]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm, vmstat: add infrastructure for per-node vmstats
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
ba76149f 38/*
8bfa3f9a
JW
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
ba76149f 45 */
71e3aac0 46unsigned long transparent_hugepage_flags __read_mostly =
13ece886 47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
49#endif
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52#endif
444eb2a4 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 56
9a982250 57static struct shrinker deferred_split_shrinker;
f000565a 58
97ae1749 59static atomic_t huge_zero_refcount;
56873f43 60struct page *huge_zero_page __read_mostly;
4a6c1297 61
fc437044 62struct page *get_huge_zero_page(void)
97ae1749
KS
63{
64 struct page *zero_page;
65retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 67 return READ_ONCE(huge_zero_page);
97ae1749
KS
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 70 HPAGE_PMD_ORDER);
d8a8e1f0
KS
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 73 return NULL;
d8a8e1f0
KS
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 76 preempt_disable();
5918d10a 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 78 preempt_enable();
5ddacbe9 79 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
4db0c3c2 86 return READ_ONCE(huge_zero_page);
4a6c1297
KS
87}
88
aa88b68c 89void put_huge_zero_page(void)
4a6c1297 90{
97ae1749
KS
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
96}
97
48896466
GC
98static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
99 struct shrink_control *sc)
4a6c1297 100{
48896466
GC
101 /* we can free zero page only if last reference remains */
102 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
103}
97ae1749 104
48896466
GC
105static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
106 struct shrink_control *sc)
107{
97ae1749 108 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
109 struct page *zero_page = xchg(&huge_zero_page, NULL);
110 BUG_ON(zero_page == NULL);
5ddacbe9 111 __free_pages(zero_page, compound_order(zero_page));
48896466 112 return HPAGE_PMD_NR;
97ae1749
KS
113 }
114
115 return 0;
4a6c1297
KS
116}
117
97ae1749 118static struct shrinker huge_zero_page_shrinker = {
48896466
GC
119 .count_objects = shrink_huge_zero_page_count,
120 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
121 .seeks = DEFAULT_SEEKS,
122};
123
71e3aac0 124#ifdef CONFIG_SYSFS
ba76149f 125
444eb2a4 126static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
127 struct kobj_attribute *attr,
128 const char *buf, size_t count,
129 enum transparent_hugepage_flag enabled,
444eb2a4 130 enum transparent_hugepage_flag deferred,
71e3aac0
AA
131 enum transparent_hugepage_flag req_madv)
132{
444eb2a4
MG
133 if (!memcmp("defer", buf,
134 min(sizeof("defer")-1, count))) {
135 if (enabled == deferred)
136 return -EINVAL;
137 clear_bit(enabled, &transparent_hugepage_flags);
138 clear_bit(req_madv, &transparent_hugepage_flags);
139 set_bit(deferred, &transparent_hugepage_flags);
140 } else if (!memcmp("always", buf,
71e3aac0 141 min(sizeof("always")-1, count))) {
444eb2a4 142 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 143 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 144 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
145 } else if (!memcmp("madvise", buf,
146 min(sizeof("madvise")-1, count))) {
147 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 148 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
149 set_bit(req_madv, &transparent_hugepage_flags);
150 } else if (!memcmp("never", buf,
151 min(sizeof("never")-1, count))) {
152 clear_bit(enabled, &transparent_hugepage_flags);
153 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 154 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
155 } else
156 return -EINVAL;
157
158 return count;
159}
160
161static ssize_t enabled_show(struct kobject *kobj,
162 struct kobj_attribute *attr, char *buf)
163{
444eb2a4
MG
164 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
165 return sprintf(buf, "[always] madvise never\n");
166 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
167 return sprintf(buf, "always [madvise] never\n");
168 else
169 return sprintf(buf, "always madvise [never]\n");
71e3aac0 170}
444eb2a4 171
71e3aac0
AA
172static ssize_t enabled_store(struct kobject *kobj,
173 struct kobj_attribute *attr,
174 const char *buf, size_t count)
175{
ba76149f
AA
176 ssize_t ret;
177
444eb2a4
MG
178 ret = triple_flag_store(kobj, attr, buf, count,
179 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
180 TRANSPARENT_HUGEPAGE_FLAG,
181 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
182
183 if (ret > 0) {
b46e756f 184 int err = start_stop_khugepaged();
ba76149f
AA
185 if (err)
186 ret = err;
187 }
188
189 return ret;
71e3aac0
AA
190}
191static struct kobj_attribute enabled_attr =
192 __ATTR(enabled, 0644, enabled_show, enabled_store);
193
b46e756f 194ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
195 struct kobj_attribute *attr, char *buf,
196 enum transparent_hugepage_flag flag)
197{
e27e6151
BH
198 return sprintf(buf, "%d\n",
199 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 200}
e27e6151 201
b46e756f 202ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
203 struct kobj_attribute *attr,
204 const char *buf, size_t count,
205 enum transparent_hugepage_flag flag)
206{
e27e6151
BH
207 unsigned long value;
208 int ret;
209
210 ret = kstrtoul(buf, 10, &value);
211 if (ret < 0)
212 return ret;
213 if (value > 1)
214 return -EINVAL;
215
216 if (value)
71e3aac0 217 set_bit(flag, &transparent_hugepage_flags);
e27e6151 218 else
71e3aac0 219 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
220
221 return count;
222}
223
224/*
225 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
226 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
227 * memory just to allocate one more hugepage.
228 */
229static ssize_t defrag_show(struct kobject *kobj,
230 struct kobj_attribute *attr, char *buf)
231{
444eb2a4
MG
232 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
233 return sprintf(buf, "[always] defer madvise never\n");
234 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
235 return sprintf(buf, "always [defer] madvise never\n");
236 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
237 return sprintf(buf, "always defer [madvise] never\n");
238 else
239 return sprintf(buf, "always defer madvise [never]\n");
240
71e3aac0
AA
241}
242static ssize_t defrag_store(struct kobject *kobj,
243 struct kobj_attribute *attr,
244 const char *buf, size_t count)
245{
444eb2a4
MG
246 return triple_flag_store(kobj, attr, buf, count,
247 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
248 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
249 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
250}
251static struct kobj_attribute defrag_attr =
252 __ATTR(defrag, 0644, defrag_show, defrag_store);
253
79da5407
KS
254static ssize_t use_zero_page_show(struct kobject *kobj,
255 struct kobj_attribute *attr, char *buf)
256{
b46e756f 257 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
258 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
259}
260static ssize_t use_zero_page_store(struct kobject *kobj,
261 struct kobj_attribute *attr, const char *buf, size_t count)
262{
b46e756f 263 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
264 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
265}
266static struct kobj_attribute use_zero_page_attr =
267 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
268#ifdef CONFIG_DEBUG_VM
269static ssize_t debug_cow_show(struct kobject *kobj,
270 struct kobj_attribute *attr, char *buf)
271{
b46e756f 272 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
273 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
274}
275static ssize_t debug_cow_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count)
278{
b46e756f 279 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
280 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
281}
282static struct kobj_attribute debug_cow_attr =
283 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
284#endif /* CONFIG_DEBUG_VM */
285
286static struct attribute *hugepage_attr[] = {
287 &enabled_attr.attr,
288 &defrag_attr.attr,
79da5407 289 &use_zero_page_attr.attr,
e496cf3d 290#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
291 &shmem_enabled_attr.attr,
292#endif
71e3aac0
AA
293#ifdef CONFIG_DEBUG_VM
294 &debug_cow_attr.attr,
295#endif
296 NULL,
297};
298
299static struct attribute_group hugepage_attr_group = {
300 .attrs = hugepage_attr,
ba76149f
AA
301};
302
569e5590 303static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 304{
71e3aac0
AA
305 int err;
306
569e5590
SL
307 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
308 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 309 pr_err("failed to create transparent hugepage kobject\n");
569e5590 310 return -ENOMEM;
ba76149f
AA
311 }
312
569e5590 313 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 314 if (err) {
ae3a8c1c 315 pr_err("failed to register transparent hugepage group\n");
569e5590 316 goto delete_obj;
ba76149f
AA
317 }
318
569e5590 319 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 320 if (err) {
ae3a8c1c 321 pr_err("failed to register transparent hugepage group\n");
569e5590 322 goto remove_hp_group;
ba76149f 323 }
569e5590
SL
324
325 return 0;
326
327remove_hp_group:
328 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
329delete_obj:
330 kobject_put(*hugepage_kobj);
331 return err;
332}
333
334static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
335{
336 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
337 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
338 kobject_put(hugepage_kobj);
339}
340#else
341static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
342{
343 return 0;
344}
345
346static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
347{
348}
349#endif /* CONFIG_SYSFS */
350
351static int __init hugepage_init(void)
352{
353 int err;
354 struct kobject *hugepage_kobj;
355
356 if (!has_transparent_hugepage()) {
357 transparent_hugepage_flags = 0;
358 return -EINVAL;
359 }
360
ff20c2e0
KS
361 /*
362 * hugepages can't be allocated by the buddy allocator
363 */
364 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
365 /*
366 * we use page->mapping and page->index in second tail page
367 * as list_head: assuming THP order >= 2
368 */
369 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
370
569e5590
SL
371 err = hugepage_init_sysfs(&hugepage_kobj);
372 if (err)
65ebb64f 373 goto err_sysfs;
ba76149f 374
b46e756f 375 err = khugepaged_init();
ba76149f 376 if (err)
65ebb64f 377 goto err_slab;
ba76149f 378
65ebb64f
KS
379 err = register_shrinker(&huge_zero_page_shrinker);
380 if (err)
381 goto err_hzp_shrinker;
9a982250
KS
382 err = register_shrinker(&deferred_split_shrinker);
383 if (err)
384 goto err_split_shrinker;
97ae1749 385
97562cd2
RR
386 /*
387 * By default disable transparent hugepages on smaller systems,
388 * where the extra memory used could hurt more than TLB overhead
389 * is likely to save. The admin can still enable it through /sys.
