1457 page_nid = page_to_nid(page);
90572890 1458 last_cpupid = page_cpupid_last(page);
03c5a6e1 1459 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1460 if (page_nid == this_nid) {
03c5a6e1 1461 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1462 flags |= TNF_FAULT_LOCAL;
1463 }
4daae3b4 1464
bea66fbd 1465 /* See similar comment in do_numa_page for explanation */
288bc549 1466 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1467 flags |= TNF_NO_GROUP;
1468
ff9042b1
MG
1469 /*
1470 * Acquire the page lock to serialise THP migrations but avoid dropping
1471 * page_table_lock if at all possible
1472 */
b8916634
MG
1473 page_locked = trylock_page(page);
1474 target_nid = mpol_misplaced(page, vma, haddr);
de466bd6 1475 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1476 if (!page_locked) {
98fa15f3 1477 page_nid = NUMA_NO_NODE;
3c226c63
MR
1478 if (!get_page_unless_zero(page))
1479 goto out_unlock;
82b0f8c3 1480 spin_unlock(vmf->ptl);
48054625 1481 put_and_wait_on_page_locked(page, TASK_UNINTERRUPTIBLE);
b8916634 1482 goto out;
6beb5e8b
ML
1483 } else if (target_nid == NUMA_NO_NODE) {
1484 /* There are no parallel migrations and page is in the right
1485 * node. Clear the numa hinting info in this pmd.
1486 */
1487 goto clear_pmdnuma;
b8916634
MG
1488 }
1489
2b4847e7
MG
1490 /*
1491 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1492 * to serialises splits
1493 */
b8916634 1494 get_page(page);
82b0f8c3 1495 spin_unlock(vmf->ptl);
b8916634 1496 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1497
c69307d5 1498 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1499 spin_lock(vmf->ptl);
1500 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1501 unlock_page(page);
1502 put_page(page);
98fa15f3 1503 page_nid = NUMA_NO_NODE;
4daae3b4 1504 goto out_unlock;
b32967ff 1505 }
ff9042b1 1506
c3a489ca
MG
1507 /* Bail if we fail to protect against THP splits for any reason */
1508 if (unlikely(!anon_vma)) {
1509 put_page(page);
98fa15f3 1510 page_nid = NUMA_NO_NODE;
c3a489ca
MG
1511 goto clear_pmdnuma;
1512 }
1513
8b1b436d
PZ
1514 /*
1515 * Since we took the NUMA fault, we must have observed the !accessible
1516 * bit. Make sure all other CPUs agree with that, to avoid them
1517 * modifying the page we're about to migrate.
1518 *
1519 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1520 * inc_tlb_flush_pending().
1521 *
1522 * We are not sure a pending tlb flush here is for a huge page
1523 * mapping or not. Hence use the tlb range variant
8b1b436d 1524 */
7066f0f9 1525 if (mm_tlb_flush_pending(vma->vm_mm)) {
ccde85ba 1526 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
7066f0f9
AA
1527 /*
1528 * change_huge_pmd() released the pmd lock before
1529 * invalidating the secondary MMUs sharing the primary
1530 * MMU pagetables (with ->invalidate_range()). The
1531 * mmu_notifier_invalidate_range_end() (which
1532 * internally calls ->invalidate_range()) in
1533 * change_pmd_range() will run after us, so we can't
1534 * rely on it here and we need an explicit invalidate.
1535 */
1536 mmu_notifier_invalidate_range(vma->vm_mm, haddr,
1537 haddr + HPAGE_PMD_SIZE);
1538 }
8b1b436d 1539
a54a407f
MG
1540 /*
1541 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1542 * and access rights restored.
a54a407f 1543 */
82b0f8c3 1544 spin_unlock(vmf->ptl);
8b1b436d 1545
bae473a4 1546 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1547 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1548 if (migrated) {
1549 flags |= TNF_MIGRATED;
8191acbd 1550 page_nid = target_nid;
074c2381
MG
1551 } else
1552 flags |= TNF_MIGRATE_FAIL;
b32967ff 1553
8191acbd 1554 goto out;
b32967ff 1555clear_pmdnuma:
a54a407f 1556 BUG_ON(!PageLocked(page));
288bc549 1557 was_writable = pmd_savedwrite(pmd);
4d942466 1558 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1559 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1560 if (was_writable)
1561 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1562 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1563 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1564 unlock_page(page);
d10e63f2 1565out_unlock:
82b0f8c3 1566 spin_unlock(vmf->ptl);
b8916634
MG
1567
1568out:
1569 if (anon_vma)
1570 page_unlock_anon_vma_read(anon_vma);
1571
98fa15f3 1572 if (page_nid != NUMA_NO_NODE)
82b0f8c3 1573 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1574 flags);
8191acbd 1575
d10e63f2
MG
1576 return 0;
1577}
1578
319904ad
HY
1579/*
1580 * Return true if we do MADV_FREE successfully on entire pmd page.
1581 * Otherwise, return false.
1582 */
1583bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1584 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1585{
1586 spinlock_t *ptl;
1587 pmd_t orig_pmd;
1588 struct page *page;
1589 struct mm_struct *mm = tlb->mm;
319904ad 1590 bool ret = false;
b8d3c4c3 1591
ed6a7935 1592 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1593
b6ec57f4
KS
1594 ptl = pmd_trans_huge_lock(pmd, vma);
1595 if (!ptl)
25eedabe 1596 goto out_unlocked;
b8d3c4c3
MK
1597
1598 orig_pmd = *pmd;
319904ad 1599 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1600 goto out;
b8d3c4c3 1601
84c3fc4e
ZY
1602 if (unlikely(!pmd_present(orig_pmd))) {
1603 VM_BUG_ON(thp_migration_supported() &&
1604 !is_pmd_migration_entry(orig_pmd));
1605 goto out;
1606 }
1607
b8d3c4c3
MK
1608 page = pmd_page(orig_pmd);
1609 /*
1610 * If other processes are mapping this page, we couldn't discard
1611 * the page unless they all do MADV_FREE so let's skip the page.
1612 */
babbbdd0 1613 if (total_mapcount(page) != 1)
b8d3c4c3
MK
1614 goto out;
1615
1616 if (!trylock_page(page))
1617 goto out;
1618
1619 /*
1620 * If user want to discard part-pages of THP, split it so MADV_FREE
1621 * will deactivate only them.
1622 */
1623 if (next - addr != HPAGE_PMD_SIZE) {
1624 get_page(page);
1625 spin_unlock(ptl);
9818b8cd 1626 split_huge_page(page);
b8d3c4c3 1627 unlock_page(page);
bbf29ffc 1628 put_page(page);
b8d3c4c3
MK
1629 goto out_unlocked;
1630 }
1631
1632 if (PageDirty(page))
1633 ClearPageDirty(page);
1634 unlock_page(page);
1635
b8d3c4c3 1636 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1637 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1638 orig_pmd = pmd_mkold(orig_pmd);
1639 orig_pmd = pmd_mkclean(orig_pmd);
1640
1641 set_pmd_at(mm, addr, pmd, orig_pmd);
1642 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1643 }
802a3a92
SL
1644
1645 mark_page_lazyfree(page);
319904ad 1646 ret = true;
b8d3c4c3
MK
1647out:
1648 spin_unlock(ptl);
1649out_unlocked:
1650 return ret;
1651}
1652
953c66c2
AK
1653static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1654{
1655 pgtable_t pgtable;
1656
1657 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1658 pte_free(mm, pgtable);
c4812909 1659 mm_dec_nr_ptes(mm);
953c66c2
AK
1660}
1661
71e3aac0 1662int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1663 pmd_t *pmd, unsigned long addr)
71e3aac0 1664{
da146769 1665 pmd_t orig_pmd;
bf929152 1666 spinlock_t *ptl;
71e3aac0 1667
ed6a7935 1668 tlb_change_page_size(tlb, HPAGE_PMD_SIZE);
07e32661 1669
b6ec57f4
KS
1670 ptl = __pmd_trans_huge_lock(pmd, vma);
1671 if (!ptl)
da146769
KS
1672 return 0;
1673 /*
1674 * For architectures like ppc64 we look at deposited pgtable
1675 * when calling pmdp_huge_get_and_clear. So do the
1676 * pgtable_trans_huge_withdraw after finishing pmdp related
1677 * operations.
