]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
MM: increase safety margin provided by PF_LESS_THROTTLE
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f
AA
21#include <linux/kthread.h>
22#include <linux/khugepaged.h>
878aee7d 23#include <linux/freezer.h>
f25748e3 24#include <linux/pfn_t.h>
a664b2d8 25#include <linux/mman.h>
3565fce3 26#include <linux/memremap.h>
325adeb5 27#include <linux/pagemap.h>
49071d43 28#include <linux/debugfs.h>
4daae3b4 29#include <linux/migrate.h>
43b5fbbd 30#include <linux/hashtable.h>
6b251fc9 31#include <linux/userfaultfd_k.h>
33c3fc71 32#include <linux/page_idle.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
7d2eba05
EA
38enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
b1caa957 52 SCAN_PAGE_COMPOUND,
7d2eba05
EA
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL
61};
62
63#define CREATE_TRACE_POINTS
64#include <trace/events/huge_memory.h>
65
ba76149f 66/*
8bfa3f9a
JW
67 * By default transparent hugepage support is disabled in order that avoid
68 * to risk increase the memory footprint of applications without a guaranteed
69 * benefit. When transparent hugepage support is enabled, is for all mappings,
70 * and khugepaged scans all mappings.
71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
72 * for all hugepage allocations.
ba76149f 73 */
71e3aac0 74unsigned long transparent_hugepage_flags __read_mostly =
13ece886 75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 76 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
77#endif
78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
79 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
80#endif
444eb2a4 81 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
84
85/* default scan 8*512 pte (or vmas) every 30 second */
ff20c2e0 86static unsigned int khugepaged_pages_to_scan __read_mostly;
ba76149f
AA
87static unsigned int khugepaged_pages_collapsed;
88static unsigned int khugepaged_full_scans;
89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
90/* during fragmentation poll the hugepage allocator once every minute */
91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
92static struct task_struct *khugepaged_thread __read_mostly;
93static DEFINE_MUTEX(khugepaged_mutex);
94static DEFINE_SPINLOCK(khugepaged_mm_lock);
95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
96/*
97 * default collapse hugepages if there is at least one pte mapped like
98 * it would have happened if the vma was large enough during page
99 * fault.
100 */
ff20c2e0 101static unsigned int khugepaged_max_ptes_none __read_mostly;
ba76149f
AA
102
103static int khugepaged(void *none);
ba76149f 104static int khugepaged_slab_init(void);
65ebb64f 105static void khugepaged_slab_exit(void);
ba76149f 106
43b5fbbd
SL
107#define MM_SLOTS_HASH_BITS 10
108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
109
ba76149f
AA
110static struct kmem_cache *mm_slot_cache __read_mostly;
111
112/**
113 * struct mm_slot - hash lookup from mm to mm_slot
114 * @hash: hash collision list
115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
116 * @mm: the mm that this information is valid for
117 */
118struct mm_slot {
119 struct hlist_node hash;
120 struct list_head mm_node;
121 struct mm_struct *mm;
122};
123
124/**
125 * struct khugepaged_scan - cursor for scanning
126 * @mm_head: the head of the mm list to scan
127 * @mm_slot: the current mm_slot we are scanning
128 * @address: the next address inside that to be scanned
129 *
130 * There is only the one khugepaged_scan instance of this cursor structure.
131 */
132struct khugepaged_scan {
133 struct list_head mm_head;
134 struct mm_slot *mm_slot;
135 unsigned long address;
2f1da642
HS
136};
137static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
138 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
139};
140
9a982250 141static struct shrinker deferred_split_shrinker;
f000565a 142
2c0b80d4 143static void set_recommended_min_free_kbytes(void)
f000565a
AA
144{
145 struct zone *zone;
146 int nr_zones = 0;
147 unsigned long recommended_min;
f000565a 148
f000565a
AA
149 for_each_populated_zone(zone)
150 nr_zones++;
151
974a786e 152 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
f000565a
AA
153 recommended_min = pageblock_nr_pages * nr_zones * 2;
154
155 /*
156 * Make sure that on average at least two pageblocks are almost free
157 * of another type, one for a migratetype to fall back to and a
158 * second to avoid subsequent fallbacks of other types There are 3
159 * MIGRATE_TYPES we care about.
160 */
161 recommended_min += pageblock_nr_pages * nr_zones *
162 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
163
164 /* don't ever allow to reserve more than 5% of the lowmem */
165 recommended_min = min(recommended_min,
166 (unsigned long) nr_free_buffer_pages() / 20);
167 recommended_min <<= (PAGE_SHIFT-10);
168
42aa83cb
HP
169 if (recommended_min > min_free_kbytes) {
170 if (user_min_free_kbytes >= 0)
756a025f 171 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
42aa83cb
HP
172 min_free_kbytes, recommended_min);
173
f000565a 174 min_free_kbytes = recommended_min;
42aa83cb 175 }
f000565a 176 setup_per_zone_wmarks();
f000565a 177}
f000565a 178
79553da2 179static int start_stop_khugepaged(void)
ba76149f
AA
180{
181 int err = 0;
182 if (khugepaged_enabled()) {
ba76149f
AA
183 if (!khugepaged_thread)
184 khugepaged_thread = kthread_run(khugepaged, NULL,
185 "khugepaged");
18e8e5c7 186 if (IS_ERR(khugepaged_thread)) {
ae3a8c1c 187 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
188 err = PTR_ERR(khugepaged_thread);
189 khugepaged_thread = NULL;
79553da2 190 goto fail;
ba76149f 191 }
911891af
XG
192
193 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 194 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
195
196 set_recommended_min_free_kbytes();
911891af 197 } else if (khugepaged_thread) {
911891af
XG
198 kthread_stop(khugepaged_thread);
199 khugepaged_thread = NULL;
200 }
79553da2 201fail:
ba76149f
AA
202 return err;
203}
71e3aac0 204
97ae1749 205static atomic_t huge_zero_refcount;
56873f43 206struct page *huge_zero_page __read_mostly;
4a6c1297 207
fc437044 208struct page *get_huge_zero_page(void)
97ae1749
KS
209{
210 struct page *zero_page;
211retry:
212 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 213 return READ_ONCE(huge_zero_page);
97ae1749
KS
214
215 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 216 HPAGE_PMD_ORDER);
d8a8e1f0
KS
217 if (!zero_page) {
218 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 219 return NULL;
d8a8e1f0
KS
220 }
221 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 222 preempt_disable();
5918d10a 223 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 224 preempt_enable();
5ddacbe9 225 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
226 goto retry;
227 }
228
229 /* We take additional reference here. It will be put back by shrinker */
230 atomic_set(&huge_zero_refcount, 2);
231 preempt_enable();
4db0c3c2 232 return READ_ONCE(huge_zero_page);
4a6c1297
KS
233}
234
aa88b68c 235void put_huge_zero_page(void)
4a6c1297 236{
97ae1749
KS
237 /*
238 * Counter should never go to zero here. Only shrinker can put
239 * last reference.
240 */
241 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
242}
243
48896466
GC
244static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
245 struct shrink_control *sc)
4a6c1297 246{
48896466
GC
247 /* we can free zero page only if last reference remains */
248 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
249}
97ae1749 250
48896466
GC
251static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
252 struct shrink_control *sc)
253{
97ae1749 254 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
255 struct page *zero_page = xchg(&huge_zero_page, NULL);
256 BUG_ON(zero_page == NULL);
5ddacbe9 257 __free_pages(zero_page, compound_order(zero_page));
48896466 258 return HPAGE_PMD_NR;
97ae1749
KS
259 }
260
261 return 0;
4a6c1297
KS
262}
263
97ae1749 264static struct shrinker huge_zero_page_shrinker = {
48896466
GC
265 .count_objects = shrink_huge_zero_page_count,
266 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
267 .seeks = DEFAULT_SEEKS,
268};
269
71e3aac0 270#ifdef CONFIG_SYSFS
ba76149f 271
444eb2a4 272static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
273 struct kobj_attribute *attr,
274 const char *buf, size_t count,
275 enum transparent_hugepage_flag enabled,
444eb2a4 276 enum transparent_hugepage_flag deferred,
71e3aac0
AA
277 enum transparent_hugepage_flag req_madv)
278{
444eb2a4
MG
279 if (!memcmp("defer", buf,
280 min(sizeof("defer")-1, count))) {
281 if (enabled == deferred)
282 return -EINVAL;
283 clear_bit(enabled, &transparent_hugepage_flags);
284 clear_bit(req_madv, &transparent_hugepage_flags);
285 set_bit(deferred, &transparent_hugepage_flags);
286 } else if (!memcmp("always", buf,
71e3aac0 287 min(sizeof("always")-1, count))) {
444eb2a4 288 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 289 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 290 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
291 } else if (!memcmp("madvise", buf,
292 min(sizeof("madvise")-1, count))) {
293 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 294 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
295 set_bit(req_madv, &transparent_hugepage_flags);
296 } else if (!memcmp("never", buf,
297 min(sizeof("never")-1, count))) {
298 clear_bit(enabled, &transparent_hugepage_flags);
299 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 300 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
301 } else
302 return -EINVAL;
303
304 return count;
305}
306
307static ssize_t enabled_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf)
309{
444eb2a4
MG
310 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
311 return sprintf(buf, "[always] madvise never\n");
312 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
313 return sprintf(buf, "always [madvise] never\n");
314 else
315 return sprintf(buf, "always madvise [never]\n");
71e3aac0 316}
444eb2a4 317
71e3aac0
AA
318static ssize_t enabled_store(struct kobject *kobj,
319 struct kobj_attribute *attr,
320 const char *buf, size_t count)
321{
ba76149f
AA
322 ssize_t ret;
323
444eb2a4
MG
324 ret = triple_flag_store(kobj, attr, buf, count,
325 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
326 TRANSPARENT_HUGEPAGE_FLAG,
327 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
328
329 if (ret > 0) {
911891af
XG
330 int err;
331
332 mutex_lock(&khugepaged_mutex);
79553da2 333 err = start_stop_khugepaged();
911891af
XG
334 mutex_unlock(&khugepaged_mutex);
335
ba76149f
AA
336 if (err)
337 ret = err;
338 }
339
340 return ret;
71e3aac0
AA
341}
342static struct kobj_attribute enabled_attr =
343 __ATTR(enabled, 0644, enabled_show, enabled_store);
344
345static ssize_t single_flag_show(struct kobject *kobj,
346 struct kobj_attribute *attr, char *buf,
347 enum transparent_hugepage_flag flag)
348{
e27e6151
BH
349 return sprintf(buf, "%d\n",
350 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 351}
e27e6151 352
71e3aac0
AA
353static ssize_t single_flag_store(struct kobject *kobj,
354 struct kobj_attribute *attr,
355 const char *buf, size_t count,
356 enum transparent_hugepage_flag flag)
357{
e27e6151
BH
358 unsigned long value;
359 int ret;
360
361 ret = kstrtoul(buf, 10, &value);
362 if (ret < 0)
363 return ret;
364 if (value > 1)
365 return -EINVAL;
366
367 if (value)
71e3aac0 368 set_bit(flag, &transparent_hugepage_flags);
e27e6151 369 else
71e3aac0 370 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
371
372 return count;
373}
374
375/*
376 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
377 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
378 * memory just to allocate one more hugepage.
379 */
380static ssize_t defrag_show(struct kobject *kobj,
381 struct kobj_attribute *attr, char *buf)
382{
444eb2a4
MG
383 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
384 return sprintf(buf, "[always] defer madvise never\n");
385 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
386 return sprintf(buf, "always [defer] madvise never\n");
387 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
388 return sprintf(buf, "always defer [madvise] never\n");
389 else
390 return sprintf(buf, "always defer madvise [never]\n");
391
71e3aac0
AA
392}
393static ssize_t defrag_store(struct kobject *kobj,
394 struct kobj_attribute *attr,
395 const char *buf, size_t count)
396{
444eb2a4
MG
397 return triple_flag_store(kobj, attr, buf, count,
398 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
399 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
400 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
401}
402static struct kobj_attribute defrag_attr =
403 __ATTR(defrag, 0644, defrag_show, defrag_store);
404
79da5407
KS
405static ssize_t use_zero_page_show(struct kobject *kobj,
406 struct kobj_attribute *attr, char *buf)
407{
408 return single_flag_show(kobj, attr, buf,
409 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
410}
411static ssize_t use_zero_page_store(struct kobject *kobj,
412 struct kobj_attribute *attr, const char *buf, size_t count)
413{
414 return single_flag_store(kobj, attr, buf, count,
415 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
416}
417static struct kobj_attribute use_zero_page_attr =
418 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
419#ifdef CONFIG_DEBUG_VM
420static ssize_t debug_cow_show(struct kobject *kobj,
421 struct kobj_attribute *attr, char *buf)
422{
423 return single_flag_show(kobj, attr, buf,
424 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
425}
426static ssize_t debug_cow_store(struct kobject *kobj,
427 struct kobj_attribute *attr,
428 const char *buf, size_t count)
429{
430 return single_flag_store(kobj, attr, buf, count,
431 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
432}
433static struct kobj_attribute debug_cow_attr =
434 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
435#endif /* CONFIG_DEBUG_VM */
436
437static struct attribute *hugepage_attr[] = {
438 &enabled_attr.attr,
439 &defrag_attr.attr,
79da5407 440 &use_zero_page_attr.attr,
71e3aac0
AA
441#ifdef CONFIG_DEBUG_VM
442 &debug_cow_attr.attr,
443#endif
444 NULL,
445};
446
447static struct attribute_group hugepage_attr_group = {
448 .attrs = hugepage_attr,
ba76149f
AA
449};
450
451static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
452 struct kobj_attribute *attr,
453 char *buf)
454{
455 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
456}
457
458static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
459 struct kobj_attribute *attr,
460 const char *buf, size_t count)
461{
462 unsigned long msecs;
463 int err;
464
3dbb95f7 465 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
466 if (err || msecs > UINT_MAX)
467 return -EINVAL;
468
469 khugepaged_scan_sleep_millisecs = msecs;
470 wake_up_interruptible(&khugepaged_wait);
471
472 return count;
473}
474static struct kobj_attribute scan_sleep_millisecs_attr =
475 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
476 scan_sleep_millisecs_store);
477
478static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
479 struct kobj_attribute *attr,
480 char *buf)
481{
482 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
483}
484
485static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
486 struct kobj_attribute *attr,
487 const char *buf, size_t count)
488{
489 unsigned long msecs;
490 int err;
491
3dbb95f7 492 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
493 if (err || msecs > UINT_MAX)
494 return -EINVAL;
495
496 khugepaged_alloc_sleep_millisecs = msecs;
497 wake_up_interruptible(&khugepaged_wait);
498
499 return count;
500}
501static struct kobj_attribute alloc_sleep_millisecs_attr =
502 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
503 alloc_sleep_millisecs_store);
504
505static ssize_t pages_to_scan_show(struct kobject *kobj,
506 struct kobj_attribute *attr,
507 char *buf)
508{
509 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
510}
511static ssize_t pages_to_scan_store(struct kobject *kobj,
512 struct kobj_attribute *attr,
513 const char *buf, size_t count)
514{
515 int err;
516 unsigned long pages;
517
3dbb95f7 518 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
519 if (err || !pages || pages > UINT_MAX)
520 return -EINVAL;
521
522 khugepaged_pages_to_scan = pages;
523
524 return count;
525}
526static struct kobj_attribute pages_to_scan_attr =
527 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
528 pages_to_scan_store);
529
530static ssize_t pages_collapsed_show(struct kobject *kobj,
531 struct kobj_attribute *attr,
532 char *buf)
533{
534 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
535}
536static struct kobj_attribute pages_collapsed_attr =
537 __ATTR_RO(pages_collapsed);
538
539static ssize_t full_scans_show(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 char *buf)
542{
543 return sprintf(buf, "%u\n", khugepaged_full_scans);
544}
545static struct kobj_attribute full_scans_attr =
546 __ATTR_RO(full_scans);
547
548static ssize_t khugepaged_defrag_show(struct kobject *kobj,
549 struct kobj_attribute *attr, char *buf)
550{
551 return single_flag_show(kobj, attr, buf,
552 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
553}
554static ssize_t khugepaged_defrag_store(struct kobject *kobj,
555 struct kobj_attribute *attr,
556 const char *buf, size_t count)
557{
558 return single_flag_store(kobj, attr, buf, count,
559 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
560}
561static struct kobj_attribute khugepaged_defrag_attr =
562 __ATTR(defrag, 0644, khugepaged_defrag_show,
563 khugepaged_defrag_store);
564
565/*
566 * max_ptes_none controls if khugepaged should collapse hugepages over
567 * any unmapped ptes in turn potentially increasing the memory
568 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
569 * reduce the available free memory in the system as it
570 * runs. Increasing max_ptes_none will instead potentially reduce the
571 * free memory in the system during the khugepaged scan.