390 */
79553da2 391 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 392 transparent_hugepage_flags = 0;
79553da2
KS
393 return 0;
394 }
97562cd2 395
79553da2 396 err = start_stop_khugepaged();
65ebb64f
KS
397 if (err)
398 goto err_khugepaged;
ba76149f 399
569e5590 400 return 0;
65ebb64f 401err_khugepaged:
9a982250
KS
402 unregister_shrinker(&deferred_split_shrinker);
403err_split_shrinker:
65ebb64f
KS
404 unregister_shrinker(&huge_zero_page_shrinker);
405err_hzp_shrinker:
b46e756f 406 khugepaged_destroy();
65ebb64f 407err_slab:
569e5590 408 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 409err_sysfs:
ba76149f 410 return err;
71e3aac0 411}
a64fb3cd 412subsys_initcall(hugepage_init);
71e3aac0
AA
413
414static int __init setup_transparent_hugepage(char *str)
415{
416 int ret = 0;
417 if (!str)
418 goto out;
419 if (!strcmp(str, "always")) {
420 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
421 &transparent_hugepage_flags);
422 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
423 &transparent_hugepage_flags);
424 ret = 1;
425 } else if (!strcmp(str, "madvise")) {
426 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
427 &transparent_hugepage_flags);
428 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
429 &transparent_hugepage_flags);
430 ret = 1;
431 } else if (!strcmp(str, "never")) {
432 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
433 &transparent_hugepage_flags);
434 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
435 &transparent_hugepage_flags);
436 ret = 1;
437 }
438out:
439 if (!ret)
ae3a8c1c 440 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
441 return ret;
442}
443__setup("transparent_hugepage=", setup_transparent_hugepage);
444
b32967ff 445pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
446{
447 if (likely(vma->vm_flags & VM_WRITE))
448 pmd = pmd_mkwrite(pmd);
449 return pmd;
450}
451
9a982250
KS
452static inline struct list_head *page_deferred_list(struct page *page)
453{
454 /*
455 * ->lru in the tail pages is occupied by compound_head.
456 * Let's use ->mapping + ->index in the second tail page as list_head.
457 */
458 return (struct list_head *)&page[2].mapping;
459}
460
461void prep_transhuge_page(struct page *page)
462{
463 /*
464 * we use page->mapping and page->indexlru in second tail page
465 * as list_head: assuming THP order >= 2
466 */
9a982250
KS
467
468 INIT_LIST_HEAD(page_deferred_list(page));
469 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
470}
471
bae473a4
KS
472static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
473 gfp_t gfp)
71e3aac0 474{
bae473a4 475 struct vm_area_struct *vma = fe->vma;
00501b53 476 struct mem_cgroup *memcg;
71e3aac0 477 pgtable_t pgtable;
bae473a4 478 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 479
309381fe 480 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 481
bae473a4 482 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
483 put_page(page);
484 count_vm_event(THP_FAULT_FALLBACK);
485 return VM_FAULT_FALLBACK;
486 }
00501b53 487
bae473a4 488 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 489 if (unlikely(!pgtable)) {
f627c2f5 490 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 491 put_page(page);
71e3aac0 492 return VM_FAULT_OOM;
00501b53 493 }
71e3aac0
AA
494
495 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
496 /*
497 * The memory barrier inside __SetPageUptodate makes sure that
498 * clear_huge_page writes become visible before the set_pmd_at()
499 * write.
500 */
71e3aac0
AA
501 __SetPageUptodate(page);
502
bae473a4
KS
503 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
504 if (unlikely(!pmd_none(*fe->pmd))) {
505 spin_unlock(fe->ptl);
f627c2f5 506 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 507 put_page(page);
bae473a4 508 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
509 } else {
510 pmd_t entry;
6b251fc9
AA
511
512 /* Deliver the page fault to userland */
513 if (userfaultfd_missing(vma)) {
514 int ret;
515
bae473a4 516 spin_unlock(fe->ptl);
f627c2f5 517 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 518 put_page(page);
bae473a4
KS
519 pte_free(vma->vm_mm, pgtable);
520 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
521 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
522 return ret;
523 }
524
3122359a
KS
525 entry = mk_huge_pmd(page, vma->vm_page_prot);
526 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 527 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 528 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 529 lru_cache_add_active_or_unevictable(page, vma);
bae473a4
KS
530 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
531 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
532 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
533 atomic_long_inc(&vma->vm_mm->nr_ptes);
534 spin_unlock(fe->ptl);
6b251fc9 535 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
536 }
537
aa2e878e 538 return 0;
71e3aac0
AA
539}
540
444eb2a4
MG
541/*
542 * If THP is set to always then directly reclaim/compact as necessary
543 * If set to defer then do no reclaim and defer to khugepaged
544 * If set to madvise and the VMA is flagged then directly reclaim/compact
545 */
546static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
547{
548 gfp_t reclaim_flags = 0;
549
550 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
551 (vma->vm_flags & VM_HUGEPAGE))
552 reclaim_flags = __GFP_DIRECT_RECLAIM;
553 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
554 reclaim_flags = __GFP_KSWAPD_RECLAIM;
555 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
556 reclaim_flags = __GFP_DIRECT_RECLAIM;
557
558 return GFP_TRANSHUGE | reclaim_flags;
559}
560
c4088ebd 561/* Caller must hold page table lock. */
d295e341 562static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 563 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 564 struct page *zero_page)
fc9fe822
KS
565{
566 pmd_t entry;
7c414164
AM
567 if (!pmd_none(*pmd))
568 return false;
5918d10a 569 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 570 entry = pmd_mkhuge(entry);
12c9d70b
MW
571 if (pgtable)
572 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 573 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 574 atomic_long_inc(&mm->nr_ptes);
7c414164 575 return true;
fc9fe822
KS
576}
577
bae473a4 578int do_huge_pmd_anonymous_page(struct fault_env *fe)
71e3aac0 579{
bae473a4 580 struct vm_area_struct *vma = fe->vma;
077fcf11 581 gfp_t gfp;
71e3aac0 582 struct page *page;
bae473a4 583 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 584
128ec037 585 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 586 return VM_FAULT_FALLBACK;
128ec037
KS
587 if (unlikely(anon_vma_prepare(vma)))
588 return VM_FAULT_OOM;
6d50e60c 589 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 590 return VM_FAULT_OOM;
bae473a4
KS
591 if (!(fe->flags & FAULT_FLAG_WRITE) &&
592 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
593 transparent_hugepage_use_zero_page()) {
594 pgtable_t pgtable;
595 struct page *zero_page;
596 bool set;
6b251fc9 597 int ret;
bae473a4 598 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 599 if (unlikely(!pgtable))
ba76149f 600 return VM_FAULT_OOM;
128ec037
KS
601 zero_page = get_huge_zero_page();
602 if (unlikely(!zero_page)) {
bae473a4 603 pte_free(vma->vm_mm, pgtable);
81ab4201 604 count_vm_event(THP_FAULT_FALLBACK);
c0292554 605 return VM_FAULT_FALLBACK;
b9bbfbe3 606 }
bae473a4 607 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
6b251fc9
AA
608 ret = 0;
609 set = false;
bae473a4 610 if (pmd_none(*fe->pmd)) {
6b251fc9 611 if (userfaultfd_missing(vma)) {
bae473a4
KS
612 spin_unlock(fe->ptl);
613 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
614 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
615 } else {
bae473a4
KS
616 set_huge_zero_page(pgtable, vma->vm_mm, vma,
617 haddr, fe->pmd, zero_page);
618 spin_unlock(fe->ptl);
6b251fc9
AA
619 set = true;
620 }
621 } else
bae473a4 622 spin_unlock(fe->ptl);
128ec037 623 if (!set) {
bae473a4 624 pte_free(vma->vm_mm, pgtable);
128ec037 625 put_huge_zero_page();
edad9d2c 626 }
6b251fc9 627 return ret;
71e3aac0 628 }
444eb2a4 629 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 630 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
631 if (unlikely(!page)) {
632 count_vm_event(THP_FAULT_FALLBACK);
c0292554 633 return VM_FAULT_FALLBACK;
128ec037 634 }
9a982250 635 prep_transhuge_page(page);
bae473a4 636 return __do_huge_pmd_anonymous_page(fe, page, gfp);
71e3aac0
AA
637}
638
ae18d6dc 639static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 640 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
641{
642 struct mm_struct *mm = vma->vm_mm;
643 pmd_t entry;
644 spinlock_t *ptl;
645
646 ptl = pmd_lock(mm, pmd);
f25748e3
DW
647 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
648 if (pfn_t_devmap(pfn))
649 entry = pmd_mkdevmap(entry);
01871e59
RZ
650 if (write) {
651 entry = pmd_mkyoung(pmd_mkdirty(entry));
652 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 653 }
01871e59
RZ
654 set_pmd_at(mm, addr, pmd, entry);
655 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 656 spin_unlock(ptl);
5cad465d
MW
657}
658
659int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 660 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
661{
662 pgprot_t pgprot = vma->vm_page_prot;
663 /*
664 * If we had pmd_special, we could avoid all these restrictions,
665 * but we need to be consistent with PTEs and architectures that
666 * can't support a 'special' bit.
