]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
thp: remove some code depend on CONFIG_NUMA
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
110
111 for_each_populated_zone(zone)
112 nr_zones++;
113
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117 /*
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
122 */
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
130
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
135}
136late_initcall(set_recommended_min_free_kbytes);
137
ba76149f
AA
138static int start_khugepaged(void)
139{
140 int err = 0;
141 if (khugepaged_enabled()) {
ba76149f
AA
142 if (!khugepaged_thread)
143 khugepaged_thread = kthread_run(khugepaged, NULL,
144 "khugepaged");
145 if (unlikely(IS_ERR(khugepaged_thread))) {
146 printk(KERN_ERR
147 "khugepaged: kthread_run(khugepaged) failed\n");
148 err = PTR_ERR(khugepaged_thread);
149 khugepaged_thread = NULL;
150 }
911891af
XG
151
152 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 153 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
154
155 set_recommended_min_free_kbytes();
911891af 156 } else if (khugepaged_thread) {
911891af
XG
157 kthread_stop(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
637e3a27 160
ba76149f
AA
161 return err;
162}
71e3aac0
AA
163
164#ifdef CONFIG_SYSFS
ba76149f 165
71e3aac0
AA
166static ssize_t double_flag_show(struct kobject *kobj,
167 struct kobj_attribute *attr, char *buf,
168 enum transparent_hugepage_flag enabled,
169 enum transparent_hugepage_flag req_madv)
170{
171 if (test_bit(enabled, &transparent_hugepage_flags)) {
172 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
173 return sprintf(buf, "[always] madvise never\n");
174 } else if (test_bit(req_madv, &transparent_hugepage_flags))
175 return sprintf(buf, "always [madvise] never\n");
176 else
177 return sprintf(buf, "always madvise [never]\n");
178}
179static ssize_t double_flag_store(struct kobject *kobj,
180 struct kobj_attribute *attr,
181 const char *buf, size_t count,
182 enum transparent_hugepage_flag enabled,
183 enum transparent_hugepage_flag req_madv)
184{
185 if (!memcmp("always", buf,
186 min(sizeof("always")-1, count))) {
187 set_bit(enabled, &transparent_hugepage_flags);
188 clear_bit(req_madv, &transparent_hugepage_flags);
189 } else if (!memcmp("madvise", buf,
190 min(sizeof("madvise")-1, count))) {
191 clear_bit(enabled, &transparent_hugepage_flags);
192 set_bit(req_madv, &transparent_hugepage_flags);
193 } else if (!memcmp("never", buf,
194 min(sizeof("never")-1, count))) {
195 clear_bit(enabled, &transparent_hugepage_flags);
196 clear_bit(req_madv, &transparent_hugepage_flags);
197 } else
198 return -EINVAL;
199
200 return count;
201}
202
203static ssize_t enabled_show(struct kobject *kobj,
204 struct kobj_attribute *attr, char *buf)
205{
206 return double_flag_show(kobj, attr, buf,
207 TRANSPARENT_HUGEPAGE_FLAG,
208 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
209}
210static ssize_t enabled_store(struct kobject *kobj,
211 struct kobj_attribute *attr,
212 const char *buf, size_t count)
213{
ba76149f
AA
214 ssize_t ret;
215
216 ret = double_flag_store(kobj, attr, buf, count,
217 TRANSPARENT_HUGEPAGE_FLAG,
218 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
219
220 if (ret > 0) {
911891af
XG
221 int err;
222
223 mutex_lock(&khugepaged_mutex);
224 err = start_khugepaged();
225 mutex_unlock(&khugepaged_mutex);
226
ba76149f
AA
227 if (err)
228 ret = err;
229 }
230
f000565a
AA
231 if (ret > 0 &&
232 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
233 &transparent_hugepage_flags) ||
234 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
235 &transparent_hugepage_flags)))
236 set_recommended_min_free_kbytes();
237
ba76149f 238 return ret;
71e3aac0
AA
239}
240static struct kobj_attribute enabled_attr =
241 __ATTR(enabled, 0644, enabled_show, enabled_store);
242
243static ssize_t single_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag flag)
246{
e27e6151
BH
247 return sprintf(buf, "%d\n",
248 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 249}
e27e6151 250
71e3aac0
AA
251static ssize_t single_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag flag)
255{
e27e6151
BH
256 unsigned long value;
257 int ret;
258
259 ret = kstrtoul(buf, 10, &value);
260 if (ret < 0)
261 return ret;
262 if (value > 1)
263 return -EINVAL;
264
265 if (value)
71e3aac0 266 set_bit(flag, &transparent_hugepage_flags);
e27e6151 267 else
71e3aac0 268 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
269
270 return count;
271}
272
273/*
274 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
275 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
276 * memory just to allocate one more hugepage.
277 */
278static ssize_t defrag_show(struct kobject *kobj,
279 struct kobj_attribute *attr, char *buf)
280{
281 return double_flag_show(kobj, attr, buf,
282 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
283 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
284}
285static ssize_t defrag_store(struct kobject *kobj,
286 struct kobj_attribute *attr,
287 const char *buf, size_t count)
288{
289 return double_flag_store(kobj, attr, buf, count,
290 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
291 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
292}
293static struct kobj_attribute defrag_attr =
294 __ATTR(defrag, 0644, defrag_show, defrag_store);
295
296#ifdef CONFIG_DEBUG_VM
297static ssize_t debug_cow_show(struct kobject *kobj,
298 struct kobj_attribute *attr, char *buf)
299{
300 return single_flag_show(kobj, attr, buf,
301 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
302}
303static ssize_t debug_cow_store(struct kobject *kobj,
304 struct kobj_attribute *attr,
305 const char *buf, size_t count)
306{
307 return single_flag_store(kobj, attr, buf, count,
308 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
309}
310static struct kobj_attribute debug_cow_attr =
311 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
312#endif /* CONFIG_DEBUG_VM */
313
314static struct attribute *hugepage_attr[] = {
315 &enabled_attr.attr,
316 &defrag_attr.attr,
317#ifdef CONFIG_DEBUG_VM
318 &debug_cow_attr.attr,
319#endif
320 NULL,
321};
322
323static struct attribute_group hugepage_attr_group = {
324 .attrs = hugepage_attr,
ba76149f
AA
325};
326
327static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
328 struct kobj_attribute *attr,
329 char *buf)
330{
331 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
332}
333
334static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
335 struct kobj_attribute *attr,
336 const char *buf, size_t count)
337{
338 unsigned long msecs;
339 int err;
340
341 err = strict_strtoul(buf, 10, &msecs);
342 if (err || msecs > UINT_MAX)
343 return -EINVAL;
344
345 khugepaged_scan_sleep_millisecs = msecs;
346 wake_up_interruptible(&khugepaged_wait);
347
348 return count;
349}
350static struct kobj_attribute scan_sleep_millisecs_attr =
351 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
352 scan_sleep_millisecs_store);
353
354static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 char *buf)
357{
358 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
359}
360
361static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
362 struct kobj_attribute *attr,
363 const char *buf, size_t count)
364{
365 unsigned long msecs;
366 int err;
367
368 err = strict_strtoul(buf, 10, &msecs);
369 if (err || msecs > UINT_MAX)
370 return -EINVAL;
371
372 khugepaged_alloc_sleep_millisecs = msecs;
373 wake_up_interruptible(&khugepaged_wait);
374
375 return count;
376}
377static struct kobj_attribute alloc_sleep_millisecs_attr =
378 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
379 alloc_sleep_millisecs_store);
380
381static ssize_t pages_to_scan_show(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 char *buf)
384{
385 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
386}
387static ssize_t pages_to_scan_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390{
391 int err;
392 unsigned long pages;
393
394 err = strict_strtoul(buf, 10, &pages);
395 if (err || !pages || pages > UINT_MAX)
396 return -EINVAL;
397
398 khugepaged_pages_to_scan = pages;
399
400 return count;
401}
402static struct kobj_attribute pages_to_scan_attr =
403 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
404 pages_to_scan_store);
405
406static ssize_t pages_collapsed_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
411}
412static struct kobj_attribute pages_collapsed_attr =
413 __ATTR_RO(pages_collapsed);
414
415static ssize_t full_scans_show(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 char *buf)
418{
419 return sprintf(buf, "%u\n", khugepaged_full_scans);
420}
421static struct kobj_attribute full_scans_attr =
422 __ATTR_RO(full_scans);
423
424static ssize_t khugepaged_defrag_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426{
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
429}
430static ssize_t khugepaged_defrag_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433{
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
436}
437static struct kobj_attribute khugepaged_defrag_attr =
438 __ATTR(defrag, 0644, khugepaged_defrag_show,
439 khugepaged_defrag_store);
440
441/*
442 * max_ptes_none controls if khugepaged should collapse hugepages over
443 * any unmapped ptes in turn potentially increasing the memory
444 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
445 * reduce the available free memory in the system as it
446 * runs. Increasing max_ptes_none will instead potentially reduce the
447 * free memory in the system during the khugepaged scan.