1678 */
93a98695
AK
1679 orig_pmd = pmdp_huge_get_and_clear_full(vma, addr, pmd,
1680 tlb->fullmm);
da146769 1681 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
2484ca9b 1682 if (vma_is_special_huge(vma)) {
3b6521f5
OH
1683 if (arch_needs_pgtable_deposit())
1684 zap_deposited_table(tlb->mm, pmd);
da146769 1685 spin_unlock(ptl);
da146769 1686 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1687 zap_deposited_table(tlb->mm, pmd);
da146769 1688 spin_unlock(ptl);
da146769 1689 } else {
616b8371
ZY
1690 struct page *page = NULL;
1691 int flush_needed = 1;
1692
1693 if (pmd_present(orig_pmd)) {
1694 page = pmd_page(orig_pmd);
1695 page_remove_rmap(page, true);
1696 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1697 VM_BUG_ON_PAGE(!PageHead(page), page);
1698 } else if (thp_migration_supported()) {
1699 swp_entry_t entry;
1700
1701 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1702 entry = pmd_to_swp_entry(orig_pmd);
a44f89dc 1703 page = migration_entry_to_page(entry);
616b8371
ZY
1704 flush_needed = 0;
1705 } else
1706 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1707
b5072380 1708 if (PageAnon(page)) {
c14a6eb4 1709 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1710 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1711 } else {
953c66c2
AK
1712 if (arch_needs_pgtable_deposit())
1713 zap_deposited_table(tlb->mm, pmd);
fadae295 1714 add_mm_counter(tlb->mm, mm_counter_file(page), -HPAGE_PMD_NR);
b5072380 1715 }
616b8371 1716
da146769 1717 spin_unlock(ptl);
616b8371
ZY
1718 if (flush_needed)
1719 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1720 }
da146769 1721 return 1;
71e3aac0
AA
1722}
1723
1dd38b6c
AK
1724#ifndef pmd_move_must_withdraw
1725static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1726 spinlock_t *old_pmd_ptl,
1727 struct vm_area_struct *vma)
1728{
1729 /*
1730 * With split pmd lock we also need to move preallocated
1731 * PTE page table if new_pmd is on different PMD page table.
1732 *
1733 * We also don't deposit and withdraw tables for file pages.
1734 */
1735 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1736}
1737#endif
1738
ab6e3d09
NH
1739static pmd_t move_soft_dirty_pmd(pmd_t pmd)
1740{
1741#ifdef CONFIG_MEM_SOFT_DIRTY
1742 if (unlikely(is_pmd_migration_entry(pmd)))
1743 pmd = pmd_swp_mksoft_dirty(pmd);
1744 else if (pmd_present(pmd))
1745 pmd = pmd_mksoft_dirty(pmd);
1746#endif
1747 return pmd;
1748}
1749
bf8616d5 1750bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
b8aa9d9d 1751 unsigned long new_addr, pmd_t *old_pmd, pmd_t *new_pmd)
37a1c49a 1752{
bf929152 1753 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1754 pmd_t pmd;
37a1c49a 1755 struct mm_struct *mm = vma->vm_mm;
5d190420 1756 bool force_flush = false;
37a1c49a 1757
37a1c49a
AA
1758 /*
1759 * The destination pmd shouldn't be established, free_pgtables()
1760 * should have release it.
1761 */
1762 if (WARN_ON(!pmd_none(*new_pmd))) {
1763 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1764 return false;
37a1c49a
AA
1765 }
1766
bf929152
KS
1767 /*
1768 * We don't have to worry about the ordering of src and dst
c1e8d7c6 1769 * ptlocks because exclusive mmap_lock prevents deadlock.
bf929152 1770 */
b6ec57f4
KS
1771 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1772 if (old_ptl) {
bf929152
KS
1773 new_ptl = pmd_lockptr(mm, new_pmd);
1774 if (new_ptl != old_ptl)
1775 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1776 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
eb66ae03 1777 if (pmd_present(pmd))
a2ce2666 1778 force_flush = true;
025c5b24 1779 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1780
1dd38b6c 1781 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1782 pgtable_t pgtable;
3592806c
KS
1783 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1784 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1785 }
ab6e3d09
NH
1786 pmd = move_soft_dirty_pmd(pmd);
1787 set_pmd_at(mm, new_addr, new_pmd, pmd);
5d190420
AL
1788 if (force_flush)
1789 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
eb66ae03
LT
1790 if (new_ptl != old_ptl)
1791 spin_unlock(new_ptl);
bf929152 1792 spin_unlock(old_ptl);
4b471e88 1793 return true;
37a1c49a 1794 }
4b471e88 1795 return false;
37a1c49a
AA
1796}
1797
f123d74a
MG
1798/*
1799 * Returns
1800 * - 0 if PMD could not be locked
f0953a1b
IM
1801 * - 1 if PMD was locked but protections unchanged and TLB flush unnecessary
1802 * - HPAGE_PMD_NR if protections changed and TLB flush necessary
f123d74a 1803 */
cd7548ab 1804int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
58705444 1805 unsigned long addr, pgprot_t newprot, unsigned long cp_flags)
cd7548ab
JW
1806{
1807 struct mm_struct *mm = vma->vm_mm;
bf929152 1808 spinlock_t *ptl;
0a85e51d
KS
1809 pmd_t entry;
1810 bool preserve_write;
1811 int ret;
58705444 1812 bool prot_numa = cp_flags & MM_CP_PROT_NUMA;
292924b2
PX
1813 bool uffd_wp = cp_flags & MM_CP_UFFD_WP;
1814 bool uffd_wp_resolve = cp_flags & MM_CP_UFFD_WP_RESOLVE;
cd7548ab 1815
b6ec57f4 1816 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1817 if (!ptl)
1818 return 0;
e944fd67 1819
0a85e51d
KS
1820 preserve_write = prot_numa && pmd_write(*pmd);
1821 ret = 1;
e944fd67 1822
84c3fc4e
ZY
1823#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1824 if (is_swap_pmd(*pmd)) {
1825 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1826
1827 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1828 if (is_write_migration_entry(entry)) {
1829 pmd_t newpmd;
1830 /*
1831 * A protection check is difficult so
1832 * just be safe and disable write
1833 */
1834 make_migration_entry_read(&entry);
1835 newpmd = swp_entry_to_pmd(entry);
ab6e3d09
NH
1836 if (pmd_swp_soft_dirty(*pmd))
1837 newpmd = pmd_swp_mksoft_dirty(newpmd);
84c3fc4e
ZY
1838 set_pmd_at(mm, addr, pmd, newpmd);
1839 }
1840 goto unlock;
1841 }
1842#endif
1843
0a85e51d
KS
1844 /*
1845 * Avoid trapping faults against the zero page. The read-only
1846 * data is likely to be read-cached on the local CPU and
1847 * local/remote hits to the zero page are not interesting.
1848 */
1849 if (prot_numa && is_huge_zero_pmd(*pmd))
1850 goto unlock;
025c5b24 1851
0a85e51d
KS
1852 if (prot_numa && pmd_protnone(*pmd))
1853 goto unlock;
1854
ced10803 1855 /*
3e4e28c5 1856 * In case prot_numa, we are under mmap_read_lock(mm). It's critical
ced10803 1857 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
3e4e28c5 1858 * which is also under mmap_read_lock(mm):
ced10803
KS
1859 *
1860 * CPU0: CPU1:
1861 * change_huge_pmd(prot_numa=1)
1862 * pmdp_huge_get_and_clear_notify()
1863 * madvise_dontneed()
1864 * zap_pmd_range()
1865 * pmd_trans_huge(*pmd) == 0 (without ptl)
1866 * // skip the pmd
1867 * set_pmd_at();
1868 * // pmd is re-established
1869 *
1870 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1871 * which may break userspace.
1872 *
1873 * pmdp_invalidate() is required to make sure we don't miss
1874 * dirty/young flags set by hardware.
1875 */
a3cf988f 1876 entry = pmdp_invalidate(vma, addr, pmd);
ced10803 1877
0a85e51d
KS
1878 entry = pmd_modify(entry, newprot);
1879 if (preserve_write)
1880 entry = pmd_mk_savedwrite(entry);
292924b2
PX
1881 if (uffd_wp) {
1882 entry = pmd_wrprotect(entry);
1883 entry = pmd_mkuffd_wp(entry);
1884 } else if (uffd_wp_resolve) {
1885 /*
1886 * Leave the write bit to be handled by PF interrupt
1887 * handler, then things like COW could be properly
1888 * handled.
1889 */
1890 entry = pmd_clear_uffd_wp(entry);
1891 }
0a85e51d
KS
1892 ret = HPAGE_PMD_NR;
1893 set_pmd_at(mm, addr, pmd, entry);
1894 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1895unlock:
1896 spin_unlock(ptl);
025c5b24
NH
1897 return ret;
1898}
1899
1900/*
8f19b0c0 1901 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1902 *
8f19b0c0
HY
1903 * Note that if it returns page table lock pointer, this routine returns without
1904 * unlocking page table lock. So callers must unlock it.
025c5b24 1905 */
b6ec57f4 1906spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1907{
b6ec57f4
KS
1908 spinlock_t *ptl;
1909 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1910 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1911 pmd_devmap(*pmd)))
b6ec57f4
KS
1912 return ptl;
1913 spin_unlock(ptl);
1914 return NULL;
cd7548ab
JW
1915}
1916
a00cc7d9
MW
1917/*
1918 * Returns true if a given pud maps a thp, false otherwise.
1919 *
1920 * Note that if it returns true, this routine returns without unlocking page
1921 * table lock. So callers must unlock it.
