]> git.proxmox.com Git - mirror_ubuntu-kernels.git/blame - mm/huge_memory.c
mm: thp: check pmd migration entry in common path
[mirror_ubuntu-kernels.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
f7ccbae4 12#include <linux/sched/coredump.h>
6a3827d7 13#include <linux/sched/numa_balancing.h>
71e3aac0
AA
14#include <linux/highmem.h>
15#include <linux/hugetlb.h>
16#include <linux/mmu_notifier.h>
17#include <linux/rmap.h>
18#include <linux/swap.h>
97ae1749 19#include <linux/shrinker.h>
ba76149f 20#include <linux/mm_inline.h>
e9b61f19 21#include <linux/swapops.h>
4897c765 22#include <linux/dax.h>
ba76149f 23#include <linux/khugepaged.h>
878aee7d 24#include <linux/freezer.h>
f25748e3 25#include <linux/pfn_t.h>
a664b2d8 26#include <linux/mman.h>
3565fce3 27#include <linux/memremap.h>
325adeb5 28#include <linux/pagemap.h>
49071d43 29#include <linux/debugfs.h>
4daae3b4 30#include <linux/migrate.h>
43b5fbbd 31#include <linux/hashtable.h>
6b251fc9 32#include <linux/userfaultfd_k.h>
33c3fc71 33#include <linux/page_idle.h>
baa355fd 34#include <linux/shmem_fs.h>
6b31d595 35#include <linux/oom.h>
97ae1749 36
71e3aac0
AA
37#include <asm/tlb.h>
38#include <asm/pgalloc.h>
39#include "internal.h"
40
ba76149f 41/*
8bfa3f9a
JW
42 * By default transparent hugepage support is disabled in order that avoid
43 * to risk increase the memory footprint of applications without a guaranteed
44 * benefit. When transparent hugepage support is enabled, is for all mappings,
45 * and khugepaged scans all mappings.
46 * Defrag is invoked by khugepaged hugepage allocations and by page faults
47 * for all hugepage allocations.
ba76149f 48 */
71e3aac0 49unsigned long transparent_hugepage_flags __read_mostly =
13ece886 50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 51 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
52#endif
53#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
54 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
55#endif
444eb2a4 56 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
57 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
58 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 59
9a982250 60static struct shrinker deferred_split_shrinker;
f000565a 61
97ae1749 62static atomic_t huge_zero_refcount;
56873f43 63struct page *huge_zero_page __read_mostly;
4a6c1297 64
6fcb52a5 65static struct page *get_huge_zero_page(void)
97ae1749
KS
66{
67 struct page *zero_page;
68retry:
69 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 70 return READ_ONCE(huge_zero_page);
97ae1749
KS
71
72 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 73 HPAGE_PMD_ORDER);
d8a8e1f0
KS
74 if (!zero_page) {
75 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 76 return NULL;
d8a8e1f0
KS
77 }
78 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 79 preempt_disable();
5918d10a 80 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 81 preempt_enable();
5ddacbe9 82 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
83 goto retry;
84 }
85
86 /* We take additional reference here. It will be put back by shrinker */
87 atomic_set(&huge_zero_refcount, 2);
88 preempt_enable();
4db0c3c2 89 return READ_ONCE(huge_zero_page);
4a6c1297
KS
90}
91
6fcb52a5 92static void put_huge_zero_page(void)
4a6c1297 93{
97ae1749
KS
94 /*
95 * Counter should never go to zero here. Only shrinker can put
96 * last reference.
97 */
98 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
99}
100
6fcb52a5
AL
101struct page *mm_get_huge_zero_page(struct mm_struct *mm)
102{
103 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
104 return READ_ONCE(huge_zero_page);
105
106 if (!get_huge_zero_page())
107 return NULL;
108
109 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
110 put_huge_zero_page();
111
112 return READ_ONCE(huge_zero_page);
113}
114
115void mm_put_huge_zero_page(struct mm_struct *mm)
116{
117 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
118 put_huge_zero_page();
119}
120
48896466
GC
121static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
122 struct shrink_control *sc)
4a6c1297 123{
48896466
GC
124 /* we can free zero page only if last reference remains */
125 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
126}
97ae1749 127
48896466
GC
128static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
129 struct shrink_control *sc)
130{
97ae1749 131 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
132 struct page *zero_page = xchg(&huge_zero_page, NULL);
133 BUG_ON(zero_page == NULL);
5ddacbe9 134 __free_pages(zero_page, compound_order(zero_page));
48896466 135 return HPAGE_PMD_NR;
97ae1749
KS
136 }
137
138 return 0;
4a6c1297
KS
139}
140
97ae1749 141static struct shrinker huge_zero_page_shrinker = {
48896466
GC
142 .count_objects = shrink_huge_zero_page_count,
143 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
144 .seeks = DEFAULT_SEEKS,
145};
146
71e3aac0 147#ifdef CONFIG_SYSFS
71e3aac0
AA
148static ssize_t enabled_show(struct kobject *kobj,
149 struct kobj_attribute *attr, char *buf)
150{
444eb2a4
MG
151 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
152 return sprintf(buf, "[always] madvise never\n");
153 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
154 return sprintf(buf, "always [madvise] never\n");
155 else
156 return sprintf(buf, "always madvise [never]\n");
71e3aac0 157}
444eb2a4 158
71e3aac0
AA
159static ssize_t enabled_store(struct kobject *kobj,
160 struct kobj_attribute *attr,
161 const char *buf, size_t count)
162{
21440d7e 163 ssize_t ret = count;
ba76149f 164
21440d7e
DR
165 if (!memcmp("always", buf,
166 min(sizeof("always")-1, count))) {
167 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
168 set_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
169 } else if (!memcmp("madvise", buf,
170 min(sizeof("madvise")-1, count))) {
171 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
172 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
173 } else if (!memcmp("never", buf,
174 min(sizeof("never")-1, count))) {
175 clear_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags);
176 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags);
177 } else
178 ret = -EINVAL;
ba76149f
AA
179
180 if (ret > 0) {
b46e756f 181 int err = start_stop_khugepaged();
ba76149f
AA
182 if (err)
183 ret = err;
184 }
ba76149f 185 return ret;
71e3aac0
AA
186}
187static struct kobj_attribute enabled_attr =
188 __ATTR(enabled, 0644, enabled_show, enabled_store);
189
b46e756f 190ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
191 struct kobj_attribute *attr, char *buf,
192 enum transparent_hugepage_flag flag)
193{
e27e6151
BH
194 return sprintf(buf, "%d\n",
195 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 196}
e27e6151 197
b46e756f 198ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
199 struct kobj_attribute *attr,
200 const char *buf, size_t count,
201 enum transparent_hugepage_flag flag)
202{
e27e6151
BH
203 unsigned long value;
204 int ret;
205
206 ret = kstrtoul(buf, 10, &value);
207 if (ret < 0)
208 return ret;
209 if (value > 1)
210 return -EINVAL;
211
212 if (value)
71e3aac0 213 set_bit(flag, &transparent_hugepage_flags);
e27e6151 214 else
71e3aac0 215 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
216
217 return count;
218}
219
71e3aac0
AA
220static ssize_t defrag_show(struct kobject *kobj,
221 struct kobj_attribute *attr, char *buf)
222{
444eb2a4 223 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
21440d7e 224 return sprintf(buf, "[always] defer defer+madvise madvise never\n");
444eb2a4 225 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
21440d7e
DR
226 return sprintf(buf, "always [defer] defer+madvise madvise never\n");
227 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
228 return sprintf(buf, "always defer [defer+madvise] madvise never\n");
229 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
230 return sprintf(buf, "always defer defer+madvise [madvise] never\n");
231 return sprintf(buf, "always defer defer+madvise madvise [never]\n");
71e3aac0 232}
21440d7e 233
71e3aac0
AA
234static ssize_t defrag_store(struct kobject *kobj,
235 struct kobj_attribute *attr,
236 const char *buf, size_t count)
237{
21440d7e
DR
238 if (!memcmp("always", buf,
239 min(sizeof("always")-1, count))) {
240 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
241 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
242 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
243 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
21440d7e
DR
244 } else if (!memcmp("defer+madvise", buf,
245 min(sizeof("defer+madvise")-1, count))) {
246 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
247 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
248 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
249 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
4fad7fb6
DR
250 } else if (!memcmp("defer", buf,
251 min(sizeof("defer")-1, count))) {
252 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
253 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
254 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
255 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
21440d7e
DR
256 } else if (!memcmp("madvise", buf,
257 min(sizeof("madvise")-1, count))) {
258 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
259 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
260 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
261 set_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
262 } else if (!memcmp("never", buf,
263 min(sizeof("never")-1, count))) {
264 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags);
265 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags);
266 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags);
267 clear_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
71e3aac0
AA
272}
273static struct kobj_attribute defrag_attr =
274 __ATTR(defrag, 0644, defrag_show, defrag_store);
275
79da5407
KS
276static ssize_t use_zero_page_show(struct kobject *kobj,
277 struct kobj_attribute *attr, char *buf)
278{
b46e756f 279 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
280 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
281}
282static ssize_t use_zero_page_store(struct kobject *kobj,
283 struct kobj_attribute *attr, const char *buf, size_t count)
284{
b46e756f 285 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
286 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
287}
288static struct kobj_attribute use_zero_page_attr =
289 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
290
291static ssize_t hpage_pmd_size_show(struct kobject *kobj,
292 struct kobj_attribute *attr, char *buf)
293{
294 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
295}
296static struct kobj_attribute hpage_pmd_size_attr =
297 __ATTR_RO(hpage_pmd_size);
298
71e3aac0
AA
299#ifdef CONFIG_DEBUG_VM
300static ssize_t debug_cow_show(struct kobject *kobj,
301 struct kobj_attribute *attr, char *buf)
302{
b46e756f 303 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
304 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
305}
306static ssize_t debug_cow_store(struct kobject *kobj,
307 struct kobj_attribute *attr,
308 const char *buf, size_t count)
309{
b46e756f 310 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
311 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
312}
313static struct kobj_attribute debug_cow_attr =
314 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
315#endif /* CONFIG_DEBUG_VM */
316
317static struct attribute *hugepage_attr[] = {
318 &enabled_attr.attr,
319 &defrag_attr.attr,
79da5407 320 &use_zero_page_attr.attr,
49920d28 321 &hpage_pmd_size_attr.attr,
e496cf3d 322#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
323 &shmem_enabled_attr.attr,
324#endif
71e3aac0
AA
325#ifdef CONFIG_DEBUG_VM
326 &debug_cow_attr.attr,
327#endif
328 NULL,
329};
330
8aa95a21 331static const struct attribute_group hugepage_attr_group = {
71e3aac0 332 .attrs = hugepage_attr,
ba76149f
AA
333};
334
569e5590 335static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 336{
71e3aac0
AA
337 int err;
338
569e5590
SL
339 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
340 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 341 pr_err("failed to create transparent hugepage kobject\n");
569e5590 342 return -ENOMEM;
ba76149f
AA
343 }
344
569e5590 345 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 346 if (err) {
ae3a8c1c 347 pr_err("failed to register transparent hugepage group\n");
569e5590 348 goto delete_obj;
ba76149f
AA
349 }
350
569e5590 351 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 352 if (err) {
ae3a8c1c 353 pr_err("failed to register transparent hugepage group\n");
569e5590 354 goto remove_hp_group;
ba76149f 355 }
569e5590
SL
356
357 return 0;
358
359remove_hp_group:
360 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
361delete_obj:
362 kobject_put(*hugepage_kobj);
363 return err;
364}
365
366static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
369 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
370 kobject_put(hugepage_kobj);
371}
372#else
373static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
374{
375 return 0;
376}
377
378static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
379{
380}
381#endif /* CONFIG_SYSFS */
382
383static int __init hugepage_init(void)
384{
385 int err;
386 struct kobject *hugepage_kobj;
387
388 if (!has_transparent_hugepage()) {
389 transparent_hugepage_flags = 0;
390 return -EINVAL;
391 }
392
ff20c2e0
KS
393 /*
394 * hugepages can't be allocated by the buddy allocator
395 */
396 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
397 /*
398 * we use page->mapping and page->index in second tail page
399 * as list_head: assuming THP order >= 2
400 */
401 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
402
569e5590
SL
403 err = hugepage_init_sysfs(&hugepage_kobj);
404 if (err)
65ebb64f 405 goto err_sysfs;
ba76149f 406
b46e756f 407 err = khugepaged_init();
ba76149f 408 if (err)
65ebb64f 409 goto err_slab;
ba76149f 410
65ebb64f
KS
411 err = register_shrinker(&huge_zero_page_shrinker);
412 if (err)
413 goto err_hzp_shrinker;
9a982250
KS
414 err = register_shrinker(&deferred_split_shrinker);
415 if (err)
416 goto err_split_shrinker;
97ae1749 417
97562cd2
RR
418 /*
419 * By default disable transparent hugepages on smaller systems,
420 * where the extra memory used could hurt more than TLB overhead
421 * is likely to save. The admin can still enable it through /sys.
