]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm: add a pmd_fault handler
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
ae3a8c1c
AM
8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
71e3aac0
AA
10#include <linux/mm.h>
11#include <linux/sched.h>
12#include <linux/highmem.h>
13#include <linux/hugetlb.h>
14#include <linux/mmu_notifier.h>
15#include <linux/rmap.h>
16#include <linux/swap.h>
97ae1749 17#include <linux/shrinker.h>
ba76149f 18#include <linux/mm_inline.h>
4897c765 19#include <linux/dax.h>
ba76149f
AA
20#include <linux/kthread.h>
21#include <linux/khugepaged.h>
878aee7d 22#include <linux/freezer.h>
a664b2d8 23#include <linux/mman.h>
325adeb5 24#include <linux/pagemap.h>
4daae3b4 25#include <linux/migrate.h>
43b5fbbd 26#include <linux/hashtable.h>
6b251fc9 27#include <linux/userfaultfd_k.h>
97ae1749 28
71e3aac0
AA
29#include <asm/tlb.h>
30#include <asm/pgalloc.h>
31#include "internal.h"
32
ba76149f 33/*
8bfa3f9a
JW
34 * By default transparent hugepage support is disabled in order that avoid
35 * to risk increase the memory footprint of applications without a guaranteed
36 * benefit. When transparent hugepage support is enabled, is for all mappings,
37 * and khugepaged scans all mappings.
38 * Defrag is invoked by khugepaged hugepage allocations and by page faults
39 * for all hugepage allocations.
ba76149f 40 */
71e3aac0 41unsigned long transparent_hugepage_flags __read_mostly =
13ece886 42#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 43 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
44#endif
45#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
46 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
47#endif
d39d33c3 48 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
49 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
50 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
51
52/* default scan 8*512 pte (or vmas) every 30 second */
53static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
54static unsigned int khugepaged_pages_collapsed;
55static unsigned int khugepaged_full_scans;
56static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
57/* during fragmentation poll the hugepage allocator once every minute */
58static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
59static struct task_struct *khugepaged_thread __read_mostly;
60static DEFINE_MUTEX(khugepaged_mutex);
61static DEFINE_SPINLOCK(khugepaged_mm_lock);
62static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
63/*
64 * default collapse hugepages if there is at least one pte mapped like
65 * it would have happened if the vma was large enough during page
66 * fault.
67 */
68static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
69
70static int khugepaged(void *none);
ba76149f 71static int khugepaged_slab_init(void);
65ebb64f 72static void khugepaged_slab_exit(void);
ba76149f 73
43b5fbbd
SL
74#define MM_SLOTS_HASH_BITS 10
75static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
76
ba76149f
AA
77static struct kmem_cache *mm_slot_cache __read_mostly;
78
79/**
80 * struct mm_slot - hash lookup from mm to mm_slot
81 * @hash: hash collision list
82 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
83 * @mm: the mm that this information is valid for
84 */
85struct mm_slot {
86 struct hlist_node hash;
87 struct list_head mm_node;
88 struct mm_struct *mm;
89};
90
91/**
92 * struct khugepaged_scan - cursor for scanning
93 * @mm_head: the head of the mm list to scan
94 * @mm_slot: the current mm_slot we are scanning
95 * @address: the next address inside that to be scanned
96 *
97 * There is only the one khugepaged_scan instance of this cursor structure.
98 */
99struct khugepaged_scan {
100 struct list_head mm_head;
101 struct mm_slot *mm_slot;
102 unsigned long address;
2f1da642
HS
103};
104static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
105 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
106};
107
f000565a
AA
108
109static int set_recommended_min_free_kbytes(void)
110{
111 struct zone *zone;
112 int nr_zones = 0;
113 unsigned long recommended_min;
f000565a 114
f000565a
AA
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
42aa83cb
HP
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
f000565a 141 min_free_kbytes = recommended_min;
42aa83cb 142 }
f000565a
AA
143 setup_per_zone_wmarks();
144 return 0;
145}
f000565a 146
79553da2 147static int start_stop_khugepaged(void)
ba76149f
AA
148{
149 int err = 0;
150 if (khugepaged_enabled()) {
ba76149f
AA
151 if (!khugepaged_thread)
152 khugepaged_thread = kthread_run(khugepaged, NULL,
153 "khugepaged");
154 if (unlikely(IS_ERR(khugepaged_thread))) {
ae3a8c1c 155 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
ba76149f
AA
156 err = PTR_ERR(khugepaged_thread);
157 khugepaged_thread = NULL;
79553da2 158 goto fail;
ba76149f 159 }
911891af
XG
160
161 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 162 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
163
164 set_recommended_min_free_kbytes();
911891af 165 } else if (khugepaged_thread) {
911891af
XG
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
79553da2 169fail:
ba76149f
AA
170 return err;
171}
71e3aac0 172
97ae1749 173static atomic_t huge_zero_refcount;
56873f43 174struct page *huge_zero_page __read_mostly;
4a6c1297 175
97ae1749
KS
176static inline bool is_huge_zero_pmd(pmd_t pmd)
177{
5918d10a 178 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
179}
180
5918d10a 181static struct page *get_huge_zero_page(void)
97ae1749
KS
182{
183 struct page *zero_page;
184retry:
185 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
4db0c3c2 186 return READ_ONCE(huge_zero_page);
97ae1749
KS
187
188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 189 HPAGE_PMD_ORDER);
d8a8e1f0
KS
190 if (!zero_page) {
191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 192 return NULL;
d8a8e1f0
KS
193 }
194 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 195 preempt_disable();
5918d10a 196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749 197 preempt_enable();
5ddacbe9 198 __free_pages(zero_page, compound_order(zero_page));
97ae1749
KS
199 goto retry;
200 }
201
202 /* We take additional reference here. It will be put back by shrinker */
203 atomic_set(&huge_zero_refcount, 2);
204 preempt_enable();
4db0c3c2 205 return READ_ONCE(huge_zero_page);
4a6c1297
KS
206}
207
97ae1749 208static void put_huge_zero_page(void)
4a6c1297 209{
97ae1749
KS
210 /*
211 * Counter should never go to zero here. Only shrinker can put
212 * last reference.
213 */
214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
215}
216
48896466
GC
217static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 struct shrink_control *sc)
4a6c1297 219{
48896466
GC
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222}
97ae1749 223
48896466
GC
224static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 struct shrink_control *sc)
226{
97ae1749 227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
228 struct page *zero_page = xchg(&huge_zero_page, NULL);
229 BUG_ON(zero_page == NULL);
5ddacbe9 230 __free_pages(zero_page, compound_order(zero_page));
48896466 231 return HPAGE_PMD_NR;
97ae1749
KS
232 }
233
234 return 0;
4a6c1297
KS
235}
236
97ae1749 237static struct shrinker huge_zero_page_shrinker = {
48896466
GC
238 .count_objects = shrink_huge_zero_page_count,
239 .scan_objects = shrink_huge_zero_page_scan,
97ae1749
KS
240 .seeks = DEFAULT_SEEKS,
241};
242
71e3aac0 243#ifdef CONFIG_SYSFS
ba76149f 244
71e3aac0
AA
245static ssize_t double_flag_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf,
247 enum transparent_hugepage_flag enabled,
248 enum transparent_hugepage_flag req_madv)
249{
250 if (test_bit(enabled, &transparent_hugepage_flags)) {
251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 return sprintf(buf, "[always] madvise never\n");
253 } else if (test_bit(req_madv, &transparent_hugepage_flags))
254 return sprintf(buf, "always [madvise] never\n");
255 else
256 return sprintf(buf, "always madvise [never]\n");
257}
258static ssize_t double_flag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count,
261 enum transparent_hugepage_flag enabled,
262 enum transparent_hugepage_flag req_madv)
263{
264 if (!memcmp("always", buf,
265 min(sizeof("always")-1, count))) {
266 set_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else if (!memcmp("madvise", buf,
269 min(sizeof("madvise")-1, count))) {
270 clear_bit(enabled, &transparent_hugepage_flags);
271 set_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 clear_bit(req_madv, &transparent_hugepage_flags);
276 } else
277 return -EINVAL;
278
279 return count;
280}
281
282static ssize_t enabled_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
284{
285 return double_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_FLAG,
287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
288}
289static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
292{
ba76149f
AA
293 ssize_t ret;
294
295 ret = double_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_FLAG,
297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
298
299 if (ret > 0) {
911891af
XG
300 int err;
301
302 mutex_lock(&khugepaged_mutex);
79553da2 303 err = start_stop_khugepaged();
911891af
XG
304 mutex_unlock(&khugepaged_mutex);
305
ba76149f
AA
306 if (err)
307 ret = err;
308 }
309
310 return ret;
71e3aac0
AA
311}
312static struct kobj_attribute enabled_attr =
313 __ATTR(enabled, 0644, enabled_show, enabled_store);
314
315static ssize_t single_flag_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf,
317 enum transparent_hugepage_flag flag)
318{
e27e6151
BH
319 return sprintf(buf, "%d\n",
320 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 321}
e27e6151 322
71e3aac0
AA
323static ssize_t single_flag_store(struct kobject *kobj,
324 struct kobj_attribute *attr,
325 const char *buf, size_t count,
326 enum transparent_hugepage_flag flag)
327{
e27e6151
BH
328 unsigned long value;
329 int ret;
330
331 ret = kstrtoul(buf, 10, &value);
332 if (ret < 0)
333 return ret;
334 if (value > 1)
335 return -EINVAL;
336
337 if (value)
71e3aac0 338 set_bit(flag, &transparent_hugepage_flags);
e27e6151 339 else
71e3aac0 340 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
341
342 return count;
343}
344
345/*
346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348 * memory just to allocate one more hugepage.
