]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
thp: lazy huge zero page allocation
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
325adeb5 20#include <linux/pagemap.h>
71e3aac0
AA
21#include <asm/tlb.h>
22#include <asm/pgalloc.h>
23#include "internal.h"
24
ba76149f
AA
25/*
26 * By default transparent hugepage support is enabled for all mappings
27 * and khugepaged scans all mappings. Defrag is only invoked by
28 * khugepaged hugepage allocations and by page faults inside
29 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
30 * allocations.
31 */
71e3aac0 32unsigned long transparent_hugepage_flags __read_mostly =
13ece886 33#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 34 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
35#endif
36#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
37 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
38#endif
d39d33c3 39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
40 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
41
42/* default scan 8*512 pte (or vmas) every 30 second */
43static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
44static unsigned int khugepaged_pages_collapsed;
45static unsigned int khugepaged_full_scans;
46static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
47/* during fragmentation poll the hugepage allocator once every minute */
48static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
49static struct task_struct *khugepaged_thread __read_mostly;
4a6c1297 50static unsigned long huge_zero_pfn __read_mostly;
ba76149f
AA
51static DEFINE_MUTEX(khugepaged_mutex);
52static DEFINE_SPINLOCK(khugepaged_mm_lock);
53static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
54/*
55 * default collapse hugepages if there is at least one pte mapped like
56 * it would have happened if the vma was large enough during page
57 * fault.
58 */
59static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
60
61static int khugepaged(void *none);
62static int mm_slots_hash_init(void);
63static int khugepaged_slab_init(void);
64static void khugepaged_slab_free(void);
65
66#define MM_SLOTS_HASH_HEADS 1024
67static struct hlist_head *mm_slots_hash __read_mostly;
68static struct kmem_cache *mm_slot_cache __read_mostly;
69
70/**
71 * struct mm_slot - hash lookup from mm to mm_slot
72 * @hash: hash collision list
73 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
74 * @mm: the mm that this information is valid for
75 */
76struct mm_slot {
77 struct hlist_node hash;
78 struct list_head mm_node;
79 struct mm_struct *mm;
80};
81
82/**
83 * struct khugepaged_scan - cursor for scanning
84 * @mm_head: the head of the mm list to scan
85 * @mm_slot: the current mm_slot we are scanning
86 * @address: the next address inside that to be scanned
87 *
88 * There is only the one khugepaged_scan instance of this cursor structure.
89 */
90struct khugepaged_scan {
91 struct list_head mm_head;
92 struct mm_slot *mm_slot;
93 unsigned long address;
2f1da642
HS
94};
95static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
96 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
97};
98
f000565a
AA
99
100static int set_recommended_min_free_kbytes(void)
101{
102 struct zone *zone;
103 int nr_zones = 0;
104 unsigned long recommended_min;
105 extern int min_free_kbytes;
106
17c230af 107 if (!khugepaged_enabled())
f000565a
AA
108 return 0;
109
110 for_each_populated_zone(zone)
111 nr_zones++;
112
113 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
114 recommended_min = pageblock_nr_pages * nr_zones * 2;
115
116 /*
117 * Make sure that on average at least two pageblocks are almost free
118 * of another type, one for a migratetype to fall back to and a
119 * second to avoid subsequent fallbacks of other types There are 3
120 * MIGRATE_TYPES we care about.
121 */
122 recommended_min += pageblock_nr_pages * nr_zones *
123 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
124
125 /* don't ever allow to reserve more than 5% of the lowmem */
126 recommended_min = min(recommended_min,
127 (unsigned long) nr_free_buffer_pages() / 20);
128 recommended_min <<= (PAGE_SHIFT-10);
129
130 if (recommended_min > min_free_kbytes)
131 min_free_kbytes = recommended_min;
132 setup_per_zone_wmarks();
133 return 0;
134}
135late_initcall(set_recommended_min_free_kbytes);
136
ba76149f
AA
137static int start_khugepaged(void)
138{
139 int err = 0;
140 if (khugepaged_enabled()) {
ba76149f
AA
141 if (!khugepaged_thread)
142 khugepaged_thread = kthread_run(khugepaged, NULL,
143 "khugepaged");
144 if (unlikely(IS_ERR(khugepaged_thread))) {
145 printk(KERN_ERR
146 "khugepaged: kthread_run(khugepaged) failed\n");
147 err = PTR_ERR(khugepaged_thread);
148 khugepaged_thread = NULL;
149 }
911891af
XG
150
151 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 152 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
153
154 set_recommended_min_free_kbytes();
911891af 155 } else if (khugepaged_thread) {
911891af
XG
156 kthread_stop(khugepaged_thread);
157 khugepaged_thread = NULL;
158 }
637e3a27 159
ba76149f
AA
160 return err;
161}
71e3aac0 162
78ca0e67 163static int init_huge_zero_pfn(void)
4a6c1297
KS
164{
165 struct page *hpage;
78ca0e67 166 unsigned long pfn;
4a6c1297
KS
167
168 hpage = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
169 HPAGE_PMD_ORDER);
170 if (!hpage)
171 return -ENOMEM;
78ca0e67
KS
172 pfn = page_to_pfn(hpage);
173 if (cmpxchg(&huge_zero_pfn, 0, pfn))
174 __free_page(hpage);
4a6c1297
KS
175 return 0;
176}
177
178static inline bool is_huge_zero_pfn(unsigned long pfn)
179{
78ca0e67 180 return huge_zero_pfn && pfn == huge_zero_pfn;
4a6c1297
KS
181}
182
183static inline bool is_huge_zero_pmd(pmd_t pmd)
184{
185 return is_huge_zero_pfn(pmd_pfn(pmd));
186}
187
71e3aac0 188#ifdef CONFIG_SYSFS
ba76149f 189
71e3aac0
AA
190static ssize_t double_flag_show(struct kobject *kobj,
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag enabled,
193 enum transparent_hugepage_flag req_madv)
194{
195 if (test_bit(enabled, &transparent_hugepage_flags)) {
196 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
197 return sprintf(buf, "[always] madvise never\n");
198 } else if (test_bit(req_madv, &transparent_hugepage_flags))
199 return sprintf(buf, "always [madvise] never\n");
200 else
201 return sprintf(buf, "always madvise [never]\n");
202}
203static ssize_t double_flag_store(struct kobject *kobj,
204 struct kobj_attribute *attr,
205 const char *buf, size_t count,
206 enum transparent_hugepage_flag enabled,
207 enum transparent_hugepage_flag req_madv)
208{
209 if (!memcmp("always", buf,
210 min(sizeof("always")-1, count))) {
211 set_bit(enabled, &transparent_hugepage_flags);
212 clear_bit(req_madv, &transparent_hugepage_flags);
213 } else if (!memcmp("madvise", buf,
214 min(sizeof("madvise")-1, count))) {
215 clear_bit(enabled, &transparent_hugepage_flags);
216 set_bit(req_madv, &transparent_hugepage_flags);
217 } else if (!memcmp("never", buf,
218 min(sizeof("never")-1, count))) {
219 clear_bit(enabled, &transparent_hugepage_flags);
220 clear_bit(req_madv, &transparent_hugepage_flags);
221 } else
222 return -EINVAL;
223
224 return count;
225}
226
227static ssize_t enabled_show(struct kobject *kobj,
228 struct kobj_attribute *attr, char *buf)
229{
230 return double_flag_show(kobj, attr, buf,
231 TRANSPARENT_HUGEPAGE_FLAG,
232 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
233}
234static ssize_t enabled_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
ba76149f
AA
238 ssize_t ret;
239
240 ret = double_flag_store(kobj, attr, buf, count,
241 TRANSPARENT_HUGEPAGE_FLAG,
242 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
243
244 if (ret > 0) {
911891af
XG
245 int err;
246
247 mutex_lock(&khugepaged_mutex);
248 err = start_khugepaged();
249 mutex_unlock(&khugepaged_mutex);
250
ba76149f
AA
251 if (err)
252 ret = err;
253 }
254
255 return ret;
71e3aac0
AA
256}
257static struct kobj_attribute enabled_attr =
258 __ATTR(enabled, 0644, enabled_show, enabled_store);
259
260static ssize_t single_flag_show(struct kobject *kobj,
261 struct kobj_attribute *attr, char *buf,
262 enum transparent_hugepage_flag flag)
263{
e27e6151
BH
264 return sprintf(buf, "%d\n",
265 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 266}
e27e6151 267
71e3aac0
AA
268static ssize_t single_flag_store(struct kobject *kobj,
269 struct kobj_attribute *attr,
270 const char *buf, size_t count,
271 enum transparent_hugepage_flag flag)
272{
e27e6151
BH
273 unsigned long value;
274 int ret;
275
276 ret = kstrtoul(buf, 10, &value);
277 if (ret < 0)
278 return ret;
279 if (value > 1)
280 return -EINVAL;
281
282 if (value)
71e3aac0 283 set_bit(flag, &transparent_hugepage_flags);
e27e6151 284 else
71e3aac0 285 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
286
287 return count;
288}
289
290/*
291 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
292 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
293 * memory just to allocate one more hugepage.
