]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
Merge tag 'dm-4.5-fix' of git://git.kernel.org/pub/scm/linux/kernel/git/device-mapper...
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61};
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/huge_memory.h>
65
ba76149f 66/*
8bfa3f9a
JW
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
ba76149f 73 */
71e3aac0 74unsigned long transparent_hugepage_flags __read_mostly =
13ece886 75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
77#endif
78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80#endif
d39d33c3 81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
84
85/* default scan 8*512 pte (or vmas) every 30 second */
86static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
87static unsigned int khugepaged_pages_collapsed;
88static unsigned int khugepaged_full_scans;
89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90/* during fragmentation poll the hugepage allocator once every minute */
91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92static struct task_struct *khugepaged_thread __read_mostly;
93static DEFINE_MUTEX(khugepaged_mutex);
94static DEFINE_SPINLOCK(khugepaged_mm_lock);
95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96/*
97 * default collapse hugepages if there is at least one pte mapped like
98 * it would have happened if the vma was large enough during page
99 * fault.
100 */
101static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
102
103static int khugepaged(void *none);
ba76149f 104static int khugepaged_slab_init(void);
65ebb64f 105static void khugepaged_slab_exit(void);
ba76149f 106
43b5fbbd
SL
107#define MM_SLOTS_HASH_BITS 10
108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
ba76149f
AA
110static struct kmem_cache *mm_slot_cache __read_mostly;
111
112/**
113 * struct mm_slot - hash lookup from mm to mm_slot
114 * @hash: hash collision list
115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116 * @mm: the mm that this information is valid for
117 */
118struct mm_slot {
119 struct hlist_node hash;
120 struct list_head mm_node;
121 struct mm_struct *mm;
122};
123
124/**
125 * struct khugepaged_scan - cursor for scanning
126 * @mm_head: the head of the mm list to scan
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
129 *
130 * There is only the one khugepaged_scan instance of this cursor structure.
131 */
132struct khugepaged_scan {
133 struct list_head mm_head;
134 struct mm_slot *mm_slot;
135 unsigned long address;
2f1da642
HS
136};
137static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
138 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139};
140
9a982250 141static struct shrinker deferred_split_shrinker;
f000565a 142
2c0b80d4 143static void set_recommended_min_free_kbytes(void)
f000565a
AA
144{
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
f000565a 148
f000565a
AA
149 for_each_populated_zone(zone)
150 nr_zones++;
151
974a786e 152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
42aa83cb
HP
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
171 pr_info("raising min_free_kbytes from %d to %lu "
172 "to help transparent hugepage allocations\n",
173 min_free_kbytes, recommended_min);
174
f000565a 175 min_free_kbytes = recommended_min;
42aa83cb 176 }
f000565a 177 setup_per_zone_wmarks();
f000565a 178}
f000565a 179
79553da2 180static int start_stop_khugepaged(void)
ba76149f
AA
181{
182 int err = 0;
183 if (khugepaged_enabled()) {
ba76149f
AA
184 if (!khugepaged_thread)
185 khugepaged_thread = kthread_run(khugepaged, NULL,
186 "khugepaged");
18e8e5c7 187 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 188 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
189 err = PTR_ERR(khugepaged_thread);
190 khugepaged_thread = NULL;
79553da2 191 goto fail;
ba76149f 192 }
911891af
XG
193
194 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 195 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
196
197 set_recommended_min_free_kbytes();
911891af 198 } else if (khugepaged_thread) {
911891af
XG
199 kthread_stop(khugepaged_thread);
200 khugepaged_thread = NULL;
201 }
79553da2 202fail:
ba76149f
AA
203 return err;
204}
71e3aac0 205
97ae1749 206static atomic_t huge_zero_refcount;
56873f43 207struct page *huge_zero_page __read_mostly;
4a6c1297 208
fc437044 209struct page *get_huge_zero_page(void)
97ae1749
KS
210{
211 struct page *zero_page;
212retry:
213 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 214 return READ_ONCE(huge_zero_page);
97ae1749
KS
215
216 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 217 HPAGE_PMD_ORDER);
d8a8e1f0
KS
218 if (!zero_page) {
219 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 220 return NULL;
d8a8e1f0
KS
221 }
222 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 223 preempt_disable();
5918d10a 224 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 225 preempt_enable();
5ddacbe9 226 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
227 goto retry;
228 }
229
230 /* We take additional reference here. It will be put back by shrinker */
231 atomic_set(&huge_zero_refcount, 2);
232 preempt_enable();
4db0c3c2 233 return READ_ONCE(huge_zero_page);
4a6c1297
KS
234}
235
97ae1749 236static void put_huge_zero_page(void)
4a6c1297 237{
97ae1749
KS
238 /*
239 * Counter should never go to zero here. Only shrinker can put
240 * last reference.
241 */
242 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
243}
244
48896466
GC
245static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
246 struct shrink_control *sc)
4a6c1297 247{
48896466
GC
248 /* we can free zero page only if last reference remains */
249 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
250}
97ae1749 251
48896466
GC
252static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
253 struct shrink_control *sc)
254{
97ae1749 255 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
256 struct page *zero_page = xchg(&huge_zero_page, NULL);
257 BUG_ON(zero_page == NULL);
5ddacbe9 258 __free_pages(zero_page, compound_order(zero_page));
48896466 259 return HPAGE_PMD_NR;
97ae1749
KS
260 }
261
262 return 0;
4a6c1297
KS
263}
264
97ae1749 265static struct shrinker huge_zero_page_shrinker = {
48896466
GC
266 .count_objects = shrink_huge_zero_page_count,
267 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
268 .seeks = DEFAULT_SEEKS,
269};
270
71e3aac0 271#ifdef CONFIG_SYSFS
ba76149f 272
71e3aac0
AA
273static ssize_t double_flag_show(struct kobject *kobj,
274 struct kobj_attribute *attr, char *buf,
275 enum transparent_hugepage_flag enabled,
276 enum transparent_hugepage_flag req_madv)
277{
278 if (test_bit(enabled, &transparent_hugepage_flags)) {
279 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
280 return sprintf(buf, "[always] madvise never\n");
281 } else if (test_bit(req_madv, &transparent_hugepage_flags))
282 return sprintf(buf, "always [madvise] never\n");
283 else
284 return sprintf(buf, "always madvise [never]\n");
285}
286static ssize_t double_flag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count,
289 enum transparent_hugepage_flag enabled,
290 enum transparent_hugepage_flag req_madv)
291{
292 if (!memcmp("always", buf,
293 min(sizeof("always")-1, count))) {
294 set_bit(enabled, &transparent_hugepage_flags);
295 clear_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("madvise", buf,
297 min(sizeof("madvise")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 set_bit(req_madv, &transparent_hugepage_flags);
300 } else if (!memcmp("never", buf,
301 min(sizeof("never")-1, count))) {
302 clear_bit(enabled, &transparent_hugepage_flags);
303 clear_bit(req_madv, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308}
309
310static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312{
313 return double_flag_show(kobj, attr, buf,
314 TRANSPARENT_HUGEPAGE_FLAG,
315 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
316}
317static ssize_t enabled_store(struct kobject *kobj,
318 struct kobj_attribute *attr,
319 const char *buf, size_t count)
320{
ba76149f
AA
321 ssize_t ret;
322
323 ret = double_flag_store(kobj, attr, buf, count,
324 TRANSPARENT_HUGEPAGE_FLAG,
325 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
326
327 if (ret > 0) {
911891af
XG
328 int err;
329
330 mutex_lock(&khugepaged_mutex);
79553da2 331 err = start_stop_khugepaged();
911891af
XG
332 mutex_unlock(&khugepaged_mutex);
333
ba76149f
AA
334 if (err)
335 ret = err;
336 }
337
338 return ret;
71e3aac0
AA
339}
340static struct kobj_attribute enabled_attr =
341 __ATTR(enabled, 0644, enabled_show, enabled_store);
342
343static ssize_t single_flag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf,
345 enum transparent_hugepage_flag flag)
346{
e27e6151
BH
347 return sprintf(buf, "%d\n",
348 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 349}
e27e6151 350
71e3aac0
AA
351static ssize_t single_flag_store(struct kobject *kobj,
352 struct kobj_attribute *attr,
353 const char *buf, size_t count,
354 enum transparent_hugepage_flag flag)
355{
e27e6151
BH
356 unsigned long value;
357 int ret;
358
359 ret = kstrtoul(buf, 10, &value);
360 if (ret < 0)
361 return ret;
362 if (value > 1)
363 return -EINVAL;
364
365 if (value)
71e3aac0 366 set_bit(flag, &transparent_hugepage_flags);
e27e6151 367 else
71e3aac0 368 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
369
370 return count;
371}
372
373/*
374 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
375 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
376 * memory just to allocate one more hugepage.
377 */
378static ssize_t defrag_show(struct kobject *kobj,
379 struct kobj_attribute *attr, char *buf)
380{
381 return double_flag_show(kobj, attr, buf,
382 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
383 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
384}
385static ssize_t defrag_store(struct kobject *kobj,
386 struct kobj_attribute *attr,
387 const char *buf, size_t count)
388{
389 return double_flag_store(kobj, attr, buf, count,
390 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
391 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
392}
393static struct kobj_attribute defrag_attr =
394 __ATTR(defrag, 0644, defrag_show, defrag_store);
395
79da5407
KS
396static ssize_t use_zero_page_show(struct kobject *kobj,
397 struct kobj_attribute *attr, char *buf)
398{
399 return single_flag_show(kobj, attr, buf,
400 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
401}
402static ssize_t use_zero_page_store(struct kobject *kobj,
403 struct kobj_attribute *attr, const char *buf, size_t count)
404{
405 return single_flag_store(kobj, attr, buf, count,
406 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
407}
408static struct kobj_attribute use_zero_page_attr =
409 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
410#ifdef CONFIG_DEBUG_VM
411static ssize_t debug_cow_show(struct kobject *kobj,
412 struct kobj_attribute *attr, char *buf)
413{
414 return single_flag_show(kobj, attr, buf,
415 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
416}
417static ssize_t debug_cow_store(struct kobject *kobj,
418 struct kobj_attribute *attr,
419 const char *buf, size_t count)
420{
421 return single_flag_store(kobj, attr, buf, count,
422 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
423}
424static struct kobj_attribute debug_cow_attr =
425 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
426#endif /* CONFIG_DEBUG_VM */
427
428static struct attribute *hugepage_attr[] = {
429 &enabled_attr.attr,
430 &defrag_attr.attr,
79da5407 431 &use_zero_page_attr.attr,
71e3aac0
AA
432#ifdef CONFIG_DEBUG_VM
433 &debug_cow_attr.attr,
434#endif
435 NULL,
436};
437
438static struct attribute_group hugepage_attr_group = {
439 .attrs = hugepage_attr,
ba76149f
AA
440};
441
442static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 char *buf)
445{
446 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
447}
448
449static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 const char *buf, size_t count)
452{
453 unsigned long msecs;
454 int err;
455
3dbb95f7 456 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
457 if (err || msecs > UINT_MAX)
458 return -EINVAL;
459
460 khugepaged_scan_sleep_millisecs = msecs;
461 wake_up_interruptible(&khugepaged_wait);
462
463 return count;
464}
465static struct kobj_attribute scan_sleep_millisecs_attr =
466 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
467 scan_sleep_millisecs_store);
468
469static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 char *buf)
472{
473 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
474}
475
476static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
477 struct kobj_attribute *attr,
478 const char *buf, size_t count)
479{
480 unsigned long msecs;
481 int err;
482
3dbb95f7 483 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
484 if (err || msecs > UINT_MAX)
485 return -EINVAL;
486
487 khugepaged_alloc_sleep_millisecs = msecs;
488 wake_up_interruptible(&khugepaged_wait);
489
490 return count;
491}
492static struct kobj_attribute alloc_sleep_millisecs_attr =
493 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
494 alloc_sleep_millisecs_store);
495
496static ssize_t pages_to_scan_show(struct kobject *kobj,
497 struct kobj_attribute *attr,
498 char *buf)
499{
500 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
501}
502static ssize_t pages_to_scan_store(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 const char *buf, size_t count)
505{
506 int err;
507 unsigned long pages;
508
3dbb95f7 509 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
510 if (err || !pages || pages > UINT_MAX)
511 return -EINVAL;
512
513 khugepaged_pages_to_scan = pages;
514
515 return count;
516}
517static struct kobj_attribute pages_to_scan_attr =
518 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
519 pages_to_scan_store);
520
521static ssize_t pages_collapsed_show(struct kobject *kobj,
522 struct kobj_attribute *attr,
523 char *buf)
524{
525 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
526}
527static struct kobj_attribute pages_collapsed_attr =
528 __ATTR_RO(pages_collapsed);
529
530static ssize_t full_scans_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533{
534 return sprintf(buf, "%u\n", khugepaged_full_scans);
535}
536static struct kobj_attribute full_scans_attr =
537 __ATTR_RO(full_scans);
538
539static ssize_t khugepaged_defrag_show(struct kobject *kobj,
540 struct kobj_attribute *attr, char *buf)
541{
542 return single_flag_show(kobj, attr, buf,
543 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
544}
545static ssize_t khugepaged_defrag_store(struct kobject *kobj,
546 struct kobj_attribute *attr,
547 const char *buf, size_t count)
548{
549 return single_flag_store(kobj, attr, buf, count,
550 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
551}
552static struct kobj_attribute khugepaged_defrag_attr =
553 __ATTR(defrag, 0644, khugepaged_defrag_show,
554 khugepaged_defrag_store);
555
556/*
557 * max_ptes_none controls if khugepaged should collapse hugepages over
558 * any unmapped ptes in turn potentially increasing the memory
559 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
560 * reduce the available free memory in the system as it
561 * runs. Increasing max_ptes_none will instead potentially reduce the
562 * free memory in the system during the khugepaged scan.