667 */
668 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
669 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
670 (VM_PFNMAP|VM_MIXEDMAP));
671 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 672 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
673
674 if (addr < vma->vm_start || addr >= vma->vm_end)
675 return VM_FAULT_SIGBUS;
676 if (track_pfn_insert(vma, &pgprot, pfn))
677 return VM_FAULT_SIGBUS;
ae18d6dc
MW
678 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
679 return VM_FAULT_NOPAGE;
5cad465d 680}
dee41079 681EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 682
3565fce3
DW
683static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
684 pmd_t *pmd)
685{
686 pmd_t _pmd;
687
688 /*
689 * We should set the dirty bit only for FOLL_WRITE but for now
690 * the dirty bit in the pmd is meaningless. And if the dirty
691 * bit will become meaningful and we'll only set it with
692 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
693 * set the young bit, instead of the current set_pmd_at.
694 */
695 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
696 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
697 pmd, _pmd, 1))
698 update_mmu_cache_pmd(vma, addr, pmd);
699}
700
701struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
702 pmd_t *pmd, int flags)
703{
704 unsigned long pfn = pmd_pfn(*pmd);
705 struct mm_struct *mm = vma->vm_mm;
706 struct dev_pagemap *pgmap;
707 struct page *page;
708
709 assert_spin_locked(pmd_lockptr(mm, pmd));
710
711 if (flags & FOLL_WRITE && !pmd_write(*pmd))
712 return NULL;
713
714 if (pmd_present(*pmd) && pmd_devmap(*pmd))
715 /* pass */;
716 else
717 return NULL;
718
719 if (flags & FOLL_TOUCH)
720 touch_pmd(vma, addr, pmd);
721
722 /*
723 * device mapped pages can only be returned if the
724 * caller will manage the page reference count.
725 */
726 if (!(flags & FOLL_GET))
727 return ERR_PTR(-EEXIST);
728
729 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
730 pgmap = get_dev_pagemap(pfn, NULL);
731 if (!pgmap)
732 return ERR_PTR(-EFAULT);
733 page = pfn_to_page(pfn);
734 get_page(page);
735 put_dev_pagemap(pgmap);
736
737 return page;
738}
739
71e3aac0
AA
740int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
741 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
742 struct vm_area_struct *vma)
743{
c4088ebd 744 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
745 struct page *src_page;
746 pmd_t pmd;
12c9d70b 747 pgtable_t pgtable = NULL;
628d47ce 748 int ret = -ENOMEM;
71e3aac0 749
628d47ce
KS
750 /* Skip if can be re-fill on fault */
751 if (!vma_is_anonymous(vma))
752 return 0;
753
754 pgtable = pte_alloc_one(dst_mm, addr);
755 if (unlikely(!pgtable))
756 goto out;
71e3aac0 757
c4088ebd
KS
758 dst_ptl = pmd_lock(dst_mm, dst_pmd);
759 src_ptl = pmd_lockptr(src_mm, src_pmd);
760 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
761
762 ret = -EAGAIN;
763 pmd = *src_pmd;
628d47ce 764 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
765 pte_free(dst_mm, pgtable);
766 goto out_unlock;
767 }
fc9fe822 768 /*
c4088ebd 769 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
770 * under splitting since we don't split the page itself, only pmd to
771 * a page table.
772 */
773 if (is_huge_zero_pmd(pmd)) {
5918d10a 774 struct page *zero_page;
97ae1749
KS
775 /*
776 * get_huge_zero_page() will never allocate a new page here,
777 * since we already have a zero page to copy. It just takes a
778 * reference.
779 */
5918d10a 780 zero_page = get_huge_zero_page();
6b251fc9 781 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 782 zero_page);
fc9fe822
KS
783 ret = 0;
784 goto out_unlock;
785 }
de466bd6 786
628d47ce
KS
787 src_page = pmd_page(pmd);
788 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
789 get_page(src_page);
790 page_dup_rmap(src_page, true);
791 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
792 atomic_long_inc(&dst_mm->nr_ptes);
793 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
794
795 pmdp_set_wrprotect(src_mm, addr, src_pmd);
796 pmd = pmd_mkold(pmd_wrprotect(pmd));
797 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
798
799 ret = 0;
800out_unlock:
c4088ebd
KS
801 spin_unlock(src_ptl);
802 spin_unlock(dst_ptl);
71e3aac0
AA
803out:
804 return ret;
805}
806
bae473a4 807void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
a1dd450b
WD
808{
809 pmd_t entry;
810 unsigned long haddr;
811
bae473a4
KS
812 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
813 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
a1dd450b
WD
814 goto unlock;
815
816 entry = pmd_mkyoung(orig_pmd);
bae473a4
KS
817 haddr = fe->address & HPAGE_PMD_MASK;
818 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
819 fe->flags & FAULT_FLAG_WRITE))
820 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
a1dd450b
WD
821
822unlock:
bae473a4 823 spin_unlock(fe->ptl);
a1dd450b
WD
824}
825
bae473a4
KS
826static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
827 struct page *page)
71e3aac0 828{
bae473a4
KS
829 struct vm_area_struct *vma = fe->vma;
830 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
00501b53 831 struct mem_cgroup *memcg;
71e3aac0
AA
832 pgtable_t pgtable;
833 pmd_t _pmd;
834 int ret = 0, i;
835 struct page **pages;
2ec74c3e
SG
836 unsigned long mmun_start; /* For mmu_notifiers */
837 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
838
839 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
840 GFP_KERNEL);
841 if (unlikely(!pages)) {
842 ret |= VM_FAULT_OOM;
843 goto out;
844 }
845
846 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f 847 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
bae473a4
KS
848 __GFP_OTHER_NODE, vma,
849 fe->address, page_to_nid(page));
b9bbfbe3 850 if (unlikely(!pages[i] ||
bae473a4
KS
851 mem_cgroup_try_charge(pages[i], vma->vm_mm,
852 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 853 if (pages[i])
71e3aac0 854 put_page(pages[i]);
b9bbfbe3 855 while (--i >= 0) {
00501b53
JW
856 memcg = (void *)page_private(pages[i]);
857 set_page_private(pages[i], 0);
f627c2f5
KS
858 mem_cgroup_cancel_charge(pages[i], memcg,
859 false);
b9bbfbe3
AA
860 put_page(pages[i]);
861 }
71e3aac0
AA
862 kfree(pages);
863 ret |= VM_FAULT_OOM;
864 goto out;
865 }
00501b53 866 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
867 }
868
869 for (i = 0; i < HPAGE_PMD_NR; i++) {
870 copy_user_highpage(pages[i], page + i,
0089e485 871 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
872 __SetPageUptodate(pages[i]);
873 cond_resched();
874 }
875
2ec74c3e
SG
876 mmun_start = haddr;
877 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 878 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 879
bae473a4
KS
880 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
881 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0 882 goto out_free_pages;
309381fe 883 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 884
bae473a4 885 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
71e3aac0
AA
886 /* leave pmd empty until pte is filled */
887
bae473a4
KS
888 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
889 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
890
891 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 892 pte_t entry;
71e3aac0
AA
893 entry = mk_pte(pages[i], vma->vm_page_prot);
894 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
895 memcg = (void *)page_private(pages[i]);
896 set_page_private(pages[i], 0);
bae473a4 897 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
f627c2f5 898 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 899 lru_cache_add_active_or_unevictable(pages[i], vma);
bae473a4
KS
900 fe->pte = pte_offset_map(&_pmd, haddr);
901 VM_BUG_ON(!pte_none(*fe->pte));
902 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
903 pte_unmap(fe->pte);
71e3aac0
AA
904 }
905 kfree(pages);
906
71e3aac0 907 smp_wmb(); /* make pte visible before pmd */
bae473a4 908 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
d281ee61 909 page_remove_rmap(page, true);
bae473a4 910 spin_unlock(fe->ptl);
71e3aac0 911
bae473a4 912 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 913
71e3aac0
AA
914 ret |= VM_FAULT_WRITE;
915 put_page(page);
916
917out:
918 return ret;
919
920out_free_pages:
bae473a4
KS
921 spin_unlock(fe->ptl);
922 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 923 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
924 memcg = (void *)page_private(pages[i]);
925 set_page_private(pages[i], 0);
f627c2f5 926 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 927 put_page(pages[i]);
b9bbfbe3 928 }
71e3aac0
AA
929 kfree(pages);
930 goto out;
931}
932
bae473a4 933int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
71e3aac0 934{
bae473a4 935 struct vm_area_struct *vma = fe->vma;
93b4796d 936 struct page *page = NULL, *new_page;
00501b53 937 struct mem_cgroup *memcg;
bae473a4 938 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2ec74c3e
SG
939 unsigned long mmun_start; /* For mmu_notifiers */
940 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 941 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 942 int ret = 0;
71e3aac0 943
bae473a4 944 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
81d1b09c 945 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
946 if (is_huge_zero_pmd(orig_pmd))
947 goto alloc;
bae473a4
KS
948 spin_lock(fe->ptl);
949 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0
AA
950 goto out_unlock;
951
952 page = pmd_page(orig_pmd);
309381fe 953 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
954 /*
955 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 956 * part.