349 */
350static ssize_t defrag_show(struct kobject *kobj,
351 struct kobj_attribute *attr, char *buf)
352{
353 return double_flag_show(kobj, attr, buf,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356}
357static ssize_t defrag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count)
360{
361 return double_flag_store(kobj, attr, buf, count,
362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
364}
365static struct kobj_attribute defrag_attr =
366 __ATTR(defrag, 0644, defrag_show, defrag_store);
367
79da5407
KS
368static ssize_t use_zero_page_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370{
371 return single_flag_show(kobj, attr, buf,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373}
374static ssize_t use_zero_page_store(struct kobject *kobj,
375 struct kobj_attribute *attr, const char *buf, size_t count)
376{
377 return single_flag_store(kobj, attr, buf, count,
378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379}
380static struct kobj_attribute use_zero_page_attr =
381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
382#ifdef CONFIG_DEBUG_VM
383static ssize_t debug_cow_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385{
386 return single_flag_show(kobj, attr, buf,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388}
389static ssize_t debug_cow_store(struct kobject *kobj,
390 struct kobj_attribute *attr,
391 const char *buf, size_t count)
392{
393 return single_flag_store(kobj, attr, buf, count,
394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
395}
396static struct kobj_attribute debug_cow_attr =
397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398#endif /* CONFIG_DEBUG_VM */
399
400static struct attribute *hugepage_attr[] = {
401 &enabled_attr.attr,
402 &defrag_attr.attr,
79da5407 403 &use_zero_page_attr.attr,
71e3aac0
AA
404#ifdef CONFIG_DEBUG_VM
405 &debug_cow_attr.attr,
406#endif
407 NULL,
408};
409
410static struct attribute_group hugepage_attr_group = {
411 .attrs = hugepage_attr,
ba76149f
AA
412};
413
414static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 char *buf)
417{
418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419}
420
421static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424{
425 unsigned long msecs;
426 int err;
427
3dbb95f7 428 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
429 if (err || msecs > UINT_MAX)
430 return -EINVAL;
431
432 khugepaged_scan_sleep_millisecs = msecs;
433 wake_up_interruptible(&khugepaged_wait);
434
435 return count;
436}
437static struct kobj_attribute scan_sleep_millisecs_attr =
438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 scan_sleep_millisecs_store);
440
441static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444{
445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446}
447
448static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 struct kobj_attribute *attr,
450 const char *buf, size_t count)
451{
452 unsigned long msecs;
453 int err;
454
3dbb95f7 455 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
456 if (err || msecs > UINT_MAX)
457 return -EINVAL;
458
459 khugepaged_alloc_sleep_millisecs = msecs;
460 wake_up_interruptible(&khugepaged_wait);
461
462 return count;
463}
464static struct kobj_attribute alloc_sleep_millisecs_attr =
465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 alloc_sleep_millisecs_store);
467
468static ssize_t pages_to_scan_show(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 char *buf)
471{
472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
473}
474static ssize_t pages_to_scan_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
477{
478 int err;
479 unsigned long pages;
480
3dbb95f7 481 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
482 if (err || !pages || pages > UINT_MAX)
483 return -EINVAL;
484
485 khugepaged_pages_to_scan = pages;
486
487 return count;
488}
489static struct kobj_attribute pages_to_scan_attr =
490 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 pages_to_scan_store);
492
493static ssize_t pages_collapsed_show(struct kobject *kobj,
494 struct kobj_attribute *attr,
495 char *buf)
496{
497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
498}
499static struct kobj_attribute pages_collapsed_attr =
500 __ATTR_RO(pages_collapsed);
501
502static ssize_t full_scans_show(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 char *buf)
505{
506 return sprintf(buf, "%u\n", khugepaged_full_scans);
507}
508static struct kobj_attribute full_scans_attr =
509 __ATTR_RO(full_scans);
510
511static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 struct kobj_attribute *attr, char *buf)
513{
514 return single_flag_show(kobj, attr, buf,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516}
517static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
520{
521 return single_flag_store(kobj, attr, buf, count,
522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
523}
524static struct kobj_attribute khugepaged_defrag_attr =
525 __ATTR(defrag, 0644, khugepaged_defrag_show,
526 khugepaged_defrag_store);
527
528/*
529 * max_ptes_none controls if khugepaged should collapse hugepages over
530 * any unmapped ptes in turn potentially increasing the memory
531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532 * reduce the available free memory in the system as it
533 * runs. Increasing max_ptes_none will instead potentially reduce the
534 * free memory in the system during the khugepaged scan.
535 */
536static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 char *buf)
539{
540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
541}
542static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 const char *buf, size_t count)
545{
546 int err;
547 unsigned long max_ptes_none;
548
3dbb95f7 549 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
550 if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 return -EINVAL;
552
553 khugepaged_max_ptes_none = max_ptes_none;
554
555 return count;
556}
557static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 khugepaged_max_ptes_none_store);
560
561static struct attribute *khugepaged_attr[] = {
562 &khugepaged_defrag_attr.attr,
563 &khugepaged_max_ptes_none_attr.attr,
564 &pages_to_scan_attr.attr,
565 &pages_collapsed_attr.attr,
566 &full_scans_attr.attr,
567 &scan_sleep_millisecs_attr.attr,
568 &alloc_sleep_millisecs_attr.attr,
569 NULL,
570};
571
572static struct attribute_group khugepaged_attr_group = {
573 .attrs = khugepaged_attr,
574 .name = "khugepaged",
71e3aac0 575};
71e3aac0 576
569e5590 577static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 578{
71e3aac0
AA
579 int err;
580
569e5590
SL
581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 if (unlikely(!*hugepage_kobj)) {
ae3a8c1c 583 pr_err("failed to create transparent hugepage kobject\n");
569e5590 584 return -ENOMEM;
ba76149f
AA
585 }
586
569e5590 587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 588 if (err) {
ae3a8c1c 589 pr_err("failed to register transparent hugepage group\n");
569e5590 590 goto delete_obj;
ba76149f
AA
591 }
592
569e5590 593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 594 if (err) {
ae3a8c1c 595 pr_err("failed to register transparent hugepage group\n");
569e5590 596 goto remove_hp_group;
ba76149f 597 }
569e5590
SL
598
599 return 0;
600
601remove_hp_group:
602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
603delete_obj:
604 kobject_put(*hugepage_kobj);
605 return err;
606}
607
608static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
609{
610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 kobject_put(hugepage_kobj);
613}
614#else
615static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
616{
617 return 0;
618}
619
620static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621{
622}
623#endif /* CONFIG_SYSFS */
624
625static int __init hugepage_init(void)
626{
627 int err;
628 struct kobject *hugepage_kobj;
629
630 if (!has_transparent_hugepage()) {
631 transparent_hugepage_flags = 0;
632 return -EINVAL;
633 }
634
635 err = hugepage_init_sysfs(&hugepage_kobj);
636 if (err)
65ebb64f 637 goto err_sysfs;
ba76149f
AA
638
639 err = khugepaged_slab_init();
640 if (err)
65ebb64f 641 goto err_slab;
ba76149f 642
65ebb64f
KS
643 err = register_shrinker(&huge_zero_page_shrinker);
644 if (err)
645 goto err_hzp_shrinker;
97ae1749 646
97562cd2
RR
647 /*
648 * By default disable transparent hugepages on smaller systems,
649 * where the extra memory used could hurt more than TLB overhead
650 * is likely to save. The admin can still enable it through /sys.
651 */
79553da2 652 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
97562cd2 653 transparent_hugepage_flags = 0;
79553da2
KS
654 return 0;
655 }
97562cd2 656
79553da2 657 err = start_stop_khugepaged();
65ebb64f
KS
658 if (err)
659 goto err_khugepaged;
ba76149f 660
569e5590 661 return 0;
65ebb64f
KS
662err_khugepaged:
663 unregister_shrinker(&huge_zero_page_shrinker);
664err_hzp_shrinker:
665 khugepaged_slab_exit();
666err_slab:
569e5590 667 hugepage_exit_sysfs(hugepage_kobj);
65ebb64f 668err_sysfs:
ba76149f 669 return err;
71e3aac0 670}
a64fb3cd 671subsys_initcall(hugepage_init);
71e3aac0
AA
672
673static int __init setup_transparent_hugepage(char *str)
674{
675 int ret = 0;
676 if (!str)
677 goto out;
678 if (!strcmp(str, "always")) {
679 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 } else if (!strcmp(str, "madvise")) {
685 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
686 &transparent_hugepage_flags);
687 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
688 &transparent_hugepage_flags);
689 ret = 1;
690 } else if (!strcmp(str, "never")) {
691 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
692 &transparent_hugepage_flags);
693 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
694 &transparent_hugepage_flags);
695 ret = 1;
696 }
697out:
698 if (!ret)
ae3a8c1c 699 pr_warn("transparent_hugepage= cannot parse, ignored\n");
71e3aac0
AA
700 return ret;
701}
702__setup("transparent_hugepage=", setup_transparent_hugepage);
703
b32967ff 704pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
705{
706 if (likely(vma->vm_flags & VM_WRITE))
707 pmd = pmd_mkwrite(pmd);
708 return pmd;
709}
710
3122359a 711static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
712{
713 pmd_t entry;
3122359a 714 entry = mk_pmd(page, prot);
b3092b3b
BL
715 entry = pmd_mkhuge(entry);
716 return entry;
717}
718
71e3aac0
AA
719static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
720 struct vm_area_struct *vma,
230c92a8 721 unsigned long address, pmd_t *pmd,
6b251fc9
AA
722 struct page *page, gfp_t gfp,
723 unsigned int flags)
71e3aac0 724{
00501b53 725 struct mem_cgroup *memcg;
71e3aac0 726 pgtable_t pgtable;
c4088ebd 727 spinlock_t *ptl;
230c92a8 728 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 729
309381fe 730 VM_BUG_ON_PAGE(!PageCompound(page), page);
00501b53 731
6b251fc9
AA
732 if (mem_cgroup_try_charge(page, mm, gfp, &memcg)) {
733 put_page(page);
734 count_vm_event(THP_FAULT_FALLBACK);
735 return VM_FAULT_FALLBACK;
736 }
00501b53 737
71e3aac0 738 pgtable = pte_alloc_one(mm, haddr);
00501b53
JW
739 if (unlikely(!pgtable)) {
740 mem_cgroup_cancel_charge(page, memcg);
6b251fc9 741 put_page(page);
71e3aac0 742 return VM_FAULT_OOM;
00501b53 743 }
71e3aac0
AA
744
745 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
746 /*
747 * The memory barrier inside __SetPageUptodate makes sure that
748 * clear_huge_page writes become visible before the set_pmd_at()
749 * write.
