]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm: unexport __get_user_pages_unlocked()
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
ba76149f 38/*
8bfa3f9a
JW
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
ba76149f 45 */
71e3aac0 46unsigned long transparent_hugepage_flags __read_mostly =
13ece886 47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
49#endif
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52#endif
444eb2a4 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 56
9a982250 57static struct shrinker deferred_split_shrinker;
f000565a 58
97ae1749 59static atomic_t huge_zero_refcount;
56873f43 60struct page *huge_zero_page __read_mostly;
4a6c1297 61
6fcb52a5 62static struct page *get_huge_zero_page(void)
97ae1749
KS
63{
64 struct page *zero_page;
65retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 67 return READ_ONCE(huge_zero_page);
97ae1749
KS
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 70 HPAGE_PMD_ORDER);
d8a8e1f0
KS
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 73 return NULL;
d8a8e1f0
KS
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 76 preempt_disable();
5918d10a 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 78 preempt_enable();
5ddacbe9 79 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
4db0c3c2 86 return READ_ONCE(huge_zero_page);
4a6c1297
KS
87}
88
6fcb52a5 89static void put_huge_zero_page(void)
4a6c1297 90{
97ae1749
KS
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
96}
97
6fcb52a5
AL
98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99{
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110}
111
112void mm_put_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116}
117
48896466
GC
118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
4a6c1297 120{
48896466
GC
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123}
97ae1749 124
48896466
GC
125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127{
97ae1749 128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
5ddacbe9 131 __free_pages(zero_page, compound_order(zero_page));
48896466 132 return HPAGE_PMD_NR;
97ae1749
KS
133 }
134
135 return 0;
4a6c1297
KS
136}
137
97ae1749 138static struct shrinker huge_zero_page_shrinker = {
48896466
GC
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
141 .seeks = DEFAULT_SEEKS,
142};
143
71e3aac0 144#ifdef CONFIG_SYSFS
ba76149f 145
444eb2a4 146static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
444eb2a4 150 enum transparent_hugepage_flag deferred,
71e3aac0
AA
151 enum transparent_hugepage_flag req_madv)
152{
444eb2a4
MG
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
71e3aac0 161 min(sizeof("always")-1, count))) {
444eb2a4 162 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 163 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 164 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 168 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 174 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
175 } else
176 return -EINVAL;
177
178 return count;
179}
180
181static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183{
444eb2a4
MG
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
71e3aac0 190}
444eb2a4 191
71e3aac0
AA
192static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195{
ba76149f
AA
196 ssize_t ret;
197
444eb2a4
MG
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
b46e756f 204 int err = start_stop_khugepaged();
ba76149f
AA
205 if (err)
206 ret = err;
207 }
208
209 return ret;
71e3aac0
AA
210}
211static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
b46e756f 214ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217{
e27e6151
BH
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 220}
e27e6151 221
b46e756f 222ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226{
e27e6151
BH
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
71e3aac0 237 set_bit(flag, &transparent_hugepage_flags);
e27e6151 238 else
71e3aac0 239 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
240
241 return count;
242}
243
244/*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251{
444eb2a4
MG
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
71e3aac0
AA
261}
262static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265{
444eb2a4
MG
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270}
271static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
79da5407
KS
274static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276{
b46e756f 277 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279}
280static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282{
b46e756f 283 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285}
286static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
49920d28
HD
288
289static ssize_t hpage_pmd_size_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291{
292 return sprintf(buf, "%lu\n", HPAGE_PMD_SIZE);
293}
294static struct kobj_attribute hpage_pmd_size_attr =
295 __ATTR_RO(hpage_pmd_size);
296
71e3aac0
AA
297#ifdef CONFIG_DEBUG_VM
298static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
b46e756f 301 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303}
304static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307{
b46e756f 308 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310}
311static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313#endif /* CONFIG_DEBUG_VM */
314
315static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
79da5407 318 &use_zero_page_attr.attr,
49920d28 319 &hpage_pmd_size_attr.attr,
e496cf3d 320#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
321 &shmem_enabled_attr.attr,
322#endif
71e3aac0
AA
323#ifdef CONFIG_DEBUG_VM
324 &debug_cow_attr.attr,
325#endif
326 NULL,
327};
328
329static struct attribute_group hugepage_attr_group = {
330 .attrs = hugepage_attr,
ba76149f
AA
331};
332
569e5590 333static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 334{
71e3aac0
AA
335 int err;
336
569e5590
SL
337 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
338 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 339 pr_err("failed to create transparent hugepage kobject\n");
569e5590 340 return -ENOMEM;
ba76149f
AA
341 }
342
569e5590 343 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 344 if (err) {
ae3a8c1c 345 pr_err("failed to register transparent hugepage group\n");
569e5590 346 goto delete_obj;
ba76149f
AA
347 }
348
569e5590 349 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 350 if (err) {
ae3a8c1c 351 pr_err("failed to register transparent hugepage group\n");
569e5590 352 goto remove_hp_group;
ba76149f 353 }
569e5590
SL
354
355 return 0;
356
357remove_hp_group:
358 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
359delete_obj:
360 kobject_put(*hugepage_kobj);
361 return err;
362}
363
364static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
365{
366 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
367 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
368 kobject_put(hugepage_kobj);
369}
370#else
371static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
372{
373 return 0;
374}
375
376static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
377{
378}
379#endif /* CONFIG_SYSFS */
380
381static int __init hugepage_init(void)
382{
383 int err;
384 struct kobject *hugepage_kobj;
385
386 if (!has_transparent_hugepage()) {
387 transparent_hugepage_flags = 0;
388 return -EINVAL;
389 }
390
ff20c2e0
KS
391 /*
392 * hugepages can't be allocated by the buddy allocator
393 */
394 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
395 /*
396 * we use page->mapping and page->index in second tail page
397 * as list_head: assuming THP order >= 2
398 */
399 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
400
569e5590
SL
401 err = hugepage_init_sysfs(&hugepage_kobj);
402 if (err)
65ebb64f 403 goto err_sysfs;
ba76149f 404
b46e756f 405 err = khugepaged_init();
ba76149f 406 if (err)
65ebb64f 407 goto err_slab;
ba76149f 408
65ebb64f
KS
409 err = register_shrinker(&huge_zero_page_shrinker);
410 if (err)
411 goto err_hzp_shrinker;
9a982250
KS
412 err = register_shrinker(&deferred_split_shrinker);
413 if (err)
414 goto err_split_shrinker;
97ae1749 415
97562cd2
RR
416 /*
417 * By default disable transparent hugepages on smaller systems,
418 * where the extra memory used could hurt more than TLB overhead
419 * is likely to save. The admin can still enable it through /sys.
420 */
79553da2 421 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 422 transparent_hugepage_flags = 0;
79553da2
KS
423 return 0;
424 }
97562cd2 425
79553da2 426 err = start_stop_khugepaged();
65ebb64f
KS
427 if (err)
428 goto err_khugepaged;
ba76149f 429
569e5590 430 return 0;
65ebb64f 431err_khugepaged:
9a982250
KS
432 unregister_shrinker(&deferred_split_shrinker);
433err_split_shrinker:
65ebb64f
KS
434 unregister_shrinker(&huge_zero_page_shrinker);
435err_hzp_shrinker:
b46e756f 436 khugepaged_destroy();
65ebb64f 437err_slab:
569e5590 438 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 439err_sysfs:
ba76149f 440 return err;
71e3aac0 441}
a64fb3cd 442subsys_initcall(hugepage_init);
71e3aac0
AA
443
444static int __init setup_transparent_hugepage(char *str)
445{
446 int ret = 0;
447 if (!str)
448 goto out;
449 if (!strcmp(str, "always")) {
450 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
451 &transparent_hugepage_flags);
452 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
453 &transparent_hugepage_flags);
454 ret = 1;
455 } else if (!strcmp(str, "madvise")) {
456 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
457 &transparent_hugepage_flags);
458 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
459 &transparent_hugepage_flags);
460 ret = 1;
461 } else if (!strcmp(str, "never")) {
462 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
463 &transparent_hugepage_flags);
464 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
465 &transparent_hugepage_flags);
466 ret = 1;
467 }
468out:
469 if (!ret)
ae3a8c1c 470 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
471 return ret;
472}
473__setup("transparent_hugepage=", setup_transparent_hugepage);
474
b32967ff 475pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
476{
477 if (likely(vma->vm_flags & VM_WRITE))
478 pmd = pmd_mkwrite(pmd);
479 return pmd;
480}
481
9a982250
KS
482static inline struct list_head *page_deferred_list(struct page *page)
483{
484 /*
485 * ->lru in the tail pages is occupied by compound_head.
486 * Let's use ->mapping + ->index in the second tail page as list_head.