572 */
573static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
574 struct kobj_attribute *attr,
575 char *buf)
576{
577 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
578}
579static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
580 struct kobj_attribute *attr,
581 const char *buf, size_t count)
582{
583 int err;
584 unsigned long max_ptes_none;
585
3dbb95f7 586 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
587 if (err || max_ptes_none > HPAGE_PMD_NR-1)
588 return -EINVAL;
589
590 khugepaged_max_ptes_none = max_ptes_none;
591
592 return count;
593}
594static struct kobj_attribute khugepaged_max_ptes_none_attr =
595 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
596 khugepaged_max_ptes_none_store);
597
598static struct attribute *khugepaged_attr[] = {
599 &khugepaged_defrag_attr.attr,
600 &khugepaged_max_ptes_none_attr.attr,
601 &pages_to_scan_attr.attr,
602 &pages_collapsed_attr.attr,
603 &full_scans_attr.attr,
604 &scan_sleep_millisecs_attr.attr,
605 &alloc_sleep_millisecs_attr.attr,
606 NULL,
607};
608
609static struct attribute_group khugepaged_attr_group = {
610 .attrs = khugepaged_attr,
611 .name = "khugepaged",
71e3aac0 612};
71e3aac0 613
569e5590 614static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 615{
71e3aac0
AA
616 int err;
617
569e5590
SL
618 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
619 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 620 pr_err("failed to create transparent hugepage kobject\n");
569e5590 621 return -ENOMEM;
ba76149f
AA
622 }
623
569e5590 624 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 625 if (err) {
ae3a8c1c 626 pr_err("failed to register transparent hugepage group\n");
569e5590 627 goto delete_obj;
ba76149f
AA
628 }
629
569e5590 630 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 631 if (err) {
ae3a8c1c 632 pr_err("failed to register transparent hugepage group\n");
569e5590 633 goto remove_hp_group;
ba76149f 634 }
569e5590
SL
635
636 return 0;
637
638remove_hp_group:
639 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
640delete_obj:
641 kobject_put(*hugepage_kobj);
642 return err;
643}
644
645static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
646{
647 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
648 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
649 kobject_put(hugepage_kobj);
650}
651#else
652static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
653{
654 return 0;
655}
656
657static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
658{
659}
660#endif /* CONFIG_SYSFS */
661
662static int __init hugepage_init(void)
663{
664 int err;
665 struct kobject *hugepage_kobj;
666
667 if (!has_transparent_hugepage()) {
668 transparent_hugepage_flags = 0;
669 return -EINVAL;
670 }
671
ff20c2e0
KS
672 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
673 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
674 /*
675 * hugepages can't be allocated by the buddy allocator
676 */
677 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
678 /*
679 * we use page->mapping and page->index in second tail page
680 * as list_head: assuming THP order >= 2
681 */
682 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
683
569e5590
SL
684 err = hugepage_init_sysfs(&hugepage_kobj);
685 if (err)
65ebb64f 686 goto err_sysfs;
ba76149f
AA
687
688 err = khugepaged_slab_init();
689 if (err)
65ebb64f 690 goto err_slab;
ba76149f 691
65ebb64f
KS
692 err = register_shrinker(&huge_zero_page_shrinker);
693 if (err)
694 goto err_hzp_shrinker;
9a982250
KS
695 err = register_shrinker(&deferred_split_shrinker);
696 if (err)
697 goto err_split_shrinker;
97ae1749 698
97562cd2
RR
699 /*
700 * By default disable transparent hugepages on smaller systems,
701 * where the extra memory used could hurt more than TLB overhead
702 * is likely to save. The admin can still enable it through /sys.
703 */
79553da2 704 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 705 transparent_hugepage_flags = 0;
79553da2
KS
706 return 0;
707 }
97562cd2 708
79553da2 709 err = start_stop_khugepaged();
65ebb64f
KS
710 if (err)
711 goto err_khugepaged;
ba76149f 712
569e5590 713 return 0;
65ebb64f 714err_khugepaged:
9a982250
KS
715 unregister_shrinker(&deferred_split_shrinker);
716err_split_shrinker:
65ebb64f
KS
717 unregister_shrinker(&huge_zero_page_shrinker);
718err_hzp_shrinker:
719 khugepaged_slab_exit();
720err_slab:
569e5590 721 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 722err_sysfs:
ba76149f 723 return err;
71e3aac0 724}
a64fb3cd 725subsys_initcall(hugepage_init);
71e3aac0
AA
726
727static int __init setup_transparent_hugepage(char *str)
728{
729 int ret = 0;
730 if (!str)
731 goto out;
732 if (!strcmp(str, "always")) {
733 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
734 &transparent_hugepage_flags);
735 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
736 &transparent_hugepage_flags);
737 ret = 1;
738 } else if (!strcmp(str, "madvise")) {
739 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
740 &transparent_hugepage_flags);
741 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
742 &transparent_hugepage_flags);
743 ret = 1;
744 } else if (!strcmp(str, "never")) {
745 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
746 &transparent_hugepage_flags);
747 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
748 &transparent_hugepage_flags);
749 ret = 1;
750 }
751out:
752 if (!ret)
ae3a8c1c 753 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
754 return ret;
755}
756__setup("transparent_hugepage=", setup_transparent_hugepage);
757
b32967ff 758pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
759{
760 if (likely(vma->vm_flags & VM_WRITE))
761 pmd = pmd_mkwrite(pmd);
762 return pmd;
763}
764
3122359a 765static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b 766{
340a43be 767 return pmd_mkhuge(mk_pmd(page, prot));
b3092b3b
BL
768}
769
9a982250
KS
770static inline struct list_head *page_deferred_list(struct page *page)
771{
772 /*
773 * ->lru in the tail pages is occupied by compound_head.
774 * Let's use ->mapping + ->index in the second tail page as list_head.
775 */
776 return (struct list_head *)&page[2].mapping;
777}
778
779void prep_transhuge_page(struct page *page)
780{
781 /*
782 * we use page->mapping and page->indexlru in second tail page
783 * as list_head: assuming THP order >= 2
784 */
9a982250
KS
785
786 INIT_LIST_HEAD(page_deferred_list(page));
787 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
788}
789
71e3aac0
AA
790static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
791 struct vm_area_struct *vma,
230c92a8 792 unsigned long address, pmd_t *pmd,
6b251fc9
AA
793 struct page *page, gfp_t gfp,
794 unsigned int flags)
71e3aac0 795{
00501b53 796 struct mem_cgroup *memcg;
71e3aac0 797 pgtable_t pgtable;
c4088ebd 798 spinlock_t *ptl;
230c92a8 799 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 800
309381fe 801 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 802
f627c2f5 803 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
6b251fc9
AA
804 put_page(page);
805 count_vm_event(THP_FAULT_FALLBACK);
806 return VM_FAULT_FALLBACK;
807 }
00501b53 808
71e3aac0 809 pgtable = pte_alloc_one(mm, haddr);
00501b53 810 if (unlikely(!pgtable)) {
f627c2f5 811 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 812 put_page(page);
71e3aac0 813 return VM_FAULT_OOM;
00501b53 814 }
71e3aac0
AA
815
816 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
817 /*
818 * The memory barrier inside __SetPageUptodate makes sure that
819 * clear_huge_page writes become visible before the set_pmd_at()
820 * write.
821 */
71e3aac0
AA
822 __SetPageUptodate(page);
823
c4088ebd 824 ptl = pmd_lock(mm, pmd);
71e3aac0 825 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 826 spin_unlock(ptl);
f627c2f5 827 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0
AA
828 put_page(page);
829 pte_free(mm, pgtable);
830 } else {
831 pmd_t entry;
6b251fc9
AA
832
833 /* Deliver the page fault to userland */
834 if (userfaultfd_missing(vma)) {
835 int ret;
836
837 spin_unlock(ptl);
f627c2f5 838 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9
AA
839 put_page(page);
840 pte_free(mm, pgtable);
230c92a8 841 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
842 VM_UFFD_MISSING);
843 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
844 return ret;
845 }
846
3122359a
KS
847 entry = mk_huge_pmd(page, vma->vm_page_prot);
848 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 849 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 850 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 851 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 852 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 853 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 854 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 855 atomic_long_inc(&mm->nr_ptes);
c4088ebd 856 spin_unlock(ptl);
6b251fc9 857 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
858 }
859
aa2e878e 860 return 0;
71e3aac0
AA
861}
862
444eb2a4
MG
863/*
864 * If THP is set to always then directly reclaim/compact as necessary
865 * If set to defer then do no reclaim and defer to khugepaged
866 * If set to madvise and the VMA is flagged then directly reclaim/compact
867 */
868static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
869{
870 gfp_t reclaim_flags = 0;
871
872 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
873 (vma->vm_flags & VM_HUGEPAGE))
874 reclaim_flags = __GFP_DIRECT_RECLAIM;
875 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
876 reclaim_flags = __GFP_KSWAPD_RECLAIM;
877 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
878 reclaim_flags = __GFP_DIRECT_RECLAIM;
879
880 return GFP_TRANSHUGE | reclaim_flags;
881}
882
883/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
884static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
0bbbc0b3 885{
444eb2a4 886 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
0bbbc0b3
AA
887}
888
c4088ebd 889/* Caller must hold page table lock. */
d295e341 890static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 891 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 892 struct page *zero_page)
fc9fe822
KS
893{
894 pmd_t entry;
7c414164
AM
895 if (!pmd_none(*pmd))
896 return false;
5918d10a 897 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 898 entry = pmd_mkhuge(entry);
12c9d70b
MW
899 if (pgtable)
900 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 901 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 902 atomic_long_inc(&mm->nr_ptes);
7c414164 903 return true;
fc9fe822
KS
904}
905
71e3aac0
AA
906int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
907 unsigned long address, pmd_t *pmd,
908 unsigned int flags)
909{
077fcf11 910 gfp_t gfp;
71e3aac0
AA
911 struct page *page;
912 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 913
128ec037 914 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 915 return VM_FAULT_FALLBACK;
128ec037
KS
916 if (unlikely(anon_vma_prepare(vma)))
917 return VM_FAULT_OOM;
6d50e60c 918 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 919 return VM_FAULT_OOM;
593befa6 920 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 921 transparent_hugepage_use_zero_page()) {
c4088ebd 922 spinlock_t *ptl;
128ec037
KS
923 pgtable_t pgtable;
924 struct page *zero_page;
925 bool set;
6b251fc9 926 int ret;
128ec037
KS
927 pgtable = pte_alloc_one(mm, haddr);
928 if (unlikely(!pgtable))
ba76149f 929 return VM_FAULT_OOM;
128ec037
KS
930 zero_page = get_huge_zero_page();
931 if (unlikely(!zero_page)) {
932 pte_free(mm, pgtable);
81ab4201 933 count_vm_event(THP_FAULT_FALLBACK);
c0292554 934 return VM_FAULT_FALLBACK;
b9bbfbe3 935 }
c4088ebd 936 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
937 ret = 0;
938 set = false;
939 if (pmd_none(*pmd)) {
940 if (userfaultfd_missing(vma)) {
941 spin_unlock(ptl);
230c92a8 942 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
943 VM_UFFD_MISSING);
944 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
945 } else {
946 set_huge_zero_page(pgtable, mm, vma,
947 haddr, pmd,
948 zero_page);
949 spin_unlock(ptl);
950 set = true;
951 }
952 } else
953 spin_unlock(ptl);
128ec037
KS
954 if (!set) {
955 pte_free(mm, pgtable);
956 put_huge_zero_page();
edad9d2c 957 }
6b251fc9 958 return ret;
71e3aac0 959 }
444eb2a4 960 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 961 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
962 if (unlikely(!page)) {
963 count_vm_event(THP_FAULT_FALLBACK);
c0292554 964 return VM_FAULT_FALLBACK;
128ec037 965 }
9a982250 966 prep_transhuge_page(page);
230c92a8
AA
967 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
968 flags);
71e3aac0
AA
969}
970
ae18d6dc 971static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 972 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
973{
974 struct mm_struct *mm = vma->vm_mm;
975 pmd_t entry;
976 spinlock_t *ptl;
977
978 ptl = pmd_lock(mm, pmd);
f25748e3
DW
979 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
980 if (pfn_t_devmap(pfn))
981 entry = pmd_mkdevmap(entry);
01871e59
RZ
982 if (write) {
983 entry = pmd_mkyoung(pmd_mkdirty(entry));
984 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 985 }
01871e59
RZ
986 set_pmd_at(mm, addr, pmd, entry);
987 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 988 spin_unlock(ptl);
5cad465d
MW
989}
990
991int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 992 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
993{
994 pgprot_t pgprot = vma->vm_page_prot;
995 /*
996 * If we had pmd_special, we could avoid all these restrictions,
997 * but we need to be consistent with PTEs and architectures that
998 * can't support a 'special' bit.
