]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
thp: introduce sysfs knob to disable huge zero page
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
97ae1749 15#include <linux/shrinker.h>
ba76149f
AA
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
878aee7d 19#include <linux/freezer.h>
a664b2d8 20#include <linux/mman.h>
325adeb5 21#include <linux/pagemap.h>
97ae1749 22
71e3aac0
AA
23#include <asm/tlb.h>
24#include <asm/pgalloc.h>
25#include "internal.h"
26
ba76149f
AA
27/*
28 * By default transparent hugepage support is enabled for all mappings
29 * and khugepaged scans all mappings. Defrag is only invoked by
30 * khugepaged hugepage allocations and by page faults inside
31 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
32 * allocations.
33 */
71e3aac0 34unsigned long transparent_hugepage_flags __read_mostly =
13ece886 35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 36 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
37#endif
38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
39 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
40#endif
d39d33c3 41 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
42 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
43 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
44
45/* default scan 8*512 pte (or vmas) every 30 second */
46static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
47static unsigned int khugepaged_pages_collapsed;
48static unsigned int khugepaged_full_scans;
49static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
50/* during fragmentation poll the hugepage allocator once every minute */
51static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
52static struct task_struct *khugepaged_thread __read_mostly;
53static DEFINE_MUTEX(khugepaged_mutex);
54static DEFINE_SPINLOCK(khugepaged_mm_lock);
55static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
56/*
57 * default collapse hugepages if there is at least one pte mapped like
58 * it would have happened if the vma was large enough during page
59 * fault.
60 */
61static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
62
63static int khugepaged(void *none);
64static int mm_slots_hash_init(void);
65static int khugepaged_slab_init(void);
66static void khugepaged_slab_free(void);
67
68#define MM_SLOTS_HASH_HEADS 1024
69static struct hlist_head *mm_slots_hash __read_mostly;
70static struct kmem_cache *mm_slot_cache __read_mostly;
71
72/**
73 * struct mm_slot - hash lookup from mm to mm_slot
74 * @hash: hash collision list
75 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
76 * @mm: the mm that this information is valid for
77 */
78struct mm_slot {
79 struct hlist_node hash;
80 struct list_head mm_node;
81 struct mm_struct *mm;
82};
83
84/**
85 * struct khugepaged_scan - cursor for scanning
86 * @mm_head: the head of the mm list to scan
87 * @mm_slot: the current mm_slot we are scanning
88 * @address: the next address inside that to be scanned
89 *
90 * There is only the one khugepaged_scan instance of this cursor structure.
91 */
92struct khugepaged_scan {
93 struct list_head mm_head;
94 struct mm_slot *mm_slot;
95 unsigned long address;
2f1da642
HS
96};
97static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
98 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
99};
100
f000565a
AA
101
102static int set_recommended_min_free_kbytes(void)
103{
104 struct zone *zone;
105 int nr_zones = 0;
106 unsigned long recommended_min;
107 extern int min_free_kbytes;
108
17c230af 109 if (!khugepaged_enabled())
f000565a
AA
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136}
137late_initcall(set_recommended_min_free_kbytes);
138
ba76149f
AA
139static int start_khugepaged(void)
140{
141 int err = 0;
142 if (khugepaged_enabled()) {
ba76149f
AA
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
911891af
XG
152
153 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 154 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
155
156 set_recommended_min_free_kbytes();
911891af 157 } else if (khugepaged_thread) {
911891af
XG
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
637e3a27 161
ba76149f
AA
162 return err;
163}
71e3aac0 164
97ae1749
KS
165static atomic_t huge_zero_refcount;
166static unsigned long huge_zero_pfn __read_mostly;
167
168static inline bool is_huge_zero_pfn(unsigned long pfn)
4a6c1297 169{
97ae1749
KS
170 unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
171 return zero_pfn && pfn == zero_pfn;
172}
4a6c1297 173
97ae1749
KS
174static inline bool is_huge_zero_pmd(pmd_t pmd)
175{
176 return is_huge_zero_pfn(pmd_pfn(pmd));
177}
178
179static unsigned long get_huge_zero_page(void)
180{
181 struct page *zero_page;
182retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_pfn);
185
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 187 HPAGE_PMD_ORDER);
d8a8e1f0
KS
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
97ae1749 190 return 0;
d8a8e1f0
KS
191 }
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749
KS
193 preempt_disable();
194 if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
198 }
199
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_pfn);
4a6c1297
KS
204}
205
97ae1749 206static void put_huge_zero_page(void)
4a6c1297 207{
97ae1749
KS
208 /*
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
211 */
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
213}
214
97ae1749
KS
215static int shrink_huge_zero_page(struct shrinker *shrink,
216 struct shrink_control *sc)
4a6c1297 217{
97ae1749
KS
218 if (!sc->nr_to_scan)
219 /* we can free zero page only if last reference remains */
220 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221
222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
224 BUG_ON(zero_pfn == 0);
225 __free_page(__pfn_to_page(zero_pfn));
226 }
227
228 return 0;
4a6c1297
KS
229}
230
97ae1749
KS
231static struct shrinker huge_zero_page_shrinker = {
232 .shrink = shrink_huge_zero_page,
233 .seeks = DEFAULT_SEEKS,
234};
235
71e3aac0 236#ifdef CONFIG_SYSFS
ba76149f 237
71e3aac0
AA
238static ssize_t double_flag_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf,
240 enum transparent_hugepage_flag enabled,
241 enum transparent_hugepage_flag req_madv)
242{
243 if (test_bit(enabled, &transparent_hugepage_flags)) {
244 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
245 return sprintf(buf, "[always] madvise never\n");
246 } else if (test_bit(req_madv, &transparent_hugepage_flags))
247 return sprintf(buf, "always [madvise] never\n");
248 else
249 return sprintf(buf, "always madvise [never]\n");
250}
251static ssize_t double_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag enabled,
255 enum transparent_hugepage_flag req_madv)
256{
257 if (!memcmp("always", buf,
258 min(sizeof("always")-1, count))) {
259 set_bit(enabled, &transparent_hugepage_flags);
260 clear_bit(req_madv, &transparent_hugepage_flags);
261 } else if (!memcmp("madvise", buf,
262 min(sizeof("madvise")-1, count))) {
263 clear_bit(enabled, &transparent_hugepage_flags);
264 set_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("never", buf,
266 min(sizeof("never")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 clear_bit(req_madv, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
271
272 return count;
273}
274
275static ssize_t enabled_show(struct kobject *kobj,
276 struct kobj_attribute *attr, char *buf)
277{
278 return double_flag_show(kobj, attr, buf,
279 TRANSPARENT_HUGEPAGE_FLAG,
280 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
281}
282static ssize_t enabled_store(struct kobject *kobj,
283 struct kobj_attribute *attr,
284 const char *buf, size_t count)
285{
ba76149f
AA
286 ssize_t ret;
287
288 ret = double_flag_store(kobj, attr, buf, count,
289 TRANSPARENT_HUGEPAGE_FLAG,
290 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
291
292 if (ret > 0) {
911891af
XG
293 int err;
294
295 mutex_lock(&khugepaged_mutex);
296 err = start_khugepaged();
297 mutex_unlock(&khugepaged_mutex);
298
ba76149f
AA
299 if (err)
300 ret = err;
301 }
302
303 return ret;
71e3aac0
AA
304}
305static struct kobj_attribute enabled_attr =
306 __ATTR(enabled, 0644, enabled_show, enabled_store);
307
308static ssize_t single_flag_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf,
310 enum transparent_hugepage_flag flag)
311{
e27e6151
BH
312 return sprintf(buf, "%d\n",
313 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 314}
e27e6151 315
71e3aac0
AA
316static ssize_t single_flag_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count,
319 enum transparent_hugepage_flag flag)
320{
e27e6151
BH
321 unsigned long value;
322 int ret;
323
324 ret = kstrtoul(buf, 10, &value);
325 if (ret < 0)
326 return ret;
327 if (value > 1)
328 return -EINVAL;
329
330 if (value)
71e3aac0 331 set_bit(flag, &transparent_hugepage_flags);
e27e6151 332 else
71e3aac0 333 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
334
335 return count;
336}
337
338/*
339 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
340 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
341 * memory just to allocate one more hugepage.