1922 */
1923spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1924{
1925 spinlock_t *ptl;
1926
1927 ptl = pud_lock(vma->vm_mm, pud);
1928 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1929 return ptl;
1930 spin_unlock(ptl);
1931 return NULL;
1932}
1933
1934#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1935int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1936 pud_t *pud, unsigned long addr)
1937{
a00cc7d9
MW
1938 spinlock_t *ptl;
1939
1940 ptl = __pud_trans_huge_lock(pud, vma);
1941 if (!ptl)
1942 return 0;
1943 /*
1944 * For architectures like ppc64 we look at deposited pgtable
1945 * when calling pudp_huge_get_and_clear. So do the
1946 * pgtable_trans_huge_withdraw after finishing pudp related
1947 * operations.
1948 */
70516b93 1949 pudp_huge_get_and_clear_full(tlb->mm, addr, pud, tlb->fullmm);
a00cc7d9 1950 tlb_remove_pud_tlb_entry(tlb, pud, addr);
2484ca9b 1951 if (vma_is_special_huge(vma)) {
a00cc7d9
MW
1952 spin_unlock(ptl);
1953 /* No zero page support yet */
1954 } else {
1955 /* No support for anonymous PUD pages yet */
1956 BUG();
1957 }
1958 return 1;
1959}
1960
1961static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1962 unsigned long haddr)
1963{
1964 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1965 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1966 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1967 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1968
ce9311cf 1969 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1970
1971 pudp_huge_clear_flush_notify(vma, haddr, pud);
1972}
1973
1974void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1975 unsigned long address)
1976{
1977 spinlock_t *ptl;
ac46d4f3 1978 struct mmu_notifier_range range;
a00cc7d9 1979
7269f999 1980 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 1981 address & HPAGE_PUD_MASK,
ac46d4f3
JG
1982 (address & HPAGE_PUD_MASK) + HPAGE_PUD_SIZE);
1983 mmu_notifier_invalidate_range_start(&range);
1984 ptl = pud_lock(vma->vm_mm, pud);
a00cc7d9
MW
1985 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1986 goto out;
ac46d4f3 1987 __split_huge_pud_locked(vma, pud, range.start);
a00cc7d9
MW
1988
1989out:
1990 spin_unlock(ptl);
4645b9fe
JG
1991 /*
1992 * No need to double call mmu_notifier->invalidate_range() callback as
1993 * the above pudp_huge_clear_flush_notify() did already call it.
1994 */
ac46d4f3 1995 mmu_notifier_invalidate_range_only_end(&range);
a00cc7d9
MW
1996}
1997#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1998
eef1b3ba
KS
1999static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2000 unsigned long haddr, pmd_t *pmd)
2001{
2002 struct mm_struct *mm = vma->vm_mm;
2003 pgtable_t pgtable;
2004 pmd_t _pmd;
2005 int i;
2006
0f10851e
JG
2007 /*
2008 * Leave pmd empty until pte is filled note that it is fine to delay
2009 * notification until mmu_notifier_invalidate_range_end() as we are
2010 * replacing a zero pmd write protected page with a zero pte write
2011 * protected page.
2012 *
ad56b738 2013 * See Documentation/vm/mmu_notifier.rst
0f10851e
JG
2014 */
2015 pmdp_huge_clear_flush(vma, haddr, pmd);
eef1b3ba
KS
2016
2017 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2018 pmd_populate(mm, &_pmd, pgtable);
2019
2020 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2021 pte_t *pte, entry;
2022 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2023 entry = pte_mkspecial(entry);
2024 pte = pte_offset_map(&_pmd, haddr);
2025 VM_BUG_ON(!pte_none(*pte));
2026 set_pte_at(mm, haddr, pte, entry);
2027 pte_unmap(pte);
2028 }
2029 smp_wmb(); /* make pte visible before pmd */
2030 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2031}
2032
2033static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2034 unsigned long haddr, bool freeze)
eef1b3ba
KS
2035{
2036 struct mm_struct *mm = vma->vm_mm;
2037 struct page *page;
2038 pgtable_t pgtable;
423ac9af 2039 pmd_t old_pmd, _pmd;
292924b2 2040 bool young, write, soft_dirty, pmd_migration = false, uffd_wp = false;
2ac015e2 2041 unsigned long addr;
eef1b3ba
KS
2042 int i;
2043
2044 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2045 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2046 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2047 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2048 && !pmd_devmap(*pmd));
eef1b3ba
KS
2049
2050 count_vm_event(THP_SPLIT_PMD);
2051
d21b9e57 2052 if (!vma_is_anonymous(vma)) {
99fa8a48 2053 old_pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2054 /*
2055 * We are going to unmap this huge page. So
2056 * just go ahead and zap it
2057 */
2058 if (arch_needs_pgtable_deposit())
2059 zap_deposited_table(mm, pmd);
2484ca9b 2060 if (vma_is_special_huge(vma))
d21b9e57 2061 return;
99fa8a48
HD
2062 if (unlikely(is_pmd_migration_entry(old_pmd))) {
2063 swp_entry_t entry;
2064
2065 entry = pmd_to_swp_entry(old_pmd);
2066 page = migration_entry_to_page(entry);
2067 } else {
2068 page = pmd_page(old_pmd);
2069 if (!PageDirty(page) && pmd_dirty(old_pmd))
2070 set_page_dirty(page);
2071 if (!PageReferenced(page) && pmd_young(old_pmd))
2072 SetPageReferenced(page);
2073 page_remove_rmap(page, true);
2074 put_page(page);
2075 }
fadae295 2076 add_mm_counter(mm, mm_counter_file(page), -HPAGE_PMD_NR);
eef1b3ba 2077 return;
99fa8a48
HD
2078 }
2079
3b77e8c8 2080 if (is_huge_zero_pmd(*pmd)) {
4645b9fe
JG
2081 /*
2082 * FIXME: Do we want to invalidate secondary mmu by calling
2083 * mmu_notifier_invalidate_range() see comments below inside
2084 * __split_huge_pmd() ?
2085 *
2086 * We are going from a zero huge page write protected to zero
2087 * small page also write protected so it does not seems useful
2088 * to invalidate secondary mmu at this time.
2089 */
eef1b3ba
KS
2090 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2091 }
2092
423ac9af
AK
2093 /*
2094 * Up to this point the pmd is present and huge and userland has the
2095 * whole access to the hugepage during the split (which happens in
2096 * place). If we overwrite the pmd with the not-huge version pointing
2097 * to the pte here (which of course we could if all CPUs were bug
2098 * free), userland could trigger a small page size TLB miss on the
2099 * small sized TLB while the hugepage TLB entry is still established in
2100 * the huge TLB. Some CPU doesn't like that.
42742d9b
AK
2101 * See http://support.amd.com/TechDocs/41322_10h_Rev_Gd.pdf, Erratum
2102 * 383 on page 105. Intel should be safe but is also warns that it's
423ac9af
AK
2103 * only safe if the permission and cache attributes of the two entries
2104 * loaded in the two TLB is identical (which should be the case here).
2105 * But it is generally safer to never allow small and huge TLB entries
2106 * for the same virtual address to be loaded simultaneously. So instead
2107 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2108 * current pmd notpresent (atomically because here the pmd_trans_huge
2109 * must remain set at all times on the pmd until the split is complete
2110 * for this pmd), then we flush the SMP TLB and finally we write the
2111 * non-huge version of the pmd entry with pmd_populate.
2112 */
2113 old_pmd = pmdp_invalidate(vma, haddr, pmd);
2114
423ac9af 2115 pmd_migration = is_pmd_migration_entry(old_pmd);
2e83ee1d 2116 if (unlikely(pmd_migration)) {
84c3fc4e
ZY
2117 swp_entry_t entry;
2118
423ac9af 2119 entry = pmd_to_swp_entry(old_pmd);
a44f89dc 2120 page = migration_entry_to_page(entry);
2e83ee1d
PX
2121 write = is_write_migration_entry(entry);
2122 young = false;
2123 soft_dirty = pmd_swp_soft_dirty(old_pmd);
f45ec5ff 2124 uffd_wp = pmd_swp_uffd_wp(old_pmd);
2e83ee1d 2125 } else {
423ac9af 2126 page = pmd_page(old_pmd);
2e83ee1d
PX
2127 if (pmd_dirty(old_pmd))
2128 SetPageDirty(page);
2129 write = pmd_write(old_pmd);
2130 young = pmd_young(old_pmd);
2131 soft_dirty = pmd_soft_dirty(old_pmd);
292924b2 2132 uffd_wp = pmd_uffd_wp(old_pmd);
2e83ee1d 2133 }
eef1b3ba 2134 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2135 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba 2136
423ac9af
AK
2137 /*
2138 * Withdraw the table only after we mark the pmd entry invalid.
2139 * This's critical for some architectures (Power).