999 */
1000 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1001 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1002 (VM_PFNMAP|VM_MIXEDMAP));
1003 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 1004 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
1005
1006 if (addr < vma->vm_start || addr >= vma->vm_end)
1007 return VM_FAULT_SIGBUS;
1008 if (track_pfn_insert(vma, &pgprot, pfn))
1009 return VM_FAULT_SIGBUS;
ae18d6dc
MW
1010 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1011 return VM_FAULT_NOPAGE;
5cad465d
MW
1012}
1013
3565fce3
DW
1014static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1015 pmd_t *pmd)
1016{
1017 pmd_t _pmd;
1018
1019 /*
1020 * We should set the dirty bit only for FOLL_WRITE but for now
1021 * the dirty bit in the pmd is meaningless. And if the dirty
1022 * bit will become meaningful and we'll only set it with
1023 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1024 * set the young bit, instead of the current set_pmd_at.
1025 */
1026 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1027 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1028 pmd, _pmd, 1))
1029 update_mmu_cache_pmd(vma, addr, pmd);
1030}
1031
1032struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1033 pmd_t *pmd, int flags)
1034{
1035 unsigned long pfn = pmd_pfn(*pmd);
1036 struct mm_struct *mm = vma->vm_mm;
1037 struct dev_pagemap *pgmap;
1038 struct page *page;
1039
1040 assert_spin_locked(pmd_lockptr(mm, pmd));
1041
1042 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1043 return NULL;
1044
1045 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1046 /* pass */;
1047 else
1048 return NULL;
1049
1050 if (flags & FOLL_TOUCH)
1051 touch_pmd(vma, addr, pmd);
1052
1053 /*
1054 * device mapped pages can only be returned if the
1055 * caller will manage the page reference count.
1056 */
1057 if (!(flags & FOLL_GET))
1058 return ERR_PTR(-EEXIST);
1059
1060 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1061 pgmap = get_dev_pagemap(pfn, NULL);
1062 if (!pgmap)
1063 return ERR_PTR(-EFAULT);
1064 page = pfn_to_page(pfn);
1065 get_page(page);
1066 put_dev_pagemap(pgmap);
1067
1068 return page;
1069}
1070
71e3aac0
AA
1071int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1072 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1073 struct vm_area_struct *vma)
1074{
c4088ebd 1075 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
1076 struct page *src_page;
1077 pmd_t pmd;
12c9d70b 1078 pgtable_t pgtable = NULL;
71e3aac0
AA
1079 int ret;
1080
12c9d70b
MW
1081 if (!vma_is_dax(vma)) {
1082 ret = -ENOMEM;
1083 pgtable = pte_alloc_one(dst_mm, addr);
1084 if (unlikely(!pgtable))
1085 goto out;
1086 }
71e3aac0 1087
c4088ebd
KS
1088 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1089 src_ptl = pmd_lockptr(src_mm, src_pmd);
1090 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
1091
1092 ret = -EAGAIN;
1093 pmd = *src_pmd;
5c7fb56e 1094 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
71e3aac0
AA
1095 pte_free(dst_mm, pgtable);
1096 goto out_unlock;
1097 }
fc9fe822 1098 /*
c4088ebd 1099 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
1100 * under splitting since we don't split the page itself, only pmd to
1101 * a page table.
1102 */
1103 if (is_huge_zero_pmd(pmd)) {
5918d10a 1104 struct page *zero_page;
97ae1749
KS
1105 /*
1106 * get_huge_zero_page() will never allocate a new page here,
1107 * since we already have a zero page to copy. It just takes a
1108 * reference.
1109 */
5918d10a 1110 zero_page = get_huge_zero_page();
6b251fc9 1111 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 1112 zero_page);
fc9fe822
KS
1113 ret = 0;
1114 goto out_unlock;
1115 }
de466bd6 1116
12c9d70b 1117 if (!vma_is_dax(vma)) {
5c7fb56e
DW
1118 /* thp accounting separate from pmd_devmap accounting */
1119 src_page = pmd_page(pmd);
1120 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1121 get_page(src_page);
1122 page_dup_rmap(src_page, true);
1123 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1124 atomic_long_inc(&dst_mm->nr_ptes);
1125 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1126 }
71e3aac0
AA
1127
1128 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1129 pmd = pmd_mkold(pmd_wrprotect(pmd));
1130 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
1131
1132 ret = 0;
1133out_unlock:
c4088ebd
KS
1134 spin_unlock(src_ptl);
1135 spin_unlock(dst_ptl);
71e3aac0
AA
1136out:
1137 return ret;
1138}
1139
a1dd450b
WD
1140void huge_pmd_set_accessed(struct mm_struct *mm,
1141 struct vm_area_struct *vma,
1142 unsigned long address,
1143 pmd_t *pmd, pmd_t orig_pmd,
1144 int dirty)
1145{
c4088ebd 1146 spinlock_t *ptl;
a1dd450b
WD
1147 pmd_t entry;
1148 unsigned long haddr;
1149
c4088ebd 1150 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
1151 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1152 goto unlock;
1153
1154 entry = pmd_mkyoung(orig_pmd);
1155 haddr = address & HPAGE_PMD_MASK;
1156 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1157 update_mmu_cache_pmd(vma, address, pmd);
1158
1159unlock:
c4088ebd 1160 spin_unlock(ptl);
a1dd450b
WD
1161}
1162
71e3aac0
AA
1163static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1164 struct vm_area_struct *vma,
1165 unsigned long address,
1166 pmd_t *pmd, pmd_t orig_pmd,
1167 struct page *page,
1168 unsigned long haddr)
1169{
00501b53 1170 struct mem_cgroup *memcg;
c4088ebd 1171 spinlock_t *ptl;
71e3aac0
AA
1172 pgtable_t pgtable;
1173 pmd_t _pmd;
1174 int ret = 0, i;
1175 struct page **pages;
2ec74c3e
SG
1176 unsigned long mmun_start; /* For mmu_notifiers */
1177 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1178
1179 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1180 GFP_KERNEL);
1181 if (unlikely(!pages)) {
1182 ret |= VM_FAULT_OOM;
1183 goto out;
1184 }
1185
1186 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1187 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1188 __GFP_OTHER_NODE,
19ee151e 1189 vma, address, page_to_nid(page));
b9bbfbe3 1190 if (unlikely(!pages[i] ||
00501b53 1191 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
f627c2f5 1192 &memcg, false))) {
b9bbfbe3 1193 if (pages[i])
71e3aac0 1194 put_page(pages[i]);
b9bbfbe3 1195 while (--i >= 0) {
00501b53
JW
1196 memcg = (void *)page_private(pages[i]);
1197 set_page_private(pages[i], 0);
f627c2f5
KS
1198 mem_cgroup_cancel_charge(pages[i], memcg,
1199 false);
b9bbfbe3
AA
1200 put_page(pages[i]);
1201 }
71e3aac0
AA
1202 kfree(pages);
1203 ret |= VM_FAULT_OOM;
1204 goto out;
1205 }
00501b53 1206 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1207 }
1208
1209 for (i = 0; i < HPAGE_PMD_NR; i++) {
1210 copy_user_highpage(pages[i], page + i,
0089e485 1211 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1212 __SetPageUptodate(pages[i]);
1213 cond_resched();
1214 }
1215
2ec74c3e
SG
1216 mmun_start = haddr;
1217 mmun_end = haddr + HPAGE_PMD_SIZE;
1218 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1219
c4088ebd 1220 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1221 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1222 goto out_free_pages;
309381fe 1223 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1224
8809aa2d 1225 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1226 /* leave pmd empty until pte is filled */
1227
6b0b50b0 1228 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1229 pmd_populate(mm, &_pmd, pgtable);
1230
1231 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1232 pte_t *pte, entry;
1233 entry = mk_pte(pages[i], vma->vm_page_prot);
1234 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1235 memcg = (void *)page_private(pages[i]);
1236 set_page_private(pages[i], 0);
d281ee61 1237 page_add_new_anon_rmap(pages[i], vma, haddr, false);
f627c2f5 1238 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 1239 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1240 pte = pte_offset_map(&_pmd, haddr);
1241 VM_BUG_ON(!pte_none(*pte));
1242 set_pte_at(mm, haddr, pte, entry);
1243 pte_unmap(pte);
1244 }
1245 kfree(pages);
1246
71e3aac0
AA
1247 smp_wmb(); /* make pte visible before pmd */
1248 pmd_populate(mm, pmd, pgtable);
d281ee61 1249 page_remove_rmap(page, true);
c4088ebd 1250 spin_unlock(ptl);
71e3aac0 1251
2ec74c3e
SG
1252 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1253
71e3aac0
AA
1254 ret |= VM_FAULT_WRITE;
1255 put_page(page);
1256
1257out:
1258 return ret;
1259
1260out_free_pages:
c4088ebd 1261 spin_unlock(ptl);
2ec74c3e 1262 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1263 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1264 memcg = (void *)page_private(pages[i]);
1265 set_page_private(pages[i], 0);
f627c2f5 1266 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 1267 put_page(pages[i]);
b9bbfbe3 1268 }
71e3aac0
AA
1269 kfree(pages);
1270 goto out;
1271}
1272
1273int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1274 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1275{
c4088ebd 1276 spinlock_t *ptl;
71e3aac0 1277 int ret = 0;
93b4796d 1278 struct page *page = NULL, *new_page;
00501b53 1279 struct mem_cgroup *memcg;
71e3aac0 1280 unsigned long haddr;
2ec74c3e
SG
1281 unsigned long mmun_start; /* For mmu_notifiers */
1282 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1283 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1284
c4088ebd 1285 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1286 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1287 haddr = address & HPAGE_PMD_MASK;
1288 if (is_huge_zero_pmd(orig_pmd))
1289 goto alloc;
c4088ebd 1290 spin_lock(ptl);
71e3aac0
AA
1291 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1292 goto out_unlock;
1293
1294 page = pmd_page(orig_pmd);
309381fe 1295 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1296 /*
1297 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1298 * part.
1f25fe20 1299 */
6d0a07ed 1300 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1301 pmd_t entry;
1302 entry = pmd_mkyoung(orig_pmd);
1303 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1304 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1305 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1306 ret |= VM_FAULT_WRITE;
1307 goto out_unlock;
1308 }
ddc58f27 1309 get_page(page);
c4088ebd 1310 spin_unlock(ptl);
93b4796d 1311alloc:
71e3aac0 1312 if (transparent_hugepage_enabled(vma) &&
077fcf11 1313 !transparent_hugepage_debug_cow()) {
444eb2a4 1314 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1315 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1316 } else
71e3aac0
AA
1317 new_page = NULL;
1318
9a982250
KS
1319 if (likely(new_page)) {
1320 prep_transhuge_page(new_page);
1321 } else {
eecc1e42 1322 if (!page) {
78ddc534 1323 split_huge_pmd(vma, pmd, address);
e9b71ca9 1324 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1325 } else {
1326 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1327 pmd, orig_pmd, page, haddr);
9845cbbd 1328 if (ret & VM_FAULT_OOM) {
78ddc534 1329 split_huge_pmd(vma, pmd, address);
9845cbbd
KS
1330 ret |= VM_FAULT_FALLBACK;
1331 }
ddc58f27 1332 put_page(page);
93b4796d 1333 }
17766dde 1334 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1335 goto out;
1336 }
1337
f627c2f5
KS
1338 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1339 true))) {
b9bbfbe3 1340 put_page(new_page);
93b4796d 1341 if (page) {
78ddc534 1342 split_huge_pmd(vma, pmd, address);
ddc58f27 1343 put_page(page);
9845cbbd 1344 } else
78ddc534 1345 split_huge_pmd(vma, pmd, address);
9845cbbd 1346 ret |= VM_FAULT_FALLBACK;
17766dde 1347 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1348 goto out;
1349 }
1350
17766dde
DR
1351 count_vm_event(THP_FAULT_ALLOC);
1352
eecc1e42 1353 if (!page)
93b4796d
KS
1354 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1355 else
1356 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1357 __SetPageUptodate(new_page);
1358
2ec74c3e
SG
1359 mmun_start = haddr;
1360 mmun_end = haddr + HPAGE_PMD_SIZE;
1361 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1362
c4088ebd 1363 spin_lock(ptl);
93b4796d 1364 if (page)
ddc58f27 1365 put_page(page);
b9bbfbe3 1366 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1367 spin_unlock(ptl);
f627c2f5 1368 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1369 put_page(new_page);
2ec74c3e 1370 goto out_mn;
b9bbfbe3 1371 } else {
71e3aac0 1372 pmd_t entry;
3122359a
KS
1373 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1374 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1375 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d281ee61 1376 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1377 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1378 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1379 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1380 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1381 if (!page) {
93b4796d 1382 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1383 put_huge_zero_page();
1384 } else {
309381fe 1385 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1386 page_remove_rmap(page, true);
93b4796d
KS
1387 put_page(page);
1388 }
71e3aac0
AA
1389 ret |= VM_FAULT_WRITE;
1390 }
c4088ebd 1391 spin_unlock(ptl);
2ec74c3e
SG
1392out_mn:
1393 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1394out:
1395 return ret;
2ec74c3e 1396out_unlock:
c4088ebd 1397 spin_unlock(ptl);
2ec74c3e 1398 return ret;
71e3aac0
AA
1399}
1400
b676b293 1401struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1402 unsigned long addr,
1403 pmd_t *pmd,
1404 unsigned int flags)
1405{
b676b293 1406 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1407 struct page *page = NULL;
1408
c4088ebd 1409 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1410
1411 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1412 goto out;
1413
85facf25
KS
1414 /* Avoid dumping huge zero page */
1415 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1416 return ERR_PTR(-EFAULT);
1417
2b4847e7 1418 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1419 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1420 goto out;
1421
71e3aac0 1422 page = pmd_page(*pmd);
309381fe 1423 VM_BUG_ON_PAGE(!PageHead(page), page);
3565fce3
DW
1424 if (flags & FOLL_TOUCH)
1425 touch_pmd(vma, addr, pmd);
de60f5f1 1426 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1427 /*
1428 * We don't mlock() pte-mapped THPs. This way we can avoid
1429 * leaking mlocked pages into non-VM_LOCKED VMAs.
