]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm: postpone page table allocation until we have page to map
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
70652f6e
EA
60 SCAN_CGROUP_CHARGE_FAIL,
61 SCAN_EXCEED_SWAP_PTE
7d2eba05
EA
62};
63
64#define CREATE_TRACE_POINTS
65#include <trace/events/huge_memory.h>
66
ba76149f 67/*
8bfa3f9a
JW
68 * By default transparent hugepage support is disabled in order that avoid
69 * to risk increase the memory footprint of applications without a guaranteed
70 * benefit. When transparent hugepage support is enabled, is for all mappings,
71 * and khugepaged scans all mappings.
72 * Defrag is invoked by khugepaged hugepage allocations and by page faults
73 * for all hugepage allocations.
ba76149f 74 */
71e3aac0 75unsigned long transparent_hugepage_flags __read_mostly =
13ece886 76#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 77 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
78#endif
79#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81#endif
444eb2a4 82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
85
86/* default scan 8*512 pte (or vmas) every 30 second */
ff20c2e0 87static unsigned int khugepaged_pages_to_scan __read_mostly;
ba76149f
AA
88static unsigned int khugepaged_pages_collapsed;
89static unsigned int khugepaged_full_scans;
90static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91/* during fragmentation poll the hugepage allocator once every minute */
92static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
f0508977 93static unsigned long khugepaged_sleep_expire;
ba76149f
AA
94static struct task_struct *khugepaged_thread __read_mostly;
95static DEFINE_MUTEX(khugepaged_mutex);
96static DEFINE_SPINLOCK(khugepaged_mm_lock);
97static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98/*
99 * default collapse hugepages if there is at least one pte mapped like
100 * it would have happened if the vma was large enough during page
101 * fault.
102 */
ff20c2e0 103static unsigned int khugepaged_max_ptes_none __read_mostly;
70652f6e 104static unsigned int khugepaged_max_ptes_swap __read_mostly;
ba76149f
AA
105
106static int khugepaged(void *none);
ba76149f 107static int khugepaged_slab_init(void);
65ebb64f 108static void khugepaged_slab_exit(void);
ba76149f 109
43b5fbbd
SL
110#define MM_SLOTS_HASH_BITS 10
111static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
ba76149f
AA
113static struct kmem_cache *mm_slot_cache __read_mostly;
114
115/**
116 * struct mm_slot - hash lookup from mm to mm_slot
117 * @hash: hash collision list
118 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119 * @mm: the mm that this information is valid for
120 */
121struct mm_slot {
122 struct hlist_node hash;
123 struct list_head mm_node;
124 struct mm_struct *mm;
125};
126
127/**
128 * struct khugepaged_scan - cursor for scanning
129 * @mm_head: the head of the mm list to scan
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 *
133 * There is only the one khugepaged_scan instance of this cursor structure.
134 */
135struct khugepaged_scan {
136 struct list_head mm_head;
137 struct mm_slot *mm_slot;
138 unsigned long address;
2f1da642
HS
139};
140static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
141 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142};
143
9a982250 144static struct shrinker deferred_split_shrinker;
f000565a 145
2c0b80d4 146static void set_recommended_min_free_kbytes(void)
f000565a
AA
147{
148 struct zone *zone;
149 int nr_zones = 0;
150 unsigned long recommended_min;
f000565a 151
f000565a
AA
152 for_each_populated_zone(zone)
153 nr_zones++;
154
974a786e 155 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
156 recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158 /*
159 * Make sure that on average at least two pageblocks are almost free
160 * of another type, one for a migratetype to fall back to and a
161 * second to avoid subsequent fallbacks of other types There are 3
162 * MIGRATE_TYPES we care about.
163 */
164 recommended_min += pageblock_nr_pages * nr_zones *
165 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167 /* don't ever allow to reserve more than 5% of the lowmem */
168 recommended_min = min(recommended_min,
169 (unsigned long) nr_free_buffer_pages() / 20);
170 recommended_min <<= (PAGE_SHIFT-10);
171
42aa83cb
HP
172 if (recommended_min > min_free_kbytes) {
173 if (user_min_free_kbytes >= 0)
756a025f 174 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
42aa83cb
HP
175 min_free_kbytes, recommended_min);
176
f000565a 177 min_free_kbytes = recommended_min;
42aa83cb 178 }
f000565a 179 setup_per_zone_wmarks();
f000565a 180}
f000565a 181
79553da2 182static int start_stop_khugepaged(void)
ba76149f
AA
183{
184 int err = 0;
185 if (khugepaged_enabled()) {
ba76149f
AA
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
18e8e5c7 189 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
79553da2 193 goto fail;
ba76149f 194 }
911891af
XG
195
196 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 197 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
198
199 set_recommended_min_free_kbytes();
911891af 200 } else if (khugepaged_thread) {
911891af
XG
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
79553da2 204fail:
ba76149f
AA
205 return err;
206}
71e3aac0 207
97ae1749 208static atomic_t huge_zero_refcount;
56873f43 209struct page *huge_zero_page __read_mostly;
4a6c1297 210
fc437044 211struct page *get_huge_zero_page(void)
97ae1749
KS
212{
213 struct page *zero_page;
214retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 216 return READ_ONCE(huge_zero_page);
97ae1749
KS
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 219 HPAGE_PMD_ORDER);
d8a8e1f0
KS
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 222 return NULL;
d8a8e1f0
KS
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 225 preempt_disable();
5918d10a 226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 227 preempt_enable();
5ddacbe9 228 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
4db0c3c2 235 return READ_ONCE(huge_zero_page);
4a6c1297
KS
236}
237
aa88b68c 238void put_huge_zero_page(void)
4a6c1297 239{
97ae1749
KS
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
245}
246
48896466
GC
247static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
4a6c1297 249{
48896466
GC
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252}
97ae1749 253
48896466
GC
254static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256{
97ae1749 257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
5ddacbe9 260 __free_pages(zero_page, compound_order(zero_page));
48896466 261 return HPAGE_PMD_NR;
97ae1749
KS
262 }
263
264 return 0;
4a6c1297
KS
265}
266
97ae1749 267static struct shrinker huge_zero_page_shrinker = {
48896466
GC
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
270 .seeks = DEFAULT_SEEKS,
271};
272
71e3aac0 273#ifdef CONFIG_SYSFS
ba76149f 274
444eb2a4 275static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
276 struct kobj_attribute *attr,
277 const char *buf, size_t count,
278 enum transparent_hugepage_flag enabled,
444eb2a4 279 enum transparent_hugepage_flag deferred,
71e3aac0
AA
280 enum transparent_hugepage_flag req_madv)
281{
444eb2a4
MG
282 if (!memcmp("defer", buf,
283 min(sizeof("defer")-1, count))) {
284 if (enabled == deferred)
285 return -EINVAL;
286 clear_bit(enabled, &transparent_hugepage_flags);
287 clear_bit(req_madv, &transparent_hugepage_flags);
288 set_bit(deferred, &transparent_hugepage_flags);
289 } else if (!memcmp("always", buf,
71e3aac0 290 min(sizeof("always")-1, count))) {
444eb2a4 291 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 292 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 293 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
294 } else if (!memcmp("madvise", buf,
295 min(sizeof("madvise")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 297 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
298 set_bit(req_madv, &transparent_hugepage_flags);
299 } else if (!memcmp("never", buf,
300 min(sizeof("never")-1, count))) {
301 clear_bit(enabled, &transparent_hugepage_flags);
302 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 303 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
304 } else
305 return -EINVAL;
306
307 return count;
308}
309
310static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312{
444eb2a4
MG
313 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "[always] madvise never\n");
315 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316 return sprintf(buf, "always [madvise] never\n");
317 else
318 return sprintf(buf, "always madvise [never]\n");
71e3aac0 319}
444eb2a4 320
71e3aac0
AA
321static ssize_t enabled_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324{
ba76149f
AA
325 ssize_t ret;
326
444eb2a4
MG
327 ret = triple_flag_store(kobj, attr, buf, count,
328 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332 if (ret > 0) {
911891af
XG
333 int err;
334
335 mutex_lock(&khugepaged_mutex);
79553da2 336 err = start_stop_khugepaged();
911891af
XG
337 mutex_unlock(&khugepaged_mutex);
338
ba76149f
AA
339 if (err)
340 ret = err;
341 }
342
343 return ret;
71e3aac0
AA
344}
345static struct kobj_attribute enabled_attr =
346 __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348static ssize_t single_flag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf,
350 enum transparent_hugepage_flag flag)
351{
e27e6151
BH
352 return sprintf(buf, "%d\n",
353 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 354}
e27e6151 355
71e3aac0
AA
356static ssize_t single_flag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count,
359 enum transparent_hugepage_flag flag)
360{
e27e6151
BH
361 unsigned long value;
362 int ret;
363
364 ret = kstrtoul(buf, 10, &value);
365 if (ret < 0)
366 return ret;
367 if (value > 1)
368 return -EINVAL;
369
370 if (value)
71e3aac0 371 set_bit(flag, &transparent_hugepage_flags);
e27e6151 372 else
71e3aac0 373 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
374
375 return count;
376}
377
378/*
379 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381 * memory just to allocate one more hugepage.
382 */
383static ssize_t defrag_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
444eb2a4
MG
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "[always] defer madvise never\n");
388 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always [defer] madvise never\n");
390 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391 return sprintf(buf, "always defer [madvise] never\n");
392 else
393 return sprintf(buf, "always defer madvise [never]\n");
394
71e3aac0
AA
395}
396static ssize_t defrag_store(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 const char *buf, size_t count)
399{
444eb2a4
MG
400 return triple_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
403 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404}
405static struct kobj_attribute defrag_attr =
406 __ATTR(defrag, 0644, defrag_show, defrag_store);
407
79da5407
KS
408static ssize_t use_zero_page_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410{
411 return single_flag_show(kobj, attr, buf,
412 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413}
414static ssize_t use_zero_page_store(struct kobject *kobj,
415 struct kobj_attribute *attr, const char *buf, size_t count)
416{
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419}
420static struct kobj_attribute use_zero_page_attr =
421 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
422#ifdef CONFIG_DEBUG_VM
423static ssize_t debug_cow_show(struct kobject *kobj,
424 struct kobj_attribute *attr, char *buf)
425{
426 return single_flag_show(kobj, attr, buf,
427 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428}
429static ssize_t debug_cow_store(struct kobject *kobj,
430 struct kobj_attribute *attr,
431 const char *buf, size_t count)
432{
433 return single_flag_store(kobj, attr, buf, count,
434 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435}
436static struct kobj_attribute debug_cow_attr =
437 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438#endif /* CONFIG_DEBUG_VM */
439
440static struct attribute *hugepage_attr[] = {
441 &enabled_attr.attr,
442 &defrag_attr.attr,
79da5407 443 &use_zero_page_attr.attr,
71e3aac0
AA
444#ifdef CONFIG_DEBUG_VM
445 &debug_cow_attr.attr,
446#endif
447 NULL,
448};
449
450static struct attribute_group hugepage_attr_group = {
451 .attrs = hugepage_attr,
ba76149f
AA
452};
453
454static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 char *buf)
457{
458 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459}
460
461static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464{
465 unsigned long msecs;
466 int err;
467
3dbb95f7 468 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
469 if (err || msecs > UINT_MAX)
470 return -EINVAL;
471
472 khugepaged_scan_sleep_millisecs = msecs;
f0508977 473 khugepaged_sleep_expire = 0;
ba76149f
AA
474 wake_up_interruptible(&khugepaged_wait);
475
476 return count;
477}
478static struct kobj_attribute scan_sleep_millisecs_attr =
479 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480 scan_sleep_millisecs_store);
481
482static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483 struct kobj_attribute *attr,
484 char *buf)
485{
486 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487}
488
489static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490 struct kobj_attribute *attr,
491 const char *buf, size_t count)
492{
493 unsigned long msecs;
494 int err;
495
3dbb95f7 496 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
497 if (err || msecs > UINT_MAX)
498 return -EINVAL;
499
500 khugepaged_alloc_sleep_millisecs = msecs;
f0508977 501 khugepaged_sleep_expire = 0;
ba76149f
AA
502 wake_up_interruptible(&khugepaged_wait);
503
504 return count;
505}
506static struct kobj_attribute alloc_sleep_millisecs_attr =
507 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508 alloc_sleep_millisecs_store);
509
510static ssize_t pages_to_scan_show(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 char *buf)
513{
514 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515}
516static ssize_t pages_to_scan_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519{
520 int err;
521 unsigned long pages;
522
3dbb95f7 523 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
524 if (err || !pages || pages > UINT_MAX)
525 return -EINVAL;
526
527 khugepaged_pages_to_scan = pages;
528
529 return count;
530}
531static struct kobj_attribute pages_to_scan_attr =
532 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533 pages_to_scan_store);
534
535static ssize_t pages_collapsed_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538{
539 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540}
541static struct kobj_attribute pages_collapsed_attr =
542 __ATTR_RO(pages_collapsed);
543
544static ssize_t full_scans_show(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 char *buf)
547{
548 return sprintf(buf, "%u\n", khugepaged_full_scans);
549}
550static struct kobj_attribute full_scans_attr =
551 __ATTR_RO(full_scans);
552
553static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554 struct kobj_attribute *attr, char *buf)
555{
556 return single_flag_show(kobj, attr, buf,
557 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558}
559static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 const char *buf, size_t count)
562{
563 return single_flag_store(kobj, attr, buf, count,
564 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565}
566static struct kobj_attribute khugepaged_defrag_attr =
567 __ATTR(defrag, 0644, khugepaged_defrag_show,
568 khugepaged_defrag_store);
569
570/*
571 * max_ptes_none controls if khugepaged should collapse hugepages over
572 * any unmapped ptes in turn potentially increasing the memory
573 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574 * reduce the available free memory in the system as it
575 * runs. Increasing max_ptes_none will instead potentially reduce the
576 * free memory in the system during the khugepaged scan.