563 */
564static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
565 struct kobj_attribute *attr,
566 char *buf)
567{
568 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
569}
570static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
571 struct kobj_attribute *attr,
572 const char *buf, size_t count)
573{
574 int err;
575 unsigned long max_ptes_none;
576
3dbb95f7 577 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
578 if (err || max_ptes_none > HPAGE_PMD_NR-1)
579 return -EINVAL;
580
581 khugepaged_max_ptes_none = max_ptes_none;
582
583 return count;
584}
585static struct kobj_attribute khugepaged_max_ptes_none_attr =
586 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
587 khugepaged_max_ptes_none_store);
588
589static struct attribute *khugepaged_attr[] = {
590 &khugepaged_defrag_attr.attr,
591 &khugepaged_max_ptes_none_attr.attr,
592 &pages_to_scan_attr.attr,
593 &pages_collapsed_attr.attr,
594 &full_scans_attr.attr,
595 &scan_sleep_millisecs_attr.attr,
596 &alloc_sleep_millisecs_attr.attr,
597 NULL,
598};
599
600static struct attribute_group khugepaged_attr_group = {
601 .attrs = khugepaged_attr,
602 .name = "khugepaged",
71e3aac0 603};
71e3aac0 604
569e5590 605static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 606{
71e3aac0
AA
607 int err;
608
569e5590
SL
609 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
610 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 611 pr_err("failed to create transparent hugepage kobject\n");
569e5590 612 return -ENOMEM;
ba76149f
AA
613 }
614
569e5590 615 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 616 if (err) {
ae3a8c1c 617 pr_err("failed to register transparent hugepage group\n");
569e5590 618 goto delete_obj;
ba76149f
AA
619 }
620
569e5590 621 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 622 if (err) {
ae3a8c1c 623 pr_err("failed to register transparent hugepage group\n");
569e5590 624 goto remove_hp_group;
ba76149f 625 }
569e5590
SL
626
627 return 0;
628
629remove_hp_group:
630 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
631delete_obj:
632 kobject_put(*hugepage_kobj);
633 return err;
634}
635
636static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
637{
638 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
639 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
640 kobject_put(hugepage_kobj);
641}
642#else
643static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
644{
645 return 0;
646}
647
648static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
649{
650}
651#endif /* CONFIG_SYSFS */
652
653static int __init hugepage_init(void)
654{
655 int err;
656 struct kobject *hugepage_kobj;
657
658 if (!has_transparent_hugepage()) {
659 transparent_hugepage_flags = 0;
660 return -EINVAL;
661 }
662
663 err = hugepage_init_sysfs(&hugepage_kobj);
664 if (err)
65ebb64f 665 goto err_sysfs;
ba76149f
AA
666
667 err = khugepaged_slab_init();
668 if (err)
65ebb64f 669 goto err_slab;
ba76149f 670
65ebb64f
KS
671 err = register_shrinker(&huge_zero_page_shrinker);
672 if (err)
673 goto err_hzp_shrinker;
9a982250
KS
674 err = register_shrinker(&deferred_split_shrinker);
675 if (err)
676 goto err_split_shrinker;
97ae1749 677
97562cd2
RR
678 /*
679 * By default disable transparent hugepages on smaller systems,
680 * where the extra memory used could hurt more than TLB overhead
681 * is likely to save. The admin can still enable it through /sys.
682 */
79553da2 683 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 684 transparent_hugepage_flags = 0;
79553da2
KS
685 return 0;
686 }
97562cd2 687
79553da2 688 err = start_stop_khugepaged();
65ebb64f
KS
689 if (err)
690 goto err_khugepaged;
ba76149f 691
569e5590 692 return 0;
65ebb64f 693err_khugepaged:
9a982250
KS
694 unregister_shrinker(&deferred_split_shrinker);
695err_split_shrinker:
65ebb64f
KS
696 unregister_shrinker(&huge_zero_page_shrinker);
697err_hzp_shrinker:
698 khugepaged_slab_exit();
699err_slab:
569e5590 700 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 701err_sysfs:
ba76149f 702 return err;
71e3aac0 703}
a64fb3cd 704subsys_initcall(hugepage_init);
71e3aac0
AA
705
706static int __init setup_transparent_hugepage(char *str)
707{
708 int ret = 0;
709 if (!str)
710 goto out;
711 if (!strcmp(str, "always")) {
712 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
713 &transparent_hugepage_flags);
714 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
715 &transparent_hugepage_flags);
716 ret = 1;
717 } else if (!strcmp(str, "madvise")) {
718 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
719 &transparent_hugepage_flags);
720 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
721 &transparent_hugepage_flags);
722 ret = 1;
723 } else if (!strcmp(str, "never")) {
724 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
725 &transparent_hugepage_flags);
726 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
727 &transparent_hugepage_flags);
728 ret = 1;
729 }
730out:
731 if (!ret)
ae3a8c1c 732 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
733 return ret;
734}
735__setup("transparent_hugepage=", setup_transparent_hugepage);
736
b32967ff 737pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
738{
739 if (likely(vma->vm_flags & VM_WRITE))
740 pmd = pmd_mkwrite(pmd);
741 return pmd;
742}
743
3122359a 744static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
745{
746 pmd_t entry;
3122359a 747 entry = mk_pmd(page, prot);
b3092b3b
BL
748 entry = pmd_mkhuge(entry);
749 return entry;
750}
751
9a982250
KS
752static inline struct list_head *page_deferred_list(struct page *page)
753{
754 /*
755 * ->lru in the tail pages is occupied by compound_head.
756 * Let's use ->mapping + ->index in the second tail page as list_head.
757 */
758 return (struct list_head *)&page[2].mapping;
759}
760
761void prep_transhuge_page(struct page *page)
762{
763 /*
764 * we use page->mapping and page->indexlru in second tail page
765 * as list_head: assuming THP order >= 2
766 */
767 BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
768
769 INIT_LIST_HEAD(page_deferred_list(page));
770 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
771}
772
71e3aac0
AA
773static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
774 struct vm_area_struct *vma,
230c92a8 775 unsigned long address, pmd_t *pmd,
6b251fc9
AA
776 struct page *page, gfp_t gfp,
777 unsigned int flags)
71e3aac0 778{
00501b53 779 struct mem_cgroup *memcg;
71e3aac0 780 pgtable_t pgtable;
c4088ebd 781 spinlock_t *ptl;
230c92a8 782 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 783
309381fe 784 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 785
f627c2f5 786 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
787 put_page(page);
788 count_vm_event(THP_FAULT_FALLBACK);
789 return VM_FAULT_FALLBACK;
790 }
00501b53 791
71e3aac0 792 pgtable = pte_alloc_one(mm, haddr);
00501b53 793 if (unlikely(!pgtable)) {
f627c2f5 794 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 795 put_page(page);
71e3aac0 796 return VM_FAULT_OOM;
00501b53 797 }
71e3aac0
AA
798
799 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
800 /*
801 * The memory barrier inside __SetPageUptodate makes sure that
802 * clear_huge_page writes become visible before the set_pmd_at()
803 * write.
804 */
71e3aac0
AA
805 __SetPageUptodate(page);
806
c4088ebd 807 ptl = pmd_lock(mm, pmd);
71e3aac0 808 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 809 spin_unlock(ptl);
f627c2f5 810 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
811 put_page(page);
812 pte_free(mm, pgtable);
813 } else {
814 pmd_t entry;
6b251fc9
AA
815
816 /* Deliver the page fault to userland */
817 if (userfaultfd_missing(vma)) {
818 int ret;
819
820 spin_unlock(ptl);
f627c2f5 821 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
822 put_page(page);
823 pte_free(mm, pgtable);
230c92a8 824 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
825 VM_UFFD_MISSING);
826 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
827 return ret;
828 }
829
3122359a
KS
830 entry = mk_huge_pmd(page, vma->vm_page_prot);
831 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 832 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 833 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 834 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 835 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 836 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 837 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 838 atomic_long_inc(&mm->nr_ptes);
c4088ebd 839 spin_unlock(ptl);
6b251fc9 840 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
841 }
842
aa2e878e 843 return 0;
71e3aac0
AA
844}
845
cc5d462f 846static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 847{
71baba4b 848 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_RECLAIM)) | extra_gfp;
0bbbc0b3
AA
849}
850
c4088ebd 851/* Caller must hold page table lock. */
d295e341 852static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 853 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 854 struct page *zero_page)
fc9fe822
KS
855{
856 pmd_t entry;
7c414164
AM
857 if (!pmd_none(*pmd))
858 return false;
5918d10a 859 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 860 entry = pmd_mkhuge(entry);
12c9d70b
MW
861 if (pgtable)
862 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 863 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 864 atomic_long_inc(&mm->nr_ptes);
7c414164 865 return true;
fc9fe822
KS
866}
867
71e3aac0
AA
868int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
869 unsigned long address, pmd_t *pmd,
870 unsigned int flags)
871{
077fcf11 872 gfp_t gfp;
71e3aac0
AA
873 struct page *page;
874 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 875
128ec037 876 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 877 return VM_FAULT_FALLBACK;
128ec037
KS
878 if (unlikely(anon_vma_prepare(vma)))
879 return VM_FAULT_OOM;
6d50e60c 880 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 881 return VM_FAULT_OOM;
593befa6 882 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 883 transparent_hugepage_use_zero_page()) {
c4088ebd 884 spinlock_t *ptl;
128ec037
KS
885 pgtable_t pgtable;
886 struct page *zero_page;
887 bool set;
6b251fc9 888 int ret;
128ec037
KS
889 pgtable = pte_alloc_one(mm, haddr);
890 if (unlikely(!pgtable))
ba76149f 891 return VM_FAULT_OOM;
128ec037
KS
892 zero_page = get_huge_zero_page();
893 if (unlikely(!zero_page)) {
894 pte_free(mm, pgtable);
81ab4201 895 count_vm_event(THP_FAULT_FALLBACK);
c0292554 896 return VM_FAULT_FALLBACK;
b9bbfbe3 897 }
c4088ebd 898 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
899 ret = 0;
900 set = false;
901 if (pmd_none(*pmd)) {
902 if (userfaultfd_missing(vma)) {
903 spin_unlock(ptl);
230c92a8 904 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
905 VM_UFFD_MISSING);
906 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
907 } else {
908 set_huge_zero_page(pgtable, mm, vma,
909 haddr, pmd,
910 zero_page);
911 spin_unlock(ptl);
912 set = true;
913 }
914 } else
915 spin_unlock(ptl);
128ec037
KS
916 if (!set) {
917 pte_free(mm, pgtable);
918 put_huge_zero_page();
edad9d2c 919 }
6b251fc9 920 return ret;
71e3aac0 921 }
077fcf11
AK
922 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
923 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
924 if (unlikely(!page)) {
925 count_vm_event(THP_FAULT_FALLBACK);
c0292554 926 return VM_FAULT_FALLBACK;
128ec037 927 }
9a982250 928 prep_transhuge_page(page);
230c92a8
AA
929 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
930 flags);
71e3aac0
AA
931}
932
ae18d6dc 933static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 934 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
935{
936 struct mm_struct *mm = vma->vm_mm;
937 pmd_t entry;
938 spinlock_t *ptl;
939
940 ptl = pmd_lock(mm, pmd);
f25748e3
DW
941 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
942 if (pfn_t_devmap(pfn))
943 entry = pmd_mkdevmap(entry);
01871e59
RZ
944 if (write) {
945 entry = pmd_mkyoung(pmd_mkdirty(entry));
946 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 947 }
01871e59
RZ
948 set_pmd_at(mm, addr, pmd, entry);
949 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 950 spin_unlock(ptl);
5cad465d
MW
951}
952
953int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 954 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
955{
956 pgprot_t pgprot = vma->vm_page_prot;
957 /*
958 * If we had pmd_special, we could avoid all these restrictions,
959 * but we need to be consistent with PTEs and architectures that
960 * can't support a 'special' bit.
961 */
962 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
963 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
964 (VM_PFNMAP|VM_MIXEDMAP));
965 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 966 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
967
968 if (addr < vma->vm_start || addr >= vma->vm_end)
969 return VM_FAULT_SIGBUS;
970 if (track_pfn_insert(vma, &pgprot, pfn))
971 return VM_FAULT_SIGBUS;
ae18d6dc
MW
972 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
973 return VM_FAULT_NOPAGE;
5cad465d
MW
974}
975
3565fce3
DW
976static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
977 pmd_t *pmd)
978{
979 pmd_t _pmd;
980
981 /*
982 * We should set the dirty bit only for FOLL_WRITE but for now
983 * the dirty bit in the pmd is meaningless. And if the dirty
984 * bit will become meaningful and we'll only set it with
985 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
986 * set the young bit, instead of the current set_pmd_at.
987 */
988 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
989 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
990 pmd, _pmd, 1))
991 update_mmu_cache_pmd(vma, addr, pmd);
992}
993
994struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
995 pmd_t *pmd, int flags)
996{
997 unsigned long pfn = pmd_pfn(*pmd);
998 struct mm_struct *mm = vma->vm_mm;
999 struct dev_pagemap *pgmap;
1000 struct page *page;
1001
1002 assert_spin_locked(pmd_lockptr(mm, pmd));
1003
1004 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1005 return NULL;
1006
1007 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1008 /* pass */;
1009 else
1010 return NULL;
1011
1012 if (flags & FOLL_TOUCH)
1013 touch_pmd(vma, addr, pmd);
1014
1015 /*
1016 * device mapped pages can only be returned if the
1017 * caller will manage the page reference count.
1018 */
1019 if (!(flags & FOLL_GET))
1020 return ERR_PTR(-EEXIST);
1021
1022 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1023 pgmap = get_dev_pagemap(pfn, NULL);
1024 if (!pgmap)
1025 return ERR_PTR(-EFAULT);
1026 page = pfn_to_page(pfn);
1027 get_page(page);
1028 put_dev_pagemap(pgmap);
1029
1030 return page;
1031}
1032
71e3aac0
AA
1033int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1034 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1035 struct vm_area_struct *vma)
1036{
c4088ebd 1037 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1038 struct page *src_page;
1039 pmd_t pmd;
12c9d70b 1040 pgtable_t pgtable = NULL;
71e3aac0
AA
1041 int ret;
1042
12c9d70b
MW
1043 if (!vma_is_dax(vma)) {
1044 ret = -ENOMEM;
1045 pgtable = pte_alloc_one(dst_mm, addr);
1046 if (unlikely(!pgtable))
1047 goto out;
1048 }
71e3aac0 1049
c4088ebd
KS
1050 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1051 src_ptl = pmd_lockptr(src_mm, src_pmd);
1052 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1053
1054 ret = -EAGAIN;
1055 pmd = *src_pmd;
5c7fb56e 1056 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
1057 pte_free(dst_mm, pgtable);
1058 goto out_unlock;
1059 }
fc9fe822 1060 /*
c4088ebd 1061 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1062 * under splitting since we don't split the page itself, only pmd to
1063 * a page table.