487 */
488 return (struct list_head *)&page[2].mapping;
489}
490
491void prep_transhuge_page(struct page *page)
492{
493 /*
494 * we use page->mapping and page->indexlru in second tail page
495 * as list_head: assuming THP order >= 2
496 */
9a982250
KS
497
498 INIT_LIST_HEAD(page_deferred_list(page));
499 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
500}
501
74d2fad1
TK
502unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
503 loff_t off, unsigned long flags, unsigned long size)
504{
505 unsigned long addr;
506 loff_t off_end = off + len;
507 loff_t off_align = round_up(off, size);
508 unsigned long len_pad;
509
510 if (off_end <= off_align || (off_end - off_align) < size)
511 return 0;
512
513 len_pad = len + size;
514 if (len_pad < len || (off + len_pad) < off)
515 return 0;
516
517 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
518 off >> PAGE_SHIFT, flags);
519 if (IS_ERR_VALUE(addr))
520 return 0;
521
522 addr += (off - addr) & (size - 1);
523 return addr;
524}
525
526unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
527 unsigned long len, unsigned long pgoff, unsigned long flags)
528{
529 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
530
531 if (addr)
532 goto out;
533 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
534 goto out;
535
536 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
537 if (addr)
538 return addr;
539
540 out:
541 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
542}
543EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
544
bae473a4
KS
545static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
546 gfp_t gfp)
71e3aac0 547{
bae473a4 548 struct vm_area_struct *vma = fe->vma;
00501b53 549 struct mem_cgroup *memcg;
71e3aac0 550 pgtable_t pgtable;
bae473a4 551 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 552
309381fe 553 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 554
bae473a4 555 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
556 put_page(page);
557 count_vm_event(THP_FAULT_FALLBACK);
558 return VM_FAULT_FALLBACK;
559 }
00501b53 560
bae473a4 561 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 562 if (unlikely(!pgtable)) {
f627c2f5 563 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 564 put_page(page);
71e3aac0 565 return VM_FAULT_OOM;
00501b53 566 }
71e3aac0
AA
567
568 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
569 /*
570 * The memory barrier inside __SetPageUptodate makes sure that
571 * clear_huge_page writes become visible before the set_pmd_at()
572 * write.
573 */
71e3aac0
AA
574 __SetPageUptodate(page);
575
bae473a4
KS
576 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
577 if (unlikely(!pmd_none(*fe->pmd))) {
578 spin_unlock(fe->ptl);
f627c2f5 579 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 580 put_page(page);
bae473a4 581 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
582 } else {
583 pmd_t entry;
6b251fc9
AA
584
585 /* Deliver the page fault to userland */
586 if (userfaultfd_missing(vma)) {
587 int ret;
588
bae473a4 589 spin_unlock(fe->ptl);
f627c2f5 590 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 591 put_page(page);
bae473a4
KS
592 pte_free(vma->vm_mm, pgtable);
593 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
594 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
595 return ret;
596 }
597
3122359a
KS
598 entry = mk_huge_pmd(page, vma->vm_page_prot);
599 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 600 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 601 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 602 lru_cache_add_active_or_unevictable(page, vma);
bae473a4
KS
603 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
604 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
605 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
606 atomic_long_inc(&vma->vm_mm->nr_ptes);
607 spin_unlock(fe->ptl);
6b251fc9 608 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
609 }
610
aa2e878e 611 return 0;
71e3aac0
AA
612}
613
444eb2a4 614/*
25160354
VB
615 * If THP defrag is set to always then directly reclaim/compact as necessary
616 * If set to defer then do only background reclaim/compact and defer to khugepaged
444eb2a4 617 * If set to madvise and the VMA is flagged then directly reclaim/compact
25160354 618 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
444eb2a4
MG
619 */
620static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
621{
25160354
VB
622 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
623
624 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
625 &transparent_hugepage_flags) && vma_madvised)
626 return GFP_TRANSHUGE;
627 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
628 &transparent_hugepage_flags))
629 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
630 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
631 &transparent_hugepage_flags))
632 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
633
634 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
635}
636
c4088ebd 637/* Caller must hold page table lock. */
d295e341 638static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 639 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 640 struct page *zero_page)
fc9fe822
KS
641{
642 pmd_t entry;
7c414164
AM
643 if (!pmd_none(*pmd))
644 return false;
5918d10a 645 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 646 entry = pmd_mkhuge(entry);
12c9d70b
MW
647 if (pgtable)
648 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 649 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 650 atomic_long_inc(&mm->nr_ptes);
7c414164 651 return true;
fc9fe822
KS
652}
653
bae473a4 654int do_huge_pmd_anonymous_page(struct fault_env *fe)
71e3aac0 655{
bae473a4 656 struct vm_area_struct *vma = fe->vma;
077fcf11 657 gfp_t gfp;
71e3aac0 658 struct page *page;
bae473a4 659 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 660
128ec037 661 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 662 return VM_FAULT_FALLBACK;
128ec037
KS
663 if (unlikely(anon_vma_prepare(vma)))
664 return VM_FAULT_OOM;
6d50e60c 665 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 666 return VM_FAULT_OOM;
bae473a4
KS
667 if (!(fe->flags & FAULT_FLAG_WRITE) &&
668 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
669 transparent_hugepage_use_zero_page()) {
670 pgtable_t pgtable;
671 struct page *zero_page;
672 bool set;
6b251fc9 673 int ret;
bae473a4 674 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 675 if (unlikely(!pgtable))
ba76149f 676 return VM_FAULT_OOM;
6fcb52a5 677 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 678 if (unlikely(!zero_page)) {
bae473a4 679 pte_free(vma->vm_mm, pgtable);
81ab4201 680 count_vm_event(THP_FAULT_FALLBACK);
c0292554 681 return VM_FAULT_FALLBACK;
b9bbfbe3 682 }
bae473a4 683 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
6b251fc9
AA
684 ret = 0;
685 set = false;
bae473a4 686 if (pmd_none(*fe->pmd)) {
6b251fc9 687 if (userfaultfd_missing(vma)) {
bae473a4
KS
688 spin_unlock(fe->ptl);
689 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
690 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
691 } else {
bae473a4
KS
692 set_huge_zero_page(pgtable, vma->vm_mm, vma,
693 haddr, fe->pmd, zero_page);
694 spin_unlock(fe->ptl);
6b251fc9
AA
695 set = true;
696 }
697 } else
bae473a4 698 spin_unlock(fe->ptl);
6fcb52a5 699 if (!set)
bae473a4 700 pte_free(vma->vm_mm, pgtable);
6b251fc9 701 return ret;
71e3aac0 702 }
444eb2a4 703 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 704 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
705 if (unlikely(!page)) {
706 count_vm_event(THP_FAULT_FALLBACK);
c0292554 707 return VM_FAULT_FALLBACK;
128ec037 708 }
9a982250 709 prep_transhuge_page(page);
bae473a4 710 return __do_huge_pmd_anonymous_page(fe, page, gfp);
71e3aac0
AA
711}
712
ae18d6dc 713static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 714 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
715{
716 struct mm_struct *mm = vma->vm_mm;
717 pmd_t entry;
718 spinlock_t *ptl;
719
720 ptl = pmd_lock(mm, pmd);
f25748e3
DW
721 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
722 if (pfn_t_devmap(pfn))
723 entry = pmd_mkdevmap(entry);
01871e59
RZ
724 if (write) {
725 entry = pmd_mkyoung(pmd_mkdirty(entry));
726 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 727 }
01871e59
RZ
728 set_pmd_at(mm, addr, pmd, entry);
729 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 730 spin_unlock(ptl);
5cad465d
MW
731}
732
733int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 734 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
735{
736 pgprot_t pgprot = vma->vm_page_prot;
737 /*
738 * If we had pmd_special, we could avoid all these restrictions,
739 * but we need to be consistent with PTEs and architectures that
740 * can't support a 'special' bit.
741 */
742 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
743 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
744 (VM_PFNMAP|VM_MIXEDMAP));
745 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 746 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
747
748 if (addr < vma->vm_start || addr >= vma->vm_end)
749 return VM_FAULT_SIGBUS;
308a047c
BP
750
751 track_pfn_insert(vma, &pgprot, pfn);
752
ae18d6dc
MW
753 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
754 return VM_FAULT_NOPAGE;
5cad465d 755}
dee41079 756EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 757
3565fce3
DW
758static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
759 pmd_t *pmd)
760{
761 pmd_t _pmd;
762
763 /*
764 * We should set the dirty bit only for FOLL_WRITE but for now
765 * the dirty bit in the pmd is meaningless. And if the dirty
766 * bit will become meaningful and we'll only set it with
767 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
768 * set the young bit, instead of the current set_pmd_at.
