]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm/hugetlb: add tlb_remove_hugetlb_entry for handling hugetlb pages
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
e9b61f19 19#include <linux/swapops.h>
4897c765 20#include <linux/dax.h>
ba76149f 21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
f25748e3 23#include <linux/pfn_t.h>
a664b2d8 24#include <linux/mman.h>
3565fce3 25#include <linux/memremap.h>
325adeb5 26#include <linux/pagemap.h>
49071d43 27#include <linux/debugfs.h>
4daae3b4 28#include <linux/migrate.h>
43b5fbbd 29#include <linux/hashtable.h>
6b251fc9 30#include <linux/userfaultfd_k.h>
33c3fc71 31#include <linux/page_idle.h>
baa355fd 32#include <linux/shmem_fs.h>
97ae1749 33
71e3aac0
AA
34#include <asm/tlb.h>
35#include <asm/pgalloc.h>
36#include "internal.h"
37
ba76149f 38/*
8bfa3f9a
JW
39 * By default transparent hugepage support is disabled in order that avoid
40 * to risk increase the memory footprint of applications without a guaranteed
41 * benefit. When transparent hugepage support is enabled, is for all mappings,
42 * and khugepaged scans all mappings.
43 * Defrag is invoked by khugepaged hugepage allocations and by page faults
44 * for all hugepage allocations.
ba76149f 45 */
71e3aac0 46unsigned long transparent_hugepage_flags __read_mostly =
13ece886 47#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 48 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
49#endif
50#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
51 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
52#endif
444eb2a4 53 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
79da5407
KS
54 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
55 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f 56
9a982250 57static struct shrinker deferred_split_shrinker;
f000565a 58
97ae1749 59static atomic_t huge_zero_refcount;
56873f43 60struct page *huge_zero_page __read_mostly;
4a6c1297 61
6fcb52a5 62static struct page *get_huge_zero_page(void)
97ae1749
KS
63{
64 struct page *zero_page;
65retry:
66 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 67 return READ_ONCE(huge_zero_page);
97ae1749
KS
68
69 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 70 HPAGE_PMD_ORDER);
d8a8e1f0
KS
71 if (!zero_page) {
72 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 73 return NULL;
d8a8e1f0
KS
74 }
75 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 76 preempt_disable();
5918d10a 77 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 78 preempt_enable();
5ddacbe9 79 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
80 goto retry;
81 }
82
83 /* We take additional reference here. It will be put back by shrinker */
84 atomic_set(&huge_zero_refcount, 2);
85 preempt_enable();
4db0c3c2 86 return READ_ONCE(huge_zero_page);
4a6c1297
KS
87}
88
6fcb52a5 89static void put_huge_zero_page(void)
4a6c1297 90{
97ae1749
KS
91 /*
92 * Counter should never go to zero here. Only shrinker can put
93 * last reference.
94 */
95 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
96}
97
6fcb52a5
AL
98struct page *mm_get_huge_zero_page(struct mm_struct *mm)
99{
100 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
101 return READ_ONCE(huge_zero_page);
102
103 if (!get_huge_zero_page())
104 return NULL;
105
106 if (test_and_set_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
107 put_huge_zero_page();
108
109 return READ_ONCE(huge_zero_page);
110}
111
112void mm_put_huge_zero_page(struct mm_struct *mm)
113{
114 if (test_bit(MMF_HUGE_ZERO_PAGE, &mm->flags))
115 put_huge_zero_page();
116}
117
48896466
GC
118static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
119 struct shrink_control *sc)
4a6c1297 120{
48896466
GC
121 /* we can free zero page only if last reference remains */
122 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
123}
97ae1749 124
48896466
GC
125static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
126 struct shrink_control *sc)
127{
97ae1749 128 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
129 struct page *zero_page = xchg(&huge_zero_page, NULL);
130 BUG_ON(zero_page == NULL);
5ddacbe9 131 __free_pages(zero_page, compound_order(zero_page));
48896466 132 return HPAGE_PMD_NR;
97ae1749
KS
133 }
134
135 return 0;
4a6c1297
KS
136}
137
97ae1749 138static struct shrinker huge_zero_page_shrinker = {
48896466
GC
139 .count_objects = shrink_huge_zero_page_count,
140 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
141 .seeks = DEFAULT_SEEKS,
142};
143
71e3aac0 144#ifdef CONFIG_SYSFS
ba76149f 145
444eb2a4 146static ssize_t triple_flag_store(struct kobject *kobj,
71e3aac0
AA
147 struct kobj_attribute *attr,
148 const char *buf, size_t count,
149 enum transparent_hugepage_flag enabled,
444eb2a4 150 enum transparent_hugepage_flag deferred,
71e3aac0
AA
151 enum transparent_hugepage_flag req_madv)
152{
444eb2a4
MG
153 if (!memcmp("defer", buf,
154 min(sizeof("defer")-1, count))) {
155 if (enabled == deferred)
156 return -EINVAL;
157 clear_bit(enabled, &transparent_hugepage_flags);
158 clear_bit(req_madv, &transparent_hugepage_flags);
159 set_bit(deferred, &transparent_hugepage_flags);
160 } else if (!memcmp("always", buf,
71e3aac0 161 min(sizeof("always")-1, count))) {
444eb2a4 162 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0 163 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 164 set_bit(enabled, &transparent_hugepage_flags);
71e3aac0
AA
165 } else if (!memcmp("madvise", buf,
166 min(sizeof("madvise")-1, count))) {
167 clear_bit(enabled, &transparent_hugepage_flags);
444eb2a4 168 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
169 set_bit(req_madv, &transparent_hugepage_flags);
170 } else if (!memcmp("never", buf,
171 min(sizeof("never")-1, count))) {
172 clear_bit(enabled, &transparent_hugepage_flags);
173 clear_bit(req_madv, &transparent_hugepage_flags);
444eb2a4 174 clear_bit(deferred, &transparent_hugepage_flags);
71e3aac0
AA
175 } else
176 return -EINVAL;
177
178 return count;
179}
180
181static ssize_t enabled_show(struct kobject *kobj,
182 struct kobj_attribute *attr, char *buf)
183{
444eb2a4
MG
184 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
185 return sprintf(buf, "[always] madvise never\n");
186 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
187 return sprintf(buf, "always [madvise] never\n");
188 else
189 return sprintf(buf, "always madvise [never]\n");
71e3aac0 190}
444eb2a4 191
71e3aac0
AA
192static ssize_t enabled_store(struct kobject *kobj,
193 struct kobj_attribute *attr,
194 const char *buf, size_t count)
195{
ba76149f
AA
196 ssize_t ret;
197
444eb2a4
MG
198 ret = triple_flag_store(kobj, attr, buf, count,
199 TRANSPARENT_HUGEPAGE_FLAG,
ba76149f
AA
200 TRANSPARENT_HUGEPAGE_FLAG,
201 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
202
203 if (ret > 0) {
b46e756f 204 int err = start_stop_khugepaged();
ba76149f
AA
205 if (err)
206 ret = err;
207 }
208
209 return ret;
71e3aac0
AA
210}
211static struct kobj_attribute enabled_attr =
212 __ATTR(enabled, 0644, enabled_show, enabled_store);
213
b46e756f 214ssize_t single_hugepage_flag_show(struct kobject *kobj,
71e3aac0
AA
215 struct kobj_attribute *attr, char *buf,
216 enum transparent_hugepage_flag flag)
217{
e27e6151
BH
218 return sprintf(buf, "%d\n",
219 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 220}
e27e6151 221
b46e756f 222ssize_t single_hugepage_flag_store(struct kobject *kobj,
71e3aac0
AA
223 struct kobj_attribute *attr,
224 const char *buf, size_t count,
225 enum transparent_hugepage_flag flag)
226{
e27e6151
BH
227 unsigned long value;
228 int ret;
229
230 ret = kstrtoul(buf, 10, &value);
231 if (ret < 0)
232 return ret;
233 if (value > 1)
234 return -EINVAL;
235
236 if (value)
71e3aac0 237 set_bit(flag, &transparent_hugepage_flags);
e27e6151 238 else
71e3aac0 239 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
240
241 return count;
242}
243
244/*
245 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
246 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
247 * memory just to allocate one more hugepage.
