]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blame - mm/huge_memory.c
mm: use READ_ONCE() for non-scalar types
[mirror_ubuntu-bionic-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f
AA
18#include <linux/mm_inline.h>
19#include <linux/kthread.h>
20#include <linux/khugepaged.h>
878aee7d 21#include <linux/freezer.h>
a664b2d8 22#include <linux/mman.h>
325adeb5 23#include <linux/pagemap.h>
4daae3b4 24#include <linux/migrate.h>
43b5fbbd 25#include <linux/hashtable.h>
97ae1749 26
71e3aac0
AA
27#include <asm/tlb.h>
28#include <asm/pgalloc.h>
29#include "internal.h"
30
ba76149f 31/*
8bfa3f9a
JW
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
ba76149f 38 */
71e3aac0 39unsigned long transparent_hugepage_flags __read_mostly =
13ece886 40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
42#endif
43#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45#endif
d39d33c3 46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
49
50/* default scan 8*512 pte (or vmas) every 30 second */
51static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52static unsigned int khugepaged_pages_collapsed;
53static unsigned int khugepaged_full_scans;
54static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55/* during fragmentation poll the hugepage allocator once every minute */
56static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57static struct task_struct *khugepaged_thread __read_mostly;
58static DEFINE_MUTEX(khugepaged_mutex);
59static DEFINE_SPINLOCK(khugepaged_mm_lock);
60static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61/*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68static int khugepaged(void *none);
ba76149f 69static int khugepaged_slab_init(void);
ba76149f 70
43b5fbbd
SL
71#define MM_SLOTS_HASH_BITS 10
72static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
ba76149f
AA
74static struct kmem_cache *mm_slot_cache __read_mostly;
75
76/**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86};
87
88/**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
2f1da642
HS
100};
101static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103};
104
f000565a
AA
105
106static int set_recommended_min_free_kbytes(void)
107{
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
f000565a 111
17c230af 112 if (!khugepaged_enabled())
f000565a
AA
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
42aa83cb
HP
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
f000565a 141 min_free_kbytes = recommended_min;
42aa83cb 142 }
f000565a
AA
143 setup_per_zone_wmarks();
144 return 0;
145}
146late_initcall(set_recommended_min_free_kbytes);
147
ba76149f
AA
148static int start_khugepaged(void)
149{
150 int err = 0;
151 if (khugepaged_enabled()) {
ba76149f
AA
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
911891af
XG
160
161 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 162 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
163
164 set_recommended_min_free_kbytes();
911891af 165 } else if (khugepaged_thread) {
911891af
XG
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
637e3a27 169
ba76149f
AA
170 return err;
171}
71e3aac0 172
97ae1749 173static atomic_t huge_zero_refcount;
56873f43 174struct page *huge_zero_page __read_mostly;
4a6c1297 175
97ae1749
KS
176static inline bool is_huge_zero_pmd(pmd_t pmd)
177{
5918d10a 178 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
179}
180
5918d10a 181static struct page *get_huge_zero_page(void)
97ae1749
KS
182{
183 struct page *zero_page;
184retry:
185 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 186 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
187
188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 189 HPAGE_PMD_ORDER);
d8a8e1f0
KS
190 if (!zero_page) {
191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 192 return NULL;
d8a8e1f0
KS
193 }
194 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 195 preempt_disable();
5918d10a 196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 197 preempt_enable();
5ddacbe9 198 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
199 goto retry;
200 }
201
202 /* We take additional reference here. It will be put back by shrinker */
203 atomic_set(&huge_zero_refcount, 2);
204 preempt_enable();
5918d10a 205 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
206}
207
97ae1749 208static void put_huge_zero_page(void)
4a6c1297 209{
97ae1749
KS
210 /*
211 * Counter should never go to zero here. Only shrinker can put
212 * last reference.
213 */
214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
215}
216
48896466
GC
217static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 struct shrink_control *sc)
4a6c1297 219{
48896466
GC
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222}
97ae1749 223
48896466
GC
224static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 struct shrink_control *sc)
226{
97ae1749 227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
228 struct page *zero_page = xchg(&huge_zero_page, NULL);
229 BUG_ON(zero_page == NULL);
5ddacbe9 230 __free_pages(zero_page, compound_order(zero_page));
48896466 231 return HPAGE_PMD_NR;
97ae1749
KS
232 }
233
234 return 0;
4a6c1297
KS
235}
236
97ae1749 237static struct shrinker huge_zero_page_shrinker = {
48896466
GC
238 .count_objects = shrink_huge_zero_page_count,
239 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
240 .seeks = DEFAULT_SEEKS,
241};
242
71e3aac0 243#ifdef CONFIG_SYSFS
ba76149f 244
71e3aac0
AA
245static ssize_t double_flag_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf,
247 enum transparent_hugepage_flag enabled,
248 enum transparent_hugepage_flag req_madv)
249{
250 if (test_bit(enabled, &transparent_hugepage_flags)) {
251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 return sprintf(buf, "[always] madvise never\n");
253 } else if (test_bit(req_madv, &transparent_hugepage_flags))
254 return sprintf(buf, "always [madvise] never\n");
255 else
256 return sprintf(buf, "always madvise [never]\n");
257}
258static ssize_t double_flag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count,
261 enum transparent_hugepage_flag enabled,
262 enum transparent_hugepage_flag req_madv)
263{
264 if (!memcmp("always", buf,
265 min(sizeof("always")-1, count))) {
266 set_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else if (!memcmp("madvise", buf,
269 min(sizeof("madvise")-1, count))) {
270 clear_bit(enabled, &transparent_hugepage_flags);
271 set_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 clear_bit(req_madv, &transparent_hugepage_flags);
276 } else
277 return -EINVAL;
278
279 return count;
280}
281
282static ssize_t enabled_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
284{
285 return double_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_FLAG,
287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
288}
289static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
292{
ba76149f
AA
293 ssize_t ret;
294
295 ret = double_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_FLAG,
297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
298
299 if (ret > 0) {
911891af
XG
300 int err;
301
302 mutex_lock(&khugepaged_mutex);
303 err = start_khugepaged();
304 mutex_unlock(&khugepaged_mutex);
305
ba76149f
AA
306 if (err)
307 ret = err;
308 }
309
310 return ret;
71e3aac0
AA
311}
312static struct kobj_attribute enabled_attr =
313 __ATTR(enabled, 0644, enabled_show, enabled_store);
314
315static ssize_t single_flag_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf,
317 enum transparent_hugepage_flag flag)
318{
e27e6151
BH
319 return sprintf(buf, "%d\n",
320 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 321}
e27e6151 322
71e3aac0
AA
323static ssize_t single_flag_store(struct kobject *kobj,
324 struct kobj_attribute *attr,
325 const char *buf, size_t count,
326 enum transparent_hugepage_flag flag)
327{
e27e6151
BH
328 unsigned long value;
329 int ret;
330
331 ret = kstrtoul(buf, 10, &value);
332 if (ret < 0)
333 return ret;
334 if (value > 1)
335 return -EINVAL;
336
337 if (value)
71e3aac0 338 set_bit(flag, &transparent_hugepage_flags);
e27e6151 339 else
71e3aac0 340 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
341
342 return count;
343}
344
345/*
346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348 * memory just to allocate one more hugepage.
349 */
350static ssize_t defrag_show(struct kobject *kobj,
351 struct kobj_attribute *attr, char *buf)
352{
353 return double_flag_show(kobj, attr, buf,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356}
357static ssize_t defrag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count)
360{
361 return double_flag_store(kobj, attr, buf, count,
362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
364}
365static struct kobj_attribute defrag_attr =
366 __ATTR(defrag, 0644, defrag_show, defrag_store);
367
79da5407
KS
368static ssize_t use_zero_page_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370{
371 return single_flag_show(kobj, attr, buf,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373}
374static ssize_t use_zero_page_store(struct kobject *kobj,
375 struct kobj_attribute *attr, const char *buf, size_t count)
376{
377 return single_flag_store(kobj, attr, buf, count,
378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379}
380static struct kobj_attribute use_zero_page_attr =
381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
382#ifdef CONFIG_DEBUG_VM
383static ssize_t debug_cow_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
386 return single_flag_show(kobj, attr, buf,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388}
389static ssize_t debug_cow_store(struct kobject *kobj,
390 struct kobj_attribute *attr,
391 const char *buf, size_t count)
392{
393 return single_flag_store(kobj, attr, buf, count,
394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
395}
396static struct kobj_attribute debug_cow_attr =
397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398#endif /* CONFIG_DEBUG_VM */
399
400static struct attribute *hugepage_attr[] = {
401 &enabled_attr.attr,
402 &defrag_attr.attr,
79da5407 403 &use_zero_page_attr.attr,
71e3aac0
AA
404#ifdef CONFIG_DEBUG_VM
405 &debug_cow_attr.attr,
406#endif
407 NULL,
408};
409
410static struct attribute_group hugepage_attr_group = {
411 .attrs = hugepage_attr,
ba76149f
AA
412};
413
414static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 char *buf)
417{
418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419}
420
421static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424{
425 unsigned long msecs;
426 int err;
427
3dbb95f7 428 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
429 if (err || msecs > UINT_MAX)
430 return -EINVAL;
431
432 khugepaged_scan_sleep_millisecs = msecs;
433 wake_up_interruptible(&khugepaged_wait);
434
435 return count;
436}
437static struct kobj_attribute scan_sleep_millisecs_attr =
438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 scan_sleep_millisecs_store);
440
441static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444{
445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446}
447
448static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 struct kobj_attribute *attr,
450 const char *buf, size_t count)
451{
452 unsigned long msecs;
453 int err;
454
3dbb95f7 455 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
456 if (err || msecs > UINT_MAX)
457 return -EINVAL;
458
459 khugepaged_alloc_sleep_millisecs = msecs;
460 wake_up_interruptible(&khugepaged_wait);
461
462 return count;
463}
464static struct kobj_attribute alloc_sleep_millisecs_attr =
465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 alloc_sleep_millisecs_store);
467
468static ssize_t pages_to_scan_show(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 char *buf)
471{
472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
473}
474static ssize_t pages_to_scan_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
477{
478 int err;
479 unsigned long pages;
480
3dbb95f7 481 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
482 if (err || !pages || pages > UINT_MAX)
483 return -EINVAL;
484
485 khugepaged_pages_to_scan = pages;
486
487 return count;
488}
489static struct kobj_attribute pages_to_scan_attr =
490 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 pages_to_scan_store);
492
493static ssize_t pages_collapsed_show(struct kobject *kobj,
494 struct kobj_attribute *attr,
495 char *buf)
496{
497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
498}
499static struct kobj_attribute pages_collapsed_attr =
500 __ATTR_RO(pages_collapsed);
501
502static ssize_t full_scans_show(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 char *buf)
505{
506 return sprintf(buf, "%u\n", khugepaged_full_scans);
507}
508static struct kobj_attribute full_scans_attr =
509 __ATTR_RO(full_scans);
510
511static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 struct kobj_attribute *attr, char *buf)
513{
514 return single_flag_show(kobj, attr, buf,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516}
517static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
520{
521 return single_flag_store(kobj, attr, buf, count,
522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
523}
524static struct kobj_attribute khugepaged_defrag_attr =
525 __ATTR(defrag, 0644, khugepaged_defrag_show,
526 khugepaged_defrag_store);
527
528/*
529 * max_ptes_none controls if khugepaged should collapse hugepages over
530 * any unmapped ptes in turn potentially increasing the memory
531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532 * reduce the available free memory in the system as it
533 * runs. Increasing max_ptes_none will instead potentially reduce the
534 * free memory in the system during the khugepaged scan.