769 */
770 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
771 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
772 pmd, _pmd, 1))
773 update_mmu_cache_pmd(vma, addr, pmd);
774}
775
776struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
777 pmd_t *pmd, int flags)
778{
779 unsigned long pfn = pmd_pfn(*pmd);
780 struct mm_struct *mm = vma->vm_mm;
781 struct dev_pagemap *pgmap;
782 struct page *page;
783
784 assert_spin_locked(pmd_lockptr(mm, pmd));
785
786 if (flags & FOLL_WRITE && !pmd_write(*pmd))
787 return NULL;
788
789 if (pmd_present(*pmd) && pmd_devmap(*pmd))
790 /* pass */;
791 else
792 return NULL;
793
794 if (flags & FOLL_TOUCH)
795 touch_pmd(vma, addr, pmd);
796
797 /*
798 * device mapped pages can only be returned if the
799 * caller will manage the page reference count.
800 */
801 if (!(flags & FOLL_GET))
802 return ERR_PTR(-EEXIST);
803
804 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
805 pgmap = get_dev_pagemap(pfn, NULL);
806 if (!pgmap)
807 return ERR_PTR(-EFAULT);
808 page = pfn_to_page(pfn);
809 get_page(page);
810 put_dev_pagemap(pgmap);
811
812 return page;
813}
814
71e3aac0
AA
815int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
816 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
817 struct vm_area_struct *vma)
818{
c4088ebd 819 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
820 struct page *src_page;
821 pmd_t pmd;
12c9d70b 822 pgtable_t pgtable = NULL;
628d47ce 823 int ret = -ENOMEM;
71e3aac0 824
628d47ce
KS
825 /* Skip if can be re-fill on fault */
826 if (!vma_is_anonymous(vma))
827 return 0;
828
829 pgtable = pte_alloc_one(dst_mm, addr);
830 if (unlikely(!pgtable))
831 goto out;
71e3aac0 832
c4088ebd
KS
833 dst_ptl = pmd_lock(dst_mm, dst_pmd);
834 src_ptl = pmd_lockptr(src_mm, src_pmd);
835 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
836
837 ret = -EAGAIN;
838 pmd = *src_pmd;
628d47ce 839 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
840 pte_free(dst_mm, pgtable);
841 goto out_unlock;
842 }
fc9fe822 843 /*
c4088ebd 844 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
845 * under splitting since we don't split the page itself, only pmd to
846 * a page table.
847 */
848 if (is_huge_zero_pmd(pmd)) {
5918d10a 849 struct page *zero_page;
97ae1749
KS
850 /*
851 * get_huge_zero_page() will never allocate a new page here,
852 * since we already have a zero page to copy. It just takes a
853 * reference.
854 */
6fcb52a5 855 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 856 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 857 zero_page);
fc9fe822
KS
858 ret = 0;
859 goto out_unlock;
860 }
de466bd6 861
628d47ce
KS
862 src_page = pmd_page(pmd);
863 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
864 get_page(src_page);
865 page_dup_rmap(src_page, true);
866 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
867 atomic_long_inc(&dst_mm->nr_ptes);
868 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
869
870 pmdp_set_wrprotect(src_mm, addr, src_pmd);
871 pmd = pmd_mkold(pmd_wrprotect(pmd));
872 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
873
874 ret = 0;
875out_unlock:
c4088ebd
KS
876 spin_unlock(src_ptl);
877 spin_unlock(dst_ptl);
71e3aac0
AA
878out:
879 return ret;
880}
881
bae473a4 882void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
a1dd450b
WD
883{
884 pmd_t entry;
885 unsigned long haddr;
886
bae473a4
KS
887 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
888 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
a1dd450b
WD
889 goto unlock;
890
891 entry = pmd_mkyoung(orig_pmd);
bae473a4
KS
892 haddr = fe->address & HPAGE_PMD_MASK;
893 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
894 fe->flags & FAULT_FLAG_WRITE))
895 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
a1dd450b
WD
896
897unlock:
bae473a4 898 spin_unlock(fe->ptl);
a1dd450b
WD
899}
900
bae473a4
KS
901static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
902 struct page *page)
71e3aac0 903{
bae473a4
KS
904 struct vm_area_struct *vma = fe->vma;
905 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
00501b53 906 struct mem_cgroup *memcg;
71e3aac0
AA
907 pgtable_t pgtable;
908 pmd_t _pmd;
909 int ret = 0, i;
910 struct page **pages;
2ec74c3e
SG
911 unsigned long mmun_start; /* For mmu_notifiers */
912 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
913
914 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
915 GFP_KERNEL);
916 if (unlikely(!pages)) {
917 ret |= VM_FAULT_OOM;
918 goto out;
919 }
920
921 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f 922 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
bae473a4
KS
923 __GFP_OTHER_NODE, vma,
924 fe->address, page_to_nid(page));
b9bbfbe3 925 if (unlikely(!pages[i] ||
bae473a4
KS
926 mem_cgroup_try_charge(pages[i], vma->vm_mm,
927 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 928 if (pages[i])
71e3aac0 929 put_page(pages[i]);
b9bbfbe3 930 while (--i >= 0) {
00501b53
JW
931 memcg = (void *)page_private(pages[i]);
932 set_page_private(pages[i], 0);
f627c2f5
KS
933 mem_cgroup_cancel_charge(pages[i], memcg,
934 false);
b9bbfbe3
AA
935 put_page(pages[i]);
936 }
71e3aac0
AA
937 kfree(pages);
938 ret |= VM_FAULT_OOM;
939 goto out;
940 }
00501b53 941 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
942 }
943
944 for (i = 0; i < HPAGE_PMD_NR; i++) {
945 copy_user_highpage(pages[i], page + i,
0089e485 946 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
947 __SetPageUptodate(pages[i]);
948 cond_resched();
949 }
950
2ec74c3e
SG
951 mmun_start = haddr;
952 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 953 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 954
bae473a4
KS
955 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
956 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0 957 goto out_free_pages;
309381fe 958 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 959
bae473a4 960 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
71e3aac0
AA
961 /* leave pmd empty until pte is filled */
962
bae473a4
KS
963 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
964 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
965
966 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 967 pte_t entry;
71e3aac0
AA
968 entry = mk_pte(pages[i], vma->vm_page_prot);
969 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
970 memcg = (void *)page_private(pages[i]);
971 set_page_private(pages[i], 0);
bae473a4 972 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
f627c2f5 973 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 974 lru_cache_add_active_or_unevictable(pages[i], vma);
bae473a4
KS
975 fe->pte = pte_offset_map(&_pmd, haddr);
976 VM_BUG_ON(!pte_none(*fe->pte));
977 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
978 pte_unmap(fe->pte);
71e3aac0
AA
979 }
980 kfree(pages);
981
71e3aac0 982 smp_wmb(); /* make pte visible before pmd */
bae473a4 983 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
d281ee61 984 page_remove_rmap(page, true);
bae473a4 985 spin_unlock(fe->ptl);
71e3aac0 986
bae473a4 987 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 988
71e3aac0
AA
989 ret |= VM_FAULT_WRITE;
990 put_page(page);
991
992out:
993 return ret;
994
995out_free_pages:
bae473a4
KS
996 spin_unlock(fe->ptl);
997 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 998 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
999 memcg = (void *)page_private(pages[i]);
1000 set_page_private(pages[i], 0);
f627c2f5 1001 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1002 put_page(pages[i]);
b9bbfbe3 1003 }
71e3aac0
AA
1004 kfree(pages);
1005 goto out;
1006}
1007
bae473a4 1008int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
71e3aac0 1009{
bae473a4 1010 struct vm_area_struct *vma = fe->vma;
93b4796d 1011 struct page *page = NULL, *new_page;
00501b53 1012 struct mem_cgroup *memcg;
bae473a4 1013 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1014 unsigned long mmun_start; /* For mmu_notifiers */
1015 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1016 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1017 int ret = 0;
71e3aac0 1018
bae473a4 1019 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
81d1b09c 1020 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1021 if (is_huge_zero_pmd(orig_pmd))
1022 goto alloc;
bae473a4
KS
1023 spin_lock(fe->ptl);
1024 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0
AA
1025 goto out_unlock;
1026
1027 page = pmd_page(orig_pmd);
309381fe 1028 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1029 /*
1030 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1031 * part.