294 */
295static ssize_t defrag_show(struct kobject *kobj,
296 struct kobj_attribute *attr, char *buf)
297{
298 return double_flag_show(kobj, attr, buf,
299 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
300 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
301}
302static ssize_t defrag_store(struct kobject *kobj,
303 struct kobj_attribute *attr,
304 const char *buf, size_t count)
305{
306 return double_flag_store(kobj, attr, buf, count,
307 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
308 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
309}
310static struct kobj_attribute defrag_attr =
311 __ATTR(defrag, 0644, defrag_show, defrag_store);
312
313#ifdef CONFIG_DEBUG_VM
314static ssize_t debug_cow_show(struct kobject *kobj,
315 struct kobj_attribute *attr, char *buf)
316{
317 return single_flag_show(kobj, attr, buf,
318 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
319}
320static ssize_t debug_cow_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count)
323{
324 return single_flag_store(kobj, attr, buf, count,
325 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
326}
327static struct kobj_attribute debug_cow_attr =
328 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
329#endif /* CONFIG_DEBUG_VM */
330
331static struct attribute *hugepage_attr[] = {
332 &enabled_attr.attr,
333 &defrag_attr.attr,
334#ifdef CONFIG_DEBUG_VM
335 &debug_cow_attr.attr,
336#endif
337 NULL,
338};
339
340static struct attribute_group hugepage_attr_group = {
341 .attrs = hugepage_attr,
ba76149f
AA
342};
343
344static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
345 struct kobj_attribute *attr,
346 char *buf)
347{
348 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
349}
350
351static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count)
354{
355 unsigned long msecs;
356 int err;
357
358 err = strict_strtoul(buf, 10, &msecs);
359 if (err || msecs > UINT_MAX)
360 return -EINVAL;
361
362 khugepaged_scan_sleep_millisecs = msecs;
363 wake_up_interruptible(&khugepaged_wait);
364
365 return count;
366}
367static struct kobj_attribute scan_sleep_millisecs_attr =
368 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
369 scan_sleep_millisecs_store);
370
371static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
372 struct kobj_attribute *attr,
373 char *buf)
374{
375 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
376}
377
378static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
379 struct kobj_attribute *attr,
380 const char *buf, size_t count)
381{
382 unsigned long msecs;
383 int err;
384
385 err = strict_strtoul(buf, 10, &msecs);
386 if (err || msecs > UINT_MAX)
387 return -EINVAL;
388
389 khugepaged_alloc_sleep_millisecs = msecs;
390 wake_up_interruptible(&khugepaged_wait);
391
392 return count;
393}
394static struct kobj_attribute alloc_sleep_millisecs_attr =
395 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
396 alloc_sleep_millisecs_store);
397
398static ssize_t pages_to_scan_show(struct kobject *kobj,
399 struct kobj_attribute *attr,
400 char *buf)
401{
402 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
403}
404static ssize_t pages_to_scan_store(struct kobject *kobj,
405 struct kobj_attribute *attr,
406 const char *buf, size_t count)
407{
408 int err;
409 unsigned long pages;
410
411 err = strict_strtoul(buf, 10, &pages);
412 if (err || !pages || pages > UINT_MAX)
413 return -EINVAL;
414
415 khugepaged_pages_to_scan = pages;
416
417 return count;
418}
419static struct kobj_attribute pages_to_scan_attr =
420 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
421 pages_to_scan_store);
422
423static ssize_t pages_collapsed_show(struct kobject *kobj,
424 struct kobj_attribute *attr,
425 char *buf)
426{
427 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
428}
429static struct kobj_attribute pages_collapsed_attr =
430 __ATTR_RO(pages_collapsed);
431
432static ssize_t full_scans_show(struct kobject *kobj,
433 struct kobj_attribute *attr,
434 char *buf)
435{
436 return sprintf(buf, "%u\n", khugepaged_full_scans);
437}
438static struct kobj_attribute full_scans_attr =
439 __ATTR_RO(full_scans);
440
441static ssize_t khugepaged_defrag_show(struct kobject *kobj,
442 struct kobj_attribute *attr, char *buf)
443{
444 return single_flag_show(kobj, attr, buf,
445 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
446}
447static ssize_t khugepaged_defrag_store(struct kobject *kobj,
448 struct kobj_attribute *attr,
449 const char *buf, size_t count)
450{
451 return single_flag_store(kobj, attr, buf, count,
452 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
453}
454static struct kobj_attribute khugepaged_defrag_attr =
455 __ATTR(defrag, 0644, khugepaged_defrag_show,
456 khugepaged_defrag_store);
457
458/*
459 * max_ptes_none controls if khugepaged should collapse hugepages over
460 * any unmapped ptes in turn potentially increasing the memory
461 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
462 * reduce the available free memory in the system as it
463 * runs. Increasing max_ptes_none will instead potentially reduce the
464 * free memory in the system during the khugepaged scan.
465 */
466static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
469{
470 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
471}
472static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
475{
476 int err;
477 unsigned long max_ptes_none;
478
479 err = strict_strtoul(buf, 10, &max_ptes_none);
480 if (err || max_ptes_none > HPAGE_PMD_NR-1)
481 return -EINVAL;
482
483 khugepaged_max_ptes_none = max_ptes_none;
484
485 return count;
486}
487static struct kobj_attribute khugepaged_max_ptes_none_attr =
488 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
489 khugepaged_max_ptes_none_store);
490
491static struct attribute *khugepaged_attr[] = {
492 &khugepaged_defrag_attr.attr,
493 &khugepaged_max_ptes_none_attr.attr,
494 &pages_to_scan_attr.attr,
495 &pages_collapsed_attr.attr,
496 &full_scans_attr.attr,
497 &scan_sleep_millisecs_attr.attr,
498 &alloc_sleep_millisecs_attr.attr,
499 NULL,
500};
501
502static struct attribute_group khugepaged_attr_group = {
503 .attrs = khugepaged_attr,
504 .name = "khugepaged",
71e3aac0 505};
71e3aac0 506
569e5590 507static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 508{
71e3aac0
AA
509 int err;
510
569e5590
SL
511 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
512 if (unlikely(!*hugepage_kobj)) {
ba76149f 513 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 514 return -ENOMEM;
ba76149f
AA
515 }
516
569e5590 517 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
518 if (err) {
519 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 520 goto delete_obj;
ba76149f
AA
521 }
522
569e5590 523 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
524 if (err) {
525 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 526 goto remove_hp_group;
ba76149f 527 }
569e5590
SL
528
529 return 0;
530
531remove_hp_group:
532 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
533delete_obj:
534 kobject_put(*hugepage_kobj);
535 return err;
536}
537
538static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
539{
540 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
541 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
542 kobject_put(hugepage_kobj);
543}
544#else
545static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
546{
547 return 0;
548}
549
550static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
551{
552}
553#endif /* CONFIG_SYSFS */
554
555static int __init hugepage_init(void)
556{
557 int err;
558 struct kobject *hugepage_kobj;
559
560 if (!has_transparent_hugepage()) {
561 transparent_hugepage_flags = 0;
562 return -EINVAL;
563 }
564
565 err = hugepage_init_sysfs(&hugepage_kobj);
566 if (err)
567 return err;
ba76149f
AA
568
569 err = khugepaged_slab_init();
570 if (err)
571 goto out;
572
573 err = mm_slots_hash_init();
574 if (err) {
575 khugepaged_slab_free();
576 goto out;
577 }
578
97562cd2
RR
579 /*
580 * By default disable transparent hugepages on smaller systems,
581 * where the extra memory used could hurt more than TLB overhead
582 * is likely to save. The admin can still enable it through /sys.
583 */
584 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
585 transparent_hugepage_flags = 0;
586
ba76149f
AA
587 start_khugepaged();
588
569e5590 589 return 0;
ba76149f 590out:
569e5590 591 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 592 return err;
71e3aac0
AA
593}
594module_init(hugepage_init)
595
596static int __init setup_transparent_hugepage(char *str)
597{
598 int ret = 0;
599 if (!str)
600 goto out;
601 if (!strcmp(str, "always")) {
602 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
603 &transparent_hugepage_flags);
604 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
605 &transparent_hugepage_flags);
606 ret = 1;
607 } else if (!strcmp(str, "madvise")) {
608 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
609 &transparent_hugepage_flags);
610 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
611 &transparent_hugepage_flags);
612 ret = 1;
613 } else if (!strcmp(str, "never")) {
614 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
615 &transparent_hugepage_flags);
616 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
617 &transparent_hugepage_flags);
618 ret = 1;
619 }
620out:
621 if (!ret)
622 printk(KERN_WARNING
623 "transparent_hugepage= cannot parse, ignored\n");
624 return ret;
625}
626__setup("transparent_hugepage=", setup_transparent_hugepage);
627
71e3aac0
AA
628static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
629{
630 if (likely(vma->vm_flags & VM_WRITE))
631 pmd = pmd_mkwrite(pmd);
632 return pmd;
633}
634
b3092b3b
BL
635static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
636{
637 pmd_t entry;
638 entry = mk_pmd(page, vma->vm_page_prot);
639 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
640 entry = pmd_mkhuge(entry);
641 return entry;
642}
643
71e3aac0
AA
644static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
645 struct vm_area_struct *vma,
646 unsigned long haddr, pmd_t *pmd,
647 struct page *page)
648{
71e3aac0
AA
649 pgtable_t pgtable;
650
651 VM_BUG_ON(!PageCompound(page));
652 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 653 if (unlikely(!pgtable))
71e3aac0 654 return VM_FAULT_OOM;
71e3aac0
AA
655
656 clear_huge_page(page, haddr, HPAGE_PMD_NR);
657 __SetPageUptodate(page);
658
659 spin_lock(&mm->page_table_lock);
660 if (unlikely(!pmd_none(*pmd))) {
661 spin_unlock(&mm->page_table_lock);
b9bbfbe3 662 mem_cgroup_uncharge_page(page);
71e3aac0
AA
663 put_page(page);
664 pte_free(mm, pgtable);
665 } else {
666 pmd_t entry;
b3092b3b 667 entry = mk_huge_pmd(page, vma);
71e3aac0
AA
668 /*
669 * The spinlocking to take the lru_lock inside
670 * page_add_new_anon_rmap() acts as a full memory
671 * barrier to be sure clear_huge_page writes become
672 * visible after the set_pmd_at() write.