750 */
71e3aac0
AA
751 __SetPageUptodate(page);
752
c4088ebd 753 ptl = pmd_lock(mm, pmd);
71e3aac0 754 if (unlikely(!pmd_none(*pmd))) {
c4088ebd 755 spin_unlock(ptl);
00501b53 756 mem_cgroup_cancel_charge(page, memcg);
71e3aac0
AA
757 put_page(page);
758 pte_free(mm, pgtable);
759 } else {
760 pmd_t entry;
6b251fc9
AA
761
762 /* Deliver the page fault to userland */
763 if (userfaultfd_missing(vma)) {
764 int ret;
765
766 spin_unlock(ptl);
767 mem_cgroup_cancel_charge(page, memcg);
768 put_page(page);
769 pte_free(mm, pgtable);
230c92a8 770 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
771 VM_UFFD_MISSING);
772 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
773 return ret;
774 }
775
3122359a
KS
776 entry = mk_huge_pmd(page, vma->vm_page_prot);
777 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 778 page_add_new_anon_rmap(page, vma, haddr);
00501b53
JW
779 mem_cgroup_commit_charge(page, memcg, false);
780 lru_cache_add_active_or_unevictable(page, vma);
6b0b50b0 781 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 782 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 783 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
e1f56c89 784 atomic_long_inc(&mm->nr_ptes);
c4088ebd 785 spin_unlock(ptl);
6b251fc9 786 count_vm_event(THP_FAULT_ALLOC);
71e3aac0
AA
787 }
788
aa2e878e 789 return 0;
71e3aac0
AA
790}
791
cc5d462f 792static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 793{
cc5d462f 794 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
795}
796
c4088ebd 797/* Caller must hold page table lock. */
4897c765 798bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 799 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 800 struct page *zero_page)
fc9fe822
KS
801{
802 pmd_t entry;
7c414164
AM
803 if (!pmd_none(*pmd))
804 return false;
5918d10a 805 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822 806 entry = pmd_mkhuge(entry);
6b0b50b0 807 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 808 set_pmd_at(mm, haddr, pmd, entry);
e1f56c89 809 atomic_long_inc(&mm->nr_ptes);
7c414164 810 return true;
fc9fe822
KS
811}
812
71e3aac0
AA
813int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
814 unsigned long address, pmd_t *pmd,
815 unsigned int flags)
816{
077fcf11 817 gfp_t gfp;
71e3aac0
AA
818 struct page *page;
819 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 820
128ec037 821 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 822 return VM_FAULT_FALLBACK;
128ec037
KS
823 if (unlikely(anon_vma_prepare(vma)))
824 return VM_FAULT_OOM;
6d50e60c 825 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
128ec037 826 return VM_FAULT_OOM;
593befa6 827 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
128ec037 828 transparent_hugepage_use_zero_page()) {
c4088ebd 829 spinlock_t *ptl;
128ec037
KS
830 pgtable_t pgtable;
831 struct page *zero_page;
832 bool set;
6b251fc9 833 int ret;
128ec037
KS
834 pgtable = pte_alloc_one(mm, haddr);
835 if (unlikely(!pgtable))
ba76149f 836 return VM_FAULT_OOM;
128ec037
KS
837 zero_page = get_huge_zero_page();
838 if (unlikely(!zero_page)) {
839 pte_free(mm, pgtable);
81ab4201 840 count_vm_event(THP_FAULT_FALLBACK);
c0292554 841 return VM_FAULT_FALLBACK;
b9bbfbe3 842 }
c4088ebd 843 ptl = pmd_lock(mm, pmd);
6b251fc9
AA
844 ret = 0;
845 set = false;
846 if (pmd_none(*pmd)) {
847 if (userfaultfd_missing(vma)) {
848 spin_unlock(ptl);
230c92a8 849 ret = handle_userfault(vma, address, flags,
6b251fc9
AA
850 VM_UFFD_MISSING);
851 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
852 } else {
853 set_huge_zero_page(pgtable, mm, vma,
854 haddr, pmd,
855 zero_page);
856 spin_unlock(ptl);
857 set = true;
858 }
859 } else
860 spin_unlock(ptl);
128ec037
KS
861 if (!set) {
862 pte_free(mm, pgtable);
863 put_huge_zero_page();
edad9d2c 864 }
6b251fc9 865 return ret;
71e3aac0 866 }
077fcf11
AK
867 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
868 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
128ec037
KS
869 if (unlikely(!page)) {
870 count_vm_event(THP_FAULT_FALLBACK);
c0292554 871 return VM_FAULT_FALLBACK;
128ec037 872 }
230c92a8
AA
873 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
874 flags);
71e3aac0
AA
875}
876
877int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
878 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
879 struct vm_area_struct *vma)
880{
c4088ebd 881 spinlock_t *dst_ptl, *src_ptl;
71e3aac0
AA
882 struct page *src_page;
883 pmd_t pmd;
884 pgtable_t pgtable;
885 int ret;
886
887 ret = -ENOMEM;
888 pgtable = pte_alloc_one(dst_mm, addr);
889 if (unlikely(!pgtable))
890 goto out;
891
c4088ebd
KS
892 dst_ptl = pmd_lock(dst_mm, dst_pmd);
893 src_ptl = pmd_lockptr(src_mm, src_pmd);
894 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
71e3aac0
AA
895
896 ret = -EAGAIN;
897 pmd = *src_pmd;
898 if (unlikely(!pmd_trans_huge(pmd))) {
899 pte_free(dst_mm, pgtable);
900 goto out_unlock;
901 }
fc9fe822 902 /*
c4088ebd 903 * When page table lock is held, the huge zero pmd should not be
fc9fe822
KS
904 * under splitting since we don't split the page itself, only pmd to
905 * a page table.
906 */
907 if (is_huge_zero_pmd(pmd)) {
5918d10a 908 struct page *zero_page;
97ae1749
KS
909 /*
910 * get_huge_zero_page() will never allocate a new page here,
911 * since we already have a zero page to copy. It just takes a
912 * reference.
913 */
5918d10a 914 zero_page = get_huge_zero_page();
6b251fc9 915 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 916 zero_page);
fc9fe822
KS
917 ret = 0;
918 goto out_unlock;
919 }
de466bd6 920
71e3aac0
AA
921 if (unlikely(pmd_trans_splitting(pmd))) {
922 /* split huge page running from under us */
c4088ebd
KS
923 spin_unlock(src_ptl);
924 spin_unlock(dst_ptl);
71e3aac0
AA
925 pte_free(dst_mm, pgtable);
926
927 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
928 goto out;
929 }
930 src_page = pmd_page(pmd);
309381fe 931 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
71e3aac0
AA
932 get_page(src_page);
933 page_dup_rmap(src_page);
934 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
935
936 pmdp_set_wrprotect(src_mm, addr, src_pmd);
937 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 938 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 939 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
e1f56c89 940 atomic_long_inc(&dst_mm->nr_ptes);
71e3aac0
AA
941
942 ret = 0;
943out_unlock:
c4088ebd
KS
944 spin_unlock(src_ptl);
945 spin_unlock(dst_ptl);
71e3aac0
AA
946out:
947 return ret;
948}
949
a1dd450b
WD
950void huge_pmd_set_accessed(struct mm_struct *mm,
951 struct vm_area_struct *vma,
952 unsigned long address,
953 pmd_t *pmd, pmd_t orig_pmd,
954 int dirty)
955{
c4088ebd 956 spinlock_t *ptl;
a1dd450b
WD
957 pmd_t entry;
958 unsigned long haddr;
959
c4088ebd 960 ptl = pmd_lock(mm, pmd);
a1dd450b
WD
961 if (unlikely(!pmd_same(*pmd, orig_pmd)))
962 goto unlock;
963
964 entry = pmd_mkyoung(orig_pmd);
965 haddr = address & HPAGE_PMD_MASK;
966 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
967 update_mmu_cache_pmd(vma, address, pmd);
968
969unlock:
c4088ebd 970 spin_unlock(ptl);
a1dd450b
WD
971}
972
5338a937
HD
973/*
974 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
975 * during copy_user_huge_page()'s copy_page_rep(): in the case when
976 * the source page gets split and a tail freed before copy completes.
977 * Called under pmd_lock of checked pmd, so safe from splitting itself.
