]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
ARM: fix oops on initial entry to userspace with Thumb2 kernels
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
17c230af 105 if (!khugepaged_enabled())
f000565a
AA
106 return 0;
107
108 for_each_populated_zone(zone)
109 nr_zones++;
110
111 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
112 recommended_min = pageblock_nr_pages * nr_zones * 2;
113
114 /*
115 * Make sure that on average at least two pageblocks are almost free
116 * of another type, one for a migratetype to fall back to and a
117 * second to avoid subsequent fallbacks of other types There are 3
118 * MIGRATE_TYPES we care about.
119 */
120 recommended_min += pageblock_nr_pages * nr_zones *
121 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
122
123 /* don't ever allow to reserve more than 5% of the lowmem */
124 recommended_min = min(recommended_min,
125 (unsigned long) nr_free_buffer_pages() / 20);
126 recommended_min <<= (PAGE_SHIFT-10);
127
128 if (recommended_min > min_free_kbytes)
129 min_free_kbytes = recommended_min;
130 setup_per_zone_wmarks();
131 return 0;
132}
133late_initcall(set_recommended_min_free_kbytes);
134
ba76149f
AA
135static int start_khugepaged(void)
136{
137 int err = 0;
138 if (khugepaged_enabled()) {
ba76149f
AA
139 if (!khugepaged_thread)
140 khugepaged_thread = kthread_run(khugepaged, NULL,
141 "khugepaged");
142 if (unlikely(IS_ERR(khugepaged_thread))) {
143 printk(KERN_ERR
144 "khugepaged: kthread_run(khugepaged) failed\n");
145 err = PTR_ERR(khugepaged_thread);
146 khugepaged_thread = NULL;
147 }
911891af
XG
148
149 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 150 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
151
152 set_recommended_min_free_kbytes();
911891af 153 } else if (khugepaged_thread) {
911891af
XG
154 kthread_stop(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
637e3a27 157
ba76149f
AA
158 return err;
159}
71e3aac0
AA
160
161#ifdef CONFIG_SYSFS
ba76149f 162
71e3aac0
AA
163static ssize_t double_flag_show(struct kobject *kobj,
164 struct kobj_attribute *attr, char *buf,
165 enum transparent_hugepage_flag enabled,
166 enum transparent_hugepage_flag req_madv)
167{
168 if (test_bit(enabled, &transparent_hugepage_flags)) {
169 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
170 return sprintf(buf, "[always] madvise never\n");
171 } else if (test_bit(req_madv, &transparent_hugepage_flags))
172 return sprintf(buf, "always [madvise] never\n");
173 else
174 return sprintf(buf, "always madvise [never]\n");
175}
176static ssize_t double_flag_store(struct kobject *kobj,
177 struct kobj_attribute *attr,
178 const char *buf, size_t count,
179 enum transparent_hugepage_flag enabled,
180 enum transparent_hugepage_flag req_madv)
181{
182 if (!memcmp("always", buf,
183 min(sizeof("always")-1, count))) {
184 set_bit(enabled, &transparent_hugepage_flags);
185 clear_bit(req_madv, &transparent_hugepage_flags);
186 } else if (!memcmp("madvise", buf,
187 min(sizeof("madvise")-1, count))) {
188 clear_bit(enabled, &transparent_hugepage_flags);
189 set_bit(req_madv, &transparent_hugepage_flags);
190 } else if (!memcmp("never", buf,
191 min(sizeof("never")-1, count))) {
192 clear_bit(enabled, &transparent_hugepage_flags);
193 clear_bit(req_madv, &transparent_hugepage_flags);
194 } else
195 return -EINVAL;
196
197 return count;
198}
199
200static ssize_t enabled_show(struct kobject *kobj,
201 struct kobj_attribute *attr, char *buf)
202{
203 return double_flag_show(kobj, attr, buf,
204 TRANSPARENT_HUGEPAGE_FLAG,
205 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
206}
207static ssize_t enabled_store(struct kobject *kobj,
208 struct kobj_attribute *attr,
209 const char *buf, size_t count)
210{
ba76149f
AA
211 ssize_t ret;
212
213 ret = double_flag_store(kobj, attr, buf, count,
214 TRANSPARENT_HUGEPAGE_FLAG,
215 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
216
217 if (ret > 0) {
911891af
XG
218 int err;
219
220 mutex_lock(&khugepaged_mutex);
221 err = start_khugepaged();
222 mutex_unlock(&khugepaged_mutex);
223
ba76149f
AA
224 if (err)
225 ret = err;
226 }
227
228 return ret;
71e3aac0
AA
229}
230static struct kobj_attribute enabled_attr =
231 __ATTR(enabled, 0644, enabled_show, enabled_store);
232
233static ssize_t single_flag_show(struct kobject *kobj,
234 struct kobj_attribute *attr, char *buf,
235 enum transparent_hugepage_flag flag)
236{
e27e6151
BH
237 return sprintf(buf, "%d\n",
238 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 239}
e27e6151 240
71e3aac0
AA
241static ssize_t single_flag_store(struct kobject *kobj,
242 struct kobj_attribute *attr,
243 const char *buf, size_t count,
244 enum transparent_hugepage_flag flag)
245{
e27e6151
BH
246 unsigned long value;
247 int ret;
248
249 ret = kstrtoul(buf, 10, &value);
250 if (ret < 0)
251 return ret;
252 if (value > 1)
253 return -EINVAL;
254
255 if (value)
71e3aac0 256 set_bit(flag, &transparent_hugepage_flags);
e27e6151 257 else
71e3aac0 258 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
259
260 return count;
261}
262
263/*
264 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
265 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
266 * memory just to allocate one more hugepage.
267 */
268static ssize_t defrag_show(struct kobject *kobj,
269 struct kobj_attribute *attr, char *buf)
270{
271 return double_flag_show(kobj, attr, buf,
272 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
273 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
274}
275static ssize_t defrag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
278{
279 return double_flag_store(kobj, attr, buf, count,
280 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
281 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
282}
283static struct kobj_attribute defrag_attr =
284 __ATTR(defrag, 0644, defrag_show, defrag_store);
285
286#ifdef CONFIG_DEBUG_VM
287static ssize_t debug_cow_show(struct kobject *kobj,
288 struct kobj_attribute *attr, char *buf)
289{
290 return single_flag_show(kobj, attr, buf,
291 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
292}
293static ssize_t debug_cow_store(struct kobject *kobj,
294 struct kobj_attribute *attr,
295 const char *buf, size_t count)
296{
297 return single_flag_store(kobj, attr, buf, count,
298 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
299}
300static struct kobj_attribute debug_cow_attr =
301 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
302#endif /* CONFIG_DEBUG_VM */
303
304static struct attribute *hugepage_attr[] = {
305 &enabled_attr.attr,
306 &defrag_attr.attr,
307#ifdef CONFIG_DEBUG_VM
308 &debug_cow_attr.attr,
309#endif
310 NULL,
311};
312
313static struct attribute_group hugepage_attr_group = {
314 .attrs = hugepage_attr,
ba76149f
AA
315};
316
317static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 char *buf)
320{
321 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
322}
323
324static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
325 struct kobj_attribute *attr,
326 const char *buf, size_t count)
327{
328 unsigned long msecs;
329 int err;
330
331 err = strict_strtoul(buf, 10, &msecs);
332 if (err || msecs > UINT_MAX)
333 return -EINVAL;
334
335 khugepaged_scan_sleep_millisecs = msecs;
336 wake_up_interruptible(&khugepaged_wait);
337
338 return count;
339}
340static struct kobj_attribute scan_sleep_millisecs_attr =
341 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
342 scan_sleep_millisecs_store);
343
344static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
345 struct kobj_attribute *attr,
346 char *buf)
347{
348 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
349}
350
351static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count)
354{
355 unsigned long msecs;
356 int err;
357
358 err = strict_strtoul(buf, 10, &msecs);
359 if (err || msecs > UINT_MAX)
360 return -EINVAL;
361
362 khugepaged_alloc_sleep_millisecs = msecs;
363 wake_up_interruptible(&khugepaged_wait);
364
365 return count;
366}
367static struct kobj_attribute alloc_sleep_millisecs_attr =
368 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
369 alloc_sleep_millisecs_store);
370
371static ssize_t pages_to_scan_show(struct kobject *kobj,
372 struct kobj_attribute *attr,
373 char *buf)
374{
375 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
376}
377static ssize_t pages_to_scan_store(struct kobject *kobj,
378 struct kobj_attribute *attr,
379 const char *buf, size_t count)
380{
381 int err;
382 unsigned long pages;
383
384 err = strict_strtoul(buf, 10, &pages);
385 if (err || !pages || pages > UINT_MAX)
386 return -EINVAL;
387
388 khugepaged_pages_to_scan = pages;
389
390 return count;
391}
392static struct kobj_attribute pages_to_scan_attr =
393 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
394 pages_to_scan_store);
395
396static ssize_t pages_collapsed_show(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 char *buf)
399{
400 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
401}
402static struct kobj_attribute pages_collapsed_attr =
403 __ATTR_RO(pages_collapsed);
404
405static ssize_t full_scans_show(struct kobject *kobj,
406 struct kobj_attribute *attr,
407 char *buf)
408{
409 return sprintf(buf, "%u\n", khugepaged_full_scans);
410}
411static struct kobj_attribute full_scans_attr =
412 __ATTR_RO(full_scans);
413
414static ssize_t khugepaged_defrag_show(struct kobject *kobj,
415 struct kobj_attribute *attr, char *buf)
416{
417 return single_flag_show(kobj, attr, buf,
418 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
419}
420static ssize_t khugepaged_defrag_store(struct kobject *kobj,
421 struct kobj_attribute *attr,
422 const char *buf, size_t count)
423{
424 return single_flag_store(kobj, attr, buf, count,
425 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
426}
427static struct kobj_attribute khugepaged_defrag_attr =
428 __ATTR(defrag, 0644, khugepaged_defrag_show,
429 khugepaged_defrag_store);
430
431/*
432 * max_ptes_none controls if khugepaged should collapse hugepages over
433 * any unmapped ptes in turn potentially increasing the memory
434 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
435 * reduce the available free memory in the system as it
436 * runs. Increasing max_ptes_none will instead potentially reduce the
437 * free memory in the system during the khugepaged scan.