535 */
536static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 char *buf)
539{
540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
541}
542static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 const char *buf, size_t count)
545{
546 int err;
547 unsigned long max_ptes_none;
548
3dbb95f7 549 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
550 if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 return -EINVAL;
552
553 khugepaged_max_ptes_none = max_ptes_none;
554
555 return count;
556}
557static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 khugepaged_max_ptes_none_store);
560
561static struct attribute *khugepaged_attr[] = {
562 &khugepaged_defrag_attr.attr,
563 &khugepaged_max_ptes_none_attr.attr,
564 &pages_to_scan_attr.attr,
565 &pages_collapsed_attr.attr,
566 &full_scans_attr.attr,
567 &scan_sleep_millisecs_attr.attr,
568 &alloc_sleep_millisecs_attr.attr,
569 NULL,
570};
571
572static struct attribute_group khugepaged_attr_group = {
573 .attrs = khugepaged_attr,
574 .name = "khugepaged",
71e3aac0 575};
71e3aac0 576
569e5590 577static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 578{
71e3aac0
AA
579 int err;
580
569e5590
SL
581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 583 pr_err("failed to create transparent hugepage kobject\n");
569e5590 584 return -ENOMEM;
ba76149f
AA
585 }
586
569e5590 587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 588 if (err) {
ae3a8c1c 589 pr_err("failed to register transparent hugepage group\n");
569e5590 590 goto delete_obj;
ba76149f
AA
591 }
592
569e5590 593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 594 if (err) {
ae3a8c1c 595 pr_err("failed to register transparent hugepage group\n");
569e5590 596 goto remove_hp_group;
ba76149f 597 }
569e5590
SL
598
599 return 0;
600
601remove_hp_group:
602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
603delete_obj:
604 kobject_put(*hugepage_kobj);
605 return err;
606}
607
608static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
609{
610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 kobject_put(hugepage_kobj);
613}
614#else
615static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
616{
617 return 0;
618}
619
620static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621{
622}
623#endif /* CONFIG_SYSFS */
624
625static int __init hugepage_init(void)
626{
627 int err;
628 struct kobject *hugepage_kobj;
629
630 if (!has_transparent_hugepage()) {
631 transparent_hugepage_flags = 0;
632 return -EINVAL;
633 }
634
635 err = hugepage_init_sysfs(&hugepage_kobj);
636 if (err)
637 return err;
ba76149f
AA
638
639 err = khugepaged_slab_init();
640 if (err)
641 goto out;
642
97ae1749
KS
643 register_shrinker(&huge_zero_page_shrinker);
644
97562cd2
RR
645 /*
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
649 */
650 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 transparent_hugepage_flags = 0;
652
ba76149f
AA
653 start_khugepaged();
654
569e5590 655 return 0;
ba76149f 656out:
569e5590 657 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 658 return err;
71e3aac0 659}
a64fb3cd 660subsys_initcall(hugepage_init);
71e3aac0
AA
661
662static int __init setup_transparent_hugepage(char *str)
663{
664 int ret = 0;
665 if (!str)
666 goto out;
667 if (!strcmp(str, "always")) {
668 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 &transparent_hugepage_flags);
670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 &transparent_hugepage_flags);
672 ret = 1;
673 } else if (!strcmp(str, "madvise")) {
674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "never")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 }
686out:
687 if (!ret)
ae3a8c1c 688 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
689 return ret;
690}
691__setup("transparent_hugepage=", setup_transparent_hugepage);
692
b32967ff 693pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
694{
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
697 return pmd;
698}
699
3122359a 700static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
701{
702 pmd_t entry;
3122359a 703 entry = mk_pmd(page, prot);
b3092b3b
BL
704 entry = pmd_mkhuge(entry);
705 return entry;
706}
707
71e3aac0
AA
708static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
709 struct vm_area_struct *vma,
710 unsigned long haddr, pmd_t *pmd,
3b363692 711 struct page *page, gfp_t gfp)
71e3aac0 712{
00501b53 713 struct mem_cgroup *memcg;
71e3aac0 714 pgtable_t pgtable;
c4088ebd 715 spinlock_t *ptl;
71e3aac0 716
309381fe 717 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 718
3b363692 719 if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
00501b53
JW
720 return VM_FAULT_OOM;
721
71e3aac0 722 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
723 if (unlikely(!pgtable)) {
724 mem_cgroup_cancel_charge(page, memcg);
71e3aac0 725 return VM_FAULT_OOM;
00501b53 726 }
71e3aac0
AA
727
728 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
729 /*
730 * The memory barrier inside __SetPageUptodate makes sure that
731 * clear_huge_page writes become visible before the set_pmd_at()
732 * write.
733 */
71e3aac0
AA
734 __SetPageUptodate(page);
735
c4088ebd 736 ptl = pmd_lock(mm, pmd);
71e3aac0 737 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 738 spin_unlock(ptl);
00501b53 739 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
740 put_page(page);
741 pte_free(mm, pgtable);
742 } else {
743 pmd_t entry;
3122359a
KS
744 entry = mk_huge_pmd(page, vma->vm_page_prot);
745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 746 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
747 mem_cgroup_commit_charge(page, memcg, false);
748 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 750 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 751 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 752 atomic_long_inc(&mm->nr_ptes);
c4088ebd 753 spin_unlock(ptl);
71e3aac0
AA
754 }
755
aa2e878e 756 return 0;
71e3aac0
AA
757}
758
cc5d462f 759static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 760{
cc5d462f 761 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
762}
763
c4088ebd 764/* Caller must hold page table lock. */
3ea41e62 765static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 767 struct page *zero_page)
fc9fe822
KS
768{
769 pmd_t entry;
3ea41e62
KS
770 if (!pmd_none(*pmd))
771 return false;
5918d10a 772 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 773 entry = pmd_mkhuge(entry);
6b0b50b0 774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 775 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 776 atomic_long_inc(&mm->nr_ptes);
3ea41e62 777 return true;
fc9fe822
KS
778}
779
71e3aac0
AA
780int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783{
077fcf11 784 gfp_t gfp;
71e3aac0
AA
785 struct page *page;
786 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 787
128ec037 788 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 789 return VM_FAULT_FALLBACK;
128ec037
KS
790 if (unlikely(anon_vma_prepare(vma)))
791 return VM_FAULT_OOM;
6d50e60c 792 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 793 return VM_FAULT_OOM;
593befa6 794 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 795 transparent_hugepage_use_zero_page()) {
c4088ebd 796 spinlock_t *ptl;
128ec037
KS
797 pgtable_t pgtable;
798 struct page *zero_page;
799 bool set;
800 pgtable = pte_alloc_one(mm, haddr);
801 if (unlikely(!pgtable))
ba76149f 802 return VM_FAULT_OOM;
128ec037
KS
803 zero_page = get_huge_zero_page();
804 if (unlikely(!zero_page)) {
805 pte_free(mm, pgtable);
81ab4201 806 count_vm_event(THP_FAULT_FALLBACK);
c0292554 807 return VM_FAULT_FALLBACK;
b9bbfbe3 808 }
c4088ebd 809 ptl = pmd_lock(mm, pmd);
128ec037
KS
810 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
811 zero_page);
c4088ebd 812 spin_unlock(ptl);
128ec037
KS
813 if (!set) {
814 pte_free(mm, pgtable);
815 put_huge_zero_page();
edad9d2c 816 }
edad9d2c 817 return 0;
71e3aac0 818 }
077fcf11
AK
819 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
820 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
821 if (unlikely(!page)) {
822 count_vm_event(THP_FAULT_FALLBACK);
c0292554 823 return VM_FAULT_FALLBACK;
128ec037 824 }
3b363692 825 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
128ec037 826 put_page(page);
17766dde 827 count_vm_event(THP_FAULT_FALLBACK);
c0292554 828 return VM_FAULT_FALLBACK;
128ec037
KS
829 }
830
17766dde 831 count_vm_event(THP_FAULT_ALLOC);
128ec037 832 return 0;
71e3aac0
AA
833}
834
835int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
836 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
837 struct vm_area_struct *vma)
838{
c4088ebd 839 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
840 struct page *src_page;
841 pmd_t pmd;
842 pgtable_t pgtable;
843 int ret;
844
845 ret = -ENOMEM;
846 pgtable = pte_alloc_one(dst_mm, addr);
847 if (unlikely(!pgtable))
848 goto out;
849
c4088ebd
KS
850 dst_ptl = pmd_lock(dst_mm, dst_pmd);
851 src_ptl = pmd_lockptr(src_mm, src_pmd);
852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
853
854 ret = -EAGAIN;
855 pmd = *src_pmd;
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
858 goto out_unlock;
859 }
fc9fe822 860 /*
c4088ebd 861 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
862 * under splitting since we don't split the page itself, only pmd to
863 * a page table.
864 */
865 if (is_huge_zero_pmd(pmd)) {
5918d10a 866 struct page *zero_page;
3ea41e62 867 bool set;
97ae1749
KS
868 /*
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
871 * reference.
872 */
5918d10a 873 zero_page = get_huge_zero_page();
3ea41e62 874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 875 zero_page);
3ea41e62 876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
877 ret = 0;
878 goto out_unlock;
879 }
de466bd6 880
71e3aac0
AA
881 if (unlikely(pmd_trans_splitting(pmd))) {
882 /* split huge page running from under us */
c4088ebd
KS
883 spin_unlock(src_ptl);
884 spin_unlock(dst_ptl);
71e3aac0
AA
885 pte_free(dst_mm, pgtable);
886
887 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
888 goto out;
889 }
890 src_page = pmd_page(pmd);
309381fe 891 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
892 get_page(src_page);
893 page_dup_rmap(src_page);
894 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
895
896 pmdp_set_wrprotect(src_mm, addr, src_pmd);
897 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 898 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 899 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 900 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
901
902 ret = 0;
903out_unlock:
c4088ebd
KS
904 spin_unlock(src_ptl);
905 spin_unlock(dst_ptl);
71e3aac0
AA
906out:
907 return ret;
908}
909
a1dd450b
WD
910void huge_pmd_set_accessed(struct mm_struct *mm,
911 struct vm_area_struct *vma,
912 unsigned long address,
913 pmd_t *pmd, pmd_t orig_pmd,
914 int dirty)
915{
c4088ebd 916 spinlock_t *ptl;
a1dd450b
WD
917 pmd_t entry;
918 unsigned long haddr;
919
c4088ebd 920 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
921 if (unlikely(!pmd_same(*pmd, orig_pmd)))
922 goto unlock;
923
924 entry = pmd_mkyoung(orig_pmd);
925 haddr = address & HPAGE_PMD_MASK;
926 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
927 update_mmu_cache_pmd(vma, address, pmd);
928
929unlock:
c4088ebd 930 spin_unlock(ptl);
a1dd450b
WD
931}
932
5338a937
HD
933/*
934 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
935 * during copy_user_huge_page()'s copy_page_rep(): in the case when
936 * the source page gets split and a tail freed before copy completes.
937 * Called under pmd_lock of checked pmd, so safe from splitting itself.