1f25fe20 1032 */
6d0a07ed 1033 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1034 pmd_t entry;
1035 entry = pmd_mkyoung(orig_pmd);
1036 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4
KS
1037 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1038 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
71e3aac0
AA
1039 ret |= VM_FAULT_WRITE;
1040 goto out_unlock;
1041 }
ddc58f27 1042 get_page(page);
bae473a4 1043 spin_unlock(fe->ptl);
93b4796d 1044alloc:
71e3aac0 1045 if (transparent_hugepage_enabled(vma) &&
077fcf11 1046 !transparent_hugepage_debug_cow()) {
444eb2a4 1047 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1048 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1049 } else
71e3aac0
AA
1050 new_page = NULL;
1051
9a982250
KS
1052 if (likely(new_page)) {
1053 prep_transhuge_page(new_page);
1054 } else {
eecc1e42 1055 if (!page) {
bae473a4 1056 split_huge_pmd(vma, fe->pmd, fe->address);
e9b71ca9 1057 ret |= VM_FAULT_FALLBACK;
93b4796d 1058 } else {
bae473a4 1059 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
9845cbbd 1060 if (ret & VM_FAULT_OOM) {
bae473a4 1061 split_huge_pmd(vma, fe->pmd, fe->address);
9845cbbd
KS
1062 ret |= VM_FAULT_FALLBACK;
1063 }
ddc58f27 1064 put_page(page);
93b4796d 1065 }
17766dde 1066 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1067 goto out;
1068 }
1069
bae473a4
KS
1070 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1071 huge_gfp, &memcg, true))) {
b9bbfbe3 1072 put_page(new_page);
bae473a4
KS
1073 split_huge_pmd(vma, fe->pmd, fe->address);
1074 if (page)
ddc58f27 1075 put_page(page);
9845cbbd 1076 ret |= VM_FAULT_FALLBACK;
17766dde 1077 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1078 goto out;
1079 }
1080
17766dde
DR
1081 count_vm_event(THP_FAULT_ALLOC);
1082
eecc1e42 1083 if (!page)
93b4796d
KS
1084 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1085 else
1086 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1087 __SetPageUptodate(new_page);
1088
2ec74c3e
SG
1089 mmun_start = haddr;
1090 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1091 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1092
bae473a4 1093 spin_lock(fe->ptl);
93b4796d 1094 if (page)
ddc58f27 1095 put_page(page);
bae473a4
KS
1096 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1097 spin_unlock(fe->ptl);
f627c2f5 1098 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1099 put_page(new_page);
2ec74c3e 1100 goto out_mn;
b9bbfbe3 1101 } else {
71e3aac0 1102 pmd_t entry;
3122359a
KS
1103 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1104 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4 1105 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
d281ee61 1106 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1107 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1108 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4
KS
1109 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1110 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
eecc1e42 1111 if (!page) {
bae473a4 1112 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1113 } else {
309381fe 1114 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1115 page_remove_rmap(page, true);
93b4796d
KS
1116 put_page(page);
1117 }
71e3aac0
AA
1118 ret |= VM_FAULT_WRITE;
1119 }
bae473a4 1120 spin_unlock(fe->ptl);
2ec74c3e 1121out_mn:
bae473a4 1122 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1123out:
1124 return ret;
2ec74c3e 1125out_unlock:
bae473a4 1126 spin_unlock(fe->ptl);
2ec74c3e 1127 return ret;
71e3aac0
AA
1128}
1129
b676b293 1130struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1131 unsigned long addr,
1132 pmd_t *pmd,
1133 unsigned int flags)
1134{
b676b293 1135 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1136 struct page *page = NULL;
1137
c4088ebd 1138 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1139
1140 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1141 goto out;
1142
85facf25
KS
1143 /* Avoid dumping huge zero page */
1144 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1145 return ERR_PTR(-EFAULT);
1146
2b4847e7 1147 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1148 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1149 goto out;
1150
71e3aac0 1151 page = pmd_page(*pmd);
ca120cf6 1152 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1153 if (flags & FOLL_TOUCH)
1154 touch_pmd(vma, addr, pmd);
de60f5f1 1155 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1156 /*
1157 * We don't mlock() pte-mapped THPs. This way we can avoid
1158 * leaking mlocked pages into non-VM_LOCKED VMAs.
1159 *
9a73f61b
KS
1160 * For anon THP:
1161 *
e90309c9
KS
1162 * In most cases the pmd is the only mapping of the page as we
1163 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1164 * writable private mappings in populate_vma_page_range().
1165 *
1166 * The only scenario when we have the page shared here is if we
1167 * mlocking read-only mapping shared over fork(). We skip
1168 * mlocking such pages.
9a73f61b
KS
1169 *
1170 * For file THP:
1171 *
1172 * We can expect PageDoubleMap() to be stable under page lock:
1173 * for file pages we set it in page_add_file_rmap(), which
1174 * requires page to be locked.
e90309c9 1175 */
9a73f61b
KS
1176
1177 if (PageAnon(page) && compound_mapcount(page) != 1)
1178 goto skip_mlock;
1179 if (PageDoubleMap(page) || !page->mapping)
1180 goto skip_mlock;
1181 if (!trylock_page(page))
1182 goto skip_mlock;
1183 lru_add_drain();
1184 if (page->mapping && !PageDoubleMap(page))
1185 mlock_vma_page(page);
1186 unlock_page(page);
b676b293 1187 }
9a73f61b 1188skip_mlock:
71e3aac0 1189 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1190 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1191 if (flags & FOLL_GET)
ddc58f27 1192 get_page(page);
71e3aac0
AA
1193
1194out:
1195 return page;
1196}
1197
d10e63f2 1198/* NUMA hinting page fault entry point for trans huge pmds */
bae473a4 1199int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
d10e63f2 1200{
bae473a4 1201 struct vm_area_struct *vma = fe->vma;
b8916634 1202 struct anon_vma *anon_vma = NULL;
b32967ff 1203 struct page *page;
bae473a4 1204 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
8191acbd 1205 int page_nid = -1, this_nid = numa_node_id();
90572890 1206 int target_nid, last_cpupid = -1;
8191acbd
MG
1207 bool page_locked;
1208 bool migrated = false;
b191f9b1 1209 bool was_writable;
6688cc05 1210 int flags = 0;
d10e63f2 1211
bae473a4
KS
1212 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1213 if (unlikely(!pmd_same(pmd, *fe->pmd)))
d10e63f2
MG
1214 goto out_unlock;
1215
de466bd6
MG
1216 /*
1217 * If there are potential migrations, wait for completion and retry
1218 * without disrupting NUMA hinting information. Do not relock and
1219 * check_same as the page may no longer be mapped.
1220 */
bae473a4
KS
1221 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1222 page = pmd_page(*fe->pmd);
1223 spin_unlock(fe->ptl);
5d833062 1224 wait_on_page_locked(page);
de466bd6
MG
1225 goto out;
1226 }
1227
d10e63f2 1228 page = pmd_page(pmd);
a1a46184 1229 BUG_ON(is_huge_zero_page(page));
8191acbd 1230 page_nid = page_to_nid(page);
90572890 1231 last_cpupid = page_cpupid_last(page);
03c5a6e1 1232 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1233 if (page_nid == this_nid) {
03c5a6e1 1234 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1235 flags |= TNF_FAULT_LOCAL;
1236 }
4daae3b4 1237
bea66fbd 1238 /* See similar comment in do_numa_page for explanation */
d59dc7bc 1239 if (!pmd_write(pmd))
6688cc05
PZ
1240 flags |= TNF_NO_GROUP;
1241
ff9042b1
MG
1242 /*
1243 * Acquire the page lock to serialise THP migrations but avoid dropping
1244 * page_table_lock if at all possible
1245 */
b8916634
MG
1246 page_locked = trylock_page(page);
1247 target_nid = mpol_misplaced(page, vma, haddr);
1248 if (target_nid == -1) {
1249 /* If the page was locked, there are no parallel migrations */
a54a407f 1250 if (page_locked)
b8916634 1251 goto clear_pmdnuma;
2b4847e7 1252 }
4daae3b4 1253
de466bd6 1254 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1255 if (!page_locked) {
bae473a4 1256 spin_unlock(fe->ptl);
b8916634 1257 wait_on_page_locked(page);
a54a407f 1258 page_nid = -1;
b8916634
MG
1259 goto out;
1260 }
1261
2b4847e7
MG
1262 /*
1263 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1264 * to serialises splits
1265 */
b8916634 1266 get_page(page);
bae473a4 1267 spin_unlock(fe->ptl);
b8916634 1268 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1269
c69307d5 1270 /* Confirm the PMD did not change while page_table_lock was released */
bae473a4
KS
1271 spin_lock(fe->ptl);
1272 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
b32967ff
MG
1273 unlock_page(page);
1274 put_page(page);
a54a407f 1275 page_nid = -1;
4daae3b4 1276 goto out_unlock;
b32967ff 1277 }
ff9042b1 1278
c3a489ca
MG
1279 /* Bail if we fail to protect against THP splits for any reason */
1280 if (unlikely(!anon_vma)) {
1281 put_page(page);
1282 page_nid = -1;
1283 goto clear_pmdnuma;
1284 }
1285
a54a407f
MG
1286 /*
1287 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1288 * and access rights restored.
a54a407f 1289 */
bae473a4
KS
1290 spin_unlock(fe->ptl);
1291 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1292 fe->pmd, pmd, fe->address, page, target_nid);
6688cc05
PZ
1293 if (migrated) {
1294 flags |= TNF_MIGRATED;
8191acbd 1295 page_nid = target_nid;
074c2381
MG
1296 } else
1297 flags |= TNF_MIGRATE_FAIL;
b32967ff 1298
8191acbd 1299 goto out;
b32967ff 1300clear_pmdnuma:
a54a407f 1301 BUG_ON(!PageLocked(page));
b191f9b1 1302 was_writable = pmd_write(pmd);
4d942466 1303 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1304 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1305 if (was_writable)
1306 pmd = pmd_mkwrite(pmd);
bae473a4
KS
1307 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1308 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
a54a407f 1309 unlock_page(page);
d10e63f2 1310out_unlock:
bae473a4 1311 spin_unlock(fe->ptl);
b8916634
MG
1312
1313out:
1314 if (anon_vma)
1315 page_unlock_anon_vma_read(anon_vma);
1316
8191acbd 1317 if (page_nid != -1)
bae473a4 1318 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
8191acbd 1319
d10e63f2
MG
1320 return 0;
1321}
1322
319904ad
HY
1323/*
1324 * Return true if we do MADV_FREE successfully on entire pmd page.