438 */
439static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442{
443 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
444}
445static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448{
449 int err;
450 unsigned long max_ptes_none;
451
452 err = strict_strtoul(buf, 10, &max_ptes_none);
453 if (err || max_ptes_none > HPAGE_PMD_NR-1)
454 return -EINVAL;
455
456 khugepaged_max_ptes_none = max_ptes_none;
457
458 return count;
459}
460static struct kobj_attribute khugepaged_max_ptes_none_attr =
461 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
462 khugepaged_max_ptes_none_store);
463
464static struct attribute *khugepaged_attr[] = {
465 &khugepaged_defrag_attr.attr,
466 &khugepaged_max_ptes_none_attr.attr,
467 &pages_to_scan_attr.attr,
468 &pages_collapsed_attr.attr,
469 &full_scans_attr.attr,
470 &scan_sleep_millisecs_attr.attr,
471 &alloc_sleep_millisecs_attr.attr,
472 NULL,
473};
474
475static struct attribute_group khugepaged_attr_group = {
476 .attrs = khugepaged_attr,
477 .name = "khugepaged",
71e3aac0 478};
71e3aac0 479
569e5590 480static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 481{
71e3aac0
AA
482 int err;
483
569e5590
SL
484 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
485 if (unlikely(!*hugepage_kobj)) {
ba76149f 486 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 487 return -ENOMEM;
ba76149f
AA
488 }
489
569e5590 490 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
491 if (err) {
492 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 493 goto delete_obj;
ba76149f
AA
494 }
495
569e5590 496 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
497 if (err) {
498 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 499 goto remove_hp_group;
ba76149f 500 }
569e5590
SL
501
502 return 0;
503
504remove_hp_group:
505 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
506delete_obj:
507 kobject_put(*hugepage_kobj);
508 return err;
509}
510
511static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
512{
513 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
514 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
515 kobject_put(hugepage_kobj);
516}
517#else
518static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
519{
520 return 0;
521}
522
523static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
524{
525}
526#endif /* CONFIG_SYSFS */
527
528static int __init hugepage_init(void)
529{
530 int err;
531 struct kobject *hugepage_kobj;
532
533 if (!has_transparent_hugepage()) {
534 transparent_hugepage_flags = 0;
535 return -EINVAL;
536 }
537
538 err = hugepage_init_sysfs(&hugepage_kobj);
539 if (err)
540 return err;
ba76149f
AA
541
542 err = khugepaged_slab_init();
543 if (err)
544 goto out;
545
546 err = mm_slots_hash_init();
547 if (err) {
548 khugepaged_slab_free();
549 goto out;
550 }
551
97562cd2
RR
552 /*
553 * By default disable transparent hugepages on smaller systems,
554 * where the extra memory used could hurt more than TLB overhead
555 * is likely to save. The admin can still enable it through /sys.
556 */
557 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
558 transparent_hugepage_flags = 0;
559
ba76149f
AA
560 start_khugepaged();
561
569e5590 562 return 0;
ba76149f 563out:
569e5590 564 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 565 return err;
71e3aac0
AA
566}
567module_init(hugepage_init)
568
569static int __init setup_transparent_hugepage(char *str)
570{
571 int ret = 0;
572 if (!str)
573 goto out;
574 if (!strcmp(str, "always")) {
575 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
576 &transparent_hugepage_flags);
577 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
578 &transparent_hugepage_flags);
579 ret = 1;
580 } else if (!strcmp(str, "madvise")) {
581 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
582 &transparent_hugepage_flags);
583 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
584 &transparent_hugepage_flags);
585 ret = 1;
586 } else if (!strcmp(str, "never")) {
587 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
588 &transparent_hugepage_flags);
589 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
590 &transparent_hugepage_flags);
591 ret = 1;
592 }
593out:
594 if (!ret)
595 printk(KERN_WARNING
596 "transparent_hugepage= cannot parse, ignored\n");
597 return ret;
598}
599__setup("transparent_hugepage=", setup_transparent_hugepage);
600
71e3aac0
AA
601static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
602{
603 if (likely(vma->vm_flags & VM_WRITE))
604 pmd = pmd_mkwrite(pmd);
605 return pmd;
606}
607
608static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
609 struct vm_area_struct *vma,
610 unsigned long haddr, pmd_t *pmd,
611 struct page *page)
612{
71e3aac0
AA
613 pgtable_t pgtable;
614
615 VM_BUG_ON(!PageCompound(page));
616 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 617 if (unlikely(!pgtable))
71e3aac0 618 return VM_FAULT_OOM;
71e3aac0
AA
619
620 clear_huge_page(page, haddr, HPAGE_PMD_NR);
621 __SetPageUptodate(page);
622
623 spin_lock(&mm->page_table_lock);
624 if (unlikely(!pmd_none(*pmd))) {
625 spin_unlock(&mm->page_table_lock);
b9bbfbe3 626 mem_cgroup_uncharge_page(page);
71e3aac0
AA
627 put_page(page);
628 pte_free(mm, pgtable);
629 } else {
630 pmd_t entry;
631 entry = mk_pmd(page, vma->vm_page_prot);
632 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
633 entry = pmd_mkhuge(entry);
634 /*
635 * The spinlocking to take the lru_lock inside
636 * page_add_new_anon_rmap() acts as a full memory
637 * barrier to be sure clear_huge_page writes become
638 * visible after the set_pmd_at() write.
639 */
640 page_add_new_anon_rmap(page, vma, haddr);
641 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 642 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 643 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 644 mm->nr_ptes++;
71e3aac0
AA
645 spin_unlock(&mm->page_table_lock);
646 }
647
aa2e878e 648 return 0;
71e3aac0
AA
649}
650
cc5d462f 651static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 652{
cc5d462f 653 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
654}
655
656static inline struct page *alloc_hugepage_vma(int defrag,
657 struct vm_area_struct *vma,
cc5d462f
AK
658 unsigned long haddr, int nd,
659 gfp_t extra_gfp)
0bbbc0b3 660{
cc5d462f 661 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 662 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
663}
664
665#ifndef CONFIG_NUMA
71e3aac0
AA
666static inline struct page *alloc_hugepage(int defrag)
667{
cc5d462f 668 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
669 HPAGE_PMD_ORDER);
670}
0bbbc0b3 671#endif
71e3aac0
AA
672
673int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
674 unsigned long address, pmd_t *pmd,
675 unsigned int flags)
676{
677 struct page *page;
678 unsigned long haddr = address & HPAGE_PMD_MASK;
679 pte_t *pte;
680
681 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
682 if (unlikely(anon_vma_prepare(vma)))
683 return VM_FAULT_OOM;
ba76149f
AA
684 if (unlikely(khugepaged_enter(vma)))
685 return VM_FAULT_OOM;
0bbbc0b3 686 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 687 vma, haddr, numa_node_id(), 0);
81ab4201
AK
688 if (unlikely(!page)) {
689 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 690 goto out;
81ab4201
AK
691 }
692 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
693 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
694 put_page(page);
695 goto out;
696 }
edad9d2c
DR
697 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
698 page))) {
699 mem_cgroup_uncharge_page(page);
700 put_page(page);
701 goto out;
702 }
71e3aac0 703
edad9d2c 704 return 0;
71e3aac0
AA
705 }
706out:
707 /*
708 * Use __pte_alloc instead of pte_alloc_map, because we can't
709 * run pte_offset_map on the pmd, if an huge pmd could
710 * materialize from under us from a different thread.
711 */
712 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
713 return VM_FAULT_OOM;
714 /* if an huge pmd materialized from under us just retry later */
715 if (unlikely(pmd_trans_huge(*pmd)))
716 return 0;
717 /*
718 * A regular pmd is established and it can't morph into a huge pmd
719 * from under us anymore at this point because we hold the mmap_sem
720 * read mode and khugepaged takes it in write mode. So now it's
721 * safe to run pte_offset_map().