938 */
939static void get_user_huge_page(struct page *page)
940{
941 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
942 struct page *endpage = page + HPAGE_PMD_NR;
943
944 atomic_add(HPAGE_PMD_NR, &page->_count);
945 while (++page < endpage)
946 get_huge_page_tail(page);
947 } else {
948 get_page(page);
949 }
950}
951
952static void put_user_huge_page(struct page *page)
953{
954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
955 struct page *endpage = page + HPAGE_PMD_NR;
956
957 while (page < endpage)
958 put_page(page++);
959 } else {
960 put_page(page);
961 }
962}
963
71e3aac0
AA
964static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
965 struct vm_area_struct *vma,
966 unsigned long address,
967 pmd_t *pmd, pmd_t orig_pmd,
968 struct page *page,
969 unsigned long haddr)
970{
00501b53 971 struct mem_cgroup *memcg;
c4088ebd 972 spinlock_t *ptl;
71e3aac0
AA
973 pgtable_t pgtable;
974 pmd_t _pmd;
975 int ret = 0, i;
976 struct page **pages;
2ec74c3e
SG
977 unsigned long mmun_start; /* For mmu_notifiers */
978 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
979
980 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
981 GFP_KERNEL);
982 if (unlikely(!pages)) {
983 ret |= VM_FAULT_OOM;
984 goto out;
985 }
986
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
988 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
989 __GFP_OTHER_NODE,
19ee151e 990 vma, address, page_to_nid(page));
b9bbfbe3 991 if (unlikely(!pages[i] ||
00501b53
JW
992 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
993 &memcg))) {
b9bbfbe3 994 if (pages[i])
71e3aac0 995 put_page(pages[i]);
b9bbfbe3 996 while (--i >= 0) {
00501b53
JW
997 memcg = (void *)page_private(pages[i]);
998 set_page_private(pages[i], 0);
999 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1000 put_page(pages[i]);
1001 }
71e3aac0
AA
1002 kfree(pages);
1003 ret |= VM_FAULT_OOM;
1004 goto out;
1005 }
00501b53 1006 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1007 }
1008
1009 for (i = 0; i < HPAGE_PMD_NR; i++) {
1010 copy_user_highpage(pages[i], page + i,
0089e485 1011 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1012 __SetPageUptodate(pages[i]);
1013 cond_resched();
1014 }
1015
2ec74c3e
SG
1016 mmun_start = haddr;
1017 mmun_end = haddr + HPAGE_PMD_SIZE;
1018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1019
c4088ebd 1020 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1021 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1022 goto out_free_pages;
309381fe 1023 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1024
34ee645e 1025 pmdp_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1026 /* leave pmd empty until pte is filled */
1027
6b0b50b0 1028 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1029 pmd_populate(mm, &_pmd, pgtable);
1030
1031 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1032 pte_t *pte, entry;
1033 entry = mk_pte(pages[i], vma->vm_page_prot);
1034 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1035 memcg = (void *)page_private(pages[i]);
1036 set_page_private(pages[i], 0);
71e3aac0 1037 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1038 mem_cgroup_commit_charge(pages[i], memcg, false);
1039 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1040 pte = pte_offset_map(&_pmd, haddr);
1041 VM_BUG_ON(!pte_none(*pte));
1042 set_pte_at(mm, haddr, pte, entry);
1043 pte_unmap(pte);
1044 }
1045 kfree(pages);
1046
71e3aac0
AA
1047 smp_wmb(); /* make pte visible before pmd */
1048 pmd_populate(mm, pmd, pgtable);
1049 page_remove_rmap(page);
c4088ebd 1050 spin_unlock(ptl);
71e3aac0 1051
2ec74c3e
SG
1052 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1053
71e3aac0
AA
1054 ret |= VM_FAULT_WRITE;
1055 put_page(page);
1056
1057out:
1058 return ret;
1059
1060out_free_pages:
c4088ebd 1061 spin_unlock(ptl);
2ec74c3e 1062 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1063 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1064 memcg = (void *)page_private(pages[i]);
1065 set_page_private(pages[i], 0);
1066 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1067 put_page(pages[i]);
b9bbfbe3 1068 }
71e3aac0
AA
1069 kfree(pages);
1070 goto out;
1071}
1072
1073int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1074 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1075{
c4088ebd 1076 spinlock_t *ptl;
71e3aac0 1077 int ret = 0;
93b4796d 1078 struct page *page = NULL, *new_page;
00501b53 1079 struct mem_cgroup *memcg;
71e3aac0 1080 unsigned long haddr;
2ec74c3e
SG
1081 unsigned long mmun_start; /* For mmu_notifiers */
1082 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1083 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1084
c4088ebd 1085 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1086 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1087 haddr = address & HPAGE_PMD_MASK;
1088 if (is_huge_zero_pmd(orig_pmd))
1089 goto alloc;
c4088ebd 1090 spin_lock(ptl);
71e3aac0
AA
1091 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1092 goto out_unlock;
1093
1094 page = pmd_page(orig_pmd);
309381fe 1095 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1096 if (page_mapcount(page) == 1) {
1097 pmd_t entry;
1098 entry = pmd_mkyoung(orig_pmd);
1099 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1100 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1101 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1102 ret |= VM_FAULT_WRITE;
1103 goto out_unlock;
1104 }
5338a937 1105 get_user_huge_page(page);
c4088ebd 1106 spin_unlock(ptl);
93b4796d 1107alloc:
71e3aac0 1108 if (transparent_hugepage_enabled(vma) &&
077fcf11 1109 !transparent_hugepage_debug_cow()) {
3b363692
MH
1110 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1111 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1112 } else
71e3aac0
AA
1113 new_page = NULL;
1114
1115 if (unlikely(!new_page)) {
eecc1e42 1116 if (!page) {
e9b71ca9
KS
1117 split_huge_page_pmd(vma, address, pmd);
1118 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1119 } else {
1120 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1121 pmd, orig_pmd, page, haddr);
9845cbbd 1122 if (ret & VM_FAULT_OOM) {
93b4796d 1123 split_huge_page(page);
9845cbbd
KS
1124 ret |= VM_FAULT_FALLBACK;
1125 }
5338a937 1126 put_user_huge_page(page);
93b4796d 1127 }
17766dde 1128 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1129 goto out;
1130 }
1131
3b363692 1132 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
b9bbfbe3 1133 put_page(new_page);
93b4796d
KS
1134 if (page) {
1135 split_huge_page(page);
5338a937 1136 put_user_huge_page(page);
9845cbbd
KS
1137 } else
1138 split_huge_page_pmd(vma, address, pmd);
1139 ret |= VM_FAULT_FALLBACK;
17766dde 1140 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1141 goto out;
1142 }
1143
17766dde
DR
1144 count_vm_event(THP_FAULT_ALLOC);
1145
eecc1e42 1146 if (!page)
93b4796d
KS
1147 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1148 else
1149 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1150 __SetPageUptodate(new_page);
1151
2ec74c3e
SG
1152 mmun_start = haddr;
1153 mmun_end = haddr + HPAGE_PMD_SIZE;
1154 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1155
c4088ebd 1156 spin_lock(ptl);
93b4796d 1157 if (page)
5338a937 1158 put_user_huge_page(page);
b9bbfbe3 1159 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1160 spin_unlock(ptl);
00501b53 1161 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1162 put_page(new_page);
2ec74c3e 1163 goto out_mn;
b9bbfbe3 1164 } else {
71e3aac0 1165 pmd_t entry;
3122359a
KS
1166 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1167 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
34ee645e 1168 pmdp_clear_flush_notify(vma, haddr, pmd);
71e3aac0 1169 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1170 mem_cgroup_commit_charge(new_page, memcg, false);
1171 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1172 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1173 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1174 if (!page) {
93b4796d 1175 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1176 put_huge_zero_page();
1177 } else {
309381fe 1178 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1179 page_remove_rmap(page);
1180 put_page(page);
1181 }
71e3aac0
AA
1182 ret |= VM_FAULT_WRITE;
1183 }
c4088ebd 1184 spin_unlock(ptl);
2ec74c3e
SG
1185out_mn:
1186 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1187out:
1188 return ret;
2ec74c3e 1189out_unlock:
c4088ebd 1190 spin_unlock(ptl);
2ec74c3e 1191 return ret;
71e3aac0
AA
1192}
1193
b676b293 1194struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1195 unsigned long addr,
1196 pmd_t *pmd,
1197 unsigned int flags)
1198{
b676b293 1199 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1200 struct page *page = NULL;
1201
c4088ebd 1202 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1203
1204 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1205 goto out;
1206
85facf25
KS
1207 /* Avoid dumping huge zero page */
1208 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1209 return ERR_PTR(-EFAULT);
1210
2b4847e7 1211 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1212 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1213 goto out;
1214
71e3aac0 1215 page = pmd_page(*pmd);
309381fe 1216 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1217 if (flags & FOLL_TOUCH) {
1218 pmd_t _pmd;
1219 /*
1220 * We should set the dirty bit only for FOLL_WRITE but
1221 * for now the dirty bit in the pmd is meaningless.
1222 * And if the dirty bit will become meaningful and
1223 * we'll only set it with FOLL_WRITE, an atomic
1224 * set_bit will be required on the pmd to set the
1225 * young bit, instead of the current set_pmd_at.
1226 */
1227 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1228 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1229 pmd, _pmd, 1))
1230 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1231 }
84d33df2 1232 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1233 if (page->mapping && trylock_page(page)) {
1234 lru_add_drain();
1235 if (page->mapping)
1236 mlock_vma_page(page);
1237 unlock_page(page);
1238 }
1239 }
71e3aac0 1240 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1241 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1242 if (flags & FOLL_GET)
70b50f94 1243 get_page_foll(page);
71e3aac0
AA
1244
1245out:
1246 return page;
1247}
1248
d10e63f2 1249/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1250int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1251 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1252{
c4088ebd 1253 spinlock_t *ptl;
b8916634 1254 struct anon_vma *anon_vma = NULL;
b32967ff 1255 struct page *page;
d10e63f2 1256 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1257 int page_nid = -1, this_nid = numa_node_id();
90572890 1258 int target_nid, last_cpupid = -1;
8191acbd
MG
1259 bool page_locked;
1260 bool migrated = false;
b191f9b1 1261 bool was_writable;
6688cc05 1262 int flags = 0;
d10e63f2 1263
c0e7cad9
MG
1264 /* A PROT_NONE fault should not end up here */
1265 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1266
c4088ebd 1267 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1268 if (unlikely(!pmd_same(pmd, *pmdp)))
1269 goto out_unlock;
1270
de466bd6
MG
1271 /*
1272 * If there are potential migrations, wait for completion and retry
1273 * without disrupting NUMA hinting information. Do not relock and
1274 * check_same as the page may no longer be mapped.