1325 * Otherwise, return false.
1326 */
1327bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1328 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1329{
1330 spinlock_t *ptl;
1331 pmd_t orig_pmd;
1332 struct page *page;
1333 struct mm_struct *mm = tlb->mm;
319904ad 1334 bool ret = false;
b8d3c4c3 1335
07e32661
AK
1336 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1337
b6ec57f4
KS
1338 ptl = pmd_trans_huge_lock(pmd, vma);
1339 if (!ptl)
25eedabe 1340 goto out_unlocked;
b8d3c4c3
MK
1341
1342 orig_pmd = *pmd;
319904ad 1343 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1344 goto out;
b8d3c4c3
MK
1345
1346 page = pmd_page(orig_pmd);
1347 /*
1348 * If other processes are mapping this page, we couldn't discard
1349 * the page unless they all do MADV_FREE so let's skip the page.
1350 */
1351 if (page_mapcount(page) != 1)
1352 goto out;
1353
1354 if (!trylock_page(page))
1355 goto out;
1356
1357 /*
1358 * If user want to discard part-pages of THP, split it so MADV_FREE
1359 * will deactivate only them.
1360 */
1361 if (next - addr != HPAGE_PMD_SIZE) {
1362 get_page(page);
1363 spin_unlock(ptl);
9818b8cd 1364 split_huge_page(page);
b8d3c4c3
MK
1365 put_page(page);
1366 unlock_page(page);
b8d3c4c3
MK
1367 goto out_unlocked;
1368 }
1369
1370 if (PageDirty(page))
1371 ClearPageDirty(page);
1372 unlock_page(page);
1373
1374 if (PageActive(page))
1375 deactivate_page(page);
1376
1377 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1378 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1379 tlb->fullmm);
1380 orig_pmd = pmd_mkold(orig_pmd);
1381 orig_pmd = pmd_mkclean(orig_pmd);
1382
1383 set_pmd_at(mm, addr, pmd, orig_pmd);
1384 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1385 }
319904ad 1386 ret = true;
b8d3c4c3
MK
1387out:
1388 spin_unlock(ptl);
1389out_unlocked:
1390 return ret;
1391}
1392
953c66c2
AK
1393static inline void zap_deposited_table(struct mm_struct *mm, pmd_t *pmd)
1394{
1395 pgtable_t pgtable;
1396
1397 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1398 pte_free(mm, pgtable);
1399 atomic_long_dec(&mm->nr_ptes);
1400}
1401
71e3aac0 1402int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1403 pmd_t *pmd, unsigned long addr)
71e3aac0 1404{
da146769 1405 pmd_t orig_pmd;
bf929152 1406 spinlock_t *ptl;
71e3aac0 1407
07e32661
AK
1408 tlb_remove_check_page_size_change(tlb, HPAGE_PMD_SIZE);
1409
b6ec57f4
KS
1410 ptl = __pmd_trans_huge_lock(pmd, vma);
1411 if (!ptl)
da146769
KS
1412 return 0;
1413 /*
1414 * For architectures like ppc64 we look at deposited pgtable
1415 * when calling pmdp_huge_get_and_clear. So do the
1416 * pgtable_trans_huge_withdraw after finishing pmdp related
1417 * operations.
1418 */
1419 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1420 tlb->fullmm);
1421 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1422 if (vma_is_dax(vma)) {
1423 spin_unlock(ptl);
1424 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1425 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1426 } else if (is_huge_zero_pmd(orig_pmd)) {
1427 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1428 atomic_long_dec(&tlb->mm->nr_ptes);
1429 spin_unlock(ptl);
c0f2e176 1430 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1431 } else {
1432 struct page *page = pmd_page(orig_pmd);
d281ee61 1433 page_remove_rmap(page, true);
da146769 1434 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1435 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1436 if (PageAnon(page)) {
1437 pgtable_t pgtable;
1438 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1439 pte_free(tlb->mm, pgtable);
1440 atomic_long_dec(&tlb->mm->nr_ptes);
1441 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1442 } else {
953c66c2
AK
1443 if (arch_needs_pgtable_deposit())
1444 zap_deposited_table(tlb->mm, pmd);
b5072380
KS
1445 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1446 }
da146769 1447 spin_unlock(ptl);
e77b0852 1448 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1449 }
da146769 1450 return 1;
71e3aac0
AA
1451}
1452
1dd38b6c
AK
1453#ifndef pmd_move_must_withdraw
1454static inline int pmd_move_must_withdraw(spinlock_t *new_pmd_ptl,
1455 spinlock_t *old_pmd_ptl,
1456 struct vm_area_struct *vma)
1457{
1458 /*
1459 * With split pmd lock we also need to move preallocated
1460 * PTE page table if new_pmd is on different PMD page table.
1461 *
1462 * We also don't deposit and withdraw tables for file pages.
1463 */
1464 return (new_pmd_ptl != old_pmd_ptl) && vma_is_anonymous(vma);
1465}
1466#endif
1467
bf8616d5 1468bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1469 unsigned long new_addr, unsigned long old_end,
5d190420 1470 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1471{
bf929152 1472 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1473 pmd_t pmd;
37a1c49a 1474 struct mm_struct *mm = vma->vm_mm;
5d190420 1475 bool force_flush = false;
37a1c49a
AA
1476
1477 if ((old_addr & ~HPAGE_PMD_MASK) ||
1478 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1479 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1480 return false;
37a1c49a
AA
1481
1482 /*
1483 * The destination pmd shouldn't be established, free_pgtables()
1484 * should have release it.
1485 */
1486 if (WARN_ON(!pmd_none(*new_pmd))) {
1487 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1488 return false;
37a1c49a
AA
1489 }
1490
bf929152
KS
1491 /*
1492 * We don't have to worry about the ordering of src and dst
1493 * ptlocks because exclusive mmap_sem prevents deadlock.
1494 */
b6ec57f4
KS
1495 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1496 if (old_ptl) {
bf929152
KS
1497 new_ptl = pmd_lockptr(mm, new_pmd);
1498 if (new_ptl != old_ptl)
1499 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1500 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1501 if (pmd_present(pmd) && pmd_dirty(pmd))
1502 force_flush = true;
025c5b24 1503 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1504
1dd38b6c 1505 if (pmd_move_must_withdraw(new_ptl, old_ptl, vma)) {
b3084f4d 1506 pgtable_t pgtable;
3592806c
KS
1507 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1508 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1509 }
b3084f4d
AK
1510 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1511 if (new_ptl != old_ptl)
1512 spin_unlock(new_ptl);
5d190420
AL
1513 if (force_flush)
1514 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1515 else
1516 *need_flush = true;
bf929152 1517 spin_unlock(old_ptl);
4b471e88 1518 return true;
37a1c49a 1519 }
4b471e88 1520 return false;
37a1c49a
AA
1521}
1522
f123d74a
MG
1523/*
1524 * Returns
1525 * - 0 if PMD could not be locked
1526 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1527 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1528 */
cd7548ab 1529int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1530 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1531{
1532 struct mm_struct *mm = vma->vm_mm;
bf929152 1533 spinlock_t *ptl;
cd7548ab
JW
1534 int ret = 0;
1535
b6ec57f4
KS
1536 ptl = __pmd_trans_huge_lock(pmd, vma);
1537 if (ptl) {
025c5b24 1538 pmd_t entry;
b191f9b1 1539 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1540 ret = 1;
e944fd67
MG
1541
1542 /*
1543 * Avoid trapping faults against the zero page. The read-only
1544 * data is likely to be read-cached on the local CPU and
1545 * local/remote hits to the zero page are not interesting.