422 */
79553da2 423 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 424 transparent_hugepage_flags = 0;
79553da2
KS
425 return 0;
426 }
97562cd2 427
79553da2 428 err = start_stop_khugepaged();
65ebb64f
KS
429 if (err)
430 goto err_khugepaged;
ba76149f 431
569e5590 432 return 0;
65ebb64f 433err_khugepaged:
9a982250
KS
434 unregister_shrinker(&deferred_split_shrinker);
435err_split_shrinker:
65ebb64f
KS
436 unregister_shrinker(&huge_zero_page_shrinker);
437err_hzp_shrinker:
b46e756f 438 khugepaged_destroy();
65ebb64f 439err_slab:
569e5590 440 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 441err_sysfs:
ba76149f 442 return err;
71e3aac0 443}
a64fb3cd 444subsys_initcall(hugepage_init);
71e3aac0
AA
445
446static int __init setup_transparent_hugepage(char *str)
447{
448 int ret = 0;
449 if (!str)
450 goto out;
451 if (!strcmp(str, "always")) {
452 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 } else if (!strcmp(str, "madvise")) {
458 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
459 &transparent_hugepage_flags);
460 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
461 &transparent_hugepage_flags);
462 ret = 1;
463 } else if (!strcmp(str, "never")) {
464 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
465 &transparent_hugepage_flags);
466 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
467 &transparent_hugepage_flags);
468 ret = 1;
469 }
470out:
471 if (!ret)
ae3a8c1c 472 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
473 return ret;
474}
475__setup("transparent_hugepage=", setup_transparent_hugepage);
476
b32967ff 477pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
478{
479 if (likely(vma->vm_flags & VM_WRITE))
480 pmd = pmd_mkwrite(pmd);
481 return pmd;
482}
483
9a982250
KS
484static inline struct list_head *page_deferred_list(struct page *page)
485{
486 /*
487 * ->lru in the tail pages is occupied by compound_head.
488 * Let's use ->mapping + ->index in the second tail page as list_head.
489 */
490 return (struct list_head *)&page[2].mapping;
491}
492
493void prep_transhuge_page(struct page *page)
494{
495 /*
496 * we use page->mapping and page->indexlru in second tail page
497 * as list_head: assuming THP order >= 2
498 */
9a982250
KS
499
500 INIT_LIST_HEAD(page_deferred_list(page));
501 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
502}
503
74d2fad1
TK
504unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
505 loff_t off, unsigned long flags, unsigned long size)
506{
507 unsigned long addr;
508 loff_t off_end = off + len;
509 loff_t off_align = round_up(off, size);
510 unsigned long len_pad;
511
512 if (off_end <= off_align || (off_end - off_align) < size)
513 return 0;
514
515 len_pad = len + size;
516 if (len_pad < len || (off + len_pad) < off)
517 return 0;
518
519 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
520 off >> PAGE_SHIFT, flags);
521 if (IS_ERR_VALUE(addr))
522 return 0;
523
524 addr += (off - addr) & (size - 1);
525 return addr;
526}
527
528unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
529 unsigned long len, unsigned long pgoff, unsigned long flags)
530{
531 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
532
533 if (addr)
534 goto out;
535 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
536 goto out;
537
538 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
539 if (addr)
540 return addr;
541
542 out:
543 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
544}
545EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
546
82b0f8c3 547static int __do_huge_pmd_anonymous_page(struct vm_fault *vmf, struct page *page,
bae473a4 548 gfp_t gfp)
71e3aac0 549{
82b0f8c3 550 struct vm_area_struct *vma = vmf->vma;
00501b53 551 struct mem_cgroup *memcg;
71e3aac0 552 pgtable_t pgtable;
82b0f8c3 553 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
6b31d595 554 int ret = 0;
71e3aac0 555
309381fe 556 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 557
bae473a4 558 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
559 put_page(page);
560 count_vm_event(THP_FAULT_FALLBACK);
561 return VM_FAULT_FALLBACK;
562 }
00501b53 563
bae473a4 564 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 565 if (unlikely(!pgtable)) {
6b31d595
MH
566 ret = VM_FAULT_OOM;
567 goto release;
00501b53 568 }
71e3aac0 569
c79b57e4 570 clear_huge_page(page, vmf->address, HPAGE_PMD_NR);
52f37629
MK
571 /*
572 * The memory barrier inside __SetPageUptodate makes sure that
573 * clear_huge_page writes become visible before the set_pmd_at()
574 * write.
575 */
71e3aac0
AA
576 __SetPageUptodate(page);
577
82b0f8c3
JK
578 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
579 if (unlikely(!pmd_none(*vmf->pmd))) {
6b31d595 580 goto unlock_release;
71e3aac0
AA
581 } else {
582 pmd_t entry;
6b251fc9 583
6b31d595
MH
584 ret = check_stable_address_space(vma->vm_mm);
585 if (ret)
586 goto unlock_release;
587
6b251fc9
AA
588 /* Deliver the page fault to userland */
589 if (userfaultfd_missing(vma)) {
590 int ret;
591
82b0f8c3 592 spin_unlock(vmf->ptl);
f627c2f5 593 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 594 put_page(page);
bae473a4 595 pte_free(vma->vm_mm, pgtable);
82b0f8c3 596 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
597 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
598 return ret;
599 }
600
3122359a
KS
601 entry = mk_huge_pmd(page, vma->vm_page_prot);
602 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 603 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 604 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 605 lru_cache_add_active_or_unevictable(page, vma);
82b0f8c3
JK
606 pgtable_trans_huge_deposit(vma->vm_mm, vmf->pmd, pgtable);
607 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
bae473a4
KS
608 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
609 atomic_long_inc(&vma->vm_mm->nr_ptes);
82b0f8c3 610 spin_unlock(vmf->ptl);
6b251fc9 611 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
612 }
613
aa2e878e 614 return 0;
6b31d595
MH
615unlock_release:
616 spin_unlock(vmf->ptl);
617release:
618 if (pgtable)
619 pte_free(vma->vm_mm, pgtable);
620 mem_cgroup_cancel_charge(page, memcg, true);
621 put_page(page);
622 return ret;
623
71e3aac0
AA
624}
625
444eb2a4 626/*
21440d7e
DR
627 * always: directly stall for all thp allocations
628 * defer: wake kswapd and fail if not immediately available
629 * defer+madvise: wake kswapd and directly stall for MADV_HUGEPAGE, otherwise
630 * fail if not immediately available
631 * madvise: directly stall for MADV_HUGEPAGE, otherwise fail if not immediately
632 * available
633 * never: never stall for any thp allocation
444eb2a4
MG
634 */
635static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
636{
21440d7e 637 const bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
25160354 638
21440d7e 639 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
25160354 640 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
21440d7e
DR
641 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
642 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
643 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_OR_MADV_FLAG, &transparent_hugepage_flags))
644 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
645 __GFP_KSWAPD_RECLAIM);
646 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
647 return GFP_TRANSHUGE_LIGHT | (vma_madvised ? __GFP_DIRECT_RECLAIM :
648 0);
25160354 649 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
650}
651
c4088ebd 652/* Caller must hold page table lock. */
d295e341 653static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 654 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 655 struct page *zero_page)
fc9fe822
KS
656{
657 pmd_t entry;
7c414164
AM
658 if (!pmd_none(*pmd))
659 return false;
5918d10a 660 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 661 entry = pmd_mkhuge(entry);
12c9d70b
MW
662 if (pgtable)
663 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 664 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 665 atomic_long_inc(&mm->nr_ptes);
7c414164 666 return true;
fc9fe822
KS
667}
668
82b0f8c3 669int do_huge_pmd_anonymous_page(struct vm_fault *vmf)
71e3aac0 670{
82b0f8c3 671 struct vm_area_struct *vma = vmf->vma;
077fcf11 672 gfp_t gfp;
71e3aac0 673 struct page *page;
82b0f8c3 674 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
71e3aac0 675
128ec037 676 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 677 return VM_FAULT_FALLBACK;
128ec037
KS
678 if (unlikely(anon_vma_prepare(vma)))
679 return VM_FAULT_OOM;
6d50e60c 680 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 681 return VM_FAULT_OOM;
82b0f8c3 682 if (!(vmf->flags & FAULT_FLAG_WRITE) &&
bae473a4 683 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
684 transparent_hugepage_use_zero_page()) {
685 pgtable_t pgtable;
686 struct page *zero_page;
687 bool set;
6b251fc9 688 int ret;
bae473a4 689 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 690 if (unlikely(!pgtable))
ba76149f 691 return VM_FAULT_OOM;
6fcb52a5 692 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 693 if (unlikely(!zero_page)) {
bae473a4 694 pte_free(vma->vm_mm, pgtable);
81ab4201 695 count_vm_event(THP_FAULT_FALLBACK);
c0292554 696 return VM_FAULT_FALLBACK;
b9bbfbe3 697 }
82b0f8c3 698 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
6b251fc9
AA
699 ret = 0;
700 set = false;
82b0f8c3 701 if (pmd_none(*vmf->pmd)) {
6b31d595
MH
702 ret = check_stable_address_space(vma->vm_mm);
703 if (ret) {
704 spin_unlock(vmf->ptl);
705 } else if (userfaultfd_missing(vma)) {
82b0f8c3
JK
706 spin_unlock(vmf->ptl);
707 ret = handle_userfault(vmf, VM_UFFD_MISSING);
6b251fc9
AA
708 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
709 } else {
bae473a4 710 set_huge_zero_page(pgtable, vma->vm_mm, vma,
82b0f8c3
JK
711 haddr, vmf->pmd, zero_page);
712 spin_unlock(vmf->ptl);
6b251fc9
AA
713 set = true;
714 }
715 } else
82b0f8c3 716 spin_unlock(vmf->ptl);
6fcb52a5 717 if (!set)
bae473a4 718 pte_free(vma->vm_mm, pgtable);
6b251fc9 719 return ret;
71e3aac0 720 }
444eb2a4 721 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 722 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
723 if (unlikely(!page)) {
724 count_vm_event(THP_FAULT_FALLBACK);
c0292554 725 return VM_FAULT_FALLBACK;
128ec037 726 }
9a982250 727 prep_transhuge_page(page);
82b0f8c3 728 return __do_huge_pmd_anonymous_page(vmf, page, gfp);
71e3aac0
AA
729}
730
ae18d6dc 731static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
3b6521f5
OH
732 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write,
733 pgtable_t pgtable)
5cad465d
MW
734{
735 struct mm_struct *mm = vma->vm_mm;
736 pmd_t entry;
737 spinlock_t *ptl;
738
739 ptl = pmd_lock(mm, pmd);
f25748e3
DW
740 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
741 if (pfn_t_devmap(pfn))
742 entry = pmd_mkdevmap(entry);
01871e59
RZ
743 if (write) {
744 entry = pmd_mkyoung(pmd_mkdirty(entry));
745 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 746 }
3b6521f5
OH
747
748 if (pgtable) {
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 atomic_long_inc(&mm->nr_ptes);
751 }
752
01871e59
RZ
753 set_pmd_at(mm, addr, pmd, entry);
754 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 755 spin_unlock(ptl);
5cad465d
MW
756}
757
758int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 759 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
760{
761 pgprot_t pgprot = vma->vm_page_prot;
3b6521f5 762 pgtable_t pgtable = NULL;
5cad465d
MW
763 /*
764 * If we had pmd_special, we could avoid all these restrictions,
765 * but we need to be consistent with PTEs and architectures that
766 * can't support a 'special' bit.