978 */
979static void get_user_huge_page(struct page *page)
980{
981 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
982 struct page *endpage = page + HPAGE_PMD_NR;
983
984 atomic_add(HPAGE_PMD_NR, &page->_count);
985 while (++page < endpage)
986 get_huge_page_tail(page);
987 } else {
988 get_page(page);
989 }
990}
991
992static void put_user_huge_page(struct page *page)
993{
994 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
995 struct page *endpage = page + HPAGE_PMD_NR;
996
997 while (page < endpage)
998 put_page(page++);
999 } else {
1000 put_page(page);
1001 }
1002}
1003
71e3aac0
AA
1004static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1005 struct vm_area_struct *vma,
1006 unsigned long address,
1007 pmd_t *pmd, pmd_t orig_pmd,
1008 struct page *page,
1009 unsigned long haddr)
1010{
00501b53 1011 struct mem_cgroup *memcg;
c4088ebd 1012 spinlock_t *ptl;
71e3aac0
AA
1013 pgtable_t pgtable;
1014 pmd_t _pmd;
1015 int ret = 0, i;
1016 struct page **pages;
2ec74c3e
SG
1017 unsigned long mmun_start; /* For mmu_notifiers */
1018 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1019
1020 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1021 GFP_KERNEL);
1022 if (unlikely(!pages)) {
1023 ret |= VM_FAULT_OOM;
1024 goto out;
1025 }
1026
1027 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1028 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1029 __GFP_OTHER_NODE,
19ee151e 1030 vma, address, page_to_nid(page));
b9bbfbe3 1031 if (unlikely(!pages[i] ||
00501b53
JW
1032 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1033 &memcg))) {
b9bbfbe3 1034 if (pages[i])
71e3aac0 1035 put_page(pages[i]);
b9bbfbe3 1036 while (--i >= 0) {
00501b53
JW
1037 memcg = (void *)page_private(pages[i]);
1038 set_page_private(pages[i], 0);
1039 mem_cgroup_cancel_charge(pages[i], memcg);
b9bbfbe3
AA
1040 put_page(pages[i]);
1041 }
71e3aac0
AA
1042 kfree(pages);
1043 ret |= VM_FAULT_OOM;
1044 goto out;
1045 }
00501b53 1046 set_page_private(pages[i], (unsigned long)memcg);
71e3aac0
AA
1047 }
1048
1049 for (i = 0; i < HPAGE_PMD_NR; i++) {
1050 copy_user_highpage(pages[i], page + i,
0089e485 1051 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1052 __SetPageUptodate(pages[i]);
1053 cond_resched();
1054 }
1055
2ec74c3e
SG
1056 mmun_start = haddr;
1057 mmun_end = haddr + HPAGE_PMD_SIZE;
1058 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1059
c4088ebd 1060 ptl = pmd_lock(mm, pmd);
71e3aac0
AA
1061 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1062 goto out_free_pages;
309381fe 1063 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0 1064
8809aa2d 1065 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0
AA
1066 /* leave pmd empty until pte is filled */
1067
6b0b50b0 1068 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1069 pmd_populate(mm, &_pmd, pgtable);
1070
1071 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1072 pte_t *pte, entry;
1073 entry = mk_pte(pages[i], vma->vm_page_prot);
1074 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
00501b53
JW
1075 memcg = (void *)page_private(pages[i]);
1076 set_page_private(pages[i], 0);
71e3aac0 1077 page_add_new_anon_rmap(pages[i], vma, haddr);
00501b53
JW
1078 mem_cgroup_commit_charge(pages[i], memcg, false);
1079 lru_cache_add_active_or_unevictable(pages[i], vma);
71e3aac0
AA
1080 pte = pte_offset_map(&_pmd, haddr);
1081 VM_BUG_ON(!pte_none(*pte));
1082 set_pte_at(mm, haddr, pte, entry);
1083 pte_unmap(pte);
1084 }
1085 kfree(pages);
1086
71e3aac0
AA
1087 smp_wmb(); /* make pte visible before pmd */
1088 pmd_populate(mm, pmd, pgtable);
1089 page_remove_rmap(page);
c4088ebd 1090 spin_unlock(ptl);
71e3aac0 1091
2ec74c3e
SG
1092 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1093
71e3aac0
AA
1094 ret |= VM_FAULT_WRITE;
1095 put_page(page);
1096
1097out:
1098 return ret;
1099
1100out_free_pages:
c4088ebd 1101 spin_unlock(ptl);
2ec74c3e 1102 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3 1103 for (i = 0; i < HPAGE_PMD_NR; i++) {
00501b53
JW
1104 memcg = (void *)page_private(pages[i]);
1105 set_page_private(pages[i], 0);
1106 mem_cgroup_cancel_charge(pages[i], memcg);
71e3aac0 1107 put_page(pages[i]);
b9bbfbe3 1108 }
71e3aac0
AA
1109 kfree(pages);
1110 goto out;
1111}
1112
1113int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1114 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1115{
c4088ebd 1116 spinlock_t *ptl;
71e3aac0 1117 int ret = 0;
93b4796d 1118 struct page *page = NULL, *new_page;
00501b53 1119 struct mem_cgroup *memcg;
71e3aac0 1120 unsigned long haddr;
2ec74c3e
SG
1121 unsigned long mmun_start; /* For mmu_notifiers */
1122 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 1123 gfp_t huge_gfp; /* for allocation and charge */
71e3aac0 1124
c4088ebd 1125 ptl = pmd_lockptr(mm, pmd);
81d1b09c 1126 VM_BUG_ON_VMA(!vma->anon_vma, vma);
93b4796d
KS
1127 haddr = address & HPAGE_PMD_MASK;
1128 if (is_huge_zero_pmd(orig_pmd))
1129 goto alloc;
c4088ebd 1130 spin_lock(ptl);
71e3aac0
AA
1131 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1132 goto out_unlock;
1133
1134 page = pmd_page(orig_pmd);
309381fe 1135 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
71e3aac0
AA
1136 if (page_mapcount(page) == 1) {
1137 pmd_t entry;
1138 entry = pmd_mkyoung(orig_pmd);
1139 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1141 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1142 ret |= VM_FAULT_WRITE;
1143 goto out_unlock;
1144 }
5338a937 1145 get_user_huge_page(page);
c4088ebd 1146 spin_unlock(ptl);
93b4796d 1147alloc:
71e3aac0 1148 if (transparent_hugepage_enabled(vma) &&
077fcf11 1149 !transparent_hugepage_debug_cow()) {
3b363692
MH
1150 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1151 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
077fcf11 1152 } else
71e3aac0
AA
1153 new_page = NULL;
1154
1155 if (unlikely(!new_page)) {
eecc1e42 1156 if (!page) {
e9b71ca9
KS
1157 split_huge_page_pmd(vma, address, pmd);
1158 ret |= VM_FAULT_FALLBACK;
93b4796d
KS
1159 } else {
1160 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1161 pmd, orig_pmd, page, haddr);
9845cbbd 1162 if (ret & VM_FAULT_OOM) {
93b4796d 1163 split_huge_page(page);
9845cbbd
KS
1164 ret |= VM_FAULT_FALLBACK;
1165 }
5338a937 1166 put_user_huge_page(page);
93b4796d 1167 }
17766dde 1168 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
1169 goto out;
1170 }
1171
3b363692 1172 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
b9bbfbe3 1173 put_page(new_page);
93b4796d
KS
1174 if (page) {
1175 split_huge_page(page);
5338a937 1176 put_user_huge_page(page);
9845cbbd
KS
1177 } else
1178 split_huge_page_pmd(vma, address, pmd);
1179 ret |= VM_FAULT_FALLBACK;
17766dde 1180 count_vm_event(THP_FAULT_FALLBACK);
b9bbfbe3
AA
1181 goto out;
1182 }
1183
17766dde
DR
1184 count_vm_event(THP_FAULT_ALLOC);
1185
eecc1e42 1186 if (!page)
93b4796d
KS
1187 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1188 else
1189 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1190 __SetPageUptodate(new_page);
1191
2ec74c3e
SG
1192 mmun_start = haddr;
1193 mmun_end = haddr + HPAGE_PMD_SIZE;
1194 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1195
c4088ebd 1196 spin_lock(ptl);
93b4796d 1197 if (page)
5338a937 1198 put_user_huge_page(page);
b9bbfbe3 1199 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
c4088ebd 1200 spin_unlock(ptl);
00501b53 1201 mem_cgroup_cancel_charge(new_page, memcg);
71e3aac0 1202 put_page(new_page);
2ec74c3e 1203 goto out_mn;
b9bbfbe3 1204 } else {
71e3aac0 1205 pmd_t entry;
3122359a
KS
1206 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1207 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
8809aa2d 1208 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
71e3aac0 1209 page_add_new_anon_rmap(new_page, vma, haddr);
00501b53
JW
1210 mem_cgroup_commit_charge(new_page, memcg, false);
1211 lru_cache_add_active_or_unevictable(new_page, vma);
71e3aac0 1212 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1213 update_mmu_cache_pmd(vma, address, pmd);
eecc1e42 1214 if (!page) {
93b4796d 1215 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1216 put_huge_zero_page();
1217 } else {
309381fe 1218 VM_BUG_ON_PAGE(!PageHead(page), page);
93b4796d
KS
1219 page_remove_rmap(page);
1220 put_page(page);
1221 }
71e3aac0
AA
1222 ret |= VM_FAULT_WRITE;
1223 }
c4088ebd 1224 spin_unlock(ptl);
2ec74c3e
SG
1225out_mn:
1226 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1227out:
1228 return ret;
2ec74c3e 1229out_unlock:
c4088ebd 1230 spin_unlock(ptl);
2ec74c3e 1231 return ret;
71e3aac0
AA
1232}
1233
b676b293 1234struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1235 unsigned long addr,
1236 pmd_t *pmd,
1237 unsigned int flags)
1238{
b676b293 1239 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1240 struct page *page = NULL;
1241
c4088ebd 1242 assert_spin_locked(pmd_lockptr(mm, pmd));
71e3aac0
AA
1243
1244 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1245 goto out;
1246
85facf25
KS
1247 /* Avoid dumping huge zero page */
1248 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1249 return ERR_PTR(-EFAULT);
1250
2b4847e7 1251 /* Full NUMA hinting faults to serialise migration in fault paths */
8a0516ed 1252 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
2b4847e7
MG
1253 goto out;
1254
71e3aac0 1255 page = pmd_page(*pmd);
309381fe 1256 VM_BUG_ON_PAGE(!PageHead(page), page);
71e3aac0
AA
1257 if (flags & FOLL_TOUCH) {
1258 pmd_t _pmd;
1259 /*
1260 * We should set the dirty bit only for FOLL_WRITE but
1261 * for now the dirty bit in the pmd is meaningless.
1262 * And if the dirty bit will become meaningful and
1263 * we'll only set it with FOLL_WRITE, an atomic
1264 * set_bit will be required on the pmd to set the
1265 * young bit, instead of the current set_pmd_at.
1266 */
1267 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1268 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1269 pmd, _pmd, 1))
1270 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1271 }
84d33df2 1272 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
b676b293
DR
1273 if (page->mapping && trylock_page(page)) {
1274 lru_add_drain();
1275 if (page->mapping)
1276 mlock_vma_page(page);
1277 unlock_page(page);
1278 }
1279 }
71e3aac0 1280 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
309381fe 1281 VM_BUG_ON_PAGE(!PageCompound(page), page);
71e3aac0 1282 if (flags & FOLL_GET)
70b50f94 1283 get_page_foll(page);
71e3aac0
AA
1284
1285out:
1286 return page;
1287}
1288
d10e63f2 1289/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1290int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1291 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1292{
c4088ebd 1293 spinlock_t *ptl;
b8916634 1294 struct anon_vma *anon_vma = NULL;
b32967ff 1295 struct page *page;
d10e63f2 1296 unsigned long haddr = addr & HPAGE_PMD_MASK;
8191acbd 1297 int page_nid = -1, this_nid = numa_node_id();
90572890 1298 int target_nid, last_cpupid = -1;
8191acbd
MG
1299 bool page_locked;
1300 bool migrated = false;
b191f9b1 1301 bool was_writable;
6688cc05 1302 int flags = 0;
d10e63f2 1303
c0e7cad9
MG
1304 /* A PROT_NONE fault should not end up here */
1305 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1306
c4088ebd 1307 ptl = pmd_lock(mm, pmdp);
d10e63f2
MG
1308 if (unlikely(!pmd_same(pmd, *pmdp)))
1309 goto out_unlock;
1310
de466bd6
MG
1311 /*
1312 * If there are potential migrations, wait for completion and retry
1313 * without disrupting NUMA hinting information. Do not relock and
1314 * check_same as the page may no longer be mapped.