2140 */
eef1b3ba
KS
2141 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2142 pmd_populate(mm, &_pmd, pgtable);
2143
2ac015e2 2144 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2145 pte_t entry, *pte;
2146 /*
2147 * Note that NUMA hinting access restrictions are not
2148 * transferred to avoid any possibility of altering
2149 * permissions across VMAs.
2150 */
84c3fc4e 2151 if (freeze || pmd_migration) {
ba988280
KS
2152 swp_entry_t swp_entry;
2153 swp_entry = make_migration_entry(page + i, write);
2154 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2155 if (soft_dirty)
2156 entry = pte_swp_mksoft_dirty(entry);
f45ec5ff
PX
2157 if (uffd_wp)
2158 entry = pte_swp_mkuffd_wp(entry);
ba988280 2159 } else {
6d2329f8 2160 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2161 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2162 if (!write)
2163 entry = pte_wrprotect(entry);
2164 if (!young)
2165 entry = pte_mkold(entry);
804dd150
AA
2166 if (soft_dirty)
2167 entry = pte_mksoft_dirty(entry);
292924b2
PX
2168 if (uffd_wp)
2169 entry = pte_mkuffd_wp(entry);
ba988280 2170 }
2ac015e2 2171 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2172 BUG_ON(!pte_none(*pte));
2ac015e2 2173 set_pte_at(mm, addr, pte, entry);
ec0abae6 2174 if (!pmd_migration)
eef1b3ba 2175 atomic_inc(&page[i]._mapcount);
ec0abae6 2176 pte_unmap(pte);
eef1b3ba
KS
2177 }
2178
ec0abae6
RC
2179 if (!pmd_migration) {
2180 /*
2181 * Set PG_double_map before dropping compound_mapcount to avoid
2182 * false-negative page_mapped().
2183 */
2184 if (compound_mapcount(page) > 1 &&
2185 !TestSetPageDoubleMap(page)) {
eef1b3ba 2186 for (i = 0; i < HPAGE_PMD_NR; i++)
ec0abae6
RC
2187 atomic_inc(&page[i]._mapcount);
2188 }
2189
2190 lock_page_memcg(page);
2191 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2192 /* Last compound_mapcount is gone. */
69473e5d
MS
2193 __mod_lruvec_page_state(page, NR_ANON_THPS,
2194 -HPAGE_PMD_NR);
ec0abae6
RC
2195 if (TestClearPageDoubleMap(page)) {
2196 /* No need in mapcount reference anymore */
2197 for (i = 0; i < HPAGE_PMD_NR; i++)
2198 atomic_dec(&page[i]._mapcount);
2199 }
eef1b3ba 2200 }
ec0abae6 2201 unlock_page_memcg(page);
eef1b3ba
KS
2202 }
2203
2204 smp_wmb(); /* make pte visible before pmd */
2205 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2206
2207 if (freeze) {
2ac015e2 2208 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2209 page_remove_rmap(page + i, false);
2210 put_page(page + i);
2211 }
2212 }
eef1b3ba
KS
2213}
2214
2215void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2216 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2217{
2218 spinlock_t *ptl;
ac46d4f3 2219 struct mmu_notifier_range range;
1c2f6730 2220 bool do_unlock_page = false;
c444eb56 2221 pmd_t _pmd;
eef1b3ba 2222
7269f999 2223 mmu_notifier_range_init(&range, MMU_NOTIFY_CLEAR, 0, vma, vma->vm_mm,
6f4f13e8 2224 address & HPAGE_PMD_MASK,
ac46d4f3
JG
2225 (address & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE);
2226 mmu_notifier_invalidate_range_start(&range);
2227 ptl = pmd_lock(vma->vm_mm, pmd);
33f4751e
NH
2228
2229 /*
2230 * If caller asks to setup a migration entries, we need a page to check
2231 * pmd against. Otherwise we can end up replacing wrong page.
2232 */
2233 VM_BUG_ON(freeze && !page);
c444eb56
AA
2234 if (page) {
2235 VM_WARN_ON_ONCE(!PageLocked(page));
c444eb56
AA
2236 if (page != pmd_page(*pmd))
2237 goto out;
2238 }
33f4751e 2239
c444eb56 2240repeat:
5c7fb56e 2241 if (pmd_trans_huge(*pmd)) {
c444eb56
AA
2242 if (!page) {
2243 page = pmd_page(*pmd);
1c2f6730
HD
2244 /*
2245 * An anonymous page must be locked, to ensure that a
2246 * concurrent reuse_swap_page() sees stable mapcount;
2247 * but reuse_swap_page() is not used on shmem or file,
2248 * and page lock must not be taken when zap_pmd_range()
2249 * calls __split_huge_pmd() while i_mmap_lock is held.
2250 */
2251 if (PageAnon(page)) {
2252 if (unlikely(!trylock_page(page))) {
2253 get_page(page);
2254 _pmd = *pmd;
2255 spin_unlock(ptl);
2256 lock_page(page);
2257 spin_lock(ptl);
2258 if (unlikely(!pmd_same(*pmd, _pmd))) {
2259 unlock_page(page);
2260 put_page(page);
2261 page = NULL;
2262 goto repeat;
2263 }
c444eb56 2264 put_page(page);
c444eb56 2265 }
1c2f6730 2266 do_unlock_page = true;
c444eb56
AA
2267 }
2268 }
5c7fb56e 2269 if (PageMlocked(page))
5f737714 2270 clear_page_mlock(page);
84c3fc4e 2271 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2272 goto out;
ac46d4f3 2273 __split_huge_pmd_locked(vma, pmd, range.start, freeze);
e90309c9 2274out:
eef1b3ba 2275 spin_unlock(ptl);
1c2f6730 2276 if (do_unlock_page)
c444eb56 2277 unlock_page(page);
4645b9fe
JG
2278 /*
2279 * No need to double call mmu_notifier->invalidate_range() callback.
2280 * They are 3 cases to consider inside __split_huge_pmd_locked():
2281 * 1) pmdp_huge_clear_flush_notify() call invalidate_range() obvious
2282 * 2) __split_huge_zero_page_pmd() read only zero page and any write
2283 * fault will trigger a flush_notify before pointing to a new page
2284 * (it is fine if the secondary mmu keeps pointing to the old zero
2285 * page in the meantime)
2286 * 3) Split a huge pmd into pte pointing to the same page. No need
2287 * to invalidate secondary tlb entry they are all still valid.
2288 * any further changes to individual pte will notify. So no need
2289 * to call mmu_notifier->invalidate_range()
2290 */
ac46d4f3 2291 mmu_notifier_invalidate_range_only_end(&range);
eef1b3ba
KS
2292}
2293
fec89c10
KS
2294void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2295 bool freeze, struct page *page)
94fcc585 2296{
f72e7dcd 2297 pgd_t *pgd;
c2febafc 2298 p4d_t *p4d;
f72e7dcd 2299 pud_t *pud;
94fcc585
AA
2300 pmd_t *pmd;
2301
78ddc534 2302 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2303 if (!pgd_present(*pgd))
2304 return;
2305
c2febafc
KS
2306 p4d = p4d_offset(pgd, address);
2307 if (!p4d_present(*p4d))
2308 return;
2309
2310 pud = pud_offset(p4d, address);
f72e7dcd
HD
2311 if (!pud_present(*pud))
2312 return;
2313
2314 pmd = pmd_offset(pud, address);
fec89c10 2315
33f4751e 2316 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2317}
2318
71f9e58e
ML
2319static inline void split_huge_pmd_if_needed(struct vm_area_struct *vma, unsigned long address)
2320{
2321 /*
2322 * If the new address isn't hpage aligned and it could previously
2323 * contain an hugepage: check if we need to split an huge pmd.
2324 */
2325 if (!IS_ALIGNED(address, HPAGE_PMD_SIZE) &&
2326 range_in_vma(vma, ALIGN_DOWN(address, HPAGE_PMD_SIZE),
2327 ALIGN(address, HPAGE_PMD_SIZE)))
2328 split_huge_pmd_address(vma, address, false, NULL);
2329}
2330
e1b9996b 2331void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2332 unsigned long start,
2333 unsigned long end,
2334 long adjust_next)
2335{
71f9e58e
ML
2336 /* Check if we need to split start first. */
2337 split_huge_pmd_if_needed(vma, start);
94fcc585 2338
71f9e58e
ML
2339 /* Check if we need to split end next. */
2340 split_huge_pmd_if_needed(vma, end);
94fcc585
AA
2341
2342 /*
71f9e58e
ML
2343 * If we're also updating the vma->vm_next->vm_start,
2344 * check if we need to split it.