767 */
768 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
769 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
770 (VM_PFNMAP|VM_MIXEDMAP));
771 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 772 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
773
774 if (addr < vma->vm_start || addr >= vma->vm_end)
775 return VM_FAULT_SIGBUS;
308a047c 776
3b6521f5
OH
777 if (arch_needs_pgtable_deposit()) {
778 pgtable = pte_alloc_one(vma->vm_mm, addr);
779 if (!pgtable)
780 return VM_FAULT_OOM;
781 }
782
308a047c
BP
783 track_pfn_insert(vma, &pgprot, pfn);
784
3b6521f5 785 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write, pgtable);
ae18d6dc 786 return VM_FAULT_NOPAGE;
5cad465d 787}
dee41079 788EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 789
a00cc7d9
MW
790#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
791static pud_t maybe_pud_mkwrite(pud_t pud, struct vm_area_struct *vma)
792{
793 if (likely(vma->vm_flags & VM_WRITE))
794 pud = pud_mkwrite(pud);
795 return pud;
796}
797
798static void insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
799 pud_t *pud, pfn_t pfn, pgprot_t prot, bool write)
800{
801 struct mm_struct *mm = vma->vm_mm;
802 pud_t entry;
803 spinlock_t *ptl;
804
805 ptl = pud_lock(mm, pud);
806 entry = pud_mkhuge(pfn_t_pud(pfn, prot));
807 if (pfn_t_devmap(pfn))
808 entry = pud_mkdevmap(entry);
809 if (write) {
810 entry = pud_mkyoung(pud_mkdirty(entry));
811 entry = maybe_pud_mkwrite(entry, vma);
812 }
813 set_pud_at(mm, addr, pud, entry);
814 update_mmu_cache_pud(vma, addr, pud);
815 spin_unlock(ptl);
816}
817
818int vmf_insert_pfn_pud(struct vm_area_struct *vma, unsigned long addr,
819 pud_t *pud, pfn_t pfn, bool write)
820{
821 pgprot_t pgprot = vma->vm_page_prot;
822 /*
823 * If we had pud_special, we could avoid all these restrictions,
824 * but we need to be consistent with PTEs and architectures that
825 * can't support a 'special' bit.
826 */
827 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
828 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
829 (VM_PFNMAP|VM_MIXEDMAP));
830 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
831 BUG_ON(!pfn_t_devmap(pfn));
832
833 if (addr < vma->vm_start || addr >= vma->vm_end)
834 return VM_FAULT_SIGBUS;
835
836 track_pfn_insert(vma, &pgprot, pfn);
837
838 insert_pfn_pud(vma, addr, pud, pfn, pgprot, write);
839 return VM_FAULT_NOPAGE;
840}
841EXPORT_SYMBOL_GPL(vmf_insert_pfn_pud);
842#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
843
3565fce3
DW
844static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
845 pmd_t *pmd)
846{
847 pmd_t _pmd;
848
849 /*
850 * We should set the dirty bit only for FOLL_WRITE but for now
851 * the dirty bit in the pmd is meaningless. And if the dirty
852 * bit will become meaningful and we'll only set it with
853 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
854 * set the young bit, instead of the current set_pmd_at.
855 */
856 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
857 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
858 pmd, _pmd, 1))
859 update_mmu_cache_pmd(vma, addr, pmd);
860}
861
862struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
863 pmd_t *pmd, int flags)
864{
865 unsigned long pfn = pmd_pfn(*pmd);
866 struct mm_struct *mm = vma->vm_mm;
867 struct dev_pagemap *pgmap;
868 struct page *page;
869
870 assert_spin_locked(pmd_lockptr(mm, pmd));
871
8310d48b
KF
872 /*
873 * When we COW a devmap PMD entry, we split it into PTEs, so we should
874 * not be in this function with `flags & FOLL_COW` set.
875 */
876 WARN_ONCE(flags & FOLL_COW, "mm: In follow_devmap_pmd with FOLL_COW set");
877
3565fce3
DW
878 if (flags & FOLL_WRITE && !pmd_write(*pmd))
879 return NULL;
880
881 if (pmd_present(*pmd) && pmd_devmap(*pmd))
882 /* pass */;
883 else
884 return NULL;
885
886 if (flags & FOLL_TOUCH)
887 touch_pmd(vma, addr, pmd);
888
889 /*
890 * device mapped pages can only be returned if the
891 * caller will manage the page reference count.
892 */
893 if (!(flags & FOLL_GET))
894 return ERR_PTR(-EEXIST);
895
896 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
897 pgmap = get_dev_pagemap(pfn, NULL);
898 if (!pgmap)
899 return ERR_PTR(-EFAULT);
900 page = pfn_to_page(pfn);
901 get_page(page);
902 put_dev_pagemap(pgmap);
903
904 return page;
905}
906
71e3aac0
AA
907int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
908 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
909 struct vm_area_struct *vma)
910{
c4088ebd 911 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
912 struct page *src_page;
913 pmd_t pmd;
12c9d70b 914 pgtable_t pgtable = NULL;
628d47ce 915 int ret = -ENOMEM;
71e3aac0 916
628d47ce
KS
917 /* Skip if can be re-fill on fault */
918 if (!vma_is_anonymous(vma))
919 return 0;
920
921 pgtable = pte_alloc_one(dst_mm, addr);
922 if (unlikely(!pgtable))
923 goto out;
71e3aac0 924
c4088ebd
KS
925 dst_ptl = pmd_lock(dst_mm, dst_pmd);
926 src_ptl = pmd_lockptr(src_mm, src_pmd);
927 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
928
929 ret = -EAGAIN;
930 pmd = *src_pmd;
84c3fc4e
ZY
931
932#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
933 if (unlikely(is_swap_pmd(pmd))) {
934 swp_entry_t entry = pmd_to_swp_entry(pmd);
935
936 VM_BUG_ON(!is_pmd_migration_entry(pmd));
937 if (is_write_migration_entry(entry)) {
938 make_migration_entry_read(&entry);
939 pmd = swp_entry_to_pmd(entry);
940 set_pmd_at(src_mm, addr, src_pmd, pmd);
941 }
942 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
943 ret = 0;
944 goto out_unlock;
945 }
946#endif
947
628d47ce 948 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
949 pte_free(dst_mm, pgtable);
950 goto out_unlock;
951 }
fc9fe822 952 /*
c4088ebd 953 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
954 * under splitting since we don't split the page itself, only pmd to
955 * a page table.
956 */
957 if (is_huge_zero_pmd(pmd)) {
5918d10a 958 struct page *zero_page;
97ae1749
KS
959 /*
960 * get_huge_zero_page() will never allocate a new page here,
961 * since we already have a zero page to copy. It just takes a
962 * reference.
963 */
6fcb52a5 964 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 965 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 966 zero_page);
fc9fe822
KS
967 ret = 0;
968 goto out_unlock;
969 }
de466bd6 970
628d47ce
KS
971 src_page = pmd_page(pmd);
972 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
973 get_page(src_page);
974 page_dup_rmap(src_page, true);
975 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
976 atomic_long_inc(&dst_mm->nr_ptes);
977 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
978
979 pmdp_set_wrprotect(src_mm, addr, src_pmd);
980 pmd = pmd_mkold(pmd_wrprotect(pmd));
981 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
982
983 ret = 0;
984out_unlock:
c4088ebd
KS
985 spin_unlock(src_ptl);
986 spin_unlock(dst_ptl);
71e3aac0
AA
987out:
988 return ret;
989}
990
a00cc7d9
MW
991#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
992static void touch_pud(struct vm_area_struct *vma, unsigned long addr,
993 pud_t *pud)
994{
995 pud_t _pud;
996
997 /*
998 * We should set the dirty bit only for FOLL_WRITE but for now
999 * the dirty bit in the pud is meaningless. And if the dirty
1000 * bit will become meaningful and we'll only set it with
1001 * FOLL_WRITE, an atomic set_bit will be required on the pud to
1002 * set the young bit, instead of the current set_pud_at.
1003 */
1004 _pud = pud_mkyoung(pud_mkdirty(*pud));
1005 if (pudp_set_access_flags(vma, addr & HPAGE_PUD_MASK,
1006 pud, _pud, 1))
1007 update_mmu_cache_pud(vma, addr, pud);
1008}
1009
1010struct page *follow_devmap_pud(struct vm_area_struct *vma, unsigned long addr,
1011 pud_t *pud, int flags)
1012{
1013 unsigned long pfn = pud_pfn(*pud);
1014 struct mm_struct *mm = vma->vm_mm;
1015 struct dev_pagemap *pgmap;
1016 struct page *page;
1017
1018 assert_spin_locked(pud_lockptr(mm, pud));
1019
1020 if (flags & FOLL_WRITE && !pud_write(*pud))
1021 return NULL;
1022
1023 if (pud_present(*pud) && pud_devmap(*pud))
1024 /* pass */;
1025 else
1026 return NULL;
1027
1028 if (flags & FOLL_TOUCH)
1029 touch_pud(vma, addr, pud);
1030
1031 /*
1032 * device mapped pages can only be returned if the
1033 * caller will manage the page reference count.
1034 */
1035 if (!(flags & FOLL_GET))
1036 return ERR_PTR(-EEXIST);
1037
1038 pfn += (addr & ~PUD_MASK) >> PAGE_SHIFT;
1039 pgmap = get_dev_pagemap(pfn, NULL);
1040 if (!pgmap)
1041 return ERR_PTR(-EFAULT);
1042 page = pfn_to_page(pfn);
1043 get_page(page);
1044 put_dev_pagemap(pgmap);
1045
1046 return page;
1047}
1048
1049int copy_huge_pud(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1050 pud_t *dst_pud, pud_t *src_pud, unsigned long addr,
1051 struct vm_area_struct *vma)
1052{
1053 spinlock_t *dst_ptl, *src_ptl;
1054 pud_t pud;
1055 int ret;
1056
1057 dst_ptl = pud_lock(dst_mm, dst_pud);
1058 src_ptl = pud_lockptr(src_mm, src_pud);
1059 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1060
1061 ret = -EAGAIN;
1062 pud = *src_pud;
1063 if (unlikely(!pud_trans_huge(pud) && !pud_devmap(pud)))
1064 goto out_unlock;
1065
1066 /*
1067 * When page table lock is held, the huge zero pud should not be
1068 * under splitting since we don't split the page itself, only pud to
1069 * a page table.