1430 *
1431 * In most cases the pmd is the only mapping of the page as we
1432 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1433 * writable private mappings in populate_vma_page_range().
1434 *
1435 * The only scenario when we have the page shared here is if we
1436 * mlocking read-only mapping shared over fork(). We skip
1437 * mlocking such pages.
1438 */
1439 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1440 page->mapping && trylock_page(page)) {
b676b293
DR
1441 lru_add_drain();
1442 if (page->mapping)
1443 mlock_vma_page(page);
1444 unlock_page(page);
1445 }
1446 }
71e3aac0 1447 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1448 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1449 if (flags & FOLL_GET)
ddc58f27 1450 get_page(page);
71e3aac0
AA
1451
1452out:
1453 return page;
1454}
1455
d10e63f2 1456/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1457int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1458 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1459{
c4088ebd 1460 spinlock_t *ptl;
b8916634 1461 struct anon_vma *anon_vma = NULL;
b32967ff 1462 struct page *page;
d10e63f2 1463 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1464 int page_nid = -1, this_nid = numa_node_id();
90572890 1465 int target_nid, last_cpupid = -1;
8191acbd
MG
1466 bool page_locked;
1467 bool migrated = false;
b191f9b1 1468 bool was_writable;
6688cc05 1469 int flags = 0;
d10e63f2 1470
c0e7cad9
MG
1471 /* A PROT_NONE fault should not end up here */
1472 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1473
c4088ebd 1474 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1475 if (unlikely(!pmd_same(pmd, *pmdp)))
1476 goto out_unlock;
1477
de466bd6
MG
1478 /*
1479 * If there are potential migrations, wait for completion and retry
1480 * without disrupting NUMA hinting information. Do not relock and
1481 * check_same as the page may no longer be mapped.
1482 */
1483 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1484 page = pmd_page(*pmdp);
de466bd6 1485 spin_unlock(ptl);
5d833062 1486 wait_on_page_locked(page);
de466bd6
MG
1487 goto out;
1488 }
1489
d10e63f2 1490 page = pmd_page(pmd);
a1a46184 1491 BUG_ON(is_huge_zero_page(page));
8191acbd 1492 page_nid = page_to_nid(page);
90572890 1493 last_cpupid = page_cpupid_last(page);
03c5a6e1 1494 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1495 if (page_nid == this_nid) {
03c5a6e1 1496 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1497 flags |= TNF_FAULT_LOCAL;
1498 }
4daae3b4 1499
bea66fbd
MG
1500 /* See similar comment in do_numa_page for explanation */
1501 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1502 flags |= TNF_NO_GROUP;
1503
ff9042b1
MG
1504 /*
1505 * Acquire the page lock to serialise THP migrations but avoid dropping
1506 * page_table_lock if at all possible
1507 */
b8916634
MG
1508 page_locked = trylock_page(page);
1509 target_nid = mpol_misplaced(page, vma, haddr);
1510 if (target_nid == -1) {
1511 /* If the page was locked, there are no parallel migrations */
a54a407f 1512 if (page_locked)
b8916634 1513 goto clear_pmdnuma;
2b4847e7 1514 }
4daae3b4 1515
de466bd6 1516 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1517 if (!page_locked) {
c4088ebd 1518 spin_unlock(ptl);
b8916634 1519 wait_on_page_locked(page);
a54a407f 1520 page_nid = -1;
b8916634
MG
1521 goto out;
1522 }
1523
2b4847e7
MG
1524 /*
1525 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1526 * to serialises splits
1527 */
b8916634 1528 get_page(page);
c4088ebd 1529 spin_unlock(ptl);
b8916634 1530 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1531
c69307d5 1532 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1533 spin_lock(ptl);
b32967ff
MG
1534 if (unlikely(!pmd_same(pmd, *pmdp))) {
1535 unlock_page(page);
1536 put_page(page);
a54a407f 1537 page_nid = -1;
4daae3b4 1538 goto out_unlock;
b32967ff 1539 }
ff9042b1 1540
c3a489ca
MG
1541 /* Bail if we fail to protect against THP splits for any reason */
1542 if (unlikely(!anon_vma)) {
1543 put_page(page);
1544 page_nid = -1;
1545 goto clear_pmdnuma;
1546 }
1547
a54a407f
MG
1548 /*
1549 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1550 * and access rights restored.
a54a407f 1551 */
c4088ebd 1552 spin_unlock(ptl);
b32967ff 1553 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1554 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1555 if (migrated) {
1556 flags |= TNF_MIGRATED;
8191acbd 1557 page_nid = target_nid;
074c2381
MG
1558 } else
1559 flags |= TNF_MIGRATE_FAIL;
b32967ff 1560
8191acbd 1561 goto out;
b32967ff 1562clear_pmdnuma:
a54a407f 1563 BUG_ON(!PageLocked(page));
b191f9b1 1564 was_writable = pmd_write(pmd);
4d942466 1565 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1566 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1567 if (was_writable)
1568 pmd = pmd_mkwrite(pmd);
d10e63f2 1569 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1570 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1571 unlock_page(page);
d10e63f2 1572out_unlock:
c4088ebd 1573 spin_unlock(ptl);
b8916634
MG
1574
1575out:
1576 if (anon_vma)
1577 page_unlock_anon_vma_read(anon_vma);
1578
8191acbd 1579 if (page_nid != -1)
6688cc05 1580 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1581
d10e63f2
MG
1582 return 0;
1583}
1584
b8d3c4c3
MK
1585int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1586 pmd_t *pmd, unsigned long addr, unsigned long next)
1587
1588{
1589 spinlock_t *ptl;
1590 pmd_t orig_pmd;
1591 struct page *page;
1592 struct mm_struct *mm = tlb->mm;
1593 int ret = 0;
1594
b6ec57f4
KS
1595 ptl = pmd_trans_huge_lock(pmd, vma);
1596 if (!ptl)
25eedabe 1597 goto out_unlocked;
b8d3c4c3
MK
1598
1599 orig_pmd = *pmd;
1600 if (is_huge_zero_pmd(orig_pmd)) {
1601 ret = 1;
1602 goto out;
1603 }
1604
1605 page = pmd_page(orig_pmd);
1606 /*
1607 * If other processes are mapping this page, we couldn't discard
1608 * the page unless they all do MADV_FREE so let's skip the page.
1609 */
1610 if (page_mapcount(page) != 1)
1611 goto out;
1612
1613 if (!trylock_page(page))
1614 goto out;
1615
1616 /*
1617 * If user want to discard part-pages of THP, split it so MADV_FREE
1618 * will deactivate only them.
1619 */
1620 if (next - addr != HPAGE_PMD_SIZE) {
1621 get_page(page);
1622 spin_unlock(ptl);
1623 if (split_huge_page(page)) {
1624 put_page(page);
1625 unlock_page(page);
1626 goto out_unlocked;
1627 }
1628 put_page(page);
1629 unlock_page(page);
1630 ret = 1;
1631 goto out_unlocked;
1632 }
1633
1634 if (PageDirty(page))
1635 ClearPageDirty(page);
1636 unlock_page(page);
1637
1638 if (PageActive(page))
1639 deactivate_page(page);
1640
1641 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1642 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1643 tlb->fullmm);
1644 orig_pmd = pmd_mkold(orig_pmd);
1645 orig_pmd = pmd_mkclean(orig_pmd);
1646
1647 set_pmd_at(mm, addr, pmd, orig_pmd);
1648 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1649 }
1650 ret = 1;
1651out:
1652 spin_unlock(ptl);
1653out_unlocked:
1654 return ret;
1655}
1656
71e3aac0 1657int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1658 pmd_t *pmd, unsigned long addr)
71e3aac0 1659{
da146769 1660 pmd_t orig_pmd;
bf929152 1661 spinlock_t *ptl;
71e3aac0 1662
b6ec57f4
KS
1663 ptl = __pmd_trans_huge_lock(pmd, vma);
1664 if (!ptl)
da146769
KS
1665 return 0;
1666 /*
1667 * For architectures like ppc64 we look at deposited pgtable
1668 * when calling pmdp_huge_get_and_clear. So do the
1669 * pgtable_trans_huge_withdraw after finishing pmdp related
1670 * operations.
1671 */
1672 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1673 tlb->fullmm);
1674 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1675 if (vma_is_dax(vma)) {
1676 spin_unlock(ptl);
1677 if (is_huge_zero_pmd(orig_pmd))
aa88b68c 1678 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1679 } else if (is_huge_zero_pmd(orig_pmd)) {
1680 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1681 atomic_long_dec(&tlb->mm->nr_ptes);
1682 spin_unlock(ptl);
aa88b68c 1683 tlb_remove_page(tlb, pmd_page(orig_pmd));
da146769
KS
1684 } else {
1685 struct page *page = pmd_page(orig_pmd);
d281ee61 1686 page_remove_rmap(page, true);
da146769
KS
1687 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1688 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1689 VM_BUG_ON_PAGE(!PageHead(page), page);
1690 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1691 atomic_long_dec(&tlb->mm->nr_ptes);
1692 spin_unlock(ptl);
1693 tlb_remove_page(tlb, page);
025c5b24 1694 }
da146769 1695 return 1;
71e3aac0
AA
1696}
1697
bf8616d5 1698bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a
AA
1699 unsigned long new_addr, unsigned long old_end,
1700 pmd_t *old_pmd, pmd_t *new_pmd)
1701{
bf929152 1702 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1703 pmd_t pmd;
37a1c49a
AA
1704 struct mm_struct *mm = vma->vm_mm;
1705
1706 if ((old_addr & ~HPAGE_PMD_MASK) ||
1707 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1708 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1709 return false;
37a1c49a
AA
1710
1711 /*
1712 * The destination pmd shouldn't be established, free_pgtables()
1713 * should have release it.
1714 */
1715 if (WARN_ON(!pmd_none(*new_pmd))) {
1716 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1717 return false;
37a1c49a
AA
1718 }
1719
bf929152
KS
1720 /*
1721 * We don't have to worry about the ordering of src and dst
1722 * ptlocks because exclusive mmap_sem prevents deadlock.
1723 */
b6ec57f4
KS
1724 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1725 if (old_ptl) {
bf929152
KS
1726 new_ptl = pmd_lockptr(mm, new_pmd);
1727 if (new_ptl != old_ptl)
1728 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1729 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1730 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1731
69a8ec2d
KS
1732 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1733 vma_is_anonymous(vma)) {
b3084f4d 1734 pgtable_t pgtable;
3592806c
KS
1735 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1736 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1737 }
b3084f4d
AK
1738 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1739 if (new_ptl != old_ptl)
1740 spin_unlock(new_ptl);
bf929152 1741 spin_unlock(old_ptl);
4b471e88 1742 return true;
37a1c49a 1743 }
4b471e88 1744 return false;
37a1c49a
AA
1745}
1746
f123d74a
MG
1747/*
1748 * Returns
1749 * - 0 if PMD could not be locked
1750 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1751 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1752 */
cd7548ab 1753int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1754 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1755{
1756 struct mm_struct *mm = vma->vm_mm;
bf929152 1757 spinlock_t *ptl;
cd7548ab
JW
1758 int ret = 0;
1759
b6ec57f4
KS
1760 ptl = __pmd_trans_huge_lock(pmd, vma);
1761 if (ptl) {
025c5b24 1762 pmd_t entry;
b191f9b1 1763 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1764 ret = 1;
e944fd67
MG
1765
1766 /*
1767 * Avoid trapping faults against the zero page. The read-only
1768 * data is likely to be read-cached on the local CPU and
1769 * local/remote hits to the zero page are not interesting.
1770 */
1771 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1772 spin_unlock(ptl);
ba68bc01 1773 return ret;
e944fd67
MG
1774 }
1775
10c1045f 1776 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1777 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1778 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1779 if (preserve_write)
1780 entry = pmd_mkwrite(entry);
10c1045f
MG
1781 ret = HPAGE_PMD_NR;
1782 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1783 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1784 }
bf929152 1785 spin_unlock(ptl);
025c5b24
NH
1786 }
1787
1788 return ret;
1789}
1790
1791/*
4b471e88 1792 * Returns true if a given pmd maps a thp, false otherwise.
025c5b24 1793 *
4b471e88
KS
1794 * Note that if it returns true, this routine returns without unlocking page
1795 * table lock. So callers must unlock it.
025c5b24 1796 */
b6ec57f4 1797spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1798{
b6ec57f4
KS
1799 spinlock_t *ptl;
1800 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1801 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1802 return ptl;
1803 spin_unlock(ptl);
1804 return NULL;
cd7548ab
JW
1805}
1806
9050d7eb 1807#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1808
60ab3244
AA
1809int hugepage_madvise(struct vm_area_struct *vma,
1810 unsigned long *vm_flags, int advice)
0af4e98b 1811{
a664b2d8
AA
1812 switch (advice) {
1813 case MADV_HUGEPAGE:
1e1836e8
AT
1814#ifdef CONFIG_S390
1815 /*
1816 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1817 * can't handle this properly after s390_enable_sie, so we simply
1818 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1819 */
1820 if (mm_has_pgste(vma->vm_mm))
1821 return 0;
1822#endif
a664b2d8
AA
1823 /*
1824 * Be somewhat over-protective like KSM for now!
1825 */
1a763615 1826 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1827 return -EINVAL;
1828 *vm_flags &= ~VM_NOHUGEPAGE;
1829 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1830 /*
1831 * If the vma become good for khugepaged to scan,
1832 * register it here without waiting a page fault that
1833 * may not happen any time soon.