448 */
449static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 char *buf)
452{
453 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
454}
455static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
456 struct kobj_attribute *attr,
457 const char *buf, size_t count)
458{
459 int err;
460 unsigned long max_ptes_none;
461
462 err = strict_strtoul(buf, 10, &max_ptes_none);
463 if (err || max_ptes_none > HPAGE_PMD_NR-1)
464 return -EINVAL;
465
466 khugepaged_max_ptes_none = max_ptes_none;
467
468 return count;
469}
470static struct kobj_attribute khugepaged_max_ptes_none_attr =
471 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
472 khugepaged_max_ptes_none_store);
473
474static struct attribute *khugepaged_attr[] = {
475 &khugepaged_defrag_attr.attr,
476 &khugepaged_max_ptes_none_attr.attr,
477 &pages_to_scan_attr.attr,
478 &pages_collapsed_attr.attr,
479 &full_scans_attr.attr,
480 &scan_sleep_millisecs_attr.attr,
481 &alloc_sleep_millisecs_attr.attr,
482 NULL,
483};
484
485static struct attribute_group khugepaged_attr_group = {
486 .attrs = khugepaged_attr,
487 .name = "khugepaged",
71e3aac0 488};
71e3aac0 489
569e5590 490static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 491{
71e3aac0
AA
492 int err;
493
569e5590
SL
494 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
495 if (unlikely(!*hugepage_kobj)) {
ba76149f 496 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 497 return -ENOMEM;
ba76149f
AA
498 }
499
569e5590 500 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
501 if (err) {
502 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 503 goto delete_obj;
ba76149f
AA
504 }
505
569e5590 506 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
507 if (err) {
508 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 509 goto remove_hp_group;
ba76149f 510 }
569e5590
SL
511
512 return 0;
513
514remove_hp_group:
515 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
516delete_obj:
517 kobject_put(*hugepage_kobj);
518 return err;
519}
520
521static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
522{
523 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
524 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
525 kobject_put(hugepage_kobj);
526}
527#else
528static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
529{
530 return 0;
531}
532
533static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
534{
535}
536#endif /* CONFIG_SYSFS */
537
538static int __init hugepage_init(void)
539{
540 int err;
541 struct kobject *hugepage_kobj;
542
543 if (!has_transparent_hugepage()) {
544 transparent_hugepage_flags = 0;
545 return -EINVAL;
546 }
547
548 err = hugepage_init_sysfs(&hugepage_kobj);
549 if (err)
550 return err;
ba76149f
AA
551
552 err = khugepaged_slab_init();
553 if (err)
554 goto out;
555
556 err = mm_slots_hash_init();
557 if (err) {
558 khugepaged_slab_free();
559 goto out;
560 }
561
97562cd2
RR
562 /*
563 * By default disable transparent hugepages on smaller systems,
564 * where the extra memory used could hurt more than TLB overhead
565 * is likely to save. The admin can still enable it through /sys.
566 */
567 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
568 transparent_hugepage_flags = 0;
569
ba76149f
AA
570 start_khugepaged();
571
f000565a
AA
572 set_recommended_min_free_kbytes();
573
569e5590 574 return 0;
ba76149f 575out:
569e5590 576 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 577 return err;
71e3aac0
AA
578}
579module_init(hugepage_init)
580
581static int __init setup_transparent_hugepage(char *str)
582{
583 int ret = 0;
584 if (!str)
585 goto out;
586 if (!strcmp(str, "always")) {
587 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
588 &transparent_hugepage_flags);
589 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
590 &transparent_hugepage_flags);
591 ret = 1;
592 } else if (!strcmp(str, "madvise")) {
593 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
594 &transparent_hugepage_flags);
595 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
596 &transparent_hugepage_flags);
597 ret = 1;
598 } else if (!strcmp(str, "never")) {
599 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
600 &transparent_hugepage_flags);
601 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
602 &transparent_hugepage_flags);
603 ret = 1;
604 }
605out:
606 if (!ret)
607 printk(KERN_WARNING
608 "transparent_hugepage= cannot parse, ignored\n");
609 return ret;
610}
611__setup("transparent_hugepage=", setup_transparent_hugepage);
612
613static void prepare_pmd_huge_pte(pgtable_t pgtable,
614 struct mm_struct *mm)
615{
616 assert_spin_locked(&mm->page_table_lock);
617
618 /* FIFO */
619 if (!mm->pmd_huge_pte)
620 INIT_LIST_HEAD(&pgtable->lru);
621 else
622 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
623 mm->pmd_huge_pte = pgtable;
624}
625
626static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
627{
628 if (likely(vma->vm_flags & VM_WRITE))
629 pmd = pmd_mkwrite(pmd);
630 return pmd;
631}
632
633static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
634 struct vm_area_struct *vma,
635 unsigned long haddr, pmd_t *pmd,
636 struct page *page)
637{
71e3aac0
AA
638 pgtable_t pgtable;
639
640 VM_BUG_ON(!PageCompound(page));
641 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 642 if (unlikely(!pgtable))
71e3aac0 643 return VM_FAULT_OOM;
71e3aac0
AA
644
645 clear_huge_page(page, haddr, HPAGE_PMD_NR);
646 __SetPageUptodate(page);
647
648 spin_lock(&mm->page_table_lock);
649 if (unlikely(!pmd_none(*pmd))) {
650 spin_unlock(&mm->page_table_lock);
b9bbfbe3 651 mem_cgroup_uncharge_page(page);
71e3aac0
AA
652 put_page(page);
653 pte_free(mm, pgtable);
654 } else {
655 pmd_t entry;
656 entry = mk_pmd(page, vma->vm_page_prot);
657 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
658 entry = pmd_mkhuge(entry);
659 /*
660 * The spinlocking to take the lru_lock inside
661 * page_add_new_anon_rmap() acts as a full memory
662 * barrier to be sure clear_huge_page writes become
663 * visible after the set_pmd_at() write.
664 */
665 page_add_new_anon_rmap(page, vma, haddr);
666 set_pmd_at(mm, haddr, pmd, entry);
667 prepare_pmd_huge_pte(pgtable, mm);
668 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 669 mm->nr_ptes++;
71e3aac0
AA
670 spin_unlock(&mm->page_table_lock);
671 }
672
aa2e878e 673 return 0;
71e3aac0
AA
674}
675
cc5d462f 676static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 677{
cc5d462f 678 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
679}
680
681static inline struct page *alloc_hugepage_vma(int defrag,
682 struct vm_area_struct *vma,
cc5d462f
AK
683 unsigned long haddr, int nd,
684 gfp_t extra_gfp)
0bbbc0b3 685{
cc5d462f 686 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 687 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
688}
689
690#ifndef CONFIG_NUMA
71e3aac0
AA
691static inline struct page *alloc_hugepage(int defrag)
692{
cc5d462f 693 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
694 HPAGE_PMD_ORDER);
695}
0bbbc0b3 696#endif
71e3aac0
AA
697
698int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
699 unsigned long address, pmd_t *pmd,
700 unsigned int flags)
701{
702 struct page *page;
703 unsigned long haddr = address & HPAGE_PMD_MASK;
704 pte_t *pte;
705
706 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
707 if (unlikely(anon_vma_prepare(vma)))
708 return VM_FAULT_OOM;
ba76149f
AA
709 if (unlikely(khugepaged_enter(vma)))
710 return VM_FAULT_OOM;
0bbbc0b3 711 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 712 vma, haddr, numa_node_id(), 0);
81ab4201
AK
713 if (unlikely(!page)) {
714 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 715 goto out;
81ab4201
AK
716 }
717 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
718 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
719 put_page(page);
720 goto out;
721 }
edad9d2c
DR
722 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
723 page))) {
724 mem_cgroup_uncharge_page(page);
725 put_page(page);
726 goto out;
727 }
71e3aac0 728
edad9d2c 729 return 0;
71e3aac0
AA
730 }
731out:
732 /*
733 * Use __pte_alloc instead of pte_alloc_map, because we can't
734 * run pte_offset_map on the pmd, if an huge pmd could
735 * materialize from under us from a different thread.
736 */
737 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
738 return VM_FAULT_OOM;
739 /* if an huge pmd materialized from under us just retry later */
740 if (unlikely(pmd_trans_huge(*pmd)))
741 return 0;
742 /*
743 * A regular pmd is established and it can't morph into a huge pmd
744 * from under us anymore at this point because we hold the mmap_sem
745 * read mode and khugepaged takes it in write mode. So now it's
746 * safe to run pte_offset_map().