1f25fe20 957 */
6d0a07ed 958 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
959 pmd_t entry;
960 entry = pmd_mkyoung(orig_pmd);
961 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4
KS
962 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
963 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
71e3aac0
AA
964 ret |= VM_FAULT_WRITE;
965 goto out_unlock;
966 }
ddc58f27 967 get_page(page);
bae473a4 968 spin_unlock(fe->ptl);
93b4796d 969alloc:
71e3aac0 970 if (transparent_hugepage_enabled(vma) &&
077fcf11 971 !transparent_hugepage_debug_cow()) {
444eb2a4 972 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 973 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 974 } else
71e3aac0
AA
975 new_page = NULL;
976
9a982250
KS
977 if (likely(new_page)) {
978 prep_transhuge_page(new_page);
979 } else {
eecc1e42 980 if (!page) {
bae473a4 981 split_huge_pmd(vma, fe->pmd, fe->address);
e9b71ca9 982 ret |= VM_FAULT_FALLBACK;
93b4796d 983 } else {
bae473a4 984 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
9845cbbd 985 if (ret & VM_FAULT_OOM) {
bae473a4 986 split_huge_pmd(vma, fe->pmd, fe->address);
9845cbbd
KS
987 ret |= VM_FAULT_FALLBACK;
988 }
ddc58f27 989 put_page(page);
93b4796d 990 }
17766dde 991 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
992 goto out;
993 }
994
bae473a4
KS
995 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
996 huge_gfp, &memcg, true))) {
b9bbfbe3 997 put_page(new_page);
bae473a4
KS
998 split_huge_pmd(vma, fe->pmd, fe->address);
999 if (page)
ddc58f27 1000 put_page(page);
9845cbbd 1001 ret |= VM_FAULT_FALLBACK;
17766dde 1002 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1003 goto out;
1004 }
1005
17766dde
DR
1006 count_vm_event(THP_FAULT_ALLOC);
1007
eecc1e42 1008 if (!page)
93b4796d
KS
1009 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1010 else
1011 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1012 __SetPageUptodate(new_page);
1013
2ec74c3e
SG
1014 mmun_start = haddr;
1015 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1016 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1017
bae473a4 1018 spin_lock(fe->ptl);
93b4796d 1019 if (page)
ddc58f27 1020 put_page(page);
bae473a4
KS
1021 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1022 spin_unlock(fe->ptl);
f627c2f5 1023 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1024 put_page(new_page);
2ec74c3e 1025 goto out_mn;
b9bbfbe3 1026 } else {
71e3aac0 1027 pmd_t entry;
3122359a
KS
1028 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1029 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4 1030 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
d281ee61 1031 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1032 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1033 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4
KS
1034 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1035 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
eecc1e42 1036 if (!page) {
bae473a4 1037 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1038 put_huge_zero_page();
1039 } else {
309381fe 1040 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1041 page_remove_rmap(page, true);
93b4796d
KS
1042 put_page(page);
1043 }
71e3aac0
AA
1044 ret |= VM_FAULT_WRITE;
1045 }
bae473a4 1046 spin_unlock(fe->ptl);
2ec74c3e 1047out_mn:
bae473a4 1048 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1049out:
1050 return ret;
2ec74c3e 1051out_unlock:
bae473a4 1052 spin_unlock(fe->ptl);
2ec74c3e 1053 return ret;
71e3aac0
AA
1054}
1055
b676b293 1056struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1057 unsigned long addr,
1058 pmd_t *pmd,
1059 unsigned int flags)
1060{
b676b293 1061 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1062 struct page *page = NULL;
1063
c4088ebd 1064 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1065
1066 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1067 goto out;
1068
85facf25
KS
1069 /* Avoid dumping huge zero page */
1070 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1071 return ERR_PTR(-EFAULT);
1072
2b4847e7 1073 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1074 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1075 goto out;
1076
71e3aac0 1077 page = pmd_page(*pmd);
309381fe 1078 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1079 if (flags & FOLL_TOUCH)
1080 touch_pmd(vma, addr, pmd);
de60f5f1 1081 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1082 /*
1083 * We don't mlock() pte-mapped THPs. This way we can avoid
1084 * leaking mlocked pages into non-VM_LOCKED VMAs.
1085 *
9a73f61b
KS
1086 * For anon THP:
1087 *
e90309c9
KS
1088 * In most cases the pmd is the only mapping of the page as we
1089 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1090 * writable private mappings in populate_vma_page_range().
1091 *
1092 * The only scenario when we have the page shared here is if we
1093 * mlocking read-only mapping shared over fork(). We skip
1094 * mlocking such pages.
9a73f61b
KS
1095 *
1096 * For file THP:
1097 *
1098 * We can expect PageDoubleMap() to be stable under page lock:
1099 * for file pages we set it in page_add_file_rmap(), which
1100 * requires page to be locked.
e90309c9 1101 */
9a73f61b
KS
1102
1103 if (PageAnon(page) && compound_mapcount(page) != 1)
1104 goto skip_mlock;
1105 if (PageDoubleMap(page) || !page->mapping)
1106 goto skip_mlock;
1107 if (!trylock_page(page))
1108 goto skip_mlock;
1109 lru_add_drain();
1110 if (page->mapping && !PageDoubleMap(page))
1111 mlock_vma_page(page);
1112 unlock_page(page);
b676b293 1113 }
9a73f61b 1114skip_mlock:
71e3aac0 1115 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1116 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1117 if (flags & FOLL_GET)
ddc58f27 1118 get_page(page);
71e3aac0
AA
1119
1120out:
1121 return page;
1122}
1123
d10e63f2 1124/* NUMA hinting page fault entry point for trans huge pmds */
bae473a4 1125int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
d10e63f2 1126{
bae473a4 1127 struct vm_area_struct *vma = fe->vma;
b8916634 1128 struct anon_vma *anon_vma = NULL;
b32967ff 1129 struct page *page;
bae473a4 1130 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
8191acbd 1131 int page_nid = -1, this_nid = numa_node_id();
90572890 1132 int target_nid, last_cpupid = -1;
8191acbd
MG
1133 bool page_locked;
1134 bool migrated = false;
b191f9b1 1135 bool was_writable;
6688cc05 1136 int flags = 0;
d10e63f2 1137
c0e7cad9
MG
1138 /* A PROT_NONE fault should not end up here */
1139 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1140
bae473a4
KS
1141 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1142 if (unlikely(!pmd_same(pmd, *fe->pmd)))
d10e63f2
MG
1143 goto out_unlock;
1144
de466bd6
MG
1145 /*
1146 * If there are potential migrations, wait for completion and retry
1147 * without disrupting NUMA hinting information. Do not relock and
1148 * check_same as the page may no longer be mapped.