1275 */
1276 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1277 page = pmd_page(*pmdp);
de466bd6 1278 spin_unlock(ptl);
5d833062 1279 wait_on_page_locked(page);
de466bd6
MG
1280 goto out;
1281 }
1282
d10e63f2 1283 page = pmd_page(pmd);
a1a46184 1284 BUG_ON(is_huge_zero_page(page));
8191acbd 1285 page_nid = page_to_nid(page);
90572890 1286 last_cpupid = page_cpupid_last(page);
03c5a6e1 1287 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1288 if (page_nid == this_nid) {
03c5a6e1 1289 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1290 flags |= TNF_FAULT_LOCAL;
1291 }
4daae3b4 1292
bea66fbd
MG
1293 /* See similar comment in do_numa_page for explanation */
1294 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1295 flags |= TNF_NO_GROUP;
1296
ff9042b1
MG
1297 /*
1298 * Acquire the page lock to serialise THP migrations but avoid dropping
1299 * page_table_lock if at all possible
1300 */
b8916634
MG
1301 page_locked = trylock_page(page);
1302 target_nid = mpol_misplaced(page, vma, haddr);
1303 if (target_nid == -1) {
1304 /* If the page was locked, there are no parallel migrations */
a54a407f 1305 if (page_locked)
b8916634 1306 goto clear_pmdnuma;
2b4847e7 1307 }
4daae3b4 1308
de466bd6 1309 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1310 if (!page_locked) {
c4088ebd 1311 spin_unlock(ptl);
b8916634 1312 wait_on_page_locked(page);
a54a407f 1313 page_nid = -1;
b8916634
MG
1314 goto out;
1315 }
1316
2b4847e7
MG
1317 /*
1318 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1319 * to serialises splits
1320 */
b8916634 1321 get_page(page);
c4088ebd 1322 spin_unlock(ptl);
b8916634 1323 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1324
c69307d5 1325 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1326 spin_lock(ptl);
b32967ff
MG
1327 if (unlikely(!pmd_same(pmd, *pmdp))) {
1328 unlock_page(page);
1329 put_page(page);
a54a407f 1330 page_nid = -1;
4daae3b4 1331 goto out_unlock;
b32967ff 1332 }
ff9042b1 1333
c3a489ca
MG
1334 /* Bail if we fail to protect against THP splits for any reason */
1335 if (unlikely(!anon_vma)) {
1336 put_page(page);
1337 page_nid = -1;
1338 goto clear_pmdnuma;
1339 }
1340
a54a407f
MG
1341 /*
1342 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1343 * and access rights restored.
a54a407f 1344 */
c4088ebd 1345 spin_unlock(ptl);
b32967ff 1346 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1347 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1348 if (migrated) {
1349 flags |= TNF_MIGRATED;
8191acbd 1350 page_nid = target_nid;
074c2381
MG
1351 } else
1352 flags |= TNF_MIGRATE_FAIL;
b32967ff 1353
8191acbd 1354 goto out;
b32967ff 1355clear_pmdnuma:
a54a407f 1356 BUG_ON(!PageLocked(page));
b191f9b1 1357 was_writable = pmd_write(pmd);
4d942466 1358 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1359 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1360 if (was_writable)
1361 pmd = pmd_mkwrite(pmd);
d10e63f2 1362 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1363 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1364 unlock_page(page);
d10e63f2 1365out_unlock:
c4088ebd 1366 spin_unlock(ptl);
b8916634
MG
1367
1368out:
1369 if (anon_vma)
1370 page_unlock_anon_vma_read(anon_vma);
1371
8191acbd 1372 if (page_nid != -1)
6688cc05 1373 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1374
d10e63f2
MG
1375 return 0;
1376}
1377
71e3aac0 1378int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1379 pmd_t *pmd, unsigned long addr)
71e3aac0 1380{
bf929152 1381 spinlock_t *ptl;
71e3aac0
AA
1382 int ret = 0;
1383
bf929152 1384 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24
NH
1385 struct page *page;
1386 pgtable_t pgtable;
f5c8ad47 1387 pmd_t orig_pmd;
a6bf2bb0
AK
1388 /*
1389 * For architectures like ppc64 we look at deposited pgtable
1390 * when calling pmdp_get_and_clear. So do the
1391 * pgtable_trans_huge_withdraw after finishing pmdp related
1392 * operations.
1393 */
fcbe08d6
MS
1394 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1395 tlb->fullmm);
025c5b24 1396 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1397 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb 1398 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1399 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1400 spin_unlock(ptl);
97ae1749 1401 put_huge_zero_page();
479f0abb
KS
1402 } else {
1403 page = pmd_page(orig_pmd);
1404 page_remove_rmap(page);
309381fe 1405 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1406 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1407 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1408 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1409 spin_unlock(ptl);
479f0abb
KS
1410 tlb_remove_page(tlb, page);
1411 }
025c5b24
NH
1412 pte_free(tlb->mm, pgtable);
1413 ret = 1;
1414 }
71e3aac0
AA
1415 return ret;
1416}
1417
37a1c49a
AA
1418int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1419 unsigned long old_addr,
1420 unsigned long new_addr, unsigned long old_end,
1421 pmd_t *old_pmd, pmd_t *new_pmd)
1422{
bf929152 1423 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1424 int ret = 0;
1425 pmd_t pmd;
1426
1427 struct mm_struct *mm = vma->vm_mm;
1428
1429 if ((old_addr & ~HPAGE_PMD_MASK) ||
1430 (new_addr & ~HPAGE_PMD_MASK) ||
1431 old_end - old_addr < HPAGE_PMD_SIZE ||
1432 (new_vma->vm_flags & VM_NOHUGEPAGE))
1433 goto out;
1434
1435 /*
1436 * The destination pmd shouldn't be established, free_pgtables()
1437 * should have release it.
1438 */
1439 if (WARN_ON(!pmd_none(*new_pmd))) {
1440 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1441 goto out;
1442 }
1443
bf929152
KS
1444 /*
1445 * We don't have to worry about the ordering of src and dst
1446 * ptlocks because exclusive mmap_sem prevents deadlock.
1447 */
1448 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1449 if (ret == 1) {
bf929152
KS
1450 new_ptl = pmd_lockptr(mm, new_pmd);
1451 if (new_ptl != old_ptl)
1452 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
025c5b24
NH
1453 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1454 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1455
b3084f4d
AK
1456 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1457 pgtable_t pgtable;
3592806c
KS
1458 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1459 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1460 }
b3084f4d
AK
1461 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1462 if (new_ptl != old_ptl)
1463 spin_unlock(new_ptl);
bf929152 1464 spin_unlock(old_ptl);
37a1c49a
AA
1465 }
1466out:
1467 return ret;
1468}
1469
f123d74a
MG
1470/*
1471 * Returns
1472 * - 0 if PMD could not be locked
1473 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1474 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1475 */
cd7548ab 1476int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1477 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1478{
1479 struct mm_struct *mm = vma->vm_mm;
bf929152 1480 spinlock_t *ptl;
cd7548ab
JW
1481 int ret = 0;
1482
bf929152 1483 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1484 pmd_t entry;
b191f9b1 1485 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1486 ret = 1;
e944fd67
MG
1487
1488 /*
1489 * Avoid trapping faults against the zero page. The read-only
1490 * data is likely to be read-cached on the local CPU and
1491 * local/remote hits to the zero page are not interesting.
1492 */
1493 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1494 spin_unlock(ptl);
ba68bc01 1495 return ret;
e944fd67
MG
1496 }
1497
10c1045f 1498 if (!prot_numa || !pmd_protnone(*pmd)) {
10c1045f
MG
1499 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1500 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1501 if (preserve_write)
1502 entry = pmd_mkwrite(entry);
10c1045f
MG
1503 ret = HPAGE_PMD_NR;
1504 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1505 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1506 }
bf929152 1507 spin_unlock(ptl);
025c5b24
NH
1508 }
1509
1510 return ret;
1511}
1512
1513/*
1514 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1515 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1516 *
1517 * Note that if it returns 1, this routine returns without unlocking page
1518 * table locks. So callers must unlock them.
1519 */
bf929152
KS
1520int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1521 spinlock_t **ptl)
025c5b24 1522{
bf929152 1523 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1524 if (likely(pmd_trans_huge(*pmd))) {
1525 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1526 spin_unlock(*ptl);
cd7548ab 1527 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1528 return -1;
cd7548ab 1529 } else {
025c5b24
NH
1530 /* Thp mapped by 'pmd' is stable, so we can
1531 * handle it as it is. */
1532 return 1;
cd7548ab 1533 }
025c5b24 1534 }
bf929152 1535 spin_unlock(*ptl);
025c5b24 1536 return 0;
cd7548ab
JW
1537}
1538
117b0791
KS
1539/*
1540 * This function returns whether a given @page is mapped onto the @address
1541 * in the virtual space of @mm.
1542 *
1543 * When it's true, this function returns *pmd with holding the page table lock
1544 * and passing it back to the caller via @ptl.
1545 * If it's false, returns NULL without holding the page table lock.
1546 */
71e3aac0
AA
1547pmd_t *page_check_address_pmd(struct page *page,
1548 struct mm_struct *mm,
1549 unsigned long address,
117b0791
KS
1550 enum page_check_address_pmd_flag flag,
1551 spinlock_t **ptl)
71e3aac0 1552{
b5a8cad3
KS
1553 pgd_t *pgd;
1554 pud_t *pud;
117b0791 1555 pmd_t *pmd;
71e3aac0
AA
1556
1557 if (address & ~HPAGE_PMD_MASK)
117b0791 1558 return NULL;
71e3aac0 1559
b5a8cad3
KS
1560 pgd = pgd_offset(mm, address);
1561 if (!pgd_present(*pgd))
117b0791 1562 return NULL;
b5a8cad3
KS
1563 pud = pud_offset(pgd, address);
1564 if (!pud_present(*pud))
1565 return NULL;
1566 pmd = pmd_offset(pud, address);
1567
117b0791 1568 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1569 if (!pmd_present(*pmd))
117b0791 1570 goto unlock;
71e3aac0 1571 if (pmd_page(*pmd) != page)
117b0791 1572 goto unlock;
94fcc585
AA
1573 /*
1574 * split_vma() may create temporary aliased mappings. There is
1575 * no risk as long as all huge pmd are found and have their
1576 * splitting bit set before __split_huge_page_refcount
1577 * runs. Finding the same huge pmd more than once during the
1578 * same rmap walk is not a problem.
1579 */
1580 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1581 pmd_trans_splitting(*pmd))
117b0791 1582 goto unlock;
71e3aac0
AA
1583 if (pmd_trans_huge(*pmd)) {
1584 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1585 !pmd_trans_splitting(*pmd));
117b0791 1586 return pmd;
71e3aac0 1587 }
117b0791
KS
1588unlock:
1589 spin_unlock(*ptl);
1590 return NULL;
71e3aac0
AA
1591}
1592
1593static int __split_huge_page_splitting(struct page *page,
1594 struct vm_area_struct *vma,
1595 unsigned long address)
1596{
1597 struct mm_struct *mm = vma->vm_mm;
117b0791 1598 spinlock_t *ptl;
71e3aac0
AA
1599 pmd_t *pmd;
1600 int ret = 0;
2ec74c3e
SG
1601 /* For mmu_notifiers */
1602 const unsigned long mmun_start = address;
1603 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1604
2ec74c3e 1605 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1606 pmd = page_check_address_pmd(page, mm, address,
117b0791 1607 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1608 if (pmd) {
1609 /*
1610 * We can't temporarily set the pmd to null in order
1611 * to split it, the pmd must remain marked huge at all
1612 * times or the VM won't take the pmd_trans_huge paths
5a505085 1613 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1614 * serialize against split_huge_page*.