577 */
578static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579 struct kobj_attribute *attr,
580 char *buf)
581{
582 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583}
584static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585 struct kobj_attribute *attr,
586 const char *buf, size_t count)
587{
588 int err;
589 unsigned long max_ptes_none;
590
3dbb95f7 591 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
592 if (err || max_ptes_none > HPAGE_PMD_NR-1)
593 return -EINVAL;
594
595 khugepaged_max_ptes_none = max_ptes_none;
596
597 return count;
598}
599static struct kobj_attribute khugepaged_max_ptes_none_attr =
600 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601 khugepaged_max_ptes_none_store);
602
70652f6e
EA
603static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604 struct kobj_attribute *attr,
605 char *buf)
606{
607 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608}
609
610static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611 struct kobj_attribute *attr,
612 const char *buf, size_t count)
613{
614 int err;
615 unsigned long max_ptes_swap;
616
617 err = kstrtoul(buf, 10, &max_ptes_swap);
618 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619 return -EINVAL;
620
621 khugepaged_max_ptes_swap = max_ptes_swap;
622
623 return count;
624}
625
626static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628 khugepaged_max_ptes_swap_store);
629
ba76149f
AA
630static struct attribute *khugepaged_attr[] = {
631 &khugepaged_defrag_attr.attr,
632 &khugepaged_max_ptes_none_attr.attr,
633 &pages_to_scan_attr.attr,
634 &pages_collapsed_attr.attr,
635 &full_scans_attr.attr,
636 &scan_sleep_millisecs_attr.attr,
637 &alloc_sleep_millisecs_attr.attr,
70652f6e 638 &khugepaged_max_ptes_swap_attr.attr,
ba76149f
AA
639 NULL,
640};
641
642static struct attribute_group khugepaged_attr_group = {
643 .attrs = khugepaged_attr,
644 .name = "khugepaged",
71e3aac0 645};
71e3aac0 646
569e5590 647static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 648{
71e3aac0
AA
649 int err;
650
569e5590
SL
651 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 653 pr_err("failed to create transparent hugepage kobject\n");
569e5590 654 return -ENOMEM;
ba76149f
AA
655 }
656
569e5590 657 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 658 if (err) {
ae3a8c1c 659 pr_err("failed to register transparent hugepage group\n");
569e5590 660 goto delete_obj;
ba76149f
AA
661 }
662
569e5590 663 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 664 if (err) {
ae3a8c1c 665 pr_err("failed to register transparent hugepage group\n");
569e5590 666 goto remove_hp_group;
ba76149f 667 }
569e5590
SL
668
669 return 0;
670
671remove_hp_group:
672 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673delete_obj:
674 kobject_put(*hugepage_kobj);
675 return err;
676}
677
678static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679{
680 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682 kobject_put(hugepage_kobj);
683}
684#else
685static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686{
687 return 0;
688}
689
690static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691{
692}
693#endif /* CONFIG_SYSFS */
694
695static int __init hugepage_init(void)
696{
697 int err;
698 struct kobject *hugepage_kobj;
699
700 if (!has_transparent_hugepage()) {
701 transparent_hugepage_flags = 0;
702 return -EINVAL;
703 }
704
ff20c2e0
KS
705 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
70652f6e 707 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
ff20c2e0
KS
708 /*
709 * hugepages can't be allocated by the buddy allocator
710 */
711 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712 /*
713 * we use page->mapping and page->index in second tail page
714 * as list_head: assuming THP order >= 2
715 */
716 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
569e5590
SL
718 err = hugepage_init_sysfs(&hugepage_kobj);
719 if (err)
65ebb64f 720 goto err_sysfs;
ba76149f
AA
721
722 err = khugepaged_slab_init();
723 if (err)
65ebb64f 724 goto err_slab;
ba76149f 725
65ebb64f
KS
726 err = register_shrinker(&huge_zero_page_shrinker);
727 if (err)
728 goto err_hzp_shrinker;
9a982250
KS
729 err = register_shrinker(&deferred_split_shrinker);
730 if (err)
731 goto err_split_shrinker;
97ae1749 732
97562cd2
RR
733 /*
734 * By default disable transparent hugepages on smaller systems,
735 * where the extra memory used could hurt more than TLB overhead
736 * is likely to save. The admin can still enable it through /sys.
737 */
79553da2 738 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 739 transparent_hugepage_flags = 0;
79553da2
KS
740 return 0;
741 }
97562cd2 742
79553da2 743 err = start_stop_khugepaged();
65ebb64f
KS
744 if (err)
745 goto err_khugepaged;
ba76149f 746
569e5590 747 return 0;
65ebb64f 748err_khugepaged:
9a982250
KS
749 unregister_shrinker(&deferred_split_shrinker);
750err_split_shrinker:
65ebb64f
KS
751 unregister_shrinker(&huge_zero_page_shrinker);
752err_hzp_shrinker:
753 khugepaged_slab_exit();
754err_slab:
569e5590 755 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 756err_sysfs:
ba76149f 757 return err;
71e3aac0 758}
a64fb3cd 759subsys_initcall(hugepage_init);
71e3aac0
AA
760
761static int __init setup_transparent_hugepage(char *str)
762{
763 int ret = 0;
764 if (!str)
765 goto out;
766 if (!strcmp(str, "always")) {
767 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768 &transparent_hugepage_flags);
769 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770 &transparent_hugepage_flags);
771 ret = 1;
772 } else if (!strcmp(str, "madvise")) {
773 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774 &transparent_hugepage_flags);
775 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776 &transparent_hugepage_flags);
777 ret = 1;
778 } else if (!strcmp(str, "never")) {
779 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780 &transparent_hugepage_flags);
781 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782 &transparent_hugepage_flags);
783 ret = 1;
784 }
785out:
786 if (!ret)
ae3a8c1c 787 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
788 return ret;
789}
790__setup("transparent_hugepage=", setup_transparent_hugepage);
791
b32967ff 792pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
793{
794 if (likely(vma->vm_flags & VM_WRITE))
795 pmd = pmd_mkwrite(pmd);
796 return pmd;
797}
798
3122359a 799static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b 800{
340a43be 801 return pmd_mkhuge(mk_pmd(page, prot));
b3092b3b
BL
802}
803
9a982250
KS
804static inline struct list_head *page_deferred_list(struct page *page)
805{
806 /*
807 * ->lru in the tail pages is occupied by compound_head.
808 * Let's use ->mapping + ->index in the second tail page as list_head.
809 */
810 return (struct list_head *)&page[2].mapping;
811}
812
813void prep_transhuge_page(struct page *page)
814{
815 /*
816 * we use page->mapping and page->indexlru in second tail page
817 * as list_head: assuming THP order >= 2
818 */
9a982250
KS
819
820 INIT_LIST_HEAD(page_deferred_list(page));
821 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
822}
823
bae473a4
KS
824static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
825 gfp_t gfp)
71e3aac0 826{
bae473a4 827 struct vm_area_struct *vma = fe->vma;
00501b53 828 struct mem_cgroup *memcg;
71e3aac0 829 pgtable_t pgtable;
bae473a4 830 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 831
309381fe 832 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 833
bae473a4 834 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
835 put_page(page);
836 count_vm_event(THP_FAULT_FALLBACK);
837 return VM_FAULT_FALLBACK;
838 }
00501b53 839
bae473a4 840 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 841 if (unlikely(!pgtable)) {
f627c2f5 842 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 843 put_page(page);
71e3aac0 844 return VM_FAULT_OOM;
00501b53 845 }
71e3aac0
AA
846
847 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
848 /*
849 * The memory barrier inside __SetPageUptodate makes sure that
850 * clear_huge_page writes become visible before the set_pmd_at()
851 * write.
852 */
71e3aac0
AA
853 __SetPageUptodate(page);
854
bae473a4
KS
855 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
856 if (unlikely(!pmd_none(*fe->pmd))) {
857 spin_unlock(fe->ptl);
f627c2f5 858 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 859 put_page(page);
bae473a4 860 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
861 } else {
862 pmd_t entry;
6b251fc9
AA
863
864 /* Deliver the page fault to userland */
865 if (userfaultfd_missing(vma)) {
866 int ret;
867
bae473a4 868 spin_unlock(fe->ptl);
f627c2f5 869 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 870 put_page(page);
bae473a4
KS
871 pte_free(vma->vm_mm, pgtable);
872 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
873 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
874 return ret;
875 }
876
3122359a
KS
877 entry = mk_huge_pmd(page, vma->vm_page_prot);
878 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 879 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 880 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 881 lru_cache_add_active_or_unevictable(page, vma);
bae473a4
KS
882 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
883 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
884 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
885 atomic_long_inc(&vma->vm_mm->nr_ptes);
886 spin_unlock(fe->ptl);
6b251fc9 887 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
888 }
889
aa2e878e 890 return 0;
71e3aac0
AA
891}
892
444eb2a4
MG
893/*
894 * If THP is set to always then directly reclaim/compact as necessary
895 * If set to defer then do no reclaim and defer to khugepaged
896 * If set to madvise and the VMA is flagged then directly reclaim/compact
897 */
898static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
899{
900 gfp_t reclaim_flags = 0;
901
902 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
903 (vma->vm_flags & VM_HUGEPAGE))
904 reclaim_flags = __GFP_DIRECT_RECLAIM;
905 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
906 reclaim_flags = __GFP_KSWAPD_RECLAIM;
907 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
908 reclaim_flags = __GFP_DIRECT_RECLAIM;
909
910 return GFP_TRANSHUGE | reclaim_flags;
911}
912
913/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
914static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
0bbbc0b3 915{
444eb2a4 916 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
0bbbc0b3
AA
917}
918
c4088ebd 919/* Caller must hold page table lock. */
d295e341 920static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 921 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 922 struct page *zero_page)
fc9fe822
KS
923{
924 pmd_t entry;
7c414164
AM
925 if (!pmd_none(*pmd))
926 return false;
5918d10a 927 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 928 entry = pmd_mkhuge(entry);
12c9d70b
MW
929 if (pgtable)
930 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 931 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 932 atomic_long_inc(&mm->nr_ptes);
7c414164 933 return true;
fc9fe822
KS
934}
935
bae473a4 936int do_huge_pmd_anonymous_page(struct fault_env *fe)
71e3aac0 937{
bae473a4 938 struct vm_area_struct *vma = fe->vma;
077fcf11 939 gfp_t gfp;
71e3aac0 940 struct page *page;
bae473a4 941 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 942
128ec037 943 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 944 return VM_FAULT_FALLBACK;
128ec037
KS
945 if (unlikely(anon_vma_prepare(vma)))
946 return VM_FAULT_OOM;
6d50e60c 947 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 948 return VM_FAULT_OOM;
bae473a4
KS
949 if (!(fe->flags & FAULT_FLAG_WRITE) &&
950 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
951 transparent_hugepage_use_zero_page()) {
952 pgtable_t pgtable;
953 struct page *zero_page;
954 bool set;
6b251fc9 955 int ret;
bae473a4 956 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 957 if (unlikely(!pgtable))
ba76149f 958 return VM_FAULT_OOM;
128ec037
KS
959 zero_page = get_huge_zero_page();
960 if (unlikely(!zero_page)) {
bae473a4 961 pte_free(vma->vm_mm, pgtable);
81ab4201 962 count_vm_event(THP_FAULT_FALLBACK);
c0292554 963 return VM_FAULT_FALLBACK;
b9bbfbe3 964 }
bae473a4 965 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
6b251fc9
AA
966 ret = 0;
967 set = false;
bae473a4 968 if (pmd_none(*fe->pmd)) {
6b251fc9 969 if (userfaultfd_missing(vma)) {
bae473a4
KS
970 spin_unlock(fe->ptl);
971 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
972 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
973 } else {
bae473a4
KS
974 set_huge_zero_page(pgtable, vma->vm_mm, vma,
975 haddr, fe->pmd, zero_page);
976 spin_unlock(fe->ptl);
6b251fc9
AA
977 set = true;
978 }
979 } else
bae473a4 980 spin_unlock(fe->ptl);
128ec037 981 if (!set) {
bae473a4 982 pte_free(vma->vm_mm, pgtable);
128ec037 983 put_huge_zero_page();
edad9d2c 984 }
6b251fc9 985 return ret;
71e3aac0 986 }
444eb2a4 987 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 988 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
989 if (unlikely(!page)) {
990 count_vm_event(THP_FAULT_FALLBACK);
c0292554 991 return VM_FAULT_FALLBACK;
128ec037 992 }
9a982250 993 prep_transhuge_page(page);
bae473a4 994 return __do_huge_pmd_anonymous_page(fe, page, gfp);
71e3aac0
AA
995}
996
ae18d6dc 997static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 998 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
999{
1000 struct mm_struct *mm = vma->vm_mm;
1001 pmd_t entry;
1002 spinlock_t *ptl;
1003
1004 ptl = pmd_lock(mm, pmd);
f25748e3
DW
1005 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1006 if (pfn_t_devmap(pfn))
1007 entry = pmd_mkdevmap(entry);
01871e59
RZ
1008 if (write) {
1009 entry = pmd_mkyoung(pmd_mkdirty(entry));
1010 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 1011 }
01871e59
RZ
1012 set_pmd_at(mm, addr, pmd, entry);
1013 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 1014 spin_unlock(ptl);
5cad465d
MW
1015}
1016
1017int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 1018 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
1019{
1020 pgprot_t pgprot = vma->vm_page_prot;
1021 /*
1022 * If we had pmd_special, we could avoid all these restrictions,
1023 * but we need to be consistent with PTEs and architectures that
1024 * can't support a 'special' bit.
1025 */
1026 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1027 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1028 (VM_PFNMAP|VM_MIXEDMAP));
1029 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 1030 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
1031
1032 if (addr < vma->vm_start || addr >= vma->vm_end)
1033 return VM_FAULT_SIGBUS;
1034 if (track_pfn_insert(vma, &pgprot, pfn))
1035 return VM_FAULT_SIGBUS;
ae18d6dc
MW
1036 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1037 return VM_FAULT_NOPAGE;
5cad465d 1038}
dee41079 1039EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 1040
3565fce3
DW
1041static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1042 pmd_t *pmd)
1043{
1044 pmd_t _pmd;
1045
1046 /*
1047 * We should set the dirty bit only for FOLL_WRITE but for now
1048 * the dirty bit in the pmd is meaningless. And if the dirty
1049 * bit will become meaningful and we'll only set it with
1050 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1051 * set the young bit, instead of the current set_pmd_at.