248 */
249static ssize_t defrag_show(struct kobject *kobj,
250 struct kobj_attribute *attr, char *buf)
251{
444eb2a4
MG
252 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
253 return sprintf(buf, "[always] defer madvise never\n");
254 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
255 return sprintf(buf, "always [defer] madvise never\n");
256 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
257 return sprintf(buf, "always defer [madvise] never\n");
258 else
259 return sprintf(buf, "always defer madvise [never]\n");
260
71e3aac0
AA
261}
262static ssize_t defrag_store(struct kobject *kobj,
263 struct kobj_attribute *attr,
264 const char *buf, size_t count)
265{
444eb2a4
MG
266 return triple_flag_store(kobj, attr, buf, count,
267 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
268 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
71e3aac0
AA
269 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
270}
271static struct kobj_attribute defrag_attr =
272 __ATTR(defrag, 0644, defrag_show, defrag_store);
273
79da5407
KS
274static ssize_t use_zero_page_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276{
b46e756f 277 return single_hugepage_flag_show(kobj, attr, buf,
79da5407
KS
278 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
279}
280static ssize_t use_zero_page_store(struct kobject *kobj,
281 struct kobj_attribute *attr, const char *buf, size_t count)
282{
b46e756f 283 return single_hugepage_flag_store(kobj, attr, buf, count,
79da5407
KS
284 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
285}
286static struct kobj_attribute use_zero_page_attr =
287 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
288#ifdef CONFIG_DEBUG_VM
289static ssize_t debug_cow_show(struct kobject *kobj,
290 struct kobj_attribute *attr, char *buf)
291{
b46e756f 292 return single_hugepage_flag_show(kobj, attr, buf,
71e3aac0
AA
293 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
294}
295static ssize_t debug_cow_store(struct kobject *kobj,
296 struct kobj_attribute *attr,
297 const char *buf, size_t count)
298{
b46e756f 299 return single_hugepage_flag_store(kobj, attr, buf, count,
71e3aac0
AA
300 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
301}
302static struct kobj_attribute debug_cow_attr =
303 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
304#endif /* CONFIG_DEBUG_VM */
305
306static struct attribute *hugepage_attr[] = {
307 &enabled_attr.attr,
308 &defrag_attr.attr,
79da5407 309 &use_zero_page_attr.attr,
e496cf3d 310#if defined(CONFIG_SHMEM) && defined(CONFIG_TRANSPARENT_HUGE_PAGECACHE)
5a6e75f8
KS
311 &shmem_enabled_attr.attr,
312#endif
71e3aac0
AA
313#ifdef CONFIG_DEBUG_VM
314 &debug_cow_attr.attr,
315#endif
316 NULL,
317};
318
319static struct attribute_group hugepage_attr_group = {
320 .attrs = hugepage_attr,
ba76149f
AA
321};
322
569e5590 323static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 324{
71e3aac0
AA
325 int err;
326
569e5590
SL
327 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
328 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 329 pr_err("failed to create transparent hugepage kobject\n");
569e5590 330 return -ENOMEM;
ba76149f
AA
331 }
332
569e5590 333 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 334 if (err) {
ae3a8c1c 335 pr_err("failed to register transparent hugepage group\n");
569e5590 336 goto delete_obj;
ba76149f
AA
337 }
338
569e5590 339 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 340 if (err) {
ae3a8c1c 341 pr_err("failed to register transparent hugepage group\n");
569e5590 342 goto remove_hp_group;
ba76149f 343 }
569e5590
SL
344
345 return 0;
346
347remove_hp_group:
348 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
349delete_obj:
350 kobject_put(*hugepage_kobj);
351 return err;
352}
353
354static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
355{
356 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
357 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
358 kobject_put(hugepage_kobj);
359}
360#else
361static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
362{
363 return 0;
364}
365
366static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
367{
368}
369#endif /* CONFIG_SYSFS */
370
371static int __init hugepage_init(void)
372{
373 int err;
374 struct kobject *hugepage_kobj;
375
376 if (!has_transparent_hugepage()) {
377 transparent_hugepage_flags = 0;
378 return -EINVAL;
379 }
380
ff20c2e0
KS
381 /*
382 * hugepages can't be allocated by the buddy allocator
383 */
384 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
385 /*
386 * we use page->mapping and page->index in second tail page
387 * as list_head: assuming THP order >= 2
388 */
389 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
390
569e5590
SL
391 err = hugepage_init_sysfs(&hugepage_kobj);
392 if (err)
65ebb64f 393 goto err_sysfs;
ba76149f 394
b46e756f 395 err = khugepaged_init();
ba76149f 396 if (err)
65ebb64f 397 goto err_slab;
ba76149f 398
65ebb64f
KS
399 err = register_shrinker(&huge_zero_page_shrinker);
400 if (err)
401 goto err_hzp_shrinker;
9a982250
KS
402 err = register_shrinker(&deferred_split_shrinker);
403 if (err)
404 goto err_split_shrinker;
97ae1749 405
97562cd2
RR
406 /*
407 * By default disable transparent hugepages on smaller systems,
408 * where the extra memory used could hurt more than TLB overhead
409 * is likely to save. The admin can still enable it through /sys.
410 */
79553da2 411 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 412 transparent_hugepage_flags = 0;
79553da2
KS
413 return 0;
414 }
97562cd2 415
79553da2 416 err = start_stop_khugepaged();
65ebb64f
KS
417 if (err)
418 goto err_khugepaged;
ba76149f 419
569e5590 420 return 0;
65ebb64f 421err_khugepaged:
9a982250
KS
422 unregister_shrinker(&deferred_split_shrinker);
423err_split_shrinker:
65ebb64f
KS
424 unregister_shrinker(&huge_zero_page_shrinker);
425err_hzp_shrinker:
b46e756f 426 khugepaged_destroy();
65ebb64f 427err_slab:
569e5590 428 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 429err_sysfs:
ba76149f 430 return err;
71e3aac0 431}
a64fb3cd 432subsys_initcall(hugepage_init);
71e3aac0
AA
433
434static int __init setup_transparent_hugepage(char *str)
435{
436 int ret = 0;
437 if (!str)
438 goto out;
439 if (!strcmp(str, "always")) {
440 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
441 &transparent_hugepage_flags);
442 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
443 &transparent_hugepage_flags);
444 ret = 1;
445 } else if (!strcmp(str, "madvise")) {
446 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
447 &transparent_hugepage_flags);
448 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
449 &transparent_hugepage_flags);
450 ret = 1;
451 } else if (!strcmp(str, "never")) {
452 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
453 &transparent_hugepage_flags);
454 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
455 &transparent_hugepage_flags);
456 ret = 1;
457 }
458out:
459 if (!ret)
ae3a8c1c 460 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
461 return ret;
462}
463__setup("transparent_hugepage=", setup_transparent_hugepage);
464
b32967ff 465pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
466{
467 if (likely(vma->vm_flags & VM_WRITE))
468 pmd = pmd_mkwrite(pmd);
469 return pmd;
470}
471
9a982250
KS
472static inline struct list_head *page_deferred_list(struct page *page)
473{
474 /*
475 * ->lru in the tail pages is occupied by compound_head.
476 * Let's use ->mapping + ->index in the second tail page as list_head.
477 */
478 return (struct list_head *)&page[2].mapping;
479}
480
481void prep_transhuge_page(struct page *page)
482{
483 /*
484 * we use page->mapping and page->indexlru in second tail page
485 * as list_head: assuming THP order >= 2
486 */
9a982250
KS
487
488 INIT_LIST_HEAD(page_deferred_list(page));
489 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
490}
491
74d2fad1
TK
492unsigned long __thp_get_unmapped_area(struct file *filp, unsigned long len,
493 loff_t off, unsigned long flags, unsigned long size)
494{
495 unsigned long addr;
496 loff_t off_end = off + len;
497 loff_t off_align = round_up(off, size);
498 unsigned long len_pad;
499
500 if (off_end <= off_align || (off_end - off_align) < size)
501 return 0;
502
503 len_pad = len + size;
504 if (len_pad < len || (off + len_pad) < off)
505 return 0;
506
507 addr = current->mm->get_unmapped_area(filp, 0, len_pad,
508 off >> PAGE_SHIFT, flags);
509 if (IS_ERR_VALUE(addr))
510 return 0;
511
512 addr += (off - addr) & (size - 1);
513 return addr;
514}
515
516unsigned long thp_get_unmapped_area(struct file *filp, unsigned long addr,
517 unsigned long len, unsigned long pgoff, unsigned long flags)
518{
519 loff_t off = (loff_t)pgoff << PAGE_SHIFT;
520
521 if (addr)
522 goto out;
523 if (!IS_DAX(filp->f_mapping->host) || !IS_ENABLED(CONFIG_FS_DAX_PMD))
524 goto out;
525
526 addr = __thp_get_unmapped_area(filp, len, off, flags, PMD_SIZE);
527 if (addr)
528 return addr;
529
530 out:
531 return current->mm->get_unmapped_area(filp, addr, len, pgoff, flags);
532}
533EXPORT_SYMBOL_GPL(thp_get_unmapped_area);
534
bae473a4
KS
535static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
536 gfp_t gfp)
71e3aac0 537{
bae473a4 538 struct vm_area_struct *vma = fe->vma;
00501b53 539 struct mem_cgroup *memcg;
71e3aac0 540 pgtable_t pgtable;
bae473a4 541 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 542
309381fe 543 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 544
bae473a4 545 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
6b251fc9
AA
546 put_page(page);
547 count_vm_event(THP_FAULT_FALLBACK);
548 return VM_FAULT_FALLBACK;
549 }
00501b53 550
bae473a4 551 pgtable = pte_alloc_one(vma->vm_mm, haddr);
00501b53 552 if (unlikely(!pgtable)) {
f627c2f5 553 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 554 put_page(page);
71e3aac0 555 return VM_FAULT_OOM;
00501b53 556 }
71e3aac0
AA
557
558 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
559 /*
560 * The memory barrier inside __SetPageUptodate makes sure that
561 * clear_huge_page writes become visible before the set_pmd_at()
562 * write.