1546 */
1547 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1548 spin_unlock(ptl);
ba68bc01 1549 return ret;
e944fd67
MG
1550 }
1551
10c1045f 1552 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1553 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1554 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1555 if (preserve_write)
1556 entry = pmd_mkwrite(entry);
10c1045f
MG
1557 ret = HPAGE_PMD_NR;
1558 set_pmd_at(mm, addr, pmd, entry);
b237aded
KS
1559 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1560 pmd_write(entry));
10c1045f 1561 }
bf929152 1562 spin_unlock(ptl);
025c5b24
NH
1563 }
1564
1565 return ret;
1566}
1567
1568/*
8f19b0c0 1569 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1570 *
8f19b0c0
HY
1571 * Note that if it returns page table lock pointer, this routine returns without
1572 * unlocking page table lock. So callers must unlock it.
025c5b24 1573 */
b6ec57f4 1574spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1575{
b6ec57f4
KS
1576 spinlock_t *ptl;
1577 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1578 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1579 return ptl;
1580 spin_unlock(ptl);
1581 return NULL;
cd7548ab
JW
1582}
1583
eef1b3ba
KS
1584static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1585 unsigned long haddr, pmd_t *pmd)
1586{
1587 struct mm_struct *mm = vma->vm_mm;
1588 pgtable_t pgtable;
1589 pmd_t _pmd;
1590 int i;
1591
1592 /* leave pmd empty until pte is filled */
1593 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1594
1595 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1596 pmd_populate(mm, &_pmd, pgtable);
1597
1598 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1599 pte_t *pte, entry;
1600 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1601 entry = pte_mkspecial(entry);
1602 pte = pte_offset_map(&_pmd, haddr);
1603 VM_BUG_ON(!pte_none(*pte));
1604 set_pte_at(mm, haddr, pte, entry);
1605 pte_unmap(pte);
1606 }
1607 smp_wmb(); /* make pte visible before pmd */
1608 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
1609}
1610
1611static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1612 unsigned long haddr, bool freeze)
eef1b3ba
KS
1613{
1614 struct mm_struct *mm = vma->vm_mm;
1615 struct page *page;
1616 pgtable_t pgtable;
1617 pmd_t _pmd;
804dd150 1618 bool young, write, dirty, soft_dirty;
2ac015e2 1619 unsigned long addr;
eef1b3ba
KS
1620 int i;
1621
1622 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1623 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1624 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1625 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1626
1627 count_vm_event(THP_SPLIT_PMD);
1628
d21b9e57
KS
1629 if (!vma_is_anonymous(vma)) {
1630 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
953c66c2
AK
1631 /*
1632 * We are going to unmap this huge page. So
1633 * just go ahead and zap it
1634 */
1635 if (arch_needs_pgtable_deposit())
1636 zap_deposited_table(mm, pmd);
d21b9e57
KS
1637 if (vma_is_dax(vma))
1638 return;
1639 page = pmd_page(_pmd);
1640 if (!PageReferenced(page) && pmd_young(_pmd))
1641 SetPageReferenced(page);
1642 page_remove_rmap(page, true);
1643 put_page(page);
1644 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1645 return;
1646 } else if (is_huge_zero_pmd(*pmd)) {
1647 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1648 }
1649
1650 page = pmd_page(*pmd);
1651 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 1652 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
1653 write = pmd_write(*pmd);
1654 young = pmd_young(*pmd);
b8d3c4c3 1655 dirty = pmd_dirty(*pmd);
804dd150 1656 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 1657
c777e2a8 1658 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
1659 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1660 pmd_populate(mm, &_pmd, pgtable);
1661
2ac015e2 1662 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
1663 pte_t entry, *pte;
1664 /*
1665 * Note that NUMA hinting access restrictions are not
1666 * transferred to avoid any possibility of altering
1667 * permissions across VMAs.
1668 */
ba988280
KS
1669 if (freeze) {
1670 swp_entry_t swp_entry;
1671 swp_entry = make_migration_entry(page + i, write);
1672 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
1673 if (soft_dirty)
1674 entry = pte_swp_mksoft_dirty(entry);
ba988280 1675 } else {
6d2329f8 1676 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 1677 entry = maybe_mkwrite(entry, vma);
ba988280
KS
1678 if (!write)
1679 entry = pte_wrprotect(entry);
1680 if (!young)
1681 entry = pte_mkold(entry);
804dd150
AA
1682 if (soft_dirty)
1683 entry = pte_mksoft_dirty(entry);
ba988280 1684 }
b8d3c4c3
MK
1685 if (dirty)
1686 SetPageDirty(page + i);
2ac015e2 1687 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 1688 BUG_ON(!pte_none(*pte));
2ac015e2 1689 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
1690 atomic_inc(&page[i]._mapcount);
1691 pte_unmap(pte);
1692 }
1693
1694 /*
1695 * Set PG_double_map before dropping compound_mapcount to avoid
1696 * false-negative page_mapped().
1697 */
1698 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1699 for (i = 0; i < HPAGE_PMD_NR; i++)
1700 atomic_inc(&page[i]._mapcount);
1701 }
1702
1703 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1704 /* Last compound_mapcount is gone. */
11fb9989 1705 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
1706 if (TestClearPageDoubleMap(page)) {
1707 /* No need in mapcount reference anymore */
1708 for (i = 0; i < HPAGE_PMD_NR; i++)
1709 atomic_dec(&page[i]._mapcount);
1710 }
1711 }
1712
1713 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
1714 /*
1715 * Up to this point the pmd is present and huge and userland has the
1716 * whole access to the hugepage during the split (which happens in
1717 * place). If we overwrite the pmd with the not-huge version pointing
1718 * to the pte here (which of course we could if all CPUs were bug
1719 * free), userland could trigger a small page size TLB miss on the
1720 * small sized TLB while the hugepage TLB entry is still established in
1721 * the huge TLB. Some CPU doesn't like that.
1722 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1723 * 383 on page 93. Intel should be safe but is also warns that it's
1724 * only safe if the permission and cache attributes of the two entries
1725 * loaded in the two TLB is identical (which should be the case here).
1726 * But it is generally safer to never allow small and huge TLB entries
1727 * for the same virtual address to be loaded simultaneously. So instead
1728 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1729 * current pmd notpresent (atomically because here the pmd_trans_huge
1730 * and pmd_trans_splitting must remain set at all times on the pmd
1731 * until the split is complete for this pmd), then we flush the SMP TLB
1732 * and finally we write the non-huge version of the pmd entry with
1733 * pmd_populate.
1734 */
1735 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 1736 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
1737
1738 if (freeze) {
2ac015e2 1739 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
1740 page_remove_rmap(page + i, false);
1741 put_page(page + i);
1742 }
1743 }
eef1b3ba
KS
1744}
1745
1746void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 1747 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
1748{
1749 spinlock_t *ptl;
1750 struct mm_struct *mm = vma->vm_mm;
1751 unsigned long haddr = address & HPAGE_PMD_MASK;
1752
1753 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1754 ptl = pmd_lock(mm, pmd);
33f4751e
NH
1755
1756 /*
1757 * If caller asks to setup a migration entries, we need a page to check
1758 * pmd against. Otherwise we can end up replacing wrong page.
1759 */
1760 VM_BUG_ON(freeze && !page);
1761 if (page && page != pmd_page(*pmd))
1762 goto out;
1763
5c7fb56e 1764 if (pmd_trans_huge(*pmd)) {
33f4751e 1765 page = pmd_page(*pmd);
5c7fb56e 1766 if (PageMlocked(page))
5f737714 1767 clear_page_mlock(page);
5c7fb56e 1768 } else if (!pmd_devmap(*pmd))
e90309c9 1769 goto out;
fec89c10 1770 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 1771out:
eef1b3ba
KS
1772 spin_unlock(ptl);
1773 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1774}
1775
fec89c10
KS
1776void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1777 bool freeze, struct page *page)
94fcc585 1778{
f72e7dcd
HD
1779 pgd_t *pgd;
1780 pud_t *pud;
94fcc585
AA
1781 pmd_t *pmd;
1782
78ddc534 1783 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
1784 if (!pgd_present(*pgd))
1785 return;
1786
1787 pud = pud_offset(pgd, address);
1788 if (!pud_present(*pud))
1789 return;
1790
1791 pmd = pmd_offset(pud, address);
fec89c10 1792
33f4751e 1793 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
1794}
1795
e1b9996b 1796void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
1797 unsigned long start,
1798 unsigned long end,
1799 long adjust_next)
1800{
1801 /*
1802 * If the new start address isn't hpage aligned and it could
1803 * previously contain an hugepage: check if we need to split
1804 * an huge pmd.
1805 */
1806 if (start & ~HPAGE_PMD_MASK &&
1807 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1808 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1809 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
1810
1811 /*
1812 * If the new end address isn't hpage aligned and it could
1813 * previously contain an hugepage: check if we need to split
1814 * an huge pmd.
1815 */
1816 if (end & ~HPAGE_PMD_MASK &&
1817 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1818 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1819 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
1820
1821 /*
1822 * If we're also updating the vma->vm_next->vm_start, if the new
1823 * vm_next->vm_start isn't page aligned and it could previously
1824 * contain an hugepage: check if we need to split an huge pmd.