1615 */
2ec74c3e 1616 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1617
71e3aac0 1618 ret = 1;
117b0791 1619 spin_unlock(ptl);
71e3aac0 1620 }
2ec74c3e 1621 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1622
1623 return ret;
1624}
1625
5bc7b8ac
SL
1626static void __split_huge_page_refcount(struct page *page,
1627 struct list_head *list)
71e3aac0
AA
1628{
1629 int i;
71e3aac0 1630 struct zone *zone = page_zone(page);
fa9add64 1631 struct lruvec *lruvec;
70b50f94 1632 int tail_count = 0;
71e3aac0
AA
1633
1634 /* prevent PageLRU to go away from under us, and freeze lru stats */
1635 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1636 lruvec = mem_cgroup_page_lruvec(page, zone);
1637
71e3aac0 1638 compound_lock(page);
e94c8a9c
KH
1639 /* complete memcg works before add pages to LRU */
1640 mem_cgroup_split_huge_fixup(page);
71e3aac0 1641
45676885 1642 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1643 struct page *page_tail = page + i;
1644
70b50f94
AA
1645 /* tail_page->_mapcount cannot change */
1646 BUG_ON(page_mapcount(page_tail) < 0);
1647 tail_count += page_mapcount(page_tail);
1648 /* check for overflow */
1649 BUG_ON(tail_count < 0);
1650 BUG_ON(atomic_read(&page_tail->_count) != 0);
1651 /*
1652 * tail_page->_count is zero and not changing from
1653 * under us. But get_page_unless_zero() may be running
1654 * from under us on the tail_page. If we used
1655 * atomic_set() below instead of atomic_add(), we
1656 * would then run atomic_set() concurrently with
1657 * get_page_unless_zero(), and atomic_set() is
1658 * implemented in C not using locked ops. spin_unlock
1659 * on x86 sometime uses locked ops because of PPro
1660 * errata 66, 92, so unless somebody can guarantee
1661 * atomic_set() here would be safe on all archs (and
1662 * not only on x86), it's safer to use atomic_add().
1663 */
1664 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1665 &page_tail->_count);
71e3aac0
AA
1666
1667 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1668 smp_mb__after_atomic();
71e3aac0 1669
a6d30ddd
JD
1670 /*
1671 * retain hwpoison flag of the poisoned tail page:
1672 * fix for the unsuitable process killed on Guest Machine(KVM)
1673 * by the memory-failure.
1674 */
1675 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1676 page_tail->flags |= (page->flags &
1677 ((1L << PG_referenced) |
1678 (1L << PG_swapbacked) |
1679 (1L << PG_mlocked) |
e180cf80
KS
1680 (1L << PG_uptodate) |
1681 (1L << PG_active) |
1682 (1L << PG_unevictable)));
71e3aac0
AA
1683 page_tail->flags |= (1L << PG_dirty);
1684
70b50f94 1685 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1686 smp_wmb();
1687
1688 /*
1689 * __split_huge_page_splitting() already set the
1690 * splitting bit in all pmd that could map this
1691 * hugepage, that will ensure no CPU can alter the
1692 * mapcount on the head page. The mapcount is only
1693 * accounted in the head page and it has to be
1694 * transferred to all tail pages in the below code. So
1695 * for this code to be safe, the split the mapcount
1696 * can't change. But that doesn't mean userland can't
1697 * keep changing and reading the page contents while
1698 * we transfer the mapcount, so the pmd splitting
1699 * status is achieved setting a reserved bit in the
1700 * pmd, not by clearing the present bit.
1701 */
71e3aac0
AA
1702 page_tail->_mapcount = page->_mapcount;
1703
1704 BUG_ON(page_tail->mapping);
1705 page_tail->mapping = page->mapping;
1706
45676885 1707 page_tail->index = page->index + i;
90572890 1708 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1709
1710 BUG_ON(!PageAnon(page_tail));
1711 BUG_ON(!PageUptodate(page_tail));
1712 BUG_ON(!PageDirty(page_tail));
1713 BUG_ON(!PageSwapBacked(page_tail));
1714
5bc7b8ac 1715 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1716 }
70b50f94
AA
1717 atomic_sub(tail_count, &page->_count);
1718 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1719
fa9add64 1720 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1721
71e3aac0
AA
1722 ClearPageCompound(page);
1723 compound_unlock(page);
1724 spin_unlock_irq(&zone->lru_lock);
1725
1726 for (i = 1; i < HPAGE_PMD_NR; i++) {
1727 struct page *page_tail = page + i;
1728 BUG_ON(page_count(page_tail) <= 0);
1729 /*
1730 * Tail pages may be freed if there wasn't any mapping
1731 * like if add_to_swap() is running on a lru page that
1732 * had its mapping zapped. And freeing these pages
1733 * requires taking the lru_lock so we do the put_page
1734 * of the tail pages after the split is complete.
1735 */
1736 put_page(page_tail);
1737 }
1738
1739 /*
1740 * Only the head page (now become a regular page) is required
1741 * to be pinned by the caller.
1742 */
1743 BUG_ON(page_count(page) <= 0);
1744}
1745
1746static int __split_huge_page_map(struct page *page,
1747 struct vm_area_struct *vma,
1748 unsigned long address)
1749{
1750 struct mm_struct *mm = vma->vm_mm;
117b0791 1751 spinlock_t *ptl;
71e3aac0
AA
1752 pmd_t *pmd, _pmd;
1753 int ret = 0, i;
1754 pgtable_t pgtable;
1755 unsigned long haddr;
1756
71e3aac0 1757 pmd = page_check_address_pmd(page, mm, address,
117b0791 1758 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1759 if (pmd) {
6b0b50b0 1760 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1761 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1762 if (pmd_write(*pmd))
1763 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1764
e3ebcf64
GS
1765 haddr = address;
1766 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1767 pte_t *pte, entry;
1768 BUG_ON(PageCompound(page+i));
abc40bd2 1769 /*
8a0516ed
MG
1770 * Note that NUMA hinting access restrictions are not
1771 * transferred to avoid any possibility of altering
1772 * permissions across VMAs.
abc40bd2 1773 */
71e3aac0
AA
1774 entry = mk_pte(page + i, vma->vm_page_prot);
1775 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1776 if (!pmd_write(*pmd))
1777 entry = pte_wrprotect(entry);
71e3aac0
AA
1778 if (!pmd_young(*pmd))
1779 entry = pte_mkold(entry);
1780 pte = pte_offset_map(&_pmd, haddr);
1781 BUG_ON(!pte_none(*pte));
1782 set_pte_at(mm, haddr, pte, entry);
1783 pte_unmap(pte);
1784 }
1785
71e3aac0
AA
1786 smp_wmb(); /* make pte visible before pmd */
1787 /*
1788 * Up to this point the pmd is present and huge and
1789 * userland has the whole access to the hugepage
1790 * during the split (which happens in place). If we
1791 * overwrite the pmd with the not-huge version
1792 * pointing to the pte here (which of course we could
1793 * if all CPUs were bug free), userland could trigger
1794 * a small page size TLB miss on the small sized TLB
1795 * while the hugepage TLB entry is still established
1796 * in the huge TLB. Some CPU doesn't like that. See
1797 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1798 * Erratum 383 on page 93. Intel should be safe but is
1799 * also warns that it's only safe if the permission
1800 * and cache attributes of the two entries loaded in
1801 * the two TLB is identical (which should be the case
1802 * here). But it is generally safer to never allow
1803 * small and huge TLB entries for the same virtual
1804 * address to be loaded simultaneously. So instead of
1805 * doing "pmd_populate(); flush_tlb_range();" we first
1806 * mark the current pmd notpresent (atomically because
1807 * here the pmd_trans_huge and pmd_trans_splitting
1808 * must remain set at all times on the pmd until the
1809 * split is complete for this pmd), then we flush the
1810 * SMP TLB and finally we write the non-huge version
1811 * of the pmd entry with pmd_populate.
1812 */
46dcde73 1813 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1814 pmd_populate(mm, pmd, pgtable);
1815 ret = 1;
117b0791 1816 spin_unlock(ptl);
71e3aac0 1817 }
71e3aac0
AA
1818
1819 return ret;
1820}
1821
5a505085 1822/* must be called with anon_vma->root->rwsem held */
71e3aac0 1823static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1824 struct anon_vma *anon_vma,
1825 struct list_head *list)
71e3aac0
AA
1826{
1827 int mapcount, mapcount2;
bf181b9f 1828 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1829 struct anon_vma_chain *avc;
1830
1831 BUG_ON(!PageHead(page));
1832 BUG_ON(PageTail(page));
1833
1834 mapcount = 0;
bf181b9f 1835 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1836 struct vm_area_struct *vma = avc->vma;
1837 unsigned long addr = vma_address(page, vma);
1838 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1839 mapcount += __split_huge_page_splitting(page, vma, addr);
1840 }
05759d38
AA
1841 /*
1842 * It is critical that new vmas are added to the tail of the
1843 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1844 * and establishes a child pmd before
1845 * __split_huge_page_splitting() freezes the parent pmd (so if
1846 * we fail to prevent copy_huge_pmd() from running until the
1847 * whole __split_huge_page() is complete), we will still see
1848 * the newly established pmd of the child later during the
1849 * walk, to be able to set it as pmd_trans_splitting too.
1850 */
ff9e43eb 1851 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1852 pr_err("mapcount %d page_mapcount %d\n",
1853 mapcount, page_mapcount(page));
ff9e43eb
KS
1854 BUG();
1855 }
71e3aac0 1856
5bc7b8ac 1857 __split_huge_page_refcount(page, list);
71e3aac0
AA
1858
1859 mapcount2 = 0;
bf181b9f 1860 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1861 struct vm_area_struct *vma = avc->vma;
1862 unsigned long addr = vma_address(page, vma);
1863 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1864 mapcount2 += __split_huge_page_map(page, vma, addr);
1865 }
ff9e43eb 1866 if (mapcount != mapcount2) {
ae3a8c1c
AM
1867 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1868 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1869 BUG();
1870 }
71e3aac0
AA
1871}
1872
5bc7b8ac
SL
1873/*
1874 * Split a hugepage into normal pages. This doesn't change the position of head
1875 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1876 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1877 * from the hugepage.
1878 * Return 0 if the hugepage is split successfully otherwise return 1.
1879 */
1880int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1881{
1882 struct anon_vma *anon_vma;
1883 int ret = 1;
1884
5918d10a 1885 BUG_ON(is_huge_zero_page(page));
71e3aac0 1886 BUG_ON(!PageAnon(page));
062f1af2
MG
1887
1888 /*
1889 * The caller does not necessarily hold an mmap_sem that would prevent
1890 * the anon_vma disappearing so we first we take a reference to it
1891 * and then lock the anon_vma for write. This is similar to
1892 * page_lock_anon_vma_read except the write lock is taken to serialise
1893 * against parallel split or collapse operations.
1894 */
1895 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1896 if (!anon_vma)
1897 goto out;
062f1af2
MG
1898 anon_vma_lock_write(anon_vma);
1899
71e3aac0
AA
1900 ret = 0;
1901 if (!PageCompound(page))
1902 goto out_unlock;
1903
1904 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1905 __split_huge_page(page, anon_vma, list);
81ab4201 1906 count_vm_event(THP_SPLIT);
71e3aac0
AA
1907
1908 BUG_ON(PageCompound(page));
1909out_unlock:
08b52706 1910 anon_vma_unlock_write(anon_vma);
062f1af2 1911 put_anon_vma(anon_vma);
71e3aac0
AA
1912out:
1913 return ret;
1914}
1915
9050d7eb 1916#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1917
60ab3244
AA
1918int hugepage_madvise(struct vm_area_struct *vma,
1919 unsigned long *vm_flags, int advice)
0af4e98b 1920{
a664b2d8
AA
1921 switch (advice) {
1922 case MADV_HUGEPAGE:
1e1836e8
AT
1923#ifdef CONFIG_S390
1924 /*
1925 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1926 * can't handle this properly after s390_enable_sie, so we simply
1927 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1928 */
1929 if (mm_has_pgste(vma->vm_mm))
1930 return 0;
1931#endif
a664b2d8
AA
1932 /*
1933 * Be somewhat over-protective like KSM for now!