722 */
723 pte = pte_offset_map(pmd, address);
724 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
725}
726
727int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
728 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
729 struct vm_area_struct *vma)
730{
731 struct page *src_page;
732 pmd_t pmd;
733 pgtable_t pgtable;
734 int ret;
735
736 ret = -ENOMEM;
737 pgtable = pte_alloc_one(dst_mm, addr);
738 if (unlikely(!pgtable))
739 goto out;
740
741 spin_lock(&dst_mm->page_table_lock);
742 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
743
744 ret = -EAGAIN;
745 pmd = *src_pmd;
746 if (unlikely(!pmd_trans_huge(pmd))) {
747 pte_free(dst_mm, pgtable);
748 goto out_unlock;
749 }
750 if (unlikely(pmd_trans_splitting(pmd))) {
751 /* split huge page running from under us */
752 spin_unlock(&src_mm->page_table_lock);
753 spin_unlock(&dst_mm->page_table_lock);
754 pte_free(dst_mm, pgtable);
755
756 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
757 goto out;
758 }
759 src_page = pmd_page(pmd);
760 VM_BUG_ON(!PageHead(src_page));
761 get_page(src_page);
762 page_dup_rmap(src_page);
763 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
764
765 pmdp_set_wrprotect(src_mm, addr, src_pmd);
766 pmd = pmd_mkold(pmd_wrprotect(pmd));
767 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 768 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 769 dst_mm->nr_ptes++;
71e3aac0
AA
770
771 ret = 0;
772out_unlock:
773 spin_unlock(&src_mm->page_table_lock);
774 spin_unlock(&dst_mm->page_table_lock);
775out:
776 return ret;
777}
778
71e3aac0
AA
779static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
780 struct vm_area_struct *vma,
781 unsigned long address,
782 pmd_t *pmd, pmd_t orig_pmd,
783 struct page *page,
784 unsigned long haddr)
785{
786 pgtable_t pgtable;
787 pmd_t _pmd;
788 int ret = 0, i;
789 struct page **pages;
2ec74c3e
SG
790 unsigned long mmun_start; /* For mmu_notifiers */
791 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
792
793 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
794 GFP_KERNEL);
795 if (unlikely(!pages)) {
796 ret |= VM_FAULT_OOM;
797 goto out;
798 }
799
800 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
801 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
802 __GFP_OTHER_NODE,
19ee151e 803 vma, address, page_to_nid(page));
b9bbfbe3
AA
804 if (unlikely(!pages[i] ||
805 mem_cgroup_newpage_charge(pages[i], mm,
806 GFP_KERNEL))) {
807 if (pages[i])
71e3aac0 808 put_page(pages[i]);
b9bbfbe3
AA
809 mem_cgroup_uncharge_start();
810 while (--i >= 0) {
811 mem_cgroup_uncharge_page(pages[i]);
812 put_page(pages[i]);
813 }
814 mem_cgroup_uncharge_end();
71e3aac0
AA
815 kfree(pages);
816 ret |= VM_FAULT_OOM;
817 goto out;
818 }
819 }
820
821 for (i = 0; i < HPAGE_PMD_NR; i++) {
822 copy_user_highpage(pages[i], page + i,
0089e485 823 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
824 __SetPageUptodate(pages[i]);
825 cond_resched();
826 }
827
2ec74c3e
SG
828 mmun_start = haddr;
829 mmun_end = haddr + HPAGE_PMD_SIZE;
830 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
831
71e3aac0
AA
832 spin_lock(&mm->page_table_lock);
833 if (unlikely(!pmd_same(*pmd, orig_pmd)))
834 goto out_free_pages;
835 VM_BUG_ON(!PageHead(page));
836
2ec74c3e 837 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
838 /* leave pmd empty until pte is filled */
839
e3ebcf64 840 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
841 pmd_populate(mm, &_pmd, pgtable);
842
843 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
844 pte_t *pte, entry;
845 entry = mk_pte(pages[i], vma->vm_page_prot);
846 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
847 page_add_new_anon_rmap(pages[i], vma, haddr);
848 pte = pte_offset_map(&_pmd, haddr);
849 VM_BUG_ON(!pte_none(*pte));
850 set_pte_at(mm, haddr, pte, entry);
851 pte_unmap(pte);
852 }
853 kfree(pages);
854
71e3aac0
AA
855 smp_wmb(); /* make pte visible before pmd */
856 pmd_populate(mm, pmd, pgtable);
857 page_remove_rmap(page);
858 spin_unlock(&mm->page_table_lock);
859
2ec74c3e
SG
860 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
861
71e3aac0
AA
862 ret |= VM_FAULT_WRITE;
863 put_page(page);
864
865out:
866 return ret;
867
868out_free_pages:
869 spin_unlock(&mm->page_table_lock);
2ec74c3e 870 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
871 mem_cgroup_uncharge_start();
872 for (i = 0; i < HPAGE_PMD_NR; i++) {
873 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 874 put_page(pages[i]);
b9bbfbe3
AA
875 }
876 mem_cgroup_uncharge_end();
71e3aac0
AA
877 kfree(pages);
878 goto out;
879}
880
881int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
882 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
883{
884 int ret = 0;
885 struct page *page, *new_page;
886 unsigned long haddr;
2ec74c3e
SG
887 unsigned long mmun_start; /* For mmu_notifiers */
888 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
889
890 VM_BUG_ON(!vma->anon_vma);
891 spin_lock(&mm->page_table_lock);
892 if (unlikely(!pmd_same(*pmd, orig_pmd)))
893 goto out_unlock;
894
895 page = pmd_page(orig_pmd);
896 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
897 haddr = address & HPAGE_PMD_MASK;
898 if (page_mapcount(page) == 1) {
899 pmd_t entry;
900 entry = pmd_mkyoung(orig_pmd);
901 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
902 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 903 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
904 ret |= VM_FAULT_WRITE;
905 goto out_unlock;
906 }
907 get_page(page);
908 spin_unlock(&mm->page_table_lock);
909
910 if (transparent_hugepage_enabled(vma) &&
911 !transparent_hugepage_debug_cow())
0bbbc0b3 912 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 913 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
914 else
915 new_page = NULL;
916
917 if (unlikely(!new_page)) {
81ab4201 918 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
919 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
920 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
921 if (ret & VM_FAULT_OOM)
922 split_huge_page(page);
71e3aac0
AA
923 put_page(page);
924 goto out;
925 }
81ab4201 926 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 927
b9bbfbe3
AA
928 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
929 put_page(new_page);
1f1d06c3 930 split_huge_page(page);
b9bbfbe3
AA
931 put_page(page);
932 ret |= VM_FAULT_OOM;
933 goto out;
934 }
935
71e3aac0
AA
936 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
937 __SetPageUptodate(new_page);
938
2ec74c3e
SG
939 mmun_start = haddr;
940 mmun_end = haddr + HPAGE_PMD_SIZE;
941 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
942
71e3aac0
AA
943 spin_lock(&mm->page_table_lock);
944 put_page(page);
b9bbfbe3 945 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 946 spin_unlock(&mm->page_table_lock);
b9bbfbe3 947 mem_cgroup_uncharge_page(new_page);
71e3aac0 948 put_page(new_page);
2ec74c3e 949 goto out_mn;
b9bbfbe3 950 } else {
71e3aac0
AA
951 pmd_t entry;
952 VM_BUG_ON(!PageHead(page));
953 entry = mk_pmd(new_page, vma->vm_page_prot);
954 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
955 entry = pmd_mkhuge(entry);
2ec74c3e 956 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
957 page_add_new_anon_rmap(new_page, vma, haddr);
958 set_pmd_at(mm, haddr, pmd, entry);
b113da65 959 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
960 page_remove_rmap(page);
961 put_page(page);
962 ret |= VM_FAULT_WRITE;
963 }
71e3aac0 964 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
965out_mn:
966 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
967out:
968 return ret;
2ec74c3e
SG
969out_unlock:
970 spin_unlock(&mm->page_table_lock);
971 return ret;
71e3aac0
AA
972}
973
b676b293 974struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
975 unsigned long addr,
976 pmd_t *pmd,
977 unsigned int flags)
978{
b676b293 979 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
980 struct page *page = NULL;
981
982 assert_spin_locked(&mm->page_table_lock);
983
984 if (flags & FOLL_WRITE && !pmd_write(*pmd))
985 goto out;
986
987 page = pmd_page(*pmd);
988 VM_BUG_ON(!PageHead(page));
989 if (flags & FOLL_TOUCH) {
990 pmd_t _pmd;
991 /*
992 * We should set the dirty bit only for FOLL_WRITE but
993 * for now the dirty bit in the pmd is meaningless.
994 * And if the dirty bit will become meaningful and
995 * we'll only set it with FOLL_WRITE, an atomic
996 * set_bit will be required on the pmd to set the
997 * young bit, instead of the current set_pmd_at.