1064 */
1065 if (is_huge_zero_pmd(pmd)) {
5918d10a 1066 struct page *zero_page;
97ae1749
KS
1067 /*
1068 * get_huge_zero_page() will never allocate a new page here,
1069 * since we already have a zero page to copy. It just takes a
1070 * reference.
1071 */
5918d10a 1072 zero_page = get_huge_zero_page();
6b251fc9 1073 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1074 zero_page);
fc9fe822
KS
1075 ret = 0;
1076 goto out_unlock;
1077 }
de466bd6 1078
12c9d70b 1079 if (!vma_is_dax(vma)) {
5c7fb56e
DW
1080 /* thp accounting separate from pmd_devmap accounting */
1081 src_page = pmd_page(pmd);
1082 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1083 get_page(src_page);
1084 page_dup_rmap(src_page, true);
1085 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1086 atomic_long_inc(&dst_mm->nr_ptes);
1087 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1088 }
71e3aac0
AA
1089
1090 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1091 pmd = pmd_mkold(pmd_wrprotect(pmd));
1092 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1093
1094 ret = 0;
1095out_unlock:
c4088ebd
KS
1096 spin_unlock(src_ptl);
1097 spin_unlock(dst_ptl);
71e3aac0
AA
1098out:
1099 return ret;
1100}
1101
a1dd450b
WD
1102void huge_pmd_set_accessed(struct mm_struct *mm,
1103 struct vm_area_struct *vma,
1104 unsigned long address,
1105 pmd_t *pmd, pmd_t orig_pmd,
1106 int dirty)
1107{
c4088ebd 1108 spinlock_t *ptl;
a1dd450b
WD
1109 pmd_t entry;
1110 unsigned long haddr;
1111
c4088ebd 1112 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1113 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1114 goto unlock;
1115
1116 entry = pmd_mkyoung(orig_pmd);
1117 haddr = address & HPAGE_PMD_MASK;
1118 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1119 update_mmu_cache_pmd(vma, address, pmd);
1120
1121unlock:
c4088ebd 1122 spin_unlock(ptl);
a1dd450b
WD
1123}
1124
71e3aac0
AA
1125static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1126 struct vm_area_struct *vma,
1127 unsigned long address,
1128 pmd_t *pmd, pmd_t orig_pmd,
1129 struct page *page,
1130 unsigned long haddr)
1131{
00501b53 1132 struct mem_cgroup *memcg;
c4088ebd 1133 spinlock_t *ptl;
71e3aac0
AA
1134 pgtable_t pgtable;
1135 pmd_t _pmd;
1136 int ret = 0, i;
1137 struct page **pages;
2ec74c3e
SG
1138 unsigned long mmun_start; /* For mmu_notifiers */
1139 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1140
1141 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1142 GFP_KERNEL);
1143 if (unlikely(!pages)) {
1144 ret |= VM_FAULT_OOM;
1145 goto out;
1146 }
1147
1148 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1149 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1150 __GFP_OTHER_NODE,
19ee151e 1151 vma, address, page_to_nid(page));
b9bbfbe3 1152 if (unlikely(!pages[i] ||
00501b53 1153 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1154 &memcg, false))) {
b9bbfbe3 1155 if (pages[i])
71e3aac0 1156 put_page(pages[i]);
b9bbfbe3 1157 while (--i >= 0) {
00501b53
JW
1158 memcg = (void *)page_private(pages[i]);
1159 set_page_private(pages[i], 0);
f627c2f5
KS
1160 mem_cgroup_cancel_charge(pages[i], memcg,
1161 false);
b9bbfbe3
AA
1162 put_page(pages[i]);
1163 }
71e3aac0
AA
1164 kfree(pages);
1165 ret |= VM_FAULT_OOM;
1166 goto out;
1167 }
00501b53 1168 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1169 }
1170
1171 for (i = 0; i < HPAGE_PMD_NR; i++) {
1172 copy_user_highpage(pages[i], page + i,
0089e485 1173 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1174 __SetPageUptodate(pages[i]);
1175 cond_resched();
1176 }
1177
2ec74c3e
SG
1178 mmun_start = haddr;
1179 mmun_end = haddr + HPAGE_PMD_SIZE;
1180 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1181
c4088ebd 1182 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1183 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1184 goto out_free_pages;
309381fe 1185 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1186
8809aa2d 1187 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1188 /* leave pmd empty until pte is filled */
1189
6b0b50b0 1190 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1191 pmd_populate(mm, &_pmd, pgtable);
1192
1193 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1194 pte_t *pte, entry;
1195 entry = mk_pte(pages[i], vma->vm_page_prot);
1196 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1197 memcg = (void *)page_private(pages[i]);
1198 set_page_private(pages[i], 0);
d281ee61 1199 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1200 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1201 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1202 pte = pte_offset_map(&_pmd, haddr);
1203 VM_BUG_ON(!pte_none(*pte));
1204 set_pte_at(mm, haddr, pte, entry);
1205 pte_unmap(pte);
1206 }
1207 kfree(pages);
1208
71e3aac0
AA
1209 smp_wmb(); /* make pte visible before pmd */
1210 pmd_populate(mm, pmd, pgtable);
d281ee61 1211 page_remove_rmap(page, true);
c4088ebd 1212 spin_unlock(ptl);
71e3aac0 1213
2ec74c3e
SG
1214 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1215
71e3aac0
AA
1216 ret |= VM_FAULT_WRITE;
1217 put_page(page);
1218
1219out:
1220 return ret;
1221
1222out_free_pages:
c4088ebd 1223 spin_unlock(ptl);
2ec74c3e 1224 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1225 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1226 memcg = (void *)page_private(pages[i]);
1227 set_page_private(pages[i], 0);
f627c2f5 1228 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1229 put_page(pages[i]);
b9bbfbe3 1230 }
71e3aac0
AA
1231 kfree(pages);
1232 goto out;
1233}
1234
1235int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1236 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1237{
c4088ebd 1238 spinlock_t *ptl;
71e3aac0 1239 int ret = 0;
93b4796d 1240 struct page *page = NULL, *new_page;
00501b53 1241 struct mem_cgroup *memcg;
71e3aac0 1242 unsigned long haddr;
2ec74c3e
SG
1243 unsigned long mmun_start; /* For mmu_notifiers */
1244 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1245 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1246
c4088ebd 1247 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1248 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1249 haddr = address & HPAGE_PMD_MASK;
1250 if (is_huge_zero_pmd(orig_pmd))
1251 goto alloc;
c4088ebd 1252 spin_lock(ptl);
71e3aac0
AA
1253 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1254 goto out_unlock;
1255
1256 page = pmd_page(orig_pmd);
309381fe 1257 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1258 /*
1259 * We can only reuse the page if nobody else maps the huge page or it's
1260 * part. We can do it by checking page_mapcount() on each sub-page, but
1261 * it's expensive.
1262 * The cheaper way is to check page_count() to be equal 1: every
1263 * mapcount takes page reference reference, so this way we can
1264 * guarantee, that the PMD is the only mapping.
1265 * This can give false negative if somebody pinned the page, but that's
1266 * fine.
1267 */
1268 if (page_mapcount(page) == 1 && page_count(page) == 1) {
71e3aac0
AA
1269 pmd_t entry;
1270 entry = pmd_mkyoung(orig_pmd);
1271 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1272 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1273 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1274 ret |= VM_FAULT_WRITE;
1275 goto out_unlock;
1276 }
ddc58f27 1277 get_page(page);
c4088ebd 1278 spin_unlock(ptl);
93b4796d 1279alloc:
71e3aac0 1280 if (transparent_hugepage_enabled(vma) &&
077fcf11 1281 !transparent_hugepage_debug_cow()) {
3b363692
MH
1282 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1283 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1284 } else
71e3aac0
AA
1285 new_page = NULL;
1286
9a982250
KS
1287 if (likely(new_page)) {
1288 prep_transhuge_page(new_page);
1289 } else {
eecc1e42 1290 if (!page) {
78ddc534 1291 split_huge_pmd(vma, pmd, address);
e9b71ca9 1292 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1293 } else {
1294 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1295 pmd, orig_pmd, page, haddr);
9845cbbd 1296 if (ret & VM_FAULT_OOM) {
78ddc534 1297 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1298 ret |= VM_FAULT_FALLBACK;
1299 }
ddc58f27 1300 put_page(page);
93b4796d 1301 }
17766dde 1302 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1303 goto out;
1304 }
1305
f627c2f5
KS
1306 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1307 true))) {
b9bbfbe3 1308 put_page(new_page);
93b4796d 1309 if (page) {
78ddc534 1310 split_huge_pmd(vma, pmd, address);
ddc58f27 1311 put_page(page);
9845cbbd 1312 } else
78ddc534 1313 split_huge_pmd(vma, pmd, address);
9845cbbd 1314 ret |= VM_FAULT_FALLBACK;
17766dde 1315 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1316 goto out;
1317 }
1318
17766dde
DR
1319 count_vm_event(THP_FAULT_ALLOC);
1320
eecc1e42 1321 if (!page)
93b4796d
KS
1322 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1323 else
1324 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1325 __SetPageUptodate(new_page);
1326
2ec74c3e
SG
1327 mmun_start = haddr;
1328 mmun_end = haddr + HPAGE_PMD_SIZE;
1329 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1330
c4088ebd 1331 spin_lock(ptl);
93b4796d 1332 if (page)
ddc58f27 1333 put_page(page);
b9bbfbe3 1334 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1335 spin_unlock(ptl);
f627c2f5 1336 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1337 put_page(new_page);
2ec74c3e 1338 goto out_mn;
b9bbfbe3 1339 } else {
71e3aac0 1340 pmd_t entry;
3122359a
KS
1341 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1342 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1343 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1344 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1345 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1346 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1347 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1348 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1349 if (!page) {
93b4796d 1350 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1351 put_huge_zero_page();
1352 } else {
309381fe 1353 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1354 page_remove_rmap(page, true);
93b4796d
KS
1355 put_page(page);
1356 }
71e3aac0
AA
1357 ret |= VM_FAULT_WRITE;
1358 }
c4088ebd 1359 spin_unlock(ptl);
2ec74c3e
SG
1360out_mn:
1361 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1362out:
1363 return ret;
2ec74c3e 1364out_unlock:
c4088ebd 1365 spin_unlock(ptl);
2ec74c3e 1366 return ret;
71e3aac0
AA
1367}
1368
b676b293 1369struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1370 unsigned long addr,
1371 pmd_t *pmd,
1372 unsigned int flags)
1373{
b676b293 1374 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1375 struct page *page = NULL;
1376
c4088ebd 1377 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1378
1379 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1380 goto out;
1381
85facf25
KS
1382 /* Avoid dumping huge zero page */
1383 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1384 return ERR_PTR(-EFAULT);
1385
2b4847e7 1386 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1387 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1388 goto out;
1389
71e3aac0 1390 page = pmd_page(*pmd);
309381fe 1391 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1392 if (flags & FOLL_TOUCH)
1393 touch_pmd(vma, addr, pmd);
de60f5f1 1394 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1395 /*
1396 * We don't mlock() pte-mapped THPs. This way we can avoid
1397 * leaking mlocked pages into non-VM_LOCKED VMAs.
1398 *
1399 * In most cases the pmd is the only mapping of the page as we
1400 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1401 * writable private mappings in populate_vma_page_range().
1402 *
1403 * The only scenario when we have the page shared here is if we
1404 * mlocking read-only mapping shared over fork(). We skip
1405 * mlocking such pages.
1406 */
1407 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1408 page->mapping && trylock_page(page)) {
b676b293
DR
1409 lru_add_drain();
1410 if (page->mapping)
1411 mlock_vma_page(page);
1412 unlock_page(page);
1413 }
1414 }
71e3aac0 1415 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1416 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1417 if (flags & FOLL_GET)
ddc58f27 1418 get_page(page);
71e3aac0
AA
1419
1420out:
1421 return page;
1422}
1423
d10e63f2 1424/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1425int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1426 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1427{
c4088ebd 1428 spinlock_t *ptl;
b8916634 1429 struct anon_vma *anon_vma = NULL;
b32967ff 1430 struct page *page;
d10e63f2 1431 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1432 int page_nid = -1, this_nid = numa_node_id();
90572890 1433 int target_nid, last_cpupid = -1;
8191acbd
MG
1434 bool page_locked;
1435 bool migrated = false;
b191f9b1 1436 bool was_writable;
6688cc05 1437 int flags = 0;
d10e63f2 1438
c0e7cad9
MG
1439 /* A PROT_NONE fault should not end up here */
1440 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1441
c4088ebd 1442 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1443 if (unlikely(!pmd_same(pmd, *pmdp)))
1444 goto out_unlock;
1445
de466bd6
MG
1446 /*
1447 * If there are potential migrations, wait for completion and retry
1448 * without disrupting NUMA hinting information. Do not relock and
1449 * check_same as the page may no longer be mapped.