563 */
71e3aac0
AA
564 __SetPageUptodate(page);
565
bae473a4
KS
566 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
567 if (unlikely(!pmd_none(*fe->pmd))) {
568 spin_unlock(fe->ptl);
f627c2f5 569 mem_cgroup_cancel_charge(page, memcg, true);
71e3aac0 570 put_page(page);
bae473a4 571 pte_free(vma->vm_mm, pgtable);
71e3aac0
AA
572 } else {
573 pmd_t entry;
6b251fc9
AA
574
575 /* Deliver the page fault to userland */
576 if (userfaultfd_missing(vma)) {
577 int ret;
578
bae473a4 579 spin_unlock(fe->ptl);
f627c2f5 580 mem_cgroup_cancel_charge(page, memcg, true);
6b251fc9 581 put_page(page);
bae473a4
KS
582 pte_free(vma->vm_mm, pgtable);
583 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
584 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
585 return ret;
586 }
587
3122359a
KS
588 entry = mk_huge_pmd(page, vma->vm_page_prot);
589 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
d281ee61 590 page_add_new_anon_rmap(page, vma, haddr, true);
f627c2f5 591 mem_cgroup_commit_charge(page, memcg, false, true);
00501b53 592 lru_cache_add_active_or_unevictable(page, vma);
bae473a4
KS
593 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
594 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
595 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
596 atomic_long_inc(&vma->vm_mm->nr_ptes);
597 spin_unlock(fe->ptl);
6b251fc9 598 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
599 }
600
aa2e878e 601 return 0;
71e3aac0
AA
602}
603
444eb2a4 604/*
25160354
VB
605 * If THP defrag is set to always then directly reclaim/compact as necessary
606 * If set to defer then do only background reclaim/compact and defer to khugepaged
444eb2a4 607 * If set to madvise and the VMA is flagged then directly reclaim/compact
25160354 608 * When direct reclaim/compact is allowed, don't retry except for flagged VMA's
444eb2a4
MG
609 */
610static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
611{
25160354
VB
612 bool vma_madvised = !!(vma->vm_flags & VM_HUGEPAGE);
613
614 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG,
615 &transparent_hugepage_flags) && vma_madvised)
616 return GFP_TRANSHUGE;
617 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
618 &transparent_hugepage_flags))
619 return GFP_TRANSHUGE_LIGHT | __GFP_KSWAPD_RECLAIM;
620 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
621 &transparent_hugepage_flags))
622 return GFP_TRANSHUGE | (vma_madvised ? 0 : __GFP_NORETRY);
623
624 return GFP_TRANSHUGE_LIGHT;
444eb2a4
MG
625}
626
c4088ebd 627/* Caller must hold page table lock. */
d295e341 628static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 629 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 630 struct page *zero_page)
fc9fe822
KS
631{
632 pmd_t entry;
7c414164
AM
633 if (!pmd_none(*pmd))
634 return false;
5918d10a 635 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 636 entry = pmd_mkhuge(entry);
12c9d70b
MW
637 if (pgtable)
638 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 639 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 640 atomic_long_inc(&mm->nr_ptes);
7c414164 641 return true;
fc9fe822
KS
642}
643
bae473a4 644int do_huge_pmd_anonymous_page(struct fault_env *fe)
71e3aac0 645{
bae473a4 646 struct vm_area_struct *vma = fe->vma;
077fcf11 647 gfp_t gfp;
71e3aac0 648 struct page *page;
bae473a4 649 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
71e3aac0 650
128ec037 651 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 652 return VM_FAULT_FALLBACK;
128ec037
KS
653 if (unlikely(anon_vma_prepare(vma)))
654 return VM_FAULT_OOM;
6d50e60c 655 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 656 return VM_FAULT_OOM;
bae473a4
KS
657 if (!(fe->flags & FAULT_FLAG_WRITE) &&
658 !mm_forbids_zeropage(vma->vm_mm) &&
128ec037
KS
659 transparent_hugepage_use_zero_page()) {
660 pgtable_t pgtable;
661 struct page *zero_page;
662 bool set;
6b251fc9 663 int ret;
bae473a4 664 pgtable = pte_alloc_one(vma->vm_mm, haddr);
128ec037 665 if (unlikely(!pgtable))
ba76149f 666 return VM_FAULT_OOM;
6fcb52a5 667 zero_page = mm_get_huge_zero_page(vma->vm_mm);
128ec037 668 if (unlikely(!zero_page)) {
bae473a4 669 pte_free(vma->vm_mm, pgtable);
81ab4201 670 count_vm_event(THP_FAULT_FALLBACK);
c0292554 671 return VM_FAULT_FALLBACK;
b9bbfbe3 672 }
bae473a4 673 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
6b251fc9
AA
674 ret = 0;
675 set = false;
bae473a4 676 if (pmd_none(*fe->pmd)) {
6b251fc9 677 if (userfaultfd_missing(vma)) {
bae473a4
KS
678 spin_unlock(fe->ptl);
679 ret = handle_userfault(fe, VM_UFFD_MISSING);
6b251fc9
AA
680 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
681 } else {
bae473a4
KS
682 set_huge_zero_page(pgtable, vma->vm_mm, vma,
683 haddr, fe->pmd, zero_page);
684 spin_unlock(fe->ptl);
6b251fc9
AA
685 set = true;
686 }
687 } else
bae473a4 688 spin_unlock(fe->ptl);
6fcb52a5 689 if (!set)
bae473a4 690 pte_free(vma->vm_mm, pgtable);
6b251fc9 691 return ret;
71e3aac0 692 }
444eb2a4 693 gfp = alloc_hugepage_direct_gfpmask(vma);
077fcf11 694 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
695 if (unlikely(!page)) {
696 count_vm_event(THP_FAULT_FALLBACK);
c0292554 697 return VM_FAULT_FALLBACK;
128ec037 698 }
9a982250 699 prep_transhuge_page(page);
bae473a4 700 return __do_huge_pmd_anonymous_page(fe, page, gfp);
71e3aac0
AA
701}
702
ae18d6dc 703static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 704 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
5cad465d
MW
705{
706 struct mm_struct *mm = vma->vm_mm;
707 pmd_t entry;
708 spinlock_t *ptl;
709
710 ptl = pmd_lock(mm, pmd);
f25748e3
DW
711 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
712 if (pfn_t_devmap(pfn))
713 entry = pmd_mkdevmap(entry);
01871e59
RZ
714 if (write) {
715 entry = pmd_mkyoung(pmd_mkdirty(entry));
716 entry = maybe_pmd_mkwrite(entry, vma);
5cad465d 717 }
01871e59
RZ
718 set_pmd_at(mm, addr, pmd, entry);
719 update_mmu_cache_pmd(vma, addr, pmd);
5cad465d 720 spin_unlock(ptl);
5cad465d
MW
721}
722
723int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
f25748e3 724 pmd_t *pmd, pfn_t pfn, bool write)
5cad465d
MW
725{
726 pgprot_t pgprot = vma->vm_page_prot;
727 /*
728 * If we had pmd_special, we could avoid all these restrictions,
729 * but we need to be consistent with PTEs and architectures that
730 * can't support a 'special' bit.
731 */
732 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
733 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
734 (VM_PFNMAP|VM_MIXEDMAP));
735 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
f25748e3 736 BUG_ON(!pfn_t_devmap(pfn));
5cad465d
MW
737
738 if (addr < vma->vm_start || addr >= vma->vm_end)
739 return VM_FAULT_SIGBUS;
308a047c
BP
740
741 track_pfn_insert(vma, &pgprot, pfn);
742
ae18d6dc
MW
743 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
744 return VM_FAULT_NOPAGE;
5cad465d 745}
dee41079 746EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
5cad465d 747
3565fce3
DW
748static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
749 pmd_t *pmd)
750{
751 pmd_t _pmd;
752
753 /*
754 * We should set the dirty bit only for FOLL_WRITE but for now
755 * the dirty bit in the pmd is meaningless. And if the dirty
756 * bit will become meaningful and we'll only set it with
757 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
758 * set the young bit, instead of the current set_pmd_at.
759 */
760 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
761 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
762 pmd, _pmd, 1))
763 update_mmu_cache_pmd(vma, addr, pmd);
764}
765
766struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
767 pmd_t *pmd, int flags)
768{
769 unsigned long pfn = pmd_pfn(*pmd);
770 struct mm_struct *mm = vma->vm_mm;
771 struct dev_pagemap *pgmap;
772 struct page *page;
773
774 assert_spin_locked(pmd_lockptr(mm, pmd));
775
776 if (flags & FOLL_WRITE && !pmd_write(*pmd))
777 return NULL;
778
779 if (pmd_present(*pmd) && pmd_devmap(*pmd))
780 /* pass */;
781 else
782 return NULL;
783
784 if (flags & FOLL_TOUCH)
785 touch_pmd(vma, addr, pmd);
786
787 /*
788 * device mapped pages can only be returned if the
789 * caller will manage the page reference count.
790 */
791 if (!(flags & FOLL_GET))
792 return ERR_PTR(-EEXIST);
793
794 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
795 pgmap = get_dev_pagemap(pfn, NULL);
796 if (!pgmap)
797 return ERR_PTR(-EFAULT);
798 page = pfn_to_page(pfn);
799 get_page(page);
800 put_dev_pagemap(pgmap);
801
802 return page;
803}
804
71e3aac0
AA
805int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
806 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
807 struct vm_area_struct *vma)
808{
c4088ebd 809 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
810 struct page *src_page;
811 pmd_t pmd;
12c9d70b 812 pgtable_t pgtable = NULL;
628d47ce 813 int ret = -ENOMEM;
71e3aac0 814
628d47ce
KS
815 /* Skip if can be re-fill on fault */
816 if (!vma_is_anonymous(vma))
817 return 0;
818
819 pgtable = pte_alloc_one(dst_mm, addr);
820 if (unlikely(!pgtable))
821 goto out;
71e3aac0 822
c4088ebd
KS
823 dst_ptl = pmd_lock(dst_mm, dst_pmd);
824 src_ptl = pmd_lockptr(src_mm, src_pmd);
825 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
826
827 ret = -EAGAIN;
828 pmd = *src_pmd;
628d47ce 829 if (unlikely(!pmd_trans_huge(pmd))) {
71e3aac0
AA
830 pte_free(dst_mm, pgtable);
831 goto out_unlock;
832 }
fc9fe822 833 /*
c4088ebd 834 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
835 * under splitting since we don't split the page itself, only pmd to
836 * a page table.
837 */
838 if (is_huge_zero_pmd(pmd)) {
5918d10a 839 struct page *zero_page;
97ae1749
KS
840 /*
841 * get_huge_zero_page() will never allocate a new page here,
842 * since we already have a zero page to copy. It just takes a
843 * reference.