94fcc585
AA
2345 */
2346 if (adjust_next > 0) {
2347 struct vm_area_struct *next = vma->vm_next;
2348 unsigned long nstart = next->vm_start;
f9d86a60 2349 nstart += adjust_next;
71f9e58e 2350 split_huge_pmd_if_needed(next, nstart);
94fcc585
AA
2351 }
2352}
e9b61f19 2353
906f9cdf 2354static void unmap_page(struct page *page)
e9b61f19 2355{
732ed558 2356 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_SYNC |
c7ab0d2f 2357 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
e9b61f19
KS
2358
2359 VM_BUG_ON_PAGE(!PageHead(page), page);
2360
baa355fd 2361 if (PageAnon(page))
b5ff8161 2362 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2363
504e070d
YS
2364 try_to_unmap(page, ttu_flags);
2365
2366 VM_WARN_ON_ONCE_PAGE(page_mapped(page), page);
e9b61f19
KS
2367}
2368
8cce5475 2369static void remap_page(struct page *page, unsigned int nr)
e9b61f19 2370{
fec89c10 2371 int i;
ace71a19
KS
2372 if (PageTransHuge(page)) {
2373 remove_migration_ptes(page, page, true);
2374 } else {
8cce5475 2375 for (i = 0; i < nr; i++)
ace71a19
KS
2376 remove_migration_ptes(page + i, page + i, true);
2377 }
e9b61f19
KS
2378}
2379
94866635 2380static void lru_add_page_tail(struct page *head, struct page *tail,
88dcb9a3
AS
2381 struct lruvec *lruvec, struct list_head *list)
2382{
94866635
AS
2383 VM_BUG_ON_PAGE(!PageHead(head), head);
2384 VM_BUG_ON_PAGE(PageCompound(tail), head);
2385 VM_BUG_ON_PAGE(PageLRU(tail), head);
6168d0da 2386 lockdep_assert_held(&lruvec->lru_lock);
88dcb9a3 2387
6dbb5741 2388 if (list) {
88dcb9a3 2389 /* page reclaim is reclaiming a huge page */
6dbb5741 2390 VM_WARN_ON(PageLRU(head));
94866635
AS
2391 get_page(tail);
2392 list_add_tail(&tail->lru, list);
88dcb9a3 2393 } else {
6dbb5741
AS
2394 /* head is still on lru (and we have it frozen) */
2395 VM_WARN_ON(!PageLRU(head));
2396 SetPageLRU(tail);
2397 list_add_tail(&tail->lru, &head->lru);
88dcb9a3
AS
2398 }
2399}
2400
8df651c7 2401static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2402 struct lruvec *lruvec, struct list_head *list)
2403{
e9b61f19
KS
2404 struct page *page_tail = head + tail;
2405
8df651c7 2406 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
e9b61f19
KS
2407
2408 /*
605ca5ed
KK
2409 * Clone page flags before unfreezing refcount.
2410 *
2411 * After successful get_page_unless_zero() might follow flags change,
8958b249 2412 * for example lock_page() which set PG_waiters.
e9b61f19 2413 */
e9b61f19
KS
2414 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2415 page_tail->flags |= (head->flags &
2416 ((1L << PG_referenced) |
2417 (1L << PG_swapbacked) |
38d8b4e6 2418 (1L << PG_swapcache) |
e9b61f19
KS
2419 (1L << PG_mlocked) |
2420 (1L << PG_uptodate) |
2421 (1L << PG_active) |
1899ad18 2422 (1L << PG_workingset) |
e9b61f19 2423 (1L << PG_locked) |
b8d3c4c3 2424 (1L << PG_unevictable) |
72e6afa0
CM
2425#ifdef CONFIG_64BIT
2426 (1L << PG_arch_2) |
2427#endif
b8d3c4c3 2428 (1L << PG_dirty)));
e9b61f19 2429
173d9d9f
HD
2430 /* ->mapping in first tail page is compound_mapcount */
2431 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
2432 page_tail);
2433 page_tail->mapping = head->mapping;
2434 page_tail->index = head->index + tail;
2435
605ca5ed 2436 /* Page flags must be visible before we make the page non-compound. */
e9b61f19
KS
2437 smp_wmb();
2438
605ca5ed
KK
2439 /*
2440 * Clear PageTail before unfreezing page refcount.
2441 *
2442 * After successful get_page_unless_zero() might follow put_page()
2443 * which needs correct compound_head().
2444 */
e9b61f19
KS
2445 clear_compound_head(page_tail);
2446
605ca5ed
KK
2447 /* Finally unfreeze refcount. Additional reference from page cache. */
2448 page_ref_unfreeze(page_tail, 1 + (!PageAnon(head) ||
2449 PageSwapCache(head)));
2450
e9b61f19
KS
2451 if (page_is_young(head))
2452 set_page_young(page_tail);
2453 if (page_is_idle(head))
2454 set_page_idle(page_tail);
2455
e9b61f19 2456 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
94723aaf
MH
2457
2458 /*
2459 * always add to the tail because some iterators expect new
2460 * pages to show after the currently processed elements - e.g.
2461 * migrate_pages
2462 */
e9b61f19 2463 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2464}
2465
baa355fd 2466static void __split_huge_page(struct page *page, struct list_head *list,
b6769834 2467 pgoff_t end)
e9b61f19
KS
2468{
2469 struct page *head = compound_head(page);
e9b61f19 2470 struct lruvec *lruvec;
4101196b
MWO
2471 struct address_space *swap_cache = NULL;
2472 unsigned long offset = 0;
8cce5475 2473 unsigned int nr = thp_nr_pages(head);
8df651c7 2474 int i;
e9b61f19 2475
e9b61f19 2476 /* complete memcg works before add pages to LRU */
be6c8982 2477 split_page_memcg(head, nr);
e9b61f19 2478
4101196b
MWO
2479 if (PageAnon(head) && PageSwapCache(head)) {
2480 swp_entry_t entry = { .val = page_private(head) };
2481
2482 offset = swp_offset(entry);
2483 swap_cache = swap_address_space(entry);
2484 xa_lock(&swap_cache->i_pages);
2485 }
2486
f0953a1b 2487 /* lock lru list/PageCompound, ref frozen by page_ref_freeze */
6168d0da 2488 lruvec = lock_page_lruvec(head);
b6769834 2489
8cce5475 2490 for (i = nr - 1; i >= 1; i--) {
8df651c7 2491 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2492 /* Some pages can be beyond i_size: drop them from page cache */
2493 if (head[i].index >= end) {
2d077d4b 2494 ClearPageDirty(head + i);
baa355fd 2495 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2496 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2497 shmem_uncharge(head->mapping->host, 1);
baa355fd 2498 put_page(head + i);
4101196b
MWO
2499 } else if (!PageAnon(page)) {
2500 __xa_store(&head->mapping->i_pages, head[i].index,
2501 head + i, 0);
2502 } else if (swap_cache) {
2503 __xa_store(&swap_cache->i_pages, offset + i,
2504 head + i, 0);
baa355fd
KS
2505 }
2506 }
e9b61f19
KS
2507
2508 ClearPageCompound(head);
6168d0da 2509 unlock_page_lruvec(lruvec);
b6769834 2510 /* Caller disabled irqs, so they are still disabled here */
f7da677b 2511
8cce5475 2512 split_page_owner(head, nr);
f7da677b 2513
baa355fd
KS
2514 /* See comment in __split_huge_page_tail() */
2515 if (PageAnon(head)) {
aa5dc07f 2516 /* Additional pin to swap cache */
4101196b 2517 if (PageSwapCache(head)) {
38d8b4e6 2518 page_ref_add(head, 2);
4101196b
MWO
2519 xa_unlock(&swap_cache->i_pages);
2520 } else {
38d8b4e6 2521 page_ref_inc(head);
4101196b 2522 }
baa355fd 2523 } else {
aa5dc07f 2524 /* Additional pin to page cache */
baa355fd 2525 page_ref_add(head, 2);
b93b0163 2526 xa_unlock(&head->mapping->i_pages);
baa355fd 2527 }
b6769834 2528 local_irq_enable();
e9b61f19 2529
8cce5475 2530 remap_page(head, nr);
e9b61f19 2531
c4f9c701
HY
2532 if (PageSwapCache(head)) {
2533 swp_entry_t entry = { .val = page_private(head) };
2534
2535 split_swap_cluster(entry);
2536 }
2537
8cce5475 2538 for (i = 0; i < nr; i++) {
e9b61f19
KS
2539 struct page *subpage = head + i;
2540 if (subpage == page)
2541 continue;
2542 unlock_page(subpage);
2543
2544 /*
2545 * Subpages may be freed if there wasn't any mapping
2546 * like if add_to_swap() is running on a lru page that
2547 * had its mapping zapped. And freeing these pages
2548 * requires taking the lru_lock so we do the put_page
2549 * of the tail pages after the split is complete.