342 */
343static ssize_t defrag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf)
345{
346 return double_flag_show(kobj, attr, buf,
347 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
348 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
349}
350static ssize_t defrag_store(struct kobject *kobj,
351 struct kobj_attribute *attr,
352 const char *buf, size_t count)
353{
354 return double_flag_store(kobj, attr, buf, count,
355 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
356 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
357}
358static struct kobj_attribute defrag_attr =
359 __ATTR(defrag, 0644, defrag_show, defrag_store);
360
79da5407
KS
361static ssize_t use_zero_page_show(struct kobject *kobj,
362 struct kobj_attribute *attr, char *buf)
363{
364 return single_flag_show(kobj, attr, buf,
365 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
366}
367static ssize_t use_zero_page_store(struct kobject *kobj,
368 struct kobj_attribute *attr, const char *buf, size_t count)
369{
370 return single_flag_store(kobj, attr, buf, count,
371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372}
373static struct kobj_attribute use_zero_page_attr =
374 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
375#ifdef CONFIG_DEBUG_VM
376static ssize_t debug_cow_show(struct kobject *kobj,
377 struct kobj_attribute *attr, char *buf)
378{
379 return single_flag_show(kobj, attr, buf,
380 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
381}
382static ssize_t debug_cow_store(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 const char *buf, size_t count)
385{
386 return single_flag_store(kobj, attr, buf, count,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388}
389static struct kobj_attribute debug_cow_attr =
390 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
391#endif /* CONFIG_DEBUG_VM */
392
393static struct attribute *hugepage_attr[] = {
394 &enabled_attr.attr,
395 &defrag_attr.attr,
79da5407 396 &use_zero_page_attr.attr,
71e3aac0
AA
397#ifdef CONFIG_DEBUG_VM
398 &debug_cow_attr.attr,
399#endif
400 NULL,
401};
402
403static struct attribute_group hugepage_attr_group = {
404 .attrs = hugepage_attr,
ba76149f
AA
405};
406
407static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
412}
413
414static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 const char *buf, size_t count)
417{
418 unsigned long msecs;
419 int err;
420
421 err = strict_strtoul(buf, 10, &msecs);
422 if (err || msecs > UINT_MAX)
423 return -EINVAL;
424
425 khugepaged_scan_sleep_millisecs = msecs;
426 wake_up_interruptible(&khugepaged_wait);
427
428 return count;
429}
430static struct kobj_attribute scan_sleep_millisecs_attr =
431 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
432 scan_sleep_millisecs_store);
433
434static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
435 struct kobj_attribute *attr,
436 char *buf)
437{
438 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
439}
440
441static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 const char *buf, size_t count)
444{
445 unsigned long msecs;
446 int err;
447
448 err = strict_strtoul(buf, 10, &msecs);
449 if (err || msecs > UINT_MAX)
450 return -EINVAL;
451
452 khugepaged_alloc_sleep_millisecs = msecs;
453 wake_up_interruptible(&khugepaged_wait);
454
455 return count;
456}
457static struct kobj_attribute alloc_sleep_millisecs_attr =
458 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
459 alloc_sleep_millisecs_store);
460
461static ssize_t pages_to_scan_show(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 char *buf)
464{
465 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
466}
467static ssize_t pages_to_scan_store(struct kobject *kobj,
468 struct kobj_attribute *attr,
469 const char *buf, size_t count)
470{
471 int err;
472 unsigned long pages;
473
474 err = strict_strtoul(buf, 10, &pages);
475 if (err || !pages || pages > UINT_MAX)
476 return -EINVAL;
477
478 khugepaged_pages_to_scan = pages;
479
480 return count;
481}
482static struct kobj_attribute pages_to_scan_attr =
483 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
484 pages_to_scan_store);
485
486static ssize_t pages_collapsed_show(struct kobject *kobj,
487 struct kobj_attribute *attr,
488 char *buf)
489{
490 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
491}
492static struct kobj_attribute pages_collapsed_attr =
493 __ATTR_RO(pages_collapsed);
494
495static ssize_t full_scans_show(struct kobject *kobj,
496 struct kobj_attribute *attr,
497 char *buf)
498{
499 return sprintf(buf, "%u\n", khugepaged_full_scans);
500}
501static struct kobj_attribute full_scans_attr =
502 __ATTR_RO(full_scans);
503
504static ssize_t khugepaged_defrag_show(struct kobject *kobj,
505 struct kobj_attribute *attr, char *buf)
506{
507 return single_flag_show(kobj, attr, buf,
508 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
509}
510static ssize_t khugepaged_defrag_store(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 const char *buf, size_t count)
513{
514 return single_flag_store(kobj, attr, buf, count,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516}
517static struct kobj_attribute khugepaged_defrag_attr =
518 __ATTR(defrag, 0644, khugepaged_defrag_show,
519 khugepaged_defrag_store);
520
521/*
522 * max_ptes_none controls if khugepaged should collapse hugepages over
523 * any unmapped ptes in turn potentially increasing the memory
524 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
525 * reduce the available free memory in the system as it
526 * runs. Increasing max_ptes_none will instead potentially reduce the
527 * free memory in the system during the khugepaged scan.
528 */
529static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
530 struct kobj_attribute *attr,
531 char *buf)
532{
533 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
534}
535static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 const char *buf, size_t count)
538{
539 int err;
540 unsigned long max_ptes_none;
541
542 err = strict_strtoul(buf, 10, &max_ptes_none);
543 if (err || max_ptes_none > HPAGE_PMD_NR-1)
544 return -EINVAL;
545
546 khugepaged_max_ptes_none = max_ptes_none;
547
548 return count;
549}
550static struct kobj_attribute khugepaged_max_ptes_none_attr =
551 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
552 khugepaged_max_ptes_none_store);
553
554static struct attribute *khugepaged_attr[] = {
555 &khugepaged_defrag_attr.attr,
556 &khugepaged_max_ptes_none_attr.attr,
557 &pages_to_scan_attr.attr,
558 &pages_collapsed_attr.attr,
559 &full_scans_attr.attr,
560 &scan_sleep_millisecs_attr.attr,
561 &alloc_sleep_millisecs_attr.attr,
562 NULL,
563};
564
565static struct attribute_group khugepaged_attr_group = {
566 .attrs = khugepaged_attr,
567 .name = "khugepaged",
71e3aac0 568};
71e3aac0 569
569e5590 570static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 571{
71e3aac0
AA
572 int err;
573
569e5590
SL
574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 if (unlikely(!*hugepage_kobj)) {
ba76149f 576 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 577 return -ENOMEM;
ba76149f
AA
578 }
579
569e5590 580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
581 if (err) {
582 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 583 goto delete_obj;
ba76149f
AA
584 }
585
569e5590 586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
587 if (err) {
588 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 589 goto remove_hp_group;
ba76149f 590 }
569e5590
SL
591
592 return 0;
593
594remove_hp_group:
595 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
596delete_obj:
597 kobject_put(*hugepage_kobj);
598 return err;
599}
600
601static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
602{
603 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
604 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
605 kobject_put(hugepage_kobj);
606}
607#else
608static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
609{
610 return 0;
611}
612
613static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614{
615}
616#endif /* CONFIG_SYSFS */
617
618static int __init hugepage_init(void)
619{
620 int err;
621 struct kobject *hugepage_kobj;
622
623 if (!has_transparent_hugepage()) {
624 transparent_hugepage_flags = 0;
625 return -EINVAL;
626 }
627
628 err = hugepage_init_sysfs(&hugepage_kobj);
629 if (err)
630 return err;
ba76149f
AA
631
632 err = khugepaged_slab_init();
633 if (err)
634 goto out;
635
636 err = mm_slots_hash_init();
637 if (err) {
638 khugepaged_slab_free();
639 goto out;
640 }
641
97ae1749
KS
642 register_shrinker(&huge_zero_page_shrinker);
643
97562cd2
RR
644 /*
645 * By default disable transparent hugepages on smaller systems,
646 * where the extra memory used could hurt more than TLB overhead
647 * is likely to save. The admin can still enable it through /sys.
648 */
649 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
650 transparent_hugepage_flags = 0;
651
ba76149f
AA
652 start_khugepaged();
653
569e5590 654 return 0;
ba76149f 655out:
569e5590 656 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 657 return err;
71e3aac0
AA
658}
659module_init(hugepage_init)
660
661static int __init setup_transparent_hugepage(char *str)
662{
663 int ret = 0;
664 if (!str)
665 goto out;
666 if (!strcmp(str, "always")) {
667 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
668 &transparent_hugepage_flags);
669 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
670 &transparent_hugepage_flags);
671 ret = 1;
672 } else if (!strcmp(str, "madvise")) {
673 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "never")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 }
685out:
686 if (!ret)
687 printk(KERN_WARNING
688 "transparent_hugepage= cannot parse, ignored\n");
689 return ret;
690}
691__setup("transparent_hugepage=", setup_transparent_hugepage);
692
71e3aac0
AA
693static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694{
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
697 return pmd;
698}
699
b3092b3b
BL
700static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
701{
702 pmd_t entry;
703 entry = mk_pmd(page, vma->vm_page_prot);
704 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
705 entry = pmd_mkhuge(entry);
706 return entry;
707}
708
71e3aac0
AA
709static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
710 struct vm_area_struct *vma,
711 unsigned long haddr, pmd_t *pmd,
712 struct page *page)
713{
71e3aac0
AA
714 pgtable_t pgtable;
715
716 VM_BUG_ON(!PageCompound(page));
717 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 718 if (unlikely(!pgtable))
71e3aac0 719 return VM_FAULT_OOM;
71e3aac0
AA
720
721 clear_huge_page(page, haddr, HPAGE_PMD_NR);
722 __SetPageUptodate(page);
723
724 spin_lock(&mm->page_table_lock);
725 if (unlikely(!pmd_none(*pmd))) {
726 spin_unlock(&mm->page_table_lock);
b9bbfbe3 727 mem_cgroup_uncharge_page(page);
71e3aac0
AA
728 put_page(page);
729 pte_free(mm, pgtable);
730 } else {
731 pmd_t entry;
b3092b3b 732 entry = mk_huge_pmd(page, vma);
71e3aac0
AA
733 /*
734 * The spinlocking to take the lru_lock inside
735 * page_add_new_anon_rmap() acts as a full memory
736 * barrier to be sure clear_huge_page writes become
737 * visible after the set_pmd_at() write.
738 */
739 page_add_new_anon_rmap(page, vma, haddr);
740 set_pmd_at(mm, haddr, pmd, entry);
e3ebcf64 741 pgtable_trans_huge_deposit(mm, pgtable);
71e3aac0 742 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 743 mm->nr_ptes++;
71e3aac0
AA
744 spin_unlock(&mm->page_table_lock);
745 }
746
aa2e878e 747 return 0;
71e3aac0
AA
748}
749
cc5d462f 750static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 751{
cc5d462f 752 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
753}
754
755static inline struct page *alloc_hugepage_vma(int defrag,
756 struct vm_area_struct *vma,
cc5d462f
AK
757 unsigned long haddr, int nd,
758 gfp_t extra_gfp)
0bbbc0b3 759{
cc5d462f 760 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 761 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
762}
763
764#ifndef CONFIG_NUMA
71e3aac0
AA
765static inline struct page *alloc_hugepage(int defrag)
766{
cc5d462f 767 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
768 HPAGE_PMD_ORDER);
769}
0bbbc0b3 770#endif
71e3aac0 771
fc9fe822 772static void set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749
KS
773 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
774 unsigned long zero_pfn)
fc9fe822
KS
775{
776 pmd_t entry;
97ae1749 777 entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
fc9fe822
KS
778 entry = pmd_wrprotect(entry);
779 entry = pmd_mkhuge(entry);
780 set_pmd_at(mm, haddr, pmd, entry);
781 pgtable_trans_huge_deposit(mm, pgtable);
782 mm->nr_ptes++;
783}
784
71e3aac0
AA
785int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786 unsigned long address, pmd_t *pmd,
787 unsigned int flags)
788{
789 struct page *page;
790 unsigned long haddr = address & HPAGE_PMD_MASK;
791 pte_t *pte;
792
793 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
794 if (unlikely(anon_vma_prepare(vma)))
795 return VM_FAULT_OOM;
ba76149f
AA
796 if (unlikely(khugepaged_enter(vma)))
797 return VM_FAULT_OOM;
79da5407
KS
798 if (!(flags & FAULT_FLAG_WRITE) &&
799 transparent_hugepage_use_zero_page()) {
80371957 800 pgtable_t pgtable;
97ae1749 801 unsigned long zero_pfn;
80371957
KS
802 pgtable = pte_alloc_one(mm, haddr);
803 if (unlikely(!pgtable))
804 return VM_FAULT_OOM;
97ae1749
KS
805 zero_pfn = get_huge_zero_page();
806 if (unlikely(!zero_pfn)) {
807 pte_free(mm, pgtable);
808 count_vm_event(THP_FAULT_FALLBACK);
809 goto out;
810 }
80371957 811 spin_lock(&mm->page_table_lock);
97ae1749
KS
812 set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
813 zero_pfn);
80371957
KS
814 spin_unlock(&mm->page_table_lock);
815 return 0;
816 }
0bbbc0b3 817 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 818 vma, haddr, numa_node_id(), 0);
81ab4201
AK
819 if (unlikely(!page)) {
820 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 821 goto out;
81ab4201
AK
822 }
823 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
826 goto out;
827 }
edad9d2c
DR
828 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
829 page))) {
830 mem_cgroup_uncharge_page(page);
831 put_page(page);
832 goto out;
833 }
71e3aac0 834
edad9d2c 835 return 0;
71e3aac0
AA
836 }
837out:
838 /*
839 * Use __pte_alloc instead of pte_alloc_map, because we can't
840 * run pte_offset_map on the pmd, if an huge pmd could
841 * materialize from under us from a different thread.