1149 */
bae473a4
KS
1150 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1151 page = pmd_page(*fe->pmd);
1152 spin_unlock(fe->ptl);
5d833062 1153 wait_on_page_locked(page);
de466bd6
MG
1154 goto out;
1155 }
1156
d10e63f2 1157 page = pmd_page(pmd);
a1a46184 1158 BUG_ON(is_huge_zero_page(page));
8191acbd 1159 page_nid = page_to_nid(page);
90572890 1160 last_cpupid = page_cpupid_last(page);
03c5a6e1 1161 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1162 if (page_nid == this_nid) {
03c5a6e1 1163 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1164 flags |= TNF_FAULT_LOCAL;
1165 }
4daae3b4 1166
bea66fbd
MG
1167 /* See similar comment in do_numa_page for explanation */
1168 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1169 flags |= TNF_NO_GROUP;
1170
ff9042b1
MG
1171 /*
1172 * Acquire the page lock to serialise THP migrations but avoid dropping
1173 * page_table_lock if at all possible
1174 */
b8916634
MG
1175 page_locked = trylock_page(page);
1176 target_nid = mpol_misplaced(page, vma, haddr);
1177 if (target_nid == -1) {
1178 /* If the page was locked, there are no parallel migrations */
a54a407f 1179 if (page_locked)
b8916634 1180 goto clear_pmdnuma;
2b4847e7 1181 }
4daae3b4 1182
de466bd6 1183 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1184 if (!page_locked) {
bae473a4 1185 spin_unlock(fe->ptl);
b8916634 1186 wait_on_page_locked(page);
a54a407f 1187 page_nid = -1;
b8916634
MG
1188 goto out;
1189 }
1190
2b4847e7
MG
1191 /*
1192 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1193 * to serialises splits
1194 */
b8916634 1195 get_page(page);
bae473a4 1196 spin_unlock(fe->ptl);
b8916634 1197 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1198
c69307d5 1199 /* Confirm the PMD did not change while page_table_lock was released */
bae473a4
KS
1200 spin_lock(fe->ptl);
1201 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
b32967ff
MG
1202 unlock_page(page);
1203 put_page(page);
a54a407f 1204 page_nid = -1;
4daae3b4 1205 goto out_unlock;
b32967ff 1206 }
ff9042b1 1207
c3a489ca
MG
1208 /* Bail if we fail to protect against THP splits for any reason */
1209 if (unlikely(!anon_vma)) {
1210 put_page(page);
1211 page_nid = -1;
1212 goto clear_pmdnuma;
1213 }
1214
a54a407f
MG
1215 /*
1216 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1217 * and access rights restored.
a54a407f 1218 */
bae473a4
KS
1219 spin_unlock(fe->ptl);
1220 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1221 fe->pmd, pmd, fe->address, page, target_nid);
6688cc05
PZ
1222 if (migrated) {
1223 flags |= TNF_MIGRATED;
8191acbd 1224 page_nid = target_nid;
074c2381
MG
1225 } else
1226 flags |= TNF_MIGRATE_FAIL;
b32967ff 1227
8191acbd 1228 goto out;
b32967ff 1229clear_pmdnuma:
a54a407f 1230 BUG_ON(!PageLocked(page));
b191f9b1 1231 was_writable = pmd_write(pmd);
4d942466 1232 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1233 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1234 if (was_writable)
1235 pmd = pmd_mkwrite(pmd);
bae473a4
KS
1236 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1237 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
a54a407f 1238 unlock_page(page);
d10e63f2 1239out_unlock:
bae473a4 1240 spin_unlock(fe->ptl);
b8916634
MG
1241
1242out:
1243 if (anon_vma)
1244 page_unlock_anon_vma_read(anon_vma);
1245
8191acbd 1246 if (page_nid != -1)
bae473a4 1247 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
8191acbd 1248
d10e63f2
MG
1249 return 0;
1250}
1251
b8d3c4c3
MK
1252int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1253 pmd_t *pmd, unsigned long addr, unsigned long next)
1254
1255{
1256 spinlock_t *ptl;
1257 pmd_t orig_pmd;
1258 struct page *page;
1259 struct mm_struct *mm = tlb->mm;
1260 int ret = 0;
1261
b6ec57f4
KS
1262 ptl = pmd_trans_huge_lock(pmd, vma);
1263 if (!ptl)
25eedabe 1264 goto out_unlocked;
b8d3c4c3
MK
1265
1266 orig_pmd = *pmd;
1267 if (is_huge_zero_pmd(orig_pmd)) {
1268 ret = 1;
1269 goto out;
1270 }
1271
1272 page = pmd_page(orig_pmd);
1273 /*
1274 * If other processes are mapping this page, we couldn't discard
1275 * the page unless they all do MADV_FREE so let's skip the page.
1276 */
1277 if (page_mapcount(page) != 1)
1278 goto out;
1279
1280 if (!trylock_page(page))
1281 goto out;
1282
1283 /*
1284 * If user want to discard part-pages of THP, split it so MADV_FREE
1285 * will deactivate only them.
1286 */
1287 if (next - addr != HPAGE_PMD_SIZE) {
1288 get_page(page);
1289 spin_unlock(ptl);
9818b8cd 1290 split_huge_page(page);
b8d3c4c3
MK
1291 put_page(page);
1292 unlock_page(page);
b8d3c4c3
MK
1293 goto out_unlocked;
1294 }
1295
1296 if (PageDirty(page))
1297 ClearPageDirty(page);
1298 unlock_page(page);
1299
1300 if (PageActive(page))
1301 deactivate_page(page);
1302
1303 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1304 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1305 tlb->fullmm);
1306 orig_pmd = pmd_mkold(orig_pmd);
1307 orig_pmd = pmd_mkclean(orig_pmd);
1308
1309 set_pmd_at(mm, addr, pmd, orig_pmd);
1310 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1311 }
1312 ret = 1;
1313out:
1314 spin_unlock(ptl);
1315out_unlocked:
1316 return ret;
1317}
1318
71e3aac0 1319int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1320 pmd_t *pmd, unsigned long addr)
71e3aac0 1321{
da146769 1322 pmd_t orig_pmd;
bf929152 1323 spinlock_t *ptl;
71e3aac0 1324
b6ec57f4
KS
1325 ptl = __pmd_trans_huge_lock(pmd, vma);
1326 if (!ptl)
da146769
KS
1327 return 0;
1328 /*
1329 * For architectures like ppc64 we look at deposited pgtable
1330 * when calling pmdp_huge_get_and_clear. So do the
1331 * pgtable_trans_huge_withdraw after finishing pmdp related
1332 * operations.
1333 */
1334 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1335 tlb->fullmm);
1336 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1337 if (vma_is_dax(vma)) {
1338 spin_unlock(ptl);
1339 if (is_huge_zero_pmd(orig_pmd))
aa88b68c 1340 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1341 } else if (is_huge_zero_pmd(orig_pmd)) {
1342 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1343 atomic_long_dec(&tlb->mm->nr_ptes);
1344 spin_unlock(ptl);
aa88b68c 1345 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1346 } else {
1347 struct page *page = pmd_page(orig_pmd);
d281ee61 1348 page_remove_rmap(page, true);
da146769 1349 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1350 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1351 if (PageAnon(page)) {
1352 pgtable_t pgtable;
1353 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1354 pte_free(tlb->mm, pgtable);
1355 atomic_long_dec(&tlb->mm->nr_ptes);
1356 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1357 } else {
1358 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1359 }
da146769 1360 spin_unlock(ptl);
e77b0852 1361 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1362 }
da146769 1363 return 1;
71e3aac0
AA
1364}
1365
bf8616d5 1366bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a
AA
1367 unsigned long new_addr, unsigned long old_end,
1368 pmd_t *old_pmd, pmd_t *new_pmd)
1369{
bf929152 1370 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1371 pmd_t pmd;
37a1c49a
AA
1372 struct mm_struct *mm = vma->vm_mm;
1373
1374 if ((old_addr & ~HPAGE_PMD_MASK) ||
1375 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1376 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1377 return false;
37a1c49a
AA
1378
1379 /*
1380 * The destination pmd shouldn't be established, free_pgtables()
1381 * should have release it.
1382 */
1383 if (WARN_ON(!pmd_none(*new_pmd))) {
1384 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1385 return false;
37a1c49a
AA
1386 }
1387
bf929152
KS
1388 /*
1389 * We don't have to worry about the ordering of src and dst
1390 * ptlocks because exclusive mmap_sem prevents deadlock.
1391 */
b6ec57f4
KS
1392 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1393 if (old_ptl) {
bf929152
KS
1394 new_ptl = pmd_lockptr(mm, new_pmd);
1395 if (new_ptl != old_ptl)
1396 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1397 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1398 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1399
69a8ec2d
KS
1400 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1401 vma_is_anonymous(vma)) {
b3084f4d 1402 pgtable_t pgtable;
3592806c
KS
1403 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1404 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1405 }
b3084f4d
AK
1406 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1407 if (new_ptl != old_ptl)
1408 spin_unlock(new_ptl);
bf929152 1409 spin_unlock(old_ptl);
4b471e88 1410 return true;
37a1c49a 1411 }
4b471e88 1412 return false;
37a1c49a
AA
1413}
1414
f123d74a
MG
1415/*
1416 * Returns
1417 * - 0 if PMD could not be locked
1418 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1419 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1420 */
cd7548ab 1421int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1422 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1423{
1424 struct mm_struct *mm = vma->vm_mm;
bf929152 1425 spinlock_t *ptl;
cd7548ab
JW
1426 int ret = 0;
1427
b6ec57f4
KS
1428 ptl = __pmd_trans_huge_lock(pmd, vma);
1429 if (ptl) {
025c5b24 1430 pmd_t entry;
b191f9b1 1431 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1432 ret = 1;
e944fd67
MG
1433
1434 /*
1435 * Avoid trapping faults against the zero page. The read-only
1436 * data is likely to be read-cached on the local CPU and
1437 * local/remote hits to the zero page are not interesting.