1052 */
1053 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1054 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1055 pmd, _pmd, 1))
1056 update_mmu_cache_pmd(vma, addr, pmd);
1057}
1058
1059struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1060 pmd_t *pmd, int flags)
1061{
1062 unsigned long pfn = pmd_pfn(*pmd);
1063 struct mm_struct *mm = vma->vm_mm;
1064 struct dev_pagemap *pgmap;
1065 struct page *page;
1066
1067 assert_spin_locked(pmd_lockptr(mm, pmd));
1068
1069 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1070 return NULL;
1071
1072 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1073 /* pass */;
1074 else
1075 return NULL;
1076
1077 if (flags & FOLL_TOUCH)
1078 touch_pmd(vma, addr, pmd);
1079
1080 /*
1081 * device mapped pages can only be returned if the
1082 * caller will manage the page reference count.
1083 */
1084 if (!(flags & FOLL_GET))
1085 return ERR_PTR(-EEXIST);
1086
1087 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1088 pgmap = get_dev_pagemap(pfn, NULL);
1089 if (!pgmap)
1090 return ERR_PTR(-EFAULT);
1091 page = pfn_to_page(pfn);
1092 get_page(page);
1093 put_dev_pagemap(pgmap);
1094
1095 return page;
1096}
1097
71e3aac0
AA
1098int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1099 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1100 struct vm_area_struct *vma)
1101{
c4088ebd 1102 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1103 struct page *src_page;
1104 pmd_t pmd;
12c9d70b 1105 pgtable_t pgtable = NULL;
71e3aac0
AA
1106 int ret;
1107
12c9d70b
MW
1108 if (!vma_is_dax(vma)) {
1109 ret = -ENOMEM;
1110 pgtable = pte_alloc_one(dst_mm, addr);
1111 if (unlikely(!pgtable))
1112 goto out;
1113 }
71e3aac0 1114
c4088ebd
KS
1115 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1116 src_ptl = pmd_lockptr(src_mm, src_pmd);
1117 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1118
1119 ret = -EAGAIN;
1120 pmd = *src_pmd;
5c7fb56e 1121 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
1122 pte_free(dst_mm, pgtable);
1123 goto out_unlock;
1124 }
fc9fe822 1125 /*
c4088ebd 1126 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1127 * under splitting since we don't split the page itself, only pmd to
1128 * a page table.
1129 */
1130 if (is_huge_zero_pmd(pmd)) {
5918d10a 1131 struct page *zero_page;
97ae1749
KS
1132 /*
1133 * get_huge_zero_page() will never allocate a new page here,
1134 * since we already have a zero page to copy. It just takes a
1135 * reference.
1136 */
5918d10a 1137 zero_page = get_huge_zero_page();
6b251fc9 1138 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1139 zero_page);
fc9fe822
KS
1140 ret = 0;
1141 goto out_unlock;
1142 }
de466bd6 1143
12c9d70b 1144 if (!vma_is_dax(vma)) {
5c7fb56e
DW
1145 /* thp accounting separate from pmd_devmap accounting */
1146 src_page = pmd_page(pmd);
1147 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1148 get_page(src_page);
1149 page_dup_rmap(src_page, true);
1150 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1151 atomic_long_inc(&dst_mm->nr_ptes);
1152 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1153 }
71e3aac0
AA
1154
1155 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1156 pmd = pmd_mkold(pmd_wrprotect(pmd));
1157 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1158
1159 ret = 0;
1160out_unlock:
c4088ebd
KS
1161 spin_unlock(src_ptl);
1162 spin_unlock(dst_ptl);
71e3aac0
AA
1163out:
1164 return ret;
1165}
1166
bae473a4 1167void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
a1dd450b
WD
1168{
1169 pmd_t entry;
1170 unsigned long haddr;
1171
bae473a4
KS
1172 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1173 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
a1dd450b
WD
1174 goto unlock;
1175
1176 entry = pmd_mkyoung(orig_pmd);
bae473a4
KS
1177 haddr = fe->address & HPAGE_PMD_MASK;
1178 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1179 fe->flags & FAULT_FLAG_WRITE))
1180 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
a1dd450b
WD
1181
1182unlock:
bae473a4 1183 spin_unlock(fe->ptl);
a1dd450b
WD
1184}
1185
bae473a4
KS
1186static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1187 struct page *page)
71e3aac0 1188{
bae473a4
KS
1189 struct vm_area_struct *vma = fe->vma;
1190 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
00501b53 1191 struct mem_cgroup *memcg;
71e3aac0
AA
1192 pgtable_t pgtable;
1193 pmd_t _pmd;
1194 int ret = 0, i;
1195 struct page **pages;
2ec74c3e
SG
1196 unsigned long mmun_start; /* For mmu_notifiers */
1197 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1198
1199 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1200 GFP_KERNEL);
1201 if (unlikely(!pages)) {
1202 ret |= VM_FAULT_OOM;
1203 goto out;
1204 }
1205
1206 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f 1207 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
bae473a4
KS
1208 __GFP_OTHER_NODE, vma,
1209 fe->address, page_to_nid(page));
b9bbfbe3 1210 if (unlikely(!pages[i] ||
bae473a4
KS
1211 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1212 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1213 if (pages[i])
71e3aac0 1214 put_page(pages[i]);
b9bbfbe3 1215 while (--i >= 0) {
00501b53
JW
1216 memcg = (void *)page_private(pages[i]);
1217 set_page_private(pages[i], 0);
f627c2f5
KS
1218 mem_cgroup_cancel_charge(pages[i], memcg,
1219 false);
b9bbfbe3
AA
1220 put_page(pages[i]);
1221 }
71e3aac0
AA
1222 kfree(pages);
1223 ret |= VM_FAULT_OOM;
1224 goto out;
1225 }
00501b53 1226 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1227 }
1228
1229 for (i = 0; i < HPAGE_PMD_NR; i++) {
1230 copy_user_highpage(pages[i], page + i,
0089e485 1231 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1232 __SetPageUptodate(pages[i]);
1233 cond_resched();
1234 }
1235
2ec74c3e
SG
1236 mmun_start = haddr;
1237 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1238 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1239
bae473a4
KS
1240 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1241 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0 1242 goto out_free_pages;
309381fe 1243 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1244
bae473a4 1245 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
71e3aac0
AA
1246 /* leave pmd empty until pte is filled */
1247
bae473a4
KS
1248 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1249 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1250
1251 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1252 pte_t entry;
71e3aac0
AA
1253 entry = mk_pte(pages[i], vma->vm_page_prot);
1254 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1255 memcg = (void *)page_private(pages[i]);
1256 set_page_private(pages[i], 0);
bae473a4 1257 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
f627c2f5 1258 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1259 lru_cache_add_active_or_unevictable(pages[i], vma);
bae473a4
KS
1260 fe->pte = pte_offset_map(&_pmd, haddr);
1261 VM_BUG_ON(!pte_none(*fe->pte));
1262 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1263 pte_unmap(fe->pte);
71e3aac0
AA
1264 }
1265 kfree(pages);
1266
71e3aac0 1267 smp_wmb(); /* make pte visible before pmd */
bae473a4 1268 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
d281ee61 1269 page_remove_rmap(page, true);
bae473a4 1270 spin_unlock(fe->ptl);
71e3aac0 1271
bae473a4 1272 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1273
71e3aac0
AA
1274 ret |= VM_FAULT_WRITE;
1275 put_page(page);
1276
1277out:
1278 return ret;
1279
1280out_free_pages:
bae473a4
KS
1281 spin_unlock(fe->ptl);
1282 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1283 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1284 memcg = (void *)page_private(pages[i]);
1285 set_page_private(pages[i], 0);
f627c2f5 1286 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1287 put_page(pages[i]);
b9bbfbe3 1288 }
71e3aac0
AA
1289 kfree(pages);
1290 goto out;
1291}
1292
bae473a4 1293int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
71e3aac0 1294{
bae473a4 1295 struct vm_area_struct *vma = fe->vma;
93b4796d 1296 struct page *page = NULL, *new_page;
00501b53 1297 struct mem_cgroup *memcg;
bae473a4 1298 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1299 unsigned long mmun_start; /* For mmu_notifiers */
1300 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1301 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1302 int ret = 0;
71e3aac0 1303
bae473a4 1304 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
81d1b09c 1305 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1306 if (is_huge_zero_pmd(orig_pmd))
1307 goto alloc;
bae473a4
KS
1308 spin_lock(fe->ptl);
1309 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0
AA
1310 goto out_unlock;
1311
1312 page = pmd_page(orig_pmd);
309381fe 1313 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1314 /*
1315 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1316 * part.
1f25fe20 1317 */
6d0a07ed 1318 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1319 pmd_t entry;
1320 entry = pmd_mkyoung(orig_pmd);
1321 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4
KS
1322 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1323 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
71e3aac0
AA
1324 ret |= VM_FAULT_WRITE;
1325 goto out_unlock;
1326 }
ddc58f27 1327 get_page(page);
bae473a4 1328 spin_unlock(fe->ptl);
93b4796d 1329alloc:
71e3aac0 1330 if (transparent_hugepage_enabled(vma) &&
077fcf11 1331 !transparent_hugepage_debug_cow()) {
444eb2a4 1332 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1333 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1334 } else
71e3aac0
AA
1335 new_page = NULL;
1336
9a982250
KS
1337 if (likely(new_page)) {
1338 prep_transhuge_page(new_page);
1339 } else {
eecc1e42 1340 if (!page) {
bae473a4 1341 split_huge_pmd(vma, fe->pmd, fe->address);
e9b71ca9 1342 ret |= VM_FAULT_FALLBACK;
93b4796d 1343 } else {
bae473a4 1344 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
9845cbbd 1345 if (ret & VM_FAULT_OOM) {
bae473a4 1346 split_huge_pmd(vma, fe->pmd, fe->address);
9845cbbd
KS
1347 ret |= VM_FAULT_FALLBACK;
1348 }
ddc58f27 1349 put_page(page);
93b4796d 1350 }
17766dde 1351 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1352 goto out;
1353 }
1354
bae473a4
KS
1355 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1356 huge_gfp, &memcg, true))) {
b9bbfbe3 1357 put_page(new_page);
bae473a4
KS
1358 split_huge_pmd(vma, fe->pmd, fe->address);
1359 if (page)
ddc58f27 1360 put_page(page);
9845cbbd 1361 ret |= VM_FAULT_FALLBACK;
17766dde 1362 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1363 goto out;
1364 }
1365
17766dde
DR
1366 count_vm_event(THP_FAULT_ALLOC);
1367
eecc1e42 1368 if (!page)
93b4796d
KS
1369 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1370 else
1371 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1372 __SetPageUptodate(new_page);
1373
2ec74c3e
SG
1374 mmun_start = haddr;
1375 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1376 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1377
bae473a4 1378 spin_lock(fe->ptl);
93b4796d 1379 if (page)
ddc58f27 1380 put_page(page);
bae473a4
KS
1381 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1382 spin_unlock(fe->ptl);
f627c2f5 1383 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1384 put_page(new_page);
2ec74c3e 1385 goto out_mn;
b9bbfbe3 1386 } else {
71e3aac0 1387 pmd_t entry;
3122359a
KS
1388 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1389 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4 1390 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
d281ee61 1391 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1392 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1393 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4
KS
1394 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1395 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
eecc1e42 1396 if (!page) {
bae473a4 1397 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1398 put_huge_zero_page();
1399 } else {
309381fe 1400 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1401 page_remove_rmap(page, true);
93b4796d
KS
1402 put_page(page);
1403 }
71e3aac0
AA
1404 ret |= VM_FAULT_WRITE;
1405 }
bae473a4 1406 spin_unlock(fe->ptl);
2ec74c3e 1407out_mn:
bae473a4 1408 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1409out:
1410 return ret;
2ec74c3e 1411out_unlock:
bae473a4 1412 spin_unlock(fe->ptl);
2ec74c3e 1413 return ret;
71e3aac0
AA
1414}
1415
b676b293 1416struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1417 unsigned long addr,
1418 pmd_t *pmd,
1419 unsigned int flags)
1420{
b676b293 1421 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1422 struct page *page = NULL;
1423
c4088ebd 1424 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1425
1426 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1427 goto out;
1428
85facf25
KS
1429 /* Avoid dumping huge zero page */
1430 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1431 return ERR_PTR(-EFAULT);
1432
2b4847e7 1433 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1434 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1435 goto out;
1436
71e3aac0 1437 page = pmd_page(*pmd);
309381fe 1438 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1439 if (flags & FOLL_TOUCH)
1440 touch_pmd(vma, addr, pmd);
de60f5f1 1441 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1442 /*
1443 * We don't mlock() pte-mapped THPs. This way we can avoid
1444 * leaking mlocked pages into non-VM_LOCKED VMAs.
1445 *
1446 * In most cases the pmd is the only mapping of the page as we
1447 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1448 * writable private mappings in populate_vma_page_range().
1449 *
1450 * The only scenario when we have the page shared here is if we
1451 * mlocking read-only mapping shared over fork(). We skip
1452 * mlocking such pages.
1453 */
1454 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1455 page->mapping && trylock_page(page)) {
b676b293
DR
1456 lru_add_drain();
1457 if (page->mapping)
1458 mlock_vma_page(page);
1459 unlock_page(page);
1460 }
1461 }
71e3aac0 1462 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1463 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1464 if (flags & FOLL_GET)
ddc58f27 1465 get_page(page);
71e3aac0
AA
1466
1467out:
1468 return page;
1469}
1470
d10e63f2 1471/* NUMA hinting page fault entry point for trans huge pmds */
bae473a4 1472int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
d10e63f2 1473{
bae473a4 1474 struct vm_area_struct *vma = fe->vma;
b8916634 1475 struct anon_vma *anon_vma = NULL;
b32967ff 1476 struct page *page;
bae473a4 1477 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
8191acbd 1478 int page_nid = -1, this_nid = numa_node_id();
90572890 1479 int target_nid, last_cpupid = -1;
8191acbd
MG
1480 bool page_locked;
1481 bool migrated = false;
b191f9b1 1482 bool was_writable;
6688cc05 1483 int flags = 0;
d10e63f2 1484
c0e7cad9
MG
1485 /* A PROT_NONE fault should not end up here */
1486 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1487
bae473a4
KS
1488 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1489 if (unlikely(!pmd_same(pmd, *fe->pmd)))
d10e63f2
MG
1490 goto out_unlock;
1491
de466bd6
MG
1492 /*
1493 * If there are potential migrations, wait for completion and retry
1494 * without disrupting NUMA hinting information. Do not relock and
1495 * check_same as the page may no longer be mapped.