2550 */
2551 put_page(subpage);
2552 }
2553}
2554
b20ce5e0
KS
2555int total_mapcount(struct page *page)
2556{
86b562b6 2557 int i, compound, nr, ret;
b20ce5e0
KS
2558
2559 VM_BUG_ON_PAGE(PageTail(page), page);
2560
2561 if (likely(!PageCompound(page)))
2562 return atomic_read(&page->_mapcount) + 1;
2563
dd78fedd 2564 compound = compound_mapcount(page);
86b562b6 2565 nr = compound_nr(page);
b20ce5e0 2566 if (PageHuge(page))
dd78fedd
KS
2567 return compound;
2568 ret = compound;
86b562b6 2569 for (i = 0; i < nr; i++)
b20ce5e0 2570 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2571 /* File pages has compound_mapcount included in _mapcount */
2572 if (!PageAnon(page))
86b562b6 2573 return ret - compound * nr;
b20ce5e0 2574 if (PageDoubleMap(page))
86b562b6 2575 ret -= nr;
b20ce5e0
KS
2576 return ret;
2577}
2578
6d0a07ed
AA
2579/*
2580 * This calculates accurately how many mappings a transparent hugepage
2581 * has (unlike page_mapcount() which isn't fully accurate). This full
2582 * accuracy is primarily needed to know if copy-on-write faults can
2583 * reuse the page and change the mapping to read-write instead of
2584 * copying them. At the same time this returns the total_mapcount too.
2585 *
2586 * The function returns the highest mapcount any one of the subpages
2587 * has. If the return value is one, even if different processes are
2588 * mapping different subpages of the transparent hugepage, they can
2589 * all reuse it, because each process is reusing a different subpage.
2590 *
2591 * The total_mapcount is instead counting all virtual mappings of the
2592 * subpages. If the total_mapcount is equal to "one", it tells the
2593 * caller all mappings belong to the same "mm" and in turn the
2594 * anon_vma of the transparent hugepage can become the vma->anon_vma
2595 * local one as no other process may be mapping any of the subpages.
2596 *
2597 * It would be more accurate to replace page_mapcount() with
2598 * page_trans_huge_mapcount(), however we only use
2599 * page_trans_huge_mapcount() in the copy-on-write faults where we
2600 * need full accuracy to avoid breaking page pinning, because
2601 * page_trans_huge_mapcount() is slower than page_mapcount().
2602 */
2603int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2604{
2605 int i, ret, _total_mapcount, mapcount;
2606
2607 /* hugetlbfs shouldn't call it */
2608 VM_BUG_ON_PAGE(PageHuge(page), page);
2609
2610 if (likely(!PageTransCompound(page))) {
2611 mapcount = atomic_read(&page->_mapcount) + 1;
2612 if (total_mapcount)
2613 *total_mapcount = mapcount;
2614 return mapcount;
2615 }
2616
2617 page = compound_head(page);
2618
2619 _total_mapcount = ret = 0;
65dfe3c3 2620 for (i = 0; i < thp_nr_pages(page); i++) {
6d0a07ed
AA
2621 mapcount = atomic_read(&page[i]._mapcount) + 1;
2622 ret = max(ret, mapcount);
2623 _total_mapcount += mapcount;
2624 }
2625 if (PageDoubleMap(page)) {
2626 ret -= 1;
65dfe3c3 2627 _total_mapcount -= thp_nr_pages(page);
6d0a07ed
AA
2628 }
2629 mapcount = compound_mapcount(page);
2630 ret += mapcount;
2631 _total_mapcount += mapcount;
2632 if (total_mapcount)
2633 *total_mapcount = _total_mapcount;
2634 return ret;
2635}
2636
b8f593cd
HY
2637/* Racy check whether the huge page can be split */
2638bool can_split_huge_page(struct page *page, int *pextra_pins)
2639{
2640 int extra_pins;
2641
aa5dc07f 2642 /* Additional pins from page cache */
b8f593cd 2643 if (PageAnon(page))
e2333dad 2644 extra_pins = PageSwapCache(page) ? thp_nr_pages(page) : 0;
b8f593cd 2645 else
e2333dad 2646 extra_pins = thp_nr_pages(page);
b8f593cd
HY
2647 if (pextra_pins)
2648 *pextra_pins = extra_pins;
2649 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2650}
2651
e9b61f19
KS
2652/*
2653 * This function splits huge page into normal pages. @page can point to any
2654 * subpage of huge page to split. Split doesn't change the position of @page.
2655 *
2656 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2657 * The huge page must be locked.
2658 *
2659 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2660 *
2661 * Both head page and tail pages will inherit mapping, flags, and so on from
2662 * the hugepage.
2663 *
2664 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2665 * they are not mapped.
2666 *
2667 * Returns 0 if the hugepage is split successfully.
2668 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2669 * us.
2670 */
2671int split_huge_page_to_list(struct page *page, struct list_head *list)
2672{
2673 struct page *head = compound_head(page);
a8803e6c 2674 struct deferred_split *ds_queue = get_deferred_split_queue(head);
baa355fd
KS
2675 struct anon_vma *anon_vma = NULL;
2676 struct address_space *mapping = NULL;
504e070d 2677 int extra_pins, ret;
006d3ff2 2678 pgoff_t end;
e9b61f19 2679
cb829624 2680 VM_BUG_ON_PAGE(is_huge_zero_page(head), head);
a8803e6c
WY
2681 VM_BUG_ON_PAGE(!PageLocked(head), head);
2682 VM_BUG_ON_PAGE(!PageCompound(head), head);
e9b61f19 2683
a8803e6c 2684 if (PageWriteback(head))
59807685
HY
2685 return -EBUSY;
2686
baa355fd
KS
2687 if (PageAnon(head)) {
2688 /*
c1e8d7c6 2689 * The caller does not necessarily hold an mmap_lock that would
baa355fd
KS
2690 * prevent the anon_vma disappearing so we first we take a
2691 * reference to it and then lock the anon_vma for write. This
2692 * is similar to page_lock_anon_vma_read except the write lock
2693 * is taken to serialise against parallel split or collapse
2694 * operations.
2695 */
2696 anon_vma = page_get_anon_vma(head);
2697 if (!anon_vma) {
2698 ret = -EBUSY;
2699 goto out;
2700 }
006d3ff2 2701 end = -1;
baa355fd
KS
2702 mapping = NULL;
2703 anon_vma_lock_write(anon_vma);
2704 } else {
2705 mapping = head->mapping;
2706
2707 /* Truncated ? */
2708 if (!mapping) {
2709 ret = -EBUSY;
2710 goto out;
2711 }
2712
baa355fd
KS
2713 anon_vma = NULL;
2714 i_mmap_lock_read(mapping);
006d3ff2
HD
2715
2716 /*
2717 *__split_huge_page() may need to trim off pages beyond EOF:
2718 * but on 32-bit, i_size_read() takes an irq-unsafe seqlock,
2719 * which cannot be nested inside the page tree lock. So note
2720 * end now: i_size itself may be changed at any moment, but
2721 * head page lock is good enough to serialize the trimming.
2722 */
2723 end = DIV_ROUND_UP(i_size_read(mapping->host), PAGE_SIZE);
e9b61f19 2724 }
e9b61f19
KS
2725
2726 /*
906f9cdf 2727 * Racy check if we can split the page, before unmap_page() will
e9b61f19
KS
2728 * split PMDs
2729 */
b8f593cd 2730 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2731 ret = -EBUSY;
2732 goto out_unlock;
2733 }
2734
906f9cdf 2735 unmap_page(head);
e9b61f19 2736
b6769834
AS
2737 /* block interrupt reentry in xa_lock and spinlock */
2738 local_irq_disable();
baa355fd 2739 if (mapping) {
aa5dc07f 2740 XA_STATE(xas, &mapping->i_pages, page_index(head));
baa355fd 2741
baa355fd 2742 /*
aa5dc07f 2743 * Check if the head page is present in page cache.
baa355fd
KS
2744 * We assume all tail are present too, if head is there.