844 */
6fcb52a5 845 zero_page = mm_get_huge_zero_page(dst_mm);
6b251fc9 846 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 847 zero_page);
fc9fe822
KS
848 ret = 0;
849 goto out_unlock;
850 }
de466bd6 851
628d47ce
KS
852 src_page = pmd_page(pmd);
853 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
854 get_page(src_page);
855 page_dup_rmap(src_page, true);
856 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
857 atomic_long_inc(&dst_mm->nr_ptes);
858 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0
AA
859
860 pmdp_set_wrprotect(src_mm, addr, src_pmd);
861 pmd = pmd_mkold(pmd_wrprotect(pmd));
862 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
71e3aac0
AA
863
864 ret = 0;
865out_unlock:
c4088ebd
KS
866 spin_unlock(src_ptl);
867 spin_unlock(dst_ptl);
71e3aac0
AA
868out:
869 return ret;
870}
871
bae473a4 872void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
a1dd450b
WD
873{
874 pmd_t entry;
875 unsigned long haddr;
876
bae473a4
KS
877 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
878 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
a1dd450b
WD
879 goto unlock;
880
881 entry = pmd_mkyoung(orig_pmd);
bae473a4
KS
882 haddr = fe->address & HPAGE_PMD_MASK;
883 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
884 fe->flags & FAULT_FLAG_WRITE))
885 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
a1dd450b
WD
886
887unlock:
bae473a4 888 spin_unlock(fe->ptl);
a1dd450b
WD
889}
890
bae473a4
KS
891static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
892 struct page *page)
71e3aac0 893{
bae473a4
KS
894 struct vm_area_struct *vma = fe->vma;
895 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
00501b53 896 struct mem_cgroup *memcg;
71e3aac0
AA
897 pgtable_t pgtable;
898 pmd_t _pmd;
899 int ret = 0, i;
900 struct page **pages;
2ec74c3e
SG
901 unsigned long mmun_start; /* For mmu_notifiers */
902 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
903
904 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
905 GFP_KERNEL);
906 if (unlikely(!pages)) {
907 ret |= VM_FAULT_OOM;
908 goto out;
909 }
910
911 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f 912 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
bae473a4
KS
913 __GFP_OTHER_NODE, vma,
914 fe->address, page_to_nid(page));
b9bbfbe3 915 if (unlikely(!pages[i] ||
bae473a4
KS
916 mem_cgroup_try_charge(pages[i], vma->vm_mm,
917 GFP_KERNEL, &memcg, false))) {
b9bbfbe3 918 if (pages[i])
71e3aac0 919 put_page(pages[i]);
b9bbfbe3 920 while (--i >= 0) {
00501b53
JW
921 memcg = (void *)page_private(pages[i]);
922 set_page_private(pages[i], 0);
f627c2f5
KS
923 mem_cgroup_cancel_charge(pages[i], memcg,
924 false);
b9bbfbe3
AA
925 put_page(pages[i]);
926 }
71e3aac0
AA
927 kfree(pages);
928 ret |= VM_FAULT_OOM;
929 goto out;
930 }
00501b53 931 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
932 }
933
934 for (i = 0; i < HPAGE_PMD_NR; i++) {
935 copy_user_highpage(pages[i], page + i,
0089e485 936 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
937 __SetPageUptodate(pages[i]);
938 cond_resched();
939 }
940
2ec74c3e
SG
941 mmun_start = haddr;
942 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 943 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 944
bae473a4
KS
945 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
946 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0 947 goto out_free_pages;
309381fe 948 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 949
bae473a4 950 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
71e3aac0
AA
951 /* leave pmd empty until pte is filled */
952
bae473a4
KS
953 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
954 pmd_populate(vma->vm_mm, &_pmd, pgtable);
71e3aac0
AA
955
956 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
bae473a4 957 pte_t entry;
71e3aac0
AA
958 entry = mk_pte(pages[i], vma->vm_page_prot);
959 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
960 memcg = (void *)page_private(pages[i]);
961 set_page_private(pages[i], 0);
bae473a4 962 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
f627c2f5 963 mem_cgroup_commit_charge(pages[i], memcg, false, false);
00501b53 964 lru_cache_add_active_or_unevictable(pages[i], vma);
bae473a4
KS
965 fe->pte = pte_offset_map(&_pmd, haddr);
966 VM_BUG_ON(!pte_none(*fe->pte));
967 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
968 pte_unmap(fe->pte);
71e3aac0
AA
969 }
970 kfree(pages);
971
71e3aac0 972 smp_wmb(); /* make pte visible before pmd */
bae473a4 973 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
d281ee61 974 page_remove_rmap(page, true);
bae473a4 975 spin_unlock(fe->ptl);
71e3aac0 976
bae473a4 977 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 978
71e3aac0
AA
979 ret |= VM_FAULT_WRITE;
980 put_page(page);
981
982out:
983 return ret;
984
985out_free_pages:
bae473a4
KS
986 spin_unlock(fe->ptl);
987 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
b9bbfbe3 988 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
989 memcg = (void *)page_private(pages[i]);
990 set_page_private(pages[i], 0);
f627c2f5 991 mem_cgroup_cancel_charge(pages[i], memcg, false);
71e3aac0 992 put_page(pages[i]);
b9bbfbe3 993 }
71e3aac0
AA
994 kfree(pages);
995 goto out;
996}
997
bae473a4 998int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
71e3aac0 999{
bae473a4 1000 struct vm_area_struct *vma = fe->vma;
93b4796d 1001 struct page *page = NULL, *new_page;
00501b53 1002 struct mem_cgroup *memcg;
bae473a4 1003 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
2ec74c3e
SG
1004 unsigned long mmun_start; /* For mmu_notifiers */
1005 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1006 gfp_t huge_gfp; /* for allocation and charge */
bae473a4 1007 int ret = 0;
71e3aac0 1008
bae473a4 1009 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
81d1b09c 1010 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1011 if (is_huge_zero_pmd(orig_pmd))
1012 goto alloc;
bae473a4
KS
1013 spin_lock(fe->ptl);
1014 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
71e3aac0
AA
1015 goto out_unlock;
1016
1017 page = pmd_page(orig_pmd);
309381fe 1018 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1f25fe20
KS
1019 /*
1020 * We can only reuse the page if nobody else maps the huge page or it's
6d0a07ed 1021 * part.
1f25fe20 1022 */
6d0a07ed 1023 if (page_trans_huge_mapcount(page, NULL) == 1) {
71e3aac0
AA
1024 pmd_t entry;
1025 entry = pmd_mkyoung(orig_pmd);
1026 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4
KS
1027 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1028 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
71e3aac0
AA
1029 ret |= VM_FAULT_WRITE;
1030 goto out_unlock;
1031 }
ddc58f27 1032 get_page(page);
bae473a4 1033 spin_unlock(fe->ptl);
93b4796d 1034alloc:
71e3aac0 1035 if (transparent_hugepage_enabled(vma) &&
077fcf11 1036 !transparent_hugepage_debug_cow()) {
444eb2a4 1037 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
3b363692 1038 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1039 } else
71e3aac0
AA
1040 new_page = NULL;
1041
9a982250
KS
1042 if (likely(new_page)) {
1043 prep_transhuge_page(new_page);
1044 } else {
eecc1e42 1045 if (!page) {
bae473a4 1046 split_huge_pmd(vma, fe->pmd, fe->address);
e9b71ca9 1047 ret |= VM_FAULT_FALLBACK;
93b4796d 1048 } else {
bae473a4 1049 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
9845cbbd 1050 if (ret & VM_FAULT_OOM) {
bae473a4 1051 split_huge_pmd(vma, fe->pmd, fe->address);
9845cbbd
KS
1052 ret |= VM_FAULT_FALLBACK;
1053 }
ddc58f27 1054 put_page(page);
93b4796d 1055 }
17766dde 1056 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1057 goto out;
1058 }
1059
bae473a4
KS
1060 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1061 huge_gfp, &memcg, true))) {
b9bbfbe3 1062 put_page(new_page);
bae473a4
KS
1063 split_huge_pmd(vma, fe->pmd, fe->address);
1064 if (page)
ddc58f27 1065 put_page(page);
9845cbbd 1066 ret |= VM_FAULT_FALLBACK;
17766dde 1067 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1068 goto out;
1069 }
1070
17766dde
DR
1071 count_vm_event(THP_FAULT_ALLOC);
1072
eecc1e42 1073 if (!page)
93b4796d
KS
1074 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1075 else
1076 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1077 __SetPageUptodate(new_page);
1078
2ec74c3e
SG
1079 mmun_start = haddr;
1080 mmun_end = haddr + HPAGE_PMD_SIZE;
bae473a4 1081 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
2ec74c3e 1082
bae473a4 1083 spin_lock(fe->ptl);
93b4796d 1084 if (page)
ddc58f27 1085 put_page(page);
bae473a4
KS
1086 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1087 spin_unlock(fe->ptl);
f627c2f5 1088 mem_cgroup_cancel_charge(new_page, memcg, true);
71e3aac0 1089 put_page(new_page);
2ec74c3e 1090 goto out_mn;
b9bbfbe3 1091 } else {
71e3aac0 1092 pmd_t entry;
3122359a
KS
1093 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1094 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
bae473a4 1095 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
d281ee61 1096 page_add_new_anon_rmap(new_page, vma, haddr, true);
f627c2f5 1097 mem_cgroup_commit_charge(new_page, memcg, false, true);
00501b53 1098 lru_cache_add_active_or_unevictable(new_page, vma);
bae473a4
KS
1099 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1100 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
eecc1e42 1101 if (!page) {
bae473a4 1102 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749 1103 } else {
309381fe 1104 VM_BUG_ON_PAGE(!PageHead(page), page);
d281ee61 1105 page_remove_rmap(page, true);
93b4796d
KS
1106 put_page(page);
1107 }
71e3aac0
AA
1108 ret |= VM_FAULT_WRITE;
1109 }
bae473a4 1110 spin_unlock(fe->ptl);
2ec74c3e 1111out_mn:
bae473a4 1112 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
71e3aac0
AA
1113out:
1114 return ret;
2ec74c3e 1115out_unlock:
bae473a4 1116 spin_unlock(fe->ptl);
2ec74c3e 1117 return ret;
71e3aac0
AA
1118}
1119
b676b293 1120struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1121 unsigned long addr,
1122 pmd_t *pmd,
1123 unsigned int flags)
1124{
b676b293 1125 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1126 struct page *page = NULL;
1127
c4088ebd 1128 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1129
1130 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1131 goto out;
1132
85facf25
KS
1133 /* Avoid dumping huge zero page */
1134 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1135 return ERR_PTR(-EFAULT);
1136
2b4847e7 1137 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1138 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1139 goto out;
1140
71e3aac0 1141 page = pmd_page(*pmd);
ca120cf6 1142 VM_BUG_ON_PAGE(!PageHead(page) && !is_zone_device_page(page), page);
3565fce3
DW
1143 if (flags & FOLL_TOUCH)
1144 touch_pmd(vma, addr, pmd);
de60f5f1 1145 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
1146 /*
1147 * We don't mlock() pte-mapped THPs. This way we can avoid
1148 * leaking mlocked pages into non-VM_LOCKED VMAs.
1149 *
9a73f61b
KS
1150 * For anon THP:
1151 *
e90309c9
KS
1152 * In most cases the pmd is the only mapping of the page as we
1153 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1154 * writable private mappings in populate_vma_page_range().
1155 *
1156 * The only scenario when we have the page shared here is if we
1157 * mlocking read-only mapping shared over fork(). We skip
1158 * mlocking such pages.
9a73f61b
KS
1159 *
1160 * For file THP:
1161 *
1162 * We can expect PageDoubleMap() to be stable under page lock:
1163 * for file pages we set it in page_add_file_rmap(), which
1164 * requires page to be locked.
e90309c9 1165 */
9a73f61b
KS
1166
1167 if (PageAnon(page) && compound_mapcount(page) != 1)
1168 goto skip_mlock;
1169 if (PageDoubleMap(page) || !page->mapping)
1170 goto skip_mlock;
1171 if (!trylock_page(page))
1172 goto skip_mlock;
1173 lru_add_drain();
1174 if (page->mapping && !PageDoubleMap(page))
1175 mlock_vma_page(page);
1176 unlock_page(page);
b676b293 1177 }
9a73f61b 1178skip_mlock:
71e3aac0 1179 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
ca120cf6 1180 VM_BUG_ON_PAGE(!PageCompound(page) && !is_zone_device_page(page), page);
71e3aac0 1181 if (flags & FOLL_GET)
ddc58f27 1182 get_page(page);
71e3aac0
AA
1183
1184out:
1185 return page;
1186}
1187
d10e63f2 1188/* NUMA hinting page fault entry point for trans huge pmds */
bae473a4 1189int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
d10e63f2 1190{
bae473a4 1191 struct vm_area_struct *vma = fe->vma;
b8916634 1192 struct anon_vma *anon_vma = NULL;
b32967ff 1193 struct page *page;
bae473a4 1194 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
8191acbd 1195 int page_nid = -1, this_nid = numa_node_id();
90572890 1196 int target_nid, last_cpupid = -1;
8191acbd
MG
1197 bool page_locked;
1198 bool migrated = false;
b191f9b1 1199 bool was_writable;
6688cc05 1200 int flags = 0;
d10e63f2 1201
bae473a4
KS
1202 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1203 if (unlikely(!pmd_same(pmd, *fe->pmd)))
d10e63f2
MG
1204 goto out_unlock;
1205
de466bd6
MG
1206 /*
1207 * If there are potential migrations, wait for completion and retry
1208 * without disrupting NUMA hinting information. Do not relock and
1209 * check_same as the page may no longer be mapped.