1834 */
6d50e60c 1835 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1836 return -ENOMEM;
a664b2d8
AA
1837 break;
1838 case MADV_NOHUGEPAGE:
1839 /*
1840 * Be somewhat over-protective like KSM for now!
1841 */
1a763615 1842 if (*vm_flags & VM_NO_THP)
a664b2d8
AA
1843 return -EINVAL;
1844 *vm_flags &= ~VM_HUGEPAGE;
1845 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1846 /*
1847 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1848 * this vma even if we leave the mm registered in khugepaged if
1849 * it got registered before VM_NOHUGEPAGE was set.
1850 */
a664b2d8
AA
1851 break;
1852 }
0af4e98b
AA
1853
1854 return 0;
1855}
1856
ba76149f
AA
1857static int __init khugepaged_slab_init(void)
1858{
1859 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1860 sizeof(struct mm_slot),
1861 __alignof__(struct mm_slot), 0, NULL);
1862 if (!mm_slot_cache)
1863 return -ENOMEM;
1864
1865 return 0;
1866}
1867
65ebb64f
KS
1868static void __init khugepaged_slab_exit(void)
1869{
1870 kmem_cache_destroy(mm_slot_cache);
1871}
1872
ba76149f
AA
1873static inline struct mm_slot *alloc_mm_slot(void)
1874{
1875 if (!mm_slot_cache) /* initialization failed */
1876 return NULL;
1877 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1878}
1879
1880static inline void free_mm_slot(struct mm_slot *mm_slot)
1881{
1882 kmem_cache_free(mm_slot_cache, mm_slot);
1883}
1884
ba76149f
AA
1885static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1886{
1887 struct mm_slot *mm_slot;
ba76149f 1888
b67bfe0d 1889 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1890 if (mm == mm_slot->mm)
1891 return mm_slot;
43b5fbbd 1892
ba76149f
AA
1893 return NULL;
1894}
1895
1896static void insert_to_mm_slots_hash(struct mm_struct *mm,
1897 struct mm_slot *mm_slot)
1898{
ba76149f 1899 mm_slot->mm = mm;
43b5fbbd 1900 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1901}
1902
1903static inline int khugepaged_test_exit(struct mm_struct *mm)
1904{
1905 return atomic_read(&mm->mm_users) == 0;
1906}
1907
1908int __khugepaged_enter(struct mm_struct *mm)
1909{
1910 struct mm_slot *mm_slot;
1911 int wakeup;
1912
1913 mm_slot = alloc_mm_slot();
1914 if (!mm_slot)
1915 return -ENOMEM;
1916
1917 /* __khugepaged_exit() must not run from under us */
96dad67f 1918 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
1919 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1920 free_mm_slot(mm_slot);
1921 return 0;
1922 }
1923
1924 spin_lock(&khugepaged_mm_lock);
1925 insert_to_mm_slots_hash(mm, mm_slot);
1926 /*
1927 * Insert just behind the scanning cursor, to let the area settle
1928 * down a little.
1929 */
1930 wakeup = list_empty(&khugepaged_scan.mm_head);
1931 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1932 spin_unlock(&khugepaged_mm_lock);
1933
1934 atomic_inc(&mm->mm_count);
1935 if (wakeup)
1936 wake_up_interruptible(&khugepaged_wait);
1937
1938 return 0;
1939}
1940
6d50e60c
DR
1941int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1942 unsigned long vm_flags)
ba76149f
AA
1943{
1944 unsigned long hstart, hend;
1945 if (!vma->anon_vma)
1946 /*
1947 * Not yet faulted in so we will register later in the
1948 * page fault if needed.
1949 */
1950 return 0;
3486b85a 1951 if (vma->vm_ops || (vm_flags & VM_NO_THP))
ba76149f
AA
1952 /* khugepaged not yet working on file or special mappings */
1953 return 0;
ba76149f
AA
1954 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1955 hend = vma->vm_end & HPAGE_PMD_MASK;
1956 if (hstart < hend)
6d50e60c 1957 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
1958 return 0;
1959}
1960
1961void __khugepaged_exit(struct mm_struct *mm)
1962{
1963 struct mm_slot *mm_slot;
1964 int free = 0;
1965
1966 spin_lock(&khugepaged_mm_lock);
1967 mm_slot = get_mm_slot(mm);
1968 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1969 hash_del(&mm_slot->hash);
ba76149f
AA
1970 list_del(&mm_slot->mm_node);
1971 free = 1;
1972 }
d788e80a 1973 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1974
1975 if (free) {
ba76149f
AA
1976 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1977 free_mm_slot(mm_slot);
1978 mmdrop(mm);
1979 } else if (mm_slot) {
ba76149f
AA
1980 /*
1981 * This is required to serialize against
1982 * khugepaged_test_exit() (which is guaranteed to run
1983 * under mmap sem read mode). Stop here (after we
1984 * return all pagetables will be destroyed) until
1985 * khugepaged has finished working on the pagetables
1986 * under the mmap_sem.
1987 */
1988 down_write(&mm->mmap_sem);
1989 up_write(&mm->mmap_sem);
d788e80a 1990 }
ba76149f
AA
1991}
1992
1993static void release_pte_page(struct page *page)
1994{
1995 /* 0 stands for page_is_file_cache(page) == false */
1996 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1997 unlock_page(page);
1998 putback_lru_page(page);
1999}
2000
2001static void release_pte_pages(pte_t *pte, pte_t *_pte)
2002{
2003 while (--_pte >= pte) {
2004 pte_t pteval = *_pte;
ca0984ca 2005 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2006 release_pte_page(pte_page(pteval));
2007 }
2008}
2009
ba76149f
AA
2010static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2011 unsigned long address,
2012 pte_t *pte)
2013{
7d2eba05 2014 struct page *page = NULL;
ba76149f 2015 pte_t *_pte;
7d2eba05 2016 int none_or_zero = 0, result = 0;
10359213 2017 bool referenced = false, writable = false;
7d2eba05 2018
ba76149f
AA
2019 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2020 _pte++, address += PAGE_SIZE) {
2021 pte_t pteval = *_pte;
47aee4d8
MK
2022 if (pte_none(pteval) || (pte_present(pteval) &&
2023 is_zero_pfn(pte_pfn(pteval)))) {
c1294d05 2024 if (!userfaultfd_armed(vma) &&
7d2eba05 2025 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2026 continue;
7d2eba05
EA
2027 } else {
2028 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2029 goto out;
7d2eba05 2030 }
ba76149f 2031 }
7d2eba05
EA
2032 if (!pte_present(pteval)) {
2033 result = SCAN_PTE_NON_PRESENT;
ba76149f 2034 goto out;
7d2eba05 2035 }
ba76149f 2036 page = vm_normal_page(vma, address, pteval);
7d2eba05
EA
2037 if (unlikely(!page)) {
2038 result = SCAN_PAGE_NULL;
ba76149f 2039 goto out;
7d2eba05 2040 }
344aa35c 2041
309381fe
SL
2042 VM_BUG_ON_PAGE(PageCompound(page), page);
2043 VM_BUG_ON_PAGE(!PageAnon(page), page);
2044 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2045
ba76149f
AA
2046 /*
2047 * We can do it before isolate_lru_page because the
2048 * page can't be freed from under us. NOTE: PG_lock
2049 * is needed to serialize against split_huge_page
2050 * when invoked from the VM.
2051 */
7d2eba05
EA
2052 if (!trylock_page(page)) {
2053 result = SCAN_PAGE_LOCK;
ba76149f 2054 goto out;
7d2eba05 2055 }
10359213
EA
2056
2057 /*
2058 * cannot use mapcount: can't collapse if there's a gup pin.
2059 * The page must only be referenced by the scanned process
2060 * and page swap cache.
2061 */
2062 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2063 unlock_page(page);
7d2eba05 2064 result = SCAN_PAGE_COUNT;
10359213
EA
2065 goto out;
2066 }
2067 if (pte_write(pteval)) {
2068 writable = true;
2069 } else {
6d0a07ed
AA
2070 if (PageSwapCache(page) &&
2071 !reuse_swap_page(page, NULL)) {
10359213 2072 unlock_page(page);
7d2eba05 2073 result = SCAN_SWAP_CACHE_PAGE;
10359213
EA
2074 goto out;
2075 }
2076 /*
2077 * Page is not in the swap cache. It can be collapsed
2078 * into a THP.
2079 */
2080 }
2081
ba76149f
AA
2082 /*
2083 * Isolate the page to avoid collapsing an hugepage
2084 * currently in use by the VM.
2085 */
2086 if (isolate_lru_page(page)) {
2087 unlock_page(page);
7d2eba05 2088 result = SCAN_DEL_PAGE_LRU;
ba76149f
AA
2089 goto out;
2090 }
2091 /* 0 stands for page_is_file_cache(page) == false */
2092 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2093 VM_BUG_ON_PAGE(!PageLocked(page), page);
2094 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2095
2096 /* If there is no mapped pte young don't collapse the page */
33c3fc71
VD
2097 if (pte_young(pteval) ||
2098 page_is_young(page) || PageReferenced(page) ||
8ee53820 2099 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2100 referenced = true;
ba76149f 2101 }
7d2eba05
EA
2102 if (likely(writable)) {
2103 if (likely(referenced)) {
2104 result = SCAN_SUCCEED;
16fd0fe4 2105 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05
EA
2106 referenced, writable, result);
2107 return 1;
2108 }
2109 } else {
2110 result = SCAN_PAGE_RO;
2111 }
2112
ba76149f 2113out:
344aa35c 2114 release_pte_pages(pte, _pte);
16fd0fe4 2115 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
7d2eba05 2116 referenced, writable, result);
344aa35c 2117 return 0;
ba76149f
AA
2118}
2119
2120static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2121 struct vm_area_struct *vma,
2122 unsigned long address,
2123 spinlock_t *ptl)
2124{
2125 pte_t *_pte;
2126 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2127 pte_t pteval = *_pte;
2128 struct page *src_page;
2129
ca0984ca 2130 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2131 clear_user_highpage(page, address);
2132 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2133 if (is_zero_pfn(pte_pfn(pteval))) {
2134 /*
2135 * ptl mostly unnecessary.
2136 */
2137 spin_lock(ptl);
2138 /*
2139 * paravirt calls inside pte_clear here are
2140 * superfluous.
2141 */
2142 pte_clear(vma->vm_mm, address, _pte);
2143 spin_unlock(ptl);
2144 }
ba76149f
AA
2145 } else {
2146 src_page = pte_page(pteval);
2147 copy_user_highpage(page, src_page, address, vma);
309381fe 2148 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2149 release_pte_page(src_page);
2150 /*
2151 * ptl mostly unnecessary, but preempt has to
2152 * be disabled to update the per-cpu stats
2153 * inside page_remove_rmap().
2154 */
2155 spin_lock(ptl);
2156 /*
2157 * paravirt calls inside pte_clear here are
2158 * superfluous.
2159 */
2160 pte_clear(vma->vm_mm, address, _pte);
d281ee61 2161 page_remove_rmap(src_page, false);
ba76149f
AA
2162 spin_unlock(ptl);
2163 free_page_and_swap_cache(src_page);
2164 }
2165
2166 address += PAGE_SIZE;
2167 page++;
2168 }
2169}
2170
26234f36 2171static void khugepaged_alloc_sleep(void)
ba76149f 2172{
bde43c6c
PM
2173 DEFINE_WAIT(wait);
2174
2175 add_wait_queue(&khugepaged_wait, &wait);
2176 freezable_schedule_timeout_interruptible(
2177 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2178 remove_wait_queue(&khugepaged_wait, &wait);
26234f36 2179}
ba76149f 2180
9f1b868a
BL
2181static int khugepaged_node_load[MAX_NUMNODES];
2182
14a4e214
DR
2183static bool khugepaged_scan_abort(int nid)
2184{
2185 int i;
2186
2187 /*
2188 * If zone_reclaim_mode is disabled, then no extra effort is made to
2189 * allocate memory locally.
2190 */
2191 if (!zone_reclaim_mode)
2192 return false;
2193
2194 /* If there is a count for this node already, it must be acceptable */
2195 if (khugepaged_node_load[nid])
2196 return false;
2197
2198 for (i = 0; i < MAX_NUMNODES; i++) {
2199 if (!khugepaged_node_load[i])
2200 continue;
2201 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2202 return true;
2203 }
2204 return false;
2205}
2206
26234f36 2207#ifdef CONFIG_NUMA
9f1b868a
BL
2208static int khugepaged_find_target_node(void)
2209{
2210 static int last_khugepaged_target_node = NUMA_NO_NODE;
2211 int nid, target_node = 0, max_value = 0;
2212
2213 /* find first node with max normal pages hit */
2214 for (nid = 0; nid < MAX_NUMNODES; nid++)
2215 if (khugepaged_node_load[nid] > max_value) {
2216 max_value = khugepaged_node_load[nid];
2217 target_node = nid;
2218 }
2219
2220 /* do some balance if several nodes have the same hit record */
2221 if (target_node <= last_khugepaged_target_node)
2222 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2223 nid++)
2224 if (max_value == khugepaged_node_load[nid]) {
2225 target_node = nid;
2226 break;
2227 }
2228
2229 last_khugepaged_target_node = target_node;
2230 return target_node;
2231}
2232
26234f36
XG
2233static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2234{
2235 if (IS_ERR(*hpage)) {
2236 if (!*wait)
2237 return false;
2238
2239 *wait = false;
e3b4126c 2240 *hpage = NULL;
26234f36
XG
2241 khugepaged_alloc_sleep();
2242 } else if (*hpage) {
2243 put_page(*hpage);
2244 *hpage = NULL;
2245 }
2246
2247 return true;
2248}
2249
3b363692
MH
2250static struct page *
2251khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2252 unsigned long address, int node)
26234f36 2253{
309381fe 2254 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2255
ce83d217 2256 /*
8b164568
VB
2257 * Before allocating the hugepage, release the mmap_sem read lock.