842 */
843 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
844 return VM_FAULT_OOM;
845 /* if an huge pmd materialized from under us just retry later */
846 if (unlikely(pmd_trans_huge(*pmd)))
847 return 0;
848 /*
849 * A regular pmd is established and it can't morph into a huge pmd
850 * from under us anymore at this point because we hold the mmap_sem
851 * read mode and khugepaged takes it in write mode. So now it's
852 * safe to run pte_offset_map().
853 */
854 pte = pte_offset_map(pmd, address);
855 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
856}
857
858int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
859 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
860 struct vm_area_struct *vma)
861{
862 struct page *src_page;
863 pmd_t pmd;
864 pgtable_t pgtable;
865 int ret;
866
867 ret = -ENOMEM;
868 pgtable = pte_alloc_one(dst_mm, addr);
869 if (unlikely(!pgtable))
870 goto out;
871
872 spin_lock(&dst_mm->page_table_lock);
873 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
874
875 ret = -EAGAIN;
876 pmd = *src_pmd;
877 if (unlikely(!pmd_trans_huge(pmd))) {
878 pte_free(dst_mm, pgtable);
879 goto out_unlock;
880 }
fc9fe822
KS
881 /*
882 * mm->page_table_lock is enough to be sure that huge zero pmd is not
883 * under splitting since we don't split the page itself, only pmd to
884 * a page table.
885 */
886 if (is_huge_zero_pmd(pmd)) {
97ae1749
KS
887 unsigned long zero_pfn;
888 /*
889 * get_huge_zero_page() will never allocate a new page here,
890 * since we already have a zero page to copy. It just takes a
891 * reference.
892 */
893 zero_pfn = get_huge_zero_page();
894 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
895 zero_pfn);
fc9fe822
KS
896 ret = 0;
897 goto out_unlock;
898 }
71e3aac0
AA
899 if (unlikely(pmd_trans_splitting(pmd))) {
900 /* split huge page running from under us */
901 spin_unlock(&src_mm->page_table_lock);
902 spin_unlock(&dst_mm->page_table_lock);
903 pte_free(dst_mm, pgtable);
904
905 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
906 goto out;
907 }
908 src_page = pmd_page(pmd);
909 VM_BUG_ON(!PageHead(src_page));
910 get_page(src_page);
911 page_dup_rmap(src_page);
912 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
913
914 pmdp_set_wrprotect(src_mm, addr, src_pmd);
915 pmd = pmd_mkold(pmd_wrprotect(pmd));
916 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e3ebcf64 917 pgtable_trans_huge_deposit(dst_mm, pgtable);
1c641e84 918 dst_mm->nr_ptes++;
71e3aac0
AA
919
920 ret = 0;
921out_unlock:
922 spin_unlock(&src_mm->page_table_lock);
923 spin_unlock(&dst_mm->page_table_lock);
924out:
925 return ret;
926}
927
a1dd450b
WD
928void huge_pmd_set_accessed(struct mm_struct *mm,
929 struct vm_area_struct *vma,
930 unsigned long address,
931 pmd_t *pmd, pmd_t orig_pmd,
932 int dirty)
933{
934 pmd_t entry;
935 unsigned long haddr;
936
937 spin_lock(&mm->page_table_lock);
938 if (unlikely(!pmd_same(*pmd, orig_pmd)))
939 goto unlock;
940
941 entry = pmd_mkyoung(orig_pmd);
942 haddr = address & HPAGE_PMD_MASK;
943 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
944 update_mmu_cache_pmd(vma, address, pmd);
945
946unlock:
947 spin_unlock(&mm->page_table_lock);
948}
949
93b4796d
KS
950static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
951 struct vm_area_struct *vma, unsigned long address,
952 pmd_t *pmd, unsigned long haddr)
953{
954 pgtable_t pgtable;
955 pmd_t _pmd;
956 struct page *page;
957 int i, ret = 0;
958 unsigned long mmun_start; /* For mmu_notifiers */
959 unsigned long mmun_end; /* For mmu_notifiers */
960
961 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
962 if (!page) {
963 ret |= VM_FAULT_OOM;
964 goto out;
965 }
966
967 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
968 put_page(page);
969 ret |= VM_FAULT_OOM;
970 goto out;
971 }
972
973 clear_user_highpage(page, address);
974 __SetPageUptodate(page);
975
976 mmun_start = haddr;
977 mmun_end = haddr + HPAGE_PMD_SIZE;
978 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
979
980 spin_lock(&mm->page_table_lock);
981 pmdp_clear_flush(vma, haddr, pmd);
982 /* leave pmd empty until pte is filled */
983
984 pgtable = pgtable_trans_huge_withdraw(mm);
985 pmd_populate(mm, &_pmd, pgtable);
986
987 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
988 pte_t *pte, entry;
989 if (haddr == (address & PAGE_MASK)) {
990 entry = mk_pte(page, vma->vm_page_prot);
991 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
992 page_add_new_anon_rmap(page, vma, haddr);
993 } else {
994 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
995 entry = pte_mkspecial(entry);
996 }
997 pte = pte_offset_map(&_pmd, haddr);
998 VM_BUG_ON(!pte_none(*pte));
999 set_pte_at(mm, haddr, pte, entry);
1000 pte_unmap(pte);
1001 }
1002 smp_wmb(); /* make pte visible before pmd */
1003 pmd_populate(mm, pmd, pgtable);
1004 spin_unlock(&mm->page_table_lock);
97ae1749 1005 put_huge_zero_page();
93b4796d
KS
1006 inc_mm_counter(mm, MM_ANONPAGES);
1007
1008 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1009
1010 ret |= VM_FAULT_WRITE;
1011out:
1012 return ret;
1013}
1014
71e3aac0
AA
1015static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1016 struct vm_area_struct *vma,
1017 unsigned long address,
1018 pmd_t *pmd, pmd_t orig_pmd,
1019 struct page *page,
1020 unsigned long haddr)
1021{
1022 pgtable_t pgtable;
1023 pmd_t _pmd;
1024 int ret = 0, i;
1025 struct page **pages;
2ec74c3e
SG
1026 unsigned long mmun_start; /* For mmu_notifiers */
1027 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1028
1029 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1030 GFP_KERNEL);
1031 if (unlikely(!pages)) {
1032 ret |= VM_FAULT_OOM;
1033 goto out;
1034 }
1035
1036 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1037 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1038 __GFP_OTHER_NODE,
19ee151e 1039 vma, address, page_to_nid(page));
b9bbfbe3
AA
1040 if (unlikely(!pages[i] ||
1041 mem_cgroup_newpage_charge(pages[i], mm,
1042 GFP_KERNEL))) {
1043 if (pages[i])
71e3aac0 1044 put_page(pages[i]);
b9bbfbe3
AA
1045 mem_cgroup_uncharge_start();
1046 while (--i >= 0) {
1047 mem_cgroup_uncharge_page(pages[i]);
1048 put_page(pages[i]);
1049 }
1050 mem_cgroup_uncharge_end();
71e3aac0
AA
1051 kfree(pages);
1052 ret |= VM_FAULT_OOM;
1053 goto out;
1054 }
1055 }
1056
1057 for (i = 0; i < HPAGE_PMD_NR; i++) {
1058 copy_user_highpage(pages[i], page + i,
0089e485 1059 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1060 __SetPageUptodate(pages[i]);
1061 cond_resched();
1062 }
1063
2ec74c3e
SG
1064 mmun_start = haddr;
1065 mmun_end = haddr + HPAGE_PMD_SIZE;
1066 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1067
71e3aac0
AA
1068 spin_lock(&mm->page_table_lock);
1069 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1070 goto out_free_pages;
1071 VM_BUG_ON(!PageHead(page));
1072
2ec74c3e 1073 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1074 /* leave pmd empty until pte is filled */
1075
e3ebcf64 1076 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1077 pmd_populate(mm, &_pmd, pgtable);
1078
1079 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1080 pte_t *pte, entry;
1081 entry = mk_pte(pages[i], vma->vm_page_prot);
1082 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1083 page_add_new_anon_rmap(pages[i], vma, haddr);
1084 pte = pte_offset_map(&_pmd, haddr);
1085 VM_BUG_ON(!pte_none(*pte));
1086 set_pte_at(mm, haddr, pte, entry);
1087 pte_unmap(pte);
1088 }
1089 kfree(pages);
1090
71e3aac0
AA
1091 smp_wmb(); /* make pte visible before pmd */
1092 pmd_populate(mm, pmd, pgtable);
1093 page_remove_rmap(page);
1094 spin_unlock(&mm->page_table_lock);
1095
2ec74c3e
SG
1096 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1097
71e3aac0
AA
1098 ret |= VM_FAULT_WRITE;
1099 put_page(page);
1100
1101out:
1102 return ret;
1103
1104out_free_pages:
1105 spin_unlock(&mm->page_table_lock);
2ec74c3e 1106 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1107 mem_cgroup_uncharge_start();
1108 for (i = 0; i < HPAGE_PMD_NR; i++) {
1109 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1110 put_page(pages[i]);
b9bbfbe3
AA
1111 }
1112 mem_cgroup_uncharge_end();
71e3aac0
AA
1113 kfree(pages);
1114 goto out;
1115}
1116
1117int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1118 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1119{
1120 int ret = 0;
93b4796d 1121 struct page *page = NULL, *new_page;
71e3aac0 1122 unsigned long haddr;
2ec74c3e
SG
1123 unsigned long mmun_start; /* For mmu_notifiers */
1124 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1125
1126 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1127 haddr = address & HPAGE_PMD_MASK;
1128 if (is_huge_zero_pmd(orig_pmd))
1129 goto alloc;
71e3aac0
AA
1130 spin_lock(&mm->page_table_lock);
1131 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1132 goto out_unlock;
1133
1134 page = pmd_page(orig_pmd);
1135 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1136 if (page_mapcount(page) == 1) {
1137 pmd_t entry;
1138 entry = pmd_mkyoung(orig_pmd);
1139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1141 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1142 ret |= VM_FAULT_WRITE;
1143 goto out_unlock;
1144 }
1145 get_page(page);
1146 spin_unlock(&mm->page_table_lock);
93b4796d 1147alloc:
71e3aac0
AA
1148 if (transparent_hugepage_enabled(vma) &&
1149 !transparent_hugepage_debug_cow())
0bbbc0b3 1150 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1151 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1152 else
1153 new_page = NULL;
1154
1155 if (unlikely(!new_page)) {
81ab4201 1156 count_vm_event(THP_FAULT_FALLBACK);
93b4796d
KS