673 */
674 page_add_new_anon_rmap(page, vma, haddr);
675 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 676 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 677 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 678 mm->nr_ptes++;
71e3aac0
AA
679 spin_unlock(&mm->page_table_lock);
680 }
681
aa2e878e 682 return 0;
71e3aac0
AA
683}
684
cc5d462f 685static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 686{
cc5d462f 687 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
688}
689
690static inline struct page *alloc_hugepage_vma(int defrag,
691 struct vm_area_struct *vma,
cc5d462f
AK
692 unsigned long haddr, int nd,
693 gfp_t extra_gfp)
0bbbc0b3 694{
cc5d462f 695 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 696 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
697}
698
699#ifndef CONFIG_NUMA
71e3aac0
AA
700static inline struct page *alloc_hugepage(int defrag)
701{
cc5d462f 702 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
703 HPAGE_PMD_ORDER);
704}
0bbbc0b3 705#endif
71e3aac0 706
fc9fe822
KS
707static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
708 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd)
709{
710 pmd_t entry;
711 entry = pfn_pmd(huge_zero_pfn, vma->vm_page_prot);
712 entry = pmd_wrprotect(entry);
713 entry = pmd_mkhuge(entry);
714 set_pmd_at(mm, haddr, pmd, entry);
715 pgtable_trans_huge_deposit(mm, pgtable);
716 mm->nr_ptes++;
717}
718
71e3aac0
AA
719int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
720 unsigned long address, pmd_t *pmd,
721 unsigned int flags)
722{
723 struct page *page;
724 unsigned long haddr = address & HPAGE_PMD_MASK;
725 pte_t *pte;
726
727 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
728 if (unlikely(anon_vma_prepare(vma)))
729 return VM_FAULT_OOM;
ba76149f
AA
730 if (unlikely(khugepaged_enter(vma)))
731 return VM_FAULT_OOM;
80371957
KS
732 if (!(flags & FAULT_FLAG_WRITE)) {
733 pgtable_t pgtable;
78ca0e67
KS
734 if (unlikely(!huge_zero_pfn && init_huge_zero_pfn())) {
735 count_vm_event(THP_FAULT_FALLBACK);
736 goto out;
737 }
80371957
KS
738 pgtable = pte_alloc_one(mm, haddr);
739 if (unlikely(!pgtable))
740 return VM_FAULT_OOM;
741 spin_lock(&mm->page_table_lock);
742 set_huge_zero_page(pgtable, mm, vma, haddr, pmd);
743 spin_unlock(&mm->page_table_lock);
744 return 0;
745 }
0bbbc0b3 746 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 747 vma, haddr, numa_node_id(), 0);
81ab4201
AK
748 if (unlikely(!page)) {
749 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 750 goto out;
81ab4201
AK
751 }
752 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
753 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
754 put_page(page);
755 goto out;
756 }
edad9d2c
DR
757 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
758 page))) {
759 mem_cgroup_uncharge_page(page);
760 put_page(page);
761 goto out;
762 }
71e3aac0 763
edad9d2c 764 return 0;
71e3aac0
AA
765 }
766out:
767 /*
768 * Use __pte_alloc instead of pte_alloc_map, because we can't
769 * run pte_offset_map on the pmd, if an huge pmd could
770 * materialize from under us from a different thread.
771 */
772 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
773 return VM_FAULT_OOM;
774 /* if an huge pmd materialized from under us just retry later */
775 if (unlikely(pmd_trans_huge(*pmd)))
776 return 0;
777 /*
778 * A regular pmd is established and it can't morph into a huge pmd
779 * from under us anymore at this point because we hold the mmap_sem
780 * read mode and khugepaged takes it in write mode. So now it's
781 * safe to run pte_offset_map().
782 */
783 pte = pte_offset_map(pmd, address);
784 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
785}
786
787int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
788 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
789 struct vm_area_struct *vma)
790{
791 struct page *src_page;
792 pmd_t pmd;
793 pgtable_t pgtable;
794 int ret;
795
796 ret = -ENOMEM;
797 pgtable = pte_alloc_one(dst_mm, addr);
798 if (unlikely(!pgtable))
799 goto out;
800
801 spin_lock(&dst_mm->page_table_lock);
802 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
803
804 ret = -EAGAIN;
805 pmd = *src_pmd;
806 if (unlikely(!pmd_trans_huge(pmd))) {
807 pte_free(dst_mm, pgtable);
808 goto out_unlock;
809 }
fc9fe822
KS
810 /*
811 * mm->page_table_lock is enough to be sure that huge zero pmd is not
812 * under splitting since we don't split the page itself, only pmd to
813 * a page table.
814 */
815 if (is_huge_zero_pmd(pmd)) {
816 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd);
817 ret = 0;
818 goto out_unlock;
819 }
71e3aac0
AA
820 if (unlikely(pmd_trans_splitting(pmd))) {
821 /* split huge page running from under us */
822 spin_unlock(&src_mm->page_table_lock);
823 spin_unlock(&dst_mm->page_table_lock);
824 pte_free(dst_mm, pgtable);
825
826 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
827 goto out;
828 }
829 src_page = pmd_page(pmd);
830 VM_BUG_ON(!PageHead(src_page));
831 get_page(src_page);
832 page_dup_rmap(src_page);
833 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
834
835 pmdp_set_wrprotect(src_mm, addr, src_pmd);
836 pmd = pmd_mkold(pmd_wrprotect(pmd));
837 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 838 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 839 dst_mm->nr_ptes++;
71e3aac0
AA
840
841 ret = 0;
842out_unlock:
843 spin_unlock(&src_mm->page_table_lock);
844 spin_unlock(&dst_mm->page_table_lock);
845out:
846 return ret;
847}
848
a1dd450b
WD
849void huge_pmd_set_accessed(struct mm_struct *mm,
850 struct vm_area_struct *vma,
851 unsigned long address,
852 pmd_t *pmd, pmd_t orig_pmd,
853 int dirty)
854{
855 pmd_t entry;
856 unsigned long haddr;
857
858 spin_lock(&mm->page_table_lock);
859 if (unlikely(!pmd_same(*pmd, orig_pmd)))
860 goto unlock;
861
862 entry = pmd_mkyoung(orig_pmd);
863 haddr = address & HPAGE_PMD_MASK;
864 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
865 update_mmu_cache_pmd(vma, address, pmd);
866
867unlock:
868 spin_unlock(&mm->page_table_lock);
869}
870
93b4796d
KS
871static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
872 struct vm_area_struct *vma, unsigned long address,
873 pmd_t *pmd, unsigned long haddr)
874{
875 pgtable_t pgtable;
876 pmd_t _pmd;
877 struct page *page;
878 int i, ret = 0;
879 unsigned long mmun_start; /* For mmu_notifiers */
880 unsigned long mmun_end; /* For mmu_notifiers */
881
882 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
883 if (!page) {
884 ret |= VM_FAULT_OOM;
885 goto out;
886 }
887
888 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
889 put_page(page);
890 ret |= VM_FAULT_OOM;
891 goto out;
892 }
893
894 clear_user_highpage(page, address);
895 __SetPageUptodate(page);
896
897 mmun_start = haddr;
898 mmun_end = haddr + HPAGE_PMD_SIZE;
899 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
900
901 spin_lock(&mm->page_table_lock);
902 pmdp_clear_flush(vma, haddr, pmd);
903 /* leave pmd empty until pte is filled */
904
905 pgtable = pgtable_trans_huge_withdraw(mm);
906 pmd_populate(mm, &_pmd, pgtable);
907
908 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
909 pte_t *pte, entry;
910 if (haddr == (address & PAGE_MASK)) {
911 entry = mk_pte(page, vma->vm_page_prot);
912 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
913 page_add_new_anon_rmap(page, vma, haddr);
914 } else {
915 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
916 entry = pte_mkspecial(entry);
917 }
918 pte = pte_offset_map(&_pmd, haddr);
919 VM_BUG_ON(!pte_none(*pte));
920 set_pte_at(mm, haddr, pte, entry);
921 pte_unmap(pte);
922 }
923 smp_wmb(); /* make pte visible before pmd */
924 pmd_populate(mm, pmd, pgtable);
925 spin_unlock(&mm->page_table_lock);
926 inc_mm_counter(mm, MM_ANONPAGES);
927
928 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
929
930 ret |= VM_FAULT_WRITE;
931out:
932 return ret;
933}
934
71e3aac0
AA
935static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
936 struct vm_area_struct *vma,
937 unsigned long address,
938 pmd_t *pmd, pmd_t orig_pmd,
939 struct page *page,
940 unsigned long haddr)
941{
942 pgtable_t pgtable;
943 pmd_t _pmd;
944 int ret = 0, i;
945 struct page **pages;
2ec74c3e
SG
946 unsigned long mmun_start; /* For mmu_notifiers */
947 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
948
949 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
950 GFP_KERNEL);
951 if (unlikely(!pages)) {
952 ret |= VM_FAULT_OOM;
953 goto out;
954 }
955
956 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
957 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
958 __GFP_OTHER_NODE,
19ee151e 959 vma, address, page_to_nid(page));
b9bbfbe3
AA
960 if (unlikely(!pages[i] ||
961 mem_cgroup_newpage_charge(pages[i], mm,
962 GFP_KERNEL))) {
963 if (pages[i])
71e3aac0 964 put_page(pages[i]);
b9bbfbe3
AA
965 mem_cgroup_uncharge_start();
966 while (--i >= 0) {
967 mem_cgroup_uncharge_page(pages[i]);
968 put_page(pages[i]);
969 }
970 mem_cgroup_uncharge_end();
71e3aac0
AA
971 kfree(pages);
972 ret |= VM_FAULT_OOM;
973 goto out;
974 }
975 }
976
977 for (i = 0; i < HPAGE_PMD_NR; i++) {
978 copy_user_highpage(pages[i], page + i,
0089e485 979 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
980 __SetPageUptodate(pages[i]);
981 cond_resched();
982 }
983
2ec74c3e
SG
984 mmun_start = haddr;
985 mmun_end = haddr + HPAGE_PMD_SIZE;
986 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
987
71e3aac0
AA
988 spin_lock(&mm->page_table_lock);
989 if (unlikely(!pmd_same(*pmd, orig_pmd)))
990 goto out_free_pages;
991 VM_BUG_ON(!PageHead(page));
992
2ec74c3e 993 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
994 /* leave pmd empty until pte is filled */
995
e3ebcf64 996 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
997 pmd_populate(mm, &_pmd, pgtable);
998
999 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1000 pte_t *pte, entry;
1001 entry = mk_pte(pages[i], vma->vm_page_prot);
1002 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1003 page_add_new_anon_rmap(pages[i], vma, haddr);
1004 pte = pte_offset_map(&_pmd, haddr);
1005 VM_BUG_ON(!pte_none(*pte));
1006 set_pte_at(mm, haddr, pte, entry);
1007 pte_unmap(pte);
1008 }
1009 kfree(pages);
1010
71e3aac0
AA
1011 smp_wmb(); /* make pte visible before pmd */
1012 pmd_populate(mm, pmd, pgtable);
1013 page_remove_rmap(page);
1014 spin_unlock(&mm->page_table_lock);
1015
2ec74c3e
SG
1016 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1017
71e3aac0
AA
1018 ret |= VM_FAULT_WRITE;
1019 put_page(page);
1020
1021out:
1022 return ret;
1023
1024out_free_pages:
1025 spin_unlock(&mm->page_table_lock);
2ec74c3e 1026 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1027 mem_cgroup_uncharge_start();
1028 for (i = 0; i < HPAGE_PMD_NR; i++) {
1029 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1030 put_page(pages[i]);
b9bbfbe3
AA
1031 }
1032 mem_cgroup_uncharge_end();
71e3aac0
AA
1033 kfree(pages);
1034 goto out;
1035}
1036