1450 */
1451 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1452 page = pmd_page(*pmdp);
de466bd6 1453 spin_unlock(ptl);
5d833062 1454 wait_on_page_locked(page);
de466bd6
MG
1455 goto out;
1456 }
1457
d10e63f2 1458 page = pmd_page(pmd);
a1a46184 1459 BUG_ON(is_huge_zero_page(page));
8191acbd 1460 page_nid = page_to_nid(page);
90572890 1461 last_cpupid = page_cpupid_last(page);
03c5a6e1 1462 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1463 if (page_nid == this_nid) {
03c5a6e1 1464 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1465 flags |= TNF_FAULT_LOCAL;
1466 }
4daae3b4 1467
bea66fbd
MG
1468 /* See similar comment in do_numa_page for explanation */
1469 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1470 flags |= TNF_NO_GROUP;
1471
ff9042b1
MG
1472 /*
1473 * Acquire the page lock to serialise THP migrations but avoid dropping
1474 * page_table_lock if at all possible
1475 */
b8916634
MG
1476 page_locked = trylock_page(page);
1477 target_nid = mpol_misplaced(page, vma, haddr);
1478 if (target_nid == -1) {
1479 /* If the page was locked, there are no parallel migrations */
a54a407f 1480 if (page_locked)
b8916634 1481 goto clear_pmdnuma;
2b4847e7 1482 }
4daae3b4 1483
de466bd6 1484 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1485 if (!page_locked) {
c4088ebd 1486 spin_unlock(ptl);
b8916634 1487 wait_on_page_locked(page);
a54a407f 1488 page_nid = -1;
b8916634
MG
1489 goto out;
1490 }
1491
2b4847e7
MG
1492 /*
1493 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1494 * to serialises splits
1495 */
b8916634 1496 get_page(page);
c4088ebd 1497 spin_unlock(ptl);
b8916634 1498 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1499
c69307d5 1500 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1501 spin_lock(ptl);
b32967ff
MG
1502 if (unlikely(!pmd_same(pmd, *pmdp))) {
1503 unlock_page(page);
1504 put_page(page);
a54a407f 1505 page_nid = -1;
4daae3b4 1506 goto out_unlock;
b32967ff 1507 }
ff9042b1 1508
c3a489ca
MG
1509 /* Bail if we fail to protect against THP splits for any reason */
1510 if (unlikely(!anon_vma)) {
1511 put_page(page);
1512 page_nid = -1;
1513 goto clear_pmdnuma;
1514 }
1515
a54a407f
MG
1516 /*
1517 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1518 * and access rights restored.
a54a407f 1519 */
c4088ebd 1520 spin_unlock(ptl);
b32967ff 1521 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1522 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1523 if (migrated) {
1524 flags |= TNF_MIGRATED;
8191acbd 1525 page_nid = target_nid;
074c2381
MG
1526 } else
1527 flags |= TNF_MIGRATE_FAIL;
b32967ff 1528
8191acbd 1529 goto out;
b32967ff 1530clear_pmdnuma:
a54a407f 1531 BUG_ON(!PageLocked(page));
b191f9b1 1532 was_writable = pmd_write(pmd);
4d942466 1533 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1534 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1535 if (was_writable)
1536 pmd = pmd_mkwrite(pmd);
d10e63f2 1537 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1538 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1539 unlock_page(page);
d10e63f2 1540out_unlock:
c4088ebd 1541 spin_unlock(ptl);
b8916634
MG
1542
1543out:
1544 if (anon_vma)
1545 page_unlock_anon_vma_read(anon_vma);
1546
8191acbd 1547 if (page_nid != -1)
6688cc05 1548 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1549
d10e63f2
MG
1550 return 0;
1551}
1552
b8d3c4c3
MK
1553int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1554 pmd_t *pmd, unsigned long addr, unsigned long next)
1555
1556{
1557 spinlock_t *ptl;
1558 pmd_t orig_pmd;
1559 struct page *page;
1560 struct mm_struct *mm = tlb->mm;
1561 int ret = 0;
1562
b6ec57f4
KS
1563 ptl = pmd_trans_huge_lock(pmd, vma);
1564 if (!ptl)
25eedabe 1565 goto out_unlocked;
b8d3c4c3
MK
1566
1567 orig_pmd = *pmd;
1568 if (is_huge_zero_pmd(orig_pmd)) {
1569 ret = 1;
1570 goto out;
1571 }
1572
1573 page = pmd_page(orig_pmd);
1574 /*
1575 * If other processes are mapping this page, we couldn't discard
1576 * the page unless they all do MADV_FREE so let's skip the page.
1577 */
1578 if (page_mapcount(page) != 1)
1579 goto out;
1580
1581 if (!trylock_page(page))
1582 goto out;
1583
1584 /*
1585 * If user want to discard part-pages of THP, split it so MADV_FREE
1586 * will deactivate only them.
1587 */
1588 if (next - addr != HPAGE_PMD_SIZE) {
1589 get_page(page);
1590 spin_unlock(ptl);
1591 if (split_huge_page(page)) {
1592 put_page(page);
1593 unlock_page(page);
1594 goto out_unlocked;
1595 }
1596 put_page(page);
1597 unlock_page(page);
1598 ret = 1;
1599 goto out_unlocked;
1600 }
1601
1602 if (PageDirty(page))
1603 ClearPageDirty(page);
1604 unlock_page(page);
1605
1606 if (PageActive(page))
1607 deactivate_page(page);
1608
1609 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1610 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1611 tlb->fullmm);
1612 orig_pmd = pmd_mkold(orig_pmd);
1613 orig_pmd = pmd_mkclean(orig_pmd);
1614
1615 set_pmd_at(mm, addr, pmd, orig_pmd);
1616 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1617 }
1618 ret = 1;
1619out:
1620 spin_unlock(ptl);
1621out_unlocked:
1622 return ret;
1623}
1624
71e3aac0 1625int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1626 pmd_t *pmd, unsigned long addr)
71e3aac0 1627{
da146769 1628 pmd_t orig_pmd;
bf929152 1629 spinlock_t *ptl;
71e3aac0 1630
b6ec57f4
KS
1631 ptl = __pmd_trans_huge_lock(pmd, vma);
1632 if (!ptl)
da146769
KS
1633 return 0;
1634 /*
1635 * For architectures like ppc64 we look at deposited pgtable
1636 * when calling pmdp_huge_get_and_clear. So do the
1637 * pgtable_trans_huge_withdraw after finishing pmdp related
1638 * operations.
1639 */
1640 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1641 tlb->fullmm);
1642 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1643 if (vma_is_dax(vma)) {
1644 spin_unlock(ptl);
1645 if (is_huge_zero_pmd(orig_pmd))
97ae1749 1646 put_huge_zero_page();
da146769
KS
1647 } else if (is_huge_zero_pmd(orig_pmd)) {
1648 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1649 atomic_long_dec(&tlb->mm->nr_ptes);
1650 spin_unlock(ptl);
1651 put_huge_zero_page();
1652 } else {
1653 struct page *page = pmd_page(orig_pmd);
d281ee61 1654 page_remove_rmap(page, true);
da146769
KS
1655 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1656 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1657 VM_BUG_ON_PAGE(!PageHead(page), page);
1658 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1659 atomic_long_dec(&tlb->mm->nr_ptes);
1660 spin_unlock(ptl);
1661 tlb_remove_page(tlb, page);
025c5b24 1662 }
da146769 1663 return 1;
71e3aac0
AA
1664}
1665
4b471e88 1666bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
37a1c49a
AA
1667 unsigned long old_addr,
1668 unsigned long new_addr, unsigned long old_end,
1669 pmd_t *old_pmd, pmd_t *new_pmd)
1670{
bf929152 1671 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1672 pmd_t pmd;
1673
1674 struct mm_struct *mm = vma->vm_mm;
1675
1676 if ((old_addr & ~HPAGE_PMD_MASK) ||
1677 (new_addr & ~HPAGE_PMD_MASK) ||
1678 old_end - old_addr < HPAGE_PMD_SIZE ||
1679 (new_vma->vm_flags & VM_NOHUGEPAGE))
4b471e88 1680 return false;
37a1c49a
AA
1681
1682 /*
1683 * The destination pmd shouldn't be established, free_pgtables()
1684 * should have release it.
1685 */
1686 if (WARN_ON(!pmd_none(*new_pmd))) {
1687 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1688 return false;
37a1c49a
AA
1689 }
1690
bf929152
KS
1691 /*
1692 * We don't have to worry about the ordering of src and dst
1693 * ptlocks because exclusive mmap_sem prevents deadlock.
1694 */
b6ec57f4
KS
1695 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1696 if (old_ptl) {
bf929152
KS
1697 new_ptl = pmd_lockptr(mm, new_pmd);
1698 if (new_ptl != old_ptl)
1699 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1700 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1701 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1702
69a8ec2d
KS
1703 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1704 vma_is_anonymous(vma)) {
b3084f4d 1705 pgtable_t pgtable;
3592806c
KS
1706 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1707 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1708 }
b3084f4d
AK
1709 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1710 if (new_ptl != old_ptl)
1711 spin_unlock(new_ptl);
bf929152 1712 spin_unlock(old_ptl);
4b471e88 1713 return true;
37a1c49a 1714 }
4b471e88 1715 return false;
37a1c49a
AA
1716}
1717
f123d74a
MG
1718/*
1719 * Returns
1720 * - 0 if PMD could not be locked
1721 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1722 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1723 */
cd7548ab 1724int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1725 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1726{
1727 struct mm_struct *mm = vma->vm_mm;
bf929152 1728 spinlock_t *ptl;
cd7548ab
JW
1729 int ret = 0;
1730
b6ec57f4
KS
1731 ptl = __pmd_trans_huge_lock(pmd, vma);
1732 if (ptl) {
025c5b24 1733 pmd_t entry;
b191f9b1 1734 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1735 ret = 1;
e944fd67
MG
1736
1737 /*
1738 * Avoid trapping faults against the zero page. The read-only
1739 * data is likely to be read-cached on the local CPU and
1740 * local/remote hits to the zero page are not interesting.
1741 */
1742 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1743 spin_unlock(ptl);
ba68bc01 1744 return ret;
e944fd67
MG
1745 }
1746
10c1045f 1747 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1748 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1749 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1750 if (preserve_write)
1751 entry = pmd_mkwrite(entry);
10c1045f
MG
1752 ret = HPAGE_PMD_NR;
1753 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1754 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1755 }
bf929152 1756 spin_unlock(ptl);
025c5b24
NH
1757 }
1758
1759 return ret;
1760}
1761
1762/*
4b471e88 1763 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1764 *
4b471e88
KS
1765 * Note that if it returns true, this routine returns without unlocking page
1766 * table lock. So callers must unlock it.
025c5b24 1767 */
b6ec57f4 1768spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1769{
b6ec57f4
KS
1770 spinlock_t *ptl;
1771 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1772 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1773 return ptl;
1774 spin_unlock(ptl);
1775 return NULL;
cd7548ab
JW
1776}
1777
9050d7eb 1778#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1779
60ab3244
AA
1780int hugepage_madvise(struct vm_area_struct *vma,
1781 unsigned long *vm_flags, int advice)
0af4e98b 1782{
a664b2d8
AA
1783 switch (advice) {
1784 case MADV_HUGEPAGE:
1e1836e8
AT
1785#ifdef CONFIG_S390
1786 /*
1787 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1788 * can't handle this properly after s390_enable_sie, so we simply
1789 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1790 */
1791 if (mm_has_pgste(vma->vm_mm))
1792 return 0;
1793#endif
a664b2d8
AA
1794 /*
1795 * Be somewhat over-protective like KSM for now!
1796 */
1a763615 1797 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1798 return -EINVAL;
1799 *vm_flags &= ~VM_NOHUGEPAGE;
1800 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1801 /*
1802 * If the vma become good for khugepaged to scan,
1803 * register it here without waiting a page fault that
1804 * may not happen any time soon.
1805 */
6d50e60c 1806 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1807 return -ENOMEM;
a664b2d8
AA
1808 break;
1809 case MADV_NOHUGEPAGE:
1810 /*
1811 * Be somewhat over-protective like KSM for now!
1812 */
1a763615 1813 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1814 return -EINVAL;
1815 *vm_flags &= ~VM_HUGEPAGE;
1816 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1817 /*
1818 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1819 * this vma even if we leave the mm registered in khugepaged if
1820 * it got registered before VM_NOHUGEPAGE was set.
1821 */
a664b2d8
AA
1822 break;
1823 }
0af4e98b
AA
1824
1825 return 0;
1826}
1827
ba76149f
AA
1828static int __init khugepaged_slab_init(void)
1829{
1830 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1831 sizeof(struct mm_slot),
1832 __alignof__(struct mm_slot), 0, NULL);
1833 if (!mm_slot_cache)
1834 return -ENOMEM;
1835
1836 return 0;
1837}
1838
65ebb64f
KS
1839static void __init khugepaged_slab_exit(void)
1840{
1841 kmem_cache_destroy(mm_slot_cache);
1842}
1843
ba76149f
AA
1844static inline struct mm_slot *alloc_mm_slot(void)
1845{
1846 if (!mm_slot_cache) /* initialization failed */
1847 return NULL;
1848 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1849}
1850
1851static inline void free_mm_slot(struct mm_slot *mm_slot)
1852{
1853 kmem_cache_free(mm_slot_cache, mm_slot);
1854}
1855
ba76149f
AA
1856static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1857{
1858 struct mm_slot *mm_slot;
ba76149f 1859
b67bfe0d 1860 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1861 if (mm == mm_slot->mm)
1862 return mm_slot;
43b5fbbd 1863
ba76149f
AA
1864 return NULL;
1865}
1866
1867static void insert_to_mm_slots_hash(struct mm_struct *mm,
1868 struct mm_slot *mm_slot)
1869{
ba76149f 1870 mm_slot->mm = mm;
43b5fbbd 1871 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1872}
1873
1874static inline int khugepaged_test_exit(struct mm_struct *mm)
1875{
1876 return atomic_read(&mm->mm_users) == 0;
1877}
1878
1879int __khugepaged_enter(struct mm_struct *mm)
1880{
1881 struct mm_slot *mm_slot;
1882 int wakeup;
1883
1884 mm_slot = alloc_mm_slot();
1885 if (!mm_slot)
1886 return -ENOMEM;
1887
1888 /* __khugepaged_exit() must not run from under us */
96dad67f 1889 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1890 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1891 free_mm_slot(mm_slot);
1892 return 0;
1893 }
1894
1895 spin_lock(&khugepaged_mm_lock);
1896 insert_to_mm_slots_hash(mm, mm_slot);
1897 /*
1898 * Insert just behind the scanning cursor, to let the area settle
1899 * down a little.