1210 */
bae473a4
KS
1211 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1212 page = pmd_page(*fe->pmd);
1213 spin_unlock(fe->ptl);
5d833062 1214 wait_on_page_locked(page);
de466bd6
MG
1215 goto out;
1216 }
1217
d10e63f2 1218 page = pmd_page(pmd);
a1a46184 1219 BUG_ON(is_huge_zero_page(page));
8191acbd 1220 page_nid = page_to_nid(page);
90572890 1221 last_cpupid = page_cpupid_last(page);
03c5a6e1 1222 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1223 if (page_nid == this_nid) {
03c5a6e1 1224 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1225 flags |= TNF_FAULT_LOCAL;
1226 }
4daae3b4 1227
bea66fbd 1228 /* See similar comment in do_numa_page for explanation */
d59dc7bc 1229 if (!pmd_write(pmd))
6688cc05
PZ
1230 flags |= TNF_NO_GROUP;
1231
ff9042b1
MG
1232 /*
1233 * Acquire the page lock to serialise THP migrations but avoid dropping
1234 * page_table_lock if at all possible
1235 */
b8916634
MG
1236 page_locked = trylock_page(page);
1237 target_nid = mpol_misplaced(page, vma, haddr);
1238 if (target_nid == -1) {
1239 /* If the page was locked, there are no parallel migrations */
a54a407f 1240 if (page_locked)
b8916634 1241 goto clear_pmdnuma;
2b4847e7 1242 }
4daae3b4 1243
de466bd6 1244 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1245 if (!page_locked) {
bae473a4 1246 spin_unlock(fe->ptl);
b8916634 1247 wait_on_page_locked(page);
a54a407f 1248 page_nid = -1;
b8916634
MG
1249 goto out;
1250 }
1251
2b4847e7
MG
1252 /*
1253 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1254 * to serialises splits
1255 */
b8916634 1256 get_page(page);
bae473a4 1257 spin_unlock(fe->ptl);
b8916634 1258 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1259
c69307d5 1260 /* Confirm the PMD did not change while page_table_lock was released */
bae473a4
KS
1261 spin_lock(fe->ptl);
1262 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
b32967ff
MG
1263 unlock_page(page);
1264 put_page(page);
a54a407f 1265 page_nid = -1;
4daae3b4 1266 goto out_unlock;
b32967ff 1267 }
ff9042b1 1268
c3a489ca
MG
1269 /* Bail if we fail to protect against THP splits for any reason */
1270 if (unlikely(!anon_vma)) {
1271 put_page(page);
1272 page_nid = -1;
1273 goto clear_pmdnuma;
1274 }
1275
a54a407f
MG
1276 /*
1277 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1278 * and access rights restored.
a54a407f 1279 */
bae473a4
KS
1280 spin_unlock(fe->ptl);
1281 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1282 fe->pmd, pmd, fe->address, page, target_nid);
6688cc05
PZ
1283 if (migrated) {
1284 flags |= TNF_MIGRATED;
8191acbd 1285 page_nid = target_nid;
074c2381
MG
1286 } else
1287 flags |= TNF_MIGRATE_FAIL;
b32967ff 1288
8191acbd 1289 goto out;
b32967ff 1290clear_pmdnuma:
a54a407f 1291 BUG_ON(!PageLocked(page));
b191f9b1 1292 was_writable = pmd_write(pmd);
4d942466 1293 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1294 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1295 if (was_writable)
1296 pmd = pmd_mkwrite(pmd);
bae473a4
KS
1297 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1298 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
a54a407f 1299 unlock_page(page);
d10e63f2 1300out_unlock:
bae473a4 1301 spin_unlock(fe->ptl);
b8916634
MG
1302
1303out:
1304 if (anon_vma)
1305 page_unlock_anon_vma_read(anon_vma);
1306
8191acbd 1307 if (page_nid != -1)
bae473a4 1308 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
8191acbd 1309
d10e63f2
MG
1310 return 0;
1311}
1312
319904ad
HY
1313/*
1314 * Return true if we do MADV_FREE successfully on entire pmd page.
1315 * Otherwise, return false.
1316 */
1317bool madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
b8d3c4c3 1318 pmd_t *pmd, unsigned long addr, unsigned long next)
b8d3c4c3
MK
1319{
1320 spinlock_t *ptl;
1321 pmd_t orig_pmd;
1322 struct page *page;
1323 struct mm_struct *mm = tlb->mm;
319904ad 1324 bool ret = false;
b8d3c4c3 1325
b6ec57f4
KS
1326 ptl = pmd_trans_huge_lock(pmd, vma);
1327 if (!ptl)
25eedabe 1328 goto out_unlocked;
b8d3c4c3
MK
1329
1330 orig_pmd = *pmd;
319904ad 1331 if (is_huge_zero_pmd(orig_pmd))
b8d3c4c3 1332 goto out;
b8d3c4c3
MK
1333
1334 page = pmd_page(orig_pmd);
1335 /*
1336 * If other processes are mapping this page, we couldn't discard
1337 * the page unless they all do MADV_FREE so let's skip the page.
1338 */
1339 if (page_mapcount(page) != 1)
1340 goto out;
1341
1342 if (!trylock_page(page))
1343 goto out;
1344
1345 /*
1346 * If user want to discard part-pages of THP, split it so MADV_FREE
1347 * will deactivate only them.
1348 */
1349 if (next - addr != HPAGE_PMD_SIZE) {
1350 get_page(page);
1351 spin_unlock(ptl);
9818b8cd 1352 split_huge_page(page);
b8d3c4c3
MK
1353 put_page(page);
1354 unlock_page(page);
b8d3c4c3
MK
1355 goto out_unlocked;
1356 }
1357
1358 if (PageDirty(page))
1359 ClearPageDirty(page);
1360 unlock_page(page);
1361
1362 if (PageActive(page))
1363 deactivate_page(page);
1364
1365 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1366 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1367 tlb->fullmm);
1368 orig_pmd = pmd_mkold(orig_pmd);
1369 orig_pmd = pmd_mkclean(orig_pmd);
1370
1371 set_pmd_at(mm, addr, pmd, orig_pmd);
1372 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1373 }
319904ad 1374 ret = true;
b8d3c4c3
MK
1375out:
1376 spin_unlock(ptl);
1377out_unlocked:
1378 return ret;
1379}
1380
71e3aac0 1381int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1382 pmd_t *pmd, unsigned long addr)
71e3aac0 1383{
da146769 1384 pmd_t orig_pmd;
bf929152 1385 spinlock_t *ptl;
71e3aac0 1386
b6ec57f4
KS
1387 ptl = __pmd_trans_huge_lock(pmd, vma);
1388 if (!ptl)
da146769
KS
1389 return 0;
1390 /*
1391 * For architectures like ppc64 we look at deposited pgtable
1392 * when calling pmdp_huge_get_and_clear. So do the
1393 * pgtable_trans_huge_withdraw after finishing pmdp related
1394 * operations.
1395 */
1396 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1397 tlb->fullmm);
1398 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1399 if (vma_is_dax(vma)) {
1400 spin_unlock(ptl);
1401 if (is_huge_zero_pmd(orig_pmd))
c0f2e176 1402 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1403 } else if (is_huge_zero_pmd(orig_pmd)) {
1404 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1405 atomic_long_dec(&tlb->mm->nr_ptes);
1406 spin_unlock(ptl);
c0f2e176 1407 tlb_remove_page_size(tlb, pmd_page(orig_pmd), HPAGE_PMD_SIZE);
da146769
KS
1408 } else {
1409 struct page *page = pmd_page(orig_pmd);
d281ee61 1410 page_remove_rmap(page, true);
da146769 1411 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
da146769 1412 VM_BUG_ON_PAGE(!PageHead(page), page);
b5072380
KS
1413 if (PageAnon(page)) {
1414 pgtable_t pgtable;
1415 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1416 pte_free(tlb->mm, pgtable);
1417 atomic_long_dec(&tlb->mm->nr_ptes);
1418 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1419 } else {
1420 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1421 }
da146769 1422 spin_unlock(ptl);
e77b0852 1423 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
025c5b24 1424 }
da146769 1425 return 1;
71e3aac0
AA
1426}
1427
bf8616d5 1428bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
37a1c49a 1429 unsigned long new_addr, unsigned long old_end,
5d190420 1430 pmd_t *old_pmd, pmd_t *new_pmd, bool *need_flush)
37a1c49a 1431{
bf929152 1432 spinlock_t *old_ptl, *new_ptl;
37a1c49a 1433 pmd_t pmd;
37a1c49a 1434 struct mm_struct *mm = vma->vm_mm;
5d190420 1435 bool force_flush = false;
37a1c49a
AA
1436
1437 if ((old_addr & ~HPAGE_PMD_MASK) ||
1438 (new_addr & ~HPAGE_PMD_MASK) ||
bf8616d5 1439 old_end - old_addr < HPAGE_PMD_SIZE)
4b471e88 1440 return false;
37a1c49a
AA
1441
1442 /*
1443 * The destination pmd shouldn't be established, free_pgtables()
1444 * should have release it.
1445 */
1446 if (WARN_ON(!pmd_none(*new_pmd))) {
1447 VM_BUG_ON(pmd_trans_huge(*new_pmd));
4b471e88 1448 return false;
37a1c49a
AA
1449 }
1450
bf929152
KS
1451 /*
1452 * We don't have to worry about the ordering of src and dst
1453 * ptlocks because exclusive mmap_sem prevents deadlock.
1454 */
b6ec57f4
KS
1455 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1456 if (old_ptl) {
bf929152
KS
1457 new_ptl = pmd_lockptr(mm, new_pmd);
1458 if (new_ptl != old_ptl)
1459 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1460 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
a2ce2666
AL
1461 if (pmd_present(pmd) && pmd_dirty(pmd))
1462 force_flush = true;
025c5b24 1463 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1464
69a8ec2d
KS
1465 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1466 vma_is_anonymous(vma)) {
b3084f4d 1467 pgtable_t pgtable;
3592806c
KS
1468 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1469 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1470 }
b3084f4d
AK
1471 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1472 if (new_ptl != old_ptl)
1473 spin_unlock(new_ptl);
5d190420
AL
1474 if (force_flush)
1475 flush_tlb_range(vma, old_addr, old_addr + PMD_SIZE);
1476 else
1477 *need_flush = true;
bf929152 1478 spin_unlock(old_ptl);
4b471e88 1479 return true;
37a1c49a 1480 }
4b471e88 1481 return false;
37a1c49a
AA
1482}
1483
f123d74a
MG
1484/*
1485 * Returns
1486 * - 0 if PMD could not be locked
1487 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1488 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1489 */
cd7548ab 1490int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1491 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1492{
1493 struct mm_struct *mm = vma->vm_mm;
bf929152 1494 spinlock_t *ptl;
cd7548ab
JW
1495 int ret = 0;
1496
b6ec57f4
KS
1497 ptl = __pmd_trans_huge_lock(pmd, vma);
1498 if (ptl) {
025c5b24 1499 pmd_t entry;
b191f9b1 1500 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1501 ret = 1;
e944fd67
MG
1502
1503 /*
1504 * Avoid trapping faults against the zero page. The read-only
1505 * data is likely to be read-cached on the local CPU and
1506 * local/remote hits to the zero page are not interesting.