1315 */
1316 if (unlikely(pmd_trans_migrating(*pmdp))) {
5d833062 1317 page = pmd_page(*pmdp);
de466bd6 1318 spin_unlock(ptl);
5d833062 1319 wait_on_page_locked(page);
de466bd6
MG
1320 goto out;
1321 }
1322
d10e63f2 1323 page = pmd_page(pmd);
a1a46184 1324 BUG_ON(is_huge_zero_page(page));
8191acbd 1325 page_nid = page_to_nid(page);
90572890 1326 last_cpupid = page_cpupid_last(page);
03c5a6e1 1327 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 1328 if (page_nid == this_nid) {
03c5a6e1 1329 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
1330 flags |= TNF_FAULT_LOCAL;
1331 }
4daae3b4 1332
bea66fbd
MG
1333 /* See similar comment in do_numa_page for explanation */
1334 if (!(vma->vm_flags & VM_WRITE))
6688cc05
PZ
1335 flags |= TNF_NO_GROUP;
1336
ff9042b1
MG
1337 /*
1338 * Acquire the page lock to serialise THP migrations but avoid dropping
1339 * page_table_lock if at all possible
1340 */
b8916634
MG
1341 page_locked = trylock_page(page);
1342 target_nid = mpol_misplaced(page, vma, haddr);
1343 if (target_nid == -1) {
1344 /* If the page was locked, there are no parallel migrations */
a54a407f 1345 if (page_locked)
b8916634 1346 goto clear_pmdnuma;
2b4847e7 1347 }
4daae3b4 1348
de466bd6 1349 /* Migration could have started since the pmd_trans_migrating check */
2b4847e7 1350 if (!page_locked) {
c4088ebd 1351 spin_unlock(ptl);
b8916634 1352 wait_on_page_locked(page);
a54a407f 1353 page_nid = -1;
b8916634
MG
1354 goto out;
1355 }
1356
2b4847e7
MG
1357 /*
1358 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1359 * to serialises splits
1360 */
b8916634 1361 get_page(page);
c4088ebd 1362 spin_unlock(ptl);
b8916634 1363 anon_vma = page_lock_anon_vma_read(page);
4daae3b4 1364
c69307d5 1365 /* Confirm the PMD did not change while page_table_lock was released */
c4088ebd 1366 spin_lock(ptl);
b32967ff
MG
1367 if (unlikely(!pmd_same(pmd, *pmdp))) {
1368 unlock_page(page);
1369 put_page(page);
a54a407f 1370 page_nid = -1;
4daae3b4 1371 goto out_unlock;
b32967ff 1372 }
ff9042b1 1373
c3a489ca
MG
1374 /* Bail if we fail to protect against THP splits for any reason */
1375 if (unlikely(!anon_vma)) {
1376 put_page(page);
1377 page_nid = -1;
1378 goto clear_pmdnuma;
1379 }
1380
a54a407f
MG
1381 /*
1382 * Migrate the THP to the requested node, returns with page unlocked
8a0516ed 1383 * and access rights restored.
a54a407f 1384 */
c4088ebd 1385 spin_unlock(ptl);
b32967ff 1386 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390 1387 pmdp, pmd, addr, page, target_nid);
6688cc05
PZ
1388 if (migrated) {
1389 flags |= TNF_MIGRATED;
8191acbd 1390 page_nid = target_nid;
074c2381
MG
1391 } else
1392 flags |= TNF_MIGRATE_FAIL;
b32967ff 1393
8191acbd 1394 goto out;
b32967ff 1395clear_pmdnuma:
a54a407f 1396 BUG_ON(!PageLocked(page));
b191f9b1 1397 was_writable = pmd_write(pmd);
4d942466 1398 pmd = pmd_modify(pmd, vma->vm_page_prot);
b7b04004 1399 pmd = pmd_mkyoung(pmd);
b191f9b1
MG
1400 if (was_writable)
1401 pmd = pmd_mkwrite(pmd);
d10e63f2 1402 set_pmd_at(mm, haddr, pmdp, pmd);
d10e63f2 1403 update_mmu_cache_pmd(vma, addr, pmdp);
a54a407f 1404 unlock_page(page);
d10e63f2 1405out_unlock:
c4088ebd 1406 spin_unlock(ptl);
b8916634
MG
1407
1408out:
1409 if (anon_vma)
1410 page_unlock_anon_vma_read(anon_vma);
1411
8191acbd 1412 if (page_nid != -1)
6688cc05 1413 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
8191acbd 1414
d10e63f2
MG
1415 return 0;
1416}
1417
71e3aac0 1418int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1419 pmd_t *pmd, unsigned long addr)
71e3aac0 1420{
bf929152 1421 spinlock_t *ptl;
71e3aac0
AA
1422 int ret = 0;
1423
bf929152 1424 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1425 pgtable_t pgtable;
f5c8ad47 1426 pmd_t orig_pmd;
a6bf2bb0
AK
1427 /*
1428 * For architectures like ppc64 we look at deposited pgtable
8809aa2d 1429 * when calling pmdp_huge_get_and_clear. So do the
a6bf2bb0
AK
1430 * pgtable_trans_huge_withdraw after finishing pmdp related
1431 * operations.
1432 */
8809aa2d
AK
1433 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1434 tlb->fullmm);
025c5b24 1435 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
4897c765
MW
1436 if (vma_is_dax(vma)) {
1437 if (is_huge_zero_pmd(orig_pmd)) {
1438 pgtable = NULL;
1439 } else {
1440 spin_unlock(ptl);
1441 return 1;
1442 }
1443 } else {
1444 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1445 }
479f0abb 1446 if (is_huge_zero_pmd(orig_pmd)) {
e1f56c89 1447 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1448 spin_unlock(ptl);
97ae1749 1449 put_huge_zero_page();
479f0abb 1450 } else {
4897c765 1451 struct page *page = pmd_page(orig_pmd);
479f0abb 1452 page_remove_rmap(page);
309381fe 1453 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
479f0abb 1454 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
309381fe 1455 VM_BUG_ON_PAGE(!PageHead(page), page);
e1f56c89 1456 atomic_long_dec(&tlb->mm->nr_ptes);
bf929152 1457 spin_unlock(ptl);
479f0abb
KS
1458 tlb_remove_page(tlb, page);
1459 }
4897c765
MW
1460 if (pgtable)
1461 pte_free(tlb->mm, pgtable);
025c5b24
NH
1462 ret = 1;
1463 }
71e3aac0
AA
1464 return ret;
1465}
1466
37a1c49a
AA
1467int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1468 unsigned long old_addr,
1469 unsigned long new_addr, unsigned long old_end,
1470 pmd_t *old_pmd, pmd_t *new_pmd)
1471{
bf929152 1472 spinlock_t *old_ptl, *new_ptl;
37a1c49a
AA
1473 int ret = 0;
1474 pmd_t pmd;
1475
1476 struct mm_struct *mm = vma->vm_mm;
1477
1478 if ((old_addr & ~HPAGE_PMD_MASK) ||
1479 (new_addr & ~HPAGE_PMD_MASK) ||
1480 old_end - old_addr < HPAGE_PMD_SIZE ||
1481 (new_vma->vm_flags & VM_NOHUGEPAGE))
1482 goto out;
1483
1484 /*
1485 * The destination pmd shouldn't be established, free_pgtables()
1486 * should have release it.
1487 */
1488 if (WARN_ON(!pmd_none(*new_pmd))) {
1489 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1490 goto out;
1491 }
1492
bf929152
KS
1493 /*
1494 * We don't have to worry about the ordering of src and dst
1495 * ptlocks because exclusive mmap_sem prevents deadlock.
1496 */
1497 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
025c5b24 1498 if (ret == 1) {
bf929152
KS
1499 new_ptl = pmd_lockptr(mm, new_pmd);
1500 if (new_ptl != old_ptl)
1501 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
8809aa2d 1502 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
025c5b24 1503 VM_BUG_ON(!pmd_none(*new_pmd));
3592806c 1504
b3084f4d
AK
1505 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1506 pgtable_t pgtable;
3592806c
KS
1507 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1508 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
3592806c 1509 }
b3084f4d
AK
1510 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1511 if (new_ptl != old_ptl)
1512 spin_unlock(new_ptl);
bf929152 1513 spin_unlock(old_ptl);
37a1c49a
AA
1514 }
1515out:
1516 return ret;
1517}
1518
f123d74a
MG
1519/*
1520 * Returns
1521 * - 0 if PMD could not be locked
1522 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1523 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1524 */
cd7548ab 1525int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
e944fd67 1526 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1527{
1528 struct mm_struct *mm = vma->vm_mm;
bf929152 1529 spinlock_t *ptl;
cd7548ab
JW
1530 int ret = 0;
1531
bf929152 1532 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
025c5b24 1533 pmd_t entry;
b191f9b1 1534 bool preserve_write = prot_numa && pmd_write(*pmd);
ba68bc01 1535 ret = 1;
e944fd67
MG
1536
1537 /*
1538 * Avoid trapping faults against the zero page. The read-only
1539 * data is likely to be read-cached on the local CPU and
1540 * local/remote hits to the zero page are not interesting.
1541 */
1542 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1543 spin_unlock(ptl);
ba68bc01 1544 return ret;
e944fd67
MG
1545 }
1546
10c1045f 1547 if (!prot_numa || !pmd_protnone(*pmd)) {
8809aa2d 1548 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
10c1045f 1549 entry = pmd_modify(entry, newprot);
b191f9b1
MG
1550 if (preserve_write)
1551 entry = pmd_mkwrite(entry);
10c1045f
MG
1552 ret = HPAGE_PMD_NR;
1553 set_pmd_at(mm, addr, pmd, entry);
b191f9b1 1554 BUG_ON(!preserve_write && pmd_write(entry));
10c1045f 1555 }
bf929152 1556 spin_unlock(ptl);
025c5b24
NH
1557 }
1558
1559 return ret;
1560}
1561
1562/*
1563 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1564 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1565 *
1566 * Note that if it returns 1, this routine returns without unlocking page
1567 * table locks. So callers must unlock them.