747 */
748 pte = pte_offset_map(pmd, address);
749 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
750}
751
752int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
753 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
754 struct vm_area_struct *vma)
755{
756 struct page *src_page;
757 pmd_t pmd;
758 pgtable_t pgtable;
759 int ret;
760
761 ret = -ENOMEM;
762 pgtable = pte_alloc_one(dst_mm, addr);
763 if (unlikely(!pgtable))
764 goto out;
765
766 spin_lock(&dst_mm->page_table_lock);
767 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
768
769 ret = -EAGAIN;
770 pmd = *src_pmd;
771 if (unlikely(!pmd_trans_huge(pmd))) {
772 pte_free(dst_mm, pgtable);
773 goto out_unlock;
774 }
775 if (unlikely(pmd_trans_splitting(pmd))) {
776 /* split huge page running from under us */
777 spin_unlock(&src_mm->page_table_lock);
778 spin_unlock(&dst_mm->page_table_lock);
779 pte_free(dst_mm, pgtable);
780
781 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
782 goto out;
783 }
784 src_page = pmd_page(pmd);
785 VM_BUG_ON(!PageHead(src_page));
786 get_page(src_page);
787 page_dup_rmap(src_page);
788 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
789
790 pmdp_set_wrprotect(src_mm, addr, src_pmd);
791 pmd = pmd_mkold(pmd_wrprotect(pmd));
792 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
793 prepare_pmd_huge_pte(pgtable, dst_mm);
1c641e84 794 dst_mm->nr_ptes++;
71e3aac0
AA
795
796 ret = 0;
797out_unlock:
798 spin_unlock(&src_mm->page_table_lock);
799 spin_unlock(&dst_mm->page_table_lock);
800out:
801 return ret;
802}
803
804/* no "address" argument so destroys page coloring of some arch */
805pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
806{
807 pgtable_t pgtable;
808
809 assert_spin_locked(&mm->page_table_lock);
810
811 /* FIFO */
812 pgtable = mm->pmd_huge_pte;
813 if (list_empty(&pgtable->lru))
814 mm->pmd_huge_pte = NULL;
815 else {
816 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
817 struct page, lru);
818 list_del(&pgtable->lru);
819 }
820 return pgtable;
821}
822
823static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
824 struct vm_area_struct *vma,
825 unsigned long address,
826 pmd_t *pmd, pmd_t orig_pmd,
827 struct page *page,
828 unsigned long haddr)
829{
830 pgtable_t pgtable;
831 pmd_t _pmd;
832 int ret = 0, i;
833 struct page **pages;
834
835 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
836 GFP_KERNEL);
837 if (unlikely(!pages)) {
838 ret |= VM_FAULT_OOM;
839 goto out;
840 }
841
842 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
843 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
844 __GFP_OTHER_NODE,
19ee151e 845 vma, address, page_to_nid(page));
b9bbfbe3
AA
846 if (unlikely(!pages[i] ||
847 mem_cgroup_newpage_charge(pages[i], mm,
848 GFP_KERNEL))) {
849 if (pages[i])
71e3aac0 850 put_page(pages[i]);
b9bbfbe3
AA
851 mem_cgroup_uncharge_start();
852 while (--i >= 0) {
853 mem_cgroup_uncharge_page(pages[i]);
854 put_page(pages[i]);
855 }
856 mem_cgroup_uncharge_end();
71e3aac0
AA
857 kfree(pages);
858 ret |= VM_FAULT_OOM;
859 goto out;
860 }
861 }
862
863 for (i = 0; i < HPAGE_PMD_NR; i++) {
864 copy_user_highpage(pages[i], page + i,
0089e485 865 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
866 __SetPageUptodate(pages[i]);
867 cond_resched();
868 }
869
870 spin_lock(&mm->page_table_lock);
871 if (unlikely(!pmd_same(*pmd, orig_pmd)))
872 goto out_free_pages;
873 VM_BUG_ON(!PageHead(page));
874
875 pmdp_clear_flush_notify(vma, haddr, pmd);
876 /* leave pmd empty until pte is filled */
877
878 pgtable = get_pmd_huge_pte(mm);
879 pmd_populate(mm, &_pmd, pgtable);
880
881 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
882 pte_t *pte, entry;
883 entry = mk_pte(pages[i], vma->vm_page_prot);
884 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
885 page_add_new_anon_rmap(pages[i], vma, haddr);
886 pte = pte_offset_map(&_pmd, haddr);
887 VM_BUG_ON(!pte_none(*pte));
888 set_pte_at(mm, haddr, pte, entry);
889 pte_unmap(pte);
890 }
891 kfree(pages);
892
71e3aac0
AA
893 smp_wmb(); /* make pte visible before pmd */
894 pmd_populate(mm, pmd, pgtable);
895 page_remove_rmap(page);
896 spin_unlock(&mm->page_table_lock);
897
898 ret |= VM_FAULT_WRITE;
899 put_page(page);
900
901out:
902 return ret;
903
904out_free_pages:
905 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
906 mem_cgroup_uncharge_start();
907 for (i = 0; i < HPAGE_PMD_NR; i++) {
908 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 909 put_page(pages[i]);
b9bbfbe3
AA
910 }
911 mem_cgroup_uncharge_end();
71e3aac0
AA
912 kfree(pages);
913 goto out;
914}
915
916int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
917 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
918{
919 int ret = 0;
920 struct page *page, *new_page;
921 unsigned long haddr;
922
923 VM_BUG_ON(!vma->anon_vma);
924 spin_lock(&mm->page_table_lock);
925 if (unlikely(!pmd_same(*pmd, orig_pmd)))
926 goto out_unlock;
927
928 page = pmd_page(orig_pmd);
929 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
930 haddr = address & HPAGE_PMD_MASK;
931 if (page_mapcount(page) == 1) {
932 pmd_t entry;
933 entry = pmd_mkyoung(orig_pmd);
934 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
935 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
936 update_mmu_cache(vma, address, entry);
937 ret |= VM_FAULT_WRITE;
938 goto out_unlock;
939 }
940 get_page(page);
941 spin_unlock(&mm->page_table_lock);
942
943 if (transparent_hugepage_enabled(vma) &&
944 !transparent_hugepage_debug_cow())
0bbbc0b3 945 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 946 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
947 else
948 new_page = NULL;
949
950 if (unlikely(!new_page)) {
81ab4201 951 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
952 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
953 pmd, orig_pmd, page, haddr);
1f1d06c3
DR
954 if (ret & VM_FAULT_OOM)
955 split_huge_page(page);
71e3aac0
AA
956 put_page(page);
957 goto out;
958 }
81ab4201 959 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 960
b9bbfbe3
AA
961 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
962 put_page(new_page);
1f1d06c3 963 split_huge_page(page);
b9bbfbe3
AA
964 put_page(page);
965 ret |= VM_FAULT_OOM;
966 goto out;
967 }
968
71e3aac0
AA
969 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
970 __SetPageUptodate(new_page);
971
972 spin_lock(&mm->page_table_lock);
973 put_page(page);
b9bbfbe3 974 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 975 spin_unlock(&mm->page_table_lock);
b9bbfbe3 976 mem_cgroup_uncharge_page(new_page);
71e3aac0 977 put_page(new_page);
6f60b69d 978 goto out;
b9bbfbe3 979 } else {
71e3aac0
AA
980 pmd_t entry;
981 VM_BUG_ON(!PageHead(page));
982 entry = mk_pmd(new_page, vma->vm_page_prot);
983 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
984 entry = pmd_mkhuge(entry);
985 pmdp_clear_flush_notify(vma, haddr, pmd);
986 page_add_new_anon_rmap(new_page, vma, haddr);
987 set_pmd_at(mm, haddr, pmd, entry);
988 update_mmu_cache(vma, address, entry);
989 page_remove_rmap(page);
990 put_page(page);
991 ret |= VM_FAULT_WRITE;
992 }
993out_unlock:
994 spin_unlock(&mm->page_table_lock);
995out:
996 return ret;
997}
998
999struct page *follow_trans_huge_pmd(struct mm_struct *mm,
1000 unsigned long addr,
1001 pmd_t *pmd,
1002 unsigned int flags)
1003{
1004 struct page *page = NULL;
1005
1006 assert_spin_locked(&mm->page_table_lock);
1007
1008 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1009 goto out;
1010
1011 page = pmd_page(*pmd);
1012 VM_BUG_ON(!PageHead(page));
1013 if (flags & FOLL_TOUCH) {
1014 pmd_t _pmd;
1015 /*
1016 * We should set the dirty bit only for FOLL_WRITE but
1017 * for now the dirty bit in the pmd is meaningless.
1018 * And if the dirty bit will become meaningful and
1019 * we'll only set it with FOLL_WRITE, an atomic
1020 * set_bit will be required on the pmd to set the
1021 * young bit, instead of the current set_pmd_at.
1022 */
1023 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1024 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1025 }
1026 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1027 VM_BUG_ON(!PageCompound(page));
1028 if (flags & FOLL_GET)
70b50f94 1029 get_page_foll(page);
71e3aac0
AA
1030
1031out:
1032 return page;
1033}
1034
1035int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1036 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1037{
1038 int ret = 0;
1039
025c5b24
NH
1040 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1041 struct page *page;
1042 pgtable_t pgtable;
1043 pgtable = get_pmd_huge_pte(tlb->mm);
1044 page = pmd_page(*pmd);
1045 pmd_clear(pmd);
1046 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1047 page_remove_rmap(page);
1048 VM_BUG_ON(page_mapcount(page) < 0);
1049 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1050 VM_BUG_ON(!PageHead(page));
1051 tlb->mm->nr_ptes--;
71e3aac0 1052 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1053 tlb_remove_page(tlb, page);
1054 pte_free(tlb->mm, pgtable);
1055 ret = 1;
1056 }
71e3aac0
AA
1057 return ret;
1058}
1059
0ca1634d
JW
1060int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1061 unsigned long addr, unsigned long end,
1062 unsigned char *vec)
1063{
1064 int ret = 0;
1065
025c5b24
NH
1066 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1067 /*
1068 * All logical pages in the range are present
1069 * if backed by a huge page.