1070 */
1071 if (is_huge_zero_pud(pud)) {
1072 /* No huge zero pud yet */
1073 }
1074
1075 pudp_set_wrprotect(src_mm, addr, src_pud);
1076 pud = pud_mkold(pud_wrprotect(pud));
1077 set_pud_at(dst_mm, addr, dst_pud, pud);
1078
1079 ret = 0;
1080out_unlock:
1081 spin_unlock(src_ptl);
1082 spin_unlock(dst_ptl);
1083 return ret;
1084}
1085
1086void huge_pud_set_accessed(struct vm_fault *vmf, pud_t orig_pud)
1087{
1088 pud_t entry;
1089 unsigned long haddr;
1090 bool write = vmf->flags & FAULT_FLAG_WRITE;
1091
1092 vmf->ptl = pud_lock(vmf->vma->vm_mm, vmf->pud);
1093 if (unlikely(!pud_same(*vmf->pud, orig_pud)))
1094 goto unlock;
1095
1096 entry = pud_mkyoung(orig_pud);
1097 if (write)
1098 entry = pud_mkdirty(entry);
1099 haddr = vmf->address & HPAGE_PUD_MASK;
1100 if (pudp_set_access_flags(vmf->vma, haddr, vmf->pud, entry, write))
1101 update_mmu_cache_pud(vmf->vma, vmf->address, vmf->pud);
1102
1103unlock:
1104 spin_unlock(vmf->ptl);
1105}
1106#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
1107
82b0f8c3 1108void huge_pmd_set_accessed(struct vm_fault *vmf, pmd_t orig_pmd)
a1dd450b
WD
1109{
1110 pmd_t entry;
1111 unsigned long haddr;
20f664aa 1112 bool write = vmf->flags & FAULT_FLAG_WRITE;
a1dd450b 1113
82b0f8c3
JK
1114 vmf->ptl = pmd_lock(vmf->vma->vm_mm, vmf->pmd);
1115 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
a1dd450b
WD
1116 goto unlock;
1117
1118 entry = pmd_mkyoung(orig_pmd);
20f664aa
MK
1119 if (write)
1120 entry = pmd_mkdirty(entry);
82b0f8c3 1121 haddr = vmf->address & HPAGE_PMD_MASK;
20f664aa 1122 if (pmdp_set_access_flags(vmf->vma, haddr, vmf->pmd, entry, write))
82b0f8c3 1123 update_mmu_cache_pmd(vmf->vma, vmf->address, vmf->pmd);
a1dd450b
WD
1124
1125unlock:
82b0f8c3 1126 spin_unlock(vmf->ptl);
a1dd450b
WD
1127}
1128
82b0f8c3 1129static int do_huge_pmd_wp_page_fallback(struct vm_fault *vmf, pmd_t orig_pmd,
bae473a4 1130 struct page *page)
71e3aac0 1131{
82b0f8c3
JK
1132 struct vm_area_struct *vma = vmf->vma;
1133 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
00501b53 1134 struct mem_cgroup *memcg;
71e3aac0
AA
1135 pgtable_t pgtable;
1136 pmd_t _pmd;
1137 int ret = 0, i;
1138 struct page **pages;
2ec74c3e
SG
1139 unsigned long mmun_start; /* For mmu_notifiers */
1140 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1141
1142 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1143 GFP_KERNEL);
1144 if (unlikely(!pages)) {
1145 ret |= VM_FAULT_OOM;
1146 goto out;
1147 }
1148
1149 for (i = 0; i < HPAGE_PMD_NR; i++) {
41b6167e 1150 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE, vma,
82b0f8c3 1151 vmf->address, page_to_nid(page));
b9bbfbe3 1152 if (unlikely(!pages[i] ||
bae473a4
KS
1153 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1154 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 1155 if (pages[i])
71e3aac0 1156 put_page(pages[i]);
b9bbfbe3 1157 while (--i >= 0) {
00501b53
JW
1158 memcg = (void *)page_private(pages[i]);
1159 set_page_private(pages[i], 0);
f627c2f5
KS
1160 mem_cgroup_cancel_charge(pages[i], memcg,
1161 false);
b9bbfbe3
AA
1162 put_page(pages[i]);
1163 }
71e3aac0
AA
1164 kfree(pages);
1165 ret |= VM_FAULT_OOM;
1166 goto out;
1167 }
00501b53 1168 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1169 }
1170
1171 for (i = 0; i < HPAGE_PMD_NR; i++) {
1172 copy_user_highpage(pages[i], page + i,
0089e485 1173 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1174 __SetPageUptodate(pages[i]);
1175 cond_resched();
1176 }
1177
2ec74c3e
SG
1178 mmun_start = haddr;
1179 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1180 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1181
82b0f8c3
JK
1182 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1183 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0 1184 goto out_free_pages;
309381fe 1185 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1186
82b0f8c3 1187 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
71e3aac0
AA
1188 /* leave pmd empty until pte is filled */
1189
82b0f8c3 1190 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, vmf->pmd);
bae473a4 1191 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
1192
1193 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 1194 pte_t entry;
71e3aac0
AA
1195 entry = mk_pte(pages[i], vma->vm_page_prot);
1196 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1197 memcg = (void *)page_private(pages[i]);
1198 set_page_private(pages[i], 0);
82b0f8c3 1199 page_add_new_anon_rmap(pages[i], vmf->vma, haddr, false);
f627c2f5 1200 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1201 lru_cache_add_active_or_unevictable(pages[i], vma);
82b0f8c3
JK
1202 vmf->pte = pte_offset_map(&_pmd, haddr);
1203 VM_BUG_ON(!pte_none(*vmf->pte));
1204 set_pte_at(vma->vm_mm, haddr, vmf->pte, entry);
1205 pte_unmap(vmf->pte);
71e3aac0
AA
1206 }
1207 kfree(pages);
1208
71e3aac0 1209 smp_wmb(); /* make pte visible before pmd */
82b0f8c3 1210 pmd_populate(vma->vm_mm, vmf->pmd, pgtable);
d281ee61 1211 page_remove_rmap(page, true);
82b0f8c3 1212 spin_unlock(vmf->ptl);
71e3aac0 1213
bae473a4 1214 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1215
71e3aac0
AA
1216 ret |= VM_FAULT_WRITE;
1217 put_page(page);
1218
1219out:
1220 return ret;
1221
1222out_free_pages:
82b0f8c3 1223 spin_unlock(vmf->ptl);
bae473a4 1224 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 1225 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1226 memcg = (void *)page_private(pages[i]);
1227 set_page_private(pages[i], 0);
f627c2f5 1228 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1229 put_page(pages[i]);
b9bbfbe3 1230 }
71e3aac0
AA
1231 kfree(pages);
1232 goto out;
1233}
1234
82b0f8c3 1235int do_huge_pmd_wp_page(struct vm_fault *vmf, pmd_t orig_pmd)
71e3aac0 1236{
82b0f8c3 1237 struct vm_area_struct *vma = vmf->vma;
93b4796d 1238 struct page *page = NULL, *new_page;
00501b53 1239 struct mem_cgroup *memcg;
82b0f8c3 1240 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1241 unsigned long mmun_start; /* For mmu_notifiers */
1242 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1243 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1244 int ret = 0;
71e3aac0 1245
82b0f8c3 1246 vmf->ptl = pmd_lockptr(vma->vm_mm, vmf->pmd);
81d1b09c 1247 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1248 if (is_huge_zero_pmd(orig_pmd))
1249 goto alloc;
82b0f8c3
JK
1250 spin_lock(vmf->ptl);
1251 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd)))
71e3aac0
AA
1252 goto out_unlock;
1253
1254 page = pmd_page(orig_pmd);
309381fe 1255 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1256 /*
1257 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1258 * part.
1f25fe20 1259 */
ba3c4ce6
HY
1260 if (!trylock_page(page)) {
1261 get_page(page);
1262 spin_unlock(vmf->ptl);
1263 lock_page(page);
1264 spin_lock(vmf->ptl);
1265 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1266 unlock_page(page);
1267 put_page(page);
1268 goto out_unlock;
1269 }
1270 put_page(page);
1271 }
1272 if (reuse_swap_page(page, NULL)) {
71e3aac0
AA
1273 pmd_t entry;
1274 entry = pmd_mkyoung(orig_pmd);
1275 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3
JK
1276 if (pmdp_set_access_flags(vma, haddr, vmf->pmd, entry, 1))
1277 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
71e3aac0 1278 ret |= VM_FAULT_WRITE;
ba3c4ce6 1279 unlock_page(page);
71e3aac0
AA
1280 goto out_unlock;
1281 }
ba3c4ce6 1282 unlock_page(page);
ddc58f27 1283 get_page(page);
82b0f8c3 1284 spin_unlock(vmf->ptl);
93b4796d 1285alloc:
71e3aac0 1286 if (transparent_hugepage_enabled(vma) &&
077fcf11 1287 !transparent_hugepage_debug_cow()) {
444eb2a4 1288 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1289 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1290 } else
71e3aac0
AA
1291 new_page = NULL;
1292
9a982250
KS
1293 if (likely(new_page)) {
1294 prep_transhuge_page(new_page);
1295 } else {
eecc1e42 1296 if (!page) {
82b0f8c3 1297 split_huge_pmd(vma, vmf->pmd, vmf->address);
e9b71ca9 1298 ret |= VM_FAULT_FALLBACK;
93b4796d 1299 } else {
82b0f8c3 1300 ret = do_huge_pmd_wp_page_fallback(vmf, orig_pmd, page);
9845cbbd 1301 if (ret & VM_FAULT_OOM) {
82b0f8c3 1302 split_huge_pmd(vma, vmf->pmd, vmf->address);
9845cbbd
KS
1303 ret |= VM_FAULT_FALLBACK;
1304 }
ddc58f27 1305 put_page(page);
93b4796d 1306 }
17766dde 1307 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1308 goto out;
1309 }
1310
bae473a4
KS
1311 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1312 huge_gfp, &memcg, true))) {
b9bbfbe3 1313 put_page(new_page);
82b0f8c3 1314 split_huge_pmd(vma, vmf->pmd, vmf->address);
bae473a4 1315 if (page)
ddc58f27 1316 put_page(page);
9845cbbd 1317 ret |= VM_FAULT_FALLBACK;
17766dde 1318 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1319 goto out;
1320 }
1321
17766dde
DR
1322 count_vm_event(THP_FAULT_ALLOC);
1323
eecc1e42 1324 if (!page)
c79b57e4 1325 clear_huge_page(new_page, vmf->address, HPAGE_PMD_NR);
93b4796d
KS
1326 else
1327 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1328 __SetPageUptodate(new_page);
1329
2ec74c3e
SG
1330 mmun_start = haddr;
1331 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1332 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1333
82b0f8c3 1334 spin_lock(vmf->ptl);
93b4796d 1335 if (page)
ddc58f27 1336 put_page(page);
82b0f8c3
JK
1337 if (unlikely(!pmd_same(*vmf->pmd, orig_pmd))) {
1338 spin_unlock(vmf->ptl);
f627c2f5 1339 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1340 put_page(new_page);
2ec74c3e 1341 goto out_mn;
b9bbfbe3 1342 } else {
71e3aac0 1343 pmd_t entry;
3122359a
KS
1344 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1345 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
82b0f8c3 1346 pmdp_huge_clear_flush_notify(vma, haddr, vmf->pmd);
d281ee61 1347 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1348 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1349 lru_cache_add_active_or_unevictable(new_page, vma);
82b0f8c3
JK
1350 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, entry);
1351 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
eecc1e42 1352 if (!page) {
bae473a4 1353 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1354 } else {
309381fe 1355 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1356 page_remove_rmap(page, true);
93b4796d
KS
1357 put_page(page);
1358 }
71e3aac0
AA
1359 ret |= VM_FAULT_WRITE;
1360 }
82b0f8c3 1361 spin_unlock(vmf->ptl);
2ec74c3e 1362out_mn:
bae473a4 1363 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1364out:
1365 return ret;
2ec74c3e 1366out_unlock:
82b0f8c3 1367 spin_unlock(vmf->ptl);
2ec74c3e 1368 return ret;
71e3aac0
AA
1369}
1370
8310d48b
KF
1371/*
1372 * FOLL_FORCE can write to even unwritable pmd's, but only
1373 * after we've gone through a COW cycle and they are dirty.
1374 */
1375static inline bool can_follow_write_pmd(pmd_t pmd, unsigned int flags)
1376{
1377 return pmd_write(pmd) ||
1378 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pmd_dirty(pmd));
1379}
1380
b676b293 1381struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1382 unsigned long addr,
1383 pmd_t *pmd,
1384 unsigned int flags)
1385{
b676b293 1386 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1387 struct page *page = NULL;
1388
c4088ebd 1389 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0 1390
8310d48b 1391 if (flags & FOLL_WRITE && !can_follow_write_pmd(*pmd, flags))
71e3aac0
AA
1392 goto out;
1393
85facf25
KS
1394 /* Avoid dumping huge zero page */
1395 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1396 return ERR_PTR(-EFAULT);
1397
2b4847e7 1398 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1399 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1400 goto out;
1401
71e3aac0 1402 page = pmd_page(*pmd);
ca120cf6 1403 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1404 if (flags & FOLL_TOUCH)
1405 touch_pmd(vma, addr, pmd);
de60f5f1 1406 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1407 /*
1408 * We don't mlock() pte-mapped THPs. This way we can avoid
1409 * leaking mlocked pages into non-VM_LOCKED VMAs.
1410 *
9a73f61b
KS
1411 * For anon THP:
1412 *
e90309c9
KS
1413 * In most cases the pmd is the only mapping of the page as we
1414 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1415 * writable private mappings in populate_vma_page_range().
1416 *
1417 * The only scenario when we have the page shared here is if we
1418 * mlocking read-only mapping shared over fork(). We skip
1419 * mlocking such pages.
9a73f61b
KS
1420 *
1421 * For file THP:
1422 *
1423 * We can expect PageDoubleMap() to be stable under page lock:
1424 * for file pages we set it in page_add_file_rmap(), which
1425 * requires page to be locked.
e90309c9 1426 */
9a73f61b
KS
1427
1428 if (PageAnon(page) && compound_mapcount(page) != 1)
1429 goto skip_mlock;
1430 if (PageDoubleMap(page) || !page->mapping)
1431 goto skip_mlock;
1432 if (!trylock_page(page))
1433 goto skip_mlock;
1434 lru_add_drain();
1435 if (page->mapping && !PageDoubleMap(page))
1436 mlock_vma_page(page);
1437 unlock_page(page);
b676b293 1438 }
9a73f61b 1439skip_mlock:
71e3aac0 1440 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1441 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1442 if (flags & FOLL_GET)
ddc58f27 1443 get_page(page);
71e3aac0
AA
1444
1445out:
1446 return page;
1447}
1448
d10e63f2 1449/* NUMA hinting page fault entry point for trans huge pmds */
82b0f8c3 1450int do_huge_pmd_numa_page(struct vm_fault *vmf, pmd_t pmd)
d10e63f2 1451{
82b0f8c3 1452 struct vm_area_struct *vma = vmf->vma;
b8916634 1453 struct anon_vma *anon_vma = NULL;
b32967ff 1454 struct page *page;
82b0f8c3 1455 unsigned long haddr = vmf->address & HPAGE_PMD_MASK;
8191acbd 1456 int page_nid = -1, this_nid = numa_node_id();
90572890 1457 int target_nid, last_cpupid = -1;
8191acbd
MG
1458 bool page_locked;
1459 bool migrated = false;
b191f9b1 1460 bool was_writable;
6688cc05 1461 int flags = 0;
d10e63f2 1462
82b0f8c3
JK
1463 vmf->ptl = pmd_lock(vma->vm_mm, vmf->pmd);
1464 if (unlikely(!pmd_same(pmd, *vmf->pmd)))
d10e63f2
MG
1465 goto out_unlock;
1466
de466bd6
MG
1467 /*
1468 * If there are potential migrations, wait for completion and retry
1469 * without disrupting NUMA hinting information. Do not relock and
1470 * check_same as the page may no longer be mapped.