2258 * The allocation can take potentially a long time if it involves
2259 * sync compaction, and we do not need to hold the mmap_sem during
2260 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2261 */
8b164568
VB
2262 up_read(&mm->mmap_sem);
2263
96db800f 2264 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2265 if (unlikely(!*hpage)) {
81ab4201 2266 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2267 *hpage = ERR_PTR(-ENOMEM);
26234f36 2268 return NULL;
ce83d217 2269 }
26234f36 2270
9a982250 2271 prep_transhuge_page(*hpage);
65b3c07b 2272 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2273 return *hpage;
2274}
2275#else
9f1b868a
BL
2276static int khugepaged_find_target_node(void)
2277{
2278 return 0;
2279}
2280
444eb2a4 2281static inline struct page *alloc_khugepaged_hugepage(void)
10dc4155 2282{
9a982250
KS
2283 struct page *page;
2284
444eb2a4
MG
2285 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2286 HPAGE_PMD_ORDER);
9a982250
KS
2287 if (page)
2288 prep_transhuge_page(page);
2289 return page;
10dc4155
BL
2290}
2291
26234f36
XG
2292static struct page *khugepaged_alloc_hugepage(bool *wait)
2293{
2294 struct page *hpage;
2295
2296 do {
444eb2a4 2297 hpage = alloc_khugepaged_hugepage();
26234f36
XG
2298 if (!hpage) {
2299 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2300 if (!*wait)
2301 return NULL;
2302
2303 *wait = false;
2304 khugepaged_alloc_sleep();
2305 } else
2306 count_vm_event(THP_COLLAPSE_ALLOC);
2307 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2308
2309 return hpage;
2310}
2311
2312static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2313{
2314 if (!*hpage)
2315 *hpage = khugepaged_alloc_hugepage(wait);
2316
2317 if (unlikely(!*hpage))
2318 return false;
2319
2320 return true;
2321}
2322
3b363692
MH
2323static struct page *
2324khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
d6669d68 2325 unsigned long address, int node)
26234f36
XG
2326{
2327 up_read(&mm->mmap_sem);
2328 VM_BUG_ON(!*hpage);
3b363692 2329
26234f36
XG
2330 return *hpage;
2331}
692e0b35
AA
2332#endif
2333
fa475e51
BL
2334static bool hugepage_vma_check(struct vm_area_struct *vma)
2335{
2336 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2337 (vma->vm_flags & VM_NOHUGEPAGE))
2338 return false;
fa475e51
BL
2339 if (!vma->anon_vma || vma->vm_ops)
2340 return false;
2341 if (is_vma_temporary_stack(vma))
2342 return false;
3486b85a 2343 return !(vma->vm_flags & VM_NO_THP);
fa475e51
BL
2344}
2345
26234f36
XG
2346static void collapse_huge_page(struct mm_struct *mm,
2347 unsigned long address,
2348 struct page **hpage,
2349 struct vm_area_struct *vma,
2350 int node)
2351{
26234f36
XG
2352 pmd_t *pmd, _pmd;
2353 pte_t *pte;
2354 pgtable_t pgtable;
2355 struct page *new_page;
c4088ebd 2356 spinlock_t *pmd_ptl, *pte_ptl;
629d9d1c 2357 int isolated = 0, result = 0;
26234f36 2358 unsigned long hstart, hend;
00501b53 2359 struct mem_cgroup *memcg;
2ec74c3e
SG
2360 unsigned long mmun_start; /* For mmu_notifiers */
2361 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2362 gfp_t gfp;
26234f36
XG
2363
2364 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2365
3b363692 2366 /* Only allocate from the target node */
444eb2a4 2367 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
3b363692 2368
26234f36 2369 /* release the mmap_sem read lock. */
d6669d68 2370 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
7d2eba05
EA
2371 if (!new_page) {
2372 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2373 goto out_nolock;
2374 }
26234f36 2375
f627c2f5 2376 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
7d2eba05
EA
2377 result = SCAN_CGROUP_CHARGE_FAIL;
2378 goto out_nolock;
2379 }
ba76149f
AA
2380
2381 /*
2382 * Prevent all access to pagetables with the exception of
2383 * gup_fast later hanlded by the ptep_clear_flush and the VM
2384 * handled by the anon_vma lock + PG_lock.
2385 */
2386 down_write(&mm->mmap_sem);
7d2eba05
EA
2387 if (unlikely(khugepaged_test_exit(mm))) {
2388 result = SCAN_ANY_PROCESS;
ba76149f 2389 goto out;
7d2eba05 2390 }
ba76149f
AA
2391
2392 vma = find_vma(mm, address);
7d2eba05
EA
2393 if (!vma) {
2394 result = SCAN_VMA_NULL;
a8f531eb 2395 goto out;
7d2eba05 2396 }
ba76149f
AA
2397 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2398 hend = vma->vm_end & HPAGE_PMD_MASK;
7d2eba05
EA
2399 if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2400 result = SCAN_ADDRESS_RANGE;
ba76149f 2401 goto out;
7d2eba05
EA
2402 }
2403 if (!hugepage_vma_check(vma)) {
2404 result = SCAN_VMA_CHECK;
a7d6e4ec 2405 goto out;
7d2eba05 2406 }
6219049a 2407 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2408 if (!pmd) {
2409 result = SCAN_PMD_NULL;
ba76149f 2410 goto out;
7d2eba05 2411 }
ba76149f 2412
4fc3f1d6 2413 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2414
2415 pte = pte_offset_map(pmd, address);
c4088ebd 2416 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2417
2ec74c3e
SG
2418 mmun_start = address;
2419 mmun_end = address + HPAGE_PMD_SIZE;
2420 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2421 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2422 /*
2423 * After this gup_fast can't run anymore. This also removes
2424 * any huge TLB entry from the CPU so we won't allow
2425 * huge and small TLB entries for the same virtual address
2426 * to avoid the risk of CPU bugs in that area.
2427 */
15a25b2e 2428 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2429 spin_unlock(pmd_ptl);
2ec74c3e 2430 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2431
c4088ebd 2432 spin_lock(pte_ptl);
ba76149f 2433 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2434 spin_unlock(pte_ptl);
ba76149f
AA
2435
2436 if (unlikely(!isolated)) {
453c7192 2437 pte_unmap(pte);
c4088ebd 2438 spin_lock(pmd_ptl);
ba76149f 2439 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2440 /*
2441 * We can only use set_pmd_at when establishing
2442 * hugepmds and never for establishing regular pmds that
2443 * points to regular pagetables. Use pmd_populate for that
2444 */
2445 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2446 spin_unlock(pmd_ptl);
08b52706 2447 anon_vma_unlock_write(vma->anon_vma);
7d2eba05 2448 result = SCAN_FAIL;
ce83d217 2449 goto out;
ba76149f
AA
2450 }
2451
2452 /*
2453 * All pages are isolated and locked so anon_vma rmap
2454 * can't run anymore.
2455 */
08b52706 2456 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2457
c4088ebd 2458 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2459 pte_unmap(pte);
ba76149f
AA
2460 __SetPageUptodate(new_page);
2461 pgtable = pmd_pgtable(_pmd);
ba76149f 2462
3122359a
KS
2463 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2464 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2465
2466 /*
2467 * spin_lock() below is not the equivalent of smp_wmb(), so
2468 * this is needed to avoid the copy_huge_page writes to become
2469 * visible after the set_pmd_at() write.
2470 */
2471 smp_wmb();
2472
c4088ebd 2473 spin_lock(pmd_ptl);
ba76149f 2474 BUG_ON(!pmd_none(*pmd));
d281ee61 2475 page_add_new_anon_rmap(new_page, vma, address, true);
f627c2f5 2476 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 2477 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2478 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2479 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2480 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2481 spin_unlock(pmd_ptl);
ba76149f
AA
2482
2483 *hpage = NULL;
420256ef 2484
ba76149f 2485 khugepaged_pages_collapsed++;
7d2eba05 2486 result = SCAN_SUCCEED;
ce83d217 2487out_up_write:
ba76149f 2488 up_write(&mm->mmap_sem);
7d2eba05 2489 trace_mm_collapse_huge_page(mm, isolated, result);
0bbbc0b3
AA
2490 return;
2491
7d2eba05
EA
2492out_nolock:
2493 trace_mm_collapse_huge_page(mm, isolated, result);
2494 return;
ce83d217 2495out:
f627c2f5 2496 mem_cgroup_cancel_charge(new_page, memcg, true);
ce83d217 2497 goto out_up_write;
ba76149f
AA
2498}
2499
2500static int khugepaged_scan_pmd(struct mm_struct *mm,
2501 struct vm_area_struct *vma,
2502 unsigned long address,
2503 struct page **hpage)
2504{
ba76149f
AA
2505 pmd_t *pmd;
2506 pte_t *pte, *_pte;
7d2eba05
EA
2507 int ret = 0, none_or_zero = 0, result = 0;
2508 struct page *page = NULL;
ba76149f
AA
2509 unsigned long _address;
2510 spinlock_t *ptl;
00ef2d2f 2511 int node = NUMA_NO_NODE;
10359213 2512 bool writable = false, referenced = false;
ba76149f
AA
2513
2514 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2515
6219049a 2516 pmd = mm_find_pmd(mm, address);
7d2eba05
EA
2517 if (!pmd) {
2518 result = SCAN_PMD_NULL;
ba76149f 2519 goto out;
7d2eba05 2520 }
ba76149f 2521
9f1b868a 2522 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2523 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2524 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2525 _pte++, _address += PAGE_SIZE) {
2526 pte_t pteval = *_pte;
ca0984ca 2527 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05 2528 if (!userfaultfd_armed(vma) &&
7d2eba05 2529 ++none_or_zero <= khugepaged_max_ptes_none) {
ba76149f 2530 continue;
7d2eba05
EA
2531 } else {
2532 result = SCAN_EXCEED_NONE_PTE;
ba76149f 2533 goto out_unmap;
7d2eba05 2534 }
ba76149f 2535 }
7d2eba05
EA
2536 if (!pte_present(pteval)) {
2537 result = SCAN_PTE_NON_PRESENT;
ba76149f 2538 goto out_unmap;
7d2eba05 2539 }
10359213
EA
2540 if (pte_write(pteval))
2541 writable = true;
2542
ba76149f 2543 page = vm_normal_page(vma, _address, pteval);
7d2eba05
EA
2544 if (unlikely(!page)) {
2545 result = SCAN_PAGE_NULL;
ba76149f 2546 goto out_unmap;
7d2eba05 2547 }
b1caa957
KS
2548
2549 /* TODO: teach khugepaged to collapse THP mapped with pte */
2550 if (PageCompound(page)) {
2551 result = SCAN_PAGE_COMPOUND;
2552 goto out_unmap;
2553 }
2554
5c4b4be3 2555 /*
9f1b868a
BL
2556 * Record which node the original page is from and save this
2557 * information to khugepaged_node_load[].
2558 * Khupaged will allocate hugepage from the node has the max
2559 * hit record.
5c4b4be3 2560 */
9f1b868a 2561 node = page_to_nid(page);
7d2eba05
EA
2562 if (khugepaged_scan_abort(node)) {
2563 result = SCAN_SCAN_ABORT;
14a4e214 2564 goto out_unmap;
7d2eba05 2565 }
9f1b868a 2566 khugepaged_node_load[node]++;
7d2eba05 2567 if (!PageLRU(page)) {
0fda2788 2568 result = SCAN_PAGE_LRU;
7d2eba05
EA
2569 goto out_unmap;
2570 }
2571 if (PageLocked(page)) {
2572 result = SCAN_PAGE_LOCK;
ba76149f 2573 goto out_unmap;
7d2eba05
EA
2574 }
2575 if (!PageAnon(page)) {
2576 result = SCAN_PAGE_ANON;
2577 goto out_unmap;
2578 }
2579
10359213
EA
2580 /*
2581 * cannot use mapcount: can't collapse if there's a gup pin.
2582 * The page must only be referenced by the scanned process
2583 * and page swap cache.
2584 */
7d2eba05
EA
2585 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2586 result = SCAN_PAGE_COUNT;
ba76149f 2587 goto out_unmap;
7d2eba05 2588 }
33c3fc71
VD
2589 if (pte_young(pteval) ||
2590 page_is_young(page) || PageReferenced(page) ||
8ee53820 2591 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2592 referenced = true;
ba76149f 2593 }
7d2eba05
EA
2594 if (writable) {
2595 if (referenced) {
2596 result = SCAN_SUCCEED;
2597 ret = 1;
2598 } else {
2599 result = SCAN_NO_REFERENCED_PAGE;
2600 }
2601 } else {
2602 result = SCAN_PAGE_RO;
2603 }
ba76149f
AA
2604out_unmap:
2605 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2606 if (ret) {
2607 node = khugepaged_find_target_node();
ce83d217 2608 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2609 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2610 }
ba76149f 2611out:
16fd0fe4 2612 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
7d2eba05 2613 none_or_zero, result);
ba76149f
AA
2614 return ret;
2615}
2616
2617static void collect_mm_slot(struct mm_slot *mm_slot)
2618{
2619 struct mm_struct *mm = mm_slot->mm;
2620
b9980cdc 2621 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2622
2623 if (khugepaged_test_exit(mm)) {
2624 /* free mm_slot */
43b5fbbd 2625 hash_del(&mm_slot->hash);
ba76149f
AA
2626 list_del(&mm_slot->mm_node);
2627
2628 /*
2629 * Not strictly needed because the mm exited already.