1507 */
1508 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1509 spin_unlock(ptl);
ba68bc01 1510 return ret;
e944fd67
MG
1511 }
1512
10c1045f 1513 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1514 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1515 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1516 if (preserve_write)
1517 entry = pmd_mkwrite(entry);
10c1045f
MG
1518 ret = HPAGE_PMD_NR;
1519 set_pmd_at(mm, addr, pmd, entry);
b237aded
KS
1520 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1521 pmd_write(entry));
10c1045f 1522 }
bf929152 1523 spin_unlock(ptl);
025c5b24
NH
1524 }
1525
1526 return ret;
1527}
1528
1529/*
8f19b0c0 1530 * Returns page table lock pointer if a given pmd maps a thp, NULL otherwise.
025c5b24 1531 *
8f19b0c0
HY
1532 * Note that if it returns page table lock pointer, this routine returns without
1533 * unlocking page table lock. So callers must unlock it.
025c5b24 1534 */
b6ec57f4 1535spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
025c5b24 1536{
b6ec57f4
KS
1537 spinlock_t *ptl;
1538 ptl = pmd_lock(vma->vm_mm, pmd);
5c7fb56e 1539 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
b6ec57f4
KS
1540 return ptl;
1541 spin_unlock(ptl);
1542 return NULL;
cd7548ab
JW
1543}
1544
eef1b3ba
KS
1545static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
1546 unsigned long haddr, pmd_t *pmd)
1547{
1548 struct mm_struct *mm = vma->vm_mm;
1549 pgtable_t pgtable;
1550 pmd_t _pmd;
1551 int i;
1552
1553 /* leave pmd empty until pte is filled */
1554 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1555
1556 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1557 pmd_populate(mm, &_pmd, pgtable);
1558
1559 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1560 pte_t *pte, entry;
1561 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1562 entry = pte_mkspecial(entry);
1563 pte = pte_offset_map(&_pmd, haddr);
1564 VM_BUG_ON(!pte_none(*pte));
1565 set_pte_at(mm, haddr, pte, entry);
1566 pte_unmap(pte);
1567 }
1568 smp_wmb(); /* make pte visible before pmd */
1569 pmd_populate(mm, pmd, pgtable);
eef1b3ba
KS
1570}
1571
1572static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
ba988280 1573 unsigned long haddr, bool freeze)
eef1b3ba
KS
1574{
1575 struct mm_struct *mm = vma->vm_mm;
1576 struct page *page;
1577 pgtable_t pgtable;
1578 pmd_t _pmd;
804dd150 1579 bool young, write, dirty, soft_dirty;
2ac015e2 1580 unsigned long addr;
eef1b3ba
KS
1581 int i;
1582
1583 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
1584 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
1585 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
5c7fb56e 1586 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
eef1b3ba
KS
1587
1588 count_vm_event(THP_SPLIT_PMD);
1589
d21b9e57
KS
1590 if (!vma_is_anonymous(vma)) {
1591 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
d21b9e57
KS
1592 if (vma_is_dax(vma))
1593 return;
1594 page = pmd_page(_pmd);
1595 if (!PageReferenced(page) && pmd_young(_pmd))
1596 SetPageReferenced(page);
1597 page_remove_rmap(page, true);
1598 put_page(page);
1599 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
eef1b3ba
KS
1600 return;
1601 } else if (is_huge_zero_pmd(*pmd)) {
1602 return __split_huge_zero_page_pmd(vma, haddr, pmd);
1603 }
1604
1605 page = pmd_page(*pmd);
1606 VM_BUG_ON_PAGE(!page_count(page), page);
fe896d18 1607 page_ref_add(page, HPAGE_PMD_NR - 1);
eef1b3ba
KS
1608 write = pmd_write(*pmd);
1609 young = pmd_young(*pmd);
b8d3c4c3 1610 dirty = pmd_dirty(*pmd);
804dd150 1611 soft_dirty = pmd_soft_dirty(*pmd);
eef1b3ba 1612
c777e2a8 1613 pmdp_huge_split_prepare(vma, haddr, pmd);
eef1b3ba
KS
1614 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1615 pmd_populate(mm, &_pmd, pgtable);
1616
2ac015e2 1617 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
eef1b3ba
KS
1618 pte_t entry, *pte;
1619 /*
1620 * Note that NUMA hinting access restrictions are not
1621 * transferred to avoid any possibility of altering
1622 * permissions across VMAs.
1623 */
ba988280
KS
1624 if (freeze) {
1625 swp_entry_t swp_entry;
1626 swp_entry = make_migration_entry(page + i, write);
1627 entry = swp_entry_to_pte(swp_entry);
804dd150
AA
1628 if (soft_dirty)
1629 entry = pte_swp_mksoft_dirty(entry);
ba988280 1630 } else {
6d2329f8 1631 entry = mk_pte(page + i, READ_ONCE(vma->vm_page_prot));
b8d3c4c3 1632 entry = maybe_mkwrite(entry, vma);
ba988280
KS
1633 if (!write)
1634 entry = pte_wrprotect(entry);
1635 if (!young)
1636 entry = pte_mkold(entry);
804dd150
AA
1637 if (soft_dirty)
1638 entry = pte_mksoft_dirty(entry);
ba988280 1639 }
b8d3c4c3
MK
1640 if (dirty)
1641 SetPageDirty(page + i);
2ac015e2 1642 pte = pte_offset_map(&_pmd, addr);
eef1b3ba 1643 BUG_ON(!pte_none(*pte));
2ac015e2 1644 set_pte_at(mm, addr, pte, entry);
eef1b3ba
KS
1645 atomic_inc(&page[i]._mapcount);
1646 pte_unmap(pte);
1647 }
1648
1649 /*
1650 * Set PG_double_map before dropping compound_mapcount to avoid
1651 * false-negative page_mapped().
1652 */
1653 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
1654 for (i = 0; i < HPAGE_PMD_NR; i++)
1655 atomic_inc(&page[i]._mapcount);
1656 }
1657
1658 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
1659 /* Last compound_mapcount is gone. */
11fb9989 1660 __dec_node_page_state(page, NR_ANON_THPS);
eef1b3ba
KS
1661 if (TestClearPageDoubleMap(page)) {
1662 /* No need in mapcount reference anymore */
1663 for (i = 0; i < HPAGE_PMD_NR; i++)
1664 atomic_dec(&page[i]._mapcount);
1665 }
1666 }
1667
1668 smp_wmb(); /* make pte visible before pmd */
e9b61f19
KS
1669 /*
1670 * Up to this point the pmd is present and huge and userland has the
1671 * whole access to the hugepage during the split (which happens in
1672 * place). If we overwrite the pmd with the not-huge version pointing
1673 * to the pte here (which of course we could if all CPUs were bug
1674 * free), userland could trigger a small page size TLB miss on the
1675 * small sized TLB while the hugepage TLB entry is still established in
1676 * the huge TLB. Some CPU doesn't like that.
1677 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
1678 * 383 on page 93. Intel should be safe but is also warns that it's
1679 * only safe if the permission and cache attributes of the two entries
1680 * loaded in the two TLB is identical (which should be the case here).
1681 * But it is generally safer to never allow small and huge TLB entries
1682 * for the same virtual address to be loaded simultaneously. So instead
1683 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
1684 * current pmd notpresent (atomically because here the pmd_trans_huge
1685 * and pmd_trans_splitting must remain set at all times on the pmd
1686 * until the split is complete for this pmd), then we flush the SMP TLB
1687 * and finally we write the non-huge version of the pmd entry with
1688 * pmd_populate.
1689 */
1690 pmdp_invalidate(vma, haddr, pmd);
eef1b3ba 1691 pmd_populate(mm, pmd, pgtable);
e9b61f19
KS
1692
1693 if (freeze) {
2ac015e2 1694 for (i = 0; i < HPAGE_PMD_NR; i++) {
e9b61f19
KS
1695 page_remove_rmap(page + i, false);
1696 put_page(page + i);
1697 }
1698 }
eef1b3ba
KS
1699}
1700
1701void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
33f4751e 1702 unsigned long address, bool freeze, struct page *page)
eef1b3ba
KS
1703{
1704 spinlock_t *ptl;
1705 struct mm_struct *mm = vma->vm_mm;
1706 unsigned long haddr = address & HPAGE_PMD_MASK;
1707
1708 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
1709 ptl = pmd_lock(mm, pmd);
33f4751e
NH
1710
1711 /*
1712 * If caller asks to setup a migration entries, we need a page to check
1713 * pmd against. Otherwise we can end up replacing wrong page.
1714 */
1715 VM_BUG_ON(freeze && !page);
1716 if (page && page != pmd_page(*pmd))
1717 goto out;
1718
5c7fb56e 1719 if (pmd_trans_huge(*pmd)) {
33f4751e 1720 page = pmd_page(*pmd);
5c7fb56e 1721 if (PageMlocked(page))
5f737714 1722 clear_page_mlock(page);
5c7fb56e 1723 } else if (!pmd_devmap(*pmd))
e90309c9 1724 goto out;
fec89c10 1725 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
e90309c9 1726out:
eef1b3ba
KS
1727 spin_unlock(ptl);
1728 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
1729}
1730
fec89c10
KS
1731void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
1732 bool freeze, struct page *page)
94fcc585 1733{
f72e7dcd
HD
1734 pgd_t *pgd;
1735 pud_t *pud;
94fcc585
AA
1736 pmd_t *pmd;
1737
78ddc534 1738 pgd = pgd_offset(vma->vm_mm, address);
f72e7dcd
HD
1739 if (!pgd_present(*pgd))
1740 return;
1741
1742 pud = pud_offset(pgd, address);
1743 if (!pud_present(*pud))
1744 return;
1745
1746 pmd = pmd_offset(pud, address);
fec89c10 1747
33f4751e 1748 __split_huge_pmd(vma, pmd, address, freeze, page);
94fcc585
AA
1749}
1750
e1b9996b 1751void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
1752 unsigned long start,
1753 unsigned long end,
1754 long adjust_next)
1755{
1756 /*
1757 * If the new start address isn't hpage aligned and it could
1758 * previously contain an hugepage: check if we need to split
1759 * an huge pmd.