1471 */
82b0f8c3
JK
1472 if (unlikely(pmd_trans_migrating(*vmf->pmd))) {
1473 page = pmd_page(*vmf->pmd);
3c226c63
MR
1474 if (!get_page_unless_zero(page))
1475 goto out_unlock;
82b0f8c3 1476 spin_unlock(vmf->ptl);
5d833062 1477 wait_on_page_locked(page);
3c226c63 1478 put_page(page);
de466bd6
MG
1479 goto out;
1480 }
1481
d10e63f2 1482 page = pmd_page(pmd);
a1a46184 1483 BUG_ON(is_huge_zero_page(page));
8191acbd 1484 page_nid = page_to_nid(page);
90572890 1485 last_cpupid = page_cpupid_last(page);
03c5a6e1 1486 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1487 if (page_nid == this_nid) {
03c5a6e1 1488 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1489 flags |= TNF_FAULT_LOCAL;
1490 }
4daae3b4 1491
bea66fbd 1492 /* See similar comment in do_numa_page for explanation */
288bc549 1493 if (!pmd_savedwrite(pmd))
6688cc05
PZ
1494 flags |= TNF_NO_GROUP;
1495
ff9042b1
MG
1496 /*
1497 * Acquire the page lock to serialise THP migrations but avoid dropping
1498 * page_table_lock if at all possible
1499 */
b8916634
MG
1500 page_locked = trylock_page(page);
1501 target_nid = mpol_misplaced(page, vma, haddr);
1502 if (target_nid == -1) {
1503 /* If the page was locked, there are no parallel migrations */
a54a407f 1504 if (page_locked)
b8916634 1505 goto clear_pmdnuma;
2b4847e7 1506 }
4daae3b4 1507
de466bd6 1508 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1509 if (!page_locked) {
3c226c63
MR
1510 page_nid = -1;
1511 if (!get_page_unless_zero(page))
1512 goto out_unlock;
82b0f8c3 1513 spin_unlock(vmf->ptl);
b8916634 1514 wait_on_page_locked(page);
3c226c63 1515 put_page(page);
b8916634
MG
1516 goto out;
1517 }
1518
2b4847e7
MG
1519 /*
1520 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1521 * to serialises splits
1522 */
b8916634 1523 get_page(page);
82b0f8c3 1524 spin_unlock(vmf->ptl);
b8916634 1525 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1526
c69307d5 1527 /* Confirm the PMD did not change while page_table_lock was released */
82b0f8c3
JK
1528 spin_lock(vmf->ptl);
1529 if (unlikely(!pmd_same(pmd, *vmf->pmd))) {
b32967ff
MG
1530 unlock_page(page);
1531 put_page(page);
a54a407f 1532 page_nid = -1;
4daae3b4 1533 goto out_unlock;
b32967ff 1534 }
ff9042b1 1535
c3a489ca
MG
1536 /* Bail if we fail to protect against THP splits for any reason */
1537 if (unlikely(!anon_vma)) {
1538 put_page(page);
1539 page_nid = -1;
1540 goto clear_pmdnuma;
1541 }
1542
8b1b436d
PZ
1543 /*
1544 * Since we took the NUMA fault, we must have observed the !accessible
1545 * bit. Make sure all other CPUs agree with that, to avoid them
1546 * modifying the page we're about to migrate.
1547 *
1548 * Must be done under PTL such that we'll observe the relevant
ccde85ba
PZ
1549 * inc_tlb_flush_pending().
1550 *
1551 * We are not sure a pending tlb flush here is for a huge page
1552 * mapping or not. Hence use the tlb range variant
8b1b436d
PZ
1553 */
1554 if (mm_tlb_flush_pending(vma->vm_mm))
ccde85ba 1555 flush_tlb_range(vma, haddr, haddr + HPAGE_PMD_SIZE);
8b1b436d 1556
a54a407f
MG
1557 /*
1558 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1559 * and access rights restored.
a54a407f 1560 */
82b0f8c3 1561 spin_unlock(vmf->ptl);
8b1b436d 1562
bae473a4 1563 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
82b0f8c3 1564 vmf->pmd, pmd, vmf->address, page, target_nid);
6688cc05
PZ
1565 if (migrated) {
1566 flags |= TNF_MIGRATED;
8191acbd 1567 page_nid = target_nid;
074c2381
MG
1568 } else
1569 flags |= TNF_MIGRATE_FAIL;
b32967ff 1570
8191acbd 1571 goto out;
b32967ff 1572clear_pmdnuma:
a54a407f 1573 BUG_ON(!PageLocked(page));
288bc549 1574 was_writable = pmd_savedwrite(pmd);
4d942466 1575 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1576 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1577 if (was_writable)
1578 pmd = pmd_mkwrite(pmd);
82b0f8c3
JK
1579 set_pmd_at(vma->vm_mm, haddr, vmf->pmd, pmd);
1580 update_mmu_cache_pmd(vma, vmf->address, vmf->pmd);
a54a407f 1581 unlock_page(page);
d10e63f2 1582out_unlock:
82b0f8c3 1583 spin_unlock(vmf->ptl);
b8916634
MG
1584
1585out:
1586 if (anon_vma)
1587 page_unlock_anon_vma_read(anon_vma);
1588
8191acbd 1589 if (page_nid != -1)
82b0f8c3 1590 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR,
9a8b300f 1591 flags);
8191acbd 1592
d10e63f2
MG
1593 return 0;
1594}
1595
319904ad
HY
1596/*
1597 * Return true if we do MADV_FREE successfully on entire pmd page.
1598 * Otherwise, return false.
1599 */
1600bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1601 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1602{
1603 spinlock_t *ptl;
1604 pmd_t orig_pmd;
1605 struct page *page;
1606 struct mm_struct *mm = tlb->mm;
319904ad 1607 bool ret = false;
b8d3c4c3 1608
07e32661
AK
1609 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1610
b6ec57f4
KS
1611 ptl = pmd_trans_huge_lock(pmd, vma);
1612 if (!ptl)
25eedabe 1613 goto out_unlocked;
b8d3c4c3
MK
1614
1615 orig_pmd = *pmd;
319904ad 1616 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1617 goto out;
b8d3c4c3 1618
84c3fc4e
ZY
1619 if (unlikely(!pmd_present(orig_pmd))) {
1620 VM_BUG_ON(thp_migration_supported() &&
1621 !is_pmd_migration_entry(orig_pmd));
1622 goto out;
1623 }
1624
b8d3c4c3
MK
1625 page = pmd_page(orig_pmd);
1626 /*
1627 * If other processes are mapping this page, we couldn't discard
1628 * the page unless they all do MADV_FREE so let's skip the page.
1629 */
1630 if (page_mapcount(page) != 1)
1631 goto out;
1632
1633 if (!trylock_page(page))
1634 goto out;
1635
1636 /*
1637 * If user want to discard part-pages of THP, split it so MADV_FREE
1638 * will deactivate only them.
1639 */
1640 if (next - addr != HPAGE_PMD_SIZE) {
1641 get_page(page);
1642 spin_unlock(ptl);
9818b8cd 1643 split_huge_page(page);
b8d3c4c3 1644 unlock_page(page);
bbf29ffc 1645 put_page(page);
b8d3c4c3
MK
1646 goto out_unlocked;
1647 }
1648
1649 if (PageDirty(page))
1650 ClearPageDirty(page);
1651 unlock_page(page);
1652
b8d3c4c3 1653 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
58ceeb6b 1654 pmdp_invalidate(vma, addr, pmd);
b8d3c4c3
MK
1655 orig_pmd = pmd_mkold(orig_pmd);
1656 orig_pmd = pmd_mkclean(orig_pmd);
1657
1658 set_pmd_at(mm, addr, pmd, orig_pmd);
1659 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1660 }
802a3a92
SL
1661
1662 mark_page_lazyfree(page);
319904ad 1663 ret = true;
b8d3c4c3
MK
1664out:
1665 spin_unlock(ptl);
1666out_unlocked:
1667 return ret;
1668}
1669
953c66c2
AK
1670static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1671{
1672 pgtable_t pgtable;
1673
1674 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1675 pte_free(mm, pgtable);
1676 atomic_long_dec(&mm->nr_ptes);
1677}
1678
71e3aac0 1679int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1680 pmd_t *pmd, unsigned long addr)
71e3aac0 1681{
da146769 1682 pmd_t orig_pmd;
bf929152 1683 spinlock_t *ptl;
71e3aac0 1684
07e32661
AK
1685 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1686
b6ec57f4
KS
1687 ptl = __pmd_trans_huge_lock(pmd, vma);
1688 if (!ptl)
da146769
KS
1689 return 0;
1690 /*
1691 * For architectures like ppc64 we look at deposited pgtable
1692 * when calling pmdp_huge_get_and_clear. So do the
1693 * pgtable_trans_huge_withdraw after finishing pmdp related
1694 * operations.
1695 */
1696 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1697 tlb->fullmm);
1698 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1699 if (vma_is_dax(vma)) {
3b6521f5
OH
1700 if (arch_needs_pgtable_deposit())
1701 zap_deposited_table(tlb->mm, pmd);
da146769
KS
1702 spin_unlock(ptl);
1703 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1704 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1705 } else if (is_huge_zero_pmd(orig_pmd)) {
c14a6eb4 1706 zap_deposited_table(tlb->mm, pmd);
da146769 1707 spin_unlock(ptl);
c0f2e176 1708 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769 1709 } else {
616b8371
ZY
1710 struct page *page = NULL;
1711 int flush_needed = 1;
1712
1713 if (pmd_present(orig_pmd)) {
1714 page = pmd_page(orig_pmd);
1715 page_remove_rmap(page, true);
1716 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1717 VM_BUG_ON_PAGE(!PageHead(page), page);
1718 } else if (thp_migration_supported()) {
1719 swp_entry_t entry;
1720
1721 VM_BUG_ON(!is_pmd_migration_entry(orig_pmd));
1722 entry = pmd_to_swp_entry(orig_pmd);
1723 page = pfn_to_page(swp_offset(entry));
1724 flush_needed = 0;
1725 } else
1726 WARN_ONCE(1, "Non present huge pmd without pmd migration enabled!");
1727
b5072380 1728 if (PageAnon(page)) {
c14a6eb4 1729 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1730 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1731 } else {
953c66c2
AK
1732 if (arch_needs_pgtable_deposit())
1733 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1734 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1735 }
616b8371 1736
da146769 1737 spin_unlock(ptl);
616b8371
ZY
1738 if (flush_needed)
1739 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1740 }
da146769 1741 return 1;
71e3aac0
AA
1742}
1743
1dd38b6c
AK
1744#ifndef pmd_move_must_withdraw
1745static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1746 spinlock_t *old_pmd_ptl,
1747 struct vm_area_struct *vma)
1748{
1749 /*
1750 * With split pmd lock we also need to move preallocated
1751 * PTE page table if new_pmd is on different PMD page table.
1752 *
1753 * We also don't deposit and withdraw tables for file pages.
1754 */
1755 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1756}
1757#endif
1758
bf8616d5 1759bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1760 unsigned long new_addr, unsigned long old_end,
5d190420 1761 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1762{
bf929152 1763 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1764 pmd_t pmd;
37a1c49a 1765 struct mm_struct *mm = vma->vm_mm;
5d190420 1766 bool force_flush = false;
37a1c49a
AA
1767
1768 if ((old_addr & ~HPAGE_PMD_MASK) ||
1769 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1770 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1771 return false;
37a1c49a
AA
1772
1773 /*
1774 * The destination pmd shouldn't be established, free_pgtables()
1775 * should have release it.
1776 */
1777 if (WARN_ON(!pmd_none(*new_pmd))) {
1778 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1779 return false;
37a1c49a
AA
1780 }
1781
bf929152
KS
1782 /*
1783 * We don't have to worry about the ordering of src and dst
1784 * ptlocks because exclusive mmap_sem prevents deadlock.