1070 */
0ca1634d 1071 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1072 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1073 ret = 1;
1074 }
0ca1634d
JW
1075
1076 return ret;
1077}
1078
37a1c49a
AA
1079int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1080 unsigned long old_addr,
1081 unsigned long new_addr, unsigned long old_end,
1082 pmd_t *old_pmd, pmd_t *new_pmd)
1083{
1084 int ret = 0;
1085 pmd_t pmd;
1086
1087 struct mm_struct *mm = vma->vm_mm;
1088
1089 if ((old_addr & ~HPAGE_PMD_MASK) ||
1090 (new_addr & ~HPAGE_PMD_MASK) ||
1091 old_end - old_addr < HPAGE_PMD_SIZE ||
1092 (new_vma->vm_flags & VM_NOHUGEPAGE))
1093 goto out;
1094
1095 /*
1096 * The destination pmd shouldn't be established, free_pgtables()
1097 * should have release it.
1098 */
1099 if (WARN_ON(!pmd_none(*new_pmd))) {
1100 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1101 goto out;
1102 }
1103
025c5b24
NH
1104 ret = __pmd_trans_huge_lock(old_pmd, vma);
1105 if (ret == 1) {
1106 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1107 VM_BUG_ON(!pmd_none(*new_pmd));
1108 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1109 spin_unlock(&mm->page_table_lock);
1110 }
1111out:
1112 return ret;
1113}
1114
cd7548ab
JW
1115int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1116 unsigned long addr, pgprot_t newprot)
1117{
1118 struct mm_struct *mm = vma->vm_mm;
1119 int ret = 0;
1120
025c5b24
NH
1121 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1122 pmd_t entry;
1123 entry = pmdp_get_and_clear(mm, addr, pmd);
1124 entry = pmd_modify(entry, newprot);
1125 set_pmd_at(mm, addr, pmd, entry);
1126 spin_unlock(&vma->vm_mm->page_table_lock);
1127 ret = 1;
1128 }
1129
1130 return ret;
1131}
1132
1133/*
1134 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1135 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1136 *
1137 * Note that if it returns 1, this routine returns without unlocking page
1138 * table locks. So callers must unlock them.
1139 */
1140int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1141{
1142 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1143 if (likely(pmd_trans_huge(*pmd))) {
1144 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1145 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1146 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1147 return -1;
cd7548ab 1148 } else {
025c5b24
NH
1149 /* Thp mapped by 'pmd' is stable, so we can
1150 * handle it as it is. */
1151 return 1;
cd7548ab 1152 }
025c5b24
NH
1153 }
1154 spin_unlock(&vma->vm_mm->page_table_lock);
1155 return 0;
cd7548ab
JW
1156}
1157
71e3aac0
AA
1158pmd_t *page_check_address_pmd(struct page *page,
1159 struct mm_struct *mm,
1160 unsigned long address,
1161 enum page_check_address_pmd_flag flag)
1162{
1163 pgd_t *pgd;
1164 pud_t *pud;
1165 pmd_t *pmd, *ret = NULL;
1166
1167 if (address & ~HPAGE_PMD_MASK)
1168 goto out;
1169
1170 pgd = pgd_offset(mm, address);
1171 if (!pgd_present(*pgd))
1172 goto out;
1173
1174 pud = pud_offset(pgd, address);
1175 if (!pud_present(*pud))
1176 goto out;
1177
1178 pmd = pmd_offset(pud, address);
1179 if (pmd_none(*pmd))
1180 goto out;
1181 if (pmd_page(*pmd) != page)
1182 goto out;
94fcc585
AA
1183 /*
1184 * split_vma() may create temporary aliased mappings. There is
1185 * no risk as long as all huge pmd are found and have their
1186 * splitting bit set before __split_huge_page_refcount
1187 * runs. Finding the same huge pmd more than once during the
1188 * same rmap walk is not a problem.
1189 */
1190 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1191 pmd_trans_splitting(*pmd))
1192 goto out;
71e3aac0
AA
1193 if (pmd_trans_huge(*pmd)) {
1194 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1195 !pmd_trans_splitting(*pmd));
1196 ret = pmd;
1197 }
1198out:
1199 return ret;
1200}
1201
1202static int __split_huge_page_splitting(struct page *page,
1203 struct vm_area_struct *vma,
1204 unsigned long address)
1205{
1206 struct mm_struct *mm = vma->vm_mm;
1207 pmd_t *pmd;
1208 int ret = 0;
1209
1210 spin_lock(&mm->page_table_lock);
1211 pmd = page_check_address_pmd(page, mm, address,
1212 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1213 if (pmd) {
1214 /*
1215 * We can't temporarily set the pmd to null in order
1216 * to split it, the pmd must remain marked huge at all
1217 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1218 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1219 * serialize against split_huge_page*.
1220 */
1221 pmdp_splitting_flush_notify(vma, address, pmd);
1222 ret = 1;
1223 }
1224 spin_unlock(&mm->page_table_lock);
1225
1226 return ret;
1227}
1228
1229static void __split_huge_page_refcount(struct page *page)
1230{
1231 int i;
71e3aac0 1232 struct zone *zone = page_zone(page);
fa9add64 1233 struct lruvec *lruvec;
70b50f94 1234 int tail_count = 0;
71e3aac0
AA
1235
1236 /* prevent PageLRU to go away from under us, and freeze lru stats */
1237 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1238 lruvec = mem_cgroup_page_lruvec(page, zone);
1239
71e3aac0 1240 compound_lock(page);
e94c8a9c
KH
1241 /* complete memcg works before add pages to LRU */
1242 mem_cgroup_split_huge_fixup(page);
71e3aac0 1243
45676885 1244 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1245 struct page *page_tail = page + i;
1246
70b50f94
AA
1247 /* tail_page->_mapcount cannot change */
1248 BUG_ON(page_mapcount(page_tail) < 0);
1249 tail_count += page_mapcount(page_tail);
1250 /* check for overflow */
1251 BUG_ON(tail_count < 0);
1252 BUG_ON(atomic_read(&page_tail->_count) != 0);
1253 /*
1254 * tail_page->_count is zero and not changing from
1255 * under us. But get_page_unless_zero() may be running
1256 * from under us on the tail_page. If we used
1257 * atomic_set() below instead of atomic_add(), we
1258 * would then run atomic_set() concurrently with
1259 * get_page_unless_zero(), and atomic_set() is
1260 * implemented in C not using locked ops. spin_unlock
1261 * on x86 sometime uses locked ops because of PPro
1262 * errata 66, 92, so unless somebody can guarantee
1263 * atomic_set() here would be safe on all archs (and
1264 * not only on x86), it's safer to use atomic_add().
1265 */
1266 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1267 &page_tail->_count);
71e3aac0
AA
1268
1269 /* after clearing PageTail the gup refcount can be released */
1270 smp_mb();
1271
a6d30ddd
JD
1272 /*
1273 * retain hwpoison flag of the poisoned tail page:
1274 * fix for the unsuitable process killed on Guest Machine(KVM)
1275 * by the memory-failure.
1276 */
1277 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1278 page_tail->flags |= (page->flags &
1279 ((1L << PG_referenced) |
1280 (1L << PG_swapbacked) |
1281 (1L << PG_mlocked) |
1282 (1L << PG_uptodate)));
1283 page_tail->flags |= (1L << PG_dirty);
1284
70b50f94 1285 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1286 smp_wmb();
1287
1288 /*
1289 * __split_huge_page_splitting() already set the
1290 * splitting bit in all pmd that could map this
1291 * hugepage, that will ensure no CPU can alter the
1292 * mapcount on the head page. The mapcount is only
1293 * accounted in the head page and it has to be
1294 * transferred to all tail pages in the below code. So
1295 * for this code to be safe, the split the mapcount
1296 * can't change. But that doesn't mean userland can't
1297 * keep changing and reading the page contents while
1298 * we transfer the mapcount, so the pmd splitting
1299 * status is achieved setting a reserved bit in the
1300 * pmd, not by clearing the present bit.
1301 */
71e3aac0
AA
1302 page_tail->_mapcount = page->_mapcount;
1303
1304 BUG_ON(page_tail->mapping);
1305 page_tail->mapping = page->mapping;
1306
45676885 1307 page_tail->index = page->index + i;
71e3aac0
AA
1308
1309 BUG_ON(!PageAnon(page_tail));
1310 BUG_ON(!PageUptodate(page_tail));
1311 BUG_ON(!PageDirty(page_tail));
1312 BUG_ON(!PageSwapBacked(page_tail));
1313
fa9add64 1314 lru_add_page_tail(page, page_tail, lruvec);
71e3aac0 1315 }
70b50f94
AA
1316 atomic_sub(tail_count, &page->_count);
1317 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1318
fa9add64 1319 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171
AA
1320 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1321
71e3aac0
AA
1322 ClearPageCompound(page);
1323 compound_unlock(page);
1324 spin_unlock_irq(&zone->lru_lock);
1325
1326 for (i = 1; i < HPAGE_PMD_NR; i++) {
1327 struct page *page_tail = page + i;
1328 BUG_ON(page_count(page_tail) <= 0);
1329 /*
1330 * Tail pages may be freed if there wasn't any mapping
1331 * like if add_to_swap() is running on a lru page that
1332 * had its mapping zapped. And freeing these pages
1333 * requires taking the lru_lock so we do the put_page
1334 * of the tail pages after the split is complete.