998 */
999 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1000 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1001 }
b676b293
DR
1002 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1003 if (page->mapping && trylock_page(page)) {
1004 lru_add_drain();
1005 if (page->mapping)
1006 mlock_vma_page(page);
1007 unlock_page(page);
1008 }
1009 }
71e3aac0
AA
1010 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1011 VM_BUG_ON(!PageCompound(page));
1012 if (flags & FOLL_GET)
70b50f94 1013 get_page_foll(page);
71e3aac0
AA
1014
1015out:
1016 return page;
1017}
1018
1019int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1020 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1021{
1022 int ret = 0;
1023
025c5b24
NH
1024 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1025 struct page *page;
1026 pgtable_t pgtable;
f5c8ad47 1027 pmd_t orig_pmd;
e3ebcf64 1028 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47
DM
1029 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1030 page = pmd_page(orig_pmd);
025c5b24
NH
1031 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1032 page_remove_rmap(page);
1033 VM_BUG_ON(page_mapcount(page) < 0);
1034 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1035 VM_BUG_ON(!PageHead(page));
1036 tlb->mm->nr_ptes--;
71e3aac0 1037 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1038 tlb_remove_page(tlb, page);
1039 pte_free(tlb->mm, pgtable);
1040 ret = 1;
1041 }
71e3aac0
AA
1042 return ret;
1043}
1044
0ca1634d
JW
1045int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1046 unsigned long addr, unsigned long end,
1047 unsigned char *vec)
1048{
1049 int ret = 0;
1050
025c5b24
NH
1051 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1052 /*
1053 * All logical pages in the range are present
1054 * if backed by a huge page.
1055 */
0ca1634d 1056 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1057 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1058 ret = 1;
1059 }
0ca1634d
JW
1060
1061 return ret;
1062}
1063
37a1c49a
AA
1064int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1065 unsigned long old_addr,
1066 unsigned long new_addr, unsigned long old_end,
1067 pmd_t *old_pmd, pmd_t *new_pmd)
1068{
1069 int ret = 0;
1070 pmd_t pmd;
1071
1072 struct mm_struct *mm = vma->vm_mm;
1073
1074 if ((old_addr & ~HPAGE_PMD_MASK) ||
1075 (new_addr & ~HPAGE_PMD_MASK) ||
1076 old_end - old_addr < HPAGE_PMD_SIZE ||
1077 (new_vma->vm_flags & VM_NOHUGEPAGE))
1078 goto out;
1079
1080 /*
1081 * The destination pmd shouldn't be established, free_pgtables()
1082 * should have release it.
1083 */
1084 if (WARN_ON(!pmd_none(*new_pmd))) {
1085 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1086 goto out;
1087 }
1088
025c5b24
NH
1089 ret = __pmd_trans_huge_lock(old_pmd, vma);
1090 if (ret == 1) {
1091 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1092 VM_BUG_ON(!pmd_none(*new_pmd));
1093 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1094 spin_unlock(&mm->page_table_lock);
1095 }
1096out:
1097 return ret;
1098}
1099
cd7548ab
JW
1100int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1101 unsigned long addr, pgprot_t newprot)
1102{
1103 struct mm_struct *mm = vma->vm_mm;
1104 int ret = 0;
1105
025c5b24
NH
1106 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1107 pmd_t entry;
1108 entry = pmdp_get_and_clear(mm, addr, pmd);
1109 entry = pmd_modify(entry, newprot);
1110 set_pmd_at(mm, addr, pmd, entry);
1111 spin_unlock(&vma->vm_mm->page_table_lock);
1112 ret = 1;
1113 }
1114
1115 return ret;
1116}
1117
1118/*
1119 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1120 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1121 *
1122 * Note that if it returns 1, this routine returns without unlocking page
1123 * table locks. So callers must unlock them.
1124 */
1125int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1126{
1127 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1128 if (likely(pmd_trans_huge(*pmd))) {
1129 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1130 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1131 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1132 return -1;
cd7548ab 1133 } else {
025c5b24
NH
1134 /* Thp mapped by 'pmd' is stable, so we can
1135 * handle it as it is. */
1136 return 1;
cd7548ab 1137 }
025c5b24
NH
1138 }
1139 spin_unlock(&vma->vm_mm->page_table_lock);
1140 return 0;
cd7548ab
JW
1141}
1142
71e3aac0
AA
1143pmd_t *page_check_address_pmd(struct page *page,
1144 struct mm_struct *mm,
1145 unsigned long address,
1146 enum page_check_address_pmd_flag flag)
1147{
1148 pgd_t *pgd;
1149 pud_t *pud;
1150 pmd_t *pmd, *ret = NULL;
1151
1152 if (address & ~HPAGE_PMD_MASK)
1153 goto out;
1154
1155 pgd = pgd_offset(mm, address);
1156 if (!pgd_present(*pgd))
1157 goto out;
1158
1159 pud = pud_offset(pgd, address);
1160 if (!pud_present(*pud))
1161 goto out;
1162
1163 pmd = pmd_offset(pud, address);
1164 if (pmd_none(*pmd))
1165 goto out;
1166 if (pmd_page(*pmd) != page)
1167 goto out;
94fcc585
AA
1168 /*
1169 * split_vma() may create temporary aliased mappings. There is
1170 * no risk as long as all huge pmd are found and have their
1171 * splitting bit set before __split_huge_page_refcount
1172 * runs. Finding the same huge pmd more than once during the
1173 * same rmap walk is not a problem.
1174 */
1175 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1176 pmd_trans_splitting(*pmd))
1177 goto out;
71e3aac0
AA
1178 if (pmd_trans_huge(*pmd)) {
1179 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1180 !pmd_trans_splitting(*pmd));
1181 ret = pmd;
1182 }
1183out:
1184 return ret;
1185}
1186
1187static int __split_huge_page_splitting(struct page *page,
1188 struct vm_area_struct *vma,
1189 unsigned long address)
1190{
1191 struct mm_struct *mm = vma->vm_mm;
1192 pmd_t *pmd;
1193 int ret = 0;
2ec74c3e
SG
1194 /* For mmu_notifiers */
1195 const unsigned long mmun_start = address;
1196 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1197
2ec74c3e 1198 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1199 spin_lock(&mm->page_table_lock);
1200 pmd = page_check_address_pmd(page, mm, address,
1201 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1202 if (pmd) {
1203 /*
1204 * We can't temporarily set the pmd to null in order
1205 * to split it, the pmd must remain marked huge at all
1206 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1207 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1208 * serialize against split_huge_page*.
1209 */
2ec74c3e 1210 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1211 ret = 1;
1212 }
1213 spin_unlock(&mm->page_table_lock);
2ec74c3e 1214 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1215
1216 return ret;
1217}
1218
1219static void __split_huge_page_refcount(struct page *page)
1220{
1221 int i;
71e3aac0 1222 struct zone *zone = page_zone(page);
fa9add64 1223 struct lruvec *lruvec;
70b50f94 1224 int tail_count = 0;
71e3aac0
AA
1225
1226 /* prevent PageLRU to go away from under us, and freeze lru stats */
1227 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1228 lruvec = mem_cgroup_page_lruvec(page, zone);
1229
71e3aac0 1230 compound_lock(page);
e94c8a9c
KH
1231 /* complete memcg works before add pages to LRU */
1232 mem_cgroup_split_huge_fixup(page);
71e3aac0 1233
45676885 1234 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1235 struct page *page_tail = page + i;
1236
70b50f94
AA
1237 /* tail_page->_mapcount cannot change */
1238 BUG_ON(page_mapcount(page_tail) < 0);
1239 tail_count += page_mapcount(page_tail);
1240 /* check for overflow */
1241 BUG_ON(tail_count < 0);
1242 BUG_ON(atomic_read(&page_tail->_count) != 0);
1243 /*
1244 * tail_page->_count is zero and not changing from
1245 * under us. But get_page_unless_zero() may be running
1246 * from under us on the tail_page. If we used
1247 * atomic_set() below instead of atomic_add(), we
1248 * would then run atomic_set() concurrently with
1249 * get_page_unless_zero(), and atomic_set() is
1250 * implemented in C not using locked ops. spin_unlock
1251 * on x86 sometime uses locked ops because of PPro
1252 * errata 66, 92, so unless somebody can guarantee
1253 * atomic_set() here would be safe on all archs (and
1254 * not only on x86), it's safer to use atomic_add().
1255 */
1256 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1257 &page_tail->_count);
71e3aac0
AA
1258
1259 /* after clearing PageTail the gup refcount can be released */
1260 smp_mb();
1261
a6d30ddd
JD
1262 /*
1263 * retain hwpoison flag of the poisoned tail page:
1264 * fix for the unsuitable process killed on Guest Machine(KVM)
1265 * by the memory-failure.
1266 */
1267 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1268 page_tail->flags |= (page->flags &
1269 ((1L << PG_referenced) |
1270 (1L << PG_swapbacked) |
1271 (1L << PG_mlocked) |
1272 (1L << PG_uptodate)));
1273 page_tail->flags |= (1L << PG_dirty);
1274
70b50f94 1275 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1276 smp_wmb();
1277
1278 /*
1279 * __split_huge_page_splitting() already set the
1280 * splitting bit in all pmd that could map this
1281 * hugepage, that will ensure no CPU can alter the
1282 * mapcount on the head page. The mapcount is only
1283 * accounted in the head page and it has to be
1284 * transferred to all tail pages in the below code. So
1285 * for this code to be safe, the split the mapcount
1286 * can't change. But that doesn't mean userland can't
1287 * keep changing and reading the page contents while
1288 * we transfer the mapcount, so the pmd splitting
1289 * status is achieved setting a reserved bit in the
1290 * pmd, not by clearing the present bit.