1785 */
b6ec57f4
KS
1786 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1787 if (old_ptl) {
bf929152
KS
1788 new_ptl = pmd_lockptr(mm, new_pmd);
1789 if (new_ptl != old_ptl)
1790 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1791 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1792 if (pmd_present(pmd) && pmd_dirty(pmd))
1793 force_flush = true;
025c5b24 1794 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1795
1dd38b6c 1796 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1797 pgtable_t pgtable;
3592806c
KS
1798 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1799 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1800 }
b3084f4d
AK
1801 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1802 if (new_ptl != old_ptl)
1803 spin_unlock(new_ptl);
5d190420
AL
1804 if (force_flush)
1805 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1806 else
1807 *need_flush = true;
bf929152 1808 spin_unlock(old_ptl);
4b471e88 1809 return true;
37a1c49a 1810 }
4b471e88 1811 return false;
37a1c49a
AA
1812}
1813
f123d74a
MG
1814/*
1815 * Returns
1816 * - 0 if PMD could not be locked
1817 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1818 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1819 */
cd7548ab 1820int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1821 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1822{
1823 struct mm_struct *mm = vma->vm_mm;
bf929152 1824 spinlock_t *ptl;
0a85e51d
KS
1825 pmd_t entry;
1826 bool preserve_write;
1827 int ret;
cd7548ab 1828
b6ec57f4 1829 ptl = __pmd_trans_huge_lock(pmd, vma);
0a85e51d
KS
1830 if (!ptl)
1831 return 0;
e944fd67 1832
0a85e51d
KS
1833 preserve_write = prot_numa && pmd_write(*pmd);
1834 ret = 1;
e944fd67 1835
84c3fc4e
ZY
1836#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
1837 if (is_swap_pmd(*pmd)) {
1838 swp_entry_t entry = pmd_to_swp_entry(*pmd);
1839
1840 VM_BUG_ON(!is_pmd_migration_entry(*pmd));
1841 if (is_write_migration_entry(entry)) {
1842 pmd_t newpmd;
1843 /*
1844 * A protection check is difficult so
1845 * just be safe and disable write
1846 */
1847 make_migration_entry_read(&entry);
1848 newpmd = swp_entry_to_pmd(entry);
1849 set_pmd_at(mm, addr, pmd, newpmd);
1850 }
1851 goto unlock;
1852 }
1853#endif
1854
0a85e51d
KS
1855 /*
1856 * Avoid trapping faults against the zero page. The read-only
1857 * data is likely to be read-cached on the local CPU and
1858 * local/remote hits to the zero page are not interesting.
1859 */
1860 if (prot_numa && is_huge_zero_pmd(*pmd))
1861 goto unlock;
025c5b24 1862
0a85e51d
KS
1863 if (prot_numa && pmd_protnone(*pmd))
1864 goto unlock;
1865
ced10803
KS
1866 /*
1867 * In case prot_numa, we are under down_read(mmap_sem). It's critical
1868 * to not clear pmd intermittently to avoid race with MADV_DONTNEED
1869 * which is also under down_read(mmap_sem):
1870 *
1871 * CPU0: CPU1:
1872 * change_huge_pmd(prot_numa=1)
1873 * pmdp_huge_get_and_clear_notify()
1874 * madvise_dontneed()
1875 * zap_pmd_range()
1876 * pmd_trans_huge(*pmd) == 0 (without ptl)
1877 * // skip the pmd
1878 * set_pmd_at();
1879 * // pmd is re-established
1880 *
1881 * The race makes MADV_DONTNEED miss the huge pmd and don't clear it
1882 * which may break userspace.
1883 *
1884 * pmdp_invalidate() is required to make sure we don't miss
1885 * dirty/young flags set by hardware.
1886 */
1887 entry = *pmd;
1888 pmdp_invalidate(vma, addr, pmd);
1889
1890 /*
1891 * Recover dirty/young flags. It relies on pmdp_invalidate to not
1892 * corrupt them.
1893 */
1894 if (pmd_dirty(*pmd))
1895 entry = pmd_mkdirty(entry);
1896 if (pmd_young(*pmd))
1897 entry = pmd_mkyoung(entry);
1898
0a85e51d
KS
1899 entry = pmd_modify(entry, newprot);
1900 if (preserve_write)
1901 entry = pmd_mk_savedwrite(entry);
1902 ret = HPAGE_PMD_NR;
1903 set_pmd_at(mm, addr, pmd, entry);
1904 BUG_ON(vma_is_anonymous(vma) && !preserve_write && pmd_write(entry));
1905unlock:
1906 spin_unlock(ptl);
025c5b24
NH
1907 return ret;
1908}
1909
1910/*
8f19b0c0 1911 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1912 *
8f19b0c0
HY
1913 * Note that if it returns page table lock pointer, this routine returns without
1914 * unlocking page table lock. So callers must unlock it.
025c5b24 1915 */
b6ec57f4 1916spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1917{
b6ec57f4
KS
1918 spinlock_t *ptl;
1919 ptl = pmd_lock(vma->vm_mm, pmd);
84c3fc4e
ZY
1920 if (likely(is_swap_pmd(*pmd) || pmd_trans_huge(*pmd) ||
1921 pmd_devmap(*pmd)))
b6ec57f4
KS
1922 return ptl;
1923 spin_unlock(ptl);
1924 return NULL;
cd7548ab
JW
1925}
1926
a00cc7d9
MW
1927/*
1928 * Returns true if a given pud maps a thp, false otherwise.
1929 *
1930 * Note that if it returns true, this routine returns without unlocking page
1931 * table lock. So callers must unlock it.
1932 */
1933spinlock_t *__pud_trans_huge_lock(pud_t *pud, struct vm_area_struct *vma)
1934{
1935 spinlock_t *ptl;
1936
1937 ptl = pud_lock(vma->vm_mm, pud);
1938 if (likely(pud_trans_huge(*pud) || pud_devmap(*pud)))
1939 return ptl;
1940 spin_unlock(ptl);
1941 return NULL;
1942}
1943
1944#ifdef CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD
1945int zap_huge_pud(struct mmu_gather *tlb, struct vm_area_struct *vma,
1946 pud_t *pud, unsigned long addr)
1947{
1948 pud_t orig_pud;
1949 spinlock_t *ptl;
1950
1951 ptl = __pud_trans_huge_lock(pud, vma);
1952 if (!ptl)
1953 return 0;
1954 /*
1955 * For architectures like ppc64 we look at deposited pgtable
1956 * when calling pudp_huge_get_and_clear. So do the
1957 * pgtable_trans_huge_withdraw after finishing pudp related
1958 * operations.
1959 */
1960 orig_pud = pudp_huge_get_and_clear_full(tlb->mm, addr, pud,
1961 tlb->fullmm);
1962 tlb_remove_pud_tlb_entry(tlb, pud, addr);
1963 if (vma_is_dax(vma)) {
1964 spin_unlock(ptl);
1965 /* No zero page support yet */
1966 } else {
1967 /* No support for anonymous PUD pages yet */
1968 BUG();
1969 }
1970 return 1;
1971}
1972
1973static void __split_huge_pud_locked(struct vm_area_struct *vma, pud_t *pud,
1974 unsigned long haddr)
1975{
1976 VM_BUG_ON(haddr & ~HPAGE_PUD_MASK);
1977 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1978 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PUD_SIZE, vma);
1979 VM_BUG_ON(!pud_trans_huge(*pud) && !pud_devmap(*pud));
1980
ce9311cf 1981 count_vm_event(THP_SPLIT_PUD);
a00cc7d9
MW
1982
1983 pudp_huge_clear_flush_notify(vma, haddr, pud);
1984}
1985
1986void __split_huge_pud(struct vm_area_struct *vma, pud_t *pud,
1987 unsigned long address)
1988{
1989 spinlock_t *ptl;
1990 struct mm_struct *mm = vma->vm_mm;
1991 unsigned long haddr = address & HPAGE_PUD_MASK;
1992
1993 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PUD_SIZE);
1994 ptl = pud_lock(mm, pud);
1995 if (unlikely(!pud_trans_huge(*pud) && !pud_devmap(*pud)))
1996 goto out;
1997 __split_huge_pud_locked(vma, pud, haddr);
1998
1999out:
2000 spin_unlock(ptl);
2001 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PUD_SIZE);
2002}
2003#endif /* CONFIG_HAVE_ARCH_TRANSPARENT_HUGEPAGE_PUD */
2004
eef1b3ba
KS
2005static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2006 unsigned long haddr, pmd_t *pmd)
2007{
2008 struct mm_struct *mm = vma->vm_mm;
2009 pgtable_t pgtable;
2010 pmd_t _pmd;
2011 int i;
2012
2013 /* leave pmd empty until pte is filled */
2014 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2015
2016 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2017 pmd_populate(mm, &_pmd, pgtable);
2018
2019 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2020 pte_t *pte, entry;
2021 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2022 entry = pte_mkspecial(entry);
2023 pte = pte_offset_map(&_pmd, haddr);
2024 VM_BUG_ON(!pte_none(*pte));
2025 set_pte_at(mm, haddr, pte, entry);
2026 pte_unmap(pte);
2027 }
2028 smp_wmb(); /* make pte visible before pmd */
2029 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
2030}
2031
2032static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2033 unsigned long haddr, bool freeze)
eef1b3ba
KS
2034{
2035 struct mm_struct *mm = vma->vm_mm;
2036 struct page *page;
2037 pgtable_t pgtable;
2038 pmd_t _pmd;
84c3fc4e 2039 bool young, write, dirty, soft_dirty, pmd_migration = false;
2ac015e2 2040 unsigned long addr;
eef1b3ba
KS
2041 int i;
2042
2043 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2044 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2045 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
84c3fc4e
ZY
2046 VM_BUG_ON(!is_pmd_migration_entry(*pmd) && !pmd_trans_huge(*pmd)
2047 && !pmd_devmap(*pmd));
eef1b3ba
KS
2048
2049 count_vm_event(THP_SPLIT_PMD);
2050
d21b9e57
KS
2051 if (!vma_is_anonymous(vma)) {
2052 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
2053 /*
2054 * We are going to unmap this huge page. So
2055 * just go ahead and zap it
2056 */
2057 if (arch_needs_pgtable_deposit())
2058 zap_deposited_table(mm, pmd);
d21b9e57
KS
2059 if (vma_is_dax(vma))
2060 return;
2061 page = pmd_page(_pmd);
2062 if (!PageReferenced(page) && pmd_young(_pmd))
2063 SetPageReferenced(page);
2064 page_remove_rmap(page, true);
2065 put_page(page);
2066 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
2067 return;
2068 } else if (is_huge_zero_pmd(*pmd)) {
2069 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2070 }
2071
84c3fc4e
ZY
2072#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2073 pmd_migration = is_pmd_migration_entry(*pmd);
2074 if (pmd_migration) {
2075 swp_entry_t entry;
2076
2077 entry = pmd_to_swp_entry(*pmd);
2078 page = pfn_to_page(swp_offset(entry));
2079 } else
2080#endif
2081 page = pmd_page(*pmd);
eef1b3ba 2082 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2083 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2084 write = pmd_write(*pmd);
2085 young = pmd_young(*pmd);
b8d3c4c3 2086 dirty = pmd_dirty(*pmd);
804dd150 2087 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 2088
c777e2a8 2089 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2090 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2091 pmd_populate(mm, &_pmd, pgtable);
2092
2ac015e2 2093 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2094 pte_t entry, *pte;
2095 /*
2096 * Note that NUMA hinting access restrictions are not
2097 * transferred to avoid any possibility of altering
2098 * permissions across VMAs.
2099 */
84c3fc4e 2100 if (freeze || pmd_migration) {
ba988280
KS
2101 swp_entry_t swp_entry;
2102 swp_entry = make_migration_entry(page + i, write);
2103 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
2104 if (soft_dirty)
2105 entry = pte_swp_mksoft_dirty(entry);
ba988280 2106 } else {
6d2329f8 2107 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 2108 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2109 if (!write)
2110 entry = pte_wrprotect(entry);
2111 if (!young)
2112 entry = pte_mkold(entry);
804dd150
AA
2113 if (soft_dirty)
2114 entry = pte_mksoft_dirty(entry);
ba988280 2115 }
b8d3c4c3
MK
2116 if (dirty)
2117 SetPageDirty(page + i);
2ac015e2 2118 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2119 BUG_ON(!pte_none(*pte));
2ac015e2 2120 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2121 atomic_inc(&page[i]._mapcount);
2122 pte_unmap(pte);
2123 }
2124
2125 /*
2126 * Set PG_double_map before dropping compound_mapcount to avoid
2127 * false-negative page_mapped().
2128 */
2129 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2130 for (i = 0; i < HPAGE_PMD_NR; i++)
2131 atomic_inc(&page[i]._mapcount);
2132 }
2133
2134 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2135 /* Last compound_mapcount is gone. */
11fb9989 2136 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
2137 if (TestClearPageDoubleMap(page)) {
2138 /* No need in mapcount reference anymore */
2139 for (i = 0; i < HPAGE_PMD_NR; i++)
2140 atomic_dec(&page[i]._mapcount);
2141 }
2142 }
2143
2144 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2145 /*
2146 * Up to this point the pmd is present and huge and userland has the
2147 * whole access to the hugepage during the split (which happens in
2148 * place). If we overwrite the pmd with the not-huge version pointing
2149 * to the pte here (which of course we could if all CPUs were bug
2150 * free), userland could trigger a small page size TLB miss on the
2151 * small sized TLB while the hugepage TLB entry is still established in
2152 * the huge TLB. Some CPU doesn't like that.