1934 */
78f11a25 1935 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1936 return -EINVAL;
1937 *vm_flags &= ~VM_NOHUGEPAGE;
1938 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1939 /*
1940 * If the vma become good for khugepaged to scan,
1941 * register it here without waiting a page fault that
1942 * may not happen any time soon.
1943 */
6d50e60c 1944 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1945 return -ENOMEM;
a664b2d8
AA
1946 break;
1947 case MADV_NOHUGEPAGE:
1948 /*
1949 * Be somewhat over-protective like KSM for now!
1950 */
78f11a25 1951 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1952 return -EINVAL;
1953 *vm_flags &= ~VM_HUGEPAGE;
1954 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1955 /*
1956 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1957 * this vma even if we leave the mm registered in khugepaged if
1958 * it got registered before VM_NOHUGEPAGE was set.
1959 */
a664b2d8
AA
1960 break;
1961 }
0af4e98b
AA
1962
1963 return 0;
1964}
1965
ba76149f
AA
1966static int __init khugepaged_slab_init(void)
1967{
1968 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1969 sizeof(struct mm_slot),
1970 __alignof__(struct mm_slot), 0, NULL);
1971 if (!mm_slot_cache)
1972 return -ENOMEM;
1973
1974 return 0;
1975}
1976
ba76149f
AA
1977static inline struct mm_slot *alloc_mm_slot(void)
1978{
1979 if (!mm_slot_cache) /* initialization failed */
1980 return NULL;
1981 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1982}
1983
1984static inline void free_mm_slot(struct mm_slot *mm_slot)
1985{
1986 kmem_cache_free(mm_slot_cache, mm_slot);
1987}
1988
ba76149f
AA
1989static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1990{
1991 struct mm_slot *mm_slot;
ba76149f 1992
b67bfe0d 1993 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1994 if (mm == mm_slot->mm)
1995 return mm_slot;
43b5fbbd 1996
ba76149f
AA
1997 return NULL;
1998}
1999
2000static void insert_to_mm_slots_hash(struct mm_struct *mm,
2001 struct mm_slot *mm_slot)
2002{
ba76149f 2003 mm_slot->mm = mm;
43b5fbbd 2004 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2005}
2006
2007static inline int khugepaged_test_exit(struct mm_struct *mm)
2008{
2009 return atomic_read(&mm->mm_users) == 0;
2010}
2011
2012int __khugepaged_enter(struct mm_struct *mm)
2013{
2014 struct mm_slot *mm_slot;
2015 int wakeup;
2016
2017 mm_slot = alloc_mm_slot();
2018 if (!mm_slot)
2019 return -ENOMEM;
2020
2021 /* __khugepaged_exit() must not run from under us */
96dad67f 2022 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2023 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2024 free_mm_slot(mm_slot);
2025 return 0;
2026 }
2027
2028 spin_lock(&khugepaged_mm_lock);
2029 insert_to_mm_slots_hash(mm, mm_slot);
2030 /*
2031 * Insert just behind the scanning cursor, to let the area settle
2032 * down a little.
2033 */
2034 wakeup = list_empty(&khugepaged_scan.mm_head);
2035 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2036 spin_unlock(&khugepaged_mm_lock);
2037
2038 atomic_inc(&mm->mm_count);
2039 if (wakeup)
2040 wake_up_interruptible(&khugepaged_wait);
2041
2042 return 0;
2043}
2044
6d50e60c
DR
2045int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2046 unsigned long vm_flags)
ba76149f
AA
2047{
2048 unsigned long hstart, hend;
2049 if (!vma->anon_vma)
2050 /*
2051 * Not yet faulted in so we will register later in the
2052 * page fault if needed.
2053 */
2054 return 0;
78f11a25 2055 if (vma->vm_ops)
ba76149f
AA
2056 /* khugepaged not yet working on file or special mappings */
2057 return 0;
6d50e60c 2058 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2059 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2060 hend = vma->vm_end & HPAGE_PMD_MASK;
2061 if (hstart < hend)
6d50e60c 2062 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2063 return 0;
2064}
2065
2066void __khugepaged_exit(struct mm_struct *mm)
2067{
2068 struct mm_slot *mm_slot;
2069 int free = 0;
2070
2071 spin_lock(&khugepaged_mm_lock);
2072 mm_slot = get_mm_slot(mm);
2073 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2074 hash_del(&mm_slot->hash);
ba76149f
AA
2075 list_del(&mm_slot->mm_node);
2076 free = 1;
2077 }
d788e80a 2078 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2079
2080 if (free) {
ba76149f
AA
2081 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2082 free_mm_slot(mm_slot);
2083 mmdrop(mm);
2084 } else if (mm_slot) {
ba76149f
AA
2085 /*
2086 * This is required to serialize against
2087 * khugepaged_test_exit() (which is guaranteed to run
2088 * under mmap sem read mode). Stop here (after we
2089 * return all pagetables will be destroyed) until
2090 * khugepaged has finished working on the pagetables
2091 * under the mmap_sem.
2092 */
2093 down_write(&mm->mmap_sem);
2094 up_write(&mm->mmap_sem);
d788e80a 2095 }
ba76149f
AA
2096}
2097
2098static void release_pte_page(struct page *page)
2099{
2100 /* 0 stands for page_is_file_cache(page) == false */
2101 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2102 unlock_page(page);
2103 putback_lru_page(page);
2104}
2105
2106static void release_pte_pages(pte_t *pte, pte_t *_pte)
2107{
2108 while (--_pte >= pte) {
2109 pte_t pteval = *_pte;
ca0984ca 2110 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2111 release_pte_page(pte_page(pteval));
2112 }
2113}
2114
ba76149f
AA
2115static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2116 unsigned long address,
2117 pte_t *pte)
2118{
2119 struct page *page;
2120 pte_t *_pte;
ca0984ca 2121 int none_or_zero = 0;
10359213 2122 bool referenced = false, writable = false;
ba76149f
AA
2123 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2124 _pte++, address += PAGE_SIZE) {
2125 pte_t pteval = *_pte;
ca0984ca
EA
2126 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2127 if (++none_or_zero <= khugepaged_max_ptes_none)
ba76149f 2128 continue;
344aa35c 2129 else
ba76149f 2130 goto out;
ba76149f 2131 }
10359213 2132 if (!pte_present(pteval))
ba76149f 2133 goto out;
ba76149f 2134 page = vm_normal_page(vma, address, pteval);
344aa35c 2135 if (unlikely(!page))
ba76149f 2136 goto out;
344aa35c 2137
309381fe
SL
2138 VM_BUG_ON_PAGE(PageCompound(page), page);
2139 VM_BUG_ON_PAGE(!PageAnon(page), page);
2140 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2141
ba76149f
AA
2142 /*
2143 * We can do it before isolate_lru_page because the
2144 * page can't be freed from under us. NOTE: PG_lock
2145 * is needed to serialize against split_huge_page
2146 * when invoked from the VM.
2147 */
344aa35c 2148 if (!trylock_page(page))
ba76149f 2149 goto out;
10359213
EA
2150
2151 /*
2152 * cannot use mapcount: can't collapse if there's a gup pin.
2153 * The page must only be referenced by the scanned process
2154 * and page swap cache.
2155 */
2156 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2157 unlock_page(page);
2158 goto out;
2159 }
2160 if (pte_write(pteval)) {
2161 writable = true;
2162 } else {
2163 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2164 unlock_page(page);
2165 goto out;
2166 }
2167 /*
2168 * Page is not in the swap cache. It can be collapsed
2169 * into a THP.
2170 */
2171 }
2172
ba76149f
AA
2173 /*
2174 * Isolate the page to avoid collapsing an hugepage
2175 * currently in use by the VM.
2176 */
2177 if (isolate_lru_page(page)) {
2178 unlock_page(page);
ba76149f
AA
2179 goto out;
2180 }
2181 /* 0 stands for page_is_file_cache(page) == false */
2182 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2183 VM_BUG_ON_PAGE(!PageLocked(page), page);
2184 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2185
2186 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2187 if (pte_young(pteval) || PageReferenced(page) ||
2188 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2189 referenced = true;
ba76149f 2190 }
10359213 2191 if (likely(referenced && writable))
344aa35c 2192 return 1;
ba76149f 2193out:
344aa35c
BL
2194 release_pte_pages(pte, _pte);
2195 return 0;
ba76149f
AA
2196}
2197
2198static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2199 struct vm_area_struct *vma,
2200 unsigned long address,
2201 spinlock_t *ptl)
2202{
2203 pte_t *_pte;
2204 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2205 pte_t pteval = *_pte;
2206 struct page *src_page;
2207
ca0984ca 2208 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2209 clear_user_highpage(page, address);
2210 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2211 if (is_zero_pfn(pte_pfn(pteval))) {
2212 /*
2213 * ptl mostly unnecessary.
2214 */
2215 spin_lock(ptl);
2216 /*
2217 * paravirt calls inside pte_clear here are
2218 * superfluous.
2219 */
2220 pte_clear(vma->vm_mm, address, _pte);
2221 spin_unlock(ptl);
2222 }
ba76149f
AA
2223 } else {
2224 src_page = pte_page(pteval);
2225 copy_user_highpage(page, src_page, address, vma);
309381fe 2226 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2227 release_pte_page(src_page);
2228 /*
2229 * ptl mostly unnecessary, but preempt has to
2230 * be disabled to update the per-cpu stats
2231 * inside page_remove_rmap().
2232 */
2233 spin_lock(ptl);
2234 /*
2235 * paravirt calls inside pte_clear here are
2236 * superfluous.
2237 */
2238 pte_clear(vma->vm_mm, address, _pte);
2239 page_remove_rmap(src_page);
2240 spin_unlock(ptl);
2241 free_page_and_swap_cache(src_page);
2242 }
2243
2244 address += PAGE_SIZE;
2245 page++;
2246 }
2247}
2248
26234f36 2249static void khugepaged_alloc_sleep(void)
ba76149f 2250{
26234f36
XG
2251 wait_event_freezable_timeout(khugepaged_wait, false,
2252 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2253}
ba76149f 2254
9f1b868a
BL
2255static int khugepaged_node_load[MAX_NUMNODES];
2256
14a4e214
DR
2257static bool khugepaged_scan_abort(int nid)
2258{
2259 int i;
2260
2261 /*
2262 * If zone_reclaim_mode is disabled, then no extra effort is made to
2263 * allocate memory locally.