1291 */
71e3aac0
AA
1292 page_tail->_mapcount = page->_mapcount;
1293
1294 BUG_ON(page_tail->mapping);
1295 page_tail->mapping = page->mapping;
1296
45676885 1297 page_tail->index = page->index + i;
71e3aac0
AA
1298
1299 BUG_ON(!PageAnon(page_tail));
1300 BUG_ON(!PageUptodate(page_tail));
1301 BUG_ON(!PageDirty(page_tail));
1302 BUG_ON(!PageSwapBacked(page_tail));
1303
fa9add64 1304 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1305 }
70b50f94
AA
1306 atomic_sub(tail_count, &page->_count);
1307 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1308
fa9add64 1309 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1310 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1311
71e3aac0
AA
1312 ClearPageCompound(page);
1313 compound_unlock(page);
1314 spin_unlock_irq(&zone->lru_lock);
1315
1316 for (i = 1; i < HPAGE_PMD_NR; i++) {
1317 struct page *page_tail = page + i;
1318 BUG_ON(page_count(page_tail) <= 0);
1319 /*
1320 * Tail pages may be freed if there wasn't any mapping
1321 * like if add_to_swap() is running on a lru page that
1322 * had its mapping zapped. And freeing these pages
1323 * requires taking the lru_lock so we do the put_page
1324 * of the tail pages after the split is complete.
1325 */
1326 put_page(page_tail);
1327 }
1328
1329 /*
1330 * Only the head page (now become a regular page) is required
1331 * to be pinned by the caller.
1332 */
1333 BUG_ON(page_count(page) <= 0);
1334}
1335
1336static int __split_huge_page_map(struct page *page,
1337 struct vm_area_struct *vma,
1338 unsigned long address)
1339{
1340 struct mm_struct *mm = vma->vm_mm;
1341 pmd_t *pmd, _pmd;
1342 int ret = 0, i;
1343 pgtable_t pgtable;
1344 unsigned long haddr;
1345
1346 spin_lock(&mm->page_table_lock);
1347 pmd = page_check_address_pmd(page, mm, address,
1348 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1349 if (pmd) {
e3ebcf64 1350 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1351 pmd_populate(mm, &_pmd, pgtable);
1352
e3ebcf64
GS
1353 haddr = address;
1354 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1355 pte_t *pte, entry;
1356 BUG_ON(PageCompound(page+i));
1357 entry = mk_pte(page + i, vma->vm_page_prot);
1358 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1359 if (!pmd_write(*pmd))
1360 entry = pte_wrprotect(entry);
1361 else
1362 BUG_ON(page_mapcount(page) != 1);
1363 if (!pmd_young(*pmd))
1364 entry = pte_mkold(entry);
1365 pte = pte_offset_map(&_pmd, haddr);
1366 BUG_ON(!pte_none(*pte));
1367 set_pte_at(mm, haddr, pte, entry);
1368 pte_unmap(pte);
1369 }
1370
71e3aac0
AA
1371 smp_wmb(); /* make pte visible before pmd */
1372 /*
1373 * Up to this point the pmd is present and huge and
1374 * userland has the whole access to the hugepage
1375 * during the split (which happens in place). If we
1376 * overwrite the pmd with the not-huge version
1377 * pointing to the pte here (which of course we could
1378 * if all CPUs were bug free), userland could trigger
1379 * a small page size TLB miss on the small sized TLB
1380 * while the hugepage TLB entry is still established
1381 * in the huge TLB. Some CPU doesn't like that. See
1382 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1383 * Erratum 383 on page 93. Intel should be safe but is
1384 * also warns that it's only safe if the permission
1385 * and cache attributes of the two entries loaded in
1386 * the two TLB is identical (which should be the case
1387 * here). But it is generally safer to never allow
1388 * small and huge TLB entries for the same virtual
1389 * address to be loaded simultaneously. So instead of
1390 * doing "pmd_populate(); flush_tlb_range();" we first
1391 * mark the current pmd notpresent (atomically because
1392 * here the pmd_trans_huge and pmd_trans_splitting
1393 * must remain set at all times on the pmd until the
1394 * split is complete for this pmd), then we flush the
1395 * SMP TLB and finally we write the non-huge version
1396 * of the pmd entry with pmd_populate.
1397 */
46dcde73 1398 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1399 pmd_populate(mm, pmd, pgtable);
1400 ret = 1;
1401 }
1402 spin_unlock(&mm->page_table_lock);
1403
1404 return ret;
1405}
1406
2b575eb6 1407/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1408static void __split_huge_page(struct page *page,
1409 struct anon_vma *anon_vma)
1410{
1411 int mapcount, mapcount2;
bf181b9f 1412 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1413 struct anon_vma_chain *avc;
1414
1415 BUG_ON(!PageHead(page));
1416 BUG_ON(PageTail(page));
1417
1418 mapcount = 0;
bf181b9f 1419 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1420 struct vm_area_struct *vma = avc->vma;
1421 unsigned long addr = vma_address(page, vma);
1422 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1423 mapcount += __split_huge_page_splitting(page, vma, addr);
1424 }
05759d38
AA
1425 /*
1426 * It is critical that new vmas are added to the tail of the
1427 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1428 * and establishes a child pmd before
1429 * __split_huge_page_splitting() freezes the parent pmd (so if
1430 * we fail to prevent copy_huge_pmd() from running until the
1431 * whole __split_huge_page() is complete), we will still see
1432 * the newly established pmd of the child later during the
1433 * walk, to be able to set it as pmd_trans_splitting too.
1434 */
1435 if (mapcount != page_mapcount(page))
1436 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1437 mapcount, page_mapcount(page));
71e3aac0
AA
1438 BUG_ON(mapcount != page_mapcount(page));
1439
1440 __split_huge_page_refcount(page);
1441
1442 mapcount2 = 0;
bf181b9f 1443 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1444 struct vm_area_struct *vma = avc->vma;
1445 unsigned long addr = vma_address(page, vma);
1446 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1447 mapcount2 += __split_huge_page_map(page, vma, addr);
1448 }
05759d38
AA
1449 if (mapcount != mapcount2)
1450 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1451 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1452 BUG_ON(mapcount != mapcount2);
1453}
1454
1455int split_huge_page(struct page *page)
1456{
1457 struct anon_vma *anon_vma;
1458 int ret = 1;
1459
1460 BUG_ON(!PageAnon(page));
1461 anon_vma = page_lock_anon_vma(page);
1462 if (!anon_vma)
1463 goto out;
1464 ret = 0;
1465 if (!PageCompound(page))
1466 goto out_unlock;
1467
1468 BUG_ON(!PageSwapBacked(page));
1469 __split_huge_page(page, anon_vma);
81ab4201 1470 count_vm_event(THP_SPLIT);
71e3aac0
AA
1471
1472 BUG_ON(PageCompound(page));
1473out_unlock:
1474 page_unlock_anon_vma(anon_vma);
1475out:
1476 return ret;
1477}
1478
4b6e1e37 1479#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1480
60ab3244
AA
1481int hugepage_madvise(struct vm_area_struct *vma,
1482 unsigned long *vm_flags, int advice)
0af4e98b 1483{
8e72033f
GS
1484 struct mm_struct *mm = vma->vm_mm;
1485
a664b2d8
AA
1486 switch (advice) {
1487 case MADV_HUGEPAGE:
1488 /*
1489 * Be somewhat over-protective like KSM for now!
1490 */
78f11a25 1491 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1492 return -EINVAL;
8e72033f
GS
1493 if (mm->def_flags & VM_NOHUGEPAGE)
1494 return -EINVAL;
a664b2d8
AA
1495 *vm_flags &= ~VM_NOHUGEPAGE;
1496 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1497 /*
1498 * If the vma become good for khugepaged to scan,
1499 * register it here without waiting a page fault that
1500 * may not happen any time soon.
1501 */
1502 if (unlikely(khugepaged_enter_vma_merge(vma)))
1503 return -ENOMEM;
a664b2d8
AA
1504 break;
1505 case MADV_NOHUGEPAGE:
1506 /*
1507 * Be somewhat over-protective like KSM for now!
1508 */
78f11a25 1509 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1510 return -EINVAL;
1511 *vm_flags &= ~VM_HUGEPAGE;
1512 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1513 /*
1514 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1515 * this vma even if we leave the mm registered in khugepaged if
1516 * it got registered before VM_NOHUGEPAGE was set.