1037int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1038 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1039{
1040 int ret = 0;
93b4796d 1041 struct page *page = NULL, *new_page;
71e3aac0 1042 unsigned long haddr;
2ec74c3e
SG
1043 unsigned long mmun_start; /* For mmu_notifiers */
1044 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1045
1046 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1047 haddr = address & HPAGE_PMD_MASK;
1048 if (is_huge_zero_pmd(orig_pmd))
1049 goto alloc;
71e3aac0
AA
1050 spin_lock(&mm->page_table_lock);
1051 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1052 goto out_unlock;
1053
1054 page = pmd_page(orig_pmd);
1055 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1056 if (page_mapcount(page) == 1) {
1057 pmd_t entry;
1058 entry = pmd_mkyoung(orig_pmd);
1059 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1060 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1061 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1062 ret |= VM_FAULT_WRITE;
1063 goto out_unlock;
1064 }
1065 get_page(page);
1066 spin_unlock(&mm->page_table_lock);
93b4796d 1067alloc:
71e3aac0
AA
1068 if (transparent_hugepage_enabled(vma) &&
1069 !transparent_hugepage_debug_cow())
0bbbc0b3 1070 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1071 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1072 else
1073 new_page = NULL;
1074
1075 if (unlikely(!new_page)) {
81ab4201 1076 count_vm_event(THP_FAULT_FALLBACK);
93b4796d
KS
1077 if (is_huge_zero_pmd(orig_pmd)) {
1078 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1079 address, pmd, haddr);
1080 } else {
1081 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1082 pmd, orig_pmd, page, haddr);
1083 if (ret & VM_FAULT_OOM)
1084 split_huge_page(page);
1085 put_page(page);
1086 }
71e3aac0
AA
1087 goto out;
1088 }
81ab4201 1089 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 1090
b9bbfbe3
AA
1091 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1092 put_page(new_page);
93b4796d
KS
1093 if (page) {
1094 split_huge_page(page);
1095 put_page(page);
1096 }
b9bbfbe3
AA
1097 ret |= VM_FAULT_OOM;
1098 goto out;
1099 }
1100
93b4796d
KS
1101 if (is_huge_zero_pmd(orig_pmd))
1102 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1103 else
1104 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1105 __SetPageUptodate(new_page);
1106
2ec74c3e
SG
1107 mmun_start = haddr;
1108 mmun_end = haddr + HPAGE_PMD_SIZE;
1109 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1110
71e3aac0 1111 spin_lock(&mm->page_table_lock);
93b4796d
KS
1112 if (page)
1113 put_page(page);
b9bbfbe3 1114 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1115 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1116 mem_cgroup_uncharge_page(new_page);
71e3aac0 1117 put_page(new_page);
2ec74c3e 1118 goto out_mn;
b9bbfbe3 1119 } else {
71e3aac0 1120 pmd_t entry;
b3092b3b 1121 entry = mk_huge_pmd(new_page, vma);
2ec74c3e 1122 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1123 page_add_new_anon_rmap(new_page, vma, haddr);
1124 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1125 update_mmu_cache_pmd(vma, address, pmd);
93b4796d
KS
1126 if (is_huge_zero_pmd(orig_pmd))
1127 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1128 else {
1129 VM_BUG_ON(!PageHead(page));
1130 page_remove_rmap(page);
1131 put_page(page);
1132 }
71e3aac0
AA
1133 ret |= VM_FAULT_WRITE;
1134 }
71e3aac0 1135 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1136out_mn:
1137 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1138out:
1139 return ret;
2ec74c3e
SG
1140out_unlock:
1141 spin_unlock(&mm->page_table_lock);
1142 return ret;
71e3aac0
AA
1143}
1144
b676b293 1145struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1146 unsigned long addr,
1147 pmd_t *pmd,
1148 unsigned int flags)
1149{
b676b293 1150 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1151 struct page *page = NULL;
1152
1153 assert_spin_locked(&mm->page_table_lock);
1154
1155 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1156 goto out;
1157
1158 page = pmd_page(*pmd);
1159 VM_BUG_ON(!PageHead(page));
1160 if (flags & FOLL_TOUCH) {
1161 pmd_t _pmd;
1162 /*
1163 * We should set the dirty bit only for FOLL_WRITE but
1164 * for now the dirty bit in the pmd is meaningless.
1165 * And if the dirty bit will become meaningful and
1166 * we'll only set it with FOLL_WRITE, an atomic
1167 * set_bit will be required on the pmd to set the
1168 * young bit, instead of the current set_pmd_at.
1169 */
1170 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1171 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1172 }
b676b293
DR
1173 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1174 if (page->mapping && trylock_page(page)) {
1175 lru_add_drain();
1176 if (page->mapping)
1177 mlock_vma_page(page);
1178 unlock_page(page);
1179 }
1180 }
71e3aac0
AA
1181 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1182 VM_BUG_ON(!PageCompound(page));
1183 if (flags & FOLL_GET)
70b50f94 1184 get_page_foll(page);
71e3aac0
AA
1185
1186out:
1187 return page;
1188}
1189
1190int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1191 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1192{
1193 int ret = 0;
1194
025c5b24
NH
1195 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1196 struct page *page;
1197 pgtable_t pgtable;
f5c8ad47 1198 pmd_t orig_pmd;
e3ebcf64 1199 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47 1200 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1201 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
479f0abb
KS
1202 if (is_huge_zero_pmd(orig_pmd)) {
1203 tlb->mm->nr_ptes--;
1204 spin_unlock(&tlb->mm->page_table_lock);
1205 } else {
1206 page = pmd_page(orig_pmd);
1207 page_remove_rmap(page);
1208 VM_BUG_ON(page_mapcount(page) < 0);
1209 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1210 VM_BUG_ON(!PageHead(page));
1211 tlb->mm->nr_ptes--;
1212 spin_unlock(&tlb->mm->page_table_lock);
1213 tlb_remove_page(tlb, page);
1214 }
025c5b24
NH
1215 pte_free(tlb->mm, pgtable);
1216 ret = 1;
1217 }
71e3aac0
AA
1218 return ret;
1219}
1220
0ca1634d
JW
1221int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1222 unsigned long addr, unsigned long end,
1223 unsigned char *vec)
1224{
1225 int ret = 0;
1226
025c5b24
NH
1227 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1228 /*
1229 * All logical pages in the range are present
1230 * if backed by a huge page.
1231 */
0ca1634d 1232 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1233 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1234 ret = 1;
1235 }
0ca1634d
JW
1236
1237 return ret;
1238}
1239
37a1c49a
AA
1240int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1241 unsigned long old_addr,
1242 unsigned long new_addr, unsigned long old_end,
1243 pmd_t *old_pmd, pmd_t *new_pmd)
1244{
1245 int ret = 0;
1246 pmd_t pmd;
1247
1248 struct mm_struct *mm = vma->vm_mm;
1249
1250 if ((old_addr & ~HPAGE_PMD_MASK) ||
1251 (new_addr & ~HPAGE_PMD_MASK) ||
1252 old_end - old_addr < HPAGE_PMD_SIZE ||
1253 (new_vma->vm_flags & VM_NOHUGEPAGE))
1254 goto out;
1255
1256 /*
1257 * The destination pmd shouldn't be established, free_pgtables()
1258 * should have release it.
1259 */
1260 if (WARN_ON(!pmd_none(*new_pmd))) {
1261 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1262 goto out;
1263 }
1264
025c5b24
NH
1265 ret = __pmd_trans_huge_lock(old_pmd, vma);
1266 if (ret == 1) {
1267 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1268 VM_BUG_ON(!pmd_none(*new_pmd));
1269 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1270 spin_unlock(&mm->page_table_lock);
1271 }
1272out:
1273 return ret;
1274}
1275
cd7548ab
JW
1276int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1277 unsigned long addr, pgprot_t newprot)
1278{
1279 struct mm_struct *mm = vma->vm_mm;
1280 int ret = 0;
1281
025c5b24
NH
1282 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1283 pmd_t entry;
1284 entry = pmdp_get_and_clear(mm, addr, pmd);
1285 entry = pmd_modify(entry, newprot);
cad7f613 1286 BUG_ON(pmd_write(entry));
025c5b24
NH
1287 set_pmd_at(mm, addr, pmd, entry);
1288 spin_unlock(&vma->vm_mm->page_table_lock);
1289 ret = 1;
1290 }
1291
1292 return ret;
1293}
1294
1295/*
1296 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1297 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1298 *
1299 * Note that if it returns 1, this routine returns without unlocking page
1300 * table locks. So callers must unlock them.
1301 */
1302int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1303{
1304 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1305 if (likely(pmd_trans_huge(*pmd))) {
1306 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1307 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1308 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1309 return -1;
cd7548ab 1310 } else {
025c5b24
NH
1311 /* Thp mapped by 'pmd' is stable, so we can
1312 * handle it as it is. */
1313 return 1;
cd7548ab 1314 }
025c5b24
NH
1315 }
1316 spin_unlock(&vma->vm_mm->page_table_lock);
1317 return 0;
cd7548ab
JW
1318}
1319
71e3aac0
AA
1320pmd_t *page_check_address_pmd(struct page *page,
1321 struct mm_struct *mm,
1322 unsigned long address,
1323 enum page_check_address_pmd_flag flag)
1324{
71e3aac0
AA
1325 pmd_t *pmd, *ret = NULL;
1326
1327 if (address & ~HPAGE_PMD_MASK)
1328 goto out;
1329
6219049a
BL
1330 pmd = mm_find_pmd(mm, address);
1331 if (!pmd)
71e3aac0 1332 goto out;
71e3aac0
AA
1333 if (pmd_none(*pmd))
1334 goto out;
1335 if (pmd_page(*pmd) != page)
1336 goto out;
94fcc585
AA
1337 /*
1338 * split_vma() may create temporary aliased mappings. There is
1339 * no risk as long as all huge pmd are found and have their
1340 * splitting bit set before __split_huge_page_refcount
1341 * runs. Finding the same huge pmd more than once during the
1342 * same rmap walk is not a problem.
1343 */
1344 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1345 pmd_trans_splitting(*pmd))
1346 goto out;
71e3aac0
AA
1347 if (pmd_trans_huge(*pmd)) {
1348 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1349 !pmd_trans_splitting(*pmd));
1350 ret = pmd;
1351 }
1352out:
1353 return ret;
1354}
1355
1356static int __split_huge_page_splitting(struct page *page,
1357 struct vm_area_struct *vma,
1358 unsigned long address)
1359{
1360 struct mm_struct *mm = vma->vm_mm;
1361 pmd_t *pmd;
1362 int ret = 0;
2ec74c3e
SG
1363 /* For mmu_notifiers */
1364 const unsigned long mmun_start = address;
1365 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1366
2ec74c3e 1367 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1368 spin_lock(&mm->page_table_lock);
1369 pmd = page_check_address_pmd(page, mm, address,
1370 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1371 if (pmd) {
1372 /*
1373 * We can't temporarily set the pmd to null in order
1374 * to split it, the pmd must remain marked huge at all
1375 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1376 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1377 * serialize against split_huge_page*.