1825 */
1826 if (adjust_next > 0) {
1827 struct vm_area_struct *next = vma->vm_next;
1828 unsigned long nstart = next->vm_start;
1829 nstart += adjust_next << PAGE_SHIFT;
1830 if (nstart & ~HPAGE_PMD_MASK &&
1831 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1832 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 1833 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
1834 }
1835}
e9b61f19 1836
fec89c10 1837static void freeze_page(struct page *page)
e9b61f19 1838{
baa355fd
KS
1839 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1840 TTU_RMAP_LOCKED;
fec89c10 1841 int i, ret;
e9b61f19
KS
1842
1843 VM_BUG_ON_PAGE(!PageHead(page), page);
1844
baa355fd
KS
1845 if (PageAnon(page))
1846 ttu_flags |= TTU_MIGRATION;
1847
fec89c10
KS
1848 /* We only need TTU_SPLIT_HUGE_PMD once */
1849 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1850 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1851 /* Cut short if the page is unmapped */
1852 if (page_count(page) == 1)
1853 return;
e9b61f19 1854
fec89c10 1855 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 1856 }
baa355fd 1857 VM_BUG_ON_PAGE(ret, page + i - 1);
e9b61f19
KS
1858}
1859
fec89c10 1860static void unfreeze_page(struct page *page)
e9b61f19 1861{
fec89c10 1862 int i;
e9b61f19 1863
fec89c10
KS
1864 for (i = 0; i < HPAGE_PMD_NR; i++)
1865 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
1866}
1867
8df651c7 1868static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
1869 struct lruvec *lruvec, struct list_head *list)
1870{
e9b61f19
KS
1871 struct page *page_tail = head + tail;
1872
8df651c7 1873 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 1874 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
1875
1876 /*
0139aa7b 1877 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 1878 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
1879 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1880 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
1881 * get_page_unless_zero(), and atomic_set() is implemented in C not
1882 * using locked ops. spin_unlock on x86 sometime uses locked ops
1883 * because of PPro errata 66, 92, so unless somebody can guarantee
1884 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 1885 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 1886 */
baa355fd
KS
1887 if (PageAnon(head)) {
1888 page_ref_inc(page_tail);
1889 } else {
1890 /* Additional pin to radix tree */
1891 page_ref_add(page_tail, 2);
1892 }
e9b61f19
KS
1893
1894 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1895 page_tail->flags |= (head->flags &
1896 ((1L << PG_referenced) |
1897 (1L << PG_swapbacked) |
1898 (1L << PG_mlocked) |
1899 (1L << PG_uptodate) |
1900 (1L << PG_active) |
1901 (1L << PG_locked) |
b8d3c4c3
MK
1902 (1L << PG_unevictable) |
1903 (1L << PG_dirty)));
e9b61f19
KS
1904
1905 /*
1906 * After clearing PageTail the gup refcount can be released.
1907 * Page flags also must be visible before we make the page non-compound.
1908 */
1909 smp_wmb();
1910
1911 clear_compound_head(page_tail);
1912
1913 if (page_is_young(head))
1914 set_page_young(page_tail);
1915 if (page_is_idle(head))
1916 set_page_idle(page_tail);
1917
1918 /* ->mapping in first tail page is compound_mapcount */
9a982250 1919 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
1920 page_tail);
1921 page_tail->mapping = head->mapping;
1922
1923 page_tail->index = head->index + tail;
1924 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1925 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
1926}
1927
baa355fd
KS
1928static void __split_huge_page(struct page *page, struct list_head *list,
1929 unsigned long flags)
e9b61f19
KS
1930{
1931 struct page *head = compound_head(page);
1932 struct zone *zone = page_zone(head);
1933 struct lruvec *lruvec;
baa355fd 1934 pgoff_t end = -1;
8df651c7 1935 int i;
e9b61f19 1936
599d0c95 1937 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
1938
1939 /* complete memcg works before add pages to LRU */
1940 mem_cgroup_split_huge_fixup(head);
1941
baa355fd
KS
1942 if (!PageAnon(page))
1943 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1944
1945 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 1946 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
1947 /* Some pages can be beyond i_size: drop them from page cache */
1948 if (head[i].index >= end) {
1949 __ClearPageDirty(head + i);
1950 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
1951 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1952 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
1953 put_page(head + i);
1954 }
1955 }
e9b61f19
KS
1956
1957 ClearPageCompound(head);
baa355fd
KS
1958 /* See comment in __split_huge_page_tail() */
1959 if (PageAnon(head)) {
1960 page_ref_inc(head);
1961 } else {
1962 /* Additional pin to radix tree */
1963 page_ref_add(head, 2);
1964 spin_unlock(&head->mapping->tree_lock);
1965 }
1966
a52633d8 1967 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 1968
fec89c10 1969 unfreeze_page(head);
e9b61f19
KS
1970
1971 for (i = 0; i < HPAGE_PMD_NR; i++) {
1972 struct page *subpage = head + i;
1973 if (subpage == page)
1974 continue;
1975 unlock_page(subpage);
1976
1977 /*
1978 * Subpages may be freed if there wasn't any mapping
1979 * like if add_to_swap() is running on a lru page that
1980 * had its mapping zapped. And freeing these pages
1981 * requires taking the lru_lock so we do the put_page
1982 * of the tail pages after the split is complete.
1983 */
1984 put_page(subpage);
1985 }
1986}
1987
b20ce5e0
KS
1988int total_mapcount(struct page *page)
1989{
dd78fedd 1990 int i, compound, ret;
b20ce5e0
KS
1991
1992 VM_BUG_ON_PAGE(PageTail(page), page);
1993
1994 if (likely(!PageCompound(page)))
1995 return atomic_read(&page->_mapcount) + 1;
1996
dd78fedd 1997 compound = compound_mapcount(page);
b20ce5e0 1998 if (PageHuge(page))
dd78fedd
KS
1999 return compound;
2000 ret = compound;
b20ce5e0
KS
2001 for (i = 0; i < HPAGE_PMD_NR; i++)
2002 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
2003 /* File pages has compound_mapcount included in _mapcount */
2004 if (!PageAnon(page))
2005 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
2006 if (PageDoubleMap(page))
2007 ret -= HPAGE_PMD_NR;
2008 return ret;
2009}
2010
6d0a07ed
AA
2011/*
2012 * This calculates accurately how many mappings a transparent hugepage
2013 * has (unlike page_mapcount() which isn't fully accurate). This full
2014 * accuracy is primarily needed to know if copy-on-write faults can
2015 * reuse the page and change the mapping to read-write instead of
2016 * copying them. At the same time this returns the total_mapcount too.
2017 *
2018 * The function returns the highest mapcount any one of the subpages
2019 * has. If the return value is one, even if different processes are
2020 * mapping different subpages of the transparent hugepage, they can
2021 * all reuse it, because each process is reusing a different subpage.
2022 *
2023 * The total_mapcount is instead counting all virtual mappings of the
2024 * subpages. If the total_mapcount is equal to "one", it tells the
2025 * caller all mappings belong to the same "mm" and in turn the
2026 * anon_vma of the transparent hugepage can become the vma->anon_vma
2027 * local one as no other process may be mapping any of the subpages.
2028 *
2029 * It would be more accurate to replace page_mapcount() with
2030 * page_trans_huge_mapcount(), however we only use
2031 * page_trans_huge_mapcount() in the copy-on-write faults where we
2032 * need full accuracy to avoid breaking page pinning, because
2033 * page_trans_huge_mapcount() is slower than page_mapcount().
2034 */
2035int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
2036{
2037 int i, ret, _total_mapcount, mapcount;
2038
2039 /* hugetlbfs shouldn't call it */
2040 VM_BUG_ON_PAGE(PageHuge(page), page);
2041
2042 if (likely(!PageTransCompound(page))) {
2043 mapcount = atomic_read(&page->_mapcount) + 1;
2044 if (total_mapcount)
2045 *total_mapcount = mapcount;
2046 return mapcount;
2047 }
2048
2049 page = compound_head(page);
2050
2051 _total_mapcount = ret = 0;
2052 for (i = 0; i < HPAGE_PMD_NR; i++) {
2053 mapcount = atomic_read(&page[i]._mapcount) + 1;
2054 ret = max(ret, mapcount);
2055 _total_mapcount += mapcount;
2056 }
2057 if (PageDoubleMap(page)) {
2058 ret -= 1;
2059 _total_mapcount -= HPAGE_PMD_NR;
2060 }
2061 mapcount = compound_mapcount(page);
2062 ret += mapcount;
2063 _total_mapcount += mapcount;
2064 if (total_mapcount)
2065 *total_mapcount = _total_mapcount;
2066 return ret;
2067}
2068
e9b61f19
KS
2069/*
2070 * This function splits huge page into normal pages. @page can point to any
2071 * subpage of huge page to split. Split doesn't change the position of @page.