1517 */
a664b2d8
AA
1518 break;
1519 }
0af4e98b
AA
1520
1521 return 0;
1522}
1523
ba76149f
AA
1524static int __init khugepaged_slab_init(void)
1525{
1526 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1527 sizeof(struct mm_slot),
1528 __alignof__(struct mm_slot), 0, NULL);
1529 if (!mm_slot_cache)
1530 return -ENOMEM;
1531
1532 return 0;
1533}
1534
1535static void __init khugepaged_slab_free(void)
1536{
1537 kmem_cache_destroy(mm_slot_cache);
1538 mm_slot_cache = NULL;
1539}
1540
1541static inline struct mm_slot *alloc_mm_slot(void)
1542{
1543 if (!mm_slot_cache) /* initialization failed */
1544 return NULL;
1545 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1546}
1547
1548static inline void free_mm_slot(struct mm_slot *mm_slot)
1549{
1550 kmem_cache_free(mm_slot_cache, mm_slot);
1551}
1552
1553static int __init mm_slots_hash_init(void)
1554{
1555 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1556 GFP_KERNEL);
1557 if (!mm_slots_hash)
1558 return -ENOMEM;
1559 return 0;
1560}
1561
1562#if 0
1563static void __init mm_slots_hash_free(void)
1564{
1565 kfree(mm_slots_hash);
1566 mm_slots_hash = NULL;
1567}
1568#endif
1569
1570static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1571{
1572 struct mm_slot *mm_slot;
1573 struct hlist_head *bucket;
1574 struct hlist_node *node;
1575
1576 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1577 % MM_SLOTS_HASH_HEADS];
1578 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1579 if (mm == mm_slot->mm)
1580 return mm_slot;
1581 }
1582 return NULL;
1583}
1584
1585static void insert_to_mm_slots_hash(struct mm_struct *mm,
1586 struct mm_slot *mm_slot)
1587{
1588 struct hlist_head *bucket;
1589
1590 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1591 % MM_SLOTS_HASH_HEADS];
1592 mm_slot->mm = mm;
1593 hlist_add_head(&mm_slot->hash, bucket);
1594}
1595
1596static inline int khugepaged_test_exit(struct mm_struct *mm)
1597{
1598 return atomic_read(&mm->mm_users) == 0;
1599}
1600
1601int __khugepaged_enter(struct mm_struct *mm)
1602{
1603 struct mm_slot *mm_slot;
1604 int wakeup;
1605
1606 mm_slot = alloc_mm_slot();
1607 if (!mm_slot)
1608 return -ENOMEM;
1609
1610 /* __khugepaged_exit() must not run from under us */
1611 VM_BUG_ON(khugepaged_test_exit(mm));
1612 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1613 free_mm_slot(mm_slot);
1614 return 0;
1615 }
1616
1617 spin_lock(&khugepaged_mm_lock);
1618 insert_to_mm_slots_hash(mm, mm_slot);
1619 /*
1620 * Insert just behind the scanning cursor, to let the area settle
1621 * down a little.
1622 */
1623 wakeup = list_empty(&khugepaged_scan.mm_head);
1624 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1625 spin_unlock(&khugepaged_mm_lock);
1626
1627 atomic_inc(&mm->mm_count);
1628 if (wakeup)
1629 wake_up_interruptible(&khugepaged_wait);
1630
1631 return 0;
1632}
1633
1634int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1635{
1636 unsigned long hstart, hend;
1637 if (!vma->anon_vma)
1638 /*
1639 * Not yet faulted in so we will register later in the
1640 * page fault if needed.
1641 */
1642 return 0;
78f11a25 1643 if (vma->vm_ops)
ba76149f
AA
1644 /* khugepaged not yet working on file or special mappings */
1645 return 0;
b3b9c293 1646 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1647 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1648 hend = vma->vm_end & HPAGE_PMD_MASK;
1649 if (hstart < hend)
1650 return khugepaged_enter(vma);
1651 return 0;
1652}
1653
1654void __khugepaged_exit(struct mm_struct *mm)
1655{
1656 struct mm_slot *mm_slot;
1657 int free = 0;
1658
1659 spin_lock(&khugepaged_mm_lock);
1660 mm_slot = get_mm_slot(mm);
1661 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1662 hlist_del(&mm_slot->hash);
1663 list_del(&mm_slot->mm_node);
1664 free = 1;
1665 }
d788e80a 1666 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1667
1668 if (free) {
ba76149f
AA
1669 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1670 free_mm_slot(mm_slot);
1671 mmdrop(mm);
1672 } else if (mm_slot) {
ba76149f
AA
1673 /*
1674 * This is required to serialize against
1675 * khugepaged_test_exit() (which is guaranteed to run
1676 * under mmap sem read mode). Stop here (after we
1677 * return all pagetables will be destroyed) until
1678 * khugepaged has finished working on the pagetables
1679 * under the mmap_sem.
1680 */
1681 down_write(&mm->mmap_sem);
1682 up_write(&mm->mmap_sem);
d788e80a 1683 }
ba76149f
AA
1684}
1685
1686static void release_pte_page(struct page *page)
1687{
1688 /* 0 stands for page_is_file_cache(page) == false */
1689 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1690 unlock_page(page);
1691 putback_lru_page(page);
1692}
1693
1694static void release_pte_pages(pte_t *pte, pte_t *_pte)
1695{
1696 while (--_pte >= pte) {
1697 pte_t pteval = *_pte;
1698 if (!pte_none(pteval))
1699 release_pte_page(pte_page(pteval));
1700 }
1701}
1702
1703static void release_all_pte_pages(pte_t *pte)
1704{
1705 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1706}
1707
1708static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1709 unsigned long address,
1710 pte_t *pte)
1711{
1712 struct page *page;
1713 pte_t *_pte;
1714 int referenced = 0, isolated = 0, none = 0;
1715 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1716 _pte++, address += PAGE_SIZE) {
1717 pte_t pteval = *_pte;
1718 if (pte_none(pteval)) {
1719 if (++none <= khugepaged_max_ptes_none)
1720 continue;
1721 else {
1722 release_pte_pages(pte, _pte);
1723 goto out;
1724 }
1725 }
1726 if (!pte_present(pteval) || !pte_write(pteval)) {
1727 release_pte_pages(pte, _pte);
1728 goto out;
1729 }
1730 page = vm_normal_page(vma, address, pteval);
1731 if (unlikely(!page)) {
1732 release_pte_pages(pte, _pte);
1733 goto out;
1734 }
1735 VM_BUG_ON(PageCompound(page));
1736 BUG_ON(!PageAnon(page));
1737 VM_BUG_ON(!PageSwapBacked(page));
1738
1739 /* cannot use mapcount: can't collapse if there's a gup pin */
1740 if (page_count(page) != 1) {
1741 release_pte_pages(pte, _pte);
1742 goto out;
1743 }
1744 /*
1745 * We can do it before isolate_lru_page because the
1746 * page can't be freed from under us. NOTE: PG_lock
1747 * is needed to serialize against split_huge_page
1748 * when invoked from the VM.
1749 */
1750 if (!trylock_page(page)) {
1751 release_pte_pages(pte, _pte);
1752 goto out;
1753 }
1754 /*
1755 * Isolate the page to avoid collapsing an hugepage
1756 * currently in use by the VM.
1757 */
1758 if (isolate_lru_page(page)) {
1759 unlock_page(page);
1760 release_pte_pages(pte, _pte);
1761 goto out;
1762 }
1763 /* 0 stands for page_is_file_cache(page) == false */
1764 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1765 VM_BUG_ON(!PageLocked(page));
1766 VM_BUG_ON(PageLRU(page));
1767
1768 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1769 if (pte_young(pteval) || PageReferenced(page) ||
1770 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1771 referenced = 1;
1772 }
1773 if (unlikely(!referenced))
1774 release_all_pte_pages(pte);
1775 else
1776 isolated = 1;
1777out:
1778 return isolated;
1779}
1780
1781static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1782 struct vm_area_struct *vma,
1783 unsigned long address,
1784 spinlock_t *ptl)
1785{
1786 pte_t *_pte;
1787 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1788 pte_t pteval = *_pte;
1789 struct page *src_page;
1790
1791 if (pte_none(pteval)) {
1792 clear_user_highpage(page, address);
1793 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1794 } else {
1795 src_page = pte_page(pteval);
1796 copy_user_highpage(page, src_page, address, vma);
1797 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1798 release_pte_page(src_page);
1799 /*
1800 * ptl mostly unnecessary, but preempt has to
1801 * be disabled to update the per-cpu stats
1802 * inside page_remove_rmap().
1803 */
1804 spin_lock(ptl);
1805 /*
1806 * paravirt calls inside pte_clear here are
1807 * superfluous.
1808 */
1809 pte_clear(vma->vm_mm, address, _pte);
1810 page_remove_rmap(src_page);
1811 spin_unlock(ptl);
1812 free_page_and_swap_cache(src_page);
1813 }
1814
1815 address += PAGE_SIZE;
1816 page++;
1817 }
1818}
1819
26234f36 1820static void khugepaged_alloc_sleep(void)
ba76149f 1821{
26234f36
XG
1822 wait_event_freezable_timeout(khugepaged_wait, false,
1823 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1824}
ba76149f 1825
26234f36
XG
1826#ifdef CONFIG_NUMA
1827static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1828{
1829 if (IS_ERR(*hpage)) {
1830 if (!*wait)
1831 return false;
1832
1833 *wait = false;
e3b4126c 1834 *hpage = NULL;
26234f36
XG
1835 khugepaged_alloc_sleep();
1836 } else if (*hpage) {
1837 put_page(*hpage);
1838 *hpage = NULL;
1839 }
1840
1841 return true;
1842}
1843
1844static struct page
1845*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1846 struct vm_area_struct *vma, unsigned long address,
1847 int node)
1848{
0bbbc0b3 1849 VM_BUG_ON(*hpage);
ce83d217
AA
1850 /*
1851 * Allocate the page while the vma is still valid and under
1852 * the mmap_sem read mode so there is no memory allocation
1853 * later when we take the mmap_sem in write mode. This is more
1854 * friendly behavior (OTOH it may actually hide bugs) to
1855 * filesystems in userland with daemons allocating memory in
1856 * the userland I/O paths. Allocating memory with the
1857 * mmap_sem in read mode is good idea also to allow greater
1858 * scalability.