1496 */
bae473a4
KS
1497 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1498 page = pmd_page(*fe->pmd);
1499 spin_unlock(fe->ptl);
5d833062 1500 wait_on_page_locked(page);
de466bd6
MG
1501 goto out;
1502 }
1503
d10e63f2 1504 page = pmd_page(pmd);
a1a46184 1505 BUG_ON(is_huge_zero_page(page));
8191acbd 1506 page_nid = page_to_nid(page);
90572890 1507 last_cpupid = page_cpupid_last(page);
03c5a6e1 1508 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1509 if (page_nid == this_nid) {
03c5a6e1 1510 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1511 flags |= TNF_FAULT_LOCAL;
1512 }
4daae3b4 1513
bea66fbd
MG
1514 /* See similar comment in do_numa_page for explanation */
1515 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1516 flags |= TNF_NO_GROUP;
1517
ff9042b1
MG
1518 /*
1519 * Acquire the page lock to serialise THP migrations but avoid dropping
1520 * page_table_lock if at all possible
1521 */
b8916634
MG
1522 page_locked = trylock_page(page);
1523 target_nid = mpol_misplaced(page, vma, haddr);
1524 if (target_nid == -1) {
1525 /* If the page was locked, there are no parallel migrations */
a54a407f 1526 if (page_locked)
b8916634 1527 goto clear_pmdnuma;
2b4847e7 1528 }
4daae3b4 1529
de466bd6 1530 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1531 if (!page_locked) {
bae473a4 1532 spin_unlock(fe->ptl);
b8916634 1533 wait_on_page_locked(page);
a54a407f 1534 page_nid = -1;
b8916634
MG
1535 goto out;
1536 }
1537
2b4847e7
MG
1538 /*
1539 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1540 * to serialises splits
1541 */
b8916634 1542 get_page(page);
bae473a4 1543 spin_unlock(fe->ptl);
b8916634 1544 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1545
c69307d5 1546 /* Confirm the PMD did not change while page_table_lock was released */
bae473a4
KS
1547 spin_lock(fe->ptl);
1548 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
b32967ff
MG
1549 unlock_page(page);
1550 put_page(page);
a54a407f 1551 page_nid = -1;
4daae3b4 1552 goto out_unlock;
b32967ff 1553 }
ff9042b1 1554
c3a489ca
MG
1555 /* Bail if we fail to protect against THP splits for any reason */
1556 if (unlikely(!anon_vma)) {
1557 put_page(page);
1558 page_nid = -1;
1559 goto clear_pmdnuma;
1560 }
1561
a54a407f
MG
1562 /*
1563 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1564 * and access rights restored.
a54a407f 1565 */
bae473a4
KS
1566 spin_unlock(fe->ptl);
1567 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1568 fe->pmd, pmd, fe->address, page, target_nid);
6688cc05
PZ
1569 if (migrated) {
1570 flags |= TNF_MIGRATED;
8191acbd 1571 page_nid = target_nid;
074c2381
MG
1572 } else
1573 flags |= TNF_MIGRATE_FAIL;
b32967ff 1574
8191acbd 1575 goto out;
b32967ff 1576clear_pmdnuma:
a54a407f 1577 BUG_ON(!PageLocked(page));
b191f9b1 1578 was_writable = pmd_write(pmd);
4d942466 1579 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1580 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1581 if (was_writable)
1582 pmd = pmd_mkwrite(pmd);
bae473a4
KS
1583 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1584 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
a54a407f 1585 unlock_page(page);
d10e63f2 1586out_unlock:
bae473a4 1587 spin_unlock(fe->ptl);
b8916634
MG
1588
1589out:
1590 if (anon_vma)
1591 page_unlock_anon_vma_read(anon_vma);
1592
8191acbd 1593 if (page_nid != -1)
bae473a4 1594 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
8191acbd 1595
d10e63f2
MG
1596 return 0;
1597}
1598
b8d3c4c3
MK
1599int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1600 pmd_t *pmd, unsigned long addr, unsigned long next)
1601
1602{
1603 spinlock_t *ptl;
1604 pmd_t orig_pmd;
1605 struct page *page;
1606 struct mm_struct *mm = tlb->mm;
1607 int ret = 0;
1608
b6ec57f4
KS
1609 ptl = pmd_trans_huge_lock(pmd, vma);
1610 if (!ptl)
25eedabe 1611 goto out_unlocked;
b8d3c4c3
MK
1612
1613 orig_pmd = *pmd;
1614 if (is_huge_zero_pmd(orig_pmd)) {
1615 ret = 1;
1616 goto out;
1617 }
1618
1619 page = pmd_page(orig_pmd);
1620 /*
1621 * If other processes are mapping this page, we couldn't discard
1622 * the page unless they all do MADV_FREE so let's skip the page.
1623 */
1624 if (page_mapcount(page) != 1)
1625 goto out;
1626
1627 if (!trylock_page(page))
1628 goto out;
1629
1630 /*
1631 * If user want to discard part-pages of THP, split it so MADV_FREE
1632 * will deactivate only them.
1633 */
1634 if (next - addr != HPAGE_PMD_SIZE) {
1635 get_page(page);
1636 spin_unlock(ptl);
9818b8cd 1637 split_huge_page(page);
b8d3c4c3
MK
1638 put_page(page);
1639 unlock_page(page);
b8d3c4c3
MK
1640 goto out_unlocked;
1641 }
1642
1643 if (PageDirty(page))
1644 ClearPageDirty(page);
1645 unlock_page(page);
1646
1647 if (PageActive(page))
1648 deactivate_page(page);
1649
1650 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1651 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1652 tlb->fullmm);
1653 orig_pmd = pmd_mkold(orig_pmd);
1654 orig_pmd = pmd_mkclean(orig_pmd);
1655
1656 set_pmd_at(mm, addr, pmd, orig_pmd);
1657 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1658 }
1659 ret = 1;
1660out:
1661 spin_unlock(ptl);
1662out_unlocked:
1663 return ret;
1664}
1665
71e3aac0 1666int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1667 pmd_t *pmd, unsigned long addr)
71e3aac0 1668{
da146769 1669 pmd_t orig_pmd;
bf929152 1670 spinlock_t *ptl;
71e3aac0 1671
b6ec57f4
KS
1672 ptl = __pmd_trans_huge_lock(pmd, vma);
1673 if (!ptl)
da146769
KS
1674 return 0;
1675 /*
1676 * For architectures like ppc64 we look at deposited pgtable
1677 * when calling pmdp_huge_get_and_clear. So do the
1678 * pgtable_trans_huge_withdraw after finishing pmdp related
1679 * operations.
1680 */
1681 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1682 tlb->fullmm);
1683 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1684 if (vma_is_dax(vma)) {
1685 spin_unlock(ptl);
1686 if (is_huge_zero_pmd(orig_pmd))
aa88b68c 1687 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1688 } else if (is_huge_zero_pmd(orig_pmd)) {
1689 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1690 atomic_long_dec(&tlb->mm->nr_ptes);
1691 spin_unlock(ptl);
aa88b68c 1692 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1693 } else {
1694 struct page *page = pmd_page(orig_pmd);
d281ee61 1695 page_remove_rmap(page, true);
da146769
KS
1696 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1697 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1698 VM_BUG_ON_PAGE(!PageHead(page), page);
1699 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1700 atomic_long_dec(&tlb->mm->nr_ptes);
1701 spin_unlock(ptl);
e77b0852 1702 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1703 }
da146769 1704 return 1;
71e3aac0
AA
1705}
1706
bf8616d5 1707bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a
AA
1708 unsigned long new_addr, unsigned long old_end,
1709 pmd_t *old_pmd, pmd_t *new_pmd)
1710{
bf929152 1711 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1712 pmd_t pmd;
37a1c49a
AA
1713 struct mm_struct *mm = vma->vm_mm;
1714
1715 if ((old_addr & ~HPAGE_PMD_MASK) ||
1716 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1717 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1718 return false;
37a1c49a
AA
1719
1720 /*
1721 * The destination pmd shouldn't be established, free_pgtables()
1722 * should have release it.
1723 */
1724 if (WARN_ON(!pmd_none(*new_pmd))) {
1725 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1726 return false;
37a1c49a
AA
1727 }
1728
bf929152
KS
1729 /*
1730 * We don't have to worry about the ordering of src and dst
1731 * ptlocks because exclusive mmap_sem prevents deadlock.
1732 */
b6ec57f4
KS
1733 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1734 if (old_ptl) {
bf929152
KS
1735 new_ptl = pmd_lockptr(mm, new_pmd);
1736 if (new_ptl != old_ptl)
1737 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1738 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1739 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1740
69a8ec2d
KS
1741 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1742 vma_is_anonymous(vma)) {
b3084f4d 1743 pgtable_t pgtable;
3592806c
KS
1744 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1745 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1746 }
b3084f4d
AK
1747 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1748 if (new_ptl != old_ptl)
1749 spin_unlock(new_ptl);
bf929152 1750 spin_unlock(old_ptl);
4b471e88 1751 return true;
37a1c49a 1752 }
4b471e88 1753 return false;
37a1c49a
AA
1754}
1755
f123d74a
MG
1756/*
1757 * Returns
1758 * - 0 if PMD could not be locked
1759 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1760 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1761 */
cd7548ab 1762int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1763 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1764{
1765 struct mm_struct *mm = vma->vm_mm;
bf929152 1766 spinlock_t *ptl;
cd7548ab
JW
1767 int ret = 0;
1768
b6ec57f4
KS
1769 ptl = __pmd_trans_huge_lock(pmd, vma);
1770 if (ptl) {
025c5b24 1771 pmd_t entry;
b191f9b1 1772 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1773 ret = 1;
e944fd67
MG
1774
1775 /*
1776 * Avoid trapping faults against the zero page. The read-only
1777 * data is likely to be read-cached on the local CPU and
1778 * local/remote hits to the zero page are not interesting.
1779 */
1780 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1781 spin_unlock(ptl);
ba68bc01 1782 return ret;
e944fd67
MG
1783 }
1784
10c1045f 1785 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1786 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1787 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1788 if (preserve_write)
1789 entry = pmd_mkwrite(entry);
10c1045f
MG
1790 ret = HPAGE_PMD_NR;
1791 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1792 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1793 }
bf929152 1794 spin_unlock(ptl);
025c5b24
NH
1795 }
1796
1797 return ret;
1798}
1799
1800/*
4b471e88 1801 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1802 *
4b471e88
KS
1803 * Note that if it returns true, this routine returns without unlocking page
1804 * table lock. So callers must unlock it.
025c5b24 1805 */
b6ec57f4 1806spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1807{
b6ec57f4
KS
1808 spinlock_t *ptl;
1809 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1810 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1811 return ptl;
1812 spin_unlock(ptl);
1813 return NULL;
cd7548ab
JW
1814}
1815
9050d7eb 1816#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1817
60ab3244
AA
1818int hugepage_madvise(struct vm_area_struct *vma,
1819 unsigned long *vm_flags, int advice)
0af4e98b 1820{
a664b2d8
AA
1821 switch (advice) {
1822 case MADV_HUGEPAGE:
1e1836e8
AT
1823#ifdef CONFIG_S390
1824 /*
1825 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1826 * can't handle this properly after s390_enable_sie, so we simply
1827 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1828 */
1829 if (mm_has_pgste(vma->vm_mm))
1830 return 0;
1831#endif
a664b2d8
AA
1832 /*
1833 * Be somewhat over-protective like KSM for now!
1834 */
1a763615 1835 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1836 return -EINVAL;
1837 *vm_flags &= ~VM_NOHUGEPAGE;
1838 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1839 /*
1840 * If the vma become good for khugepaged to scan,
1841 * register it here without waiting a page fault that
1842 * may not happen any time soon.
1843 */
6d50e60c 1844 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1845 return -ENOMEM;
a664b2d8
AA
1846 break;
1847 case MADV_NOHUGEPAGE:
1848 /*
1849 * Be somewhat over-protective like KSM for now!
1850 */
1a763615 1851 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1852 return -EINVAL;
1853 *vm_flags &= ~VM_HUGEPAGE;
1854 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1855 /*
1856 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1857 * this vma even if we leave the mm registered in khugepaged if
1858 * it got registered before VM_NOHUGEPAGE was set.
1859 */
a664b2d8
AA
1860 break;
1861 }
0af4e98b
AA
1862
1863 return 0;
1864}
1865
ba76149f
AA
1866static int __init khugepaged_slab_init(void)
1867{
1868 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1869 sizeof(struct mm_slot),
1870 __alignof__(struct mm_slot), 0, NULL);
1871 if (!mm_slot_cache)
1872 return -ENOMEM;
1873
1874 return 0;
1875}
1876
65ebb64f
KS
1877static void __init khugepaged_slab_exit(void)
1878{
1879 kmem_cache_destroy(mm_slot_cache);
1880}
1881
ba76149f
AA
1882static inline struct mm_slot *alloc_mm_slot(void)
1883{
1884 if (!mm_slot_cache) /* initialization failed */
1885 return NULL;
1886 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1887}
1888
1889static inline void free_mm_slot(struct mm_slot *mm_slot)
1890{
1891 kmem_cache_free(mm_slot_cache, mm_slot);
1892}
1893
ba76149f
AA
1894static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1895{
1896 struct mm_slot *mm_slot;
ba76149f 1897
b67bfe0d 1898 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1899 if (mm == mm_slot->mm)
1900 return mm_slot;
43b5fbbd 1901
ba76149f
AA
1902 return NULL;
1903}
1904
1905static void insert_to_mm_slots_hash(struct mm_struct *mm,
1906 struct mm_slot *mm_slot)
1907{
ba76149f 1908 mm_slot->mm = mm;
43b5fbbd 1909 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1910}
1911
1912static inline int khugepaged_test_exit(struct mm_struct *mm)
1913{
1914 return atomic_read(&mm->mm_users) == 0;
1915}
1916
1917int __khugepaged_enter(struct mm_struct *mm)
1918{
1919 struct mm_slot *mm_slot;
1920 int wakeup;
1921
1922 mm_slot = alloc_mm_slot();
1923 if (!mm_slot)
1924 return -ENOMEM;
1925
1926 /* __khugepaged_exit() must not run from under us */
96dad67f 1927 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1928 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1929 free_mm_slot(mm_slot);
1930 return 0;
1931 }
1932
1933 spin_lock(&khugepaged_mm_lock);
1934 insert_to_mm_slots_hash(mm, mm_slot);
1935 /*
1936 * Insert just behind the scanning cursor, to let the area settle
1937 * down a little.