2072 *
2073 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2074 * The huge page must be locked.
2075 *
2076 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2077 *
2078 * Both head page and tail pages will inherit mapping, flags, and so on from
2079 * the hugepage.
2080 *
2081 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2082 * they are not mapped.
2083 *
2084 * Returns 0 if the hugepage is split successfully.
2085 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2086 * us.
2087 */
2088int split_huge_page_to_list(struct page *page, struct list_head *list)
2089{
2090 struct page *head = compound_head(page);
a3d0a918 2091 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2092 struct anon_vma *anon_vma = NULL;
2093 struct address_space *mapping = NULL;
2094 int count, mapcount, extra_pins, ret;
d9654322 2095 bool mlocked;
0b9b6fff 2096 unsigned long flags;
e9b61f19
KS
2097
2098 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19
KS
2099 VM_BUG_ON_PAGE(!PageLocked(page), page);
2100 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2101 VM_BUG_ON_PAGE(!PageCompound(page), page);
2102
baa355fd
KS
2103 if (PageAnon(head)) {
2104 /*
2105 * The caller does not necessarily hold an mmap_sem that would
2106 * prevent the anon_vma disappearing so we first we take a
2107 * reference to it and then lock the anon_vma for write. This
2108 * is similar to page_lock_anon_vma_read except the write lock
2109 * is taken to serialise against parallel split or collapse
2110 * operations.
2111 */
2112 anon_vma = page_get_anon_vma(head);
2113 if (!anon_vma) {
2114 ret = -EBUSY;
2115 goto out;
2116 }
2117 extra_pins = 0;
2118 mapping = NULL;
2119 anon_vma_lock_write(anon_vma);
2120 } else {
2121 mapping = head->mapping;
2122
2123 /* Truncated ? */
2124 if (!mapping) {
2125 ret = -EBUSY;
2126 goto out;
2127 }
2128
2129 /* Addidional pins from radix tree */
2130 extra_pins = HPAGE_PMD_NR;
2131 anon_vma = NULL;
2132 i_mmap_lock_read(mapping);
e9b61f19 2133 }
e9b61f19
KS
2134
2135 /*
2136 * Racy check if we can split the page, before freeze_page() will
2137 * split PMDs
2138 */
baa355fd 2139 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
e9b61f19
KS
2140 ret = -EBUSY;
2141 goto out_unlock;
2142 }
2143
d9654322 2144 mlocked = PageMlocked(page);
fec89c10 2145 freeze_page(head);
e9b61f19
KS
2146 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2147
d9654322
KS
2148 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2149 if (mlocked)
2150 lru_add_drain();
2151
baa355fd 2152 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2153 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2154
2155 if (mapping) {
2156 void **pslot;
2157
2158 spin_lock(&mapping->tree_lock);
2159 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2160 page_index(head));
2161 /*
2162 * Check if the head page is present in radix tree.
2163 * We assume all tail are present too, if head is there.
2164 */
2165 if (radix_tree_deref_slot_protected(pslot,
2166 &mapping->tree_lock) != head)
2167 goto fail;
2168 }
2169
0139aa7b 2170 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2171 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2172 count = page_count(head);
2173 mapcount = total_mapcount(head);
baa355fd 2174 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2175 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2176 pgdata->split_queue_len--;
9a982250
KS
2177 list_del(page_deferred_list(head));
2178 }
65c45377 2179 if (mapping)
11fb9989 2180 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2181 spin_unlock(&pgdata->split_queue_lock);
2182 __split_huge_page(page, list, flags);
e9b61f19 2183 ret = 0;
e9b61f19 2184 } else {
baa355fd
KS
2185 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2186 pr_alert("total_mapcount: %u, page_count(): %u\n",
2187 mapcount, count);
2188 if (PageTail(page))
2189 dump_page(head, NULL);
2190 dump_page(page, "total_mapcount(head) > 0");
2191 BUG();
2192 }
2193 spin_unlock(&pgdata->split_queue_lock);
2194fail: if (mapping)
2195 spin_unlock(&mapping->tree_lock);
a52633d8 2196 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2197 unfreeze_page(head);
e9b61f19
KS
2198 ret = -EBUSY;
2199 }
2200
2201out_unlock:
baa355fd
KS
2202 if (anon_vma) {
2203 anon_vma_unlock_write(anon_vma);
2204 put_anon_vma(anon_vma);
2205 }
2206 if (mapping)
2207 i_mmap_unlock_read(mapping);
e9b61f19
KS
2208out:
2209 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2210 return ret;
2211}
9a982250
KS
2212
2213void free_transhuge_page(struct page *page)
2214{
a3d0a918 2215 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2216 unsigned long flags;
2217
a3d0a918 2218 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2219 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2220 pgdata->split_queue_len--;
9a982250
KS
2221 list_del(page_deferred_list(page));
2222 }
a3d0a918 2223 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2224 free_compound_page(page);
2225}
2226
2227void deferred_split_huge_page(struct page *page)
2228{
a3d0a918 2229 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2230 unsigned long flags;
2231
2232 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2233
a3d0a918 2234 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2235 if (list_empty(page_deferred_list(page))) {
f9719a03 2236 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2237 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2238 pgdata->split_queue_len++;
9a982250 2239 }
a3d0a918 2240 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2241}
2242
2243static unsigned long deferred_split_count(struct shrinker *shrink,
2244 struct shrink_control *sc)
2245{
a3d0a918 2246 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2247 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2248}
2249
2250static unsigned long deferred_split_scan(struct shrinker *shrink,
2251 struct shrink_control *sc)
2252{
a3d0a918 2253 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2254 unsigned long flags;
2255 LIST_HEAD(list), *pos, *next;
2256 struct page *page;
2257 int split = 0;
2258
a3d0a918 2259 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2260 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2261 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2262 page = list_entry((void *)pos, struct page, mapping);
2263 page = compound_head(page);
e3ae1953
KS
2264 if (get_page_unless_zero(page)) {
2265 list_move(page_deferred_list(page), &list);
2266 } else {
2267 /* We lost race with put_compound_page() */
9a982250 2268 list_del_init(page_deferred_list(page));
a3d0a918 2269 pgdata->split_queue_len--;
9a982250 2270 }
e3ae1953
KS
2271 if (!--sc->nr_to_scan)
2272 break;
9a982250 2273 }
a3d0a918 2274 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2275
2276 list_for_each_safe(pos, next, &list) {
2277 page = list_entry((void *)pos, struct page, mapping);
2278 lock_page(page);
2279 /* split_huge_page() removes page from list on success */
2280 if (!split_huge_page(page))
2281 split++;
2282 unlock_page(page);
2283 put_page(page);
2284 }
2285
a3d0a918
KS
2286 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2287 list_splice_tail(&list, &pgdata->split_queue);
2288 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2289
cb8d68ec
KS
2290 /*
2291 * Stop shrinker if we didn't split any page, but the queue is empty.
2292 * This can happen if pages were freed under us.
2293 */
2294 if (!split && list_empty(&pgdata->split_queue))
2295 return SHRINK_STOP;
2296 return split;
9a982250
KS
2297}
2298
2299static struct shrinker deferred_split_shrinker = {
2300 .count_objects = deferred_split_count,
2301 .scan_objects = deferred_split_scan,
2302 .seeks = DEFAULT_SEEKS,
a3d0a918 2303 .flags = SHRINKER_NUMA_AWARE,
9a982250 2304};
49071d43
KS
2305
2306#ifdef CONFIG_DEBUG_FS
2307static int split_huge_pages_set(void *data, u64 val)
2308{
2309 struct zone *zone;
2310 struct page *page;
2311 unsigned long pfn, max_zone_pfn;
2312 unsigned long total = 0, split = 0;
2313
2314 if (val != 1)
2315 return -EINVAL;
2316
2317 for_each_populated_zone(zone) {
2318 max_zone_pfn = zone_end_pfn(zone);
2319 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2320 if (!pfn_valid(pfn))
2321 continue;
2322
2323 page = pfn_to_page(pfn);
2324 if (!get_page_unless_zero(page))
2325 continue;
2326
2327 if (zone != page_zone(page))
2328 goto next;
2329
baa355fd 2330 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2331 goto next;
2332
2333 total++;
2334 lock_page(page);
2335 if (!split_huge_page(page))
2336 split++;
2337 unlock_page(page);
2338next:
2339 put_page(page);
2340 }
2341 }
2342
145bdaa1 2343 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2344
2345 return 0;
2346}
2347DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2348 "%llu\n");
2349
2350static int __init split_huge_pages_debugfs(void)
2351{
2352 void *ret;
2353
145bdaa1 2354 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2355 &split_huge_pages_fops);
2356 if (!ret)
2357 pr_warn("Failed to create split_huge_pages in debugfs");
2358 return 0;
2359}
2360late_initcall(split_huge_pages_debugfs);
2361#endif