1438 */
1439 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1440 spin_unlock(ptl);
ba68bc01 1441 return ret;
e944fd67
MG
1442 }
1443
10c1045f 1444 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1445 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1446 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1447 if (preserve_write)
1448 entry = pmd_mkwrite(entry);
10c1045f
MG
1449 ret = HPAGE_PMD_NR;
1450 set_pmd_at(mm, addr, pmd, entry);
b237aded
KS
1451 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1452 pmd_write(entry));
10c1045f 1453 }
bf929152 1454 spin_unlock(ptl);
025c5b24
NH
1455 }
1456
1457 return ret;
1458}
1459
1460/*
8f19b0c0 1461 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1462 *
8f19b0c0
HY
1463 * Note that if it returns page table lock pointer, this routine returns without
1464 * unlocking page table lock. So callers must unlock it.
025c5b24 1465 */
b6ec57f4 1466spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1467{
b6ec57f4
KS
1468 spinlock_t *ptl;
1469 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1470 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1471 return ptl;
1472 spin_unlock(ptl);
1473 return NULL;
cd7548ab
JW
1474}
1475
eef1b3ba
KS
1476static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1477 unsigned long haddr, pmd_t *pmd)
1478{
1479 struct mm_struct *mm = vma->vm_mm;
1480 pgtable_t pgtable;
1481 pmd_t _pmd;
1482 int i;
1483
1484 /* leave pmd empty until pte is filled */
1485 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1486
1487 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1488 pmd_populate(mm, &_pmd, pgtable);
1489
1490 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1491 pte_t *pte, entry;
1492 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1493 entry = pte_mkspecial(entry);
1494 pte = pte_offset_map(&_pmd, haddr);
1495 VM_BUG_ON(!pte_none(*pte));
1496 set_pte_at(mm, haddr, pte, entry);
1497 pte_unmap(pte);
1498 }
1499 smp_wmb(); /* make pte visible before pmd */
1500 pmd_populate(mm, pmd, pgtable);
1501 put_huge_zero_page();
1502}
1503
1504static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1505 unsigned long haddr, bool freeze)
eef1b3ba
KS
1506{
1507 struct mm_struct *mm = vma->vm_mm;
1508 struct page *page;
1509 pgtable_t pgtable;
1510 pmd_t _pmd;
b8d3c4c3 1511 bool young, write, dirty;
2ac015e2 1512 unsigned long addr;
eef1b3ba
KS
1513 int i;
1514
1515 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1516 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1517 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1518 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1519
1520 count_vm_event(THP_SPLIT_PMD);
1521
d21b9e57
KS
1522 if (!vma_is_anonymous(vma)) {
1523 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
eef1b3ba
KS
1524 if (is_huge_zero_pmd(_pmd))
1525 put_huge_zero_page();
d21b9e57
KS
1526 if (vma_is_dax(vma))
1527 return;
1528 page = pmd_page(_pmd);
1529 if (!PageReferenced(page) && pmd_young(_pmd))
1530 SetPageReferenced(page);
1531 page_remove_rmap(page, true);
1532 put_page(page);
1533 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1534 return;
1535 } else if (is_huge_zero_pmd(*pmd)) {
1536 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1537 }
1538
1539 page = pmd_page(*pmd);
1540 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 1541 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
1542 write = pmd_write(*pmd);
1543 young = pmd_young(*pmd);
b8d3c4c3 1544 dirty = pmd_dirty(*pmd);
eef1b3ba 1545
c777e2a8 1546 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
1547 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1548 pmd_populate(mm, &_pmd, pgtable);
1549
2ac015e2 1550 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
1551 pte_t entry, *pte;
1552 /*
1553 * Note that NUMA hinting access restrictions are not
1554 * transferred to avoid any possibility of altering
1555 * permissions across VMAs.
1556 */
ba988280
KS
1557 if (freeze) {
1558 swp_entry_t swp_entry;
1559 swp_entry = make_migration_entry(page + i, write);
1560 entry = swp_entry_to_pte(swp_entry);
1561 } else {
1562 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 1563 entry = maybe_mkwrite(entry, vma);
ba988280
KS
1564 if (!write)
1565 entry = pte_wrprotect(entry);
1566 if (!young)
1567 entry = pte_mkold(entry);
1568 }
b8d3c4c3
MK
1569 if (dirty)
1570 SetPageDirty(page + i);
2ac015e2 1571 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 1572 BUG_ON(!pte_none(*pte));
2ac015e2 1573 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
1574 atomic_inc(&page[i]._mapcount);
1575 pte_unmap(pte);
1576 }
1577
1578 /*
1579 * Set PG_double_map before dropping compound_mapcount to avoid
1580 * false-negative page_mapped().
1581 */
1582 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1583 for (i = 0; i < HPAGE_PMD_NR; i++)
1584 atomic_inc(&page[i]._mapcount);
1585 }
1586
1587 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1588 /* Last compound_mapcount is gone. */
65c45377 1589 __dec_zone_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
1590 if (TestClearPageDoubleMap(page)) {
1591 /* No need in mapcount reference anymore */
1592 for (i = 0; i < HPAGE_PMD_NR; i++)
1593 atomic_dec(&page[i]._mapcount);
1594 }
1595 }
1596
1597 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
1598 /*
1599 * Up to this point the pmd is present and huge and userland has the
1600 * whole access to the hugepage during the split (which happens in
1601 * place). If we overwrite the pmd with the not-huge version pointing
1602 * to the pte here (which of course we could if all CPUs were bug
1603 * free), userland could trigger a small page size TLB miss on the
1604 * small sized TLB while the hugepage TLB entry is still established in
1605 * the huge TLB. Some CPU doesn't like that.
1606 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1607 * 383 on page 93. Intel should be safe but is also warns that it's
1608 * only safe if the permission and cache attributes of the two entries
1609 * loaded in the two TLB is identical (which should be the case here).
1610 * But it is generally safer to never allow small and huge TLB entries
1611 * for the same virtual address to be loaded simultaneously. So instead
1612 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1613 * current pmd notpresent (atomically because here the pmd_trans_huge
1614 * and pmd_trans_splitting must remain set at all times on the pmd
1615 * until the split is complete for this pmd), then we flush the SMP TLB
1616 * and finally we write the non-huge version of the pmd entry with
1617 * pmd_populate.
1618 */
1619 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 1620 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
1621
1622 if (freeze) {
2ac015e2 1623 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
1624 page_remove_rmap(page + i, false);
1625 put_page(page + i);
1626 }
1627 }
eef1b3ba
KS
1628}
1629
1630void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 1631 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
1632{
1633 spinlock_t *ptl;
1634 struct mm_struct *mm = vma->vm_mm;
1635 unsigned long haddr = address & HPAGE_PMD_MASK;
1636
1637 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1638 ptl = pmd_lock(mm, pmd);
33f4751e
NH
1639
1640 /*
1641 * If caller asks to setup a migration entries, we need a page to check
1642 * pmd against. Otherwise we can end up replacing wrong page.
1643 */
1644 VM_BUG_ON(freeze && !page);
1645 if (page && page != pmd_page(*pmd))
1646 goto out;
1647
5c7fb56e 1648 if (pmd_trans_huge(*pmd)) {
33f4751e 1649 page = pmd_page(*pmd);
5c7fb56e 1650 if (PageMlocked(page))
5f737714 1651 clear_page_mlock(page);
5c7fb56e 1652 } else if (!pmd_devmap(*pmd))
e90309c9 1653 goto out;
fec89c10 1654 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 1655out:
eef1b3ba
KS
1656 spin_unlock(ptl);
1657 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1658}
1659
fec89c10
KS
1660void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1661 bool freeze, struct page *page)
94fcc585 1662{
f72e7dcd
HD
1663 pgd_t *pgd;
1664 pud_t *pud;
94fcc585
AA
1665 pmd_t *pmd;
1666
78ddc534 1667 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
1668 if (!pgd_present(*pgd))
1669 return;
1670
1671 pud = pud_offset(pgd, address);
1672 if (!pud_present(*pud))
1673 return;
1674
1675 pmd = pmd_offset(pud, address);
fec89c10 1676
33f4751e 1677 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
1678}
1679
e1b9996b 1680void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
1681 unsigned long start,
1682 unsigned long end,
1683 long adjust_next)
1684{
1685 /*
1686 * If the new start address isn't hpage aligned and it could
1687 * previously contain an hugepage: check if we need to split
1688 * an huge pmd.
1689 */
1690 if (start & ~HPAGE_PMD_MASK &&
1691 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1692 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1693 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
1694
1695 /*
1696 * If the new end address isn't hpage aligned and it could
1697 * previously contain an hugepage: check if we need to split
1698 * an huge pmd.
1699 */
1700 if (end & ~HPAGE_PMD_MASK &&
1701 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1702 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1703 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
1704
1705 /*
1706 * If we're also updating the vma->vm_next->vm_start, if the new
1707 * vm_next->vm_start isn't page aligned and it could previously
1708 * contain an hugepage: check if we need to split an huge pmd.