1335 */
1336 put_page(page_tail);
1337 }
1338
1339 /*
1340 * Only the head page (now become a regular page) is required
1341 * to be pinned by the caller.
1342 */
1343 BUG_ON(page_count(page) <= 0);
1344}
1345
1346static int __split_huge_page_map(struct page *page,
1347 struct vm_area_struct *vma,
1348 unsigned long address)
1349{
1350 struct mm_struct *mm = vma->vm_mm;
1351 pmd_t *pmd, _pmd;
1352 int ret = 0, i;
1353 pgtable_t pgtable;
1354 unsigned long haddr;
1355
1356 spin_lock(&mm->page_table_lock);
1357 pmd = page_check_address_pmd(page, mm, address,
1358 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1359 if (pmd) {
1360 pgtable = get_pmd_huge_pte(mm);
1361 pmd_populate(mm, &_pmd, pgtable);
1362
1363 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1364 i++, haddr += PAGE_SIZE) {
1365 pte_t *pte, entry;
1366 BUG_ON(PageCompound(page+i));
1367 entry = mk_pte(page + i, vma->vm_page_prot);
1368 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1369 if (!pmd_write(*pmd))
1370 entry = pte_wrprotect(entry);
1371 else
1372 BUG_ON(page_mapcount(page) != 1);
1373 if (!pmd_young(*pmd))
1374 entry = pte_mkold(entry);
1375 pte = pte_offset_map(&_pmd, haddr);
1376 BUG_ON(!pte_none(*pte));
1377 set_pte_at(mm, haddr, pte, entry);
1378 pte_unmap(pte);
1379 }
1380
71e3aac0
AA
1381 smp_wmb(); /* make pte visible before pmd */
1382 /*
1383 * Up to this point the pmd is present and huge and
1384 * userland has the whole access to the hugepage
1385 * during the split (which happens in place). If we
1386 * overwrite the pmd with the not-huge version
1387 * pointing to the pte here (which of course we could
1388 * if all CPUs were bug free), userland could trigger
1389 * a small page size TLB miss on the small sized TLB
1390 * while the hugepage TLB entry is still established
1391 * in the huge TLB. Some CPU doesn't like that. See
1392 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1393 * Erratum 383 on page 93. Intel should be safe but is
1394 * also warns that it's only safe if the permission
1395 * and cache attributes of the two entries loaded in
1396 * the two TLB is identical (which should be the case
1397 * here). But it is generally safer to never allow
1398 * small and huge TLB entries for the same virtual
1399 * address to be loaded simultaneously. So instead of
1400 * doing "pmd_populate(); flush_tlb_range();" we first
1401 * mark the current pmd notpresent (atomically because
1402 * here the pmd_trans_huge and pmd_trans_splitting
1403 * must remain set at all times on the pmd until the
1404 * split is complete for this pmd), then we flush the
1405 * SMP TLB and finally we write the non-huge version
1406 * of the pmd entry with pmd_populate.
1407 */
1408 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1409 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1410 pmd_populate(mm, pmd, pgtable);
1411 ret = 1;
1412 }
1413 spin_unlock(&mm->page_table_lock);
1414
1415 return ret;
1416}
1417
2b575eb6 1418/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1419static void __split_huge_page(struct page *page,
1420 struct anon_vma *anon_vma)
1421{
1422 int mapcount, mapcount2;
1423 struct anon_vma_chain *avc;
1424
1425 BUG_ON(!PageHead(page));
1426 BUG_ON(PageTail(page));
1427
1428 mapcount = 0;
1429 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1430 struct vm_area_struct *vma = avc->vma;
1431 unsigned long addr = vma_address(page, vma);
1432 BUG_ON(is_vma_temporary_stack(vma));
1433 if (addr == -EFAULT)
1434 continue;
1435 mapcount += __split_huge_page_splitting(page, vma, addr);
1436 }
05759d38
AA
1437 /*
1438 * It is critical that new vmas are added to the tail of the
1439 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1440 * and establishes a child pmd before
1441 * __split_huge_page_splitting() freezes the parent pmd (so if
1442 * we fail to prevent copy_huge_pmd() from running until the
1443 * whole __split_huge_page() is complete), we will still see
1444 * the newly established pmd of the child later during the
1445 * walk, to be able to set it as pmd_trans_splitting too.
1446 */
1447 if (mapcount != page_mapcount(page))
1448 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1449 mapcount, page_mapcount(page));
71e3aac0
AA
1450 BUG_ON(mapcount != page_mapcount(page));
1451
1452 __split_huge_page_refcount(page);
1453
1454 mapcount2 = 0;
1455 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1456 struct vm_area_struct *vma = avc->vma;
1457 unsigned long addr = vma_address(page, vma);
1458 BUG_ON(is_vma_temporary_stack(vma));
1459 if (addr == -EFAULT)
1460 continue;
1461 mapcount2 += __split_huge_page_map(page, vma, addr);
1462 }
05759d38
AA
1463 if (mapcount != mapcount2)
1464 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1465 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1466 BUG_ON(mapcount != mapcount2);
1467}
1468
1469int split_huge_page(struct page *page)
1470{
1471 struct anon_vma *anon_vma;
1472 int ret = 1;
1473
1474 BUG_ON(!PageAnon(page));
1475 anon_vma = page_lock_anon_vma(page);
1476 if (!anon_vma)
1477 goto out;
1478 ret = 0;
1479 if (!PageCompound(page))
1480 goto out_unlock;
1481
1482 BUG_ON(!PageSwapBacked(page));
1483 __split_huge_page(page, anon_vma);
81ab4201 1484 count_vm_event(THP_SPLIT);
71e3aac0
AA
1485
1486 BUG_ON(PageCompound(page));
1487out_unlock:
1488 page_unlock_anon_vma(anon_vma);
1489out:
1490 return ret;
1491}
1492
4b6e1e37 1493#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1494
60ab3244
AA
1495int hugepage_madvise(struct vm_area_struct *vma,
1496 unsigned long *vm_flags, int advice)
0af4e98b 1497{
a664b2d8
AA
1498 switch (advice) {
1499 case MADV_HUGEPAGE:
1500 /*
1501 * Be somewhat over-protective like KSM for now!
1502 */
78f11a25 1503 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1504 return -EINVAL;
1505 *vm_flags &= ~VM_NOHUGEPAGE;
1506 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1507 /*
1508 * If the vma become good for khugepaged to scan,
1509 * register it here without waiting a page fault that
1510 * may not happen any time soon.
1511 */
1512 if (unlikely(khugepaged_enter_vma_merge(vma)))
1513 return -ENOMEM;
a664b2d8
AA
1514 break;
1515 case MADV_NOHUGEPAGE:
1516 /*
1517 * Be somewhat over-protective like KSM for now!
1518 */
78f11a25 1519 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1520 return -EINVAL;
1521 *vm_flags &= ~VM_HUGEPAGE;
1522 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1523 /*
1524 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1525 * this vma even if we leave the mm registered in khugepaged if
1526 * it got registered before VM_NOHUGEPAGE was set.
1527 */
a664b2d8
AA
1528 break;
1529 }
0af4e98b
AA
1530
1531 return 0;
1532}
1533
ba76149f
AA
1534static int __init khugepaged_slab_init(void)
1535{
1536 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1537 sizeof(struct mm_slot),
1538 __alignof__(struct mm_slot), 0, NULL);
1539 if (!mm_slot_cache)
1540 return -ENOMEM;
1541
1542 return 0;
1543}
1544
1545static void __init khugepaged_slab_free(void)
1546{
1547 kmem_cache_destroy(mm_slot_cache);
1548 mm_slot_cache = NULL;
1549}
1550
1551static inline struct mm_slot *alloc_mm_slot(void)
1552{
1553 if (!mm_slot_cache) /* initialization failed */
1554 return NULL;
1555 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1556}
1557
1558static inline void free_mm_slot(struct mm_slot *mm_slot)
1559{
1560 kmem_cache_free(mm_slot_cache, mm_slot);
1561}
1562
1563static int __init mm_slots_hash_init(void)
1564{
1565 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1566 GFP_KERNEL);
1567 if (!mm_slots_hash)
1568 return -ENOMEM;
1569 return 0;
1570}
1571
1572#if 0
1573static void __init mm_slots_hash_free(void)
1574{
1575 kfree(mm_slots_hash);
1576 mm_slots_hash = NULL;
1577}
1578#endif
1579
1580static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1581{
1582 struct mm_slot *mm_slot;
1583 struct hlist_head *bucket;
1584 struct hlist_node *node;
1585
1586 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1587 % MM_SLOTS_HASH_HEADS];
1588 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1589 if (mm == mm_slot->mm)
1590 return mm_slot;
1591 }
1592 return NULL;
1593}
1594
1595static void insert_to_mm_slots_hash(struct mm_struct *mm,
1596 struct mm_slot *mm_slot)
1597{
1598 struct hlist_head *bucket;
1599
1600 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1601 % MM_SLOTS_HASH_HEADS];
1602 mm_slot->mm = mm;
1603 hlist_add_head(&mm_slot->hash, bucket);
1604}
1605
1606static inline int khugepaged_test_exit(struct mm_struct *mm)
1607{
1608 return atomic_read(&mm->mm_users) == 0;
1609}
1610
1611int __khugepaged_enter(struct mm_struct *mm)
1612{
1613 struct mm_slot *mm_slot;
1614 int wakeup;
1615
1616 mm_slot = alloc_mm_slot();
1617 if (!mm_slot)
1618 return -ENOMEM;
1619
1620 /* __khugepaged_exit() must not run from under us */
1621 VM_BUG_ON(khugepaged_test_exit(mm));
1622 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1623 free_mm_slot(mm_slot);
1624 return 0;
1625 }
1626
1627 spin_lock(&khugepaged_mm_lock);
1628 insert_to_mm_slots_hash(mm, mm_slot);
1629 /*
1630 * Insert just behind the scanning cursor, to let the area settle
1631 * down a little.