1900 */
1901 wakeup = list_empty(&khugepaged_scan.mm_head);
1902 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1903 spin_unlock(&khugepaged_mm_lock);
1904
1905 atomic_inc(&mm->mm_count);
1906 if (wakeup)
1907 wake_up_interruptible(&khugepaged_wait);
1908
1909 return 0;
1910}
1911
6d50e60c
DR
1912int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1913 unsigned long vm_flags)
ba76149f
AA
1914{
1915 unsigned long hstart, hend;
1916 if (!vma->anon_vma)
1917 /*
1918 * Not yet faulted in so we will register later in the
1919 * page fault if needed.
1920 */
1921 return 0;
78f11a25 1922 if (vma->vm_ops)
ba76149f
AA
1923 /* khugepaged not yet working on file or special mappings */
1924 return 0;
6d50e60c 1925 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
1926 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1927 hend = vma->vm_end & HPAGE_PMD_MASK;
1928 if (hstart < hend)
6d50e60c 1929 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1930 return 0;
1931}
1932
1933void __khugepaged_exit(struct mm_struct *mm)
1934{
1935 struct mm_slot *mm_slot;
1936 int free = 0;
1937
1938 spin_lock(&khugepaged_mm_lock);
1939 mm_slot = get_mm_slot(mm);
1940 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1941 hash_del(&mm_slot->hash);
ba76149f
AA
1942 list_del(&mm_slot->mm_node);
1943 free = 1;
1944 }
d788e80a 1945 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1946
1947 if (free) {
ba76149f
AA
1948 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1949 free_mm_slot(mm_slot);
1950 mmdrop(mm);
1951 } else if (mm_slot) {
ba76149f
AA
1952 /*
1953 * This is required to serialize against
1954 * khugepaged_test_exit() (which is guaranteed to run
1955 * under mmap sem read mode). Stop here (after we
1956 * return all pagetables will be destroyed) until
1957 * khugepaged has finished working on the pagetables
1958 * under the mmap_sem.
1959 */
1960 down_write(&mm->mmap_sem);
1961 up_write(&mm->mmap_sem);
d788e80a 1962 }
ba76149f
AA
1963}
1964
1965static void release_pte_page(struct page *page)
1966{
1967 /* 0 stands for page_is_file_cache(page) == false */
1968 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1969 unlock_page(page);
1970 putback_lru_page(page);
1971}
1972
1973static void release_pte_pages(pte_t *pte, pte_t *_pte)
1974{
1975 while (--_pte >= pte) {
1976 pte_t pteval = *_pte;
ca0984ca 1977 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
1978 release_pte_page(pte_page(pteval));
1979 }
1980}
1981
ba76149f
AA
1982static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1983 unsigned long address,
1984 pte_t *pte)
1985{
7d2eba05 1986 struct page *page = NULL;
ba76149f 1987 pte_t *_pte;
7d2eba05 1988 int none_or_zero = 0, result = 0;
10359213 1989 bool referenced = false, writable = false;
7d2eba05 1990
ba76149f
AA
1991 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1992 _pte++, address += PAGE_SIZE) {
1993 pte_t pteval = *_pte;
47aee4d8
MK
1994 if (pte_none(pteval) || (pte_present(pteval) &&
1995 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 1996 if (!userfaultfd_armed(vma) &&
7d2eba05 1997 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 1998 continue;
7d2eba05
EA
1999 } else {
2000 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2001 goto out;
7d2eba05 2002 }
ba76149f 2003 }
7d2eba05
EA
2004 if (!pte_present(pteval)) {
2005 result = SCAN_PTE_NON_PRESENT;
ba76149f 2006 goto out;
7d2eba05 2007 }
ba76149f 2008 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2009 if (unlikely(!page)) {
2010 result = SCAN_PAGE_NULL;
ba76149f 2011 goto out;
7d2eba05 2012 }
344aa35c 2013
309381fe
SL
2014 VM_BUG_ON_PAGE(PageCompound(page), page);
2015 VM_BUG_ON_PAGE(!PageAnon(page), page);
2016 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2017
ba76149f
AA
2018 /*
2019 * We can do it before isolate_lru_page because the
2020 * page can't be freed from under us. NOTE: PG_lock
2021 * is needed to serialize against split_huge_page
2022 * when invoked from the VM.
2023 */
7d2eba05
EA
2024 if (!trylock_page(page)) {
2025 result = SCAN_PAGE_LOCK;
ba76149f 2026 goto out;
7d2eba05 2027 }
10359213
EA
2028
2029 /*
2030 * cannot use mapcount: can't collapse if there's a gup pin.
2031 * The page must only be referenced by the scanned process
2032 * and page swap cache.
2033 */
2034 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2035 unlock_page(page);
7d2eba05 2036 result = SCAN_PAGE_COUNT;
10359213
EA
2037 goto out;
2038 }
2039 if (pte_write(pteval)) {
2040 writable = true;
2041 } else {
2042 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2043 unlock_page(page);
7d2eba05 2044 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2045 goto out;
2046 }
2047 /*
2048 * Page is not in the swap cache. It can be collapsed
2049 * into a THP.
2050 */
2051 }
2052
ba76149f
AA
2053 /*
2054 * Isolate the page to avoid collapsing an hugepage
2055 * currently in use by the VM.
2056 */
2057 if (isolate_lru_page(page)) {
2058 unlock_page(page);
7d2eba05 2059 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2060 goto out;
2061 }
2062 /* 0 stands for page_is_file_cache(page) == false */
2063 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2064 VM_BUG_ON_PAGE(!PageLocked(page), page);
2065 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2066
2067 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2068 if (pte_young(pteval) ||
2069 page_is_young(page) || PageReferenced(page) ||
8ee53820 2070 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2071 referenced = true;
ba76149f 2072 }
7d2eba05
EA
2073 if (likely(writable)) {
2074 if (likely(referenced)) {
2075 result = SCAN_SUCCEED;
16fd0fe4 2076 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2077 referenced, writable, result);
2078 return 1;
2079 }
2080 } else {
2081 result = SCAN_PAGE_RO;
2082 }
2083
ba76149f 2084out:
344aa35c 2085 release_pte_pages(pte, _pte);
16fd0fe4 2086 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2087 referenced, writable, result);
344aa35c 2088 return 0;
ba76149f
AA
2089}
2090
2091static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2092 struct vm_area_struct *vma,
2093 unsigned long address,
2094 spinlock_t *ptl)
2095{
2096 pte_t *_pte;
2097 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2098 pte_t pteval = *_pte;
2099 struct page *src_page;
2100
ca0984ca 2101 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2102 clear_user_highpage(page, address);
2103 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2104 if (is_zero_pfn(pte_pfn(pteval))) {
2105 /*
2106 * ptl mostly unnecessary.
2107 */
2108 spin_lock(ptl);
2109 /*
2110 * paravirt calls inside pte_clear here are
2111 * superfluous.
2112 */
2113 pte_clear(vma->vm_mm, address, _pte);
2114 spin_unlock(ptl);
2115 }
ba76149f
AA
2116 } else {
2117 src_page = pte_page(pteval);
2118 copy_user_highpage(page, src_page, address, vma);
309381fe 2119 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2120 release_pte_page(src_page);
2121 /*
2122 * ptl mostly unnecessary, but preempt has to
2123 * be disabled to update the per-cpu stats
2124 * inside page_remove_rmap().
2125 */
2126 spin_lock(ptl);
2127 /*
2128 * paravirt calls inside pte_clear here are
2129 * superfluous.
2130 */
2131 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2132 page_remove_rmap(src_page, false);
ba76149f
AA
2133 spin_unlock(ptl);
2134 free_page_and_swap_cache(src_page);
2135 }
2136
2137 address += PAGE_SIZE;
2138 page++;
2139 }
2140}
2141
26234f36 2142static void khugepaged_alloc_sleep(void)
ba76149f 2143{
bde43c6c
PM
2144 DEFINE_WAIT(wait);
2145
2146 add_wait_queue(&khugepaged_wait, &wait);
2147 freezable_schedule_timeout_interruptible(
2148 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2149 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2150}
ba76149f 2151
9f1b868a
BL
2152static int khugepaged_node_load[MAX_NUMNODES];
2153
14a4e214
DR
2154static bool khugepaged_scan_abort(int nid)
2155{
2156 int i;
2157
2158 /*
2159 * If zone_reclaim_mode is disabled, then no extra effort is made to
2160 * allocate memory locally.
2161 */
2162 if (!zone_reclaim_mode)
2163 return false;
2164
2165 /* If there is a count for this node already, it must be acceptable */
2166 if (khugepaged_node_load[nid])
2167 return false;
2168
2169 for (i = 0; i < MAX_NUMNODES; i++) {
2170 if (!khugepaged_node_load[i])
2171 continue;
2172 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2173 return true;
2174 }
2175 return false;
2176}
2177
26234f36 2178#ifdef CONFIG_NUMA
9f1b868a
BL
2179static int khugepaged_find_target_node(void)
2180{
2181 static int last_khugepaged_target_node = NUMA_NO_NODE;
2182 int nid, target_node = 0, max_value = 0;
2183
2184 /* find first node with max normal pages hit */
2185 for (nid = 0; nid < MAX_NUMNODES; nid++)
2186 if (khugepaged_node_load[nid] > max_value) {
2187 max_value = khugepaged_node_load[nid];
2188 target_node = nid;
2189 }
2190
2191 /* do some balance if several nodes have the same hit record */
2192 if (target_node <= last_khugepaged_target_node)
2193 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2194 nid++)
2195 if (max_value == khugepaged_node_load[nid]) {
2196 target_node = nid;
2197 break;
2198 }
2199
2200 last_khugepaged_target_node = target_node;
2201 return target_node;
2202}
2203
26234f36
XG
2204static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2205{
2206 if (IS_ERR(*hpage)) {
2207 if (!*wait)
2208 return false;
2209
2210 *wait = false;
e3b4126c 2211 *hpage = NULL;
26234f36
XG
2212 khugepaged_alloc_sleep();
2213 } else if (*hpage) {
2214 put_page(*hpage);
2215 *hpage = NULL;
2216 }
2217
2218 return true;
2219}
2220
3b363692
MH
2221static struct page *
2222khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2223 unsigned long address, int node)
26234f36 2224{
309381fe 2225 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2226
ce83d217 2227 /*
8b164568
VB
2228 * Before allocating the hugepage, release the mmap_sem read lock.
2229 * The allocation can take potentially a long time if it involves
2230 * sync compaction, and we do not need to hold the mmap_sem during
2231 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2232 */
8b164568
VB
2233 up_read(&mm->mmap_sem);
2234
96db800f 2235 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2236 if (unlikely(!*hpage)) {
81ab4201 2237 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2238 *hpage = ERR_PTR(-ENOMEM);
26234f36 2239 return NULL;
ce83d217 2240 }
26234f36 2241
9a982250 2242 prep_transhuge_page(*hpage);
65b3c07b 2243 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2244 return *hpage;
2245}
2246#else
9f1b868a
BL
2247static int khugepaged_find_target_node(void)
2248{
2249 return 0;
2250}
2251
10dc4155
BL
2252static inline struct page *alloc_hugepage(int defrag)
2253{
9a982250
KS
2254 struct page *page;
2255
2256 page = alloc_pages(alloc_hugepage_gfpmask(defrag, 0), HPAGE_PMD_ORDER);
2257 if (page)
2258 prep_transhuge_page(page);
2259 return page;
10dc4155
BL
2260}
2261
26234f36
XG
2262static struct page *khugepaged_alloc_hugepage(bool *wait)
2263{
2264 struct page *hpage;
2265
2266 do {
2267 hpage = alloc_hugepage(khugepaged_defrag());
2268 if (!hpage) {
2269 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2270 if (!*wait)
2271 return NULL;
2272
2273 *wait = false;
2274 khugepaged_alloc_sleep();
2275 } else
2276 count_vm_event(THP_COLLAPSE_ALLOC);
2277 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2278
2279 return hpage;
2280}
2281
2282static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2283{
2284 if (!*hpage)
2285 *hpage = khugepaged_alloc_hugepage(wait);
2286
2287 if (unlikely(!*hpage))
2288 return false;
2289
2290 return true;
2291}
2292
3b363692
MH
2293static struct page *
2294khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2295 unsigned long address, int node)
26234f36
XG
2296{
2297 up_read(&mm->mmap_sem);
2298 VM_BUG_ON(!*hpage);
3b363692 2299
26234f36
XG
2300 return *hpage;
2301}
692e0b35
AA
2302#endif
2303
fa475e51
BL
2304static bool hugepage_vma_check(struct vm_area_struct *vma)
2305{
2306 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2307 (vma->vm_flags & VM_NOHUGEPAGE))
2308 return false;
fa475e51
BL
2309 if (!vma->anon_vma || vma->vm_ops)
2310 return false;
2311 if (is_vma_temporary_stack(vma))
2312 return false;
81d1b09c 2313 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2314 return true;
2315}
2316
26234f36
XG
2317static void collapse_huge_page(struct mm_struct *mm,
2318 unsigned long address,
2319 struct page **hpage,
2320 struct vm_area_struct *vma,
2321 int node)
2322{
26234f36
XG
2323 pmd_t *pmd, _pmd;
2324 pte_t *pte;
2325 pgtable_t pgtable;
2326 struct page *new_page;
c4088ebd 2327 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2328 int isolated = 0, result = 0;
26234f36 2329 unsigned long hstart, hend;
00501b53 2330 struct mem_cgroup *memcg;
2ec74c3e
SG
2331 unsigned long mmun_start; /* For mmu_notifiers */
2332 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2333 gfp_t gfp;
26234f36
XG
2334
2335 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2336
3b363692
MH
2337 /* Only allocate from the target node */
2338 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2339 __GFP_THISNODE;
2340
26234f36 2341 /* release the mmap_sem read lock. */
d6669d68 2342 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2343 if (!new_page) {
2344 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2345 goto out_nolock;
2346 }
26234f36 2347
f627c2f5 2348 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2349 result = SCAN_CGROUP_CHARGE_FAIL;
2350 goto out_nolock;
2351 }
ba76149f
AA
2352
2353 /*
2354 * Prevent all access to pagetables with the exception of
2355 * gup_fast later hanlded by the ptep_clear_flush and the VM
2356 * handled by the anon_vma lock + PG_lock.