1709 */
1710 if (adjust_next > 0) {
1711 struct vm_area_struct *next = vma->vm_next;
1712 unsigned long nstart = next->vm_start;
1713 nstart += adjust_next << PAGE_SHIFT;
1714 if (nstart & ~HPAGE_PMD_MASK &&
1715 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1716 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 1717 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
1718 }
1719}
e9b61f19 1720
fec89c10 1721static void freeze_page(struct page *page)
e9b61f19 1722{
baa355fd
KS
1723 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1724 TTU_RMAP_LOCKED;
fec89c10 1725 int i, ret;
e9b61f19
KS
1726
1727 VM_BUG_ON_PAGE(!PageHead(page), page);
1728
baa355fd
KS
1729 if (PageAnon(page))
1730 ttu_flags |= TTU_MIGRATION;
1731
fec89c10
KS
1732 /* We only need TTU_SPLIT_HUGE_PMD once */
1733 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1734 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1735 /* Cut short if the page is unmapped */
1736 if (page_count(page) == 1)
1737 return;
e9b61f19 1738
fec89c10 1739 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 1740 }
baa355fd 1741 VM_BUG_ON_PAGE(ret, page + i - 1);
e9b61f19
KS
1742}
1743
fec89c10 1744static void unfreeze_page(struct page *page)
e9b61f19 1745{
fec89c10 1746 int i;
e9b61f19 1747
fec89c10
KS
1748 for (i = 0; i < HPAGE_PMD_NR; i++)
1749 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
1750}
1751
8df651c7 1752static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
1753 struct lruvec *lruvec, struct list_head *list)
1754{
e9b61f19
KS
1755 struct page *page_tail = head + tail;
1756
8df651c7 1757 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 1758 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
1759
1760 /*
0139aa7b 1761 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 1762 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
1763 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1764 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
1765 * get_page_unless_zero(), and atomic_set() is implemented in C not
1766 * using locked ops. spin_unlock on x86 sometime uses locked ops
1767 * because of PPro errata 66, 92, so unless somebody can guarantee
1768 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 1769 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 1770 */
baa355fd
KS
1771 if (PageAnon(head)) {
1772 page_ref_inc(page_tail);
1773 } else {
1774 /* Additional pin to radix tree */
1775 page_ref_add(page_tail, 2);
1776 }
e9b61f19
KS
1777
1778 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1779 page_tail->flags |= (head->flags &
1780 ((1L << PG_referenced) |
1781 (1L << PG_swapbacked) |
1782 (1L << PG_mlocked) |
1783 (1L << PG_uptodate) |
1784 (1L << PG_active) |
1785 (1L << PG_locked) |
b8d3c4c3
MK
1786 (1L << PG_unevictable) |
1787 (1L << PG_dirty)));
e9b61f19
KS
1788
1789 /*
1790 * After clearing PageTail the gup refcount can be released.
1791 * Page flags also must be visible before we make the page non-compound.
1792 */
1793 smp_wmb();
1794
1795 clear_compound_head(page_tail);
1796
1797 if (page_is_young(head))
1798 set_page_young(page_tail);
1799 if (page_is_idle(head))
1800 set_page_idle(page_tail);
1801
1802 /* ->mapping in first tail page is compound_mapcount */
9a982250 1803 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
1804 page_tail);
1805 page_tail->mapping = head->mapping;
1806
1807 page_tail->index = head->index + tail;
1808 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1809 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
1810}
1811
baa355fd
KS
1812static void __split_huge_page(struct page *page, struct list_head *list,
1813 unsigned long flags)
e9b61f19
KS
1814{
1815 struct page *head = compound_head(page);
1816 struct zone *zone = page_zone(head);
1817 struct lruvec *lruvec;
baa355fd 1818 pgoff_t end = -1;
8df651c7 1819 int i;
e9b61f19 1820
e9b61f19
KS
1821 lruvec = mem_cgroup_page_lruvec(head, zone);
1822
1823 /* complete memcg works before add pages to LRU */
1824 mem_cgroup_split_huge_fixup(head);
1825
baa355fd
KS
1826 if (!PageAnon(page))
1827 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1828
1829 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 1830 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
1831 /* Some pages can be beyond i_size: drop them from page cache */
1832 if (head[i].index >= end) {
1833 __ClearPageDirty(head + i);
1834 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
1835 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1836 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
1837 put_page(head + i);
1838 }
1839 }
e9b61f19
KS
1840
1841 ClearPageCompound(head);
baa355fd
KS
1842 /* See comment in __split_huge_page_tail() */
1843 if (PageAnon(head)) {
1844 page_ref_inc(head);
1845 } else {
1846 /* Additional pin to radix tree */
1847 page_ref_add(head, 2);
1848 spin_unlock(&head->mapping->tree_lock);
1849 }
1850
1851 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
e9b61f19 1852
fec89c10 1853 unfreeze_page(head);
e9b61f19
KS
1854
1855 for (i = 0; i < HPAGE_PMD_NR; i++) {
1856 struct page *subpage = head + i;
1857 if (subpage == page)
1858 continue;
1859 unlock_page(subpage);
1860
1861 /*
1862 * Subpages may be freed if there wasn't any mapping
1863 * like if add_to_swap() is running on a lru page that
1864 * had its mapping zapped. And freeing these pages
1865 * requires taking the lru_lock so we do the put_page
1866 * of the tail pages after the split is complete.
1867 */
1868 put_page(subpage);
1869 }
1870}
1871
b20ce5e0
KS
1872int total_mapcount(struct page *page)
1873{
dd78fedd 1874 int i, compound, ret;
b20ce5e0
KS
1875
1876 VM_BUG_ON_PAGE(PageTail(page), page);
1877
1878 if (likely(!PageCompound(page)))
1879 return atomic_read(&page->_mapcount) + 1;
1880
dd78fedd 1881 compound = compound_mapcount(page);
b20ce5e0 1882 if (PageHuge(page))
dd78fedd
KS
1883 return compound;
1884 ret = compound;
b20ce5e0
KS
1885 for (i = 0; i < HPAGE_PMD_NR; i++)
1886 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
1887 /* File pages has compound_mapcount included in _mapcount */
1888 if (!PageAnon(page))
1889 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
1890 if (PageDoubleMap(page))
1891 ret -= HPAGE_PMD_NR;
1892 return ret;
1893}
1894
6d0a07ed
AA
1895/*
1896 * This calculates accurately how many mappings a transparent hugepage
1897 * has (unlike page_mapcount() which isn't fully accurate). This full
1898 * accuracy is primarily needed to know if copy-on-write faults can
1899 * reuse the page and change the mapping to read-write instead of
1900 * copying them. At the same time this returns the total_mapcount too.
1901 *
1902 * The function returns the highest mapcount any one of the subpages
1903 * has. If the return value is one, even if different processes are
1904 * mapping different subpages of the transparent hugepage, they can
1905 * all reuse it, because each process is reusing a different subpage.
1906 *
1907 * The total_mapcount is instead counting all virtual mappings of the
1908 * subpages. If the total_mapcount is equal to "one", it tells the
1909 * caller all mappings belong to the same "mm" and in turn the
1910 * anon_vma of the transparent hugepage can become the vma->anon_vma
1911 * local one as no other process may be mapping any of the subpages.
1912 *
1913 * It would be more accurate to replace page_mapcount() with
1914 * page_trans_huge_mapcount(), however we only use
1915 * page_trans_huge_mapcount() in the copy-on-write faults where we
1916 * need full accuracy to avoid breaking page pinning, because
1917 * page_trans_huge_mapcount() is slower than page_mapcount().
1918 */
1919int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1920{
1921 int i, ret, _total_mapcount, mapcount;
1922
1923 /* hugetlbfs shouldn't call it */
1924 VM_BUG_ON_PAGE(PageHuge(page), page);
1925
1926 if (likely(!PageTransCompound(page))) {
1927 mapcount = atomic_read(&page->_mapcount) + 1;
1928 if (total_mapcount)
1929 *total_mapcount = mapcount;
1930 return mapcount;
1931 }
1932
1933 page = compound_head(page);
1934
1935 _total_mapcount = ret = 0;
1936 for (i = 0; i < HPAGE_PMD_NR; i++) {
1937 mapcount = atomic_read(&page[i]._mapcount) + 1;
1938 ret = max(ret, mapcount);
1939 _total_mapcount += mapcount;
1940 }
1941 if (PageDoubleMap(page)) {
1942 ret -= 1;
1943 _total_mapcount -= HPAGE_PMD_NR;
1944 }
1945 mapcount = compound_mapcount(page);
1946 ret += mapcount;
1947 _total_mapcount += mapcount;
1948 if (total_mapcount)
1949 *total_mapcount = _total_mapcount;
1950 return ret;
1951}
1952
e9b61f19
KS
1953/*
1954 * This function splits huge page into normal pages. @page can point to any
1955 * subpage of huge page to split. Split doesn't change the position of @page.