2745 */
aa5dc07f
MW
2746 xa_lock(&mapping->i_pages);
2747 if (xas_load(&xas) != head)
baa355fd
KS
2748 goto fail;
2749 }
2750
0139aa7b 2751 /* Prevent deferred_split_scan() touching ->_refcount */
364c1eeb 2752 spin_lock(&ds_queue->split_queue_lock);
504e070d 2753 if (page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2754 if (!list_empty(page_deferred_list(head))) {
364c1eeb 2755 ds_queue->split_queue_len--;
9a982250
KS
2756 list_del(page_deferred_list(head));
2757 }
afb97172 2758 spin_unlock(&ds_queue->split_queue_lock);
06d3eff6 2759 if (mapping) {
bf9ecead
MS
2760 int nr = thp_nr_pages(head);
2761
a8803e6c 2762 if (PageSwapBacked(head))
57b2847d
MS
2763 __mod_lruvec_page_state(head, NR_SHMEM_THPS,
2764 -nr);
06d3eff6 2765 else
bf9ecead
MS
2766 __mod_lruvec_page_state(head, NR_FILE_THPS,
2767 -nr);
06d3eff6
KS
2768 }
2769
b6769834 2770 __split_huge_page(page, list, end);
c4f9c701 2771 ret = 0;
e9b61f19 2772 } else {
364c1eeb 2773 spin_unlock(&ds_queue->split_queue_lock);
504e070d
YS
2774fail:
2775 if (mapping)
b93b0163 2776 xa_unlock(&mapping->i_pages);
b6769834 2777 local_irq_enable();
8cce5475 2778 remap_page(head, thp_nr_pages(head));
e9b61f19
KS
2779 ret = -EBUSY;
2780 }
2781
2782out_unlock:
baa355fd
KS
2783 if (anon_vma) {
2784 anon_vma_unlock_write(anon_vma);
2785 put_anon_vma(anon_vma);
2786 }
2787 if (mapping)
2788 i_mmap_unlock_read(mapping);
e9b61f19
KS
2789out:
2790 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2791 return ret;
2792}
9a982250
KS
2793
2794void free_transhuge_page(struct page *page)
2795{
87eaceb3 2796 struct deferred_split *ds_queue = get_deferred_split_queue(page);
9a982250
KS
2797 unsigned long flags;
2798
364c1eeb 2799 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2800 if (!list_empty(page_deferred_list(page))) {
364c1eeb 2801 ds_queue->split_queue_len--;
9a982250
KS
2802 list_del(page_deferred_list(page));
2803 }
364c1eeb 2804 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2805 free_compound_page(page);
2806}
2807
2808void deferred_split_huge_page(struct page *page)
2809{
87eaceb3
YS
2810 struct deferred_split *ds_queue = get_deferred_split_queue(page);
2811#ifdef CONFIG_MEMCG
bcfe06bf 2812 struct mem_cgroup *memcg = page_memcg(compound_head(page));
87eaceb3 2813#endif
9a982250
KS
2814 unsigned long flags;
2815
2816 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2817
87eaceb3
YS
2818 /*
2819 * The try_to_unmap() in page reclaim path might reach here too,
2820 * this may cause a race condition to corrupt deferred split queue.
2821 * And, if page reclaim is already handling the same page, it is
2822 * unnecessary to handle it again in shrinker.
2823 *
2824 * Check PageSwapCache to determine if the page is being
2825 * handled by page reclaim since THP swap would add the page into
2826 * swap cache before calling try_to_unmap().
2827 */
2828 if (PageSwapCache(page))
2829 return;
2830
364c1eeb 2831 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2832 if (list_empty(page_deferred_list(page))) {
f9719a03 2833 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
364c1eeb
YS
2834 list_add_tail(page_deferred_list(page), &ds_queue->split_queue);
2835 ds_queue->split_queue_len++;
87eaceb3
YS
2836#ifdef CONFIG_MEMCG
2837 if (memcg)
2bfd3637
YS
2838 set_shrinker_bit(memcg, page_to_nid(page),
2839 deferred_split_shrinker.id);
87eaceb3 2840#endif
9a982250 2841 }
364c1eeb 2842 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2843}
2844
2845static unsigned long deferred_split_count(struct shrinker *shrink,
2846 struct shrink_control *sc)
2847{
a3d0a918 2848 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2849 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
87eaceb3
YS
2850
2851#ifdef CONFIG_MEMCG
2852 if (sc->memcg)
2853 ds_queue = &sc->memcg->deferred_split_queue;
2854#endif
364c1eeb 2855 return READ_ONCE(ds_queue->split_queue_len);
9a982250
KS
2856}
2857
2858static unsigned long deferred_split_scan(struct shrinker *shrink,
2859 struct shrink_control *sc)
2860{
a3d0a918 2861 struct pglist_data *pgdata = NODE_DATA(sc->nid);
364c1eeb 2862 struct deferred_split *ds_queue = &pgdata->deferred_split_queue;
9a982250
KS
2863 unsigned long flags;
2864 LIST_HEAD(list), *pos, *next;
2865 struct page *page;
2866 int split = 0;
2867
87eaceb3
YS
2868#ifdef CONFIG_MEMCG
2869 if (sc->memcg)
2870 ds_queue = &sc->memcg->deferred_split_queue;
2871#endif
2872
364c1eeb 2873 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
9a982250 2874 /* Take pin on all head pages to avoid freeing them under us */
364c1eeb 2875 list_for_each_safe(pos, next, &ds_queue->split_queue) {
dfe5c51c 2876 page = list_entry((void *)pos, struct page, deferred_list);
9a982250 2877 page = compound_head(page);
e3ae1953
KS
2878 if (get_page_unless_zero(page)) {
2879 list_move(page_deferred_list(page), &list);
2880 } else {
2881 /* We lost race with put_compound_page() */
9a982250 2882 list_del_init(page_deferred_list(page));
364c1eeb 2883 ds_queue->split_queue_len--;
9a982250 2884 }
e3ae1953
KS
2885 if (!--sc->nr_to_scan)
2886 break;
9a982250 2887 }
364c1eeb 2888 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250
KS
2889
2890 list_for_each_safe(pos, next, &list) {
dfe5c51c 2891 page = list_entry((void *)pos, struct page, deferred_list);
fa41b900
KS
2892 if (!trylock_page(page))
2893 goto next;
9a982250
KS
2894 /* split_huge_page() removes page from list on success */
2895 if (!split_huge_page(page))
2896 split++;
2897 unlock_page(page);
fa41b900 2898next:
9a982250
KS
2899 put_page(page);
2900 }
2901
364c1eeb
YS
2902 spin_lock_irqsave(&ds_queue->split_queue_lock, flags);
2903 list_splice_tail(&list, &ds_queue->split_queue);
2904 spin_unlock_irqrestore(&ds_queue->split_queue_lock, flags);
9a982250 2905
cb8d68ec
KS
2906 /*
2907 * Stop shrinker if we didn't split any page, but the queue is empty.
2908 * This can happen if pages were freed under us.
2909 */
364c1eeb 2910 if (!split && list_empty(&ds_queue->split_queue))
cb8d68ec
KS
2911 return SHRINK_STOP;
2912 return split;
9a982250
KS
2913}
2914
2915static struct shrinker deferred_split_shrinker = {
2916 .count_objects = deferred_split_count,
2917 .scan_objects = deferred_split_scan,
2918 .seeks = DEFAULT_SEEKS,
87eaceb3
YS
2919 .flags = SHRINKER_NUMA_AWARE | SHRINKER_MEMCG_AWARE |
2920 SHRINKER_NONSLAB,
9a982250 2921};
49071d43
KS
2922
2923#ifdef CONFIG_DEBUG_FS
fa6c0231 2924static void split_huge_pages_all(void)
49071d43
KS
2925{
2926 struct zone *zone;
2927 struct page *page;
2928 unsigned long pfn, max_zone_pfn;
2929 unsigned long total = 0, split = 0;
2930
fa6c0231 2931 pr_debug("Split all THPs\n");
49071d43
KS
2932 for_each_populated_zone(zone) {
2933 max_zone_pfn = zone_end_pfn(zone);
2934 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2935 if (!pfn_valid(pfn))
2936 continue;
2937
2938 page = pfn_to_page(pfn);
2939 if (!get_page_unless_zero(page))
2940 continue;
2941
2942 if (zone != page_zone(page))
2943 goto next;
2944
baa355fd 2945 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2946 goto next;
2947
2948 total++;
2949 lock_page(page);
2950 if (!split_huge_page(page))
2951 split++;
2952 unlock_page(page);
2953next:
2954 put_page(page);
fa6c0231 2955 cond_resched();
49071d43
KS
2956 }
2957 }
2958
fa6c0231
ZY
2959 pr_debug("%lu of %lu THP split\n", split, total);
2960}
49071d43 2961
fa6c0231
ZY
2962static inline bool vma_not_suitable_for_thp_split(struct vm_area_struct *vma)
2963{
2964 return vma_is_special_huge(vma) || (vma->vm_flags & VM_IO) ||
2965 is_vm_hugetlb_page(vma);
2966}
2967
2968static int split_huge_pages_pid(int pid, unsigned long vaddr_start,
2969 unsigned long vaddr_end)
2970{
2971 int ret = 0;
2972 struct task_struct *task;
2973 struct mm_struct *mm;
2974 unsigned long total = 0, split = 0;
2975 unsigned long addr;
2976
2977 vaddr_start &= PAGE_MASK;
2978 vaddr_end &= PAGE_MASK;
2979
2980 /* Find the task_struct from pid */
2981 rcu_read_lock();
2982 task = find_task_by_vpid(pid);
2983 if (!task) {
2984 rcu_read_unlock();
2985 ret = -ESRCH;
2986 goto out;
2987 }
2988 get_task_struct(task);
2989 rcu_read_unlock();
2990
2991 /* Find the mm_struct */
2992 mm = get_task_mm(task);
2993 put_task_struct(task);
2994
2995 if (!mm) {
2996 ret = -EINVAL;
2997 goto out;
2998 }
2999
3000 pr_debug("Split huge pages in pid: %d, vaddr: [0x%lx - 0x%lx]\n",
3001 pid, vaddr_start, vaddr_end);
3002
3003 mmap_read_lock(mm);
3004 /*
3005 * always increase addr by PAGE_SIZE, since we could have a PTE page
3006 * table filled with PTE-mapped THPs, each of which is distinct.