1568 */
bf929152
KS
1569int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1570 spinlock_t **ptl)
025c5b24 1571{
bf929152 1572 *ptl = pmd_lock(vma->vm_mm, pmd);
cd7548ab
JW
1573 if (likely(pmd_trans_huge(*pmd))) {
1574 if (unlikely(pmd_trans_splitting(*pmd))) {
bf929152 1575 spin_unlock(*ptl);
cd7548ab 1576 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1577 return -1;
cd7548ab 1578 } else {
025c5b24
NH
1579 /* Thp mapped by 'pmd' is stable, so we can
1580 * handle it as it is. */
1581 return 1;
cd7548ab 1582 }
025c5b24 1583 }
bf929152 1584 spin_unlock(*ptl);
025c5b24 1585 return 0;
cd7548ab
JW
1586}
1587
117b0791
KS
1588/*
1589 * This function returns whether a given @page is mapped onto the @address
1590 * in the virtual space of @mm.
1591 *
1592 * When it's true, this function returns *pmd with holding the page table lock
1593 * and passing it back to the caller via @ptl.
1594 * If it's false, returns NULL without holding the page table lock.
1595 */
71e3aac0
AA
1596pmd_t *page_check_address_pmd(struct page *page,
1597 struct mm_struct *mm,
1598 unsigned long address,
117b0791
KS
1599 enum page_check_address_pmd_flag flag,
1600 spinlock_t **ptl)
71e3aac0 1601{
b5a8cad3
KS
1602 pgd_t *pgd;
1603 pud_t *pud;
117b0791 1604 pmd_t *pmd;
71e3aac0
AA
1605
1606 if (address & ~HPAGE_PMD_MASK)
117b0791 1607 return NULL;
71e3aac0 1608
b5a8cad3
KS
1609 pgd = pgd_offset(mm, address);
1610 if (!pgd_present(*pgd))
117b0791 1611 return NULL;
b5a8cad3
KS
1612 pud = pud_offset(pgd, address);
1613 if (!pud_present(*pud))
1614 return NULL;
1615 pmd = pmd_offset(pud, address);
1616
117b0791 1617 *ptl = pmd_lock(mm, pmd);
b5a8cad3 1618 if (!pmd_present(*pmd))
117b0791 1619 goto unlock;
71e3aac0 1620 if (pmd_page(*pmd) != page)
117b0791 1621 goto unlock;
94fcc585
AA
1622 /*
1623 * split_vma() may create temporary aliased mappings. There is
1624 * no risk as long as all huge pmd are found and have their
1625 * splitting bit set before __split_huge_page_refcount
1626 * runs. Finding the same huge pmd more than once during the
1627 * same rmap walk is not a problem.
1628 */
1629 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1630 pmd_trans_splitting(*pmd))
117b0791 1631 goto unlock;
71e3aac0
AA
1632 if (pmd_trans_huge(*pmd)) {
1633 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1634 !pmd_trans_splitting(*pmd));
117b0791 1635 return pmd;
71e3aac0 1636 }
117b0791
KS
1637unlock:
1638 spin_unlock(*ptl);
1639 return NULL;
71e3aac0
AA
1640}
1641
1642static int __split_huge_page_splitting(struct page *page,
1643 struct vm_area_struct *vma,
1644 unsigned long address)
1645{
1646 struct mm_struct *mm = vma->vm_mm;
117b0791 1647 spinlock_t *ptl;
71e3aac0
AA
1648 pmd_t *pmd;
1649 int ret = 0;
2ec74c3e
SG
1650 /* For mmu_notifiers */
1651 const unsigned long mmun_start = address;
1652 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1653
2ec74c3e 1654 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0 1655 pmd = page_check_address_pmd(page, mm, address,
117b0791 1656 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
71e3aac0
AA
1657 if (pmd) {
1658 /*
1659 * We can't temporarily set the pmd to null in order
1660 * to split it, the pmd must remain marked huge at all
1661 * times or the VM won't take the pmd_trans_huge paths
5a505085 1662 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1663 * serialize against split_huge_page*.
1664 */
2ec74c3e 1665 pmdp_splitting_flush(vma, address, pmd);
34ee645e 1666
71e3aac0 1667 ret = 1;
117b0791 1668 spin_unlock(ptl);
71e3aac0 1669 }
2ec74c3e 1670 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1671
1672 return ret;
1673}
1674
5bc7b8ac
SL
1675static void __split_huge_page_refcount(struct page *page,
1676 struct list_head *list)
71e3aac0
AA
1677{
1678 int i;
71e3aac0 1679 struct zone *zone = page_zone(page);
fa9add64 1680 struct lruvec *lruvec;
70b50f94 1681 int tail_count = 0;
71e3aac0
AA
1682
1683 /* prevent PageLRU to go away from under us, and freeze lru stats */
1684 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1685 lruvec = mem_cgroup_page_lruvec(page, zone);
1686
71e3aac0 1687 compound_lock(page);
e94c8a9c
KH
1688 /* complete memcg works before add pages to LRU */
1689 mem_cgroup_split_huge_fixup(page);
71e3aac0 1690
45676885 1691 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1692 struct page *page_tail = page + i;
1693
70b50f94
AA
1694 /* tail_page->_mapcount cannot change */
1695 BUG_ON(page_mapcount(page_tail) < 0);
1696 tail_count += page_mapcount(page_tail);
1697 /* check for overflow */
1698 BUG_ON(tail_count < 0);
1699 BUG_ON(atomic_read(&page_tail->_count) != 0);
1700 /*
1701 * tail_page->_count is zero and not changing from
1702 * under us. But get_page_unless_zero() may be running
1703 * from under us on the tail_page. If we used
1704 * atomic_set() below instead of atomic_add(), we
1705 * would then run atomic_set() concurrently with
1706 * get_page_unless_zero(), and atomic_set() is
1707 * implemented in C not using locked ops. spin_unlock
1708 * on x86 sometime uses locked ops because of PPro
1709 * errata 66, 92, so unless somebody can guarantee
1710 * atomic_set() here would be safe on all archs (and
1711 * not only on x86), it's safer to use atomic_add().
1712 */
1713 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1714 &page_tail->_count);
71e3aac0
AA
1715
1716 /* after clearing PageTail the gup refcount can be released */
3a79d52a 1717 smp_mb__after_atomic();
71e3aac0 1718
f4c18e6f 1719 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
71e3aac0
AA
1720 page_tail->flags |= (page->flags &
1721 ((1L << PG_referenced) |
1722 (1L << PG_swapbacked) |
1723 (1L << PG_mlocked) |
e180cf80
KS
1724 (1L << PG_uptodate) |
1725 (1L << PG_active) |
1726 (1L << PG_unevictable)));
71e3aac0
AA
1727 page_tail->flags |= (1L << PG_dirty);
1728
70b50f94 1729 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1730 smp_wmb();
1731
1732 /*
1733 * __split_huge_page_splitting() already set the
1734 * splitting bit in all pmd that could map this
1735 * hugepage, that will ensure no CPU can alter the
1736 * mapcount on the head page. The mapcount is only
1737 * accounted in the head page and it has to be
1738 * transferred to all tail pages in the below code. So
1739 * for this code to be safe, the split the mapcount
1740 * can't change. But that doesn't mean userland can't
1741 * keep changing and reading the page contents while
1742 * we transfer the mapcount, so the pmd splitting
1743 * status is achieved setting a reserved bit in the
1744 * pmd, not by clearing the present bit.
1745 */
71e3aac0
AA
1746 page_tail->_mapcount = page->_mapcount;
1747
1748 BUG_ON(page_tail->mapping);
1749 page_tail->mapping = page->mapping;
1750
45676885 1751 page_tail->index = page->index + i;
90572890 1752 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
71e3aac0
AA
1753
1754 BUG_ON(!PageAnon(page_tail));
1755 BUG_ON(!PageUptodate(page_tail));
1756 BUG_ON(!PageDirty(page_tail));
1757 BUG_ON(!PageSwapBacked(page_tail));
1758
5bc7b8ac 1759 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1760 }
70b50f94
AA
1761 atomic_sub(tail_count, &page->_count);
1762 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1763
fa9add64 1764 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1765
71e3aac0
AA
1766 ClearPageCompound(page);
1767 compound_unlock(page);
1768 spin_unlock_irq(&zone->lru_lock);
1769
1770 for (i = 1; i < HPAGE_PMD_NR; i++) {
1771 struct page *page_tail = page + i;
1772 BUG_ON(page_count(page_tail) <= 0);
1773 /*
1774 * Tail pages may be freed if there wasn't any mapping
1775 * like if add_to_swap() is running on a lru page that
1776 * had its mapping zapped. And freeing these pages
1777 * requires taking the lru_lock so we do the put_page
1778 * of the tail pages after the split is complete.
1779 */
1780 put_page(page_tail);
1781 }
1782
1783 /*
1784 * Only the head page (now become a regular page) is required
1785 * to be pinned by the caller.
1786 */
1787 BUG_ON(page_count(page) <= 0);
1788}
1789
1790static int __split_huge_page_map(struct page *page,
1791 struct vm_area_struct *vma,
1792 unsigned long address)
1793{
1794 struct mm_struct *mm = vma->vm_mm;
117b0791 1795 spinlock_t *ptl;
71e3aac0
AA
1796 pmd_t *pmd, _pmd;
1797 int ret = 0, i;
1798 pgtable_t pgtable;
1799 unsigned long haddr;
1800
71e3aac0 1801 pmd = page_check_address_pmd(page, mm, address,
117b0791 1802 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
71e3aac0 1803 if (pmd) {
6b0b50b0 1804 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0 1805 pmd_populate(mm, &_pmd, pgtable);
f8303c25
WL
1806 if (pmd_write(*pmd))
1807 BUG_ON(page_mapcount(page) != 1);
71e3aac0 1808
e3ebcf64
GS
1809 haddr = address;
1810 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1811 pte_t *pte, entry;
1812 BUG_ON(PageCompound(page+i));
abc40bd2 1813 /*
8a0516ed
MG
1814 * Note that NUMA hinting access restrictions are not
1815 * transferred to avoid any possibility of altering
1816 * permissions across VMAs.
abc40bd2 1817 */
71e3aac0
AA
1818 entry = mk_pte(page + i, vma->vm_page_prot);
1819 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1820 if (!pmd_write(*pmd))
1821 entry = pte_wrprotect(entry);
71e3aac0
AA
1822 if (!pmd_young(*pmd))
1823 entry = pte_mkold(entry);
1824 pte = pte_offset_map(&_pmd, haddr);
1825 BUG_ON(!pte_none(*pte));
1826 set_pte_at(mm, haddr, pte, entry);
1827 pte_unmap(pte);
1828 }
1829
71e3aac0
AA
1830 smp_wmb(); /* make pte visible before pmd */
1831 /*
1832 * Up to this point the pmd is present and huge and
1833 * userland has the whole access to the hugepage
1834 * during the split (which happens in place). If we
1835 * overwrite the pmd with the not-huge version
1836 * pointing to the pte here (which of course we could
1837 * if all CPUs were bug free), userland could trigger
1838 * a small page size TLB miss on the small sized TLB
1839 * while the hugepage TLB entry is still established
1840 * in the huge TLB. Some CPU doesn't like that. See
1841 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1842 * Erratum 383 on page 93. Intel should be safe but is
1843 * also warns that it's only safe if the permission
1844 * and cache attributes of the two entries loaded in
1845 * the two TLB is identical (which should be the case
1846 * here). But it is generally safer to never allow
1847 * small and huge TLB entries for the same virtual
1848 * address to be loaded simultaneously. So instead of
1849 * doing "pmd_populate(); flush_tlb_range();" we first
1850 * mark the current pmd notpresent (atomically because
1851 * here the pmd_trans_huge and pmd_trans_splitting
1852 * must remain set at all times on the pmd until the
1853 * split is complete for this pmd), then we flush the
1854 * SMP TLB and finally we write the non-huge version
1855 * of the pmd entry with pmd_populate.