1760 */
1761 if (start & ~HPAGE_PMD_MASK &&
1762 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
1763 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1764 split_huge_pmd_address(vma, start, false, NULL);
94fcc585
AA
1765
1766 /*
1767 * If the new end address isn't hpage aligned and it could
1768 * previously contain an hugepage: check if we need to split
1769 * an huge pmd.
1770 */
1771 if (end & ~HPAGE_PMD_MASK &&
1772 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
1773 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
fec89c10 1774 split_huge_pmd_address(vma, end, false, NULL);
94fcc585
AA
1775
1776 /*
1777 * If we're also updating the vma->vm_next->vm_start, if the new
1778 * vm_next->vm_start isn't page aligned and it could previously
1779 * contain an hugepage: check if we need to split an huge pmd.
1780 */
1781 if (adjust_next > 0) {
1782 struct vm_area_struct *next = vma->vm_next;
1783 unsigned long nstart = next->vm_start;
1784 nstart += adjust_next << PAGE_SHIFT;
1785 if (nstart & ~HPAGE_PMD_MASK &&
1786 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
1787 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
fec89c10 1788 split_huge_pmd_address(next, nstart, false, NULL);
94fcc585
AA
1789 }
1790}
e9b61f19 1791
fec89c10 1792static void freeze_page(struct page *page)
e9b61f19 1793{
baa355fd
KS
1794 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
1795 TTU_RMAP_LOCKED;
fec89c10 1796 int i, ret;
e9b61f19
KS
1797
1798 VM_BUG_ON_PAGE(!PageHead(page), page);
1799
baa355fd
KS
1800 if (PageAnon(page))
1801 ttu_flags |= TTU_MIGRATION;
1802
fec89c10
KS
1803 /* We only need TTU_SPLIT_HUGE_PMD once */
1804 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
1805 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
1806 /* Cut short if the page is unmapped */
1807 if (page_count(page) == 1)
1808 return;
e9b61f19 1809
fec89c10 1810 ret = try_to_unmap(page + i, ttu_flags);
e9b61f19 1811 }
baa355fd 1812 VM_BUG_ON_PAGE(ret, page + i - 1);
e9b61f19
KS
1813}
1814
fec89c10 1815static void unfreeze_page(struct page *page)
e9b61f19 1816{
fec89c10 1817 int i;
e9b61f19 1818
fec89c10
KS
1819 for (i = 0; i < HPAGE_PMD_NR; i++)
1820 remove_migration_ptes(page + i, page + i, true);
e9b61f19
KS
1821}
1822
8df651c7 1823static void __split_huge_page_tail(struct page *head, int tail,
e9b61f19
KS
1824 struct lruvec *lruvec, struct list_head *list)
1825{
e9b61f19
KS
1826 struct page *page_tail = head + tail;
1827
8df651c7 1828 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
fe896d18 1829 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
e9b61f19
KS
1830
1831 /*
0139aa7b 1832 * tail_page->_refcount is zero and not changing from under us. But
e9b61f19 1833 * get_page_unless_zero() may be running from under us on the
baa355fd
KS
1834 * tail_page. If we used atomic_set() below instead of atomic_inc() or
1835 * atomic_add(), we would then run atomic_set() concurrently with
e9b61f19
KS
1836 * get_page_unless_zero(), and atomic_set() is implemented in C not
1837 * using locked ops. spin_unlock on x86 sometime uses locked ops
1838 * because of PPro errata 66, 92, so unless somebody can guarantee
1839 * atomic_set() here would be safe on all archs (and not only on x86),
baa355fd 1840 * it's safer to use atomic_inc()/atomic_add().
e9b61f19 1841 */
baa355fd
KS
1842 if (PageAnon(head)) {
1843 page_ref_inc(page_tail);
1844 } else {
1845 /* Additional pin to radix tree */
1846 page_ref_add(page_tail, 2);
1847 }
e9b61f19
KS
1848
1849 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1850 page_tail->flags |= (head->flags &
1851 ((1L << PG_referenced) |
1852 (1L << PG_swapbacked) |
1853 (1L << PG_mlocked) |
1854 (1L << PG_uptodate) |
1855 (1L << PG_active) |
1856 (1L << PG_locked) |
b8d3c4c3
MK
1857 (1L << PG_unevictable) |
1858 (1L << PG_dirty)));
e9b61f19
KS
1859
1860 /*
1861 * After clearing PageTail the gup refcount can be released.
1862 * Page flags also must be visible before we make the page non-compound.
1863 */
1864 smp_wmb();
1865
1866 clear_compound_head(page_tail);
1867
1868 if (page_is_young(head))
1869 set_page_young(page_tail);
1870 if (page_is_idle(head))
1871 set_page_idle(page_tail);
1872
1873 /* ->mapping in first tail page is compound_mapcount */
9a982250 1874 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
e9b61f19
KS
1875 page_tail);
1876 page_tail->mapping = head->mapping;
1877
1878 page_tail->index = head->index + tail;
1879 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
1880 lru_add_page_tail(head, page_tail, lruvec, list);
e9b61f19
KS
1881}
1882
baa355fd
KS
1883static void __split_huge_page(struct page *page, struct list_head *list,
1884 unsigned long flags)
e9b61f19
KS
1885{
1886 struct page *head = compound_head(page);
1887 struct zone *zone = page_zone(head);
1888 struct lruvec *lruvec;
baa355fd 1889 pgoff_t end = -1;
8df651c7 1890 int i;
e9b61f19 1891
599d0c95 1892 lruvec = mem_cgroup_page_lruvec(head, zone->zone_pgdat);
e9b61f19
KS
1893
1894 /* complete memcg works before add pages to LRU */
1895 mem_cgroup_split_huge_fixup(head);
1896
baa355fd
KS
1897 if (!PageAnon(page))
1898 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
1899
1900 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
8df651c7 1901 __split_huge_page_tail(head, i, lruvec, list);
baa355fd
KS
1902 /* Some pages can be beyond i_size: drop them from page cache */
1903 if (head[i].index >= end) {
1904 __ClearPageDirty(head + i);
1905 __delete_from_page_cache(head + i, NULL);
800d8c63
KS
1906 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
1907 shmem_uncharge(head->mapping->host, 1);
baa355fd
KS
1908 put_page(head + i);
1909 }
1910 }
e9b61f19
KS
1911
1912 ClearPageCompound(head);
baa355fd
KS
1913 /* See comment in __split_huge_page_tail() */
1914 if (PageAnon(head)) {
1915 page_ref_inc(head);
1916 } else {
1917 /* Additional pin to radix tree */
1918 page_ref_add(head, 2);
1919 spin_unlock(&head->mapping->tree_lock);
1920 }
1921
a52633d8 1922 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
e9b61f19 1923
fec89c10 1924 unfreeze_page(head);
e9b61f19
KS
1925
1926 for (i = 0; i < HPAGE_PMD_NR; i++) {
1927 struct page *subpage = head + i;
1928 if (subpage == page)
1929 continue;
1930 unlock_page(subpage);
1931
1932 /*
1933 * Subpages may be freed if there wasn't any mapping
1934 * like if add_to_swap() is running on a lru page that
1935 * had its mapping zapped. And freeing these pages
1936 * requires taking the lru_lock so we do the put_page
1937 * of the tail pages after the split is complete.
1938 */
1939 put_page(subpage);
1940 }
1941}
1942
b20ce5e0
KS
1943int total_mapcount(struct page *page)
1944{
dd78fedd 1945 int i, compound, ret;
b20ce5e0
KS
1946
1947 VM_BUG_ON_PAGE(PageTail(page), page);
1948
1949 if (likely(!PageCompound(page)))
1950 return atomic_read(&page->_mapcount) + 1;
1951
dd78fedd 1952 compound = compound_mapcount(page);
b20ce5e0 1953 if (PageHuge(page))
dd78fedd
KS
1954 return compound;
1955 ret = compound;
b20ce5e0
KS
1956 for (i = 0; i < HPAGE_PMD_NR; i++)
1957 ret += atomic_read(&page[i]._mapcount) + 1;
dd78fedd
KS
1958 /* File pages has compound_mapcount included in _mapcount */
1959 if (!PageAnon(page))
1960 return ret - compound * HPAGE_PMD_NR;
b20ce5e0
KS
1961 if (PageDoubleMap(page))
1962 ret -= HPAGE_PMD_NR;
1963 return ret;
1964}
1965
6d0a07ed
AA
1966/*
1967 * This calculates accurately how many mappings a transparent hugepage
1968 * has (unlike page_mapcount() which isn't fully accurate). This full
1969 * accuracy is primarily needed to know if copy-on-write faults can
1970 * reuse the page and change the mapping to read-write instead of
1971 * copying them. At the same time this returns the total_mapcount too.
1972 *
1973 * The function returns the highest mapcount any one of the subpages
1974 * has. If the return value is one, even if different processes are
1975 * mapping different subpages of the transparent hugepage, they can
1976 * all reuse it, because each process is reusing a different subpage.
1977 *
1978 * The total_mapcount is instead counting all virtual mappings of the
1979 * subpages. If the total_mapcount is equal to "one", it tells the
1980 * caller all mappings belong to the same "mm" and in turn the
1981 * anon_vma of the transparent hugepage can become the vma->anon_vma
1982 * local one as no other process may be mapping any of the subpages.
1983 *
1984 * It would be more accurate to replace page_mapcount() with
1985 * page_trans_huge_mapcount(), however we only use
1986 * page_trans_huge_mapcount() in the copy-on-write faults where we
1987 * need full accuracy to avoid breaking page pinning, because
1988 * page_trans_huge_mapcount() is slower than page_mapcount().
1989 */
1990int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
1991{
1992 int i, ret, _total_mapcount, mapcount;
1993
1994 /* hugetlbfs shouldn't call it */
1995 VM_BUG_ON_PAGE(PageHuge(page), page);
1996
1997 if (likely(!PageTransCompound(page))) {
1998 mapcount = atomic_read(&page->_mapcount) + 1;
1999 if (total_mapcount)
2000 *total_mapcount = mapcount;
2001 return mapcount;
2002 }
2003
2004 page = compound_head(page);
2005
2006 _total_mapcount = ret = 0;
2007 for (i = 0; i < HPAGE_PMD_NR; i++) {
2008 mapcount = atomic_read(&page[i]._mapcount) + 1;
2009 ret = max(ret, mapcount);
2010 _total_mapcount += mapcount;
2011 }
2012 if (PageDoubleMap(page)) {
2013 ret -= 1;
2014 _total_mapcount -= HPAGE_PMD_NR;
2015 }
2016 mapcount = compound_mapcount(page);
2017 ret += mapcount;
2018 _total_mapcount += mapcount;
2019 if (total_mapcount)
2020 *total_mapcount = _total_mapcount;
2021 return ret;
2022}
2023
e9b61f19
KS
2024/*
2025 * This function splits huge page into normal pages. @page can point to any
2026 * subpage of huge page to split. Split doesn't change the position of @page.