1378 */
2ec74c3e 1379 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1380 ret = 1;
1381 }
1382 spin_unlock(&mm->page_table_lock);
2ec74c3e 1383 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1384
1385 return ret;
1386}
1387
1388static void __split_huge_page_refcount(struct page *page)
1389{
1390 int i;
71e3aac0 1391 struct zone *zone = page_zone(page);
fa9add64 1392 struct lruvec *lruvec;
70b50f94 1393 int tail_count = 0;
71e3aac0
AA
1394
1395 /* prevent PageLRU to go away from under us, and freeze lru stats */
1396 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1397 lruvec = mem_cgroup_page_lruvec(page, zone);
1398
71e3aac0 1399 compound_lock(page);
e94c8a9c
KH
1400 /* complete memcg works before add pages to LRU */
1401 mem_cgroup_split_huge_fixup(page);
71e3aac0 1402
45676885 1403 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1404 struct page *page_tail = page + i;
1405
70b50f94
AA
1406 /* tail_page->_mapcount cannot change */
1407 BUG_ON(page_mapcount(page_tail) < 0);
1408 tail_count += page_mapcount(page_tail);
1409 /* check for overflow */
1410 BUG_ON(tail_count < 0);
1411 BUG_ON(atomic_read(&page_tail->_count) != 0);
1412 /*
1413 * tail_page->_count is zero and not changing from
1414 * under us. But get_page_unless_zero() may be running
1415 * from under us on the tail_page. If we used
1416 * atomic_set() below instead of atomic_add(), we
1417 * would then run atomic_set() concurrently with
1418 * get_page_unless_zero(), and atomic_set() is
1419 * implemented in C not using locked ops. spin_unlock
1420 * on x86 sometime uses locked ops because of PPro
1421 * errata 66, 92, so unless somebody can guarantee
1422 * atomic_set() here would be safe on all archs (and
1423 * not only on x86), it's safer to use atomic_add().
1424 */
1425 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1426 &page_tail->_count);
71e3aac0
AA
1427
1428 /* after clearing PageTail the gup refcount can be released */
1429 smp_mb();
1430
a6d30ddd
JD
1431 /*
1432 * retain hwpoison flag of the poisoned tail page:
1433 * fix for the unsuitable process killed on Guest Machine(KVM)
1434 * by the memory-failure.
1435 */
1436 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1437 page_tail->flags |= (page->flags &
1438 ((1L << PG_referenced) |
1439 (1L << PG_swapbacked) |
1440 (1L << PG_mlocked) |
1441 (1L << PG_uptodate)));
1442 page_tail->flags |= (1L << PG_dirty);
1443
70b50f94 1444 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1445 smp_wmb();
1446
1447 /*
1448 * __split_huge_page_splitting() already set the
1449 * splitting bit in all pmd that could map this
1450 * hugepage, that will ensure no CPU can alter the
1451 * mapcount on the head page. The mapcount is only
1452 * accounted in the head page and it has to be
1453 * transferred to all tail pages in the below code. So
1454 * for this code to be safe, the split the mapcount
1455 * can't change. But that doesn't mean userland can't
1456 * keep changing and reading the page contents while
1457 * we transfer the mapcount, so the pmd splitting
1458 * status is achieved setting a reserved bit in the
1459 * pmd, not by clearing the present bit.
1460 */
71e3aac0
AA
1461 page_tail->_mapcount = page->_mapcount;
1462
1463 BUG_ON(page_tail->mapping);
1464 page_tail->mapping = page->mapping;
1465
45676885 1466 page_tail->index = page->index + i;
71e3aac0
AA
1467
1468 BUG_ON(!PageAnon(page_tail));
1469 BUG_ON(!PageUptodate(page_tail));
1470 BUG_ON(!PageDirty(page_tail));
1471 BUG_ON(!PageSwapBacked(page_tail));
1472
fa9add64 1473 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1474 }
70b50f94
AA
1475 atomic_sub(tail_count, &page->_count);
1476 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1477
fa9add64 1478 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1479 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1480
71e3aac0
AA
1481 ClearPageCompound(page);
1482 compound_unlock(page);
1483 spin_unlock_irq(&zone->lru_lock);
1484
1485 for (i = 1; i < HPAGE_PMD_NR; i++) {
1486 struct page *page_tail = page + i;
1487 BUG_ON(page_count(page_tail) <= 0);
1488 /*
1489 * Tail pages may be freed if there wasn't any mapping
1490 * like if add_to_swap() is running on a lru page that
1491 * had its mapping zapped. And freeing these pages
1492 * requires taking the lru_lock so we do the put_page
1493 * of the tail pages after the split is complete.
1494 */
1495 put_page(page_tail);
1496 }
1497
1498 /*
1499 * Only the head page (now become a regular page) is required
1500 * to be pinned by the caller.
1501 */
1502 BUG_ON(page_count(page) <= 0);
1503}
1504
1505static int __split_huge_page_map(struct page *page,
1506 struct vm_area_struct *vma,
1507 unsigned long address)
1508{
1509 struct mm_struct *mm = vma->vm_mm;
1510 pmd_t *pmd, _pmd;
1511 int ret = 0, i;
1512 pgtable_t pgtable;
1513 unsigned long haddr;
1514
1515 spin_lock(&mm->page_table_lock);
1516 pmd = page_check_address_pmd(page, mm, address,
1517 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1518 if (pmd) {
e3ebcf64 1519 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1520 pmd_populate(mm, &_pmd, pgtable);
1521
e3ebcf64
GS
1522 haddr = address;
1523 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1524 pte_t *pte, entry;
1525 BUG_ON(PageCompound(page+i));
1526 entry = mk_pte(page + i, vma->vm_page_prot);
1527 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1528 if (!pmd_write(*pmd))
1529 entry = pte_wrprotect(entry);
1530 else
1531 BUG_ON(page_mapcount(page) != 1);
1532 if (!pmd_young(*pmd))
1533 entry = pte_mkold(entry);
1534 pte = pte_offset_map(&_pmd, haddr);
1535 BUG_ON(!pte_none(*pte));
1536 set_pte_at(mm, haddr, pte, entry);
1537 pte_unmap(pte);
1538 }
1539
71e3aac0
AA
1540 smp_wmb(); /* make pte visible before pmd */
1541 /*
1542 * Up to this point the pmd is present and huge and
1543 * userland has the whole access to the hugepage
1544 * during the split (which happens in place). If we
1545 * overwrite the pmd with the not-huge version
1546 * pointing to the pte here (which of course we could
1547 * if all CPUs were bug free), userland could trigger
1548 * a small page size TLB miss on the small sized TLB
1549 * while the hugepage TLB entry is still established
1550 * in the huge TLB. Some CPU doesn't like that. See
1551 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1552 * Erratum 383 on page 93. Intel should be safe but is
1553 * also warns that it's only safe if the permission
1554 * and cache attributes of the two entries loaded in
1555 * the two TLB is identical (which should be the case
1556 * here). But it is generally safer to never allow
1557 * small and huge TLB entries for the same virtual
1558 * address to be loaded simultaneously. So instead of
1559 * doing "pmd_populate(); flush_tlb_range();" we first
1560 * mark the current pmd notpresent (atomically because
1561 * here the pmd_trans_huge and pmd_trans_splitting
1562 * must remain set at all times on the pmd until the
1563 * split is complete for this pmd), then we flush the
1564 * SMP TLB and finally we write the non-huge version
1565 * of the pmd entry with pmd_populate.
1566 */
46dcde73 1567 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1568 pmd_populate(mm, pmd, pgtable);
1569 ret = 1;
1570 }
1571 spin_unlock(&mm->page_table_lock);
1572
1573 return ret;
1574}
1575
2b575eb6 1576/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1577static void __split_huge_page(struct page *page,
1578 struct anon_vma *anon_vma)
1579{
1580 int mapcount, mapcount2;
bf181b9f 1581 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1582 struct anon_vma_chain *avc;
1583
1584 BUG_ON(!PageHead(page));
1585 BUG_ON(PageTail(page));
1586
1587 mapcount = 0;
bf181b9f 1588 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1589 struct vm_area_struct *vma = avc->vma;
1590 unsigned long addr = vma_address(page, vma);
1591 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1592 mapcount += __split_huge_page_splitting(page, vma, addr);
1593 }
05759d38
AA
1594 /*
1595 * It is critical that new vmas are added to the tail of the
1596 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1597 * and establishes a child pmd before
1598 * __split_huge_page_splitting() freezes the parent pmd (so if
1599 * we fail to prevent copy_huge_pmd() from running until the
1600 * whole __split_huge_page() is complete), we will still see
1601 * the newly established pmd of the child later during the
1602 * walk, to be able to set it as pmd_trans_splitting too.
1603 */
1604 if (mapcount != page_mapcount(page))
1605 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1606 mapcount, page_mapcount(page));
71e3aac0
AA
1607 BUG_ON(mapcount != page_mapcount(page));
1608
1609 __split_huge_page_refcount(page);
1610
1611 mapcount2 = 0;
bf181b9f 1612 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1613 struct vm_area_struct *vma = avc->vma;
1614 unsigned long addr = vma_address(page, vma);
1615 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1616 mapcount2 += __split_huge_page_map(page, vma, addr);
1617 }
05759d38
AA
1618 if (mapcount != mapcount2)
1619 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1620 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1621 BUG_ON(mapcount != mapcount2);
1622}
1623
1624int split_huge_page(struct page *page)
1625{
1626 struct anon_vma *anon_vma;
1627 int ret = 1;
1628
c5a647d0 1629 BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
71e3aac0
AA
1630 BUG_ON(!PageAnon(page));
1631 anon_vma = page_lock_anon_vma(page);
1632 if (!anon_vma)
1633 goto out;
1634 ret = 0;
1635 if (!PageCompound(page))
1636 goto out_unlock;
1637
1638 BUG_ON(!PageSwapBacked(page));
1639 __split_huge_page(page, anon_vma);
81ab4201 1640 count_vm_event(THP_SPLIT);
71e3aac0
AA
1641
1642 BUG_ON(PageCompound(page));
1643out_unlock:
1644 page_unlock_anon_vma(anon_vma);
1645out:
1646 return ret;
1647}
1648
4b6e1e37 1649#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1650
60ab3244
AA
1651int hugepage_madvise(struct vm_area_struct *vma,
1652 unsigned long *vm_flags, int advice)
0af4e98b 1653{
8e72033f
GS
1654 struct mm_struct *mm = vma->vm_mm;
1655
a664b2d8
AA
1656 switch (advice) {
1657 case MADV_HUGEPAGE:
1658 /*
1659 * Be somewhat over-protective like KSM for now!