1157 if (is_huge_zero_pmd(orig_pmd)) {
1158 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1159 address, pmd, haddr);
1160 } else {
1161 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1162 pmd, orig_pmd, page, haddr);
1163 if (ret & VM_FAULT_OOM)
1164 split_huge_page(page);
1165 put_page(page);
1166 }
71e3aac0
AA
1167 goto out;
1168 }
81ab4201 1169 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 1170
b9bbfbe3
AA
1171 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1172 put_page(new_page);
93b4796d
KS
1173 if (page) {
1174 split_huge_page(page);
1175 put_page(page);
1176 }
b9bbfbe3
AA
1177 ret |= VM_FAULT_OOM;
1178 goto out;
1179 }
1180
93b4796d
KS
1181 if (is_huge_zero_pmd(orig_pmd))
1182 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1183 else
1184 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1185 __SetPageUptodate(new_page);
1186
2ec74c3e
SG
1187 mmun_start = haddr;
1188 mmun_end = haddr + HPAGE_PMD_SIZE;
1189 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1190
71e3aac0 1191 spin_lock(&mm->page_table_lock);
93b4796d
KS
1192 if (page)
1193 put_page(page);
b9bbfbe3 1194 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1195 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1196 mem_cgroup_uncharge_page(new_page);
71e3aac0 1197 put_page(new_page);
2ec74c3e 1198 goto out_mn;
b9bbfbe3 1199 } else {
71e3aac0 1200 pmd_t entry;
b3092b3b 1201 entry = mk_huge_pmd(new_page, vma);
2ec74c3e 1202 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1203 page_add_new_anon_rmap(new_page, vma, haddr);
1204 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1205 update_mmu_cache_pmd(vma, address, pmd);
97ae1749 1206 if (is_huge_zero_pmd(orig_pmd)) {
93b4796d 1207 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1208 put_huge_zero_page();
1209 } else {
93b4796d
KS
1210 VM_BUG_ON(!PageHead(page));
1211 page_remove_rmap(page);
1212 put_page(page);
1213 }
71e3aac0
AA
1214 ret |= VM_FAULT_WRITE;
1215 }
71e3aac0 1216 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1217out_mn:
1218 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1219out:
1220 return ret;
2ec74c3e
SG
1221out_unlock:
1222 spin_unlock(&mm->page_table_lock);
1223 return ret;
71e3aac0
AA
1224}
1225
b676b293 1226struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1227 unsigned long addr,
1228 pmd_t *pmd,
1229 unsigned int flags)
1230{
b676b293 1231 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1232 struct page *page = NULL;
1233
1234 assert_spin_locked(&mm->page_table_lock);
1235
1236 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1237 goto out;
1238
1239 page = pmd_page(*pmd);
1240 VM_BUG_ON(!PageHead(page));
1241 if (flags & FOLL_TOUCH) {
1242 pmd_t _pmd;
1243 /*
1244 * We should set the dirty bit only for FOLL_WRITE but
1245 * for now the dirty bit in the pmd is meaningless.
1246 * And if the dirty bit will become meaningful and
1247 * we'll only set it with FOLL_WRITE, an atomic
1248 * set_bit will be required on the pmd to set the
1249 * young bit, instead of the current set_pmd_at.
1250 */
1251 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1252 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1253 }
b676b293
DR
1254 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1255 if (page->mapping && trylock_page(page)) {
1256 lru_add_drain();
1257 if (page->mapping)
1258 mlock_vma_page(page);
1259 unlock_page(page);
1260 }
1261 }
71e3aac0
AA
1262 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1263 VM_BUG_ON(!PageCompound(page));
1264 if (flags & FOLL_GET)
70b50f94 1265 get_page_foll(page);
71e3aac0
AA
1266
1267out:
1268 return page;
1269}
1270
1271int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1272 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1273{
1274 int ret = 0;
1275
025c5b24
NH
1276 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1277 struct page *page;
1278 pgtable_t pgtable;
f5c8ad47 1279 pmd_t orig_pmd;
e3ebcf64 1280 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
f5c8ad47 1281 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1282 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
479f0abb
KS
1283 if (is_huge_zero_pmd(orig_pmd)) {
1284 tlb->mm->nr_ptes--;
1285 spin_unlock(&tlb->mm->page_table_lock);
97ae1749 1286 put_huge_zero_page();
479f0abb
KS
1287 } else {
1288 page = pmd_page(orig_pmd);
1289 page_remove_rmap(page);
1290 VM_BUG_ON(page_mapcount(page) < 0);
1291 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1292 VM_BUG_ON(!PageHead(page));
1293 tlb->mm->nr_ptes--;
1294 spin_unlock(&tlb->mm->page_table_lock);
1295 tlb_remove_page(tlb, page);
1296 }
025c5b24
NH
1297 pte_free(tlb->mm, pgtable);
1298 ret = 1;
1299 }
71e3aac0
AA
1300 return ret;
1301}
1302
0ca1634d
JW
1303int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1304 unsigned long addr, unsigned long end,
1305 unsigned char *vec)
1306{
1307 int ret = 0;
1308
025c5b24
NH
1309 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1310 /*
1311 * All logical pages in the range are present
1312 * if backed by a huge page.
1313 */
0ca1634d 1314 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1315 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1316 ret = 1;
1317 }
0ca1634d
JW
1318
1319 return ret;
1320}
1321
37a1c49a
AA
1322int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1323 unsigned long old_addr,
1324 unsigned long new_addr, unsigned long old_end,
1325 pmd_t *old_pmd, pmd_t *new_pmd)
1326{
1327 int ret = 0;
1328 pmd_t pmd;
1329
1330 struct mm_struct *mm = vma->vm_mm;
1331
1332 if ((old_addr & ~HPAGE_PMD_MASK) ||
1333 (new_addr & ~HPAGE_PMD_MASK) ||
1334 old_end - old_addr < HPAGE_PMD_SIZE ||
1335 (new_vma->vm_flags & VM_NOHUGEPAGE))
1336 goto out;
1337
1338 /*
1339 * The destination pmd shouldn't be established, free_pgtables()
1340 * should have release it.
1341 */
1342 if (WARN_ON(!pmd_none(*new_pmd))) {
1343 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1344 goto out;
1345 }
1346
025c5b24
NH
1347 ret = __pmd_trans_huge_lock(old_pmd, vma);
1348 if (ret == 1) {
1349 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1350 VM_BUG_ON(!pmd_none(*new_pmd));
1351 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1352 spin_unlock(&mm->page_table_lock);
1353 }
1354out:
1355 return ret;
1356}
1357
cd7548ab
JW
1358int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1359 unsigned long addr, pgprot_t newprot)
1360{
1361 struct mm_struct *mm = vma->vm_mm;
1362 int ret = 0;
1363
025c5b24
NH
1364 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1365 pmd_t entry;
1366 entry = pmdp_get_and_clear(mm, addr, pmd);
1367 entry = pmd_modify(entry, newprot);
cad7f613 1368 BUG_ON(pmd_write(entry));
025c5b24
NH
1369 set_pmd_at(mm, addr, pmd, entry);
1370 spin_unlock(&vma->vm_mm->page_table_lock);
1371 ret = 1;
1372 }
1373
1374 return ret;
1375}
1376
1377/*
1378 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1379 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1380 *
1381 * Note that if it returns 1, this routine returns without unlocking page
1382 * table locks. So callers must unlock them.
1383 */
1384int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1385{
1386 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1387 if (likely(pmd_trans_huge(*pmd))) {
1388 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1389 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1390 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1391 return -1;
cd7548ab 1392 } else {
025c5b24
NH
1393 /* Thp mapped by 'pmd' is stable, so we can
1394 * handle it as it is. */
1395 return 1;
cd7548ab 1396 }
025c5b24
NH
1397 }
1398 spin_unlock(&vma->vm_mm->page_table_lock);
1399 return 0;
cd7548ab
JW
1400}
1401
71e3aac0
AA
1402pmd_t *page_check_address_pmd(struct page *page,
1403 struct mm_struct *mm,
1404 unsigned long address,
1405 enum page_check_address_pmd_flag flag)
1406{
71e3aac0
AA
1407 pmd_t *pmd, *ret = NULL;
1408
1409 if (address & ~HPAGE_PMD_MASK)
1410 goto out;
1411
6219049a
BL
1412 pmd = mm_find_pmd(mm, address);
1413 if (!pmd)
71e3aac0 1414 goto out;
71e3aac0
AA
1415 if (pmd_none(*pmd))
1416 goto out;
1417 if (pmd_page(*pmd) != page)
1418 goto out;
94fcc585
AA
1419 /*
1420 * split_vma() may create temporary aliased mappings. There is
1421 * no risk as long as all huge pmd are found and have their
1422 * splitting bit set before __split_huge_page_refcount
1423 * runs. Finding the same huge pmd more than once during the
1424 * same rmap walk is not a problem.
1425 */
1426 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1427 pmd_trans_splitting(*pmd))
1428 goto out;
71e3aac0
AA
1429 if (pmd_trans_huge(*pmd)) {
1430 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1431 !pmd_trans_splitting(*pmd));
1432 ret = pmd;
1433 }
1434out:
1435 return ret;
1436}
1437
1438static int __split_huge_page_splitting(struct page *page,
1439 struct vm_area_struct *vma,
1440 unsigned long address)
1441{
1442 struct mm_struct *mm = vma->vm_mm;
1443 pmd_t *pmd;
1444 int ret = 0;
2ec74c3e
SG
1445 /* For mmu_notifiers */
1446 const unsigned long mmun_start = address;
1447 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1448
2ec74c3e 1449 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1450 spin_lock(&mm->page_table_lock);
1451 pmd = page_check_address_pmd(page, mm, address,
1452 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1453 if (pmd) {
1454 /*
1455 * We can't temporarily set the pmd to null in order
1456 * to split it, the pmd must remain marked huge at all
1457 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1458 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1459 * serialize against split_huge_page*.