2027 *
2028 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
2029 * The huge page must be locked.
2030 *
2031 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
2032 *
2033 * Both head page and tail pages will inherit mapping, flags, and so on from
2034 * the hugepage.
2035 *
2036 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
2037 * they are not mapped.
2038 *
2039 * Returns 0 if the hugepage is split successfully.
2040 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
2041 * us.
2042 */
2043int split_huge_page_to_list(struct page *page, struct list_head *list)
2044{
2045 struct page *head = compound_head(page);
a3d0a918 2046 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
baa355fd
KS
2047 struct anon_vma *anon_vma = NULL;
2048 struct address_space *mapping = NULL;
2049 int count, mapcount, extra_pins, ret;
d9654322 2050 bool mlocked;
0b9b6fff 2051 unsigned long flags;
e9b61f19
KS
2052
2053 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
e9b61f19
KS
2054 VM_BUG_ON_PAGE(!PageLocked(page), page);
2055 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2056 VM_BUG_ON_PAGE(!PageCompound(page), page);
2057
baa355fd
KS
2058 if (PageAnon(head)) {
2059 /*
2060 * The caller does not necessarily hold an mmap_sem that would
2061 * prevent the anon_vma disappearing so we first we take a
2062 * reference to it and then lock the anon_vma for write. This
2063 * is similar to page_lock_anon_vma_read except the write lock
2064 * is taken to serialise against parallel split or collapse
2065 * operations.
2066 */
2067 anon_vma = page_get_anon_vma(head);
2068 if (!anon_vma) {
2069 ret = -EBUSY;
2070 goto out;
2071 }
2072 extra_pins = 0;
2073 mapping = NULL;
2074 anon_vma_lock_write(anon_vma);
2075 } else {
2076 mapping = head->mapping;
2077
2078 /* Truncated ? */
2079 if (!mapping) {
2080 ret = -EBUSY;
2081 goto out;
2082 }
2083
2084 /* Addidional pins from radix tree */
2085 extra_pins = HPAGE_PMD_NR;
2086 anon_vma = NULL;
2087 i_mmap_lock_read(mapping);
e9b61f19 2088 }
e9b61f19
KS
2089
2090 /*
2091 * Racy check if we can split the page, before freeze_page() will
2092 * split PMDs
2093 */
baa355fd 2094 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
e9b61f19
KS
2095 ret = -EBUSY;
2096 goto out_unlock;
2097 }
2098
d9654322 2099 mlocked = PageMlocked(page);
fec89c10 2100 freeze_page(head);
e9b61f19
KS
2101 VM_BUG_ON_PAGE(compound_mapcount(head), head);
2102
d9654322
KS
2103 /* Make sure the page is not on per-CPU pagevec as it takes pin */
2104 if (mlocked)
2105 lru_add_drain();
2106
baa355fd 2107 /* prevent PageLRU to go away from under us, and freeze lru stats */
a52633d8 2108 spin_lock_irqsave(zone_lru_lock(page_zone(head)), flags);
baa355fd
KS
2109
2110 if (mapping) {
2111 void **pslot;
2112
2113 spin_lock(&mapping->tree_lock);
2114 pslot = radix_tree_lookup_slot(&mapping->page_tree,
2115 page_index(head));
2116 /*
2117 * Check if the head page is present in radix tree.
2118 * We assume all tail are present too, if head is there.
2119 */
2120 if (radix_tree_deref_slot_protected(pslot,
2121 &mapping->tree_lock) != head)
2122 goto fail;
2123 }
2124
0139aa7b 2125 /* Prevent deferred_split_scan() touching ->_refcount */
baa355fd 2126 spin_lock(&pgdata->split_queue_lock);
e9b61f19
KS
2127 count = page_count(head);
2128 mapcount = total_mapcount(head);
baa355fd 2129 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
9a982250 2130 if (!list_empty(page_deferred_list(head))) {
a3d0a918 2131 pgdata->split_queue_len--;
9a982250
KS
2132 list_del(page_deferred_list(head));
2133 }
65c45377 2134 if (mapping)
11fb9989 2135 __dec_node_page_state(page, NR_SHMEM_THPS);
baa355fd
KS
2136 spin_unlock(&pgdata->split_queue_lock);
2137 __split_huge_page(page, list, flags);
e9b61f19 2138 ret = 0;
e9b61f19 2139 } else {
baa355fd
KS
2140 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
2141 pr_alert("total_mapcount: %u, page_count(): %u\n",
2142 mapcount, count);
2143 if (PageTail(page))
2144 dump_page(head, NULL);
2145 dump_page(page, "total_mapcount(head) > 0");
2146 BUG();
2147 }
2148 spin_unlock(&pgdata->split_queue_lock);
2149fail: if (mapping)
2150 spin_unlock(&mapping->tree_lock);
a52633d8 2151 spin_unlock_irqrestore(zone_lru_lock(page_zone(head)), flags);
fec89c10 2152 unfreeze_page(head);
e9b61f19
KS
2153 ret = -EBUSY;
2154 }
2155
2156out_unlock:
baa355fd
KS
2157 if (anon_vma) {
2158 anon_vma_unlock_write(anon_vma);
2159 put_anon_vma(anon_vma);
2160 }
2161 if (mapping)
2162 i_mmap_unlock_read(mapping);
e9b61f19
KS
2163out:
2164 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
2165 return ret;
2166}
9a982250
KS
2167
2168void free_transhuge_page(struct page *page)
2169{
a3d0a918 2170 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2171 unsigned long flags;
2172
a3d0a918 2173 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2174 if (!list_empty(page_deferred_list(page))) {
a3d0a918 2175 pgdata->split_queue_len--;
9a982250
KS
2176 list_del(page_deferred_list(page));
2177 }
a3d0a918 2178 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2179 free_compound_page(page);
2180}
2181
2182void deferred_split_huge_page(struct page *page)
2183{
a3d0a918 2184 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
9a982250
KS
2185 unsigned long flags;
2186
2187 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
2188
a3d0a918 2189 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2190 if (list_empty(page_deferred_list(page))) {
f9719a03 2191 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
a3d0a918
KS
2192 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
2193 pgdata->split_queue_len++;
9a982250 2194 }
a3d0a918 2195 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2196}
2197
2198static unsigned long deferred_split_count(struct shrinker *shrink,
2199 struct shrink_control *sc)
2200{
a3d0a918 2201 struct pglist_data *pgdata = NODE_DATA(sc->nid);
cb8d68ec 2202 return ACCESS_ONCE(pgdata->split_queue_len);
9a982250
KS
2203}
2204
2205static unsigned long deferred_split_scan(struct shrinker *shrink,
2206 struct shrink_control *sc)
2207{
a3d0a918 2208 struct pglist_data *pgdata = NODE_DATA(sc->nid);
9a982250
KS
2209 unsigned long flags;
2210 LIST_HEAD(list), *pos, *next;
2211 struct page *page;
2212 int split = 0;
2213
a3d0a918 2214 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
9a982250 2215 /* Take pin on all head pages to avoid freeing them under us */
ae026204 2216 list_for_each_safe(pos, next, &pgdata->split_queue) {
9a982250
KS
2217 page = list_entry((void *)pos, struct page, mapping);
2218 page = compound_head(page);
e3ae1953
KS
2219 if (get_page_unless_zero(page)) {
2220 list_move(page_deferred_list(page), &list);
2221 } else {
2222 /* We lost race with put_compound_page() */
9a982250 2223 list_del_init(page_deferred_list(page));
a3d0a918 2224 pgdata->split_queue_len--;
9a982250 2225 }
e3ae1953
KS
2226 if (!--sc->nr_to_scan)
2227 break;
9a982250 2228 }
a3d0a918 2229 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250
KS
2230
2231 list_for_each_safe(pos, next, &list) {
2232 page = list_entry((void *)pos, struct page, mapping);
2233 lock_page(page);
2234 /* split_huge_page() removes page from list on success */
2235 if (!split_huge_page(page))
2236 split++;
2237 unlock_page(page);
2238 put_page(page);
2239 }
2240
a3d0a918
KS
2241 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
2242 list_splice_tail(&list, &pgdata->split_queue);
2243 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
9a982250 2244
cb8d68ec
KS
2245 /*
2246 * Stop shrinker if we didn't split any page, but the queue is empty.
2247 * This can happen if pages were freed under us.
2248 */
2249 if (!split && list_empty(&pgdata->split_queue))
2250 return SHRINK_STOP;
2251 return split;
9a982250
KS
2252}
2253
2254static struct shrinker deferred_split_shrinker = {
2255 .count_objects = deferred_split_count,
2256 .scan_objects = deferred_split_scan,
2257 .seeks = DEFAULT_SEEKS,
a3d0a918 2258 .flags = SHRINKER_NUMA_AWARE,
9a982250 2259};
49071d43
KS
2260
2261#ifdef CONFIG_DEBUG_FS
2262static int split_huge_pages_set(void *data, u64 val)
2263{
2264 struct zone *zone;
2265 struct page *page;
2266 unsigned long pfn, max_zone_pfn;
2267 unsigned long total = 0, split = 0;
2268
2269 if (val != 1)
2270 return -EINVAL;
2271
2272 for_each_populated_zone(zone) {
2273 max_zone_pfn = zone_end_pfn(zone);
2274 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
2275 if (!pfn_valid(pfn))
2276 continue;
2277
2278 page = pfn_to_page(pfn);
2279 if (!get_page_unless_zero(page))
2280 continue;
2281
2282 if (zone != page_zone(page))
2283 goto next;
2284
baa355fd 2285 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
49071d43
KS
2286 goto next;
2287
2288 total++;
2289 lock_page(page);
2290 if (!split_huge_page(page))
2291 split++;
2292 unlock_page(page);
2293next:
2294 put_page(page);
2295 }
2296 }
2297
145bdaa1 2298 pr_info("%lu of %lu THP split\n", split, total);
49071d43
KS
2299
2300 return 0;
2301}
2302DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
2303 "%llu\n");
2304
2305static int __init split_huge_pages_debugfs(void)
2306{
2307 void *ret;
2308
145bdaa1 2309 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
49071d43
KS
2310 &split_huge_pages_fops);
2311 if (!ret)
2312 pr_warn("Failed to create split_huge_pages in debugfs");
2313 return 0;
2314}
2315late_initcall(split_huge_pages_debugfs);
2316#endif