2357 */
2358 down_write(&mm->mmap_sem);
7d2eba05
EA
2359 if (unlikely(khugepaged_test_exit(mm))) {
2360 result = SCAN_ANY_PROCESS;
ba76149f 2361 goto out;
7d2eba05 2362 }
ba76149f
AA
2363
2364 vma = find_vma(mm, address);
7d2eba05
EA
2365 if (!vma) {
2366 result = SCAN_VMA_NULL;
a8f531eb 2367 goto out;
7d2eba05 2368 }
ba76149f
AA
2369 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2370 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2371 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2372 result = SCAN_ADDRESS_RANGE;
ba76149f 2373 goto out;
7d2eba05
EA
2374 }
2375 if (!hugepage_vma_check(vma)) {
2376 result = SCAN_VMA_CHECK;
a7d6e4ec 2377 goto out;
7d2eba05 2378 }
6219049a 2379 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2380 if (!pmd) {
2381 result = SCAN_PMD_NULL;
ba76149f 2382 goto out;
7d2eba05 2383 }
ba76149f 2384
4fc3f1d6 2385 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2386
2387 pte = pte_offset_map(pmd, address);
c4088ebd 2388 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2389
2ec74c3e
SG
2390 mmun_start = address;
2391 mmun_end = address + HPAGE_PMD_SIZE;
2392 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2393 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2394 /*
2395 * After this gup_fast can't run anymore. This also removes
2396 * any huge TLB entry from the CPU so we won't allow
2397 * huge and small TLB entries for the same virtual address
2398 * to avoid the risk of CPU bugs in that area.
2399 */
15a25b2e 2400 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2401 spin_unlock(pmd_ptl);
2ec74c3e 2402 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2403
c4088ebd 2404 spin_lock(pte_ptl);
ba76149f 2405 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2406 spin_unlock(pte_ptl);
ba76149f
AA
2407
2408 if (unlikely(!isolated)) {
453c7192 2409 pte_unmap(pte);
c4088ebd 2410 spin_lock(pmd_ptl);
ba76149f 2411 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2412 /*
2413 * We can only use set_pmd_at when establishing
2414 * hugepmds and never for establishing regular pmds that
2415 * points to regular pagetables. Use pmd_populate for that
2416 */
2417 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2418 spin_unlock(pmd_ptl);
08b52706 2419 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2420 result = SCAN_FAIL;
ce83d217 2421 goto out;
ba76149f
AA
2422 }
2423
2424 /*
2425 * All pages are isolated and locked so anon_vma rmap
2426 * can't run anymore.
2427 */
08b52706 2428 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2429
c4088ebd 2430 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2431 pte_unmap(pte);
ba76149f
AA
2432 __SetPageUptodate(new_page);
2433 pgtable = pmd_pgtable(_pmd);
ba76149f 2434
3122359a
KS
2435 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2436 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2437
2438 /*
2439 * spin_lock() below is not the equivalent of smp_wmb(), so
2440 * this is needed to avoid the copy_huge_page writes to become
2441 * visible after the set_pmd_at() write.
2442 */
2443 smp_wmb();
2444
c4088ebd 2445 spin_lock(pmd_ptl);
ba76149f 2446 BUG_ON(!pmd_none(*pmd));
d281ee61 2447 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2448 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2449 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2450 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2451 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2452 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2453 spin_unlock(pmd_ptl);
ba76149f
AA
2454
2455 *hpage = NULL;
420256ef 2456
ba76149f 2457 khugepaged_pages_collapsed++;
7d2eba05 2458 result = SCAN_SUCCEED;
ce83d217 2459out_up_write:
ba76149f 2460 up_write(&mm->mmap_sem);
7d2eba05 2461 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2462 return;
2463
7d2eba05
EA
2464out_nolock:
2465 trace_mm_collapse_huge_page(mm, isolated, result);
2466 return;
ce83d217 2467out:
f627c2f5 2468 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2469 goto out_up_write;
ba76149f
AA
2470}
2471
2472static int khugepaged_scan_pmd(struct mm_struct *mm,
2473 struct vm_area_struct *vma,
2474 unsigned long address,
2475 struct page **hpage)
2476{
ba76149f
AA
2477 pmd_t *pmd;
2478 pte_t *pte, *_pte;
7d2eba05
EA
2479 int ret = 0, none_or_zero = 0, result = 0;
2480 struct page *page = NULL;
ba76149f
AA
2481 unsigned long _address;
2482 spinlock_t *ptl;
00ef2d2f 2483 int node = NUMA_NO_NODE;
10359213 2484 bool writable = false, referenced = false;
ba76149f
AA
2485
2486 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2487
6219049a 2488 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2489 if (!pmd) {
2490 result = SCAN_PMD_NULL;
ba76149f 2491 goto out;
7d2eba05 2492 }
ba76149f 2493
9f1b868a 2494 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2495 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2496 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2497 _pte++, _address += PAGE_SIZE) {
2498 pte_t pteval = *_pte;
ca0984ca 2499 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2500 if (!userfaultfd_armed(vma) &&
7d2eba05 2501 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2502 continue;
7d2eba05
EA
2503 } else {
2504 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2505 goto out_unmap;
7d2eba05 2506 }
ba76149f 2507 }
7d2eba05
EA
2508 if (!pte_present(pteval)) {
2509 result = SCAN_PTE_NON_PRESENT;
ba76149f 2510 goto out_unmap;
7d2eba05 2511 }
10359213
EA
2512 if (pte_write(pteval))
2513 writable = true;
2514
ba76149f 2515 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2516 if (unlikely(!page)) {
2517 result = SCAN_PAGE_NULL;
ba76149f 2518 goto out_unmap;
7d2eba05 2519 }
b1caa957
KS
2520
2521 /* TODO: teach khugepaged to collapse THP mapped with pte */
2522 if (PageCompound(page)) {
2523 result = SCAN_PAGE_COMPOUND;
2524 goto out_unmap;
2525 }
2526
5c4b4be3 2527 /*
9f1b868a
BL
2528 * Record which node the original page is from and save this
2529 * information to khugepaged_node_load[].
2530 * Khupaged will allocate hugepage from the node has the max
2531 * hit record.
5c4b4be3 2532 */
9f1b868a 2533 node = page_to_nid(page);
7d2eba05
EA
2534 if (khugepaged_scan_abort(node)) {
2535 result = SCAN_SCAN_ABORT;
14a4e214 2536 goto out_unmap;
7d2eba05 2537 }
9f1b868a 2538 khugepaged_node_load[node]++;
7d2eba05
EA
2539 if (!PageLRU(page)) {
2540 result = SCAN_SCAN_ABORT;
2541 goto out_unmap;
2542 }
2543 if (PageLocked(page)) {
2544 result = SCAN_PAGE_LOCK;
ba76149f 2545 goto out_unmap;
7d2eba05
EA
2546 }
2547 if (!PageAnon(page)) {
2548 result = SCAN_PAGE_ANON;
2549 goto out_unmap;
2550 }
2551
10359213
EA
2552 /*
2553 * cannot use mapcount: can't collapse if there's a gup pin.
2554 * The page must only be referenced by the scanned process
2555 * and page swap cache.
2556 */
7d2eba05
EA
2557 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2558 result = SCAN_PAGE_COUNT;
ba76149f 2559 goto out_unmap;
7d2eba05 2560 }
33c3fc71
VD
2561 if (pte_young(pteval) ||
2562 page_is_young(page) || PageReferenced(page) ||
8ee53820 2563 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2564 referenced = true;
ba76149f 2565 }
7d2eba05
EA
2566 if (writable) {
2567 if (referenced) {
2568 result = SCAN_SUCCEED;
2569 ret = 1;
2570 } else {
2571 result = SCAN_NO_REFERENCED_PAGE;
2572 }
2573 } else {
2574 result = SCAN_PAGE_RO;
2575 }
ba76149f
AA
2576out_unmap:
2577 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2578 if (ret) {
2579 node = khugepaged_find_target_node();
ce83d217 2580 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2581 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2582 }
ba76149f 2583out:
16fd0fe4 2584 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
7d2eba05 2585 none_or_zero, result);
ba76149f
AA
2586 return ret;
2587}
2588
2589static void collect_mm_slot(struct mm_slot *mm_slot)
2590{
2591 struct mm_struct *mm = mm_slot->mm;
2592
b9980cdc 2593 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2594
2595 if (khugepaged_test_exit(mm)) {
2596 /* free mm_slot */
43b5fbbd 2597 hash_del(&mm_slot->hash);
ba76149f
AA
2598 list_del(&mm_slot->mm_node);
2599
2600 /*
2601 * Not strictly needed because the mm exited already.
2602 *
2603 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2604 */
2605
2606 /* khugepaged_mm_lock actually not necessary for the below */
2607 free_mm_slot(mm_slot);
2608 mmdrop(mm);
2609 }
2610}
2611
2612static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2613 struct page **hpage)
2f1da642
HS
2614 __releases(&khugepaged_mm_lock)
2615 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2616{
2617 struct mm_slot *mm_slot;
2618 struct mm_struct *mm;
2619 struct vm_area_struct *vma;
2620 int progress = 0;
2621
2622 VM_BUG_ON(!pages);
b9980cdc 2623 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2624
2625 if (khugepaged_scan.mm_slot)
2626 mm_slot = khugepaged_scan.mm_slot;
2627 else {
2628 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2629 struct mm_slot, mm_node);
2630 khugepaged_scan.address = 0;
2631 khugepaged_scan.mm_slot = mm_slot;
2632 }
2633 spin_unlock(&khugepaged_mm_lock);
2634
2635 mm = mm_slot->mm;
2636 down_read(&mm->mmap_sem);
2637 if (unlikely(khugepaged_test_exit(mm)))
2638 vma = NULL;
2639 else
2640 vma = find_vma(mm, khugepaged_scan.address);
2641
2642 progress++;
2643 for (; vma; vma = vma->vm_next) {
2644 unsigned long hstart, hend;
2645
2646 cond_resched();
2647 if (unlikely(khugepaged_test_exit(mm))) {
2648 progress++;
2649 break;
2650 }
fa475e51
BL
2651 if (!hugepage_vma_check(vma)) {
2652skip:
ba76149f
AA
2653 progress++;
2654 continue;
2655 }
ba76149f
AA
2656 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2657 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2658 if (hstart >= hend)
2659 goto skip;
2660 if (khugepaged_scan.address > hend)
2661 goto skip;
ba76149f
AA
2662 if (khugepaged_scan.address < hstart)
2663 khugepaged_scan.address = hstart;
a7d6e4ec 2664 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2665
2666 while (khugepaged_scan.address < hend) {
2667 int ret;
2668 cond_resched();
2669 if (unlikely(khugepaged_test_exit(mm)))
2670 goto breakouterloop;
2671
2672 VM_BUG_ON(khugepaged_scan.address < hstart ||
2673 khugepaged_scan.address + HPAGE_PMD_SIZE >
2674 hend);
2675 ret = khugepaged_scan_pmd(mm, vma,
2676 khugepaged_scan.address,
2677 hpage);
2678 /* move to next address */
2679 khugepaged_scan.address += HPAGE_PMD_SIZE;
2680 progress += HPAGE_PMD_NR;
2681 if (ret)
2682 /* we released mmap_sem so break loop */
2683 goto breakouterloop_mmap_sem;
2684 if (progress >= pages)
2685 goto breakouterloop;
2686 }
2687 }
2688breakouterloop:
2689 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2690breakouterloop_mmap_sem:
2691
2692 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2693 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2694 /*
2695 * Release the current mm_slot if this mm is about to die, or
2696 * if we scanned all vmas of this mm.
2697 */
2698 if (khugepaged_test_exit(mm) || !vma) {
2699 /*
2700 * Make sure that if mm_users is reaching zero while
2701 * khugepaged runs here, khugepaged_exit will find
2702 * mm_slot not pointing to the exiting mm.