1460 */
2ec74c3e 1461 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1462 ret = 1;
1463 }
1464 spin_unlock(&mm->page_table_lock);
2ec74c3e 1465 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1466
1467 return ret;
1468}
1469
1470static void __split_huge_page_refcount(struct page *page)
1471{
1472 int i;
71e3aac0 1473 struct zone *zone = page_zone(page);
fa9add64 1474 struct lruvec *lruvec;
70b50f94 1475 int tail_count = 0;
71e3aac0
AA
1476
1477 /* prevent PageLRU to go away from under us, and freeze lru stats */
1478 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1479 lruvec = mem_cgroup_page_lruvec(page, zone);
1480
71e3aac0 1481 compound_lock(page);
e94c8a9c
KH
1482 /* complete memcg works before add pages to LRU */
1483 mem_cgroup_split_huge_fixup(page);
71e3aac0 1484
45676885 1485 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1486 struct page *page_tail = page + i;
1487
70b50f94
AA
1488 /* tail_page->_mapcount cannot change */
1489 BUG_ON(page_mapcount(page_tail) < 0);
1490 tail_count += page_mapcount(page_tail);
1491 /* check for overflow */
1492 BUG_ON(tail_count < 0);
1493 BUG_ON(atomic_read(&page_tail->_count) != 0);
1494 /*
1495 * tail_page->_count is zero and not changing from
1496 * under us. But get_page_unless_zero() may be running
1497 * from under us on the tail_page. If we used
1498 * atomic_set() below instead of atomic_add(), we
1499 * would then run atomic_set() concurrently with
1500 * get_page_unless_zero(), and atomic_set() is
1501 * implemented in C not using locked ops. spin_unlock
1502 * on x86 sometime uses locked ops because of PPro
1503 * errata 66, 92, so unless somebody can guarantee
1504 * atomic_set() here would be safe on all archs (and
1505 * not only on x86), it's safer to use atomic_add().
1506 */
1507 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1508 &page_tail->_count);
71e3aac0
AA
1509
1510 /* after clearing PageTail the gup refcount can be released */
1511 smp_mb();
1512
a6d30ddd
JD
1513 /*
1514 * retain hwpoison flag of the poisoned tail page:
1515 * fix for the unsuitable process killed on Guest Machine(KVM)
1516 * by the memory-failure.
1517 */
1518 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1519 page_tail->flags |= (page->flags &
1520 ((1L << PG_referenced) |
1521 (1L << PG_swapbacked) |
1522 (1L << PG_mlocked) |
1523 (1L << PG_uptodate)));
1524 page_tail->flags |= (1L << PG_dirty);
1525
70b50f94 1526 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1527 smp_wmb();
1528
1529 /*
1530 * __split_huge_page_splitting() already set the
1531 * splitting bit in all pmd that could map this
1532 * hugepage, that will ensure no CPU can alter the
1533 * mapcount on the head page. The mapcount is only
1534 * accounted in the head page and it has to be
1535 * transferred to all tail pages in the below code. So
1536 * for this code to be safe, the split the mapcount
1537 * can't change. But that doesn't mean userland can't
1538 * keep changing and reading the page contents while
1539 * we transfer the mapcount, so the pmd splitting
1540 * status is achieved setting a reserved bit in the
1541 * pmd, not by clearing the present bit.
1542 */
71e3aac0
AA
1543 page_tail->_mapcount = page->_mapcount;
1544
1545 BUG_ON(page_tail->mapping);
1546 page_tail->mapping = page->mapping;
1547
45676885 1548 page_tail->index = page->index + i;
71e3aac0
AA
1549
1550 BUG_ON(!PageAnon(page_tail));
1551 BUG_ON(!PageUptodate(page_tail));
1552 BUG_ON(!PageDirty(page_tail));
1553 BUG_ON(!PageSwapBacked(page_tail));
1554
fa9add64 1555 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1556 }
70b50f94
AA
1557 atomic_sub(tail_count, &page->_count);
1558 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1559
fa9add64 1560 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1561 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1562
71e3aac0
AA
1563 ClearPageCompound(page);
1564 compound_unlock(page);
1565 spin_unlock_irq(&zone->lru_lock);
1566
1567 for (i = 1; i < HPAGE_PMD_NR; i++) {
1568 struct page *page_tail = page + i;
1569 BUG_ON(page_count(page_tail) <= 0);
1570 /*
1571 * Tail pages may be freed if there wasn't any mapping
1572 * like if add_to_swap() is running on a lru page that
1573 * had its mapping zapped. And freeing these pages
1574 * requires taking the lru_lock so we do the put_page
1575 * of the tail pages after the split is complete.
1576 */
1577 put_page(page_tail);
1578 }
1579
1580 /*
1581 * Only the head page (now become a regular page) is required
1582 * to be pinned by the caller.
1583 */
1584 BUG_ON(page_count(page) <= 0);
1585}
1586
1587static int __split_huge_page_map(struct page *page,
1588 struct vm_area_struct *vma,
1589 unsigned long address)
1590{
1591 struct mm_struct *mm = vma->vm_mm;
1592 pmd_t *pmd, _pmd;
1593 int ret = 0, i;
1594 pgtable_t pgtable;
1595 unsigned long haddr;
1596
1597 spin_lock(&mm->page_table_lock);
1598 pmd = page_check_address_pmd(page, mm, address,
1599 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1600 if (pmd) {
e3ebcf64 1601 pgtable = pgtable_trans_huge_withdraw(mm);
71e3aac0
AA
1602 pmd_populate(mm, &_pmd, pgtable);
1603
e3ebcf64
GS
1604 haddr = address;
1605 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1606 pte_t *pte, entry;
1607 BUG_ON(PageCompound(page+i));
1608 entry = mk_pte(page + i, vma->vm_page_prot);
1609 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1610 if (!pmd_write(*pmd))
1611 entry = pte_wrprotect(entry);
1612 else
1613 BUG_ON(page_mapcount(page) != 1);
1614 if (!pmd_young(*pmd))
1615 entry = pte_mkold(entry);
1616 pte = pte_offset_map(&_pmd, haddr);
1617 BUG_ON(!pte_none(*pte));
1618 set_pte_at(mm, haddr, pte, entry);
1619 pte_unmap(pte);
1620 }
1621
71e3aac0
AA
1622 smp_wmb(); /* make pte visible before pmd */
1623 /*
1624 * Up to this point the pmd is present and huge and
1625 * userland has the whole access to the hugepage
1626 * during the split (which happens in place). If we
1627 * overwrite the pmd with the not-huge version
1628 * pointing to the pte here (which of course we could
1629 * if all CPUs were bug free), userland could trigger
1630 * a small page size TLB miss on the small sized TLB
1631 * while the hugepage TLB entry is still established
1632 * in the huge TLB. Some CPU doesn't like that. See
1633 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1634 * Erratum 383 on page 93. Intel should be safe but is
1635 * also warns that it's only safe if the permission
1636 * and cache attributes of the two entries loaded in
1637 * the two TLB is identical (which should be the case
1638 * here). But it is generally safer to never allow
1639 * small and huge TLB entries for the same virtual
1640 * address to be loaded simultaneously. So instead of
1641 * doing "pmd_populate(); flush_tlb_range();" we first
1642 * mark the current pmd notpresent (atomically because
1643 * here the pmd_trans_huge and pmd_trans_splitting
1644 * must remain set at all times on the pmd until the
1645 * split is complete for this pmd), then we flush the
1646 * SMP TLB and finally we write the non-huge version
1647 * of the pmd entry with pmd_populate.
1648 */
46dcde73 1649 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1650 pmd_populate(mm, pmd, pgtable);
1651 ret = 1;
1652 }
1653 spin_unlock(&mm->page_table_lock);
1654
1655 return ret;
1656}
1657
2b575eb6 1658/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1659static void __split_huge_page(struct page *page,
1660 struct anon_vma *anon_vma)
1661{
1662 int mapcount, mapcount2;
bf181b9f 1663 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1664 struct anon_vma_chain *avc;
1665
1666 BUG_ON(!PageHead(page));
1667 BUG_ON(PageTail(page));
1668
1669 mapcount = 0;
bf181b9f 1670 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1671 struct vm_area_struct *vma = avc->vma;
1672 unsigned long addr = vma_address(page, vma);
1673 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1674 mapcount += __split_huge_page_splitting(page, vma, addr);
1675 }
05759d38
AA
1676 /*
1677 * It is critical that new vmas are added to the tail of the
1678 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1679 * and establishes a child pmd before
1680 * __split_huge_page_splitting() freezes the parent pmd (so if
1681 * we fail to prevent copy_huge_pmd() from running until the
1682 * whole __split_huge_page() is complete), we will still see
1683 * the newly established pmd of the child later during the
1684 * walk, to be able to set it as pmd_trans_splitting too.
1685 */
1686 if (mapcount != page_mapcount(page))
1687 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1688 mapcount, page_mapcount(page));
71e3aac0
AA
1689 BUG_ON(mapcount != page_mapcount(page));
1690
1691 __split_huge_page_refcount(page);
1692
1693 mapcount2 = 0;
bf181b9f 1694 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1695 struct vm_area_struct *vma = avc->vma;
1696 unsigned long addr = vma_address(page, vma);
1697 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1698 mapcount2 += __split_huge_page_map(page, vma, addr);
1699 }
05759d38
AA
1700 if (mapcount != mapcount2)
1701 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1702 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1703 BUG_ON(mapcount != mapcount2);
1704}
1705
1706int split_huge_page(struct page *page)
1707{
1708 struct anon_vma *anon_vma;
1709 int ret = 1;
1710
c5a647d0 1711 BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
71e3aac0
AA
1712 BUG_ON(!PageAnon(page));
1713 anon_vma = page_lock_anon_vma(page);
1714 if (!anon_vma)
1715 goto out;
1716 ret = 0;
1717 if (!PageCompound(page))
1718 goto out_unlock;
1719
1720 BUG_ON(!PageSwapBacked(page));
1721 __split_huge_page(page, anon_vma);
81ab4201 1722 count_vm_event(THP_SPLIT);
71e3aac0
AA
1723
1724 BUG_ON(PageCompound(page));
1725out_unlock:
1726 page_unlock_anon_vma(anon_vma);
1727out:
1728 return ret;
1729}
1730
4b6e1e37 1731#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1732
60ab3244
AA
1733int hugepage_madvise(struct vm_area_struct *vma,
1734 unsigned long *vm_flags, int advice)
0af4e98b 1735{
8e72033f
GS
1736 struct mm_struct *mm = vma->vm_mm;
1737
a664b2d8
AA
1738 switch (advice) {
1739 case MADV_HUGEPAGE:
1740 /*
1741 * Be somewhat over-protective like KSM for now!