2630 *
2631 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2632 */
2633
2634 /* khugepaged_mm_lock actually not necessary for the below */
2635 free_mm_slot(mm_slot);
2636 mmdrop(mm);
2637 }
2638}
2639
2640static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2641 struct page **hpage)
2f1da642
HS
2642 __releases(&khugepaged_mm_lock)
2643 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2644{
2645 struct mm_slot *mm_slot;
2646 struct mm_struct *mm;
2647 struct vm_area_struct *vma;
2648 int progress = 0;
2649
2650 VM_BUG_ON(!pages);
b9980cdc 2651 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2652
2653 if (khugepaged_scan.mm_slot)
2654 mm_slot = khugepaged_scan.mm_slot;
2655 else {
2656 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2657 struct mm_slot, mm_node);
2658 khugepaged_scan.address = 0;
2659 khugepaged_scan.mm_slot = mm_slot;
2660 }
2661 spin_unlock(&khugepaged_mm_lock);
2662
2663 mm = mm_slot->mm;
2664 down_read(&mm->mmap_sem);
2665 if (unlikely(khugepaged_test_exit(mm)))
2666 vma = NULL;
2667 else
2668 vma = find_vma(mm, khugepaged_scan.address);
2669
2670 progress++;
2671 for (; vma; vma = vma->vm_next) {
2672 unsigned long hstart, hend;
2673
2674 cond_resched();
2675 if (unlikely(khugepaged_test_exit(mm))) {
2676 progress++;
2677 break;
2678 }
fa475e51
BL
2679 if (!hugepage_vma_check(vma)) {
2680skip:
ba76149f
AA
2681 progress++;
2682 continue;
2683 }
ba76149f
AA
2684 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2685 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2686 if (hstart >= hend)
2687 goto skip;
2688 if (khugepaged_scan.address > hend)
2689 goto skip;
ba76149f
AA
2690 if (khugepaged_scan.address < hstart)
2691 khugepaged_scan.address = hstart;
a7d6e4ec 2692 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2693
2694 while (khugepaged_scan.address < hend) {
2695 int ret;
2696 cond_resched();
2697 if (unlikely(khugepaged_test_exit(mm)))
2698 goto breakouterloop;
2699
2700 VM_BUG_ON(khugepaged_scan.address < hstart ||
2701 khugepaged_scan.address + HPAGE_PMD_SIZE >
2702 hend);
2703 ret = khugepaged_scan_pmd(mm, vma,
2704 khugepaged_scan.address,
2705 hpage);
2706 /* move to next address */
2707 khugepaged_scan.address += HPAGE_PMD_SIZE;
2708 progress += HPAGE_PMD_NR;
2709 if (ret)
2710 /* we released mmap_sem so break loop */
2711 goto breakouterloop_mmap_sem;
2712 if (progress >= pages)
2713 goto breakouterloop;
2714 }
2715 }
2716breakouterloop:
2717 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2718breakouterloop_mmap_sem:
2719
2720 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2721 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2722 /*
2723 * Release the current mm_slot if this mm is about to die, or
2724 * if we scanned all vmas of this mm.
2725 */
2726 if (khugepaged_test_exit(mm) || !vma) {
2727 /*
2728 * Make sure that if mm_users is reaching zero while
2729 * khugepaged runs here, khugepaged_exit will find
2730 * mm_slot not pointing to the exiting mm.
2731 */
2732 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2733 khugepaged_scan.mm_slot = list_entry(
2734 mm_slot->mm_node.next,
2735 struct mm_slot, mm_node);
2736 khugepaged_scan.address = 0;
2737 } else {
2738 khugepaged_scan.mm_slot = NULL;
2739 khugepaged_full_scans++;
2740 }
2741
2742 collect_mm_slot(mm_slot);
2743 }
2744
2745 return progress;
2746}
2747
2748static int khugepaged_has_work(void)
2749{
2750 return !list_empty(&khugepaged_scan.mm_head) &&
2751 khugepaged_enabled();
2752}
2753
2754static int khugepaged_wait_event(void)
2755{
2756 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2757 kthread_should_stop();
ba76149f
AA
2758}
2759
d516904b 2760static void khugepaged_do_scan(void)
ba76149f 2761{
d516904b 2762 struct page *hpage = NULL;
ba76149f
AA
2763 unsigned int progress = 0, pass_through_head = 0;
2764 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2765 bool wait = true;
ba76149f
AA
2766
2767 barrier(); /* write khugepaged_pages_to_scan to local stack */
2768
2769 while (progress < pages) {
26234f36 2770 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2771 break;
26234f36 2772
420256ef 2773 cond_resched();
ba76149f 2774
cd092411 2775 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2776 break;
2777
ba76149f
AA
2778 spin_lock(&khugepaged_mm_lock);
2779 if (!khugepaged_scan.mm_slot)
2780 pass_through_head++;
2781 if (khugepaged_has_work() &&
2782 pass_through_head < 2)
2783 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2784 &hpage);
ba76149f
AA
2785 else
2786 progress = pages;
2787 spin_unlock(&khugepaged_mm_lock);
2788 }
ba76149f 2789
d516904b
XG
2790 if (!IS_ERR_OR_NULL(hpage))
2791 put_page(hpage);
0bbbc0b3
AA
2792}
2793
2017c0bf
XG
2794static void khugepaged_wait_work(void)
2795{
2017c0bf
XG
2796 if (khugepaged_has_work()) {
2797 if (!khugepaged_scan_sleep_millisecs)
2798 return;
2799
2800 wait_event_freezable_timeout(khugepaged_wait,
2801 kthread_should_stop(),
2802 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2803 return;
2804 }
2805
2806 if (khugepaged_enabled())
2807 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2808}
2809
ba76149f
AA
2810static int khugepaged(void *none)
2811{
2812 struct mm_slot *mm_slot;
2813
878aee7d 2814 set_freezable();
8698a745 2815 set_user_nice(current, MAX_NICE);
ba76149f 2816
b7231789
XG
2817 while (!kthread_should_stop()) {
2818 khugepaged_do_scan();
2819 khugepaged_wait_work();
2820 }
ba76149f
AA
2821
2822 spin_lock(&khugepaged_mm_lock);
2823 mm_slot = khugepaged_scan.mm_slot;
2824 khugepaged_scan.mm_slot = NULL;
2825 if (mm_slot)
2826 collect_mm_slot(mm_slot);
2827 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2828 return 0;
2829}
2830
eef1b3ba
KS
2831static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2832 unsigned long haddr, pmd_t *pmd)
2833{
2834 struct mm_struct *mm = vma->vm_mm;
2835 pgtable_t pgtable;
2836 pmd_t _pmd;
2837 int i;
2838
2839 /* leave pmd empty until pte is filled */
2840 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2841
2842 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2843 pmd_populate(mm, &_pmd, pgtable);
2844
2845 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2846 pte_t *pte, entry;
2847 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2848 entry = pte_mkspecial(entry);
2849 pte = pte_offset_map(&_pmd, haddr);
2850 VM_BUG_ON(!pte_none(*pte));
2851 set_pte_at(mm, haddr, pte, entry);
2852 pte_unmap(pte);
2853 }
2854 smp_wmb(); /* make pte visible before pmd */
2855 pmd_populate(mm, pmd, pgtable);
2856 put_huge_zero_page();
2857}
2858
2859static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 2860 unsigned long haddr, bool freeze)
eef1b3ba
KS
2861{
2862 struct mm_struct *mm = vma->vm_mm;
2863 struct page *page;
2864 pgtable_t pgtable;
2865 pmd_t _pmd;
b8d3c4c3 2866 bool young, write, dirty;
2ac015e2 2867 unsigned long addr;
eef1b3ba
KS
2868 int i;
2869
2870 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2871 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2872 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 2873 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
2874
2875 count_vm_event(THP_SPLIT_PMD);
2876
2877 if (vma_is_dax(vma)) {
2878 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2879 if (is_huge_zero_pmd(_pmd))
2880 put_huge_zero_page();
2881 return;
2882 } else if (is_huge_zero_pmd(*pmd)) {
2883 return __split_huge_zero_page_pmd(vma, haddr, pmd);
2884 }
2885
2886 page = pmd_page(*pmd);
2887 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 2888 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
2889 write = pmd_write(*pmd);
2890 young = pmd_young(*pmd);
b8d3c4c3 2891 dirty = pmd_dirty(*pmd);
eef1b3ba 2892
c777e2a8 2893 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
2894 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2895 pmd_populate(mm, &_pmd, pgtable);
2896
2ac015e2 2897 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
2898 pte_t entry, *pte;
2899 /*
2900 * Note that NUMA hinting access restrictions are not
2901 * transferred to avoid any possibility of altering
2902 * permissions across VMAs.
2903 */
ba988280
KS
2904 if (freeze) {
2905 swp_entry_t swp_entry;
2906 swp_entry = make_migration_entry(page + i, write);
2907 entry = swp_entry_to_pte(swp_entry);
2908 } else {
2909 entry = mk_pte(page + i, vma->vm_page_prot);
b8d3c4c3 2910 entry = maybe_mkwrite(entry, vma);
ba988280
KS
2911 if (!write)
2912 entry = pte_wrprotect(entry);
2913 if (!young)
2914 entry = pte_mkold(entry);
2915 }
b8d3c4c3
MK
2916 if (dirty)
2917 SetPageDirty(page + i);
2ac015e2 2918 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 2919 BUG_ON(!pte_none(*pte));
2ac015e2 2920 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
2921 atomic_inc(&page[i]._mapcount);
2922 pte_unmap(pte);
2923 }
2924
2925 /*
2926 * Set PG_double_map before dropping compound_mapcount to avoid
2927 * false-negative page_mapped().
2928 */
2929 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2930 for (i = 0; i < HPAGE_PMD_NR; i++)
2931 atomic_inc(&page[i]._mapcount);
2932 }
2933
2934 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2935 /* Last compound_mapcount is gone. */
2936 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2937 if (TestClearPageDoubleMap(page)) {
2938 /* No need in mapcount reference anymore */
2939 for (i = 0; i < HPAGE_PMD_NR; i++)
2940 atomic_dec(&page[i]._mapcount);
2941 }
2942 }
2943
2944 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
2945 /*
2946 * Up to this point the pmd is present and huge and userland has the
2947 * whole access to the hugepage during the split (which happens in
2948 * place). If we overwrite the pmd with the not-huge version pointing
2949 * to the pte here (which of course we could if all CPUs were bug
2950 * free), userland could trigger a small page size TLB miss on the
2951 * small sized TLB while the hugepage TLB entry is still established in
2952 * the huge TLB. Some CPU doesn't like that.
2953 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2954 * 383 on page 93. Intel should be safe but is also warns that it's
2955 * only safe if the permission and cache attributes of the two entries
2956 * loaded in the two TLB is identical (which should be the case here).
2957 * But it is generally safer to never allow small and huge TLB entries
2958 * for the same virtual address to be loaded simultaneously. So instead
2959 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2960 * current pmd notpresent (atomically because here the pmd_trans_huge
2961 * and pmd_trans_splitting must remain set at all times on the pmd
2962 * until the split is complete for this pmd), then we flush the SMP TLB
2963 * and finally we write the non-huge version of the pmd entry with
2964 * pmd_populate.
2965 */
2966 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 2967 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
2968
2969 if (freeze) {
2ac015e2 2970 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
2971 page_remove_rmap(page + i, false);
2972 put_page(page + i);
2973 }
2974 }
eef1b3ba
KS
2975}
2976
2977void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
fec89c10 2978 unsigned long address, bool freeze)
eef1b3ba
KS
2979{
2980 spinlock_t *ptl;
2981 struct mm_struct *mm = vma->vm_mm;
2982 unsigned long haddr = address & HPAGE_PMD_MASK;
2983
2984 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2985 ptl = pmd_lock(mm, pmd);
5c7fb56e 2986 if (pmd_trans_huge(*pmd)) {
5f737714 2987 struct page *page = pmd_page(*pmd);
5c7fb56e 2988 if (PageMlocked(page))
5f737714 2989 clear_page_mlock(page);
5c7fb56e 2990 } else if (!pmd_devmap(*pmd))
e90309c9 2991 goto out;
fec89c10 2992 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 2993out:
eef1b3ba
KS
2994 spin_unlock(ptl);
2995 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
2996}
2997
fec89c10
KS
2998void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
2999 bool freeze, struct page *page)
94fcc585 3000{
f72e7dcd
HD
3001 pgd_t *pgd;
3002 pud_t *pud;
94fcc585
AA
3003 pmd_t *pmd;
3004
78ddc534 3005 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
3006 if (!pgd_present(*pgd))
3007 return;
3008
3009 pud = pud_offset(pgd, address);
3010 if (!pud_present(*pud))
3011 return;
3012
3013 pmd = pmd_offset(pud, address);
5c7fb56e 3014 if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
94fcc585 3015 return;
fec89c10
KS
3016
3017 /*
3018 * If caller asks to setup a migration entries, we need a page to check
3019 * pmd against. Otherwise we can end up replacing wrong page.
3020 */
3021 VM_BUG_ON(freeze && !page);
3022 if (page && page != pmd_page(*pmd))
3023 return;
3024
94fcc585 3025 /*
d5ee7c3b
AA
3026 * Caller holds the mmap_sem write mode or the anon_vma lock,
3027 * so a huge pmd cannot materialize from under us (khugepaged
3028 * holds both the mmap_sem write mode and the anon_vma lock
3029 * write mode).
94fcc585 3030 */
fec89c10 3031 __split_huge_pmd(vma, pmd, address, freeze);
94fcc585
AA
3032}
3033
e1b9996b 3034void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3035 unsigned long start,
3036 unsigned long end,
3037 long adjust_next)
3038{
3039 /*
3040 * If the new start address isn't hpage aligned and it could
3041 * previously contain an hugepage: check if we need to split
3042 * an huge pmd.
3043 */
3044 if (start & ~HPAGE_PMD_MASK &&
3045 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3046 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3047 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
3048
3049 /*
3050 * If the new end address isn't hpage aligned and it could
3051 * previously contain an hugepage: check if we need to split
3052 * an huge pmd.
3053 */
3054 if (end & ~HPAGE_PMD_MASK &&
3055 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3056 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 3057 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
3058
3059 /*
3060 * If we're also updating the vma->vm_next->vm_start, if the new
3061 * vm_next->vm_start isn't page aligned and it could previously
3062 * contain an hugepage: check if we need to split an huge pmd.
3063 */
3064 if (adjust_next > 0) {
3065 struct vm_area_struct *next = vma->vm_next;
3066 unsigned long nstart = next->vm_start;
3067 nstart += adjust_next << PAGE_SHIFT;
3068 if (nstart & ~HPAGE_PMD_MASK &&
3069 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3070 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 3071 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
3072 }
3073}
e9b61f19 3074
fec89c10 3075static void freeze_page(struct page *page)
e9b61f19 3076{
fec89c10
KS
3077 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3078 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3079 int i, ret;
e9b61f19
KS
3080
3081 VM_BUG_ON_PAGE(!PageHead(page), page);
3082
fec89c10
KS
3083 /* We only need TTU_SPLIT_HUGE_PMD once */
3084 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3085 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3086 /* Cut short if the page is unmapped */
3087 if (page_count(page) == 1)
3088 return;
e9b61f19 3089
fec89c10 3090 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 3091 }
fec89c10 3092 VM_BUG_ON(ret);
e9b61f19
KS
3093}
3094
fec89c10 3095static void unfreeze_page(struct page *page)
e9b61f19 3096{
fec89c10 3097 int i;
e9b61f19 3098
fec89c10
KS
3099 for (i = 0; i < HPAGE_PMD_NR; i++)
3100 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
3101}
3102
8df651c7 3103static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
3104 struct lruvec *lruvec, struct list_head *list)
3105{
e9b61f19
KS
3106 struct page *page_tail = head + tail;
3107
8df651c7 3108 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 3109 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
3110
3111 /*
0139aa7b 3112 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 3113 * get_page_unless_zero() may be running from under us on the
8df651c7 3114 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
e9b61f19
KS
3115 * would then run atomic_set() concurrently with
3116 * get_page_unless_zero(), and atomic_set() is implemented in C not
3117 * using locked ops. spin_unlock on x86 sometime uses locked ops
3118 * because of PPro errata 66, 92, so unless somebody can guarantee
3119 * atomic_set() here would be safe on all archs (and not only on x86),
8df651c7 3120 * it's safer to use atomic_inc().
e9b61f19 3121 */
fe896d18 3122 page_ref_inc(page_tail);
e9b61f19
KS
3123
3124 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3125 page_tail->flags |= (head->flags &
3126 ((1L << PG_referenced) |
3127 (1L << PG_swapbacked) |
3128 (1L << PG_mlocked) |
3129 (1L << PG_uptodate) |
3130 (1L << PG_active) |
3131 (1L << PG_locked) |
b8d3c4c3
MK
3132 (1L << PG_unevictable) |
3133 (1L << PG_dirty)));
e9b61f19
KS
3134
3135 /*
3136 * After clearing PageTail the gup refcount can be released.