1938 */
1939 wakeup = list_empty(&khugepaged_scan.mm_head);
1940 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1941 spin_unlock(&khugepaged_mm_lock);
1942
1943 atomic_inc(&mm->mm_count);
1944 if (wakeup)
1945 wake_up_interruptible(&khugepaged_wait);
1946
1947 return 0;
1948}
1949
6d50e60c
DR
1950int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1951 unsigned long vm_flags)
ba76149f
AA
1952{
1953 unsigned long hstart, hend;
1954 if (!vma->anon_vma)
1955 /*
1956 * Not yet faulted in so we will register later in the
1957 * page fault if needed.
1958 */
1959 return 0;
3486b85a 1960 if (vma->vm_ops || (vm_flags & VM_NO_THP))
ba76149f
AA
1961 /* khugepaged not yet working on file or special mappings */
1962 return 0;
ba76149f
AA
1963 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1964 hend = vma->vm_end & HPAGE_PMD_MASK;
1965 if (hstart < hend)
6d50e60c 1966 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1967 return 0;
1968}
1969
1970void __khugepaged_exit(struct mm_struct *mm)
1971{
1972 struct mm_slot *mm_slot;
1973 int free = 0;
1974
1975 spin_lock(&khugepaged_mm_lock);
1976 mm_slot = get_mm_slot(mm);
1977 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1978 hash_del(&mm_slot->hash);
ba76149f
AA
1979 list_del(&mm_slot->mm_node);
1980 free = 1;
1981 }
d788e80a 1982 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1983
1984 if (free) {
ba76149f
AA
1985 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1986 free_mm_slot(mm_slot);
1987 mmdrop(mm);
1988 } else if (mm_slot) {
ba76149f
AA
1989 /*
1990 * This is required to serialize against
1991 * khugepaged_test_exit() (which is guaranteed to run
1992 * under mmap sem read mode). Stop here (after we
1993 * return all pagetables will be destroyed) until
1994 * khugepaged has finished working on the pagetables
1995 * under the mmap_sem.
1996 */
1997 down_write(&mm->mmap_sem);
1998 up_write(&mm->mmap_sem);
d788e80a 1999 }
ba76149f
AA
2000}
2001
2002static void release_pte_page(struct page *page)
2003{
2004 /* 0 stands for page_is_file_cache(page) == false */
2005 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2006 unlock_page(page);
2007 putback_lru_page(page);
2008}
2009
2010static void release_pte_pages(pte_t *pte, pte_t *_pte)
2011{
2012 while (--_pte >= pte) {
2013 pte_t pteval = *_pte;
ca0984ca 2014 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2015 release_pte_page(pte_page(pteval));
2016 }
2017}
2018
ba76149f
AA
2019static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2020 unsigned long address,
2021 pte_t *pte)
2022{
7d2eba05 2023 struct page *page = NULL;
ba76149f 2024 pte_t *_pte;
7d2eba05 2025 int none_or_zero = 0, result = 0;
10359213 2026 bool referenced = false, writable = false;
7d2eba05 2027
ba76149f
AA
2028 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2029 _pte++, address += PAGE_SIZE) {
2030 pte_t pteval = *_pte;
47aee4d8
MK
2031 if (pte_none(pteval) || (pte_present(pteval) &&
2032 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2033 if (!userfaultfd_armed(vma) &&
7d2eba05 2034 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2035 continue;
7d2eba05
EA
2036 } else {
2037 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2038 goto out;
7d2eba05 2039 }
ba76149f 2040 }
7d2eba05
EA
2041 if (!pte_present(pteval)) {
2042 result = SCAN_PTE_NON_PRESENT;
ba76149f 2043 goto out;
7d2eba05 2044 }
ba76149f 2045 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2046 if (unlikely(!page)) {
2047 result = SCAN_PAGE_NULL;
ba76149f 2048 goto out;
7d2eba05 2049 }
344aa35c 2050
309381fe
SL
2051 VM_BUG_ON_PAGE(PageCompound(page), page);
2052 VM_BUG_ON_PAGE(!PageAnon(page), page);
2053 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2054
ba76149f
AA
2055 /*
2056 * We can do it before isolate_lru_page because the
2057 * page can't be freed from under us. NOTE: PG_lock
2058 * is needed to serialize against split_huge_page
2059 * when invoked from the VM.
2060 */
7d2eba05
EA
2061 if (!trylock_page(page)) {
2062 result = SCAN_PAGE_LOCK;
ba76149f 2063 goto out;
7d2eba05 2064 }
10359213
EA
2065
2066 /*
2067 * cannot use mapcount: can't collapse if there's a gup pin.
2068 * The page must only be referenced by the scanned process
2069 * and page swap cache.
2070 */
2071 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2072 unlock_page(page);
7d2eba05 2073 result = SCAN_PAGE_COUNT;
10359213
EA
2074 goto out;
2075 }
2076 if (pte_write(pteval)) {
2077 writable = true;
2078 } else {
6d0a07ed
AA
2079 if (PageSwapCache(page) &&
2080 !reuse_swap_page(page, NULL)) {
10359213 2081 unlock_page(page);
7d2eba05 2082 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2083 goto out;
2084 }
2085 /*
2086 * Page is not in the swap cache. It can be collapsed
2087 * into a THP.
2088 */
2089 }
2090
ba76149f
AA
2091 /*
2092 * Isolate the page to avoid collapsing an hugepage
2093 * currently in use by the VM.
2094 */
2095 if (isolate_lru_page(page)) {
2096 unlock_page(page);
7d2eba05 2097 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2098 goto out;
2099 }
2100 /* 0 stands for page_is_file_cache(page) == false */
2101 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2102 VM_BUG_ON_PAGE(!PageLocked(page), page);
2103 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2104
2105 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2106 if (pte_young(pteval) ||
2107 page_is_young(page) || PageReferenced(page) ||
8ee53820 2108 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2109 referenced = true;
ba76149f 2110 }
7d2eba05
EA
2111 if (likely(writable)) {
2112 if (likely(referenced)) {
2113 result = SCAN_SUCCEED;
16fd0fe4 2114 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2115 referenced, writable, result);
2116 return 1;
2117 }
2118 } else {
2119 result = SCAN_PAGE_RO;
2120 }
2121
ba76149f 2122out:
344aa35c 2123 release_pte_pages(pte, _pte);
16fd0fe4 2124 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2125 referenced, writable, result);
344aa35c 2126 return 0;
ba76149f
AA
2127}
2128
2129static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2130 struct vm_area_struct *vma,
2131 unsigned long address,
2132 spinlock_t *ptl)
2133{
2134 pte_t *_pte;
2135 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2136 pte_t pteval = *_pte;
2137 struct page *src_page;
2138
ca0984ca 2139 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2140 clear_user_highpage(page, address);
2141 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2142 if (is_zero_pfn(pte_pfn(pteval))) {
2143 /*
2144 * ptl mostly unnecessary.
2145 */
2146 spin_lock(ptl);
2147 /*
2148 * paravirt calls inside pte_clear here are
2149 * superfluous.
2150 */
2151 pte_clear(vma->vm_mm, address, _pte);
2152 spin_unlock(ptl);
2153 }
ba76149f
AA
2154 } else {
2155 src_page = pte_page(pteval);
2156 copy_user_highpage(page, src_page, address, vma);
309381fe 2157 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2158 release_pte_page(src_page);
2159 /*
2160 * ptl mostly unnecessary, but preempt has to
2161 * be disabled to update the per-cpu stats
2162 * inside page_remove_rmap().
2163 */
2164 spin_lock(ptl);
2165 /*
2166 * paravirt calls inside pte_clear here are
2167 * superfluous.
2168 */
2169 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2170 page_remove_rmap(src_page, false);
ba76149f
AA
2171 spin_unlock(ptl);
2172 free_page_and_swap_cache(src_page);
2173 }
2174
2175 address += PAGE_SIZE;
2176 page++;
2177 }
2178}
2179
26234f36 2180static void khugepaged_alloc_sleep(void)
ba76149f 2181{
bde43c6c
PM
2182 DEFINE_WAIT(wait);
2183
2184 add_wait_queue(&khugepaged_wait, &wait);
2185 freezable_schedule_timeout_interruptible(
2186 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2187 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2188}
ba76149f 2189
9f1b868a
BL
2190static int khugepaged_node_load[MAX_NUMNODES];
2191
14a4e214
DR
2192static bool khugepaged_scan_abort(int nid)
2193{
2194 int i;
2195
2196 /*
2197 * If zone_reclaim_mode is disabled, then no extra effort is made to
2198 * allocate memory locally.
2199 */
2200 if (!zone_reclaim_mode)
2201 return false;
2202
2203 /* If there is a count for this node already, it must be acceptable */
2204 if (khugepaged_node_load[nid])
2205 return false;
2206
2207 for (i = 0; i < MAX_NUMNODES; i++) {
2208 if (!khugepaged_node_load[i])
2209 continue;
2210 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2211 return true;
2212 }
2213 return false;
2214}
2215
26234f36 2216#ifdef CONFIG_NUMA
9f1b868a
BL
2217static int khugepaged_find_target_node(void)
2218{
2219 static int last_khugepaged_target_node = NUMA_NO_NODE;
2220 int nid, target_node = 0, max_value = 0;
2221
2222 /* find first node with max normal pages hit */
2223 for (nid = 0; nid < MAX_NUMNODES; nid++)
2224 if (khugepaged_node_load[nid] > max_value) {
2225 max_value = khugepaged_node_load[nid];
2226 target_node = nid;
2227 }
2228
2229 /* do some balance if several nodes have the same hit record */
2230 if (target_node <= last_khugepaged_target_node)
2231 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2232 nid++)
2233 if (max_value == khugepaged_node_load[nid]) {
2234 target_node = nid;
2235 break;
2236 }
2237
2238 last_khugepaged_target_node = target_node;
2239 return target_node;
2240}
2241
26234f36
XG
2242static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2243{
2244 if (IS_ERR(*hpage)) {
2245 if (!*wait)
2246 return false;
2247
2248 *wait = false;
e3b4126c 2249 *hpage = NULL;
26234f36
XG
2250 khugepaged_alloc_sleep();
2251 } else if (*hpage) {
2252 put_page(*hpage);
2253 *hpage = NULL;
2254 }
2255
2256 return true;
2257}
2258
3b363692
MH
2259static struct page *
2260khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2261 unsigned long address, int node)
26234f36 2262{
309381fe 2263 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2264
ce83d217 2265 /*
8b164568
VB
2266 * Before allocating the hugepage, release the mmap_sem read lock.
2267 * The allocation can take potentially a long time if it involves
2268 * sync compaction, and we do not need to hold the mmap_sem during
2269 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2270 */
8b164568
VB
2271 up_read(&mm->mmap_sem);
2272
96db800f 2273 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2274 if (unlikely(!*hpage)) {
81ab4201 2275 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2276 *hpage = ERR_PTR(-ENOMEM);
26234f36 2277 return NULL;
ce83d217 2278 }
26234f36 2279
9a982250 2280 prep_transhuge_page(*hpage);
65b3c07b 2281 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2282 return *hpage;
2283}
2284#else
9f1b868a
BL
2285static int khugepaged_find_target_node(void)
2286{
2287 return 0;
2288}
2289
444eb2a4 2290static inline struct page *alloc_khugepaged_hugepage(void)
10dc4155 2291{
9a982250
KS
2292 struct page *page;
2293
444eb2a4
MG
2294 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2295 HPAGE_PMD_ORDER);
9a982250
KS
2296 if (page)
2297 prep_transhuge_page(page);
2298 return page;
10dc4155
BL
2299}
2300
26234f36
XG
2301static struct page *khugepaged_alloc_hugepage(bool *wait)
2302{
2303 struct page *hpage;
2304
2305 do {
444eb2a4 2306 hpage = alloc_khugepaged_hugepage();
26234f36
XG
2307 if (!hpage) {
2308 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2309 if (!*wait)
2310 return NULL;
2311
2312 *wait = false;
2313 khugepaged_alloc_sleep();
2314 } else
2315 count_vm_event(THP_COLLAPSE_ALLOC);
2316 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2317
2318 return hpage;
2319}
2320
2321static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2322{
2323 if (!*hpage)
2324 *hpage = khugepaged_alloc_hugepage(wait);
2325
2326 if (unlikely(!*hpage))
2327 return false;
2328
2329 return true;
2330}
2331
3b363692
MH
2332static struct page *
2333khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2334 unsigned long address, int node)
26234f36
XG
2335{
2336 up_read(&mm->mmap_sem);
2337 VM_BUG_ON(!*hpage);
3b363692 2338
26234f36
XG
2339 return *hpage;
2340}
692e0b35
AA
2341#endif
2342
fa475e51
BL
2343static bool hugepage_vma_check(struct vm_area_struct *vma)
2344{
2345 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2346 (vma->vm_flags & VM_NOHUGEPAGE))
2347 return false;
fa475e51
BL
2348 if (!vma->anon_vma || vma->vm_ops)
2349 return false;
2350 if (is_vma_temporary_stack(vma))
2351 return false;
3486b85a 2352 return !(vma->vm_flags & VM_NO_THP);
fa475e51
BL
2353}
2354
72695862
EA
2355/*
2356 * If mmap_sem temporarily dropped, revalidate vma
2357 * before taking mmap_sem.
2358 * Return 0 if succeeds, otherwise return none-zero
2359 * value (scan code).