2153 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2154 * 383 on page 93. Intel should be safe but is also warns that it's
2155 * only safe if the permission and cache attributes of the two entries
2156 * loaded in the two TLB is identical (which should be the case here).
2157 * But it is generally safer to never allow small and huge TLB entries
2158 * for the same virtual address to be loaded simultaneously. So instead
2159 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2160 * current pmd notpresent (atomically because here the pmd_trans_huge
2161 * and pmd_trans_splitting must remain set at all times on the pmd
2162 * until the split is complete for this pmd), then we flush the SMP TLB
2163 * and finally we write the non-huge version of the pmd entry with
2164 * pmd_populate.
2165 */
2166 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2167 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2168
2169 if (freeze) {
2ac015e2 2170 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2171 page_remove_rmap(page + i, false);
2172 put_page(page + i);
2173 }
2174 }
eef1b3ba
KS
2175}
2176
2177void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 2178 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
2179{
2180 spinlock_t *ptl;
2181 struct mm_struct *mm = vma->vm_mm;
2182 unsigned long haddr = address & HPAGE_PMD_MASK;
2183
2184 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2185 ptl = pmd_lock(mm, pmd);
33f4751e
NH
2186
2187 /*
2188 * If caller asks to setup a migration entries, we need a page to check
2189 * pmd against. Otherwise we can end up replacing wrong page.
2190 */
2191 VM_BUG_ON(freeze && !page);
2192 if (page && page != pmd_page(*pmd))
2193 goto out;
2194
5c7fb56e 2195 if (pmd_trans_huge(*pmd)) {
33f4751e 2196 page = pmd_page(*pmd);
5c7fb56e 2197 if (PageMlocked(page))
5f737714 2198 clear_page_mlock(page);
84c3fc4e 2199 } else if (!(pmd_devmap(*pmd) || is_pmd_migration_entry(*pmd)))
e90309c9 2200 goto out;
fec89c10 2201 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2202out:
eef1b3ba
KS
2203 spin_unlock(ptl);
2204 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2205}
2206
fec89c10
KS
2207void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2208 bool freeze, struct page *page)
94fcc585 2209{
f72e7dcd 2210 pgd_t *pgd;
c2febafc 2211 p4d_t *p4d;
f72e7dcd 2212 pud_t *pud;
94fcc585
AA
2213 pmd_t *pmd;
2214
78ddc534 2215 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2216 if (!pgd_present(*pgd))
2217 return;
2218
c2febafc
KS
2219 p4d = p4d_offset(pgd, address);
2220 if (!p4d_present(*p4d))
2221 return;
2222
2223 pud = pud_offset(p4d, address);
f72e7dcd
HD
2224 if (!pud_present(*pud))
2225 return;
2226
2227 pmd = pmd_offset(pud, address);
fec89c10 2228
33f4751e 2229 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
2230}
2231
e1b9996b 2232void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
2233 unsigned long start,
2234 unsigned long end,
2235 long adjust_next)
2236{
2237 /*
2238 * If the new start address isn't hpage aligned and it could
2239 * previously contain an hugepage: check if we need to split
2240 * an huge pmd.
2241 */
2242 if (start & ~HPAGE_PMD_MASK &&
2243 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2244 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2245 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
2246
2247 /*
2248 * If the new end address isn't hpage aligned and it could
2249 * previously contain an hugepage: check if we need to split
2250 * an huge pmd.
2251 */
2252 if (end & ~HPAGE_PMD_MASK &&
2253 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2254 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 2255 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
2256
2257 /*
2258 * If we're also updating the vma->vm_next->vm_start, if the new
2259 * vm_next->vm_start isn't page aligned and it could previously
2260 * contain an hugepage: check if we need to split an huge pmd.
2261 */
2262 if (adjust_next > 0) {
2263 struct vm_area_struct *next = vma->vm_next;
2264 unsigned long nstart = next->vm_start;
2265 nstart += adjust_next << PAGE_SHIFT;
2266 if (nstart & ~HPAGE_PMD_MASK &&
2267 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2268 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 2269 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
2270 }
2271}
e9b61f19 2272
fec89c10 2273static void freeze_page(struct page *page)
e9b61f19 2274{
baa355fd 2275 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
c7ab0d2f 2276 TTU_RMAP_LOCKED | TTU_SPLIT_HUGE_PMD;
666e5a40 2277 bool unmap_success;
e9b61f19
KS
2278
2279 VM_BUG_ON_PAGE(!PageHead(page), page);
2280
baa355fd 2281 if (PageAnon(page))
b5ff8161 2282 ttu_flags |= TTU_SPLIT_FREEZE;
baa355fd 2283
666e5a40
MK
2284 unmap_success = try_to_unmap(page, ttu_flags);
2285 VM_BUG_ON_PAGE(!unmap_success, page);
e9b61f19
KS
2286}
2287
fec89c10 2288static void unfreeze_page(struct page *page)
e9b61f19 2289{
fec89c10 2290 int i;
ace71a19
KS
2291 if (PageTransHuge(page)) {
2292 remove_migration_ptes(page, page, true);
2293 } else {
2294 for (i = 0; i < HPAGE_PMD_NR; i++)
2295 remove_migration_ptes(page + i, page + i, true);
2296 }
e9b61f19
KS
2297}
2298
8df651c7 2299static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
2300 struct lruvec *lruvec, struct list_head *list)
2301{
e9b61f19
KS
2302 struct page *page_tail = head + tail;
2303
8df651c7 2304 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 2305 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
2306
2307 /*
0139aa7b 2308 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 2309 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
2310 * tail_page. If we used atomic_set() below instead of atomic_inc() or
2311 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
2312 * get_page_unless_zero(), and atomic_set() is implemented in C not
2313 * using locked ops. spin_unlock on x86 sometime uses locked ops
2314 * because of PPro errata 66, 92, so unless somebody can guarantee
2315 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 2316 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 2317 */
38d8b4e6 2318 if (PageAnon(head) && !PageSwapCache(head)) {
baa355fd
KS
2319 page_ref_inc(page_tail);
2320 } else {
2321 /* Additional pin to radix tree */
2322 page_ref_add(page_tail, 2);
2323 }
e9b61f19
KS
2324
2325 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
2326 page_tail->flags |= (head->flags &
2327 ((1L << PG_referenced) |
2328 (1L << PG_swapbacked) |
38d8b4e6 2329 (1L << PG_swapcache) |
e9b61f19
KS
2330 (1L << PG_mlocked) |
2331 (1L << PG_uptodate) |
2332 (1L << PG_active) |
2333 (1L << PG_locked) |
b8d3c4c3
MK
2334 (1L << PG_unevictable) |
2335 (1L << PG_dirty)));
e9b61f19
KS
2336
2337 /*
2338 * After clearing PageTail the gup refcount can be released.
2339 * Page flags also must be visible before we make the page non-compound.
2340 */
2341 smp_wmb();
2342
2343 clear_compound_head(page_tail);
2344
2345 if (page_is_young(head))
2346 set_page_young(page_tail);
2347 if (page_is_idle(head))
2348 set_page_idle(page_tail);
2349
2350 /* ->mapping in first tail page is compound_mapcount */
9a982250 2351 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
2352 page_tail);
2353 page_tail->mapping = head->mapping;
2354
2355 page_tail->index = head->index + tail;
2356 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
2357 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
2358}
2359
baa355fd
KS
2360static void __split_huge_page(struct page *page, struct list_head *list,
2361 unsigned long flags)
e9b61f19
KS
2362{
2363 struct page *head = compound_head(page);
2364 struct zone *zone = page_zone(head);
2365 struct lruvec *lruvec;
baa355fd 2366 pgoff_t end = -1;
8df651c7 2367 int i;
e9b61f19 2368
599d0c95 2369 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
2370
2371 /* complete memcg works before add pages to LRU */
2372 mem_cgroup_split_huge_fixup(head);
2373
baa355fd
KS
2374 if (!PageAnon(page))
2375 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
2376
2377 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 2378 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
2379 /* Some pages can be beyond i_size: drop them from page cache */
2380 if (head[i].index >= end) {
2381 __ClearPageDirty(head + i);
2382 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
2383 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
2384 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
2385 put_page(head + i);
2386 }
2387 }
e9b61f19
KS
2388
2389 ClearPageCompound(head);
baa355fd
KS
2390 /* See comment in __split_huge_page_tail() */
2391 if (PageAnon(head)) {
38d8b4e6
HY
2392 /* Additional pin to radix tree of swap cache */
2393 if (PageSwapCache(head))
2394 page_ref_add(head, 2);
2395 else
2396 page_ref_inc(head);
baa355fd
KS
2397 } else {
2398 /* Additional pin to radix tree */
2399 page_ref_add(head, 2);
2400 spin_unlock(&head->mapping->tree_lock);
2401 }
2402
a52633d8 2403 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 2404
fec89c10 2405 unfreeze_page(head);
e9b61f19
KS
2406
2407 for (i = 0; i < HPAGE_PMD_NR; i++) {
2408 struct page *subpage = head + i;
2409 if (subpage == page)
2410 continue;
2411 unlock_page(subpage);
2412
2413 /*
2414 * Subpages may be freed if there wasn't any mapping
2415 * like if add_to_swap() is running on a lru page that
2416 * had its mapping zapped. And freeing these pages
2417 * requires taking the lru_lock so we do the put_page
2418 * of the tail pages after the split is complete.
2419 */
2420 put_page(subpage);
2421 }
2422}
2423
b20ce5e0
KS
2424int total_mapcount(struct page *page)
2425{
dd78fedd 2426 int i, compound, ret;
b20ce5e0
KS
2427
2428 VM_BUG_ON_PAGE(PageTail(page), page);
2429
2430 if (likely(!PageCompound(page)))
2431 return atomic_read(&page->_mapcount) + 1;
2432
dd78fedd 2433 compound = compound_mapcount(page);
b20ce5e0 2434 if (PageHuge(page))
dd78fedd
KS
2435 return compound;
2436 ret = compound;
b20ce5e0
KS
2437 for (i = 0; i < HPAGE_PMD_NR; i++)
2438 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2439 /* File pages has compound_mapcount included in _mapcount */
2440 if (!PageAnon(page))
2441 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2442 if (PageDoubleMap(page))
2443 ret -= HPAGE_PMD_NR;
2444 return ret;
2445}
2446
6d0a07ed
AA
2447/*
2448 * This calculates accurately how many mappings a transparent hugepage
2449 * has (unlike page_mapcount() which isn't fully accurate). This full
2450 * accuracy is primarily needed to know if copy-on-write faults can
2451 * reuse the page and change the mapping to read-write instead of
2452 * copying them. At the same time this returns the total_mapcount too.
2453 *
2454 * The function returns the highest mapcount any one of the subpages
2455 * has. If the return value is one, even if different processes are
2456 * mapping different subpages of the transparent hugepage, they can
2457 * all reuse it, because each process is reusing a different subpage.
2458 *
2459 * The total_mapcount is instead counting all virtual mappings of the
2460 * subpages. If the total_mapcount is equal to "one", it tells the
2461 * caller all mappings belong to the same "mm" and in turn the
2462 * anon_vma of the transparent hugepage can become the vma->anon_vma
2463 * local one as no other process may be mapping any of the subpages.
2464 *
2465 * It would be more accurate to replace page_mapcount() with
2466 * page_trans_huge_mapcount(), however we only use
2467 * page_trans_huge_mapcount() in the copy-on-write faults where we
2468 * need full accuracy to avoid breaking page pinning, because
2469 * page_trans_huge_mapcount() is slower than page_mapcount().