2703 */
2704 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2705 khugepaged_scan.mm_slot = list_entry(
2706 mm_slot->mm_node.next,
2707 struct mm_slot, mm_node);
2708 khugepaged_scan.address = 0;
2709 } else {
2710 khugepaged_scan.mm_slot = NULL;
2711 khugepaged_full_scans++;
2712 }
2713
2714 collect_mm_slot(mm_slot);
2715 }
2716
2717 return progress;
2718}
2719
2720static int khugepaged_has_work(void)
2721{
2722 return !list_empty(&khugepaged_scan.mm_head) &&
2723 khugepaged_enabled();
2724}
2725
2726static int khugepaged_wait_event(void)
2727{
2728 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2729 kthread_should_stop();
ba76149f
AA
2730}
2731
d516904b 2732static void khugepaged_do_scan(void)
ba76149f 2733{
d516904b 2734 struct page *hpage = NULL;
ba76149f
AA
2735 unsigned int progress = 0, pass_through_head = 0;
2736 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2737 bool wait = true;
ba76149f
AA
2738
2739 barrier(); /* write khugepaged_pages_to_scan to local stack */
2740
2741 while (progress < pages) {
26234f36 2742 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2743 break;
26234f36 2744
420256ef 2745 cond_resched();
ba76149f 2746
cd092411 2747 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2748 break;
2749
ba76149f
AA
2750 spin_lock(&khugepaged_mm_lock);
2751 if (!khugepaged_scan.mm_slot)
2752 pass_through_head++;
2753 if (khugepaged_has_work() &&
2754 pass_through_head < 2)
2755 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2756 &hpage);
ba76149f
AA
2757 else
2758 progress = pages;
2759 spin_unlock(&khugepaged_mm_lock);
2760 }
ba76149f 2761
d516904b
XG
2762 if (!IS_ERR_OR_NULL(hpage))
2763 put_page(hpage);
0bbbc0b3
AA
2764}
2765
2017c0bf
XG
2766static void khugepaged_wait_work(void)
2767{
2017c0bf
XG
2768 if (khugepaged_has_work()) {
2769 if (!khugepaged_scan_sleep_millisecs)
2770 return;
2771
2772 wait_event_freezable_timeout(khugepaged_wait,
2773 kthread_should_stop(),
2774 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2775 return;
2776 }
2777
2778 if (khugepaged_enabled())
2779 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2780}
2781
ba76149f
AA
2782static int khugepaged(void *none)
2783{
2784 struct mm_slot *mm_slot;
2785
878aee7d 2786 set_freezable();
8698a745 2787 set_user_nice(current, MAX_NICE);
ba76149f 2788
b7231789
XG
2789 while (!kthread_should_stop()) {
2790 khugepaged_do_scan();
2791 khugepaged_wait_work();
2792 }
ba76149f
AA
2793
2794 spin_lock(&khugepaged_mm_lock);
2795 mm_slot = khugepaged_scan.mm_slot;
2796 khugepaged_scan.mm_slot = NULL;
2797 if (mm_slot)
2798 collect_mm_slot(mm_slot);
2799 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2800 return 0;
2801}
2802
eef1b3ba
KS
2803static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2804 unsigned long haddr, pmd_t *pmd)
2805{
2806 struct mm_struct *mm = vma->vm_mm;
2807 pgtable_t pgtable;
2808 pmd_t _pmd;
2809 int i;
2810
2811 /* leave pmd empty until pte is filled */
2812 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2813
2814 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2815 pmd_populate(mm, &_pmd, pgtable);
2816
2817 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2818 pte_t *pte, entry;
2819 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2820 entry = pte_mkspecial(entry);
2821 pte = pte_offset_map(&_pmd, haddr);
2822 VM_BUG_ON(!pte_none(*pte));
2823 set_pte_at(mm, haddr, pte, entry);
2824 pte_unmap(pte);
2825 }
2826 smp_wmb(); /* make pte visible before pmd */
2827 pmd_populate(mm, pmd, pgtable);
2828 put_huge_zero_page();
2829}
2830
2831static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2832 unsigned long haddr, bool freeze)
eef1b3ba
KS
2833{
2834 struct mm_struct *mm = vma->vm_mm;
2835 struct page *page;
2836 pgtable_t pgtable;
2837 pmd_t _pmd;
b8d3c4c3 2838 bool young, write, dirty;
eef1b3ba
KS
2839 int i;
2840
2841 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2842 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2843 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2844 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2845
2846 count_vm_event(THP_SPLIT_PMD);
2847
2848 if (vma_is_dax(vma)) {
2849 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2850 if (is_huge_zero_pmd(_pmd))
2851 put_huge_zero_page();
2852 return;
2853 } else if (is_huge_zero_pmd(*pmd)) {
2854 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2855 }
2856
2857 page = pmd_page(*pmd);
2858 VM_BUG_ON_PAGE(!page_count(page), page);
2859 atomic_add(HPAGE_PMD_NR - 1, &page->_count);
2860 write = pmd_write(*pmd);
2861 young = pmd_young(*pmd);
b8d3c4c3 2862 dirty = pmd_dirty(*pmd);
eef1b3ba 2863
c777e2a8 2864 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2865 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2866 pmd_populate(mm, &_pmd, pgtable);
2867
2868 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2869 pte_t entry, *pte;
2870 /*
2871 * Note that NUMA hinting access restrictions are not
2872 * transferred to avoid any possibility of altering
2873 * permissions across VMAs.
2874 */
ba988280
KS
2875 if (freeze) {
2876 swp_entry_t swp_entry;
2877 swp_entry = make_migration_entry(page + i, write);
2878 entry = swp_entry_to_pte(swp_entry);
2879 } else {
2880 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 2881 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2882 if (!write)
2883 entry = pte_wrprotect(entry);
2884 if (!young)
2885 entry = pte_mkold(entry);
2886 }
b8d3c4c3
MK
2887 if (dirty)
2888 SetPageDirty(page + i);
eef1b3ba
KS
2889 pte = pte_offset_map(&_pmd, haddr);
2890 BUG_ON(!pte_none(*pte));
2891 set_pte_at(mm, haddr, pte, entry);
2892 atomic_inc(&page[i]._mapcount);
2893 pte_unmap(pte);
2894 }
2895
2896 /*
2897 * Set PG_double_map before dropping compound_mapcount to avoid
2898 * false-negative page_mapped().
2899 */
2900 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2901 for (i = 0; i < HPAGE_PMD_NR; i++)
2902 atomic_inc(&page[i]._mapcount);
2903 }
2904
2905 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2906 /* Last compound_mapcount is gone. */
2907 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2908 if (TestClearPageDoubleMap(page)) {
2909 /* No need in mapcount reference anymore */
2910 for (i = 0; i < HPAGE_PMD_NR; i++)
2911 atomic_dec(&page[i]._mapcount);
2912 }
2913 }
2914
2915 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2916 /*
2917 * Up to this point the pmd is present and huge and userland has the
2918 * whole access to the hugepage during the split (which happens in
2919 * place). If we overwrite the pmd with the not-huge version pointing
2920 * to the pte here (which of course we could if all CPUs were bug
2921 * free), userland could trigger a small page size TLB miss on the
2922 * small sized TLB while the hugepage TLB entry is still established in
2923 * the huge TLB. Some CPU doesn't like that.
2924 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2925 * 383 on page 93. Intel should be safe but is also warns that it's
2926 * only safe if the permission and cache attributes of the two entries
2927 * loaded in the two TLB is identical (which should be the case here).
2928 * But it is generally safer to never allow small and huge TLB entries
2929 * for the same virtual address to be loaded simultaneously. So instead
2930 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2931 * current pmd notpresent (atomically because here the pmd_trans_huge
2932 * and pmd_trans_splitting must remain set at all times on the pmd
2933 * until the split is complete for this pmd), then we flush the SMP TLB
2934 * and finally we write the non-huge version of the pmd entry with
2935 * pmd_populate.
2936 */
2937 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2938 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2939
2940 if (freeze) {
2941 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2942 page_remove_rmap(page + i, false);
2943 put_page(page + i);
2944 }
2945 }
eef1b3ba
KS
2946}
2947
2948void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2949 unsigned long address)
2950{
2951 spinlock_t *ptl;
2952 struct mm_struct *mm = vma->vm_mm;
e90309c9 2953 struct page *page = NULL;
eef1b3ba
KS
2954 unsigned long haddr = address & HPAGE_PMD_MASK;
2955
2956 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2957 ptl = pmd_lock(mm, pmd);
5c7fb56e
DW
2958 if (pmd_trans_huge(*pmd)) {
2959 page = pmd_page(*pmd);
2960 if (PageMlocked(page))
2961 get_page(page);
2962 else
2963 page = NULL;
2964 } else if (!pmd_devmap(*pmd))
e90309c9 2965 goto out;
e90309c9 2966 __split_huge_pmd_locked(vma, pmd, haddr, false);
e90309c9 2967out:
eef1b3ba
KS
2968 spin_unlock(ptl);
2969 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
e90309c9
KS
2970 if (page) {
2971 lock_page(page);
2972 munlock_vma_page(page);
2973 unlock_page(page);
2974 put_page(page);
2975 }
eef1b3ba
KS
2976}
2977
78ddc534 2978static void split_huge_pmd_address(struct vm_area_struct *vma,
94fcc585
AA
2979 unsigned long address)
2980{
f72e7dcd
HD
2981 pgd_t *pgd;
2982 pud_t *pud;
94fcc585
AA
2983 pmd_t *pmd;
2984
2985 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2986
78ddc534 2987 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
2988 if (!pgd_present(*pgd))
2989 return;
2990
2991 pud = pud_offset(pgd, address);
2992 if (!pud_present(*pud))
2993 return;
2994
2995 pmd = pmd_offset(pud, address);
5c7fb56e 2996 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
94fcc585
AA
2997 return;
2998 /*
2999 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3000 * materialize from under us.
3001 */
ad0bed24 3002 split_huge_pmd(vma, pmd, address);
94fcc585
AA
3003}
3004
e1b9996b 3005void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3006 unsigned long start,
3007 unsigned long end,
3008 long adjust_next)
3009{
3010 /*
3011 * If the new start address isn't hpage aligned and it could
3012 * previously contain an hugepage: check if we need to split
3013 * an huge pmd.
3014 */
3015 if (start & ~HPAGE_PMD_MASK &&
3016 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3017 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 3018 split_huge_pmd_address(vma, start);
94fcc585
AA
3019
3020 /*
3021 * If the new end address isn't hpage aligned and it could
3022 * previously contain an hugepage: check if we need to split
3023 * an huge pmd.
3024 */
3025 if (end & ~HPAGE_PMD_MASK &&
3026 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3027 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
78ddc534 3028 split_huge_pmd_address(vma, end);
94fcc585
AA
3029
3030 /*
3031 * If we're also updating the vma->vm_next->vm_start, if the new
3032 * vm_next->vm_start isn't page aligned and it could previously
3033 * contain an hugepage: check if we need to split an huge pmd.
3034 */
3035 if (adjust_next > 0) {
3036 struct vm_area_struct *next = vma->vm_next;
3037 unsigned long nstart = next->vm_start;
3038 nstart += adjust_next << PAGE_SHIFT;
3039 if (nstart & ~HPAGE_PMD_MASK &&
3040 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3041 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
78ddc534 3042 split_huge_pmd_address(next, nstart);
94fcc585
AA
3043 }
3044}
e9b61f19
KS
3045
3046static void freeze_page_vma(struct vm_area_struct *vma, struct page *page,
3047 unsigned long address)
3048{
bd56086f 3049 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
3050 spinlock_t *ptl;
3051 pgd_t *pgd;
3052 pud_t *pud;
3053 pmd_t *pmd;
3054 pte_t *pte;
3055 int i, nr = HPAGE_PMD_NR;
3056
3057 /* Skip pages which doesn't belong to the VMA */
3058 if (address < vma->vm_start) {
3059 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3060 page += off;
3061 nr -= off;
3062 address = vma->vm_start;
3063 }
3064
3065 pgd = pgd_offset(vma->vm_mm, address);
3066 if (!pgd_present(*pgd))
3067 return;
3068 pud = pud_offset(pgd, address);
3069 if (!pud_present(*pud))
3070 return;
3071 pmd = pmd_offset(pud, address);
3072 ptl = pmd_lock(vma->vm_mm, pmd);
3073 if (!pmd_present(*pmd)) {
3074 spin_unlock(ptl);
3075 return;
3076 }
3077 if (pmd_trans_huge(*pmd)) {
3078 if (page == pmd_page(*pmd))
bd56086f 3079 __split_huge_pmd_locked(vma, pmd, haddr, true);
e9b61f19
KS
3080 spin_unlock(ptl);
3081 return;
3082 }
3083 spin_unlock(ptl);
3084
3085 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f 3086 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
e9b61f19
KS
3087 pte_t entry, swp_pte;
3088 swp_entry_t swp_entry;
3089
bd56086f
KS
3090 /*
3091 * We've just crossed page table boundary: need to map next one.
3092 * It can happen if THP was mremaped to non PMD-aligned address.
3093 */
3094 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3095 pte_unmap_unlock(pte - 1, ptl);
3096 pmd = mm_find_pmd(vma->vm_mm, address);
3097 if (!pmd)
3098 return;
3099 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3100 address, &ptl);
3101 }
3102
3103 if (!pte_present(*pte))
e9b61f19 3104 continue;
bd56086f 3105 if (page_to_pfn(page) != pte_pfn(*pte))
e9b61f19
KS
3106 continue;
3107 flush_cache_page(vma, address, page_to_pfn(page));
bd56086f 3108 entry = ptep_clear_flush(vma, address, pte);
b8d3c4c3
MK
3109 if (pte_dirty(entry))
3110 SetPageDirty(page);
e9b61f19
KS
3111 swp_entry = make_migration_entry(page, pte_write(entry));
3112 swp_pte = swp_entry_to_pte(swp_entry);
3113 if (pte_soft_dirty(entry))
3114 swp_pte = pte_swp_mksoft_dirty(swp_pte);
bd56086f 3115 set_pte_at(vma->vm_mm, address, pte, swp_pte);
e9b61f19
KS
3116 page_remove_rmap(page, false);
3117 put_page(page);
3118 }
bd56086f 3119 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3120}
3121
3122static void freeze_page(struct anon_vma *anon_vma, struct page *page)
3123{
3124 struct anon_vma_chain *avc;
3125 pgoff_t pgoff = page_to_pgoff(page);
3126
3127 VM_BUG_ON_PAGE(!PageHead(page), page);
3128
3129 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff,
3130 pgoff + HPAGE_PMD_NR - 1) {
bd56086f 3131 unsigned long address = __vma_address(page, avc->vma);
e9b61f19 3132
e9b61f19 3133 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
bd56086f
KS
3134 address, address + HPAGE_PMD_SIZE);
3135 freeze_page_vma(avc->vma, page, address);
e9b61f19 3136 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
bd56086f 3137 address, address + HPAGE_PMD_SIZE);
e9b61f19
KS
3138 }
3139}
3140
3141static void unfreeze_page_vma(struct vm_area_struct *vma, struct page *page,
3142 unsigned long address)
3143{
3144 spinlock_t *ptl;
3145 pmd_t *pmd;
3146 pte_t *pte, entry;
3147 swp_entry_t swp_entry;
bd56086f 3148 unsigned long haddr = address & HPAGE_PMD_MASK;
e9b61f19
KS
3149 int i, nr = HPAGE_PMD_NR;
3150
3151 /* Skip pages which doesn't belong to the VMA */
3152 if (address < vma->vm_start) {
3153 int off = (vma->vm_start - address) >> PAGE_SHIFT;
3154 page += off;
3155 nr -= off;
3156 address = vma->vm_start;
3157 }
3158
3159 pmd = mm_find_pmd(vma->vm_mm, address);
3160 if (!pmd)
3161 return;
bd56086f 3162
e9b61f19 3163 pte = pte_offset_map_lock(vma->vm_mm, pmd, address, &ptl);
bd56086f
KS
3164 for (i = 0; i < nr; i++, address += PAGE_SIZE, page++, pte++) {
3165 /*
3166 * We've just crossed page table boundary: need to map next one.
3167 * It can happen if THP was mremaped to non-PMD aligned address.