1742 */
78f11a25 1743 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1744 return -EINVAL;
8e72033f
GS
1745 if (mm->def_flags & VM_NOHUGEPAGE)
1746 return -EINVAL;
a664b2d8
AA
1747 *vm_flags &= ~VM_NOHUGEPAGE;
1748 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1749 /*
1750 * If the vma become good for khugepaged to scan,
1751 * register it here without waiting a page fault that
1752 * may not happen any time soon.
1753 */
1754 if (unlikely(khugepaged_enter_vma_merge(vma)))
1755 return -ENOMEM;
a664b2d8
AA
1756 break;
1757 case MADV_NOHUGEPAGE:
1758 /*
1759 * Be somewhat over-protective like KSM for now!
1760 */
78f11a25 1761 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1762 return -EINVAL;
1763 *vm_flags &= ~VM_HUGEPAGE;
1764 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1765 /*
1766 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1767 * this vma even if we leave the mm registered in khugepaged if
1768 * it got registered before VM_NOHUGEPAGE was set.
1769 */
a664b2d8
AA
1770 break;
1771 }
0af4e98b
AA
1772
1773 return 0;
1774}
1775
ba76149f
AA
1776static int __init khugepaged_slab_init(void)
1777{
1778 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1779 sizeof(struct mm_slot),
1780 __alignof__(struct mm_slot), 0, NULL);
1781 if (!mm_slot_cache)
1782 return -ENOMEM;
1783
1784 return 0;
1785}
1786
1787static void __init khugepaged_slab_free(void)
1788{
1789 kmem_cache_destroy(mm_slot_cache);
1790 mm_slot_cache = NULL;
1791}
1792
1793static inline struct mm_slot *alloc_mm_slot(void)
1794{
1795 if (!mm_slot_cache) /* initialization failed */
1796 return NULL;
1797 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1798}
1799
1800static inline void free_mm_slot(struct mm_slot *mm_slot)
1801{
1802 kmem_cache_free(mm_slot_cache, mm_slot);
1803}
1804
1805static int __init mm_slots_hash_init(void)
1806{
1807 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1808 GFP_KERNEL);
1809 if (!mm_slots_hash)
1810 return -ENOMEM;
1811 return 0;
1812}
1813
1814#if 0
1815static void __init mm_slots_hash_free(void)
1816{
1817 kfree(mm_slots_hash);
1818 mm_slots_hash = NULL;
1819}
1820#endif
1821
1822static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1823{
1824 struct mm_slot *mm_slot;
1825 struct hlist_head *bucket;
1826 struct hlist_node *node;
1827
1828 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1829 % MM_SLOTS_HASH_HEADS];
1830 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1831 if (mm == mm_slot->mm)
1832 return mm_slot;
1833 }
1834 return NULL;
1835}
1836
1837static void insert_to_mm_slots_hash(struct mm_struct *mm,
1838 struct mm_slot *mm_slot)
1839{
1840 struct hlist_head *bucket;
1841
1842 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1843 % MM_SLOTS_HASH_HEADS];
1844 mm_slot->mm = mm;
1845 hlist_add_head(&mm_slot->hash, bucket);
1846}
1847
1848static inline int khugepaged_test_exit(struct mm_struct *mm)
1849{
1850 return atomic_read(&mm->mm_users) == 0;
1851}
1852
1853int __khugepaged_enter(struct mm_struct *mm)
1854{
1855 struct mm_slot *mm_slot;
1856 int wakeup;
1857
1858 mm_slot = alloc_mm_slot();
1859 if (!mm_slot)
1860 return -ENOMEM;
1861
1862 /* __khugepaged_exit() must not run from under us */
1863 VM_BUG_ON(khugepaged_test_exit(mm));
1864 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1865 free_mm_slot(mm_slot);
1866 return 0;
1867 }
1868
1869 spin_lock(&khugepaged_mm_lock);
1870 insert_to_mm_slots_hash(mm, mm_slot);
1871 /*
1872 * Insert just behind the scanning cursor, to let the area settle
1873 * down a little.
1874 */
1875 wakeup = list_empty(&khugepaged_scan.mm_head);
1876 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1877 spin_unlock(&khugepaged_mm_lock);
1878
1879 atomic_inc(&mm->mm_count);
1880 if (wakeup)
1881 wake_up_interruptible(&khugepaged_wait);
1882
1883 return 0;
1884}
1885
1886int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1887{
1888 unsigned long hstart, hend;
1889 if (!vma->anon_vma)
1890 /*
1891 * Not yet faulted in so we will register later in the
1892 * page fault if needed.
1893 */
1894 return 0;
78f11a25 1895 if (vma->vm_ops)
ba76149f
AA
1896 /* khugepaged not yet working on file or special mappings */
1897 return 0;
b3b9c293 1898 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1899 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1900 hend = vma->vm_end & HPAGE_PMD_MASK;
1901 if (hstart < hend)
1902 return khugepaged_enter(vma);
1903 return 0;
1904}
1905
1906void __khugepaged_exit(struct mm_struct *mm)
1907{
1908 struct mm_slot *mm_slot;
1909 int free = 0;
1910
1911 spin_lock(&khugepaged_mm_lock);
1912 mm_slot = get_mm_slot(mm);
1913 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1914 hlist_del(&mm_slot->hash);
1915 list_del(&mm_slot->mm_node);
1916 free = 1;
1917 }
d788e80a 1918 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1919
1920 if (free) {
ba76149f
AA
1921 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1922 free_mm_slot(mm_slot);
1923 mmdrop(mm);
1924 } else if (mm_slot) {
ba76149f
AA
1925 /*
1926 * This is required to serialize against
1927 * khugepaged_test_exit() (which is guaranteed to run
1928 * under mmap sem read mode). Stop here (after we
1929 * return all pagetables will be destroyed) until
1930 * khugepaged has finished working on the pagetables
1931 * under the mmap_sem.
1932 */
1933 down_write(&mm->mmap_sem);
1934 up_write(&mm->mmap_sem);
d788e80a 1935 }
ba76149f
AA
1936}
1937
1938static void release_pte_page(struct page *page)
1939{
1940 /* 0 stands for page_is_file_cache(page) == false */
1941 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1942 unlock_page(page);
1943 putback_lru_page(page);
1944}
1945
1946static void release_pte_pages(pte_t *pte, pte_t *_pte)
1947{
1948 while (--_pte >= pte) {
1949 pte_t pteval = *_pte;
1950 if (!pte_none(pteval))
1951 release_pte_page(pte_page(pteval));
1952 }
1953}
1954
ba76149f
AA
1955static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1956 unsigned long address,
1957 pte_t *pte)
1958{
1959 struct page *page;
1960 pte_t *_pte;
344aa35c 1961 int referenced = 0, none = 0;
ba76149f
AA
1962 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1963 _pte++, address += PAGE_SIZE) {
1964 pte_t pteval = *_pte;
1965 if (pte_none(pteval)) {
1966 if (++none <= khugepaged_max_ptes_none)
1967 continue;
344aa35c 1968 else
ba76149f 1969 goto out;
ba76149f 1970 }
344aa35c 1971 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 1972 goto out;
ba76149f 1973 page = vm_normal_page(vma, address, pteval);
344aa35c 1974 if (unlikely(!page))
ba76149f 1975 goto out;
344aa35c 1976
ba76149f
AA
1977 VM_BUG_ON(PageCompound(page));
1978 BUG_ON(!PageAnon(page));
1979 VM_BUG_ON(!PageSwapBacked(page));
1980
1981 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 1982 if (page_count(page) != 1)
ba76149f 1983 goto out;
ba76149f
AA
1984 /*
1985 * We can do it before isolate_lru_page because the
1986 * page can't be freed from under us. NOTE: PG_lock
1987 * is needed to serialize against split_huge_page
1988 * when invoked from the VM.
1989 */
344aa35c 1990 if (!trylock_page(page))
ba76149f 1991 goto out;
ba76149f
AA
1992 /*
1993 * Isolate the page to avoid collapsing an hugepage
1994 * currently in use by the VM.
1995 */
1996 if (isolate_lru_page(page)) {
1997 unlock_page(page);
ba76149f
AA
1998 goto out;
1999 }
2000 /* 0 stands for page_is_file_cache(page) == false */
2001 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2002 VM_BUG_ON(!PageLocked(page));
2003 VM_BUG_ON(PageLRU(page));
2004
2005 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2006 if (pte_young(pteval) || PageReferenced(page) ||
2007 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2008 referenced = 1;
2009 }
344aa35c
BL
2010 if (likely(referenced))
2011 return 1;
ba76149f 2012out:
344aa35c
BL
2013 release_pte_pages(pte, _pte);
2014 return 0;
ba76149f
AA
2015}
2016
2017static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2018 struct vm_area_struct *vma,
2019 unsigned long address,
2020 spinlock_t *ptl)
2021{
2022 pte_t *_pte;
2023 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2024 pte_t pteval = *_pte;
2025 struct page *src_page;
2026
2027 if (pte_none(pteval)) {
2028 clear_user_highpage(page, address);
2029 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2030 } else {
2031 src_page = pte_page(pteval);
2032 copy_user_highpage(page, src_page, address, vma);
2033 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
2034 release_pte_page(src_page);
2035 /*
2036 * ptl mostly unnecessary, but preempt has to
2037 * be disabled to update the per-cpu stats
2038 * inside page_remove_rmap().
2039 */
2040 spin_lock(ptl);
2041 /*
2042 * paravirt calls inside pte_clear here are
2043 * superfluous.