1632 */
1633 wakeup = list_empty(&khugepaged_scan.mm_head);
1634 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1635 spin_unlock(&khugepaged_mm_lock);
1636
1637 atomic_inc(&mm->mm_count);
1638 if (wakeup)
1639 wake_up_interruptible(&khugepaged_wait);
1640
1641 return 0;
1642}
1643
1644int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1645{
1646 unsigned long hstart, hend;
1647 if (!vma->anon_vma)
1648 /*
1649 * Not yet faulted in so we will register later in the
1650 * page fault if needed.
1651 */
1652 return 0;
78f11a25 1653 if (vma->vm_ops)
ba76149f
AA
1654 /* khugepaged not yet working on file or special mappings */
1655 return 0;
b3b9c293 1656 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1657 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1658 hend = vma->vm_end & HPAGE_PMD_MASK;
1659 if (hstart < hend)
1660 return khugepaged_enter(vma);
1661 return 0;
1662}
1663
1664void __khugepaged_exit(struct mm_struct *mm)
1665{
1666 struct mm_slot *mm_slot;
1667 int free = 0;
1668
1669 spin_lock(&khugepaged_mm_lock);
1670 mm_slot = get_mm_slot(mm);
1671 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1672 hlist_del(&mm_slot->hash);
1673 list_del(&mm_slot->mm_node);
1674 free = 1;
1675 }
d788e80a 1676 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1677
1678 if (free) {
ba76149f
AA
1679 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1680 free_mm_slot(mm_slot);
1681 mmdrop(mm);
1682 } else if (mm_slot) {
ba76149f
AA
1683 /*
1684 * This is required to serialize against
1685 * khugepaged_test_exit() (which is guaranteed to run
1686 * under mmap sem read mode). Stop here (after we
1687 * return all pagetables will be destroyed) until
1688 * khugepaged has finished working on the pagetables
1689 * under the mmap_sem.
1690 */
1691 down_write(&mm->mmap_sem);
1692 up_write(&mm->mmap_sem);
d788e80a 1693 }
ba76149f
AA
1694}
1695
1696static void release_pte_page(struct page *page)
1697{
1698 /* 0 stands for page_is_file_cache(page) == false */
1699 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1700 unlock_page(page);
1701 putback_lru_page(page);
1702}
1703
1704static void release_pte_pages(pte_t *pte, pte_t *_pte)
1705{
1706 while (--_pte >= pte) {
1707 pte_t pteval = *_pte;
1708 if (!pte_none(pteval))
1709 release_pte_page(pte_page(pteval));
1710 }
1711}
1712
1713static void release_all_pte_pages(pte_t *pte)
1714{
1715 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1716}
1717
1718static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1719 unsigned long address,
1720 pte_t *pte)
1721{
1722 struct page *page;
1723 pte_t *_pte;
1724 int referenced = 0, isolated = 0, none = 0;
1725 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1726 _pte++, address += PAGE_SIZE) {
1727 pte_t pteval = *_pte;
1728 if (pte_none(pteval)) {
1729 if (++none <= khugepaged_max_ptes_none)
1730 continue;
1731 else {
1732 release_pte_pages(pte, _pte);
1733 goto out;
1734 }
1735 }
1736 if (!pte_present(pteval) || !pte_write(pteval)) {
1737 release_pte_pages(pte, _pte);
1738 goto out;
1739 }
1740 page = vm_normal_page(vma, address, pteval);
1741 if (unlikely(!page)) {
1742 release_pte_pages(pte, _pte);
1743 goto out;
1744 }
1745 VM_BUG_ON(PageCompound(page));
1746 BUG_ON(!PageAnon(page));
1747 VM_BUG_ON(!PageSwapBacked(page));
1748
1749 /* cannot use mapcount: can't collapse if there's a gup pin */
1750 if (page_count(page) != 1) {
1751 release_pte_pages(pte, _pte);
1752 goto out;
1753 }
1754 /*
1755 * We can do it before isolate_lru_page because the
1756 * page can't be freed from under us. NOTE: PG_lock
1757 * is needed to serialize against split_huge_page
1758 * when invoked from the VM.
1759 */
1760 if (!trylock_page(page)) {
1761 release_pte_pages(pte, _pte);
1762 goto out;
1763 }
1764 /*
1765 * Isolate the page to avoid collapsing an hugepage
1766 * currently in use by the VM.
1767 */
1768 if (isolate_lru_page(page)) {
1769 unlock_page(page);
1770 release_pte_pages(pte, _pte);
1771 goto out;
1772 }
1773 /* 0 stands for page_is_file_cache(page) == false */
1774 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1775 VM_BUG_ON(!PageLocked(page));
1776 VM_BUG_ON(PageLRU(page));
1777
1778 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1779 if (pte_young(pteval) || PageReferenced(page) ||
1780 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1781 referenced = 1;
1782 }
1783 if (unlikely(!referenced))
1784 release_all_pte_pages(pte);
1785 else
1786 isolated = 1;
1787out:
1788 return isolated;
1789}
1790
1791static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1792 struct vm_area_struct *vma,
1793 unsigned long address,
1794 spinlock_t *ptl)
1795{
1796 pte_t *_pte;
1797 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1798 pte_t pteval = *_pte;
1799 struct page *src_page;
1800
1801 if (pte_none(pteval)) {
1802 clear_user_highpage(page, address);
1803 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1804 } else {
1805 src_page = pte_page(pteval);
1806 copy_user_highpage(page, src_page, address, vma);
1807 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
1808 release_pte_page(src_page);
1809 /*
1810 * ptl mostly unnecessary, but preempt has to
1811 * be disabled to update the per-cpu stats
1812 * inside page_remove_rmap().
1813 */
1814 spin_lock(ptl);
1815 /*
1816 * paravirt calls inside pte_clear here are
1817 * superfluous.
1818 */
1819 pte_clear(vma->vm_mm, address, _pte);
1820 page_remove_rmap(src_page);
1821 spin_unlock(ptl);
1822 free_page_and_swap_cache(src_page);
1823 }
1824
1825 address += PAGE_SIZE;
1826 page++;
1827 }
1828}
1829
1830static void collapse_huge_page(struct mm_struct *mm,
1831 unsigned long address,
ce83d217 1832 struct page **hpage,
5c4b4be3
AK
1833 struct vm_area_struct *vma,
1834 int node)
ba76149f 1835{
ba76149f
AA
1836 pgd_t *pgd;
1837 pud_t *pud;
1838 pmd_t *pmd, _pmd;
1839 pte_t *pte;
1840 pgtable_t pgtable;
1841 struct page *new_page;
1842 spinlock_t *ptl;
1843 int isolated;
1844 unsigned long hstart, hend;
1845
1846 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1847#ifndef CONFIG_NUMA
692e0b35 1848 up_read(&mm->mmap_sem);
ba76149f 1849 VM_BUG_ON(!*hpage);
ce83d217 1850 new_page = *hpage;
0bbbc0b3
AA
1851#else
1852 VM_BUG_ON(*hpage);
ce83d217
AA
1853 /*
1854 * Allocate the page while the vma is still valid and under
1855 * the mmap_sem read mode so there is no memory allocation
1856 * later when we take the mmap_sem in write mode. This is more
1857 * friendly behavior (OTOH it may actually hide bugs) to
1858 * filesystems in userland with daemons allocating memory in
1859 * the userland I/O paths. Allocating memory with the
1860 * mmap_sem in read mode is good idea also to allow greater
1861 * scalability.
1862 */
5c4b4be3 1863 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1864 node, __GFP_OTHER_NODE);
692e0b35
AA
1865
1866 /*
1867 * After allocating the hugepage, release the mmap_sem read lock in
1868 * preparation for taking it in write mode.