3168 */
3169 if (unlikely(address == haddr + HPAGE_PMD_SIZE)) {
3170 pte_unmap_unlock(pte - 1, ptl);
3171 pmd = mm_find_pmd(vma->vm_mm, address);
3172 if (!pmd)
3173 return;
3174 pte = pte_offset_map_lock(vma->vm_mm, pmd,
3175 address, &ptl);
3176 }
3177
3178 if (!is_swap_pte(*pte))
e9b61f19
KS
3179 continue;
3180
bd56086f 3181 swp_entry = pte_to_swp_entry(*pte);
e9b61f19
KS
3182 if (!is_migration_entry(swp_entry))
3183 continue;
3184 if (migration_entry_to_page(swp_entry) != page)
3185 continue;
3186
3187 get_page(page);
3188 page_add_anon_rmap(page, vma, address, false);
3189
3190 entry = pte_mkold(mk_pte(page, vma->vm_page_prot));
b8d3c4c3
MK
3191 if (PageDirty(page))
3192 entry = pte_mkdirty(entry);
e9b61f19
KS
3193 if (is_write_migration_entry(swp_entry))
3194 entry = maybe_mkwrite(entry, vma);
3195
3196 flush_dcache_page(page);
bd56086f 3197 set_pte_at(vma->vm_mm, address, pte, entry);
e9b61f19
KS
3198
3199 /* No need to invalidate - it was non-present before */
bd56086f 3200 update_mmu_cache(vma, address, pte);
e9b61f19 3201 }
bd56086f 3202 pte_unmap_unlock(pte - 1, ptl);
e9b61f19
KS
3203}
3204
3205static void unfreeze_page(struct anon_vma *anon_vma, struct page *page)
3206{
3207 struct anon_vma_chain *avc;
3208 pgoff_t pgoff = page_to_pgoff(page);
3209
3210 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root,
3211 pgoff, pgoff + HPAGE_PMD_NR - 1) {
3212 unsigned long address = __vma_address(page, avc->vma);
3213
3214 mmu_notifier_invalidate_range_start(avc->vma->vm_mm,
3215 address, address + HPAGE_PMD_SIZE);
3216 unfreeze_page_vma(avc->vma, page, address);
3217 mmu_notifier_invalidate_range_end(avc->vma->vm_mm,
3218 address, address + HPAGE_PMD_SIZE);
3219 }
3220}
3221
e9b61f19
KS
3222static int __split_huge_page_tail(struct page *head, int tail,
3223 struct lruvec *lruvec, struct list_head *list)
3224{
3225 int mapcount;
3226 struct page *page_tail = head + tail;
3227
3228 mapcount = atomic_read(&page_tail->_mapcount) + 1;
3229 VM_BUG_ON_PAGE(atomic_read(&page_tail->_count) != 0, page_tail);
3230
3231 /*
3232 * tail_page->_count is zero and not changing from under us. But
3233 * get_page_unless_zero() may be running from under us on the
3234 * tail_page. If we used atomic_set() below instead of atomic_add(), we
3235 * would then run atomic_set() concurrently with
3236 * get_page_unless_zero(), and atomic_set() is implemented in C not
3237 * using locked ops. spin_unlock on x86 sometime uses locked ops
3238 * because of PPro errata 66, 92, so unless somebody can guarantee
3239 * atomic_set() here would be safe on all archs (and not only on x86),
3240 * it's safer to use atomic_add().
3241 */
3242 atomic_add(mapcount + 1, &page_tail->_count);
3243
3244
3245 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3246 page_tail->flags |= (head->flags &
3247 ((1L << PG_referenced) |
3248 (1L << PG_swapbacked) |
3249 (1L << PG_mlocked) |
3250 (1L << PG_uptodate) |
3251 (1L << PG_active) |
3252 (1L << PG_locked) |
b8d3c4c3
MK
3253 (1L << PG_unevictable) |
3254 (1L << PG_dirty)));
e9b61f19
KS
3255
3256 /*
3257 * After clearing PageTail the gup refcount can be released.
3258 * Page flags also must be visible before we make the page non-compound.
3259 */
3260 smp_wmb();
3261
3262 clear_compound_head(page_tail);
3263
3264 if (page_is_young(head))
3265 set_page_young(page_tail);
3266 if (page_is_idle(head))
3267 set_page_idle(page_tail);
3268
3269 /* ->mapping in first tail page is compound_mapcount */
9a982250 3270 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3271 page_tail);
3272 page_tail->mapping = head->mapping;
3273
3274 page_tail->index = head->index + tail;
3275 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3276 lru_add_page_tail(head, page_tail, lruvec, list);
3277
3278 return mapcount;
3279}
3280
3281static void __split_huge_page(struct page *page, struct list_head *list)
3282{
3283 struct page *head = compound_head(page);
3284 struct zone *zone = page_zone(head);
3285 struct lruvec *lruvec;
3286 int i, tail_mapcount;
3287
3288 /* prevent PageLRU to go away from under us, and freeze lru stats */
3289 spin_lock_irq(&zone->lru_lock);
3290 lruvec = mem_cgroup_page_lruvec(head, zone);
3291
3292 /* complete memcg works before add pages to LRU */
3293 mem_cgroup_split_huge_fixup(head);
3294
3295 tail_mapcount = 0;
3296 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3297 tail_mapcount += __split_huge_page_tail(head, i, lruvec, list);
3298 atomic_sub(tail_mapcount, &head->_count);
3299
3300 ClearPageCompound(head);
3301 spin_unlock_irq(&zone->lru_lock);
3302
3303 unfreeze_page(page_anon_vma(head), head);
3304
3305 for (i = 0; i < HPAGE_PMD_NR; i++) {
3306 struct page *subpage = head + i;
3307 if (subpage == page)
3308 continue;
3309 unlock_page(subpage);
3310
3311 /*
3312 * Subpages may be freed if there wasn't any mapping
3313 * like if add_to_swap() is running on a lru page that
3314 * had its mapping zapped. And freeing these pages
3315 * requires taking the lru_lock so we do the put_page
3316 * of the tail pages after the split is complete.
3317 */
3318 put_page(subpage);
3319 }
3320}
3321
b20ce5e0
KS
3322int total_mapcount(struct page *page)
3323{
3324 int i, ret;
3325
3326 VM_BUG_ON_PAGE(PageTail(page), page);
3327
3328 if (likely(!PageCompound(page)))
3329 return atomic_read(&page->_mapcount) + 1;
3330
3331 ret = compound_mapcount(page);
3332 if (PageHuge(page))
3333 return ret;
3334 for (i = 0; i < HPAGE_PMD_NR; i++)
3335 ret += atomic_read(&page[i]._mapcount) + 1;
3336 if (PageDoubleMap(page))
3337 ret -= HPAGE_PMD_NR;
3338 return ret;
3339}
3340
e9b61f19
KS
3341/*
3342 * This function splits huge page into normal pages. @page can point to any
3343 * subpage of huge page to split. Split doesn't change the position of @page.
3344 *
3345 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3346 * The huge page must be locked.
3347 *
3348 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3349 *
3350 * Both head page and tail pages will inherit mapping, flags, and so on from
3351 * the hugepage.
3352 *
3353 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3354 * they are not mapped.
3355 *
3356 * Returns 0 if the hugepage is split successfully.
3357 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3358 * us.
3359 */
3360int split_huge_page_to_list(struct page *page, struct list_head *list)
3361{
3362 struct page *head = compound_head(page);
a3d0a918 3363 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3364 struct anon_vma *anon_vma;
3365 int count, mapcount, ret;
d9654322 3366 bool mlocked;
0b9b6fff 3367 unsigned long flags;
e9b61f19
KS
3368
3369 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3370 VM_BUG_ON_PAGE(!PageAnon(page), page);
3371 VM_BUG_ON_PAGE(!PageLocked(page), page);
3372 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3373 VM_BUG_ON_PAGE(!PageCompound(page), page);
3374
3375 /*
3376 * The caller does not necessarily hold an mmap_sem that would prevent
3377 * the anon_vma disappearing so we first we take a reference to it
3378 * and then lock the anon_vma for write. This is similar to
3379 * page_lock_anon_vma_read except the write lock is taken to serialise
3380 * against parallel split or collapse operations.
3381 */
3382 anon_vma = page_get_anon_vma(head);
3383 if (!anon_vma) {
3384 ret = -EBUSY;
3385 goto out;
3386 }
3387 anon_vma_lock_write(anon_vma);
3388
3389 /*
3390 * Racy check if we can split the page, before freeze_page() will
3391 * split PMDs
3392 */
3393 if (total_mapcount(head) != page_count(head) - 1) {
3394 ret = -EBUSY;
3395 goto out_unlock;
3396 }
3397
d9654322 3398 mlocked = PageMlocked(page);
e9b61f19
KS
3399 freeze_page(anon_vma, head);
3400 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3401
d9654322
KS
3402 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3403 if (mlocked)
3404 lru_add_drain();
3405
9a982250 3406 /* Prevent deferred_split_scan() touching ->_count */
a3d0a918 3407 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3408 count = page_count(head);
3409 mapcount = total_mapcount(head);
bd56086f 3410 if (!mapcount && count == 1) {
9a982250 3411 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3412 pgdata->split_queue_len--;
9a982250
KS
3413 list_del(page_deferred_list(head));
3414 }
a3d0a918 3415 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3416 __split_huge_page(page, list);
3417 ret = 0;
bd56086f 3418 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3419 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3420 pr_alert("total_mapcount: %u, page_count(): %u\n",
3421 mapcount, count);
3422 if (PageTail(page))
3423 dump_page(head, NULL);
bd56086f 3424 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3425 BUG();
3426 } else {
a3d0a918 3427 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3428 unfreeze_page(anon_vma, head);
3429 ret = -EBUSY;
3430 }
3431
3432out_unlock:
3433 anon_vma_unlock_write(anon_vma);
3434 put_anon_vma(anon_vma);
3435out:
3436 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3437 return ret;
3438}
9a982250
KS
3439
3440void free_transhuge_page(struct page *page)
3441{
a3d0a918 3442 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3443 unsigned long flags;
3444
a3d0a918 3445 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3446 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3447 pgdata->split_queue_len--;
9a982250
KS
3448 list_del(page_deferred_list(page));
3449 }
a3d0a918 3450 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3451 free_compound_page(page);
3452}
3453
3454void deferred_split_huge_page(struct page *page)
3455{
a3d0a918 3456 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3457 unsigned long flags;
3458
3459 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3460
a3d0a918 3461 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3462 if (list_empty(page_deferred_list(page))) {
a3d0a918
KS
3463 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3464 pgdata->split_queue_len++;
9a982250 3465 }
a3d0a918 3466 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3467}
3468
3469static unsigned long deferred_split_count(struct shrinker *shrink,
3470 struct shrink_control *sc)
3471{
a3d0a918 3472 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3473 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3474}
3475
3476static unsigned long deferred_split_scan(struct shrinker *shrink,
3477 struct shrink_control *sc)
3478{
a3d0a918 3479 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3480 unsigned long flags;
3481 LIST_HEAD(list), *pos, *next;
3482 struct page *page;
3483 int split = 0;
3484
a3d0a918 3485 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3486 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3487 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3488 page = list_entry((void *)pos, struct page, mapping);
3489 page = compound_head(page);
e3ae1953
KS
3490 if (get_page_unless_zero(page)) {
3491 list_move(page_deferred_list(page), &list);
3492 } else {
3493 /* We lost race with put_compound_page() */
9a982250 3494 list_del_init(page_deferred_list(page));
a3d0a918 3495 pgdata->split_queue_len--;
9a982250 3496 }
e3ae1953
KS
3497 if (!--sc->nr_to_scan)
3498 break;
9a982250 3499 }
a3d0a918 3500 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3501
3502 list_for_each_safe(pos, next, &list) {
3503 page = list_entry((void *)pos, struct page, mapping);
3504 lock_page(page);
3505 /* split_huge_page() removes page from list on success */
3506 if (!split_huge_page(page))
3507 split++;
3508 unlock_page(page);
3509 put_page(page);
3510 }
3511
a3d0a918
KS
3512 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3513 list_splice_tail(&list, &pgdata->split_queue);
3514 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3515
cb8d68ec
KS
3516 /*
3517 * Stop shrinker if we didn't split any page, but the queue is empty.
3518 * This can happen if pages were freed under us.
3519 */
3520 if (!split && list_empty(&pgdata->split_queue))
3521 return SHRINK_STOP;
3522 return split;
9a982250
KS
3523}
3524
3525static struct shrinker deferred_split_shrinker = {
3526 .count_objects = deferred_split_count,
3527 .scan_objects = deferred_split_scan,
3528 .seeks = DEFAULT_SEEKS,
a3d0a918 3529 .flags = SHRINKER_NUMA_AWARE,
9a982250 3530};
49071d43
KS
3531
3532#ifdef CONFIG_DEBUG_FS
3533static int split_huge_pages_set(void *data, u64 val)
3534{
3535 struct zone *zone;
3536 struct page *page;
3537 unsigned long pfn, max_zone_pfn;
3538 unsigned long total = 0, split = 0;
3539
3540 if (val != 1)
3541 return -EINVAL;
3542
3543 for_each_populated_zone(zone) {
3544 max_zone_pfn = zone_end_pfn(zone);
3545 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3546 if (!pfn_valid(pfn))
3547 continue;
3548
3549 page = pfn_to_page(pfn);
3550 if (!get_page_unless_zero(page))
3551 continue;
3552
3553 if (zone != page_zone(page))
3554 goto next;
3555
3556 if (!PageHead(page) || !PageAnon(page) ||
3557 PageHuge(page))
3558 goto next;
3559
3560 total++;
3561 lock_page(page);
3562 if (!split_huge_page(page))
3563 split++;
3564 unlock_page(page);
3565next:
3566 put_page(page);
3567 }
3568 }
3569
3570 pr_info("%lu of %lu THP split", split, total);
3571
3572 return 0;
3573}
3574DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3575 "%llu\n");
3576
3577static int __init split_huge_pages_debugfs(void)
3578{
3579 void *ret;
3580
3581 ret = debugfs_create_file("split_huge_pages", 0644, NULL, NULL,
3582 &split_huge_pages_fops);
3583 if (!ret)
3584 pr_warn("Failed to create split_huge_pages in debugfs");
3585 return 0;
3586}
3587late_initcall(split_huge_pages_debugfs);
3588#endif