1660 */
78f11a25 1661 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1662 return -EINVAL;
8e72033f
GS
1663 if (mm->def_flags & VM_NOHUGEPAGE)
1664 return -EINVAL;
a664b2d8
AA
1665 *vm_flags &= ~VM_NOHUGEPAGE;
1666 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1667 /*
1668 * If the vma become good for khugepaged to scan,
1669 * register it here without waiting a page fault that
1670 * may not happen any time soon.
1671 */
1672 if (unlikely(khugepaged_enter_vma_merge(vma)))
1673 return -ENOMEM;
a664b2d8
AA
1674 break;
1675 case MADV_NOHUGEPAGE:
1676 /*
1677 * Be somewhat over-protective like KSM for now!
1678 */
78f11a25 1679 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1680 return -EINVAL;
1681 *vm_flags &= ~VM_HUGEPAGE;
1682 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1683 /*
1684 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1685 * this vma even if we leave the mm registered in khugepaged if
1686 * it got registered before VM_NOHUGEPAGE was set.
1687 */
a664b2d8
AA
1688 break;
1689 }
0af4e98b
AA
1690
1691 return 0;
1692}
1693
ba76149f
AA
1694static int __init khugepaged_slab_init(void)
1695{
1696 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1697 sizeof(struct mm_slot),
1698 __alignof__(struct mm_slot), 0, NULL);
1699 if (!mm_slot_cache)
1700 return -ENOMEM;
1701
1702 return 0;
1703}
1704
1705static void __init khugepaged_slab_free(void)
1706{
1707 kmem_cache_destroy(mm_slot_cache);
1708 mm_slot_cache = NULL;
1709}
1710
1711static inline struct mm_slot *alloc_mm_slot(void)
1712{
1713 if (!mm_slot_cache) /* initialization failed */
1714 return NULL;
1715 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1716}
1717
1718static inline void free_mm_slot(struct mm_slot *mm_slot)
1719{
1720 kmem_cache_free(mm_slot_cache, mm_slot);
1721}
1722
1723static int __init mm_slots_hash_init(void)
1724{
1725 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1726 GFP_KERNEL);
1727 if (!mm_slots_hash)
1728 return -ENOMEM;
1729 return 0;
1730}
1731
1732#if 0
1733static void __init mm_slots_hash_free(void)
1734{
1735 kfree(mm_slots_hash);
1736 mm_slots_hash = NULL;
1737}
1738#endif
1739
1740static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1741{
1742 struct mm_slot *mm_slot;
1743 struct hlist_head *bucket;
1744 struct hlist_node *node;
1745
1746 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1747 % MM_SLOTS_HASH_HEADS];
1748 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1749 if (mm == mm_slot->mm)
1750 return mm_slot;
1751 }
1752 return NULL;
1753}
1754
1755static void insert_to_mm_slots_hash(struct mm_struct *mm,
1756 struct mm_slot *mm_slot)
1757{
1758 struct hlist_head *bucket;
1759
1760 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1761 % MM_SLOTS_HASH_HEADS];
1762 mm_slot->mm = mm;
1763 hlist_add_head(&mm_slot->hash, bucket);
1764}
1765
1766static inline int khugepaged_test_exit(struct mm_struct *mm)
1767{
1768 return atomic_read(&mm->mm_users) == 0;
1769}
1770
1771int __khugepaged_enter(struct mm_struct *mm)
1772{
1773 struct mm_slot *mm_slot;
1774 int wakeup;
1775
1776 mm_slot = alloc_mm_slot();
1777 if (!mm_slot)
1778 return -ENOMEM;
1779
1780 /* __khugepaged_exit() must not run from under us */
1781 VM_BUG_ON(khugepaged_test_exit(mm));
1782 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1783 free_mm_slot(mm_slot);
1784 return 0;
1785 }
1786
1787 spin_lock(&khugepaged_mm_lock);
1788 insert_to_mm_slots_hash(mm, mm_slot);
1789 /*
1790 * Insert just behind the scanning cursor, to let the area settle
1791 * down a little.
1792 */
1793 wakeup = list_empty(&khugepaged_scan.mm_head);
1794 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1795 spin_unlock(&khugepaged_mm_lock);
1796
1797 atomic_inc(&mm->mm_count);
1798 if (wakeup)
1799 wake_up_interruptible(&khugepaged_wait);
1800
1801 return 0;
1802}
1803
1804int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1805{
1806 unsigned long hstart, hend;
1807 if (!vma->anon_vma)
1808 /*
1809 * Not yet faulted in so we will register later in the
1810 * page fault if needed.
1811 */
1812 return 0;
78f11a25 1813 if (vma->vm_ops)
ba76149f
AA
1814 /* khugepaged not yet working on file or special mappings */
1815 return 0;
b3b9c293 1816 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1817 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1818 hend = vma->vm_end & HPAGE_PMD_MASK;
1819 if (hstart < hend)
1820 return khugepaged_enter(vma);
1821 return 0;
1822}
1823
1824void __khugepaged_exit(struct mm_struct *mm)
1825{
1826 struct mm_slot *mm_slot;
1827 int free = 0;
1828
1829 spin_lock(&khugepaged_mm_lock);
1830 mm_slot = get_mm_slot(mm);
1831 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1832 hlist_del(&mm_slot->hash);
1833 list_del(&mm_slot->mm_node);
1834 free = 1;
1835 }
d788e80a 1836 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1837
1838 if (free) {
ba76149f
AA
1839 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1840 free_mm_slot(mm_slot);
1841 mmdrop(mm);
1842 } else if (mm_slot) {
ba76149f
AA
1843 /*
1844 * This is required to serialize against
1845 * khugepaged_test_exit() (which is guaranteed to run
1846 * under mmap sem read mode). Stop here (after we
1847 * return all pagetables will be destroyed) until
1848 * khugepaged has finished working on the pagetables
1849 * under the mmap_sem.
1850 */
1851 down_write(&mm->mmap_sem);
1852 up_write(&mm->mmap_sem);
d788e80a 1853 }
ba76149f
AA
1854}
1855
1856static void release_pte_page(struct page *page)
1857{
1858 /* 0 stands for page_is_file_cache(page) == false */
1859 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1860 unlock_page(page);
1861 putback_lru_page(page);
1862}
1863
1864static void release_pte_pages(pte_t *pte, pte_t *_pte)
1865{
1866 while (--_pte >= pte) {
1867 pte_t pteval = *_pte;
1868 if (!pte_none(pteval))
1869 release_pte_page(pte_page(pteval));
1870 }
1871}
1872
ba76149f
AA
1873static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1874 unsigned long address,
1875 pte_t *pte)
1876{
1877 struct page *page;
1878 pte_t *_pte;
344aa35c 1879 int referenced = 0, none = 0;
ba76149f
AA
1880 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1881 _pte++, address += PAGE_SIZE) {
1882 pte_t pteval = *_pte;
1883 if (pte_none(pteval)) {
1884 if (++none <= khugepaged_max_ptes_none)
1885 continue;
344aa35c 1886 else
ba76149f 1887 goto out;
ba76149f 1888 }
344aa35c 1889 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 1890 goto out;
ba76149f 1891 page = vm_normal_page(vma, address, pteval);
344aa35c 1892 if (unlikely(!page))
ba76149f 1893 goto out;
344aa35c 1894
ba76149f
AA
1895 VM_BUG_ON(PageCompound(page));
1896 BUG_ON(!PageAnon(page));
1897 VM_BUG_ON(!PageSwapBacked(page));
1898
1899 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 1900 if (page_count(page) != 1)
ba76149f 1901 goto out;
ba76149f
AA
1902 /*
1903 * We can do it before isolate_lru_page because the
1904 * page can't be freed from under us. NOTE: PG_lock
1905 * is needed to serialize against split_huge_page
1906 * when invoked from the VM.
1907 */
344aa35c 1908 if (!trylock_page(page))
ba76149f 1909 goto out;
ba76149f
AA
1910 /*
1911 * Isolate the page to avoid collapsing an hugepage
1912 * currently in use by the VM.
1913 */
1914 if (isolate_lru_page(page)) {
1915 unlock_page(page);
ba76149f
AA
1916 goto out;
1917 }
1918 /* 0 stands for page_is_file_cache(page) == false */
1919 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1920 VM_BUG_ON(!PageLocked(page));
1921 VM_BUG_ON(PageLRU(page));
1922
1923 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1924 if (pte_young(pteval) || PageReferenced(page) ||
1925 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1926 referenced = 1;
1927 }
344aa35c
BL
1928 if (likely(referenced))
1929 return 1;
ba76149f 1930out:
344aa35c
BL
1931 release_pte_pages(pte, _pte);
1932 return 0;
ba76149f
AA
1933}
1934
1935static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1936 struct vm_area_struct *vma,
1937 unsigned long address,
1938 spinlock_t *ptl)
1939{
1940 pte_t *_pte;
1941 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1942 pte_t pteval = *_pte;
1943 struct page *src_page;
1944
1945 if (pte_none(pteval)) {
1946 clear_user_highpage(page, address);
1947 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1948 } else {
1949 src_page = pte_page(pteval);
1950 copy_user_highpage(page, src_page, address, vma);
1951 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1952 release_pte_page(src_page);
1953 /*
1954 * ptl mostly unnecessary, but preempt has to
1955 * be disabled to update the per-cpu stats
1956 * inside page_remove_rmap().
1957 */
1958 spin_lock(ptl);
1959 /*
1960 * paravirt calls inside pte_clear here are
1961 * superfluous.