2470 */
2471int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2472{
2473 int i, ret, _total_mapcount, mapcount;
2474
2475 /* hugetlbfs shouldn't call it */
2476 VM_BUG_ON_PAGE(PageHuge(page), page);
2477
2478 if (likely(!PageTransCompound(page))) {
2479 mapcount = atomic_read(&page->_mapcount) + 1;
2480 if (total_mapcount)
2481 *total_mapcount = mapcount;
2482 return mapcount;
2483 }
2484
2485 page = compound_head(page);
2486
2487 _total_mapcount = ret = 0;
2488 for (i = 0; i < HPAGE_PMD_NR; i++) {
2489 mapcount = atomic_read(&page[i]._mapcount) + 1;
2490 ret = max(ret, mapcount);
2491 _total_mapcount += mapcount;
2492 }
2493 if (PageDoubleMap(page)) {
2494 ret -= 1;
2495 _total_mapcount -= HPAGE_PMD_NR;
2496 }
2497 mapcount = compound_mapcount(page);
2498 ret += mapcount;
2499 _total_mapcount += mapcount;
2500 if (total_mapcount)
2501 *total_mapcount = _total_mapcount;
2502 return ret;
2503}
2504
b8f593cd
HY
2505/* Racy check whether the huge page can be split */
2506bool can_split_huge_page(struct page *page, int *pextra_pins)
2507{
2508 int extra_pins;
2509
2510 /* Additional pins from radix tree */
2511 if (PageAnon(page))
2512 extra_pins = PageSwapCache(page) ? HPAGE_PMD_NR : 0;
2513 else
2514 extra_pins = HPAGE_PMD_NR;
2515 if (pextra_pins)
2516 *pextra_pins = extra_pins;
2517 return total_mapcount(page) == page_count(page) - extra_pins - 1;
2518}
2519
e9b61f19
KS
2520/*
2521 * This function splits huge page into normal pages. @page can point to any
2522 * subpage of huge page to split. Split doesn't change the position of @page.
2523 *
2524 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2525 * The huge page must be locked.
2526 *
2527 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2528 *
2529 * Both head page and tail pages will inherit mapping, flags, and so on from
2530 * the hugepage.
2531 *
2532 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2533 * they are not mapped.
2534 *
2535 * Returns 0 if the hugepage is split successfully.
2536 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2537 * us.
2538 */
2539int split_huge_page_to_list(struct page *page, struct list_head *list)
2540{
2541 struct page *head = compound_head(page);
a3d0a918 2542 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2543 struct anon_vma *anon_vma = NULL;
2544 struct address_space *mapping = NULL;
2545 int count, mapcount, extra_pins, ret;
d9654322 2546 bool mlocked;
0b9b6fff 2547 unsigned long flags;
e9b61f19
KS
2548
2549 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19 2550 VM_BUG_ON_PAGE(!PageLocked(page), page);
e9b61f19
KS
2551 VM_BUG_ON_PAGE(!PageCompound(page), page);
2552
59807685
HY
2553 if (PageWriteback(page))
2554 return -EBUSY;
2555
baa355fd
KS
2556 if (PageAnon(head)) {
2557 /*
2558 * The caller does not necessarily hold an mmap_sem that would
2559 * prevent the anon_vma disappearing so we first we take a
2560 * reference to it and then lock the anon_vma for write. This
2561 * is similar to page_lock_anon_vma_read except the write lock
2562 * is taken to serialise against parallel split or collapse
2563 * operations.
2564 */
2565 anon_vma = page_get_anon_vma(head);
2566 if (!anon_vma) {
2567 ret = -EBUSY;
2568 goto out;
2569 }
baa355fd
KS
2570 mapping = NULL;
2571 anon_vma_lock_write(anon_vma);
2572 } else {
2573 mapping = head->mapping;
2574
2575 /* Truncated ? */
2576 if (!mapping) {
2577 ret = -EBUSY;
2578 goto out;
2579 }
2580
baa355fd
KS
2581 anon_vma = NULL;
2582 i_mmap_lock_read(mapping);
e9b61f19 2583 }
e9b61f19
KS
2584
2585 /*
2586 * Racy check if we can split the page, before freeze_page() will
2587 * split PMDs
2588 */
b8f593cd 2589 if (!can_split_huge_page(head, &extra_pins)) {
e9b61f19
KS
2590 ret = -EBUSY;
2591 goto out_unlock;
2592 }
2593
d9654322 2594 mlocked = PageMlocked(page);
fec89c10 2595 freeze_page(head);
e9b61f19
KS
2596 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2597
d9654322
KS
2598 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2599 if (mlocked)
2600 lru_add_drain();
2601
baa355fd 2602 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2603 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2604
2605 if (mapping) {
2606 void **pslot;
2607
2608 spin_lock(&mapping->tree_lock);
2609 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2610 page_index(head));
2611 /*
2612 * Check if the head page is present in radix tree.
2613 * We assume all tail are present too, if head is there.
2614 */
2615 if (radix_tree_deref_slot_protected(pslot,
2616 &mapping->tree_lock) != head)
2617 goto fail;
2618 }
2619
0139aa7b 2620 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2621 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2622 count = page_count(head);
2623 mapcount = total_mapcount(head);
baa355fd 2624 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2625 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2626 pgdata->split_queue_len--;
9a982250
KS
2627 list_del(page_deferred_list(head));
2628 }
65c45377 2629 if (mapping)
11fb9989 2630 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2631 spin_unlock(&pgdata->split_queue_lock);
2632 __split_huge_page(page, list, flags);
59807685
HY
2633 if (PageSwapCache(head)) {
2634 swp_entry_t entry = { .val = page_private(head) };
2635
2636 ret = split_swap_cluster(entry);
2637 } else
2638 ret = 0;
e9b61f19 2639 } else {
baa355fd
KS
2640 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2641 pr_alert("total_mapcount: %u, page_count(): %u\n",
2642 mapcount, count);
2643 if (PageTail(page))
2644 dump_page(head, NULL);
2645 dump_page(page, "total_mapcount(head) > 0");
2646 BUG();
2647 }
2648 spin_unlock(&pgdata->split_queue_lock);
2649fail: if (mapping)
2650 spin_unlock(&mapping->tree_lock);
a52633d8 2651 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2652 unfreeze_page(head);
e9b61f19
KS
2653 ret = -EBUSY;
2654 }
2655
2656out_unlock:
baa355fd
KS
2657 if (anon_vma) {
2658 anon_vma_unlock_write(anon_vma);
2659 put_anon_vma(anon_vma);
2660 }
2661 if (mapping)
2662 i_mmap_unlock_read(mapping);
e9b61f19
KS
2663out:
2664 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2665 return ret;
2666}
9a982250
KS
2667
2668void free_transhuge_page(struct page *page)
2669{
a3d0a918 2670 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2671 unsigned long flags;
2672
a3d0a918 2673 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2674 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2675 pgdata->split_queue_len--;
9a982250
KS
2676 list_del(page_deferred_list(page));
2677 }
a3d0a918 2678 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2679 free_compound_page(page);
2680}
2681
2682void deferred_split_huge_page(struct page *page)
2683{
a3d0a918 2684 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2685 unsigned long flags;
2686
2687 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2688
a3d0a918 2689 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2690 if (list_empty(page_deferred_list(page))) {
f9719a03 2691 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2692 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2693 pgdata->split_queue_len++;
9a982250 2694 }
a3d0a918 2695 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2696}
2697
2698static unsigned long deferred_split_count(struct shrinker *shrink,
2699 struct shrink_control *sc)
2700{
a3d0a918 2701 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2702 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2703}
2704
2705static unsigned long deferred_split_scan(struct shrinker *shrink,
2706 struct shrink_control *sc)
2707{
a3d0a918 2708 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2709 unsigned long flags;
2710 LIST_HEAD(list), *pos, *next;
2711 struct page *page;
2712 int split = 0;
2713
a3d0a918 2714 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2715 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2716 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2717 page = list_entry((void *)pos, struct page, mapping);
2718 page = compound_head(page);
e3ae1953
KS
2719 if (get_page_unless_zero(page)) {
2720 list_move(page_deferred_list(page), &list);
2721 } else {
2722 /* We lost race with put_compound_page() */
9a982250 2723 list_del_init(page_deferred_list(page));
a3d0a918 2724 pgdata->split_queue_len--;
9a982250 2725 }
e3ae1953
KS
2726 if (!--sc->nr_to_scan)
2727 break;
9a982250 2728 }
a3d0a918 2729 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2730
2731 list_for_each_safe(pos, next, &list) {
2732 page = list_entry((void *)pos, struct page, mapping);
2733 lock_page(page);
2734 /* split_huge_page() removes page from list on success */
2735 if (!split_huge_page(page))
2736 split++;
2737 unlock_page(page);
2738 put_page(page);
2739 }
2740
a3d0a918
KS
2741 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2742 list_splice_tail(&list, &pgdata->split_queue);
2743 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2744
cb8d68ec
KS
2745 /*
2746 * Stop shrinker if we didn't split any page, but the queue is empty.
2747 * This can happen if pages were freed under us.
2748 */
2749 if (!split && list_empty(&pgdata->split_queue))
2750 return SHRINK_STOP;
2751 return split;
9a982250
KS
2752}
2753
2754static struct shrinker deferred_split_shrinker = {
2755 .count_objects = deferred_split_count,
2756 .scan_objects = deferred_split_scan,
2757 .seeks = DEFAULT_SEEKS,
a3d0a918 2758 .flags = SHRINKER_NUMA_AWARE,
9a982250 2759};
49071d43
KS
2760
2761#ifdef CONFIG_DEBUG_FS
2762static int split_huge_pages_set(void *data, u64 val)
2763{
2764 struct zone *zone;
2765 struct page *page;
2766 unsigned long pfn, max_zone_pfn;
2767 unsigned long total = 0, split = 0;
2768
2769 if (val != 1)
2770 return -EINVAL;
2771
2772 for_each_populated_zone(zone) {
2773 max_zone_pfn = zone_end_pfn(zone);
2774 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2775 if (!pfn_valid(pfn))
2776 continue;
2777
2778 page = pfn_to_page(pfn);
2779 if (!get_page_unless_zero(page))
2780 continue;
2781
2782 if (zone != page_zone(page))
2783 goto next;
2784
baa355fd 2785 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2786 goto next;
2787
2788 total++;
2789 lock_page(page);
2790 if (!split_huge_page(page))
2791 split++;
2792 unlock_page(page);
2793next:
2794 put_page(page);
2795 }
2796 }
2797
145bdaa1 2798 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2799
2800 return 0;
2801}
2802DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2803 "%llu\n");
2804
2805static int __init split_huge_pages_debugfs(void)
2806{
2807 void *ret;
2808
145bdaa1 2809 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2810 &split_huge_pages_fops);
2811 if (!ret)
2812 pr_warn("Failed to create split_huge_pages in debugfs");
2813 return 0;
2814}
2815late_initcall(split_huge_pages_debugfs);
2816#endif
616b8371
ZY
2817
2818#ifdef CONFIG_ARCH_ENABLE_THP_MIGRATION
2819void set_pmd_migration_entry(struct page_vma_mapped_walk *pvmw,
2820 struct page *page)
2821{
2822 struct vm_area_struct *vma = pvmw->vma;
2823 struct mm_struct *mm = vma->vm_mm;
2824 unsigned long address = pvmw->address;
2825 pmd_t pmdval;
2826 swp_entry_t entry;
2827
2828 if (!(pvmw->pmd && !pvmw->pte))
2829 return;
2830
2831 mmu_notifier_invalidate_range_start(mm, address,
2832 address + HPAGE_PMD_SIZE);
2833
2834 flush_cache_range(vma, address, address + HPAGE_PMD_SIZE);
2835 pmdval = *pvmw->pmd;
2836 pmdp_invalidate(vma, address, pvmw->pmd);
2837 if (pmd_dirty(pmdval))
2838 set_page_dirty(page);
2839 entry = make_migration_entry(page, pmd_write(pmdval));
2840 pmdval = swp_entry_to_pmd(entry);
2841 set_pmd_at(mm, address, pvmw->pmd, pmdval);
2842 page_remove_rmap(page, true);
2843 put_page(page);
2844
2845 mmu_notifier_invalidate_range_end(mm, address,
2846 address + HPAGE_PMD_SIZE);
2847}
2848
2849void remove_migration_pmd(struct page_vma_mapped_walk *pvmw, struct page *new)
2850{
2851 struct vm_area_struct *vma = pvmw->vma;
2852 struct mm_struct *mm = vma->vm_mm;
2853 unsigned long address = pvmw->address;
2854 unsigned long mmun_start = address & HPAGE_PMD_MASK;
2855 pmd_t pmde;
2856 swp_entry_t entry;
2857
2858 if (!(pvmw->pmd && !pvmw->pte))
2859 return;
2860
2861 entry = pmd_to_swp_entry(*pvmw->pmd);
2862 get_page(new);
2863 pmde = pmd_mkold(mk_huge_pmd(new, vma->vm_page_prot));
2864 if (is_write_migration_entry(entry))
2865 pmde = maybe_pmd_mkwrite(pmde, vma);
2866
2867 flush_cache_range(vma, mmun_start, mmun_start + HPAGE_PMD_SIZE);
2868 page_add_anon_rmap(new, vma, mmun_start, true);
2869 set_pmd_at(mm, mmun_start, pvmw->pmd, pmde);
2870 if (vma->vm_flags & VM_LOCKED)
2871 mlock_vma_page(new);
2872 update_mmu_cache_pmd(vma, address, pvmw->pmd);
2873}
2874#endif