2264 */
2265 if (!zone_reclaim_mode)
2266 return false;
2267
2268 /* If there is a count for this node already, it must be acceptable */
2269 if (khugepaged_node_load[nid])
2270 return false;
2271
2272 for (i = 0; i < MAX_NUMNODES; i++) {
2273 if (!khugepaged_node_load[i])
2274 continue;
2275 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2276 return true;
2277 }
2278 return false;
2279}
2280
26234f36 2281#ifdef CONFIG_NUMA
9f1b868a
BL
2282static int khugepaged_find_target_node(void)
2283{
2284 static int last_khugepaged_target_node = NUMA_NO_NODE;
2285 int nid, target_node = 0, max_value = 0;
2286
2287 /* find first node with max normal pages hit */
2288 for (nid = 0; nid < MAX_NUMNODES; nid++)
2289 if (khugepaged_node_load[nid] > max_value) {
2290 max_value = khugepaged_node_load[nid];
2291 target_node = nid;
2292 }
2293
2294 /* do some balance if several nodes have the same hit record */
2295 if (target_node <= last_khugepaged_target_node)
2296 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2297 nid++)
2298 if (max_value == khugepaged_node_load[nid]) {
2299 target_node = nid;
2300 break;
2301 }
2302
2303 last_khugepaged_target_node = target_node;
2304 return target_node;
2305}
2306
26234f36
XG
2307static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2308{
2309 if (IS_ERR(*hpage)) {
2310 if (!*wait)
2311 return false;
2312
2313 *wait = false;
e3b4126c 2314 *hpage = NULL;
26234f36
XG
2315 khugepaged_alloc_sleep();
2316 } else if (*hpage) {
2317 put_page(*hpage);
2318 *hpage = NULL;
2319 }
2320
2321 return true;
2322}
2323
3b363692
MH
2324static struct page *
2325khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2326 struct vm_area_struct *vma, unsigned long address,
2327 int node)
2328{
309381fe 2329 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2330
ce83d217 2331 /*
8b164568
VB
2332 * Before allocating the hugepage, release the mmap_sem read lock.
2333 * The allocation can take potentially a long time if it involves
2334 * sync compaction, and we do not need to hold the mmap_sem during
2335 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2336 */
8b164568
VB
2337 up_read(&mm->mmap_sem);
2338
3b363692 2339 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2340 if (unlikely(!*hpage)) {
81ab4201 2341 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2342 *hpage = ERR_PTR(-ENOMEM);
26234f36 2343 return NULL;
ce83d217 2344 }
26234f36 2345
65b3c07b 2346 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2347 return *hpage;
2348}
2349#else
9f1b868a
BL
2350static int khugepaged_find_target_node(void)
2351{
2352 return 0;
2353}
2354
10dc4155
BL
2355static inline struct page *alloc_hugepage(int defrag)
2356{
2357 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2358 HPAGE_PMD_ORDER);
2359}
2360
26234f36
XG
2361static struct page *khugepaged_alloc_hugepage(bool *wait)
2362{
2363 struct page *hpage;
2364
2365 do {
2366 hpage = alloc_hugepage(khugepaged_defrag());
2367 if (!hpage) {
2368 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2369 if (!*wait)
2370 return NULL;
2371
2372 *wait = false;
2373 khugepaged_alloc_sleep();
2374 } else
2375 count_vm_event(THP_COLLAPSE_ALLOC);
2376 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2377
2378 return hpage;
2379}
2380
2381static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2382{
2383 if (!*hpage)
2384 *hpage = khugepaged_alloc_hugepage(wait);
2385
2386 if (unlikely(!*hpage))
2387 return false;
2388
2389 return true;
2390}
2391
3b363692
MH
2392static struct page *
2393khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2394 struct vm_area_struct *vma, unsigned long address,
2395 int node)
2396{
2397 up_read(&mm->mmap_sem);
2398 VM_BUG_ON(!*hpage);
3b363692 2399
26234f36
XG
2400 return *hpage;
2401}
692e0b35
AA
2402#endif
2403
fa475e51
BL
2404static bool hugepage_vma_check(struct vm_area_struct *vma)
2405{
2406 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2407 (vma->vm_flags & VM_NOHUGEPAGE))
2408 return false;
2409
2410 if (!vma->anon_vma || vma->vm_ops)
2411 return false;
2412 if (is_vma_temporary_stack(vma))
2413 return false;
81d1b09c 2414 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2415 return true;
2416}
2417
26234f36
XG
2418static void collapse_huge_page(struct mm_struct *mm,
2419 unsigned long address,
2420 struct page **hpage,
2421 struct vm_area_struct *vma,
2422 int node)
2423{
26234f36
XG
2424 pmd_t *pmd, _pmd;
2425 pte_t *pte;
2426 pgtable_t pgtable;
2427 struct page *new_page;
c4088ebd 2428 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2429 int isolated;
2430 unsigned long hstart, hend;
00501b53 2431 struct mem_cgroup *memcg;
2ec74c3e
SG
2432 unsigned long mmun_start; /* For mmu_notifiers */
2433 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2434 gfp_t gfp;
26234f36
XG
2435
2436 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2437
3b363692
MH
2438 /* Only allocate from the target node */
2439 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2440 __GFP_THISNODE;
2441
26234f36 2442 /* release the mmap_sem read lock. */
3b363692 2443 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
26234f36
XG
2444 if (!new_page)
2445 return;
2446
00501b53 2447 if (unlikely(mem_cgroup_try_charge(new_page, mm,
3b363692 2448 gfp, &memcg)))
ce83d217 2449 return;
ba76149f
AA
2450
2451 /*
2452 * Prevent all access to pagetables with the exception of
2453 * gup_fast later hanlded by the ptep_clear_flush and the VM
2454 * handled by the anon_vma lock + PG_lock.
2455 */
2456 down_write(&mm->mmap_sem);
2457 if (unlikely(khugepaged_test_exit(mm)))
2458 goto out;
2459
2460 vma = find_vma(mm, address);
a8f531eb
L
2461 if (!vma)
2462 goto out;
ba76149f
AA
2463 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2464 hend = vma->vm_end & HPAGE_PMD_MASK;
2465 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2466 goto out;
fa475e51 2467 if (!hugepage_vma_check(vma))
a7d6e4ec 2468 goto out;
6219049a
BL
2469 pmd = mm_find_pmd(mm, address);
2470 if (!pmd)
ba76149f 2471 goto out;
ba76149f 2472
4fc3f1d6 2473 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2474
2475 pte = pte_offset_map(pmd, address);
c4088ebd 2476 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2477
2ec74c3e
SG
2478 mmun_start = address;
2479 mmun_end = address + HPAGE_PMD_SIZE;
2480 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2481 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2482 /*
2483 * After this gup_fast can't run anymore. This also removes
2484 * any huge TLB entry from the CPU so we won't allow
2485 * huge and small TLB entries for the same virtual address
2486 * to avoid the risk of CPU bugs in that area.
2487 */
2ec74c3e 2488 _pmd = pmdp_clear_flush(vma, address, pmd);
c4088ebd 2489 spin_unlock(pmd_ptl);
2ec74c3e 2490 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2491
c4088ebd 2492 spin_lock(pte_ptl);
ba76149f 2493 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2494 spin_unlock(pte_ptl);
ba76149f
AA
2495
2496 if (unlikely(!isolated)) {
453c7192 2497 pte_unmap(pte);
c4088ebd 2498 spin_lock(pmd_ptl);
ba76149f 2499 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2500 /*
2501 * We can only use set_pmd_at when establishing
2502 * hugepmds and never for establishing regular pmds that
2503 * points to regular pagetables. Use pmd_populate for that
2504 */
2505 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2506 spin_unlock(pmd_ptl);
08b52706 2507 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2508 goto out;
ba76149f
AA
2509 }
2510
2511 /*
2512 * All pages are isolated and locked so anon_vma rmap
2513 * can't run anymore.
2514 */
08b52706 2515 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2516
c4088ebd 2517 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2518 pte_unmap(pte);
ba76149f
AA
2519 __SetPageUptodate(new_page);
2520 pgtable = pmd_pgtable(_pmd);
ba76149f 2521
3122359a
KS
2522 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2523 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2524
2525 /*
2526 * spin_lock() below is not the equivalent of smp_wmb(), so
2527 * this is needed to avoid the copy_huge_page writes to become
2528 * visible after the set_pmd_at() write.
2529 */
2530 smp_wmb();
2531
c4088ebd 2532 spin_lock(pmd_ptl);
ba76149f
AA
2533 BUG_ON(!pmd_none(*pmd));
2534 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2535 mem_cgroup_commit_charge(new_page, memcg, false);
2536 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2537 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2538 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2539 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2540 spin_unlock(pmd_ptl);
ba76149f
AA
2541
2542 *hpage = NULL;
420256ef 2543
ba76149f 2544 khugepaged_pages_collapsed++;
ce83d217 2545out_up_write:
ba76149f 2546 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2547 return;
2548
ce83d217 2549out:
00501b53 2550 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2551 goto out_up_write;
ba76149f
AA
2552}
2553
2554static int khugepaged_scan_pmd(struct mm_struct *mm,
2555 struct vm_area_struct *vma,
2556 unsigned long address,
2557 struct page **hpage)
2558{
ba76149f
AA
2559 pmd_t *pmd;
2560 pte_t *pte, *_pte;
ca0984ca 2561 int ret = 0, none_or_zero = 0;
ba76149f
AA
2562 struct page *page;
2563 unsigned long _address;
2564 spinlock_t *ptl;
00ef2d2f 2565 int node = NUMA_NO_NODE;
10359213 2566 bool writable = false, referenced = false;
ba76149f
AA
2567
2568 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2569
6219049a
BL
2570 pmd = mm_find_pmd(mm, address);
2571 if (!pmd)
ba76149f 2572 goto out;
ba76149f 2573
9f1b868a 2574 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2575 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2576 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2577 _pte++, _address += PAGE_SIZE) {
2578 pte_t pteval = *_pte;
ca0984ca
EA
2579 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2580 if (++none_or_zero <= khugepaged_max_ptes_none)
ba76149f
AA
2581 continue;
2582 else
2583 goto out_unmap;
2584 }
10359213 2585 if (!pte_present(pteval))
ba76149f 2586 goto out_unmap;
10359213
EA
2587 if (pte_write(pteval))
2588 writable = true;
2589
ba76149f
AA
2590 page = vm_normal_page(vma, _address, pteval);
2591 if (unlikely(!page))
2592 goto out_unmap;
5c4b4be3 2593 /*
9f1b868a
BL
2594 * Record which node the original page is from and save this
2595 * information to khugepaged_node_load[].
2596 * Khupaged will allocate hugepage from the node has the max
2597 * hit record.
5c4b4be3 2598 */
9f1b868a 2599 node = page_to_nid(page);
14a4e214
DR
2600 if (khugepaged_scan_abort(node))
2601 goto out_unmap;
9f1b868a 2602 khugepaged_node_load[node]++;
309381fe 2603 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2604 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2605 goto out_unmap;
10359213
EA
2606 /*
2607 * cannot use mapcount: can't collapse if there's a gup pin.
2608 * The page must only be referenced by the scanned process
2609 * and page swap cache.
2610 */
2611 if (page_count(page) != 1 + !!PageSwapCache(page))
ba76149f 2612 goto out_unmap;
8ee53820
AA
2613 if (pte_young(pteval) || PageReferenced(page) ||
2614 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2615 referenced = true;
ba76149f 2616 }
10359213 2617 if (referenced && writable)
ba76149f
AA
2618 ret = 1;
2619out_unmap:
2620 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2621 if (ret) {
2622 node = khugepaged_find_target_node();
ce83d217 2623 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2624 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2625 }
ba76149f
AA
2626out:
2627 return ret;
2628}
2629
2630static void collect_mm_slot(struct mm_slot *mm_slot)
2631{
2632 struct mm_struct *mm = mm_slot->mm;
2633
b9980cdc 2634 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2635
2636 if (khugepaged_test_exit(mm)) {
2637 /* free mm_slot */
43b5fbbd 2638 hash_del(&mm_slot->hash);
ba76149f
AA
2639 list_del(&mm_slot->mm_node);
2640
2641 /*
2642 * Not strictly needed because the mm exited already.