1962 */
1963 pte_clear(vma->vm_mm, address, _pte);
1964 page_remove_rmap(src_page);
1965 spin_unlock(ptl);
1966 free_page_and_swap_cache(src_page);
1967 }
1968
1969 address += PAGE_SIZE;
1970 page++;
1971 }
1972}
1973
26234f36 1974static void khugepaged_alloc_sleep(void)
ba76149f 1975{
26234f36
XG
1976 wait_event_freezable_timeout(khugepaged_wait, false,
1977 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
1978}
ba76149f 1979
26234f36
XG
1980#ifdef CONFIG_NUMA
1981static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
1982{
1983 if (IS_ERR(*hpage)) {
1984 if (!*wait)
1985 return false;
1986
1987 *wait = false;
e3b4126c 1988 *hpage = NULL;
26234f36
XG
1989 khugepaged_alloc_sleep();
1990 } else if (*hpage) {
1991 put_page(*hpage);
1992 *hpage = NULL;
1993 }
1994
1995 return true;
1996}
1997
1998static struct page
1999*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2000 struct vm_area_struct *vma, unsigned long address,
2001 int node)
2002{
0bbbc0b3 2003 VM_BUG_ON(*hpage);
ce83d217
AA
2004 /*
2005 * Allocate the page while the vma is still valid and under
2006 * the mmap_sem read mode so there is no memory allocation
2007 * later when we take the mmap_sem in write mode. This is more
2008 * friendly behavior (OTOH it may actually hide bugs) to
2009 * filesystems in userland with daemons allocating memory in
2010 * the userland I/O paths. Allocating memory with the
2011 * mmap_sem in read mode is good idea also to allow greater
2012 * scalability.
2013 */
26234f36 2014 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 2015 node, __GFP_OTHER_NODE);
692e0b35
AA
2016
2017 /*
2018 * After allocating the hugepage, release the mmap_sem read lock in
2019 * preparation for taking it in write mode.
2020 */
2021 up_read(&mm->mmap_sem);
26234f36 2022 if (unlikely(!*hpage)) {
81ab4201 2023 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2024 *hpage = ERR_PTR(-ENOMEM);
26234f36 2025 return NULL;
ce83d217 2026 }
26234f36 2027
65b3c07b 2028 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2029 return *hpage;
2030}
2031#else
2032static struct page *khugepaged_alloc_hugepage(bool *wait)
2033{
2034 struct page *hpage;
2035
2036 do {
2037 hpage = alloc_hugepage(khugepaged_defrag());
2038 if (!hpage) {
2039 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2040 if (!*wait)
2041 return NULL;
2042
2043 *wait = false;
2044 khugepaged_alloc_sleep();
2045 } else
2046 count_vm_event(THP_COLLAPSE_ALLOC);
2047 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2048
2049 return hpage;
2050}
2051
2052static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2053{
2054 if (!*hpage)
2055 *hpage = khugepaged_alloc_hugepage(wait);
2056
2057 if (unlikely(!*hpage))
2058 return false;
2059
2060 return true;
2061}
2062
2063static struct page
2064*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2065 struct vm_area_struct *vma, unsigned long address,
2066 int node)
2067{
2068 up_read(&mm->mmap_sem);
2069 VM_BUG_ON(!*hpage);
2070 return *hpage;
2071}
692e0b35
AA
2072#endif
2073
fa475e51
BL
2074static bool hugepage_vma_check(struct vm_area_struct *vma)
2075{
2076 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2077 (vma->vm_flags & VM_NOHUGEPAGE))
2078 return false;
2079
2080 if (!vma->anon_vma || vma->vm_ops)
2081 return false;
2082 if (is_vma_temporary_stack(vma))
2083 return false;
2084 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2085 return true;
2086}
2087
26234f36
XG
2088static void collapse_huge_page(struct mm_struct *mm,
2089 unsigned long address,
2090 struct page **hpage,
2091 struct vm_area_struct *vma,
2092 int node)
2093{
26234f36
XG
2094 pmd_t *pmd, _pmd;
2095 pte_t *pte;
2096 pgtable_t pgtable;
2097 struct page *new_page;
2098 spinlock_t *ptl;
2099 int isolated;
2100 unsigned long hstart, hend;
2ec74c3e
SG
2101 unsigned long mmun_start; /* For mmu_notifiers */
2102 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2103
2104 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2105
2106 /* release the mmap_sem read lock. */
2107 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2108 if (!new_page)
2109 return;
2110
420256ef 2111 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2112 return;
ba76149f
AA
2113
2114 /*
2115 * Prevent all access to pagetables with the exception of
2116 * gup_fast later hanlded by the ptep_clear_flush and the VM
2117 * handled by the anon_vma lock + PG_lock.
2118 */
2119 down_write(&mm->mmap_sem);
2120 if (unlikely(khugepaged_test_exit(mm)))
2121 goto out;
2122
2123 vma = find_vma(mm, address);
2124 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2125 hend = vma->vm_end & HPAGE_PMD_MASK;
2126 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2127 goto out;
fa475e51 2128 if (!hugepage_vma_check(vma))
a7d6e4ec 2129 goto out;
6219049a
BL
2130 pmd = mm_find_pmd(mm, address);
2131 if (!pmd)
ba76149f 2132 goto out;
6219049a 2133 if (pmd_trans_huge(*pmd))
ba76149f
AA
2134 goto out;
2135
ba76149f
AA
2136 anon_vma_lock(vma->anon_vma);
2137
2138 pte = pte_offset_map(pmd, address);
2139 ptl = pte_lockptr(mm, pmd);
2140
2ec74c3e
SG
2141 mmun_start = address;
2142 mmun_end = address + HPAGE_PMD_SIZE;
2143 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2144 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2145 /*
2146 * After this gup_fast can't run anymore. This also removes
2147 * any huge TLB entry from the CPU so we won't allow
2148 * huge and small TLB entries for the same virtual address
2149 * to avoid the risk of CPU bugs in that area.
2150 */
2ec74c3e 2151 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2152 spin_unlock(&mm->page_table_lock);
2ec74c3e 2153 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2154
2155 spin_lock(ptl);
2156 isolated = __collapse_huge_page_isolate(vma, address, pte);
2157 spin_unlock(ptl);
ba76149f
AA
2158
2159 if (unlikely(!isolated)) {
453c7192 2160 pte_unmap(pte);
ba76149f
AA
2161 spin_lock(&mm->page_table_lock);
2162 BUG_ON(!pmd_none(*pmd));
2163 set_pmd_at(mm, address, pmd, _pmd);
2164 spin_unlock(&mm->page_table_lock);
2165 anon_vma_unlock(vma->anon_vma);
ce83d217 2166 goto out;
ba76149f
AA
2167 }
2168
2169 /*
2170 * All pages are isolated and locked so anon_vma rmap
2171 * can't run anymore.
2172 */
2173 anon_vma_unlock(vma->anon_vma);
2174
2175 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2176 pte_unmap(pte);
ba76149f
AA
2177 __SetPageUptodate(new_page);
2178 pgtable = pmd_pgtable(_pmd);
ba76149f 2179
b3092b3b 2180 _pmd = mk_huge_pmd(new_page, vma);
ba76149f
AA
2181
2182 /*
2183 * spin_lock() below is not the equivalent of smp_wmb(), so
2184 * this is needed to avoid the copy_huge_page writes to become
2185 * visible after the set_pmd_at() write.
2186 */
2187 smp_wmb();
2188
2189 spin_lock(&mm->page_table_lock);
2190 BUG_ON(!pmd_none(*pmd));
2191 page_add_new_anon_rmap(new_page, vma, address);
2192 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2193 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2194 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2195 spin_unlock(&mm->page_table_lock);
2196
2197 *hpage = NULL;
420256ef 2198
ba76149f 2199 khugepaged_pages_collapsed++;
ce83d217 2200out_up_write:
ba76149f 2201 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2202 return;
2203
ce83d217 2204out:
678ff896 2205 mem_cgroup_uncharge_page(new_page);
ce83d217 2206 goto out_up_write;
ba76149f
AA
2207}
2208
2209static int khugepaged_scan_pmd(struct mm_struct *mm,
2210 struct vm_area_struct *vma,
2211 unsigned long address,
2212 struct page **hpage)
2213{
ba76149f
AA
2214 pmd_t *pmd;
2215 pte_t *pte, *_pte;
2216 int ret = 0, referenced = 0, none = 0;
2217 struct page *page;
2218 unsigned long _address;
2219 spinlock_t *ptl;
5c4b4be3 2220 int node = -1;
ba76149f
AA
2221
2222 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2223
6219049a
BL
2224 pmd = mm_find_pmd(mm, address);
2225 if (!pmd)
ba76149f 2226 goto out;
6219049a 2227 if (pmd_trans_huge(*pmd))
ba76149f
AA
2228 goto out;
2229
2230 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2231 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2232 _pte++, _address += PAGE_SIZE) {
2233 pte_t pteval = *_pte;
2234 if (pte_none(pteval)) {
2235 if (++none <= khugepaged_max_ptes_none)
2236 continue;
2237 else
2238 goto out_unmap;
2239 }
2240 if (!pte_present(pteval) || !pte_write(pteval))
2241 goto out_unmap;
2242 page = vm_normal_page(vma, _address, pteval);
2243 if (unlikely(!page))
2244 goto out_unmap;
5c4b4be3
AK
2245 /*
2246 * Chose the node of the first page. This could
2247 * be more sophisticated and look at more pages,
2248 * but isn't for now.
2249 */
2250 if (node == -1)
2251 node = page_to_nid(page);
ba76149f
AA
2252 VM_BUG_ON(PageCompound(page));
2253 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2254 goto out_unmap;
2255 /* cannot use mapcount: can't collapse if there's a gup pin */
2256 if (page_count(page) != 1)
2257 goto out_unmap;
8ee53820
AA
2258 if (pte_young(pteval) || PageReferenced(page) ||
2259 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2260 referenced = 1;
2261 }
2262 if (referenced)
2263 ret = 1;
2264out_unmap:
2265 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2266 if (ret)
2267 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2268 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2269out:
2270 return ret;
2271}
2272
2273static void collect_mm_slot(struct mm_slot *mm_slot)
2274{
2275 struct mm_struct *mm = mm_slot->mm;
2276
b9980cdc 2277 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2278
2279 if (khugepaged_test_exit(mm)) {
2280 /* free mm_slot */
2281 hlist_del(&mm_slot->hash);
2282 list_del(&mm_slot->mm_node);
2283
2284 /*
2285 * Not strictly needed because the mm exited already.