1856 */
46dcde73 1857 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1858 pmd_populate(mm, pmd, pgtable);
1859 ret = 1;
117b0791 1860 spin_unlock(ptl);
71e3aac0 1861 }
71e3aac0
AA
1862
1863 return ret;
1864}
1865
5a505085 1866/* must be called with anon_vma->root->rwsem held */
71e3aac0 1867static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1868 struct anon_vma *anon_vma,
1869 struct list_head *list)
71e3aac0
AA
1870{
1871 int mapcount, mapcount2;
bf181b9f 1872 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1873 struct anon_vma_chain *avc;
1874
1875 BUG_ON(!PageHead(page));
1876 BUG_ON(PageTail(page));
1877
1878 mapcount = 0;
bf181b9f 1879 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1880 struct vm_area_struct *vma = avc->vma;
1881 unsigned long addr = vma_address(page, vma);
1882 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1883 mapcount += __split_huge_page_splitting(page, vma, addr);
1884 }
05759d38
AA
1885 /*
1886 * It is critical that new vmas are added to the tail of the
1887 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1888 * and establishes a child pmd before
1889 * __split_huge_page_splitting() freezes the parent pmd (so if
1890 * we fail to prevent copy_huge_pmd() from running until the
1891 * whole __split_huge_page() is complete), we will still see
1892 * the newly established pmd of the child later during the
1893 * walk, to be able to set it as pmd_trans_splitting too.
1894 */
ff9e43eb 1895 if (mapcount != page_mapcount(page)) {
ae3a8c1c
AM
1896 pr_err("mapcount %d page_mapcount %d\n",
1897 mapcount, page_mapcount(page));
ff9e43eb
KS
1898 BUG();
1899 }
71e3aac0 1900
5bc7b8ac 1901 __split_huge_page_refcount(page, list);
71e3aac0
AA
1902
1903 mapcount2 = 0;
bf181b9f 1904 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1905 struct vm_area_struct *vma = avc->vma;
1906 unsigned long addr = vma_address(page, vma);
1907 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1908 mapcount2 += __split_huge_page_map(page, vma, addr);
1909 }
ff9e43eb 1910 if (mapcount != mapcount2) {
ae3a8c1c
AM
1911 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1912 mapcount, mapcount2, page_mapcount(page));
ff9e43eb
KS
1913 BUG();
1914 }
71e3aac0
AA
1915}
1916
5bc7b8ac
SL
1917/*
1918 * Split a hugepage into normal pages. This doesn't change the position of head
1919 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1920 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1921 * from the hugepage.
1922 * Return 0 if the hugepage is split successfully otherwise return 1.
1923 */
1924int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1925{
1926 struct anon_vma *anon_vma;
1927 int ret = 1;
1928
5918d10a 1929 BUG_ON(is_huge_zero_page(page));
71e3aac0 1930 BUG_ON(!PageAnon(page));
062f1af2
MG
1931
1932 /*
1933 * The caller does not necessarily hold an mmap_sem that would prevent
1934 * the anon_vma disappearing so we first we take a reference to it
1935 * and then lock the anon_vma for write. This is similar to
1936 * page_lock_anon_vma_read except the write lock is taken to serialise
1937 * against parallel split or collapse operations.
1938 */
1939 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1940 if (!anon_vma)
1941 goto out;
062f1af2
MG
1942 anon_vma_lock_write(anon_vma);
1943
71e3aac0
AA
1944 ret = 0;
1945 if (!PageCompound(page))
1946 goto out_unlock;
1947
1948 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1949 __split_huge_page(page, anon_vma, list);
81ab4201 1950 count_vm_event(THP_SPLIT);
71e3aac0
AA
1951
1952 BUG_ON(PageCompound(page));
1953out_unlock:
08b52706 1954 anon_vma_unlock_write(anon_vma);
062f1af2 1955 put_anon_vma(anon_vma);
71e3aac0
AA
1956out:
1957 return ret;
1958}
1959
9050d7eb 1960#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
78f11a25 1961
60ab3244
AA
1962int hugepage_madvise(struct vm_area_struct *vma,
1963 unsigned long *vm_flags, int advice)
0af4e98b 1964{
a664b2d8
AA
1965 switch (advice) {
1966 case MADV_HUGEPAGE:
1e1836e8
AT
1967#ifdef CONFIG_S390
1968 /*
1969 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1970 * can't handle this properly after s390_enable_sie, so we simply
1971 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1972 */
1973 if (mm_has_pgste(vma->vm_mm))
1974 return 0;
1975#endif
a664b2d8
AA
1976 /*
1977 * Be somewhat over-protective like KSM for now!
1978 */
78f11a25 1979 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1980 return -EINVAL;
1981 *vm_flags &= ~VM_NOHUGEPAGE;
1982 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1983 /*
1984 * If the vma become good for khugepaged to scan,
1985 * register it here without waiting a page fault that
1986 * may not happen any time soon.
1987 */
6d50e60c 1988 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
60ab3244 1989 return -ENOMEM;
a664b2d8
AA
1990 break;
1991 case MADV_NOHUGEPAGE:
1992 /*
1993 * Be somewhat over-protective like KSM for now!
1994 */
78f11a25 1995 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1996 return -EINVAL;
1997 *vm_flags &= ~VM_HUGEPAGE;
1998 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1999 /*
2000 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
2001 * this vma even if we leave the mm registered in khugepaged if
2002 * it got registered before VM_NOHUGEPAGE was set.
2003 */
a664b2d8
AA
2004 break;
2005 }
0af4e98b
AA
2006
2007 return 0;
2008}
2009
ba76149f
AA
2010static int __init khugepaged_slab_init(void)
2011{
2012 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
2013 sizeof(struct mm_slot),
2014 __alignof__(struct mm_slot), 0, NULL);
2015 if (!mm_slot_cache)
2016 return -ENOMEM;
2017
2018 return 0;
2019}
2020
65ebb64f
KS
2021static void __init khugepaged_slab_exit(void)
2022{
2023 kmem_cache_destroy(mm_slot_cache);
2024}
2025
ba76149f
AA
2026static inline struct mm_slot *alloc_mm_slot(void)
2027{
2028 if (!mm_slot_cache) /* initialization failed */
2029 return NULL;
2030 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
2031}
2032
2033static inline void free_mm_slot(struct mm_slot *mm_slot)
2034{
2035 kmem_cache_free(mm_slot_cache, mm_slot);
2036}
2037
ba76149f
AA
2038static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2039{
2040 struct mm_slot *mm_slot;
ba76149f 2041
b67bfe0d 2042 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
2043 if (mm == mm_slot->mm)
2044 return mm_slot;
43b5fbbd 2045
ba76149f
AA
2046 return NULL;
2047}
2048
2049static void insert_to_mm_slots_hash(struct mm_struct *mm,
2050 struct mm_slot *mm_slot)
2051{
ba76149f 2052 mm_slot->mm = mm;
43b5fbbd 2053 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
2054}
2055
2056static inline int khugepaged_test_exit(struct mm_struct *mm)
2057{
2058 return atomic_read(&mm->mm_users) == 0;
2059}
2060
2061int __khugepaged_enter(struct mm_struct *mm)
2062{
2063 struct mm_slot *mm_slot;
2064 int wakeup;
2065
2066 mm_slot = alloc_mm_slot();
2067 if (!mm_slot)
2068 return -ENOMEM;
2069
2070 /* __khugepaged_exit() must not run from under us */
96dad67f 2071 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
ba76149f
AA
2072 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2073 free_mm_slot(mm_slot);
2074 return 0;
2075 }
2076
2077 spin_lock(&khugepaged_mm_lock);
2078 insert_to_mm_slots_hash(mm, mm_slot);
2079 /*
2080 * Insert just behind the scanning cursor, to let the area settle
2081 * down a little.
2082 */
2083 wakeup = list_empty(&khugepaged_scan.mm_head);
2084 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2085 spin_unlock(&khugepaged_mm_lock);
2086
2087 atomic_inc(&mm->mm_count);
2088 if (wakeup)
2089 wake_up_interruptible(&khugepaged_wait);
2090
2091 return 0;
2092}
2093
6d50e60c
DR
2094int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2095 unsigned long vm_flags)
ba76149f
AA
2096{
2097 unsigned long hstart, hend;
2098 if (!vma->anon_vma)
2099 /*
2100 * Not yet faulted in so we will register later in the
2101 * page fault if needed.
2102 */
2103 return 0;
78f11a25 2104 if (vma->vm_ops)
ba76149f
AA
2105 /* khugepaged not yet working on file or special mappings */
2106 return 0;
6d50e60c 2107 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
ba76149f
AA
2108 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2109 hend = vma->vm_end & HPAGE_PMD_MASK;
2110 if (hstart < hend)
6d50e60c 2111 return khugepaged_enter(vma, vm_flags);
ba76149f
AA
2112 return 0;
2113}
2114
2115void __khugepaged_exit(struct mm_struct *mm)
2116{
2117 struct mm_slot *mm_slot;
2118 int free = 0;
2119
2120 spin_lock(&khugepaged_mm_lock);
2121 mm_slot = get_mm_slot(mm);
2122 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 2123 hash_del(&mm_slot->hash);
ba76149f
AA
2124 list_del(&mm_slot->mm_node);
2125 free = 1;
2126 }
d788e80a 2127 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2128
2129 if (free) {
ba76149f
AA
2130 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2131 free_mm_slot(mm_slot);
2132 mmdrop(mm);
2133 } else if (mm_slot) {
ba76149f
AA
2134 /*
2135 * This is required to serialize against
2136 * khugepaged_test_exit() (which is guaranteed to run
2137 * under mmap sem read mode). Stop here (after we
2138 * return all pagetables will be destroyed) until
2139 * khugepaged has finished working on the pagetables
2140 * under the mmap_sem.