1859 */
26234f36 1860 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1861 node, __GFP_OTHER_NODE);
692e0b35
AA
1862
1863 /*
1864 * After allocating the hugepage, release the mmap_sem read lock in
1865 * preparation for taking it in write mode.
1866 */
1867 up_read(&mm->mmap_sem);
26234f36 1868 if (unlikely(!*hpage)) {
81ab4201 1869 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 1870 *hpage = ERR_PTR(-ENOMEM);
26234f36 1871 return NULL;
ce83d217 1872 }
26234f36 1873
65b3c07b 1874 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
1875 return *hpage;
1876}
1877#else
1878static struct page *khugepaged_alloc_hugepage(bool *wait)
1879{
1880 struct page *hpage;
1881
1882 do {
1883 hpage = alloc_hugepage(khugepaged_defrag());
1884 if (!hpage) {
1885 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
1886 if (!*wait)
1887 return NULL;
1888
1889 *wait = false;
1890 khugepaged_alloc_sleep();
1891 } else
1892 count_vm_event(THP_COLLAPSE_ALLOC);
1893 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
1894
1895 return hpage;
1896}
1897
1898static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1899{
1900 if (!*hpage)
1901 *hpage = khugepaged_alloc_hugepage(wait);
1902
1903 if (unlikely(!*hpage))
1904 return false;
1905
1906 return true;
1907}
1908
1909static struct page
1910*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
1911 struct vm_area_struct *vma, unsigned long address,
1912 int node)
1913{
1914 up_read(&mm->mmap_sem);
1915 VM_BUG_ON(!*hpage);
1916 return *hpage;
1917}
692e0b35
AA
1918#endif
1919
26234f36
XG
1920static void collapse_huge_page(struct mm_struct *mm,
1921 unsigned long address,
1922 struct page **hpage,
1923 struct vm_area_struct *vma,
1924 int node)
1925{
1926 pgd_t *pgd;
1927 pud_t *pud;
1928 pmd_t *pmd, _pmd;
1929 pte_t *pte;
1930 pgtable_t pgtable;
1931 struct page *new_page;
1932 spinlock_t *ptl;
1933 int isolated;
1934 unsigned long hstart, hend;
2ec74c3e
SG
1935 unsigned long mmun_start; /* For mmu_notifiers */
1936 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
1937
1938 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1939
1940 /* release the mmap_sem read lock. */
1941 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
1942 if (!new_page)
1943 return;
1944
420256ef 1945 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 1946 return;
ba76149f
AA
1947
1948 /*
1949 * Prevent all access to pagetables with the exception of
1950 * gup_fast later hanlded by the ptep_clear_flush and the VM
1951 * handled by the anon_vma lock + PG_lock.
1952 */
1953 down_write(&mm->mmap_sem);
1954 if (unlikely(khugepaged_test_exit(mm)))
1955 goto out;
1956
1957 vma = find_vma(mm, address);
1958 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1959 hend = vma->vm_end & HPAGE_PMD_MASK;
1960 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1961 goto out;
1962
60ab3244
AA
1963 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1964 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1965 goto out;
1966
78f11a25 1967 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1968 goto out;
a7d6e4ec
AA
1969 if (is_vma_temporary_stack(vma))
1970 goto out;
b3b9c293 1971 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1972
1973 pgd = pgd_offset(mm, address);
1974 if (!pgd_present(*pgd))
1975 goto out;
1976
1977 pud = pud_offset(pgd, address);
1978 if (!pud_present(*pud))
1979 goto out;
1980
1981 pmd = pmd_offset(pud, address);
1982 /* pmd can't go away or become huge under us */
1983 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1984 goto out;
1985
ba76149f
AA
1986 anon_vma_lock(vma->anon_vma);
1987
1988 pte = pte_offset_map(pmd, address);
1989 ptl = pte_lockptr(mm, pmd);
1990
2ec74c3e
SG
1991 mmun_start = address;
1992 mmun_end = address + HPAGE_PMD_SIZE;
1993 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
1994 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1995 /*
1996 * After this gup_fast can't run anymore. This also removes
1997 * any huge TLB entry from the CPU so we won't allow
1998 * huge and small TLB entries for the same virtual address
1999 * to avoid the risk of CPU bugs in that area.
2000 */
2ec74c3e 2001 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2002 spin_unlock(&mm->page_table_lock);
2ec74c3e 2003 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2004
2005 spin_lock(ptl);
2006 isolated = __collapse_huge_page_isolate(vma, address, pte);
2007 spin_unlock(ptl);
ba76149f
AA
2008
2009 if (unlikely(!isolated)) {
453c7192 2010 pte_unmap(pte);
ba76149f
AA
2011 spin_lock(&mm->page_table_lock);
2012 BUG_ON(!pmd_none(*pmd));
2013 set_pmd_at(mm, address, pmd, _pmd);
2014 spin_unlock(&mm->page_table_lock);
2015 anon_vma_unlock(vma->anon_vma);
ce83d217 2016 goto out;
ba76149f
AA
2017 }
2018
2019 /*
2020 * All pages are isolated and locked so anon_vma rmap
2021 * can't run anymore.
2022 */
2023 anon_vma_unlock(vma->anon_vma);
2024
2025 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2026 pte_unmap(pte);
ba76149f
AA
2027 __SetPageUptodate(new_page);
2028 pgtable = pmd_pgtable(_pmd);
ba76149f
AA
2029
2030 _pmd = mk_pmd(new_page, vma->vm_page_prot);
2031 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2032 _pmd = pmd_mkhuge(_pmd);
2033
2034 /*
2035 * spin_lock() below is not the equivalent of smp_wmb(), so
2036 * this is needed to avoid the copy_huge_page writes to become
2037 * visible after the set_pmd_at() write.
2038 */
2039 smp_wmb();
2040
2041 spin_lock(&mm->page_table_lock);
2042 BUG_ON(!pmd_none(*pmd));
2043 page_add_new_anon_rmap(new_page, vma, address);
2044 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2045 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2046 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2047 spin_unlock(&mm->page_table_lock);
2048
2049 *hpage = NULL;
420256ef 2050
ba76149f 2051 khugepaged_pages_collapsed++;
ce83d217 2052out_up_write:
ba76149f 2053 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2054 return;
2055
ce83d217 2056out:
678ff896 2057 mem_cgroup_uncharge_page(new_page);
ce83d217 2058 goto out_up_write;
ba76149f
AA
2059}
2060
2061static int khugepaged_scan_pmd(struct mm_struct *mm,
2062 struct vm_area_struct *vma,
2063 unsigned long address,
2064 struct page **hpage)
2065{
2066 pgd_t *pgd;
2067 pud_t *pud;
2068 pmd_t *pmd;
2069 pte_t *pte, *_pte;
2070 int ret = 0, referenced = 0, none = 0;
2071 struct page *page;
2072 unsigned long _address;
2073 spinlock_t *ptl;
5c4b4be3 2074 int node = -1;
ba76149f
AA
2075
2076 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2077
2078 pgd = pgd_offset(mm, address);
2079 if (!pgd_present(*pgd))
2080 goto out;
2081
2082 pud = pud_offset(pgd, address);
2083 if (!pud_present(*pud))
2084 goto out;
2085
2086 pmd = pmd_offset(pud, address);
2087 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2088 goto out;
2089
2090 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2091 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2092 _pte++, _address += PAGE_SIZE) {
2093 pte_t pteval = *_pte;
2094 if (pte_none(pteval)) {
2095 if (++none <= khugepaged_max_ptes_none)
2096 continue;
2097 else
2098 goto out_unmap;
2099 }
2100 if (!pte_present(pteval) || !pte_write(pteval))
2101 goto out_unmap;
2102 page = vm_normal_page(vma, _address, pteval);
2103 if (unlikely(!page))
2104 goto out_unmap;
5c4b4be3
AK
2105 /*
2106 * Chose the node of the first page. This could
2107 * be more sophisticated and look at more pages,
2108 * but isn't for now.
2109 */
2110 if (node == -1)
2111 node = page_to_nid(page);
ba76149f
AA
2112 VM_BUG_ON(PageCompound(page));
2113 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2114 goto out_unmap;
2115 /* cannot use mapcount: can't collapse if there's a gup pin */
2116 if (page_count(page) != 1)
2117 goto out_unmap;
8ee53820
AA
2118 if (pte_young(pteval) || PageReferenced(page) ||
2119 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2120 referenced = 1;
2121 }
2122 if (referenced)
2123 ret = 1;
2124out_unmap:
2125 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2126 if (ret)
2127 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2128 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2129out:
2130 return ret;
2131}
2132
2133static void collect_mm_slot(struct mm_slot *mm_slot)
2134{
2135 struct mm_struct *mm = mm_slot->mm;
2136
b9980cdc 2137 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2138
2139 if (khugepaged_test_exit(mm)) {
2140 /* free mm_slot */
2141 hlist_del(&mm_slot->hash);
2142 list_del(&mm_slot->mm_node);
2143
2144 /*
2145 * Not strictly needed because the mm exited already.