2286 *
2287 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2288 */
2289
2290 /* khugepaged_mm_lock actually not necessary for the below */
2291 free_mm_slot(mm_slot);
2292 mmdrop(mm);
2293 }
2294}
2295
2296static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2297 struct page **hpage)
2f1da642
HS
2298 __releases(&khugepaged_mm_lock)
2299 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2300{
2301 struct mm_slot *mm_slot;
2302 struct mm_struct *mm;
2303 struct vm_area_struct *vma;
2304 int progress = 0;
2305
2306 VM_BUG_ON(!pages);
b9980cdc 2307 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2308
2309 if (khugepaged_scan.mm_slot)
2310 mm_slot = khugepaged_scan.mm_slot;
2311 else {
2312 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2313 struct mm_slot, mm_node);
2314 khugepaged_scan.address = 0;
2315 khugepaged_scan.mm_slot = mm_slot;
2316 }
2317 spin_unlock(&khugepaged_mm_lock);
2318
2319 mm = mm_slot->mm;
2320 down_read(&mm->mmap_sem);
2321 if (unlikely(khugepaged_test_exit(mm)))
2322 vma = NULL;
2323 else
2324 vma = find_vma(mm, khugepaged_scan.address);
2325
2326 progress++;
2327 for (; vma; vma = vma->vm_next) {
2328 unsigned long hstart, hend;
2329
2330 cond_resched();
2331 if (unlikely(khugepaged_test_exit(mm))) {
2332 progress++;
2333 break;
2334 }
fa475e51
BL
2335 if (!hugepage_vma_check(vma)) {
2336skip:
ba76149f
AA
2337 progress++;
2338 continue;
2339 }
ba76149f
AA
2340 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2341 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2342 if (hstart >= hend)
2343 goto skip;
2344 if (khugepaged_scan.address > hend)
2345 goto skip;
ba76149f
AA
2346 if (khugepaged_scan.address < hstart)
2347 khugepaged_scan.address = hstart;
a7d6e4ec 2348 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2349
2350 while (khugepaged_scan.address < hend) {
2351 int ret;
2352 cond_resched();
2353 if (unlikely(khugepaged_test_exit(mm)))
2354 goto breakouterloop;
2355
2356 VM_BUG_ON(khugepaged_scan.address < hstart ||
2357 khugepaged_scan.address + HPAGE_PMD_SIZE >
2358 hend);
2359 ret = khugepaged_scan_pmd(mm, vma,
2360 khugepaged_scan.address,
2361 hpage);
2362 /* move to next address */
2363 khugepaged_scan.address += HPAGE_PMD_SIZE;
2364 progress += HPAGE_PMD_NR;
2365 if (ret)
2366 /* we released mmap_sem so break loop */
2367 goto breakouterloop_mmap_sem;
2368 if (progress >= pages)
2369 goto breakouterloop;
2370 }
2371 }
2372breakouterloop:
2373 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2374breakouterloop_mmap_sem:
2375
2376 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2377 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2378 /*
2379 * Release the current mm_slot if this mm is about to die, or
2380 * if we scanned all vmas of this mm.
2381 */
2382 if (khugepaged_test_exit(mm) || !vma) {
2383 /*
2384 * Make sure that if mm_users is reaching zero while
2385 * khugepaged runs here, khugepaged_exit will find
2386 * mm_slot not pointing to the exiting mm.
2387 */
2388 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2389 khugepaged_scan.mm_slot = list_entry(
2390 mm_slot->mm_node.next,
2391 struct mm_slot, mm_node);
2392 khugepaged_scan.address = 0;
2393 } else {
2394 khugepaged_scan.mm_slot = NULL;
2395 khugepaged_full_scans++;
2396 }
2397
2398 collect_mm_slot(mm_slot);
2399 }
2400
2401 return progress;
2402}
2403
2404static int khugepaged_has_work(void)
2405{
2406 return !list_empty(&khugepaged_scan.mm_head) &&
2407 khugepaged_enabled();
2408}
2409
2410static int khugepaged_wait_event(void)
2411{
2412 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2413 kthread_should_stop();
ba76149f
AA
2414}
2415
d516904b 2416static void khugepaged_do_scan(void)
ba76149f 2417{
d516904b 2418 struct page *hpage = NULL;
ba76149f
AA
2419 unsigned int progress = 0, pass_through_head = 0;
2420 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2421 bool wait = true;
ba76149f
AA
2422
2423 barrier(); /* write khugepaged_pages_to_scan to local stack */
2424
2425 while (progress < pages) {
26234f36 2426 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2427 break;
26234f36 2428
420256ef 2429 cond_resched();
ba76149f 2430
878aee7d
AA
2431 if (unlikely(kthread_should_stop() || freezing(current)))
2432 break;
2433
ba76149f
AA
2434 spin_lock(&khugepaged_mm_lock);
2435 if (!khugepaged_scan.mm_slot)
2436 pass_through_head++;
2437 if (khugepaged_has_work() &&
2438 pass_through_head < 2)
2439 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2440 &hpage);
ba76149f
AA
2441 else
2442 progress = pages;
2443 spin_unlock(&khugepaged_mm_lock);
2444 }
ba76149f 2445
d516904b
XG
2446 if (!IS_ERR_OR_NULL(hpage))
2447 put_page(hpage);
0bbbc0b3
AA
2448}
2449
2017c0bf
XG
2450static void khugepaged_wait_work(void)
2451{
2452 try_to_freeze();
2453
2454 if (khugepaged_has_work()) {
2455 if (!khugepaged_scan_sleep_millisecs)
2456 return;
2457
2458 wait_event_freezable_timeout(khugepaged_wait,
2459 kthread_should_stop(),
2460 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2461 return;
2462 }
2463
2464 if (khugepaged_enabled())
2465 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2466}
2467
ba76149f
AA
2468static int khugepaged(void *none)
2469{
2470 struct mm_slot *mm_slot;
2471
878aee7d 2472 set_freezable();
ba76149f
AA
2473 set_user_nice(current, 19);
2474
b7231789
XG
2475 while (!kthread_should_stop()) {
2476 khugepaged_do_scan();
2477 khugepaged_wait_work();
2478 }
ba76149f
AA
2479
2480 spin_lock(&khugepaged_mm_lock);
2481 mm_slot = khugepaged_scan.mm_slot;
2482 khugepaged_scan.mm_slot = NULL;
2483 if (mm_slot)
2484 collect_mm_slot(mm_slot);
2485 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2486 return 0;
2487}
2488
c5a647d0
KS
2489static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2490 unsigned long haddr, pmd_t *pmd)
2491{
2492 struct mm_struct *mm = vma->vm_mm;
2493 pgtable_t pgtable;
2494 pmd_t _pmd;
2495 int i;
2496
2497 pmdp_clear_flush(vma, haddr, pmd);
2498 /* leave pmd empty until pte is filled */
2499
2500 pgtable = pgtable_trans_huge_withdraw(mm);
2501 pmd_populate(mm, &_pmd, pgtable);
2502
2503 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2504 pte_t *pte, entry;
2505 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2506 entry = pte_mkspecial(entry);
2507 pte = pte_offset_map(&_pmd, haddr);
2508 VM_BUG_ON(!pte_none(*pte));
2509 set_pte_at(mm, haddr, pte, entry);
2510 pte_unmap(pte);
2511 }
2512 smp_wmb(); /* make pte visible before pmd */
2513 pmd_populate(mm, pmd, pgtable);
2514}
2515
e180377f
KS
2516void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2517 pmd_t *pmd)
71e3aac0
AA
2518{
2519 struct page *page;
e180377f 2520 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2521 unsigned long haddr = address & HPAGE_PMD_MASK;
2522 unsigned long mmun_start; /* For mmu_notifiers */
2523 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2524
2525 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2526
c5a647d0
KS
2527 mmun_start = haddr;
2528 mmun_end = haddr + HPAGE_PMD_SIZE;
2529 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
2530 spin_lock(&mm->page_table_lock);
2531 if (unlikely(!pmd_trans_huge(*pmd))) {
2532 spin_unlock(&mm->page_table_lock);
c5a647d0
KS
2533 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2534 return;
2535 }
2536 if (is_huge_zero_pmd(*pmd)) {
2537 __split_huge_zero_page_pmd(vma, haddr, pmd);
2538 spin_unlock(&mm->page_table_lock);
2539 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2540 return;
2541 }
2542 page = pmd_page(*pmd);
2543 VM_BUG_ON(!page_count(page));
2544 get_page(page);
2545 spin_unlock(&mm->page_table_lock);
c5a647d0 2546 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2547
2548 split_huge_page(page);
2549
2550 put_page(page);
2551 BUG_ON(pmd_trans_huge(*pmd));
2552}
94fcc585 2553
e180377f
KS
2554void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2555 pmd_t *pmd)
2556{
2557 struct vm_area_struct *vma;
2558
2559 vma = find_vma(mm, address);
2560 BUG_ON(vma == NULL);
2561 split_huge_page_pmd(vma, address, pmd);
2562}
2563
94fcc585
AA
2564static void split_huge_page_address(struct mm_struct *mm,
2565 unsigned long address)
2566{
94fcc585
AA
2567 pmd_t *pmd;
2568
2569 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2570
6219049a
BL
2571 pmd = mm_find_pmd(mm, address);
2572 if (!pmd)
94fcc585
AA
2573 return;
2574 /*
2575 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2576 * materialize from under us.
2577 */
e180377f 2578 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2579}
2580
2581void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2582 unsigned long start,
2583 unsigned long end,
2584 long adjust_next)
2585{
2586 /*
2587 * If the new start address isn't hpage aligned and it could
2588 * previously contain an hugepage: check if we need to split
2589 * an huge pmd.
2590 */
2591 if (start & ~HPAGE_PMD_MASK &&
2592 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2593 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2594 split_huge_page_address(vma->vm_mm, start);
2595
2596 /*
2597 * If the new end address isn't hpage aligned and it could
2598 * previously contain an hugepage: check if we need to split
2599 * an huge pmd.
2600 */
2601 if (end & ~HPAGE_PMD_MASK &&
2602 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2603 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2604 split_huge_page_address(vma->vm_mm, end);
2605
2606 /*
2607 * If we're also updating the vma->vm_next->vm_start, if the new
2608 * vm_next->vm_start isn't page aligned and it could previously
2609 * contain an hugepage: check if we need to split an huge pmd.
2610 */
2611 if (adjust_next > 0) {
2612 struct vm_area_struct *next = vma->vm_next;
2613 unsigned long nstart = next->vm_start;
2614 nstart += adjust_next << PAGE_SHIFT;
2615 if (nstart & ~HPAGE_PMD_MASK &&
2616 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2617 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2618 split_huge_page_address(next->vm_mm, nstart);
2619 }
2620}