1869 */
1870 up_read(&mm->mmap_sem);
ce83d217 1871 if (unlikely(!new_page)) {
81ab4201 1872 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217
AA
1873 *hpage = ERR_PTR(-ENOMEM);
1874 return;
1875 }
65b3c07b 1876 count_vm_event(THP_COLLAPSE_ALLOC);
692e0b35
AA
1877#endif
1878
ce83d217 1879 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
692e0b35 1880#ifdef CONFIG_NUMA
ce83d217 1881 put_page(new_page);
692e0b35 1882#endif
ce83d217
AA
1883 return;
1884 }
ba76149f
AA
1885
1886 /*
1887 * Prevent all access to pagetables with the exception of
1888 * gup_fast later hanlded by the ptep_clear_flush and the VM
1889 * handled by the anon_vma lock + PG_lock.
1890 */
1891 down_write(&mm->mmap_sem);
1892 if (unlikely(khugepaged_test_exit(mm)))
1893 goto out;
1894
1895 vma = find_vma(mm, address);
1896 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1897 hend = vma->vm_end & HPAGE_PMD_MASK;
1898 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1899 goto out;
1900
60ab3244
AA
1901 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1902 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1903 goto out;
1904
78f11a25 1905 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1906 goto out;
a7d6e4ec
AA
1907 if (is_vma_temporary_stack(vma))
1908 goto out;
b3b9c293 1909 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1910
1911 pgd = pgd_offset(mm, address);
1912 if (!pgd_present(*pgd))
1913 goto out;
1914
1915 pud = pud_offset(pgd, address);
1916 if (!pud_present(*pud))
1917 goto out;
1918
1919 pmd = pmd_offset(pud, address);
1920 /* pmd can't go away or become huge under us */
1921 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1922 goto out;
1923
ba76149f
AA
1924 anon_vma_lock(vma->anon_vma);
1925
1926 pte = pte_offset_map(pmd, address);
1927 ptl = pte_lockptr(mm, pmd);
1928
1929 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1930 /*
1931 * After this gup_fast can't run anymore. This also removes
1932 * any huge TLB entry from the CPU so we won't allow
1933 * huge and small TLB entries for the same virtual address
1934 * to avoid the risk of CPU bugs in that area.
1935 */
1936 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1937 spin_unlock(&mm->page_table_lock);
1938
1939 spin_lock(ptl);
1940 isolated = __collapse_huge_page_isolate(vma, address, pte);
1941 spin_unlock(ptl);
ba76149f
AA
1942
1943 if (unlikely(!isolated)) {
453c7192 1944 pte_unmap(pte);
ba76149f
AA
1945 spin_lock(&mm->page_table_lock);
1946 BUG_ON(!pmd_none(*pmd));
1947 set_pmd_at(mm, address, pmd, _pmd);
1948 spin_unlock(&mm->page_table_lock);
1949 anon_vma_unlock(vma->anon_vma);
ce83d217 1950 goto out;
ba76149f
AA
1951 }
1952
1953 /*
1954 * All pages are isolated and locked so anon_vma rmap
1955 * can't run anymore.
1956 */
1957 anon_vma_unlock(vma->anon_vma);
1958
1959 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1960 pte_unmap(pte);
ba76149f
AA
1961 __SetPageUptodate(new_page);
1962 pgtable = pmd_pgtable(_pmd);
1963 VM_BUG_ON(page_count(pgtable) != 1);
1964 VM_BUG_ON(page_mapcount(pgtable) != 0);
1965
1966 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1967 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1968 _pmd = pmd_mkhuge(_pmd);
1969
1970 /*
1971 * spin_lock() below is not the equivalent of smp_wmb(), so
1972 * this is needed to avoid the copy_huge_page writes to become
1973 * visible after the set_pmd_at() write.
1974 */
1975 smp_wmb();
1976
1977 spin_lock(&mm->page_table_lock);
1978 BUG_ON(!pmd_none(*pmd));
1979 page_add_new_anon_rmap(new_page, vma, address);
1980 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 1981 update_mmu_cache(vma, address, _pmd);
ba76149f 1982 prepare_pmd_huge_pte(pgtable, mm);
ba76149f
AA
1983 spin_unlock(&mm->page_table_lock);
1984
0bbbc0b3 1985#ifndef CONFIG_NUMA
ba76149f 1986 *hpage = NULL;
0bbbc0b3 1987#endif
ba76149f 1988 khugepaged_pages_collapsed++;
ce83d217 1989out_up_write:
ba76149f 1990 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1991 return;
1992
ce83d217 1993out:
678ff896 1994 mem_cgroup_uncharge_page(new_page);
0bbbc0b3
AA
1995#ifdef CONFIG_NUMA
1996 put_page(new_page);
1997#endif
ce83d217 1998 goto out_up_write;
ba76149f
AA
1999}
2000
2001static int khugepaged_scan_pmd(struct mm_struct *mm,
2002 struct vm_area_struct *vma,
2003 unsigned long address,
2004 struct page **hpage)
2005{
2006 pgd_t *pgd;
2007 pud_t *pud;
2008 pmd_t *pmd;
2009 pte_t *pte, *_pte;
2010 int ret = 0, referenced = 0, none = 0;
2011 struct page *page;
2012 unsigned long _address;
2013 spinlock_t *ptl;
5c4b4be3 2014 int node = -1;
ba76149f
AA
2015
2016 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2017
2018 pgd = pgd_offset(mm, address);
2019 if (!pgd_present(*pgd))
2020 goto out;
2021
2022 pud = pud_offset(pgd, address);
2023 if (!pud_present(*pud))
2024 goto out;
2025
2026 pmd = pmd_offset(pud, address);
2027 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2028 goto out;
2029
2030 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2031 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2032 _pte++, _address += PAGE_SIZE) {
2033 pte_t pteval = *_pte;
2034 if (pte_none(pteval)) {
2035 if (++none <= khugepaged_max_ptes_none)
2036 continue;
2037 else
2038 goto out_unmap;
2039 }
2040 if (!pte_present(pteval) || !pte_write(pteval))
2041 goto out_unmap;
2042 page = vm_normal_page(vma, _address, pteval);
2043 if (unlikely(!page))
2044 goto out_unmap;
5c4b4be3
AK
2045 /*
2046 * Chose the node of the first page. This could
2047 * be more sophisticated and look at more pages,
2048 * but isn't for now.
2049 */
2050 if (node == -1)
2051 node = page_to_nid(page);
ba76149f
AA
2052 VM_BUG_ON(PageCompound(page));
2053 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2054 goto out_unmap;
2055 /* cannot use mapcount: can't collapse if there's a gup pin */
2056 if (page_count(page) != 1)
2057 goto out_unmap;
8ee53820
AA
2058 if (pte_young(pteval) || PageReferenced(page) ||
2059 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2060 referenced = 1;
2061 }
2062 if (referenced)
2063 ret = 1;
2064out_unmap:
2065 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2066 if (ret)
2067 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2068 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2069out:
2070 return ret;
2071}
2072
2073static void collect_mm_slot(struct mm_slot *mm_slot)
2074{
2075 struct mm_struct *mm = mm_slot->mm;
2076
b9980cdc 2077 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2078
2079 if (khugepaged_test_exit(mm)) {
2080 /* free mm_slot */
2081 hlist_del(&mm_slot->hash);
2082 list_del(&mm_slot->mm_node);
2083
2084 /*
2085 * Not strictly needed because the mm exited already.
2086 *
2087 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2088 */
2089
2090 /* khugepaged_mm_lock actually not necessary for the below */
2091 free_mm_slot(mm_slot);
2092 mmdrop(mm);
2093 }
2094}
2095
2096static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2097 struct page **hpage)
2f1da642
HS
2098 __releases(&khugepaged_mm_lock)
2099 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2100{
2101 struct mm_slot *mm_slot;
2102 struct mm_struct *mm;
2103 struct vm_area_struct *vma;
2104 int progress = 0;
2105
2106 VM_BUG_ON(!pages);
b9980cdc 2107 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2108
2109 if (khugepaged_scan.mm_slot)
2110 mm_slot = khugepaged_scan.mm_slot;
2111 else {
2112 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2113 struct mm_slot, mm_node);
2114 khugepaged_scan.address = 0;
2115 khugepaged_scan.mm_slot = mm_slot;
2116 }
2117 spin_unlock(&khugepaged_mm_lock);
2118
2119 mm = mm_slot->mm;
2120 down_read(&mm->mmap_sem);
2121 if (unlikely(khugepaged_test_exit(mm)))
2122 vma = NULL;
2123 else
2124 vma = find_vma(mm, khugepaged_scan.address);
2125
2126 progress++;
2127 for (; vma; vma = vma->vm_next) {
2128 unsigned long hstart, hend;
2129
2130 cond_resched();
2131 if (unlikely(khugepaged_test_exit(mm))) {
2132 progress++;
2133 break;
2134 }
2135
60ab3244
AA
2136 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2137 !khugepaged_always()) ||
2138 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2139 skip:
ba76149f
AA
2140 progress++;
2141 continue;
2142 }
78f11a25 2143 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2144 goto skip;
2145 if (is_vma_temporary_stack(vma))
2146 goto skip;
b3b9c293 2147 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
2148
2149 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2150 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2151 if (hstart >= hend)
2152 goto skip;
2153 if (khugepaged_scan.address > hend)
2154 goto skip;
ba76149f
AA
2155 if (khugepaged_scan.address < hstart)
2156 khugepaged_scan.address = hstart;
a7d6e4ec 2157 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2158
2159 while (khugepaged_scan.address < hend) {
2160 int ret;
2161 cond_resched();
2162 if (unlikely(khugepaged_test_exit(mm)))
2163 goto breakouterloop;
2164
2165 VM_BUG_ON(khugepaged_scan.address < hstart ||
2166 khugepaged_scan.address + HPAGE_PMD_SIZE >
2167 hend);
2168 ret = khugepaged_scan_pmd(mm, vma,
2169 khugepaged_scan.address,
2170 hpage);
2171 /* move to next address */
2172 khugepaged_scan.address += HPAGE_PMD_SIZE;
2173 progress += HPAGE_PMD_NR;
2174 if (ret)
2175 /* we released mmap_sem so break loop */
2176 goto breakouterloop_mmap_sem;
2177 if (progress >= pages)
2178 goto breakouterloop;
2179 }
2180 }
2181breakouterloop:
2182 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2183breakouterloop_mmap_sem:
2184
2185 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2186 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2187 /*
2188 * Release the current mm_slot if this mm is about to die, or
2189 * if we scanned all vmas of this mm.