3137 * Page flags also must be visible before we make the page non-compound.
3138 */
3139 smp_wmb();
3140
3141 clear_compound_head(page_tail);
3142
3143 if (page_is_young(head))
3144 set_page_young(page_tail);
3145 if (page_is_idle(head))
3146 set_page_idle(page_tail);
3147
3148 /* ->mapping in first tail page is compound_mapcount */
9a982250 3149 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
3150 page_tail);
3151 page_tail->mapping = head->mapping;
3152
3153 page_tail->index = head->index + tail;
3154 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3155 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
3156}
3157
3158static void __split_huge_page(struct page *page, struct list_head *list)
3159{
3160 struct page *head = compound_head(page);
3161 struct zone *zone = page_zone(head);
3162 struct lruvec *lruvec;
8df651c7 3163 int i;
e9b61f19
KS
3164
3165 /* prevent PageLRU to go away from under us, and freeze lru stats */
3166 spin_lock_irq(&zone->lru_lock);
3167 lruvec = mem_cgroup_page_lruvec(head, zone);
3168
3169 /* complete memcg works before add pages to LRU */
3170 mem_cgroup_split_huge_fixup(head);
3171
e9b61f19 3172 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
8df651c7 3173 __split_huge_page_tail(head, i, lruvec, list);
e9b61f19
KS
3174
3175 ClearPageCompound(head);
3176 spin_unlock_irq(&zone->lru_lock);
3177
fec89c10 3178 unfreeze_page(head);
e9b61f19
KS
3179
3180 for (i = 0; i < HPAGE_PMD_NR; i++) {
3181 struct page *subpage = head + i;
3182 if (subpage == page)
3183 continue;
3184 unlock_page(subpage);
3185
3186 /*
3187 * Subpages may be freed if there wasn't any mapping
3188 * like if add_to_swap() is running on a lru page that
3189 * had its mapping zapped. And freeing these pages
3190 * requires taking the lru_lock so we do the put_page
3191 * of the tail pages after the split is complete.
3192 */
3193 put_page(subpage);
3194 }
3195}
3196
b20ce5e0
KS
3197int total_mapcount(struct page *page)
3198{
3199 int i, ret;
3200
3201 VM_BUG_ON_PAGE(PageTail(page), page);
3202
3203 if (likely(!PageCompound(page)))
3204 return atomic_read(&page->_mapcount) + 1;
3205
3206 ret = compound_mapcount(page);
3207 if (PageHuge(page))
3208 return ret;
3209 for (i = 0; i < HPAGE_PMD_NR; i++)
3210 ret += atomic_read(&page[i]._mapcount) + 1;
3211 if (PageDoubleMap(page))
3212 ret -= HPAGE_PMD_NR;
3213 return ret;
3214}
3215
6d0a07ed
AA
3216/*
3217 * This calculates accurately how many mappings a transparent hugepage
3218 * has (unlike page_mapcount() which isn't fully accurate). This full
3219 * accuracy is primarily needed to know if copy-on-write faults can
3220 * reuse the page and change the mapping to read-write instead of
3221 * copying them. At the same time this returns the total_mapcount too.
3222 *
3223 * The function returns the highest mapcount any one of the subpages
3224 * has. If the return value is one, even if different processes are
3225 * mapping different subpages of the transparent hugepage, they can
3226 * all reuse it, because each process is reusing a different subpage.
3227 *
3228 * The total_mapcount is instead counting all virtual mappings of the
3229 * subpages. If the total_mapcount is equal to "one", it tells the
3230 * caller all mappings belong to the same "mm" and in turn the
3231 * anon_vma of the transparent hugepage can become the vma->anon_vma
3232 * local one as no other process may be mapping any of the subpages.
3233 *
3234 * It would be more accurate to replace page_mapcount() with
3235 * page_trans_huge_mapcount(), however we only use
3236 * page_trans_huge_mapcount() in the copy-on-write faults where we
3237 * need full accuracy to avoid breaking page pinning, because
3238 * page_trans_huge_mapcount() is slower than page_mapcount().
3239 */
3240int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3241{
3242 int i, ret, _total_mapcount, mapcount;
3243
3244 /* hugetlbfs shouldn't call it */
3245 VM_BUG_ON_PAGE(PageHuge(page), page);
3246
3247 if (likely(!PageTransCompound(page))) {
3248 mapcount = atomic_read(&page->_mapcount) + 1;
3249 if (total_mapcount)
3250 *total_mapcount = mapcount;
3251 return mapcount;
3252 }
3253
3254 page = compound_head(page);
3255
3256 _total_mapcount = ret = 0;
3257 for (i = 0; i < HPAGE_PMD_NR; i++) {
3258 mapcount = atomic_read(&page[i]._mapcount) + 1;
3259 ret = max(ret, mapcount);
3260 _total_mapcount += mapcount;
3261 }
3262 if (PageDoubleMap(page)) {
3263 ret -= 1;
3264 _total_mapcount -= HPAGE_PMD_NR;
3265 }
3266 mapcount = compound_mapcount(page);
3267 ret += mapcount;
3268 _total_mapcount += mapcount;
3269 if (total_mapcount)
3270 *total_mapcount = _total_mapcount;
3271 return ret;
3272}
3273
e9b61f19
KS
3274/*
3275 * This function splits huge page into normal pages. @page can point to any
3276 * subpage of huge page to split. Split doesn't change the position of @page.
3277 *
3278 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3279 * The huge page must be locked.
3280 *
3281 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3282 *
3283 * Both head page and tail pages will inherit mapping, flags, and so on from
3284 * the hugepage.
3285 *
3286 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3287 * they are not mapped.
3288 *
3289 * Returns 0 if the hugepage is split successfully.
3290 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3291 * us.
3292 */
3293int split_huge_page_to_list(struct page *page, struct list_head *list)
3294{
3295 struct page *head = compound_head(page);
a3d0a918 3296 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
e9b61f19
KS
3297 struct anon_vma *anon_vma;
3298 int count, mapcount, ret;
d9654322 3299 bool mlocked;
0b9b6fff 3300 unsigned long flags;
e9b61f19
KS
3301
3302 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3303 VM_BUG_ON_PAGE(!PageAnon(page), page);
3304 VM_BUG_ON_PAGE(!PageLocked(page), page);
3305 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3306 VM_BUG_ON_PAGE(!PageCompound(page), page);
3307
3308 /*
3309 * The caller does not necessarily hold an mmap_sem that would prevent
3310 * the anon_vma disappearing so we first we take a reference to it
3311 * and then lock the anon_vma for write. This is similar to
3312 * page_lock_anon_vma_read except the write lock is taken to serialise
3313 * against parallel split or collapse operations.
3314 */
3315 anon_vma = page_get_anon_vma(head);
3316 if (!anon_vma) {
3317 ret = -EBUSY;
3318 goto out;
3319 }
3320 anon_vma_lock_write(anon_vma);
3321
3322 /*
3323 * Racy check if we can split the page, before freeze_page() will
3324 * split PMDs
3325 */
3326 if (total_mapcount(head) != page_count(head) - 1) {
3327 ret = -EBUSY;
3328 goto out_unlock;
3329 }
3330
d9654322 3331 mlocked = PageMlocked(page);
fec89c10 3332 freeze_page(head);
e9b61f19
KS
3333 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3334
d9654322
KS
3335 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3336 if (mlocked)
3337 lru_add_drain();
3338
0139aa7b 3339 /* Prevent deferred_split_scan() touching ->_refcount */
a3d0a918 3340 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3341 count = page_count(head);
3342 mapcount = total_mapcount(head);
bd56086f 3343 if (!mapcount && count == 1) {
9a982250 3344 if (!list_empty(page_deferred_list(head))) {
a3d0a918 3345 pgdata->split_queue_len--;
9a982250
KS
3346 list_del(page_deferred_list(head));
3347 }
a3d0a918 3348 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3349 __split_huge_page(page, list);
3350 ret = 0;
bd56086f 3351 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
a3d0a918 3352 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
e9b61f19
KS
3353 pr_alert("total_mapcount: %u, page_count(): %u\n",
3354 mapcount, count);
3355 if (PageTail(page))
3356 dump_page(head, NULL);
bd56086f 3357 dump_page(page, "total_mapcount(head) > 0");
e9b61f19
KS
3358 BUG();
3359 } else {
a3d0a918 3360 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
fec89c10 3361 unfreeze_page(head);
e9b61f19
KS
3362 ret = -EBUSY;
3363 }
3364
3365out_unlock:
3366 anon_vma_unlock_write(anon_vma);
3367 put_anon_vma(anon_vma);
3368out:
3369 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3370 return ret;
3371}
9a982250
KS
3372
3373void free_transhuge_page(struct page *page)
3374{
a3d0a918 3375 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3376 unsigned long flags;
3377
a3d0a918 3378 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3379 if (!list_empty(page_deferred_list(page))) {
a3d0a918 3380 pgdata->split_queue_len--;
9a982250
KS
3381 list_del(page_deferred_list(page));
3382 }
a3d0a918 3383 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3384 free_compound_page(page);
3385}
3386
3387void deferred_split_huge_page(struct page *page)
3388{
a3d0a918 3389 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
3390 unsigned long flags;
3391
3392 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3393
a3d0a918 3394 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3395 if (list_empty(page_deferred_list(page))) {
f9719a03 3396 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
3397 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3398 pgdata->split_queue_len++;
9a982250 3399 }
a3d0a918 3400 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3401}
3402
3403static unsigned long deferred_split_count(struct shrinker *shrink,
3404 struct shrink_control *sc)
3405{
a3d0a918 3406 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 3407 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
3408}
3409
3410static unsigned long deferred_split_scan(struct shrinker *shrink,
3411 struct shrink_control *sc)
3412{
a3d0a918 3413 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
3414 unsigned long flags;
3415 LIST_HEAD(list), *pos, *next;
3416 struct page *page;
3417 int split = 0;
3418
a3d0a918 3419 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 3420 /* Take pin on all head pages to avoid freeing them under us */
ae026204 3421 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
3422 page = list_entry((void *)pos, struct page, mapping);
3423 page = compound_head(page);
e3ae1953
KS
3424 if (get_page_unless_zero(page)) {
3425 list_move(page_deferred_list(page), &list);
3426 } else {
3427 /* We lost race with put_compound_page() */
9a982250 3428 list_del_init(page_deferred_list(page));
a3d0a918 3429 pgdata->split_queue_len--;
9a982250 3430 }
e3ae1953
KS
3431 if (!--sc->nr_to_scan)
3432 break;
9a982250 3433 }
a3d0a918 3434 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
3435
3436 list_for_each_safe(pos, next, &list) {
3437 page = list_entry((void *)pos, struct page, mapping);
3438 lock_page(page);
3439 /* split_huge_page() removes page from list on success */
3440 if (!split_huge_page(page))
3441 split++;
3442 unlock_page(page);
3443 put_page(page);
3444 }
3445
a3d0a918
KS
3446 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3447 list_splice_tail(&list, &pgdata->split_queue);
3448 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 3449
cb8d68ec
KS
3450 /*
3451 * Stop shrinker if we didn't split any page, but the queue is empty.
3452 * This can happen if pages were freed under us.
3453 */
3454 if (!split && list_empty(&pgdata->split_queue))
3455 return SHRINK_STOP;
3456 return split;
9a982250
KS
3457}
3458
3459static struct shrinker deferred_split_shrinker = {
3460 .count_objects = deferred_split_count,
3461 .scan_objects = deferred_split_scan,
3462 .seeks = DEFAULT_SEEKS,
a3d0a918 3463 .flags = SHRINKER_NUMA_AWARE,
9a982250 3464};
49071d43
KS
3465
3466#ifdef CONFIG_DEBUG_FS
3467static int split_huge_pages_set(void *data, u64 val)
3468{
3469 struct zone *zone;
3470 struct page *page;
3471 unsigned long pfn, max_zone_pfn;
3472 unsigned long total = 0, split = 0;
3473
3474 if (val != 1)
3475 return -EINVAL;
3476
3477 for_each_populated_zone(zone) {
3478 max_zone_pfn = zone_end_pfn(zone);
3479 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3480 if (!pfn_valid(pfn))
3481 continue;
3482
3483 page = pfn_to_page(pfn);
3484 if (!get_page_unless_zero(page))
3485 continue;
3486
3487 if (zone != page_zone(page))
3488 goto next;
3489
3490 if (!PageHead(page) || !PageAnon(page) ||
3491 PageHuge(page))
3492 goto next;
3493
3494 total++;
3495 lock_page(page);
3496 if (!split_huge_page(page))
3497 split++;
3498 unlock_page(page);
3499next:
3500 put_page(page);
3501 }
3502 }
3503
145bdaa1 3504 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
3505
3506 return 0;
3507}
3508DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3509 "%llu\n");
3510
3511static int __init split_huge_pages_debugfs(void)
3512{
3513 void *ret;
3514
145bdaa1 3515 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
3516 &split_huge_pages_fops);
3517 if (!ret)
3518 pr_warn("Failed to create split_huge_pages in debugfs");
3519 return 0;
3520}
3521late_initcall(split_huge_pages_debugfs);
3522#endif