2643 *
2644 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2645 */
2646
2647 /* khugepaged_mm_lock actually not necessary for the below */
2648 free_mm_slot(mm_slot);
2649 mmdrop(mm);
2650 }
2651}
2652
2653static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2654 struct page **hpage)
2f1da642
HS
2655 __releases(&khugepaged_mm_lock)
2656 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2657{
2658 struct mm_slot *mm_slot;
2659 struct mm_struct *mm;
2660 struct vm_area_struct *vma;
2661 int progress = 0;
2662
2663 VM_BUG_ON(!pages);
b9980cdc 2664 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2665
2666 if (khugepaged_scan.mm_slot)
2667 mm_slot = khugepaged_scan.mm_slot;
2668 else {
2669 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2670 struct mm_slot, mm_node);
2671 khugepaged_scan.address = 0;
2672 khugepaged_scan.mm_slot = mm_slot;
2673 }
2674 spin_unlock(&khugepaged_mm_lock);
2675
2676 mm = mm_slot->mm;
2677 down_read(&mm->mmap_sem);
2678 if (unlikely(khugepaged_test_exit(mm)))
2679 vma = NULL;
2680 else
2681 vma = find_vma(mm, khugepaged_scan.address);
2682
2683 progress++;
2684 for (; vma; vma = vma->vm_next) {
2685 unsigned long hstart, hend;
2686
2687 cond_resched();
2688 if (unlikely(khugepaged_test_exit(mm))) {
2689 progress++;
2690 break;
2691 }
fa475e51
BL
2692 if (!hugepage_vma_check(vma)) {
2693skip:
ba76149f
AA
2694 progress++;
2695 continue;
2696 }
ba76149f
AA
2697 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2698 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2699 if (hstart >= hend)
2700 goto skip;
2701 if (khugepaged_scan.address > hend)
2702 goto skip;
ba76149f
AA
2703 if (khugepaged_scan.address < hstart)
2704 khugepaged_scan.address = hstart;
a7d6e4ec 2705 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2706
2707 while (khugepaged_scan.address < hend) {
2708 int ret;
2709 cond_resched();
2710 if (unlikely(khugepaged_test_exit(mm)))
2711 goto breakouterloop;
2712
2713 VM_BUG_ON(khugepaged_scan.address < hstart ||
2714 khugepaged_scan.address + HPAGE_PMD_SIZE >
2715 hend);
2716 ret = khugepaged_scan_pmd(mm, vma,
2717 khugepaged_scan.address,
2718 hpage);
2719 /* move to next address */
2720 khugepaged_scan.address += HPAGE_PMD_SIZE;
2721 progress += HPAGE_PMD_NR;
2722 if (ret)
2723 /* we released mmap_sem so break loop */
2724 goto breakouterloop_mmap_sem;
2725 if (progress >= pages)
2726 goto breakouterloop;
2727 }
2728 }
2729breakouterloop:
2730 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2731breakouterloop_mmap_sem:
2732
2733 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2734 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2735 /*
2736 * Release the current mm_slot if this mm is about to die, or
2737 * if we scanned all vmas of this mm.
2738 */
2739 if (khugepaged_test_exit(mm) || !vma) {
2740 /*
2741 * Make sure that if mm_users is reaching zero while
2742 * khugepaged runs here, khugepaged_exit will find
2743 * mm_slot not pointing to the exiting mm.
2744 */
2745 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2746 khugepaged_scan.mm_slot = list_entry(
2747 mm_slot->mm_node.next,
2748 struct mm_slot, mm_node);
2749 khugepaged_scan.address = 0;
2750 } else {
2751 khugepaged_scan.mm_slot = NULL;
2752 khugepaged_full_scans++;
2753 }
2754
2755 collect_mm_slot(mm_slot);
2756 }
2757
2758 return progress;
2759}
2760
2761static int khugepaged_has_work(void)
2762{
2763 return !list_empty(&khugepaged_scan.mm_head) &&
2764 khugepaged_enabled();
2765}
2766
2767static int khugepaged_wait_event(void)
2768{
2769 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2770 kthread_should_stop();
ba76149f
AA
2771}
2772
d516904b 2773static void khugepaged_do_scan(void)
ba76149f 2774{
d516904b 2775 struct page *hpage = NULL;
ba76149f
AA
2776 unsigned int progress = 0, pass_through_head = 0;
2777 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2778 bool wait = true;
ba76149f
AA
2779
2780 barrier(); /* write khugepaged_pages_to_scan to local stack */
2781
2782 while (progress < pages) {
26234f36 2783 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2784 break;
26234f36 2785
420256ef 2786 cond_resched();
ba76149f 2787
878aee7d
AA
2788 if (unlikely(kthread_should_stop() || freezing(current)))
2789 break;
2790
ba76149f
AA
2791 spin_lock(&khugepaged_mm_lock);
2792 if (!khugepaged_scan.mm_slot)
2793 pass_through_head++;
2794 if (khugepaged_has_work() &&
2795 pass_through_head < 2)
2796 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2797 &hpage);
ba76149f
AA
2798 else
2799 progress = pages;
2800 spin_unlock(&khugepaged_mm_lock);
2801 }
ba76149f 2802
d516904b
XG
2803 if (!IS_ERR_OR_NULL(hpage))
2804 put_page(hpage);
0bbbc0b3
AA
2805}
2806
2017c0bf
XG
2807static void khugepaged_wait_work(void)
2808{
2809 try_to_freeze();
2810
2811 if (khugepaged_has_work()) {
2812 if (!khugepaged_scan_sleep_millisecs)
2813 return;
2814
2815 wait_event_freezable_timeout(khugepaged_wait,
2816 kthread_should_stop(),
2817 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2818 return;
2819 }
2820
2821 if (khugepaged_enabled())
2822 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2823}
2824
ba76149f
AA
2825static int khugepaged(void *none)
2826{
2827 struct mm_slot *mm_slot;
2828
878aee7d 2829 set_freezable();
8698a745 2830 set_user_nice(current, MAX_NICE);
ba76149f 2831
b7231789
XG
2832 while (!kthread_should_stop()) {
2833 khugepaged_do_scan();
2834 khugepaged_wait_work();
2835 }
ba76149f
AA
2836
2837 spin_lock(&khugepaged_mm_lock);
2838 mm_slot = khugepaged_scan.mm_slot;
2839 khugepaged_scan.mm_slot = NULL;
2840 if (mm_slot)
2841 collect_mm_slot(mm_slot);
2842 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2843 return 0;
2844}
2845
c5a647d0
KS
2846static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2847 unsigned long haddr, pmd_t *pmd)
2848{
2849 struct mm_struct *mm = vma->vm_mm;
2850 pgtable_t pgtable;
2851 pmd_t _pmd;
2852 int i;
2853
34ee645e 2854 pmdp_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
2855 /* leave pmd empty until pte is filled */
2856
6b0b50b0 2857 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2858 pmd_populate(mm, &_pmd, pgtable);
2859
2860 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2861 pte_t *pte, entry;
2862 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2863 entry = pte_mkspecial(entry);
2864 pte = pte_offset_map(&_pmd, haddr);
2865 VM_BUG_ON(!pte_none(*pte));
2866 set_pte_at(mm, haddr, pte, entry);
2867 pte_unmap(pte);
2868 }
2869 smp_wmb(); /* make pte visible before pmd */
2870 pmd_populate(mm, pmd, pgtable);
97ae1749 2871 put_huge_zero_page();
c5a647d0
KS
2872}
2873
e180377f
KS
2874void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2875 pmd_t *pmd)
71e3aac0 2876{
c4088ebd 2877 spinlock_t *ptl;
71e3aac0 2878 struct page *page;
e180377f 2879 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2880 unsigned long haddr = address & HPAGE_PMD_MASK;
2881 unsigned long mmun_start; /* For mmu_notifiers */
2882 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2883
2884 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2885
c5a647d0
KS
2886 mmun_start = haddr;
2887 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2888again:
c5a647d0 2889 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2890 ptl = pmd_lock(mm, pmd);
71e3aac0 2891 if (unlikely(!pmd_trans_huge(*pmd))) {
c4088ebd 2892 spin_unlock(ptl);
c5a647d0
KS
2893 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2894 return;
2895 }
2896 if (is_huge_zero_pmd(*pmd)) {
2897 __split_huge_zero_page_pmd(vma, haddr, pmd);
c4088ebd 2898 spin_unlock(ptl);
c5a647d0 2899 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2900 return;
2901 }
2902 page = pmd_page(*pmd);
309381fe 2903 VM_BUG_ON_PAGE(!page_count(page), page);
71e3aac0 2904 get_page(page);
c4088ebd 2905 spin_unlock(ptl);
c5a647d0 2906 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2907
2908 split_huge_page(page);
2909
2910 put_page(page);
750e8165
HD
2911
2912 /*
2913 * We don't always have down_write of mmap_sem here: a racing
2914 * do_huge_pmd_wp_page() might have copied-on-write to another
2915 * huge page before our split_huge_page() got the anon_vma lock.
2916 */
2917 if (unlikely(pmd_trans_huge(*pmd)))
2918 goto again;
71e3aac0 2919}
94fcc585 2920
e180377f
KS
2921void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2922 pmd_t *pmd)
2923{
2924 struct vm_area_struct *vma;
2925
2926 vma = find_vma(mm, address);
2927 BUG_ON(vma == NULL);
2928 split_huge_page_pmd(vma, address, pmd);
2929}
2930
94fcc585
AA
2931static void split_huge_page_address(struct mm_struct *mm,
2932 unsigned long address)
2933{
f72e7dcd
HD
2934 pgd_t *pgd;
2935 pud_t *pud;
94fcc585
AA
2936 pmd_t *pmd;
2937
2938 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2939
f72e7dcd
HD
2940 pgd = pgd_offset(mm, address);
2941 if (!pgd_present(*pgd))
2942 return;
2943
2944 pud = pud_offset(pgd, address);
2945 if (!pud_present(*pud))
2946 return;
2947
2948 pmd = pmd_offset(pud, address);
2949 if (!pmd_present(*pmd))
94fcc585
AA
2950 return;
2951 /*
2952 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2953 * materialize from under us.
2954 */
e180377f 2955 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2956}
2957
2958void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2959 unsigned long start,
2960 unsigned long end,
2961 long adjust_next)
2962{
2963 /*
2964 * If the new start address isn't hpage aligned and it could
2965 * previously contain an hugepage: check if we need to split
2966 * an huge pmd.
2967 */
2968 if (start & ~HPAGE_PMD_MASK &&
2969 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2970 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2971 split_huge_page_address(vma->vm_mm, start);
2972
2973 /*
2974 * If the new end address isn't hpage aligned and it could
2975 * previously contain an hugepage: check if we need to split
2976 * an huge pmd.
2977 */
2978 if (end & ~HPAGE_PMD_MASK &&
2979 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2980 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2981 split_huge_page_address(vma->vm_mm, end);
2982
2983 /*
2984 * If we're also updating the vma->vm_next->vm_start, if the new
2985 * vm_next->vm_start isn't page aligned and it could previously
2986 * contain an hugepage: check if we need to split an huge pmd.
2987 */
2988 if (adjust_next > 0) {
2989 struct vm_area_struct *next = vma->vm_next;
2990 unsigned long nstart = next->vm_start;
2991 nstart += adjust_next << PAGE_SHIFT;
2992 if (nstart & ~HPAGE_PMD_MASK &&
2993 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2994 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2995 split_huge_page_address(next->vm_mm, nstart);
2996 }
2997}