2360 */
2361
2362static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2363{
2364 struct vm_area_struct *vma;
2365 unsigned long hstart, hend;
2366
2367 if (unlikely(khugepaged_test_exit(mm)))
2368 return SCAN_ANY_PROCESS;
2369
2370 vma = find_vma(mm, address);
2371 if (!vma)
2372 return SCAN_VMA_NULL;
2373
2374 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2375 hend = vma->vm_end & HPAGE_PMD_MASK;
2376 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2377 return SCAN_ADDRESS_RANGE;
2378 if (!hugepage_vma_check(vma))
2379 return SCAN_VMA_CHECK;
2380 return 0;
2381}
2382
8a966ed7
EA
2383/*
2384 * Bring missing pages in from swap, to complete THP collapse.
2385 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2386 *
2387 * Called and returns without pte mapped or spinlocks held,
2388 * but with mmap_sem held to protect against vma changes.
2389 */
2390
72695862 2391static bool __collapse_huge_page_swapin(struct mm_struct *mm,
8a966ed7
EA
2392 struct vm_area_struct *vma,
2393 unsigned long address, pmd_t *pmd)
2394{
bae473a4 2395 pte_t pteval;
8a966ed7 2396 int swapped_in = 0, ret = 0;
bae473a4
KS
2397 struct fault_env fe = {
2398 .vma = vma,
2399 .address = address,
2400 .flags = FAULT_FLAG_ALLOW_RETRY,
2401 .pmd = pmd,
2402 };
2403
2404 fe.pte = pte_offset_map(pmd, address);
2405 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2406 fe.pte++, fe.address += PAGE_SIZE) {
2407 pteval = *fe.pte;
8a966ed7
EA
2408 if (!is_swap_pte(pteval))
2409 continue;
2410 swapped_in++;
bae473a4 2411 ret = do_swap_page(&fe, pteval);
72695862
EA
2412 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2413 if (ret & VM_FAULT_RETRY) {
2414 down_read(&mm->mmap_sem);
2415 /* vma is no longer available, don't continue to swapin */
2416 if (hugepage_vma_revalidate(mm, address))
2417 return false;
1f52e67e
KS
2418 /* check if the pmd is still valid */
2419 if (mm_find_pmd(mm, address) != pmd)
2420 return false;
72695862 2421 }
8a966ed7
EA
2422 if (ret & VM_FAULT_ERROR) {
2423 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
72695862 2424 return false;
8a966ed7
EA
2425 }
2426 /* pte is unmapped now, we need to map it */
bae473a4 2427 fe.pte = pte_offset_map(pmd, fe.address);
8a966ed7 2428 }
bae473a4
KS
2429 fe.pte--;
2430 pte_unmap(fe.pte);
8a966ed7 2431 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
72695862 2432 return true;
8a966ed7
EA
2433}
2434
26234f36
XG
2435static void collapse_huge_page(struct mm_struct *mm,
2436 unsigned long address,
2437 struct page **hpage,
2438 struct vm_area_struct *vma,
2439 int node)
2440{
26234f36
XG
2441 pmd_t *pmd, _pmd;
2442 pte_t *pte;
2443 pgtable_t pgtable;
2444 struct page *new_page;
c4088ebd 2445 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2446 int isolated = 0, result = 0;
00501b53 2447 struct mem_cgroup *memcg;
2ec74c3e
SG
2448 unsigned long mmun_start; /* For mmu_notifiers */
2449 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2450 gfp_t gfp;
26234f36
XG
2451
2452 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2453
3b363692 2454 /* Only allocate from the target node */
444eb2a4 2455 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
3b363692 2456
26234f36 2457 /* release the mmap_sem read lock. */
d6669d68 2458 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2459 if (!new_page) {
2460 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2461 goto out_nolock;
2462 }
26234f36 2463
f627c2f5 2464 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2465 result = SCAN_CGROUP_CHARGE_FAIL;
2466 goto out_nolock;
2467 }
ba76149f 2468
72695862
EA
2469 down_read(&mm->mmap_sem);
2470 result = hugepage_vma_revalidate(mm, address);
8024ee2a
EA
2471 if (result) {
2472 mem_cgroup_cancel_charge(new_page, memcg, true);
2473 up_read(&mm->mmap_sem);
2474 goto out_nolock;
2475 }
ba76149f 2476
6219049a 2477 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2478 if (!pmd) {
2479 result = SCAN_PMD_NULL;
8024ee2a
EA
2480 mem_cgroup_cancel_charge(new_page, memcg, true);
2481 up_read(&mm->mmap_sem);
2482 goto out_nolock;
7d2eba05 2483 }
ba76149f 2484
72695862
EA
2485 /*
2486 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2487 * If it fails, release mmap_sem and jump directly out.
2488 * Continuing to collapse causes inconsistency.
2489 */
2490 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
8024ee2a 2491 mem_cgroup_cancel_charge(new_page, memcg, true);
72695862 2492 up_read(&mm->mmap_sem);
8024ee2a 2493 goto out_nolock;
72695862
EA
2494 }
2495
2496 up_read(&mm->mmap_sem);
2497 /*
2498 * Prevent all access to pagetables with the exception of
2499 * gup_fast later handled by the ptep_clear_flush and the VM
2500 * handled by the anon_vma lock + PG_lock.
2501 */
2502 down_write(&mm->mmap_sem);
2503 result = hugepage_vma_revalidate(mm, address);
2504 if (result)
2505 goto out;
1f52e67e
KS
2506 /* check if the pmd is still valid */
2507 if (mm_find_pmd(mm, address) != pmd)
2508 goto out;
8a966ed7 2509
4fc3f1d6 2510 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2511
2512 pte = pte_offset_map(pmd, address);
c4088ebd 2513 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2514
2ec74c3e
SG
2515 mmun_start = address;
2516 mmun_end = address + HPAGE_PMD_SIZE;
2517 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2518 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2519 /*
2520 * After this gup_fast can't run anymore. This also removes
2521 * any huge TLB entry from the CPU so we won't allow
2522 * huge and small TLB entries for the same virtual address
2523 * to avoid the risk of CPU bugs in that area.
2524 */
15a25b2e 2525 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2526 spin_unlock(pmd_ptl);
2ec74c3e 2527 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2528
c4088ebd 2529 spin_lock(pte_ptl);
ba76149f 2530 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2531 spin_unlock(pte_ptl);
ba76149f
AA
2532
2533 if (unlikely(!isolated)) {
453c7192 2534 pte_unmap(pte);
c4088ebd 2535 spin_lock(pmd_ptl);
ba76149f 2536 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2537 /*
2538 * We can only use set_pmd_at when establishing
2539 * hugepmds and never for establishing regular pmds that
2540 * points to regular pagetables. Use pmd_populate for that
2541 */
2542 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2543 spin_unlock(pmd_ptl);
08b52706 2544 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2545 result = SCAN_FAIL;
ce83d217 2546 goto out;
ba76149f
AA
2547 }
2548
2549 /*
2550 * All pages are isolated and locked so anon_vma rmap
2551 * can't run anymore.
2552 */
08b52706 2553 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2554
c4088ebd 2555 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2556 pte_unmap(pte);
ba76149f
AA
2557 __SetPageUptodate(new_page);
2558 pgtable = pmd_pgtable(_pmd);
ba76149f 2559
3122359a
KS
2560 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2561 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2562
2563 /*
2564 * spin_lock() below is not the equivalent of smp_wmb(), so
2565 * this is needed to avoid the copy_huge_page writes to become
2566 * visible after the set_pmd_at() write.
2567 */
2568 smp_wmb();
2569
c4088ebd 2570 spin_lock(pmd_ptl);
ba76149f 2571 BUG_ON(!pmd_none(*pmd));
d281ee61 2572 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2573 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2574 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2575 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2576 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2577 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2578 spin_unlock(pmd_ptl);
ba76149f
AA
2579
2580 *hpage = NULL;
420256ef 2581
ba76149f 2582 khugepaged_pages_collapsed++;
7d2eba05 2583 result = SCAN_SUCCEED;
ce83d217 2584out_up_write:
ba76149f 2585 up_write(&mm->mmap_sem);
7d2eba05
EA
2586out_nolock:
2587 trace_mm_collapse_huge_page(mm, isolated, result);
2588 return;
ce83d217 2589out:
f627c2f5 2590 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2591 goto out_up_write;
ba76149f
AA
2592}
2593
2594static int khugepaged_scan_pmd(struct mm_struct *mm,
2595 struct vm_area_struct *vma,
2596 unsigned long address,
2597 struct page **hpage)
2598{
ba76149f
AA
2599 pmd_t *pmd;
2600 pte_t *pte, *_pte;
7d2eba05
EA
2601 int ret = 0, none_or_zero = 0, result = 0;
2602 struct page *page = NULL;
ba76149f
AA
2603 unsigned long _address;
2604 spinlock_t *ptl;
70652f6e 2605 int node = NUMA_NO_NODE, unmapped = 0;
10359213 2606 bool writable = false, referenced = false;
ba76149f
AA
2607
2608 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2609
6219049a 2610 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2611 if (!pmd) {
2612 result = SCAN_PMD_NULL;
ba76149f 2613 goto out;
7d2eba05 2614 }
ba76149f 2615
9f1b868a 2616 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2617 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2618 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2619 _pte++, _address += PAGE_SIZE) {
2620 pte_t pteval = *_pte;
70652f6e
EA
2621 if (is_swap_pte(pteval)) {
2622 if (++unmapped <= khugepaged_max_ptes_swap) {
2623 continue;
2624 } else {
2625 result = SCAN_EXCEED_SWAP_PTE;
2626 goto out_unmap;
2627 }
2628 }
ca0984ca 2629 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2630 if (!userfaultfd_armed(vma) &&
7d2eba05 2631 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2632 continue;
7d2eba05
EA
2633 } else {
2634 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2635 goto out_unmap;
7d2eba05 2636 }
ba76149f 2637 }
7d2eba05
EA
2638 if (!pte_present(pteval)) {
2639 result = SCAN_PTE_NON_PRESENT;
ba76149f 2640 goto out_unmap;
7d2eba05 2641 }
10359213
EA
2642 if (pte_write(pteval))
2643 writable = true;
2644
ba76149f 2645 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2646 if (unlikely(!page)) {
2647 result = SCAN_PAGE_NULL;
ba76149f 2648 goto out_unmap;
7d2eba05 2649 }
b1caa957
KS
2650
2651 /* TODO: teach khugepaged to collapse THP mapped with pte */
2652 if (PageCompound(page)) {
2653 result = SCAN_PAGE_COMPOUND;
2654 goto out_unmap;
2655 }
2656
5c4b4be3 2657 /*
9f1b868a
BL
2658 * Record which node the original page is from and save this
2659 * information to khugepaged_node_load[].
2660 * Khupaged will allocate hugepage from the node has the max
2661 * hit record.
5c4b4be3 2662 */
9f1b868a 2663 node = page_to_nid(page);
7d2eba05
EA
2664 if (khugepaged_scan_abort(node)) {
2665 result = SCAN_SCAN_ABORT;
14a4e214 2666 goto out_unmap;
7d2eba05 2667 }
9f1b868a 2668 khugepaged_node_load[node]++;
7d2eba05 2669 if (!PageLRU(page)) {
0fda2788 2670 result = SCAN_PAGE_LRU;
7d2eba05
EA
2671 goto out_unmap;
2672 }
2673 if (PageLocked(page)) {
2674 result = SCAN_PAGE_LOCK;
ba76149f 2675 goto out_unmap;
7d2eba05
EA
2676 }
2677 if (!PageAnon(page)) {
2678 result = SCAN_PAGE_ANON;
2679 goto out_unmap;
2680 }
2681
10359213
EA
2682 /*
2683 * cannot use mapcount: can't collapse if there's a gup pin.
2684 * The page must only be referenced by the scanned process
2685 * and page swap cache.
2686 */
7d2eba05
EA
2687 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2688 result = SCAN_PAGE_COUNT;
ba76149f 2689 goto out_unmap;
7d2eba05 2690 }
33c3fc71
VD
2691 if (pte_young(pteval) ||
2692 page_is_young(page) || PageReferenced(page) ||
8ee53820 2693 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2694 referenced = true;
ba76149f 2695 }
7d2eba05
EA
2696 if (writable) {
2697 if (referenced) {
2698 result = SCAN_SUCCEED;
2699 ret = 1;
2700 } else {
2701 result = SCAN_NO_REFERENCED_PAGE;
2702 }
2703 } else {
2704 result = SCAN_PAGE_RO;
2705 }
ba76149f
AA
2706out_unmap:
2707 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2708 if (ret) {
2709 node = khugepaged_find_target_node();
ce83d217 2710 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2711 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2712 }
ba76149f 2713out:
16fd0fe4 2714 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
70652f6e 2715 none_or_zero, result, unmapped);
ba76149f
AA
2716 return ret;
2717}
2718
2719static void collect_mm_slot(struct mm_slot *mm_slot)
2720{
2721 struct mm_struct *mm = mm_slot->mm;
2722
b9980cdc 2723 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2724
2725 if (khugepaged_test_exit(mm)) {
2726 /* free mm_slot */
43b5fbbd 2727 hash_del(&mm_slot->hash);
ba76149f
AA
2728 list_del(&mm_slot->mm_node);
2729
2730 /*
2731 * Not strictly needed because the mm exited already.