2190 */
2191 if (khugepaged_test_exit(mm) || !vma) {
2192 /*
2193 * Make sure that if mm_users is reaching zero while
2194 * khugepaged runs here, khugepaged_exit will find
2195 * mm_slot not pointing to the exiting mm.
2196 */
2197 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2198 khugepaged_scan.mm_slot = list_entry(
2199 mm_slot->mm_node.next,
2200 struct mm_slot, mm_node);
2201 khugepaged_scan.address = 0;
2202 } else {
2203 khugepaged_scan.mm_slot = NULL;
2204 khugepaged_full_scans++;
2205 }
2206
2207 collect_mm_slot(mm_slot);
2208 }
2209
2210 return progress;
2211}
2212
2213static int khugepaged_has_work(void)
2214{
2215 return !list_empty(&khugepaged_scan.mm_head) &&
2216 khugepaged_enabled();
2217}
2218
2219static int khugepaged_wait_event(void)
2220{
2221 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2222 kthread_should_stop();
ba76149f
AA
2223}
2224
2225static void khugepaged_do_scan(struct page **hpage)
2226{
2227 unsigned int progress = 0, pass_through_head = 0;
2228 unsigned int pages = khugepaged_pages_to_scan;
2229
2230 barrier(); /* write khugepaged_pages_to_scan to local stack */
2231
2232 while (progress < pages) {
2233 cond_resched();
2234
0bbbc0b3 2235#ifndef CONFIG_NUMA
ba76149f
AA
2236 if (!*hpage) {
2237 *hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2238 if (unlikely(!*hpage)) {
2239 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ba76149f 2240 break;
81ab4201
AK
2241 }
2242 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f 2243 }
0bbbc0b3
AA
2244#else
2245 if (IS_ERR(*hpage))
2246 break;
2247#endif
ba76149f 2248
878aee7d
AA
2249 if (unlikely(kthread_should_stop() || freezing(current)))
2250 break;
2251
ba76149f
AA
2252 spin_lock(&khugepaged_mm_lock);
2253 if (!khugepaged_scan.mm_slot)
2254 pass_through_head++;
2255 if (khugepaged_has_work() &&
2256 pass_through_head < 2)
2257 progress += khugepaged_scan_mm_slot(pages - progress,
2258 hpage);
2259 else
2260 progress = pages;
2261 spin_unlock(&khugepaged_mm_lock);
2262 }
2263}
2264
0bbbc0b3
AA
2265static void khugepaged_alloc_sleep(void)
2266{
1dfb059b
AA
2267 wait_event_freezable_timeout(khugepaged_wait, false,
2268 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
0bbbc0b3
AA
2269}
2270
2271#ifndef CONFIG_NUMA
ba76149f
AA
2272static struct page *khugepaged_alloc_hugepage(void)
2273{
2274 struct page *hpage;
2275
2276 do {
2277 hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2278 if (!hpage) {
2279 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
0bbbc0b3 2280 khugepaged_alloc_sleep();
81ab4201
AK
2281 } else
2282 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f
AA
2283 } while (unlikely(!hpage) &&
2284 likely(khugepaged_enabled()));
2285 return hpage;
2286}
0bbbc0b3 2287#endif
ba76149f 2288
2017c0bf
XG
2289static void khugepaged_wait_work(void)
2290{
2291 try_to_freeze();
2292
2293 if (khugepaged_has_work()) {
2294 if (!khugepaged_scan_sleep_millisecs)
2295 return;
2296
2297 wait_event_freezable_timeout(khugepaged_wait,
2298 kthread_should_stop(),
2299 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2300 return;
2301 }
2302
2303 if (khugepaged_enabled())
2304 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2305}
2306
ba76149f
AA
2307static void khugepaged_loop(void)
2308{
9817626e 2309 struct page *hpage = NULL;
ba76149f
AA
2310
2311 while (likely(khugepaged_enabled())) {
0bbbc0b3 2312#ifndef CONFIG_NUMA
ba76149f 2313 hpage = khugepaged_alloc_hugepage();
f300ea49 2314 if (unlikely(!hpage))
ba76149f 2315 break;
0bbbc0b3
AA
2316#else
2317 if (IS_ERR(hpage)) {
2318 khugepaged_alloc_sleep();
2319 hpage = NULL;
2320 }
2321#endif
ba76149f
AA
2322
2323 khugepaged_do_scan(&hpage);
9817626e
XG
2324
2325 if (!IS_ERR_OR_NULL(hpage))
ba76149f 2326 put_page(hpage);
2017c0bf
XG
2327
2328 khugepaged_wait_work();
ba76149f
AA
2329 }
2330}
2331
2332static int khugepaged(void *none)
2333{
2334 struct mm_slot *mm_slot;
2335
878aee7d 2336 set_freezable();
ba76149f
AA
2337 set_user_nice(current, 19);
2338
e060f0e0 2339 while (!kthread_should_stop())
ba76149f 2340 khugepaged_loop();
ba76149f
AA
2341
2342 spin_lock(&khugepaged_mm_lock);
2343 mm_slot = khugepaged_scan.mm_slot;
2344 khugepaged_scan.mm_slot = NULL;
2345 if (mm_slot)
2346 collect_mm_slot(mm_slot);
2347 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2348 return 0;
2349}
2350
71e3aac0
AA
2351void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2352{
2353 struct page *page;
2354
2355 spin_lock(&mm->page_table_lock);
2356 if (unlikely(!pmd_trans_huge(*pmd))) {
2357 spin_unlock(&mm->page_table_lock);
2358 return;
2359 }
2360 page = pmd_page(*pmd);
2361 VM_BUG_ON(!page_count(page));
2362 get_page(page);
2363 spin_unlock(&mm->page_table_lock);
2364
2365 split_huge_page(page);
2366
2367 put_page(page);
2368 BUG_ON(pmd_trans_huge(*pmd));
2369}
94fcc585
AA
2370
2371static void split_huge_page_address(struct mm_struct *mm,
2372 unsigned long address)
2373{
2374 pgd_t *pgd;
2375 pud_t *pud;
2376 pmd_t *pmd;
2377
2378 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2379
2380 pgd = pgd_offset(mm, address);
2381 if (!pgd_present(*pgd))
2382 return;
2383
2384 pud = pud_offset(pgd, address);
2385 if (!pud_present(*pud))
2386 return;
2387
2388 pmd = pmd_offset(pud, address);
2389 if (!pmd_present(*pmd))
2390 return;
2391 /*
2392 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2393 * materialize from under us.
2394 */
2395 split_huge_page_pmd(mm, pmd);
2396}
2397
2398void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2399 unsigned long start,
2400 unsigned long end,
2401 long adjust_next)
2402{
2403 /*
2404 * If the new start address isn't hpage aligned and it could
2405 * previously contain an hugepage: check if we need to split
2406 * an huge pmd.
2407 */
2408 if (start & ~HPAGE_PMD_MASK &&
2409 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2410 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2411 split_huge_page_address(vma->vm_mm, start);
2412
2413 /*
2414 * If the new end address isn't hpage aligned and it could
2415 * previously contain an hugepage: check if we need to split
2416 * an huge pmd.
2417 */
2418 if (end & ~HPAGE_PMD_MASK &&
2419 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2420 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2421 split_huge_page_address(vma->vm_mm, end);
2422
2423 /*
2424 * If we're also updating the vma->vm_next->vm_start, if the new
2425 * vm_next->vm_start isn't page aligned and it could previously
2426 * contain an hugepage: check if we need to split an huge pmd.
2427 */
2428 if (adjust_next > 0) {
2429 struct vm_area_struct *next = vma->vm_next;
2430 unsigned long nstart = next->vm_start;
2431 nstart += adjust_next << PAGE_SHIFT;
2432 if (nstart & ~HPAGE_PMD_MASK &&
2433 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2434 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2435 split_huge_page_address(next->vm_mm, nstart);
2436 }
2437}