2044 */
2045 pte_clear(vma->vm_mm, address, _pte);
2046 page_remove_rmap(src_page);
2047 spin_unlock(ptl);
2048 free_page_and_swap_cache(src_page);
2049 }
2050
2051 address += PAGE_SIZE;
2052 page++;
2053 }
2054}
2055
26234f36 2056static void khugepaged_alloc_sleep(void)
ba76149f 2057{
26234f36
XG
2058 wait_event_freezable_timeout(khugepaged_wait, false,
2059 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2060}
ba76149f 2061
26234f36
XG
2062#ifdef CONFIG_NUMA
2063static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2064{
2065 if (IS_ERR(*hpage)) {
2066 if (!*wait)
2067 return false;
2068
2069 *wait = false;
e3b4126c 2070 *hpage = NULL;
26234f36
XG
2071 khugepaged_alloc_sleep();
2072 } else if (*hpage) {
2073 put_page(*hpage);
2074 *hpage = NULL;
2075 }
2076
2077 return true;
2078}
2079
2080static struct page
2081*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2082 struct vm_area_struct *vma, unsigned long address,
2083 int node)
2084{
0bbbc0b3 2085 VM_BUG_ON(*hpage);
ce83d217
AA
2086 /*
2087 * Allocate the page while the vma is still valid and under
2088 * the mmap_sem read mode so there is no memory allocation
2089 * later when we take the mmap_sem in write mode. This is more
2090 * friendly behavior (OTOH it may actually hide bugs) to
2091 * filesystems in userland with daemons allocating memory in
2092 * the userland I/O paths. Allocating memory with the
2093 * mmap_sem in read mode is good idea also to allow greater
2094 * scalability.
2095 */
26234f36 2096 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 2097 node, __GFP_OTHER_NODE);
692e0b35
AA
2098
2099 /*
2100 * After allocating the hugepage, release the mmap_sem read lock in
2101 * preparation for taking it in write mode.
2102 */
2103 up_read(&mm->mmap_sem);
26234f36 2104 if (unlikely(!*hpage)) {
81ab4201 2105 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2106 *hpage = ERR_PTR(-ENOMEM);
26234f36 2107 return NULL;
ce83d217 2108 }
26234f36 2109
65b3c07b 2110 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2111 return *hpage;
2112}
2113#else
2114static struct page *khugepaged_alloc_hugepage(bool *wait)
2115{
2116 struct page *hpage;
2117
2118 do {
2119 hpage = alloc_hugepage(khugepaged_defrag());
2120 if (!hpage) {
2121 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2122 if (!*wait)
2123 return NULL;
2124
2125 *wait = false;
2126 khugepaged_alloc_sleep();
2127 } else
2128 count_vm_event(THP_COLLAPSE_ALLOC);
2129 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2130
2131 return hpage;
2132}
2133
2134static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2135{
2136 if (!*hpage)
2137 *hpage = khugepaged_alloc_hugepage(wait);
2138
2139 if (unlikely(!*hpage))
2140 return false;
2141
2142 return true;
2143}
2144
2145static struct page
2146*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2147 struct vm_area_struct *vma, unsigned long address,
2148 int node)
2149{
2150 up_read(&mm->mmap_sem);
2151 VM_BUG_ON(!*hpage);
2152 return *hpage;
2153}
692e0b35
AA
2154#endif
2155
fa475e51
BL
2156static bool hugepage_vma_check(struct vm_area_struct *vma)
2157{
2158 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2159 (vma->vm_flags & VM_NOHUGEPAGE))
2160 return false;
2161
2162 if (!vma->anon_vma || vma->vm_ops)
2163 return false;
2164 if (is_vma_temporary_stack(vma))
2165 return false;
2166 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2167 return true;
2168}
2169
26234f36
XG
2170static void collapse_huge_page(struct mm_struct *mm,
2171 unsigned long address,
2172 struct page **hpage,
2173 struct vm_area_struct *vma,
2174 int node)
2175{
26234f36
XG
2176 pmd_t *pmd, _pmd;
2177 pte_t *pte;
2178 pgtable_t pgtable;
2179 struct page *new_page;
2180 spinlock_t *ptl;
2181 int isolated;
2182 unsigned long hstart, hend;
2ec74c3e
SG
2183 unsigned long mmun_start; /* For mmu_notifiers */
2184 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2185
2186 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2187
2188 /* release the mmap_sem read lock. */
2189 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2190 if (!new_page)
2191 return;
2192
420256ef 2193 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2194 return;
ba76149f
AA
2195
2196 /*
2197 * Prevent all access to pagetables with the exception of
2198 * gup_fast later hanlded by the ptep_clear_flush and the VM
2199 * handled by the anon_vma lock + PG_lock.
2200 */
2201 down_write(&mm->mmap_sem);
2202 if (unlikely(khugepaged_test_exit(mm)))
2203 goto out;
2204
2205 vma = find_vma(mm, address);
2206 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2207 hend = vma->vm_end & HPAGE_PMD_MASK;
2208 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2209 goto out;
fa475e51 2210 if (!hugepage_vma_check(vma))
a7d6e4ec 2211 goto out;
6219049a
BL
2212 pmd = mm_find_pmd(mm, address);
2213 if (!pmd)
ba76149f 2214 goto out;
6219049a 2215 if (pmd_trans_huge(*pmd))
ba76149f
AA
2216 goto out;
2217
ba76149f
AA
2218 anon_vma_lock(vma->anon_vma);
2219
2220 pte = pte_offset_map(pmd, address);
2221 ptl = pte_lockptr(mm, pmd);
2222
2ec74c3e
SG
2223 mmun_start = address;
2224 mmun_end = address + HPAGE_PMD_SIZE;
2225 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2226 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2227 /*
2228 * After this gup_fast can't run anymore. This also removes
2229 * any huge TLB entry from the CPU so we won't allow
2230 * huge and small TLB entries for the same virtual address
2231 * to avoid the risk of CPU bugs in that area.
2232 */
2ec74c3e 2233 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2234 spin_unlock(&mm->page_table_lock);
2ec74c3e 2235 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2236
2237 spin_lock(ptl);
2238 isolated = __collapse_huge_page_isolate(vma, address, pte);
2239 spin_unlock(ptl);
ba76149f
AA
2240
2241 if (unlikely(!isolated)) {
453c7192 2242 pte_unmap(pte);
ba76149f
AA
2243 spin_lock(&mm->page_table_lock);
2244 BUG_ON(!pmd_none(*pmd));
2245 set_pmd_at(mm, address, pmd, _pmd);
2246 spin_unlock(&mm->page_table_lock);
2247 anon_vma_unlock(vma->anon_vma);
ce83d217 2248 goto out;
ba76149f
AA
2249 }
2250
2251 /*
2252 * All pages are isolated and locked so anon_vma rmap
2253 * can't run anymore.
2254 */
2255 anon_vma_unlock(vma->anon_vma);
2256
2257 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2258 pte_unmap(pte);
ba76149f
AA
2259 __SetPageUptodate(new_page);
2260 pgtable = pmd_pgtable(_pmd);
ba76149f 2261
b3092b3b 2262 _pmd = mk_huge_pmd(new_page, vma);
ba76149f
AA
2263
2264 /*
2265 * spin_lock() below is not the equivalent of smp_wmb(), so
2266 * this is needed to avoid the copy_huge_page writes to become
2267 * visible after the set_pmd_at() write.
2268 */
2269 smp_wmb();
2270
2271 spin_lock(&mm->page_table_lock);
2272 BUG_ON(!pmd_none(*pmd));
2273 page_add_new_anon_rmap(new_page, vma, address);
2274 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2275 update_mmu_cache_pmd(vma, address, pmd);
e3ebcf64 2276 pgtable_trans_huge_deposit(mm, pgtable);
ba76149f
AA
2277 spin_unlock(&mm->page_table_lock);
2278
2279 *hpage = NULL;
420256ef 2280
ba76149f 2281 khugepaged_pages_collapsed++;
ce83d217 2282out_up_write:
ba76149f 2283 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2284 return;
2285
ce83d217 2286out:
678ff896 2287 mem_cgroup_uncharge_page(new_page);
ce83d217 2288 goto out_up_write;
ba76149f
AA
2289}
2290
2291static int khugepaged_scan_pmd(struct mm_struct *mm,
2292 struct vm_area_struct *vma,
2293 unsigned long address,
2294 struct page **hpage)
2295{
ba76149f
AA
2296 pmd_t *pmd;
2297 pte_t *pte, *_pte;
2298 int ret = 0, referenced = 0, none = 0;
2299 struct page *page;
2300 unsigned long _address;
2301 spinlock_t *ptl;
5c4b4be3 2302 int node = -1;
ba76149f
AA
2303
2304 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2305
6219049a
BL
2306 pmd = mm_find_pmd(mm, address);
2307 if (!pmd)
ba76149f 2308 goto out;
6219049a 2309 if (pmd_trans_huge(*pmd))
ba76149f
AA
2310 goto out;
2311
2312 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2313 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2314 _pte++, _address += PAGE_SIZE) {
2315 pte_t pteval = *_pte;
2316 if (pte_none(pteval)) {
2317 if (++none <= khugepaged_max_ptes_none)
2318 continue;
2319 else
2320 goto out_unmap;
2321 }
2322 if (!pte_present(pteval) || !pte_write(pteval))
2323 goto out_unmap;
2324 page = vm_normal_page(vma, _address, pteval);
2325 if (unlikely(!page))
2326 goto out_unmap;
5c4b4be3
AK
2327 /*
2328 * Chose the node of the first page. This could
2329 * be more sophisticated and look at more pages,
2330 * but isn't for now.
2331 */
2332 if (node == -1)
2333 node = page_to_nid(page);
ba76149f
AA
2334 VM_BUG_ON(PageCompound(page));
2335 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2336 goto out_unmap;
2337 /* cannot use mapcount: can't collapse if there's a gup pin */
2338 if (page_count(page) != 1)
2339 goto out_unmap;
8ee53820
AA
2340 if (pte_young(pteval) || PageReferenced(page) ||
2341 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2342 referenced = 1;
2343 }
2344 if (referenced)
2345 ret = 1;
2346out_unmap:
2347 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2348 if (ret)
2349 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2350 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2351out:
2352 return ret;
2353}
2354
2355static void collect_mm_slot(struct mm_slot *mm_slot)
2356{
2357 struct mm_struct *mm = mm_slot->mm;
2358
b9980cdc 2359 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2360
2361 if (khugepaged_test_exit(mm)) {
2362 /* free mm_slot */
2363 hlist_del(&mm_slot->hash);
2364 list_del(&mm_slot->mm_node);
2365
2366 /*
2367 * Not strictly needed because the mm exited already.