2732 *
2733 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2734 */
2735
2736 /* khugepaged_mm_lock actually not necessary for the below */
2737 free_mm_slot(mm_slot);
2738 mmdrop(mm);
2739 }
2740}
2741
2742static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2743 struct page **hpage)
2f1da642
HS
2744 __releases(&khugepaged_mm_lock)
2745 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2746{
2747 struct mm_slot *mm_slot;
2748 struct mm_struct *mm;
2749 struct vm_area_struct *vma;
2750 int progress = 0;
2751
2752 VM_BUG_ON(!pages);
b9980cdc 2753 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2754
2755 if (khugepaged_scan.mm_slot)
2756 mm_slot = khugepaged_scan.mm_slot;
2757 else {
2758 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2759 struct mm_slot, mm_node);
2760 khugepaged_scan.address = 0;
2761 khugepaged_scan.mm_slot = mm_slot;
2762 }
2763 spin_unlock(&khugepaged_mm_lock);
2764
2765 mm = mm_slot->mm;
2766 down_read(&mm->mmap_sem);
2767 if (unlikely(khugepaged_test_exit(mm)))
2768 vma = NULL;
2769 else
2770 vma = find_vma(mm, khugepaged_scan.address);
2771
2772 progress++;
2773 for (; vma; vma = vma->vm_next) {
2774 unsigned long hstart, hend;
2775
2776 cond_resched();
2777 if (unlikely(khugepaged_test_exit(mm))) {
2778 progress++;
2779 break;
2780 }
fa475e51
BL
2781 if (!hugepage_vma_check(vma)) {
2782skip:
ba76149f
AA
2783 progress++;
2784 continue;
2785 }
ba76149f
AA
2786 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2787 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2788 if (hstart >= hend)
2789 goto skip;
2790 if (khugepaged_scan.address > hend)
2791 goto skip;
ba76149f
AA
2792 if (khugepaged_scan.address < hstart)
2793 khugepaged_scan.address = hstart;
a7d6e4ec 2794 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2795
2796 while (khugepaged_scan.address < hend) {
2797 int ret;
2798 cond_resched();
2799 if (unlikely(khugepaged_test_exit(mm)))
2800 goto breakouterloop;
2801
2802 VM_BUG_ON(khugepaged_scan.address < hstart ||
2803 khugepaged_scan.address + HPAGE_PMD_SIZE >
2804 hend);
2805 ret = khugepaged_scan_pmd(mm, vma,
2806 khugepaged_scan.address,
2807 hpage);
2808 /* move to next address */
2809 khugepaged_scan.address += HPAGE_PMD_SIZE;
2810 progress += HPAGE_PMD_NR;
2811 if (ret)
2812 /* we released mmap_sem so break loop */
2813 goto breakouterloop_mmap_sem;
2814 if (progress >= pages)
2815 goto breakouterloop;
2816 }
2817 }
2818breakouterloop:
2819 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2820breakouterloop_mmap_sem:
2821
2822 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2823 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2824 /*
2825 * Release the current mm_slot if this mm is about to die, or
2826 * if we scanned all vmas of this mm.
2827 */
2828 if (khugepaged_test_exit(mm) || !vma) {
2829 /*
2830 * Make sure that if mm_users is reaching zero while
2831 * khugepaged runs here, khugepaged_exit will find
2832 * mm_slot not pointing to the exiting mm.
2833 */
2834 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2835 khugepaged_scan.mm_slot = list_entry(
2836 mm_slot->mm_node.next,
2837 struct mm_slot, mm_node);
2838 khugepaged_scan.address = 0;
2839 } else {
2840 khugepaged_scan.mm_slot = NULL;
2841 khugepaged_full_scans++;
2842 }
2843
2844 collect_mm_slot(mm_slot);
2845 }
2846
2847 return progress;
2848}
2849
2850static int khugepaged_has_work(void)
2851{
2852 return !list_empty(&khugepaged_scan.mm_head) &&
2853 khugepaged_enabled();
2854}
2855
2856static int khugepaged_wait_event(void)
2857{
2858 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2859 kthread_should_stop();
ba76149f
AA
2860}
2861
d516904b 2862static void khugepaged_do_scan(void)
ba76149f 2863{
d516904b 2864 struct page *hpage = NULL;
ba76149f
AA
2865 unsigned int progress = 0, pass_through_head = 0;
2866 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2867 bool wait = true;
ba76149f
AA
2868
2869 barrier(); /* write khugepaged_pages_to_scan to local stack */
2870
2871 while (progress < pages) {
26234f36 2872 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2873 break;
26234f36 2874
420256ef 2875 cond_resched();
ba76149f 2876
cd092411 2877 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2878 break;
2879
ba76149f
AA
2880 spin_lock(&khugepaged_mm_lock);
2881 if (!khugepaged_scan.mm_slot)
2882 pass_through_head++;
2883 if (khugepaged_has_work() &&
2884 pass_through_head < 2)
2885 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2886 &hpage);
ba76149f
AA
2887 else
2888 progress = pages;
2889 spin_unlock(&khugepaged_mm_lock);
2890 }
ba76149f 2891
d516904b
XG
2892 if (!IS_ERR_OR_NULL(hpage))
2893 put_page(hpage);
0bbbc0b3
AA
2894}
2895
f0508977
DR
2896static bool khugepaged_should_wakeup(void)
2897{
2898 return kthread_should_stop() ||
2899 time_after_eq(jiffies, khugepaged_sleep_expire);
2900}
2901
2017c0bf
XG
2902static void khugepaged_wait_work(void)
2903{
2017c0bf 2904 if (khugepaged_has_work()) {
f0508977
DR
2905 const unsigned long scan_sleep_jiffies =
2906 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2907
2908 if (!scan_sleep_jiffies)
2017c0bf
XG
2909 return;
2910
f0508977 2911 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2017c0bf 2912 wait_event_freezable_timeout(khugepaged_wait,
f0508977
DR
2913 khugepaged_should_wakeup(),
2914 scan_sleep_jiffies);
2017c0bf
XG
2915 return;
2916 }
2917
2918 if (khugepaged_enabled())
2919 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2920}
2921
ba76149f
AA
2922static int khugepaged(void *none)
2923{
2924 struct mm_slot *mm_slot;
2925
878aee7d 2926 set_freezable();
8698a745 2927 set_user_nice(current, MAX_NICE);
ba76149f 2928
b7231789
XG
2929 while (!kthread_should_stop()) {
2930 khugepaged_do_scan();
2931 khugepaged_wait_work();
2932 }
ba76149f
AA
2933
2934 spin_lock(&khugepaged_mm_lock);
2935 mm_slot = khugepaged_scan.mm_slot;
2936 khugepaged_scan.mm_slot = NULL;
2937 if (mm_slot)
2938 collect_mm_slot(mm_slot);
2939 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2940 return 0;
2941}
2942
eef1b3ba
KS
2943static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2944 unsigned long haddr, pmd_t *pmd)
2945{
2946 struct mm_struct *mm = vma->vm_mm;
2947 pgtable_t pgtable;
2948 pmd_t _pmd;
2949 int i;
2950
2951 /* leave pmd empty until pte is filled */
2952 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2953
2954 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2955 pmd_populate(mm, &_pmd, pgtable);
2956
2957 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2958 pte_t *pte, entry;
2959 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2960 entry = pte_mkspecial(entry);
2961 pte = pte_offset_map(&_pmd, haddr);
2962 VM_BUG_ON(!pte_none(*pte));
2963 set_pte_at(mm, haddr, pte, entry);
2964 pte_unmap(pte);
2965 }
2966 smp_wmb(); /* make pte visible before pmd */
2967 pmd_populate(mm, pmd, pgtable);
2968 put_huge_zero_page();
2969}
2970
2971static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2972 unsigned long haddr, bool freeze)
eef1b3ba
KS
2973{
2974 struct mm_struct *mm = vma->vm_mm;
2975 struct page *page;
2976 pgtable_t pgtable;
2977 pmd_t _pmd;
b8d3c4c3 2978 bool young, write, dirty;
2ac015e2 2979 unsigned long addr;
eef1b3ba
KS
2980 int i;
2981
2982 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2983 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2984 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2985 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2986
2987 count_vm_event(THP_SPLIT_PMD);
2988
2989 if (vma_is_dax(vma)) {
2990 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2991 if (is_huge_zero_pmd(_pmd))
2992 put_huge_zero_page();
2993 return;
2994 } else if (is_huge_zero_pmd(*pmd)) {
2995 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2996 }
2997
2998 page = pmd_page(*pmd);
2999 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 3000 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
3001 write = pmd_write(*pmd);
3002 young = pmd_young(*pmd);
b8d3c4c3 3003 dirty = pmd_dirty(*pmd);
eef1b3ba 3004
c777e2a8 3005 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
3006 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3007 pmd_populate(mm, &_pmd, pgtable);
3008
2ac015e2 3009 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
3010 pte_t entry, *pte;
3011 /*
3012 * Note that NUMA hinting access restrictions are not
3013 * transferred to avoid any possibility of altering
3014 * permissions across VMAs.
3015 */
ba988280
KS
3016 if (freeze) {
3017 swp_entry_t swp_entry;
3018 swp_entry = make_migration_entry(page + i, write);
3019 entry = swp_entry_to_pte(swp_entry);
3020 } else {
3021 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 3022 entry = maybe_mkwrite(entry, vma);
ba988280
KS
3023 if (!write)
3024 entry = pte_wrprotect(entry);
3025 if (!young)
3026 entry = pte_mkold(entry);
3027 }
b8d3c4c3
MK
3028 if (dirty)
3029 SetPageDirty(page + i);
2ac015e2 3030 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 3031 BUG_ON(!pte_none(*pte));
2ac015e2 3032 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
3033 atomic_inc(&page[i]._mapcount);
3034 pte_unmap(pte);
3035 }
3036
3037 /*
3038 * Set PG_double_map before dropping compound_mapcount to avoid
3039 * false-negative page_mapped().
3040 */
3041 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3042 for (i = 0; i < HPAGE_PMD_NR; i++)
3043 atomic_inc(&page[i]._mapcount);
3044 }
3045
3046 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3047 /* Last compound_mapcount is gone. */
3048 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3049 if (TestClearPageDoubleMap(page)) {
3050 /* No need in mapcount reference anymore */
3051 for (i = 0; i < HPAGE_PMD_NR; i++)
3052 atomic_dec(&page[i]._mapcount);
3053 }
3054 }
3055
3056 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
3057 /*
3058 * Up to this point the pmd is present and huge and userland has the
3059 * whole access to the hugepage during the split (which happens in
3060 * place). If we overwrite the pmd with the not-huge version pointing
3061 * to the pte here (which of course we could if all CPUs were bug
3062 * free), userland could trigger a small page size TLB miss on the
3063 * small sized TLB while the hugepage TLB entry is still established in
3064 * the huge TLB. Some CPU doesn't like that.
3065 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3066 * 383 on page 93. Intel should be safe but is also warns that it's
3067 * only safe if the permission and cache attributes of the two entries
3068 * loaded in the two TLB is identical (which should be the case here).
3069 * But it is generally safer to never allow small and huge TLB entries
3070 * for the same virtual address to be loaded simultaneously. So instead
3071 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3072 * current pmd notpresent (atomically because here the pmd_trans_huge
3073 * and pmd_trans_splitting must remain set at all times on the pmd
3074 * until the split is complete for this pmd), then we flush the SMP TLB
3075 * and finally we write the non-huge version of the pmd entry with
3076 * pmd_populate.
3077 */
3078 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 3079 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
3080
3081 if (freeze) {
2ac015e2 3082 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
3083 page_remove_rmap(page + i, false);
3084 put_page(page + i);
3085 }
3086 }
eef1b3ba
KS
3087}
3088
3089void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 3090 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
3091{
3092 spinlock_t *ptl;
3093 struct mm_struct *mm = vma->vm_mm;
3094 unsigned long haddr = address & HPAGE_PMD_MASK;
3095
3096 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3097 ptl = pmd_lock(mm, pmd);
33f4751e
NH
3098
3099 /*
3100 * If caller asks to setup a migration entries, we need a page to check
3101 * pmd against. Otherwise we can end up replacing wrong page.
3102 */
3103 VM_BUG_ON(freeze && !page);
3104 if (page && page != pmd_page(*pmd))
3105 goto out;
3106
5c7fb56e 3107 if (pmd_trans_huge(*pmd)) {
33f4751e 3108 page = pmd_page(*pmd);
5c7fb56e 3109 if (PageMlocked(page))
5f737714 3110 clear_page_mlock(page);
5c7fb56e 3111 } else if (!pmd_devmap(*pmd))
e90309c9 3112 goto out;
fec89c10 3113 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 3114out:
eef1b3ba
KS
3115 spin_unlock(ptl);
3116 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3117}
3118
fec89c10
KS
3119void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3120 bool freeze, struct page *page)
94fcc585 3121{
f72e7dcd
HD
3122 pgd_t *pgd;
3123 pud_t *pud;
94fcc585
AA
3124 pmd_t *pmd;
3125
78ddc534 3126 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
3127 if (!pgd_present(*pgd))
3128 return;
3129
3130 pud = pud_offset(pgd, address);
3131 if (!pud_present(*pud))
3132 return;
3133
3134 pmd = pmd_offset(pud, address);
fec89c10 3135
33f4751e 3136 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
3137}
3138
e1b9996b 3139void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3140 unsigned long start,
3141 unsigned long end,
3142 long adjust_next)
3143{
3144 /*
3145 * If the new start address isn't hpage aligned and it could
3146 * previously contain an hugepage: check if we need to split
3147 * an huge pmd.
3148 */
3149 if (start & ~HPAGE_PMD_MASK &&
3150 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3151 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3152 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
3153
3154 /*
3155 * If the new end address isn't hpage aligned and it could
3156 * previously contain an hugepage: check if we need to split
3157 * an huge pmd.
3158 */
3159 if (end & ~HPAGE_PMD_MASK &&
3160 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3161 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3162 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
3163
3164 /*
3165 * If we're also updating the vma->vm_next->vm_start, if the new
3166 * vm_next->vm_start isn't page aligned and it could previously
3167 * contain an hugepage: check if we need to split an huge pmd.