3007 */
3008 for (addr = vaddr_start; addr < vaddr_end; addr += PAGE_SIZE) {
3009 struct vm_area_struct *vma = find_vma(mm, addr);
3010 unsigned int follflags;
3011 struct page *page;
3012
3013 if (!vma || addr < vma->vm_start)
3014 break;
3015
3016 /* skip special VMA and hugetlb VMA */
3017 if (vma_not_suitable_for_thp_split(vma)) {
3018 addr = vma->vm_end;
3019 continue;
3020 }
3021
3022 /* FOLL_DUMP to ignore special (like zero) pages */
3023 follflags = FOLL_GET | FOLL_DUMP;
3024 page = follow_page(vma, addr, follflags);
3025
3026 if (IS_ERR(page))
3027 continue;
3028 if (!page)
3029 continue;
3030
3031 if (!is_transparent_hugepage(page))
3032 goto next;
3033
3034 total++;
3035 if (!can_split_huge_page(compound_head(page), NULL))
3036 goto next;
3037
3038 if (!trylock_page(page))
3039 goto next;
3040
3041 if (!split_huge_page(page))
3042 split++;
3043
3044 unlock_page(page);
3045next:
3046 put_page(page);
3047 cond_resched();
3048 }
3049 mmap_read_unlock(mm);
3050 mmput(mm);
3051
3052 pr_debug("%lu of %lu THP split\n", split, total);
3053
3054out:
3055 return ret;
49071d43 3056}
fa6c0231 3057
fbe37501
ZY
3058static int split_huge_pages_in_file(const char *file_path, pgoff_t off_start,
3059 pgoff_t off_end)
3060{
3061 struct filename *file;
3062 struct file *candidate;
3063 struct address_space *mapping;
3064 int ret = -EINVAL;
3065 pgoff_t index;
3066 int nr_pages = 1;
3067 unsigned long total = 0, split = 0;
3068
3069 file = getname_kernel(file_path);
3070 if (IS_ERR(file))
3071 return ret;
3072
3073 candidate = file_open_name(file, O_RDONLY, 0);
3074 if (IS_ERR(candidate))
3075 goto out;
3076
3077 pr_debug("split file-backed THPs in file: %s, page offset: [0x%lx - 0x%lx]\n",
3078 file_path, off_start, off_end);
3079
3080 mapping = candidate->f_mapping;
3081
3082 for (index = off_start; index < off_end; index += nr_pages) {
3083 struct page *fpage = pagecache_get_page(mapping, index,
3084 FGP_ENTRY | FGP_HEAD, 0);
3085
3086 nr_pages = 1;
3087 if (xa_is_value(fpage) || !fpage)
3088 continue;
3089
3090 if (!is_transparent_hugepage(fpage))
3091 goto next;
3092
3093 total++;
3094 nr_pages = thp_nr_pages(fpage);
3095
3096 if (!trylock_page(fpage))
3097 goto next;
3098
3099 if (!split_huge_page(fpage))
3100 split++;
3101
3102 unlock_page(fpage);
3103next:
3104 put_page(fpage);
3105 cond_resched();
3106 }
3107
3108 filp_close(candidate, NULL);
3109 ret = 0;
3110
3111 pr_debug("%lu of %lu file-backed THP split\n", split, total);
3112out:
3113 putname(file);
3114 return ret;
3115}
3116
fa6c0231
ZY
3117#define MAX_INPUT_BUF_SZ 255
3118
3119static ssize_t split_huge_pages_write(struct file *file, const char __user *buf,
3120 size_t count, loff_t *ppops)
3121{
3122 static DEFINE_MUTEX(split_debug_mutex);
3123 ssize_t ret;
fbe37501
ZY
3124 /* hold pid, start_vaddr, end_vaddr or file_path, off_start, off_end */
3125 char input_buf[MAX_INPUT_BUF_SZ];
fa6c0231
ZY
3126 int pid;
3127 unsigned long vaddr_start, vaddr_end;
3128
3129 ret = mutex_lock_interruptible(&split_debug_mutex);
3130 if (ret)
3131 return ret;
3132
3133 ret = -EFAULT;
3134
3135 memset(input_buf, 0, MAX_INPUT_BUF_SZ);
3136 if (copy_from_user(input_buf, buf, min_t(size_t, count, MAX_INPUT_BUF_SZ)))
3137 goto out;
3138
3139 input_buf[MAX_INPUT_BUF_SZ - 1] = '\0';
fbe37501
ZY
3140
3141 if (input_buf[0] == '/') {
3142 char *tok;
3143 char *buf = input_buf;
3144 char file_path[MAX_INPUT_BUF_SZ];
3145 pgoff_t off_start = 0, off_end = 0;
3146 size_t input_len = strlen(input_buf);
3147
3148 tok = strsep(&buf, ",");
3149 if (tok) {
3150 strncpy(file_path, tok, MAX_INPUT_BUF_SZ);
3151 } else {
3152 ret = -EINVAL;
3153 goto out;
3154 }
3155
3156 ret = sscanf(buf, "0x%lx,0x%lx", &off_start, &off_end);
3157 if (ret != 2) {
3158 ret = -EINVAL;
3159 goto out;
3160 }
3161 ret = split_huge_pages_in_file(file_path, off_start, off_end);
3162 if (!ret)
3163 ret = input_len;
3164
3165 goto out;
3166 }
3167
fa6c0231
ZY
3168 ret = sscanf(input_buf, "%d,0x%lx,0x%lx", &pid, &vaddr_start, &vaddr_end);
3169 if (ret == 1 && pid == 1) {
3170 split_huge_pages_all();
3171 ret = strlen(input_buf);
3172 goto out;
3173 } else if (ret != 3) {
3174 ret = -EINVAL;
3175 goto out;
3176 }
3177
3178 ret = split_huge_pages_pid(pid, vaddr_start, vaddr_end);
3179 if (!ret)
3180 ret = strlen(input_buf);
3181out:
3182 mutex_unlock(&split_debug_mutex);
3183 return ret;
3184
3185}
3186
3187static const struct file_operations split_huge_pages_fops = {
3188 .owner = THIS_MODULE,
3189 .write = split_huge_pages_write,
3190 .llseek = no_llseek,
3191};
49071d43
KS
3192
3193static int __init split_huge_pages_debugfs(void)
3194{
d9f7979c
GKH
3195 debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3196 &split_huge_pages_fops);
49071d43
KS
3197 return 0;
3198}
3199late_initcall(split_huge_pages_debugfs);
3200#endif
616b8371
ZY
3201
3202#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
3203void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
3204 struct page *page)
3205{
3206 struct vm_area_struct *vma = pvmw->vma;
3207 struct mm_struct *mm = vma->vm_mm;
3208 unsigned long address = pvmw->address;
3209 pmd_t pmdval;
3210 swp_entry_t entry;
ab6e3d09 3211 pmd_t pmdswp;
616b8371
ZY
3212
3213 if (!(pvmw->pmd && !pvmw->pte))
3214 return;
3215
616b8371 3216 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
8a8683ad 3217 pmdval = pmdp_invalidate(vma, address, pvmw->pmd);
616b8371
ZY
3218 if (pmd_dirty(pmdval))
3219 set_page_dirty(page);
3220 entry = make_migration_entry(page, pmd_write(pmdval));
ab6e3d09
NH
3221 pmdswp = swp_entry_to_pmd(entry);
3222 if (pmd_soft_dirty(pmdval))
3223 pmdswp = pmd_swp_mksoft_dirty(pmdswp);
3224 set_pmd_at(mm, address, pvmw->pmd, pmdswp);
616b8371
ZY
3225 page_remove_rmap(page, true);
3226 put_page(page);
616b8371
ZY
3227}
3228
3229void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
3230{
3231 struct vm_area_struct *vma = pvmw->vma;
3232 struct mm_struct *mm = vma->vm_mm;
3233 unsigned long address = pvmw->address;
3234 unsigned long mmun_start = address & HPAGE_PMD_MASK;
3235 pmd_t pmde;
3236 swp_entry_t entry;
3237
3238 if (!(pvmw->pmd && !pvmw->pte))
3239 return;
3240
3241 entry = pmd_to_swp_entry(*pvmw->pmd);
3242 get_page(new);
3243 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
ab6e3d09
NH
3244 if (pmd_swp_soft_dirty(*pvmw->pmd))
3245 pmde = pmd_mksoft_dirty(pmde);
616b8371 3246 if (is_write_migration_entry(entry))
f55e1014 3247 pmde = maybe_pmd_mkwrite(pmde, vma);
616b8371
ZY
3248
3249 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
e71769ae
NH
3250 if (PageAnon(new))
3251 page_add_anon_rmap(new, vma, mmun_start, true);
3252 else
3253 page_add_file_rmap(new, true);
616b8371 3254 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
e125fe40 3255 if ((vma->vm_flags & VM_LOCKED) && !PageDoubleMap(new))
616b8371
ZY
3256 mlock_vma_page(new);
3257 update_mmu_cache_pmd(vma, address, pvmw->pmd);
3258}
3259#endif