2146 *
2147 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2148 */
2149
2150 /* khugepaged_mm_lock actually not necessary for the below */
2151 free_mm_slot(mm_slot);
2152 mmdrop(mm);
2153 }
2154}
2155
2156static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2157 struct page **hpage)
2f1da642
HS
2158 __releases(&khugepaged_mm_lock)
2159 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2160{
2161 struct mm_slot *mm_slot;
2162 struct mm_struct *mm;
2163 struct vm_area_struct *vma;
2164 int progress = 0;
2165
2166 VM_BUG_ON(!pages);
b9980cdc 2167 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2168
2169 if (khugepaged_scan.mm_slot)
2170 mm_slot = khugepaged_scan.mm_slot;
2171 else {
2172 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2173 struct mm_slot, mm_node);
2174 khugepaged_scan.address = 0;
2175 khugepaged_scan.mm_slot = mm_slot;
2176 }
2177 spin_unlock(&khugepaged_mm_lock);
2178
2179 mm = mm_slot->mm;
2180 down_read(&mm->mmap_sem);
2181 if (unlikely(khugepaged_test_exit(mm)))
2182 vma = NULL;
2183 else
2184 vma = find_vma(mm, khugepaged_scan.address);
2185
2186 progress++;
2187 for (; vma; vma = vma->vm_next) {
2188 unsigned long hstart, hend;
2189
2190 cond_resched();
2191 if (unlikely(khugepaged_test_exit(mm))) {
2192 progress++;
2193 break;
2194 }
2195
60ab3244
AA
2196 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2197 !khugepaged_always()) ||
2198 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2199 skip:
ba76149f
AA
2200 progress++;
2201 continue;
2202 }
78f11a25 2203 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2204 goto skip;
2205 if (is_vma_temporary_stack(vma))
2206 goto skip;
b3b9c293 2207 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2208
2209 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2210 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2211 if (hstart >= hend)
2212 goto skip;
2213 if (khugepaged_scan.address > hend)
2214 goto skip;
ba76149f
AA
2215 if (khugepaged_scan.address < hstart)
2216 khugepaged_scan.address = hstart;
a7d6e4ec 2217 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2218
2219 while (khugepaged_scan.address < hend) {
2220 int ret;
2221 cond_resched();
2222 if (unlikely(khugepaged_test_exit(mm)))
2223 goto breakouterloop;
2224
2225 VM_BUG_ON(khugepaged_scan.address < hstart ||
2226 khugepaged_scan.address + HPAGE_PMD_SIZE >
2227 hend);
2228 ret = khugepaged_scan_pmd(mm, vma,
2229 khugepaged_scan.address,
2230 hpage);
2231 /* move to next address */
2232 khugepaged_scan.address += HPAGE_PMD_SIZE;
2233 progress += HPAGE_PMD_NR;
2234 if (ret)
2235 /* we released mmap_sem so break loop */
2236 goto breakouterloop_mmap_sem;
2237 if (progress >= pages)
2238 goto breakouterloop;
2239 }
2240 }
2241breakouterloop:
2242 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2243breakouterloop_mmap_sem:
2244
2245 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2246 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2247 /*
2248 * Release the current mm_slot if this mm is about to die, or
2249 * if we scanned all vmas of this mm.
2250 */
2251 if (khugepaged_test_exit(mm) || !vma) {
2252 /*
2253 * Make sure that if mm_users is reaching zero while
2254 * khugepaged runs here, khugepaged_exit will find
2255 * mm_slot not pointing to the exiting mm.
2256 */
2257 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2258 khugepaged_scan.mm_slot = list_entry(
2259 mm_slot->mm_node.next,
2260 struct mm_slot, mm_node);
2261 khugepaged_scan.address = 0;
2262 } else {
2263 khugepaged_scan.mm_slot = NULL;
2264 khugepaged_full_scans++;
2265 }
2266
2267 collect_mm_slot(mm_slot);
2268 }
2269
2270 return progress;
2271}
2272
2273static int khugepaged_has_work(void)
2274{
2275 return !list_empty(&khugepaged_scan.mm_head) &&
2276 khugepaged_enabled();
2277}
2278
2279static int khugepaged_wait_event(void)
2280{
2281 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2282 kthread_should_stop();
ba76149f
AA
2283}
2284
d516904b 2285static void khugepaged_do_scan(void)
ba76149f 2286{
d516904b 2287 struct page *hpage = NULL;
ba76149f
AA
2288 unsigned int progress = 0, pass_through_head = 0;
2289 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2290 bool wait = true;
ba76149f
AA
2291
2292 barrier(); /* write khugepaged_pages_to_scan to local stack */
2293
2294 while (progress < pages) {
26234f36 2295 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2296 break;
26234f36 2297
420256ef 2298 cond_resched();
ba76149f 2299
878aee7d
AA
2300 if (unlikely(kthread_should_stop() || freezing(current)))
2301 break;
2302
ba76149f
AA
2303 spin_lock(&khugepaged_mm_lock);
2304 if (!khugepaged_scan.mm_slot)
2305 pass_through_head++;
2306 if (khugepaged_has_work() &&
2307 pass_through_head < 2)
2308 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2309 &hpage);
ba76149f
AA
2310 else
2311 progress = pages;
2312 spin_unlock(&khugepaged_mm_lock);
2313 }
ba76149f 2314
d516904b
XG
2315 if (!IS_ERR_OR_NULL(hpage))
2316 put_page(hpage);
0bbbc0b3
AA
2317}
2318
2017c0bf
XG
2319static void khugepaged_wait_work(void)
2320{
2321 try_to_freeze();
2322
2323 if (khugepaged_has_work()) {
2324 if (!khugepaged_scan_sleep_millisecs)
2325 return;
2326
2327 wait_event_freezable_timeout(khugepaged_wait,
2328 kthread_should_stop(),
2329 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2330 return;
2331 }
2332
2333 if (khugepaged_enabled())
2334 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2335}
2336
ba76149f
AA
2337static int khugepaged(void *none)
2338{
2339 struct mm_slot *mm_slot;
2340
878aee7d 2341 set_freezable();
ba76149f
AA
2342 set_user_nice(current, 19);
2343
b7231789
XG
2344 while (!kthread_should_stop()) {
2345 khugepaged_do_scan();
2346 khugepaged_wait_work();
2347 }
ba76149f
AA
2348
2349 spin_lock(&khugepaged_mm_lock);
2350 mm_slot = khugepaged_scan.mm_slot;
2351 khugepaged_scan.mm_slot = NULL;
2352 if (mm_slot)
2353 collect_mm_slot(mm_slot);
2354 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2355 return 0;
2356}
2357
71e3aac0
AA
2358void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2359{
2360 struct page *page;
2361
2362 spin_lock(&mm->page_table_lock);
2363 if (unlikely(!pmd_trans_huge(*pmd))) {
2364 spin_unlock(&mm->page_table_lock);
2365 return;
2366 }
2367 page = pmd_page(*pmd);
2368 VM_BUG_ON(!page_count(page));
2369 get_page(page);
2370 spin_unlock(&mm->page_table_lock);
2371
2372 split_huge_page(page);
2373
2374 put_page(page);
2375 BUG_ON(pmd_trans_huge(*pmd));
2376}
94fcc585
AA
2377
2378static void split_huge_page_address(struct mm_struct *mm,
2379 unsigned long address)
2380{
2381 pgd_t *pgd;
2382 pud_t *pud;
2383 pmd_t *pmd;
2384
2385 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2386
2387 pgd = pgd_offset(mm, address);
2388 if (!pgd_present(*pgd))
2389 return;
2390
2391 pud = pud_offset(pgd, address);
2392 if (!pud_present(*pud))
2393 return;
2394
2395 pmd = pmd_offset(pud, address);
2396 if (!pmd_present(*pmd))
2397 return;
2398 /*
2399 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2400 * materialize from under us.
2401 */
2402 split_huge_page_pmd(mm, pmd);
2403}
2404
2405void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2406 unsigned long start,
2407 unsigned long end,
2408 long adjust_next)
2409{
2410 /*
2411 * If the new start address isn't hpage aligned and it could
2412 * previously contain an hugepage: check if we need to split
2413 * an huge pmd.
2414 */
2415 if (start & ~HPAGE_PMD_MASK &&
2416 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2417 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2418 split_huge_page_address(vma->vm_mm, start);
2419
2420 /*
2421 * If the new end address isn't hpage aligned and it could
2422 * previously contain an hugepage: check if we need to split
2423 * an huge pmd.
2424 */
2425 if (end & ~HPAGE_PMD_MASK &&
2426 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2427 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2428 split_huge_page_address(vma->vm_mm, end);
2429
2430 /*
2431 * If we're also updating the vma->vm_next->vm_start, if the new
2432 * vm_next->vm_start isn't page aligned and it could previously
2433 * contain an hugepage: check if we need to split an huge pmd.
2434 */
2435 if (adjust_next > 0) {
2436 struct vm_area_struct *next = vma->vm_next;
2437 unsigned long nstart = next->vm_start;
2438 nstart += adjust_next << PAGE_SHIFT;
2439 if (nstart & ~HPAGE_PMD_MASK &&
2440 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2441 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2442 split_huge_page_address(next->vm_mm, nstart);
2443 }
2444}