1956 *
1957 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
1958 * The huge page must be locked.
1959 *
1960 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
1961 *
1962 * Both head page and tail pages will inherit mapping, flags, and so on from
1963 * the hugepage.
1964 *
1965 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
1966 * they are not mapped.
1967 *
1968 * Returns 0 if the hugepage is split successfully.
1969 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
1970 * us.
1971 */
1972int split_huge_page_to_list(struct page *page, struct list_head *list)
1973{
1974 struct page *head = compound_head(page);
a3d0a918 1975 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
1976 struct anon_vma *anon_vma = NULL;
1977 struct address_space *mapping = NULL;
1978 int count, mapcount, extra_pins, ret;
d9654322 1979 bool mlocked;
0b9b6fff 1980 unsigned long flags;
e9b61f19
KS
1981
1982 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19
KS
1983 VM_BUG_ON_PAGE(!PageLocked(page), page);
1984 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
1985 VM_BUG_ON_PAGE(!PageCompound(page), page);
1986
baa355fd
KS
1987 if (PageAnon(head)) {
1988 /*
1989 * The caller does not necessarily hold an mmap_sem that would
1990 * prevent the anon_vma disappearing so we first we take a
1991 * reference to it and then lock the anon_vma for write. This
1992 * is similar to page_lock_anon_vma_read except the write lock
1993 * is taken to serialise against parallel split or collapse
1994 * operations.
1995 */
1996 anon_vma = page_get_anon_vma(head);
1997 if (!anon_vma) {
1998 ret = -EBUSY;
1999 goto out;
2000 }
2001 extra_pins = 0;
2002 mapping = NULL;
2003 anon_vma_lock_write(anon_vma);
2004 } else {
2005 mapping = head->mapping;
2006
2007 /* Truncated ? */
2008 if (!mapping) {
2009 ret = -EBUSY;
2010 goto out;
2011 }
2012
2013 /* Addidional pins from radix tree */
2014 extra_pins = HPAGE_PMD_NR;
2015 anon_vma = NULL;
2016 i_mmap_lock_read(mapping);
e9b61f19 2017 }
e9b61f19
KS
2018
2019 /*
2020 * Racy check if we can split the page, before freeze_page() will
2021 * split PMDs
2022 */
baa355fd 2023 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
e9b61f19
KS
2024 ret = -EBUSY;
2025 goto out_unlock;
2026 }
2027
d9654322 2028 mlocked = PageMlocked(page);
fec89c10 2029 freeze_page(head);
e9b61f19
KS
2030 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2031
d9654322
KS
2032 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2033 if (mlocked)
2034 lru_add_drain();
2035
baa355fd
KS
2036 /* prevent PageLRU to go away from under us, and freeze lru stats */
2037 spin_lock_irqsave(&page_zone(head)->lru_lock, flags);
2038
2039 if (mapping) {
2040 void **pslot;
2041
2042 spin_lock(&mapping->tree_lock);
2043 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2044 page_index(head));
2045 /*
2046 * Check if the head page is present in radix tree.
2047 * We assume all tail are present too, if head is there.
2048 */
2049 if (radix_tree_deref_slot_protected(pslot,
2050 &mapping->tree_lock) != head)
2051 goto fail;
2052 }
2053
0139aa7b 2054 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2055 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2056 count = page_count(head);
2057 mapcount = total_mapcount(head);
baa355fd 2058 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2059 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2060 pgdata->split_queue_len--;
9a982250
KS
2061 list_del(page_deferred_list(head));
2062 }
65c45377
KS
2063 if (mapping)
2064 __dec_zone_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2065 spin_unlock(&pgdata->split_queue_lock);
2066 __split_huge_page(page, list, flags);
e9b61f19 2067 ret = 0;
e9b61f19 2068 } else {
baa355fd
KS
2069 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2070 pr_alert("total_mapcount: %u, page_count(): %u\n",
2071 mapcount, count);
2072 if (PageTail(page))
2073 dump_page(head, NULL);
2074 dump_page(page, "total_mapcount(head) > 0");
2075 BUG();
2076 }
2077 spin_unlock(&pgdata->split_queue_lock);
2078fail: if (mapping)
2079 spin_unlock(&mapping->tree_lock);
2080 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
fec89c10 2081 unfreeze_page(head);
e9b61f19
KS
2082 ret = -EBUSY;
2083 }
2084
2085out_unlock:
baa355fd
KS
2086 if (anon_vma) {
2087 anon_vma_unlock_write(anon_vma);
2088 put_anon_vma(anon_vma);
2089 }
2090 if (mapping)
2091 i_mmap_unlock_read(mapping);
e9b61f19
KS
2092out:
2093 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2094 return ret;
2095}
9a982250
KS
2096
2097void free_transhuge_page(struct page *page)
2098{
a3d0a918 2099 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2100 unsigned long flags;
2101
a3d0a918 2102 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2103 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2104 pgdata->split_queue_len--;
9a982250
KS
2105 list_del(page_deferred_list(page));
2106 }
a3d0a918 2107 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2108 free_compound_page(page);
2109}
2110
2111void deferred_split_huge_page(struct page *page)
2112{
a3d0a918 2113 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2114 unsigned long flags;
2115
2116 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2117
a3d0a918 2118 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2119 if (list_empty(page_deferred_list(page))) {
f9719a03 2120 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2121 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2122 pgdata->split_queue_len++;
9a982250 2123 }
a3d0a918 2124 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2125}
2126
2127static unsigned long deferred_split_count(struct shrinker *shrink,
2128 struct shrink_control *sc)
2129{
a3d0a918 2130 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2131 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2132}
2133
2134static unsigned long deferred_split_scan(struct shrinker *shrink,
2135 struct shrink_control *sc)
2136{
a3d0a918 2137 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2138 unsigned long flags;
2139 LIST_HEAD(list), *pos, *next;
2140 struct page *page;
2141 int split = 0;
2142
a3d0a918 2143 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2144 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2145 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2146 page = list_entry((void *)pos, struct page, mapping);
2147 page = compound_head(page);
e3ae1953
KS
2148 if (get_page_unless_zero(page)) {
2149 list_move(page_deferred_list(page), &list);
2150 } else {
2151 /* We lost race with put_compound_page() */
9a982250 2152 list_del_init(page_deferred_list(page));
a3d0a918 2153 pgdata->split_queue_len--;
9a982250 2154 }
e3ae1953
KS
2155 if (!--sc->nr_to_scan)
2156 break;
9a982250 2157 }
a3d0a918 2158 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2159
2160 list_for_each_safe(pos, next, &list) {
2161 page = list_entry((void *)pos, struct page, mapping);
2162 lock_page(page);
2163 /* split_huge_page() removes page from list on success */
2164 if (!split_huge_page(page))
2165 split++;
2166 unlock_page(page);
2167 put_page(page);
2168 }
2169
a3d0a918
KS
2170 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2171 list_splice_tail(&list, &pgdata->split_queue);
2172 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2173
cb8d68ec
KS
2174 /*
2175 * Stop shrinker if we didn't split any page, but the queue is empty.
2176 * This can happen if pages were freed under us.
2177 */
2178 if (!split && list_empty(&pgdata->split_queue))
2179 return SHRINK_STOP;
2180 return split;
9a982250
KS
2181}
2182
2183static struct shrinker deferred_split_shrinker = {
2184 .count_objects = deferred_split_count,
2185 .scan_objects = deferred_split_scan,
2186 .seeks = DEFAULT_SEEKS,
a3d0a918 2187 .flags = SHRINKER_NUMA_AWARE,
9a982250 2188};
49071d43
KS
2189
2190#ifdef CONFIG_DEBUG_FS
2191static int split_huge_pages_set(void *data, u64 val)
2192{
2193 struct zone *zone;
2194 struct page *page;
2195 unsigned long pfn, max_zone_pfn;
2196 unsigned long total = 0, split = 0;
2197
2198 if (val != 1)
2199 return -EINVAL;
2200
2201 for_each_populated_zone(zone) {
2202 max_zone_pfn = zone_end_pfn(zone);
2203 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2204 if (!pfn_valid(pfn))
2205 continue;
2206
2207 page = pfn_to_page(pfn);
2208 if (!get_page_unless_zero(page))
2209 continue;
2210
2211 if (zone != page_zone(page))
2212 goto next;
2213
baa355fd 2214 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2215 goto next;
2216
2217 total++;
2218 lock_page(page);
2219 if (!split_huge_page(page))
2220 split++;
2221 unlock_page(page);
2222next:
2223 put_page(page);
2224 }
2225 }
2226
145bdaa1 2227 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2228
2229 return 0;
2230}
2231DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2232 "%llu\n");
2233
2234static int __init split_huge_pages_debugfs(void)
2235{
2236 void *ret;
2237
145bdaa1 2238 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2239 &split_huge_pages_fops);
2240 if (!ret)
2241 pr_warn("Failed to create split_huge_pages in debugfs");
2242 return 0;
2243}
2244late_initcall(split_huge_pages_debugfs);
2245#endif