3168 */
3169 if (adjust_next > 0) {
3170 struct vm_area_struct *next = vma->vm_next;
3171 unsigned long nstart = next->vm_start;
3172 nstart += adjust_next << PAGE_SHIFT;
3173 if (nstart & ~HPAGE_PMD_MASK &&
3174 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3175 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 3176 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
3177 }
3178}
e9b61f19 3179
fec89c10 3180static void freeze_page(struct page *page)
e9b61f19 3181{
fec89c10
KS
3182 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3183 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3184 int i, ret;
e9b61f19
KS
3185
3186 VM_BUG_ON_PAGE(!PageHead(page), page);
3187
fec89c10
KS
3188 /* We only need TTU_SPLIT_HUGE_PMD once */
3189 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3190 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3191 /* Cut short if the page is unmapped */
3192 if (page_count(page) == 1)
3193 return;
e9b61f19 3194
fec89c10 3195 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 3196 }
fec89c10 3197 VM_BUG_ON(ret);
e9b61f19
KS
3198}
3199
fec89c10 3200static void unfreeze_page(struct page *page)
e9b61f19 3201{
fec89c10 3202 int i;
e9b61f19 3203
fec89c10
KS
3204 for (i = 0; i < HPAGE_PMD_NR; i++)
3205 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
3206}
3207
8df651c7 3208static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
3209 struct lruvec *lruvec, struct list_head *list)
3210{
e9b61f19
KS
3211 struct page *page_tail = head + tail;
3212
8df651c7 3213 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 3214 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
3215
3216 /*
0139aa7b 3217 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 3218 * get_page_unless_zero() may be running from under us on the
8df651c7 3219 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
e9b61f19
KS
3220 * would then run atomic_set() concurrently with
3221 * get_page_unless_zero(), and atomic_set() is implemented in C not
3222 * using locked ops. spin_unlock on x86 sometime uses locked ops
3223 * because of PPro errata 66, 92, so unless somebody can guarantee
3224 * atomic_set() here would be safe on all archs (and not only on x86),
8df651c7 3225 * it's safer to use atomic_inc().
e9b61f19 3226 */
fe896d18 3227 page_ref_inc(page_tail);
e9b61f19
KS
3228
3229 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3230 page_tail->flags |= (head->flags &
3231 ((1L << PG_referenced) |
3232 (1L << PG_swapbacked) |
3233 (1L << PG_mlocked) |
3234 (1L << PG_uptodate) |
3235 (1L << PG_active) |
3236 (1L << PG_locked) |
b8d3c4c3
MK
3237 (1L << PG_unevictable) |
3238 (1L << PG_dirty)));
e9b61f19
KS
3239
3240 /*
3241 * After clearing PageTail the gup refcount can be released.
3242 * Page flags also must be visible before we make the page non-compound.
3243 */
3244 smp_wmb();
3245
3246 clear_compound_head(page_tail);
3247
3248 if (page_is_young(head))
3249 set_page_young(page_tail);
3250 if (page_is_idle(head))
3251 set_page_idle(page_tail);
3252
3253 /* ->mapping in first tail page is compound_mapcount */
9a982250 3254 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3255 page_tail);
3256 page_tail->mapping = head->mapping;
3257
3258 page_tail->index = head->index + tail;
3259 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3260 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
3261}
3262
3263static void __split_huge_page(struct page *page, struct list_head *list)
3264{
3265 struct page *head = compound_head(page);
3266 struct zone *zone = page_zone(head);
3267 struct lruvec *lruvec;
8df651c7 3268 int i;
e9b61f19
KS
3269
3270 /* prevent PageLRU to go away from under us, and freeze lru stats */
3271 spin_lock_irq(&zone->lru_lock);
3272 lruvec = mem_cgroup_page_lruvec(head, zone);
3273
3274 /* complete memcg works before add pages to LRU */
3275 mem_cgroup_split_huge_fixup(head);
3276
e9b61f19 3277 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
8df651c7 3278 __split_huge_page_tail(head, i, lruvec, list);
e9b61f19
KS
3279
3280 ClearPageCompound(head);
3281 spin_unlock_irq(&zone->lru_lock);
3282
fec89c10 3283 unfreeze_page(head);
e9b61f19
KS
3284
3285 for (i = 0; i < HPAGE_PMD_NR; i++) {
3286 struct page *subpage = head + i;
3287 if (subpage == page)
3288 continue;
3289 unlock_page(subpage);
3290
3291 /*
3292 * Subpages may be freed if there wasn't any mapping
3293 * like if add_to_swap() is running on a lru page that
3294 * had its mapping zapped. And freeing these pages
3295 * requires taking the lru_lock so we do the put_page
3296 * of the tail pages after the split is complete.
3297 */
3298 put_page(subpage);
3299 }
3300}
3301
b20ce5e0
KS
3302int total_mapcount(struct page *page)
3303{
3304 int i, ret;
3305
3306 VM_BUG_ON_PAGE(PageTail(page), page);
3307
3308 if (likely(!PageCompound(page)))
3309 return atomic_read(&page->_mapcount) + 1;
3310
3311 ret = compound_mapcount(page);
3312 if (PageHuge(page))
3313 return ret;
3314 for (i = 0; i < HPAGE_PMD_NR; i++)
3315 ret += atomic_read(&page[i]._mapcount) + 1;
3316 if (PageDoubleMap(page))
3317 ret -= HPAGE_PMD_NR;
3318 return ret;
3319}
3320
6d0a07ed
AA
3321/*
3322 * This calculates accurately how many mappings a transparent hugepage
3323 * has (unlike page_mapcount() which isn't fully accurate). This full
3324 * accuracy is primarily needed to know if copy-on-write faults can
3325 * reuse the page and change the mapping to read-write instead of
3326 * copying them. At the same time this returns the total_mapcount too.
3327 *
3328 * The function returns the highest mapcount any one of the subpages
3329 * has. If the return value is one, even if different processes are
3330 * mapping different subpages of the transparent hugepage, they can
3331 * all reuse it, because each process is reusing a different subpage.
3332 *
3333 * The total_mapcount is instead counting all virtual mappings of the
3334 * subpages. If the total_mapcount is equal to "one", it tells the
3335 * caller all mappings belong to the same "mm" and in turn the
3336 * anon_vma of the transparent hugepage can become the vma->anon_vma
3337 * local one as no other process may be mapping any of the subpages.
3338 *
3339 * It would be more accurate to replace page_mapcount() with
3340 * page_trans_huge_mapcount(), however we only use
3341 * page_trans_huge_mapcount() in the copy-on-write faults where we
3342 * need full accuracy to avoid breaking page pinning, because
3343 * page_trans_huge_mapcount() is slower than page_mapcount().
3344 */
3345int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3346{
3347 int i, ret, _total_mapcount, mapcount;
3348
3349 /* hugetlbfs shouldn't call it */
3350 VM_BUG_ON_PAGE(PageHuge(page), page);
3351
3352 if (likely(!PageTransCompound(page))) {
3353 mapcount = atomic_read(&page->_mapcount) + 1;
3354 if (total_mapcount)
3355 *total_mapcount = mapcount;
3356 return mapcount;
3357 }
3358
3359 page = compound_head(page);
3360
3361 _total_mapcount = ret = 0;
3362 for (i = 0; i < HPAGE_PMD_NR; i++) {
3363 mapcount = atomic_read(&page[i]._mapcount) + 1;
3364 ret = max(ret, mapcount);
3365 _total_mapcount += mapcount;
3366 }
3367 if (PageDoubleMap(page)) {
3368 ret -= 1;
3369 _total_mapcount -= HPAGE_PMD_NR;
3370 }
3371 mapcount = compound_mapcount(page);
3372 ret += mapcount;
3373 _total_mapcount += mapcount;
3374 if (total_mapcount)
3375 *total_mapcount = _total_mapcount;
3376 return ret;
3377}
3378
e9b61f19
KS
3379/*
3380 * This function splits huge page into normal pages. @page can point to any
3381 * subpage of huge page to split. Split doesn't change the position of @page.
3382 *
3383 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3384 * The huge page must be locked.
3385 *
3386 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3387 *
3388 * Both head page and tail pages will inherit mapping, flags, and so on from
3389 * the hugepage.
3390 *
3391 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3392 * they are not mapped.
3393 *
3394 * Returns 0 if the hugepage is split successfully.
3395 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3396 * us.
3397 */
3398int split_huge_page_to_list(struct page *page, struct list_head *list)
3399{
3400 struct page *head = compound_head(page);
a3d0a918 3401 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3402 struct anon_vma *anon_vma;
3403 int count, mapcount, ret;
d9654322 3404 bool mlocked;
0b9b6fff 3405 unsigned long flags;
e9b61f19
KS
3406
3407 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3408 VM_BUG_ON_PAGE(!PageAnon(page), page);
3409 VM_BUG_ON_PAGE(!PageLocked(page), page);
3410 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3411 VM_BUG_ON_PAGE(!PageCompound(page), page);
3412
3413 /*
3414 * The caller does not necessarily hold an mmap_sem that would prevent
3415 * the anon_vma disappearing so we first we take a reference to it
3416 * and then lock the anon_vma for write. This is similar to
3417 * page_lock_anon_vma_read except the write lock is taken to serialise
3418 * against parallel split or collapse operations.
3419 */
3420 anon_vma = page_get_anon_vma(head);
3421 if (!anon_vma) {
3422 ret = -EBUSY;
3423 goto out;
3424 }
3425 anon_vma_lock_write(anon_vma);
3426
3427 /*
3428 * Racy check if we can split the page, before freeze_page() will
3429 * split PMDs
3430 */
3431 if (total_mapcount(head) != page_count(head) - 1) {
3432 ret = -EBUSY;
3433 goto out_unlock;
3434 }
3435
d9654322 3436 mlocked = PageMlocked(page);
fec89c10 3437 freeze_page(head);
e9b61f19
KS
3438 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3439
d9654322
KS
3440 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3441 if (mlocked)
3442 lru_add_drain();
3443
0139aa7b 3444 /* Prevent deferred_split_scan() touching ->_refcount */
a3d0a918 3445 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3446 count = page_count(head);
3447 mapcount = total_mapcount(head);
bd56086f 3448 if (!mapcount && count == 1) {
9a982250 3449 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3450 pgdata->split_queue_len--;
9a982250
KS
3451 list_del(page_deferred_list(head));
3452 }
a3d0a918 3453 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3454 __split_huge_page(page, list);
3455 ret = 0;
bd56086f 3456 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3457 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3458 pr_alert("total_mapcount: %u, page_count(): %u\n",
3459 mapcount, count);
3460 if (PageTail(page))
3461 dump_page(head, NULL);
bd56086f 3462 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3463 BUG();
3464 } else {
a3d0a918 3465 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
fec89c10 3466 unfreeze_page(head);
e9b61f19
KS
3467 ret = -EBUSY;
3468 }
3469
3470out_unlock:
3471 anon_vma_unlock_write(anon_vma);
3472 put_anon_vma(anon_vma);
3473out:
3474 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3475 return ret;
3476}
9a982250
KS
3477
3478void free_transhuge_page(struct page *page)
3479{
a3d0a918 3480 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3481 unsigned long flags;
3482
a3d0a918 3483 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3484 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3485 pgdata->split_queue_len--;
9a982250
KS
3486 list_del(page_deferred_list(page));
3487 }
a3d0a918 3488 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3489 free_compound_page(page);
3490}
3491
3492void deferred_split_huge_page(struct page *page)
3493{
a3d0a918 3494 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3495 unsigned long flags;
3496
3497 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3498
a3d0a918 3499 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3500 if (list_empty(page_deferred_list(page))) {
f9719a03 3501 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
3502 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3503 pgdata->split_queue_len++;
9a982250 3504 }
a3d0a918 3505 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3506}
3507
3508static unsigned long deferred_split_count(struct shrinker *shrink,
3509 struct shrink_control *sc)
3510{
a3d0a918 3511 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3512 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3513}
3514
3515static unsigned long deferred_split_scan(struct shrinker *shrink,
3516 struct shrink_control *sc)
3517{
a3d0a918 3518 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3519 unsigned long flags;
3520 LIST_HEAD(list), *pos, *next;
3521 struct page *page;
3522 int split = 0;
3523
a3d0a918 3524 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3525 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3526 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3527 page = list_entry((void *)pos, struct page, mapping);
3528 page = compound_head(page);
e3ae1953
KS
3529 if (get_page_unless_zero(page)) {
3530 list_move(page_deferred_list(page), &list);
3531 } else {
3532 /* We lost race with put_compound_page() */
9a982250 3533 list_del_init(page_deferred_list(page));
a3d0a918 3534 pgdata->split_queue_len--;
9a982250 3535 }
e3ae1953
KS
3536 if (!--sc->nr_to_scan)
3537 break;
9a982250 3538 }
a3d0a918 3539 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3540
3541 list_for_each_safe(pos, next, &list) {
3542 page = list_entry((void *)pos, struct page, mapping);
3543 lock_page(page);
3544 /* split_huge_page() removes page from list on success */
3545 if (!split_huge_page(page))
3546 split++;
3547 unlock_page(page);
3548 put_page(page);
3549 }
3550
a3d0a918
KS
3551 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3552 list_splice_tail(&list, &pgdata->split_queue);
3553 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3554
cb8d68ec
KS
3555 /*
3556 * Stop shrinker if we didn't split any page, but the queue is empty.
3557 * This can happen if pages were freed under us.
3558 */
3559 if (!split && list_empty(&pgdata->split_queue))
3560 return SHRINK_STOP;
3561 return split;
9a982250
KS
3562}
3563
3564static struct shrinker deferred_split_shrinker = {
3565 .count_objects = deferred_split_count,
3566 .scan_objects = deferred_split_scan,
3567 .seeks = DEFAULT_SEEKS,
a3d0a918 3568 .flags = SHRINKER_NUMA_AWARE,
9a982250 3569};
49071d43
KS
3570
3571#ifdef CONFIG_DEBUG_FS
3572static int split_huge_pages_set(void *data, u64 val)
3573{
3574 struct zone *zone;
3575 struct page *page;
3576 unsigned long pfn, max_zone_pfn;
3577 unsigned long total = 0, split = 0;
3578
3579 if (val != 1)
3580 return -EINVAL;
3581
3582 for_each_populated_zone(zone) {
3583 max_zone_pfn = zone_end_pfn(zone);
3584 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3585 if (!pfn_valid(pfn))
3586 continue;
3587
3588 page = pfn_to_page(pfn);
3589 if (!get_page_unless_zero(page))
3590 continue;
3591
3592 if (zone != page_zone(page))
3593 goto next;
3594
3595 if (!PageHead(page) || !PageAnon(page) ||
3596 PageHuge(page))
3597 goto next;
3598
3599 total++;
3600 lock_page(page);
3601 if (!split_huge_page(page))
3602 split++;
3603 unlock_page(page);
3604next:
3605 put_page(page);
3606 }
3607 }
3608
145bdaa1 3609 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3610
3611 return 0;
3612}
3613DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3614 "%llu\n");
3615
3616static int __init split_huge_pages_debugfs(void)
3617{
3618 void *ret;
3619
145bdaa1 3620 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
3621 &split_huge_pages_fops);
3622 if (!ret)
3623 pr_warn("Failed to create split_huge_pages in debugfs");
3624 return 0;
3625}
3626late_initcall(split_huge_pages_debugfs);
3627#endif