2368 *
2369 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2370 */
2371
2372 /* khugepaged_mm_lock actually not necessary for the below */
2373 free_mm_slot(mm_slot);
2374 mmdrop(mm);
2375 }
2376}
2377
2378static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2379 struct page **hpage)
2f1da642
HS
2380 __releases(&khugepaged_mm_lock)
2381 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2382{
2383 struct mm_slot *mm_slot;
2384 struct mm_struct *mm;
2385 struct vm_area_struct *vma;
2386 int progress = 0;
2387
2388 VM_BUG_ON(!pages);
b9980cdc 2389 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2390
2391 if (khugepaged_scan.mm_slot)
2392 mm_slot = khugepaged_scan.mm_slot;
2393 else {
2394 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2395 struct mm_slot, mm_node);
2396 khugepaged_scan.address = 0;
2397 khugepaged_scan.mm_slot = mm_slot;
2398 }
2399 spin_unlock(&khugepaged_mm_lock);
2400
2401 mm = mm_slot->mm;
2402 down_read(&mm->mmap_sem);
2403 if (unlikely(khugepaged_test_exit(mm)))
2404 vma = NULL;
2405 else
2406 vma = find_vma(mm, khugepaged_scan.address);
2407
2408 progress++;
2409 for (; vma; vma = vma->vm_next) {
2410 unsigned long hstart, hend;
2411
2412 cond_resched();
2413 if (unlikely(khugepaged_test_exit(mm))) {
2414 progress++;
2415 break;
2416 }
fa475e51
BL
2417 if (!hugepage_vma_check(vma)) {
2418skip:
ba76149f
AA
2419 progress++;
2420 continue;
2421 }
ba76149f
AA
2422 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2423 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2424 if (hstart >= hend)
2425 goto skip;
2426 if (khugepaged_scan.address > hend)
2427 goto skip;
ba76149f
AA
2428 if (khugepaged_scan.address < hstart)
2429 khugepaged_scan.address = hstart;
a7d6e4ec 2430 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2431
2432 while (khugepaged_scan.address < hend) {
2433 int ret;
2434 cond_resched();
2435 if (unlikely(khugepaged_test_exit(mm)))
2436 goto breakouterloop;
2437
2438 VM_BUG_ON(khugepaged_scan.address < hstart ||
2439 khugepaged_scan.address + HPAGE_PMD_SIZE >
2440 hend);
2441 ret = khugepaged_scan_pmd(mm, vma,
2442 khugepaged_scan.address,
2443 hpage);
2444 /* move to next address */
2445 khugepaged_scan.address += HPAGE_PMD_SIZE;
2446 progress += HPAGE_PMD_NR;
2447 if (ret)
2448 /* we released mmap_sem so break loop */
2449 goto breakouterloop_mmap_sem;
2450 if (progress >= pages)
2451 goto breakouterloop;
2452 }
2453 }
2454breakouterloop:
2455 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2456breakouterloop_mmap_sem:
2457
2458 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2459 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2460 /*
2461 * Release the current mm_slot if this mm is about to die, or
2462 * if we scanned all vmas of this mm.
2463 */
2464 if (khugepaged_test_exit(mm) || !vma) {
2465 /*
2466 * Make sure that if mm_users is reaching zero while
2467 * khugepaged runs here, khugepaged_exit will find
2468 * mm_slot not pointing to the exiting mm.
2469 */
2470 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2471 khugepaged_scan.mm_slot = list_entry(
2472 mm_slot->mm_node.next,
2473 struct mm_slot, mm_node);
2474 khugepaged_scan.address = 0;
2475 } else {
2476 khugepaged_scan.mm_slot = NULL;
2477 khugepaged_full_scans++;
2478 }
2479
2480 collect_mm_slot(mm_slot);
2481 }
2482
2483 return progress;
2484}
2485
2486static int khugepaged_has_work(void)
2487{
2488 return !list_empty(&khugepaged_scan.mm_head) &&
2489 khugepaged_enabled();
2490}
2491
2492static int khugepaged_wait_event(void)
2493{
2494 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2495 kthread_should_stop();
ba76149f
AA
2496}
2497
d516904b 2498static void khugepaged_do_scan(void)
ba76149f 2499{
d516904b 2500 struct page *hpage = NULL;
ba76149f
AA
2501 unsigned int progress = 0, pass_through_head = 0;
2502 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2503 bool wait = true;
ba76149f
AA
2504
2505 barrier(); /* write khugepaged_pages_to_scan to local stack */
2506
2507 while (progress < pages) {
26234f36 2508 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2509 break;
26234f36 2510
420256ef 2511 cond_resched();
ba76149f 2512
878aee7d
AA
2513 if (unlikely(kthread_should_stop() || freezing(current)))
2514 break;
2515
ba76149f
AA
2516 spin_lock(&khugepaged_mm_lock);
2517 if (!khugepaged_scan.mm_slot)
2518 pass_through_head++;
2519 if (khugepaged_has_work() &&
2520 pass_through_head < 2)
2521 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2522 &hpage);
ba76149f
AA
2523 else
2524 progress = pages;
2525 spin_unlock(&khugepaged_mm_lock);
2526 }
ba76149f 2527
d516904b
XG
2528 if (!IS_ERR_OR_NULL(hpage))
2529 put_page(hpage);
0bbbc0b3
AA
2530}
2531
2017c0bf
XG
2532static void khugepaged_wait_work(void)
2533{
2534 try_to_freeze();
2535
2536 if (khugepaged_has_work()) {
2537 if (!khugepaged_scan_sleep_millisecs)
2538 return;
2539
2540 wait_event_freezable_timeout(khugepaged_wait,
2541 kthread_should_stop(),
2542 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2543 return;
2544 }
2545
2546 if (khugepaged_enabled())
2547 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2548}
2549
ba76149f
AA
2550static int khugepaged(void *none)
2551{
2552 struct mm_slot *mm_slot;
2553
878aee7d 2554 set_freezable();
ba76149f
AA
2555 set_user_nice(current, 19);
2556
b7231789
XG
2557 while (!kthread_should_stop()) {
2558 khugepaged_do_scan();
2559 khugepaged_wait_work();
2560 }
ba76149f
AA
2561
2562 spin_lock(&khugepaged_mm_lock);
2563 mm_slot = khugepaged_scan.mm_slot;
2564 khugepaged_scan.mm_slot = NULL;
2565 if (mm_slot)
2566 collect_mm_slot(mm_slot);
2567 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2568 return 0;
2569}
2570
c5a647d0
KS
2571static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2572 unsigned long haddr, pmd_t *pmd)
2573{
2574 struct mm_struct *mm = vma->vm_mm;
2575 pgtable_t pgtable;
2576 pmd_t _pmd;
2577 int i;
2578
2579 pmdp_clear_flush(vma, haddr, pmd);
2580 /* leave pmd empty until pte is filled */
2581
2582 pgtable = pgtable_trans_huge_withdraw(mm);
2583 pmd_populate(mm, &_pmd, pgtable);
2584
2585 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2586 pte_t *pte, entry;
2587 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2588 entry = pte_mkspecial(entry);
2589 pte = pte_offset_map(&_pmd, haddr);
2590 VM_BUG_ON(!pte_none(*pte));
2591 set_pte_at(mm, haddr, pte, entry);
2592 pte_unmap(pte);
2593 }
2594 smp_wmb(); /* make pte visible before pmd */
2595 pmd_populate(mm, pmd, pgtable);
97ae1749 2596 put_huge_zero_page();
c5a647d0
KS
2597}
2598
e180377f
KS
2599void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2600 pmd_t *pmd)
71e3aac0
AA
2601{
2602 struct page *page;
e180377f 2603 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2604 unsigned long haddr = address & HPAGE_PMD_MASK;
2605 unsigned long mmun_start; /* For mmu_notifiers */
2606 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2607
2608 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2609
c5a647d0
KS
2610 mmun_start = haddr;
2611 mmun_end = haddr + HPAGE_PMD_SIZE;
2612 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
2613 spin_lock(&mm->page_table_lock);
2614 if (unlikely(!pmd_trans_huge(*pmd))) {
2615 spin_unlock(&mm->page_table_lock);
c5a647d0
KS
2616 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2617 return;
2618 }
2619 if (is_huge_zero_pmd(*pmd)) {
2620 __split_huge_zero_page_pmd(vma, haddr, pmd);
2621 spin_unlock(&mm->page_table_lock);
2622 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2623 return;
2624 }
2625 page = pmd_page(*pmd);
2626 VM_BUG_ON(!page_count(page));
2627 get_page(page);
2628 spin_unlock(&mm->page_table_lock);
c5a647d0 2629 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2630
2631 split_huge_page(page);
2632
2633 put_page(page);
2634 BUG_ON(pmd_trans_huge(*pmd));
2635}
94fcc585 2636
e180377f
KS
2637void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2638 pmd_t *pmd)
2639{
2640 struct vm_area_struct *vma;
2641
2642 vma = find_vma(mm, address);
2643 BUG_ON(vma == NULL);
2644 split_huge_page_pmd(vma, address, pmd);
2645}
2646
94fcc585
AA
2647static void split_huge_page_address(struct mm_struct *mm,
2648 unsigned long address)
2649{
94fcc585
AA
2650 pmd_t *pmd;
2651
2652 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2653
6219049a
BL
2654 pmd = mm_find_pmd(mm, address);
2655 if (!pmd)
94fcc585
AA
2656 return;
2657 /*
2658 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2659 * materialize from under us.
2660 */
e180377f 2661 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2662}
2663
2664void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2665 unsigned long start,
2666 unsigned long end,
2667 long adjust_next)
2668{
2669 /*
2670 * If the new start address isn't hpage aligned and it could
2671 * previously contain an hugepage: check if we need to split
2672 * an huge pmd.
2673 */
2674 if (start & ~HPAGE_PMD_MASK &&
2675 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2676 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2677 split_huge_page_address(vma->vm_mm, start);
2678
2679 /*
2680 * If the new end address isn't hpage aligned and it could
2681 * previously contain an hugepage: check if we need to split
2682 * an huge pmd.
2683 */
2684 if (end & ~HPAGE_PMD_MASK &&
2685 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2686 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2687 split_huge_page_address(vma->vm_mm, end);
2688
2689 /*
2690 * If we're also updating the vma->vm_next->vm_start, if the new
2691 * vm_next->vm_start isn't page aligned and it could previously
2692 * contain an hugepage: check if we need to split an huge pmd.
2693 */
2694 if (adjust_next > 0) {
2695 struct vm_area_struct *next = vma->vm_next;
2696 unsigned long nstart = next->vm_start;
2697 nstart += adjust_next << PAGE_SHIFT;
2698 if (nstart & ~HPAGE_PMD_MASK &&
2699 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2700 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2701 split_huge_page_address(next->vm_mm, nstart);
2702 }
2703}