2141 */
2142 down_write(&mm->mmap_sem);
2143 up_write(&mm->mmap_sem);
d788e80a 2144 }
ba76149f
AA
2145}
2146
2147static void release_pte_page(struct page *page)
2148{
2149 /* 0 stands for page_is_file_cache(page) == false */
2150 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2151 unlock_page(page);
2152 putback_lru_page(page);
2153}
2154
2155static void release_pte_pages(pte_t *pte, pte_t *_pte)
2156{
2157 while (--_pte >= pte) {
2158 pte_t pteval = *_pte;
ca0984ca 2159 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
ba76149f
AA
2160 release_pte_page(pte_page(pteval));
2161 }
2162}
2163
ba76149f
AA
2164static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2165 unsigned long address,
2166 pte_t *pte)
2167{
2168 struct page *page;
2169 pte_t *_pte;
ca0984ca 2170 int none_or_zero = 0;
10359213 2171 bool referenced = false, writable = false;
ba76149f
AA
2172 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2173 _pte++, address += PAGE_SIZE) {
2174 pte_t pteval = *_pte;
ca0984ca 2175 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05
AA
2176 if (!userfaultfd_armed(vma) &&
2177 ++none_or_zero <= khugepaged_max_ptes_none)
ba76149f 2178 continue;
344aa35c 2179 else
ba76149f 2180 goto out;
ba76149f 2181 }
10359213 2182 if (!pte_present(pteval))
ba76149f 2183 goto out;
ba76149f 2184 page = vm_normal_page(vma, address, pteval);
344aa35c 2185 if (unlikely(!page))
ba76149f 2186 goto out;
344aa35c 2187
309381fe
SL
2188 VM_BUG_ON_PAGE(PageCompound(page), page);
2189 VM_BUG_ON_PAGE(!PageAnon(page), page);
2190 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
ba76149f 2191
ba76149f
AA
2192 /*
2193 * We can do it before isolate_lru_page because the
2194 * page can't be freed from under us. NOTE: PG_lock
2195 * is needed to serialize against split_huge_page
2196 * when invoked from the VM.
2197 */
344aa35c 2198 if (!trylock_page(page))
ba76149f 2199 goto out;
10359213
EA
2200
2201 /*
2202 * cannot use mapcount: can't collapse if there's a gup pin.
2203 * The page must only be referenced by the scanned process
2204 * and page swap cache.
2205 */
2206 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2207 unlock_page(page);
2208 goto out;
2209 }
2210 if (pte_write(pteval)) {
2211 writable = true;
2212 } else {
2213 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2214 unlock_page(page);
2215 goto out;
2216 }
2217 /*
2218 * Page is not in the swap cache. It can be collapsed
2219 * into a THP.
2220 */
2221 }
2222
ba76149f
AA
2223 /*
2224 * Isolate the page to avoid collapsing an hugepage
2225 * currently in use by the VM.
2226 */
2227 if (isolate_lru_page(page)) {
2228 unlock_page(page);
ba76149f
AA
2229 goto out;
2230 }
2231 /* 0 stands for page_is_file_cache(page) == false */
2232 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
309381fe
SL
2233 VM_BUG_ON_PAGE(!PageLocked(page), page);
2234 VM_BUG_ON_PAGE(PageLRU(page), page);
ba76149f
AA
2235
2236 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2237 if (pte_young(pteval) || PageReferenced(page) ||
2238 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2239 referenced = true;
ba76149f 2240 }
10359213 2241 if (likely(referenced && writable))
344aa35c 2242 return 1;
ba76149f 2243out:
344aa35c
BL
2244 release_pte_pages(pte, _pte);
2245 return 0;
ba76149f
AA
2246}
2247
2248static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2249 struct vm_area_struct *vma,
2250 unsigned long address,
2251 spinlock_t *ptl)
2252{
2253 pte_t *_pte;
2254 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2255 pte_t pteval = *_pte;
2256 struct page *src_page;
2257
ca0984ca 2258 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
ba76149f
AA
2259 clear_user_highpage(page, address);
2260 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
ca0984ca
EA
2261 if (is_zero_pfn(pte_pfn(pteval))) {
2262 /*
2263 * ptl mostly unnecessary.
2264 */
2265 spin_lock(ptl);
2266 /*
2267 * paravirt calls inside pte_clear here are
2268 * superfluous.
2269 */
2270 pte_clear(vma->vm_mm, address, _pte);
2271 spin_unlock(ptl);
2272 }
ba76149f
AA
2273 } else {
2274 src_page = pte_page(pteval);
2275 copy_user_highpage(page, src_page, address, vma);
309381fe 2276 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
ba76149f
AA
2277 release_pte_page(src_page);
2278 /*
2279 * ptl mostly unnecessary, but preempt has to
2280 * be disabled to update the per-cpu stats
2281 * inside page_remove_rmap().
2282 */
2283 spin_lock(ptl);
2284 /*
2285 * paravirt calls inside pte_clear here are
2286 * superfluous.
2287 */
2288 pte_clear(vma->vm_mm, address, _pte);
2289 page_remove_rmap(src_page);
2290 spin_unlock(ptl);
2291 free_page_and_swap_cache(src_page);
2292 }
2293
2294 address += PAGE_SIZE;
2295 page++;
2296 }
2297}
2298
26234f36 2299static void khugepaged_alloc_sleep(void)
ba76149f 2300{
26234f36
XG
2301 wait_event_freezable_timeout(khugepaged_wait, false,
2302 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2303}
ba76149f 2304
9f1b868a
BL
2305static int khugepaged_node_load[MAX_NUMNODES];
2306
14a4e214
DR
2307static bool khugepaged_scan_abort(int nid)
2308{
2309 int i;
2310
2311 /*
2312 * If zone_reclaim_mode is disabled, then no extra effort is made to
2313 * allocate memory locally.
2314 */
2315 if (!zone_reclaim_mode)
2316 return false;
2317
2318 /* If there is a count for this node already, it must be acceptable */
2319 if (khugepaged_node_load[nid])
2320 return false;
2321
2322 for (i = 0; i < MAX_NUMNODES; i++) {
2323 if (!khugepaged_node_load[i])
2324 continue;
2325 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2326 return true;
2327 }
2328 return false;
2329}
2330
26234f36 2331#ifdef CONFIG_NUMA
9f1b868a
BL
2332static int khugepaged_find_target_node(void)
2333{
2334 static int last_khugepaged_target_node = NUMA_NO_NODE;
2335 int nid, target_node = 0, max_value = 0;
2336
2337 /* find first node with max normal pages hit */
2338 for (nid = 0; nid < MAX_NUMNODES; nid++)
2339 if (khugepaged_node_load[nid] > max_value) {
2340 max_value = khugepaged_node_load[nid];
2341 target_node = nid;
2342 }
2343
2344 /* do some balance if several nodes have the same hit record */
2345 if (target_node <= last_khugepaged_target_node)
2346 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2347 nid++)
2348 if (max_value == khugepaged_node_load[nid]) {
2349 target_node = nid;
2350 break;
2351 }
2352
2353 last_khugepaged_target_node = target_node;
2354 return target_node;
2355}
2356
26234f36
XG
2357static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2358{
2359 if (IS_ERR(*hpage)) {
2360 if (!*wait)
2361 return false;
2362
2363 *wait = false;
e3b4126c 2364 *hpage = NULL;
26234f36
XG
2365 khugepaged_alloc_sleep();
2366 } else if (*hpage) {
2367 put_page(*hpage);
2368 *hpage = NULL;
2369 }
2370
2371 return true;
2372}
2373
3b363692
MH
2374static struct page *
2375khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2376 struct vm_area_struct *vma, unsigned long address,
2377 int node)
2378{
309381fe 2379 VM_BUG_ON_PAGE(*hpage, *hpage);
8b164568 2380
ce83d217 2381 /*
8b164568
VB
2382 * Before allocating the hugepage, release the mmap_sem read lock.
2383 * The allocation can take potentially a long time if it involves
2384 * sync compaction, and we do not need to hold the mmap_sem during
2385 * that. We will recheck the vma after taking it again in write mode.
ce83d217 2386 */
8b164568
VB
2387 up_read(&mm->mmap_sem);
2388
3b363692 2389 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
26234f36 2390 if (unlikely(!*hpage)) {
81ab4201 2391 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2392 *hpage = ERR_PTR(-ENOMEM);
26234f36 2393 return NULL;
ce83d217 2394 }
26234f36 2395
65b3c07b 2396 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2397 return *hpage;
2398}
2399#else
9f1b868a
BL
2400static int khugepaged_find_target_node(void)
2401{
2402 return 0;
2403}
2404
10dc4155
BL
2405static inline struct page *alloc_hugepage(int defrag)
2406{
2407 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2408 HPAGE_PMD_ORDER);
2409}
2410
26234f36
XG
2411static struct page *khugepaged_alloc_hugepage(bool *wait)
2412{
2413 struct page *hpage;
2414
2415 do {
2416 hpage = alloc_hugepage(khugepaged_defrag());
2417 if (!hpage) {
2418 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2419 if (!*wait)
2420 return NULL;
2421
2422 *wait = false;
2423 khugepaged_alloc_sleep();
2424 } else
2425 count_vm_event(THP_COLLAPSE_ALLOC);
2426 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2427
2428 return hpage;
2429}
2430
2431static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2432{
2433 if (!*hpage)
2434 *hpage = khugepaged_alloc_hugepage(wait);
2435
2436 if (unlikely(!*hpage))
2437 return false;
2438
2439 return true;
2440}
2441
3b363692
MH
2442static struct page *
2443khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
26234f36
XG
2444 struct vm_area_struct *vma, unsigned long address,
2445 int node)
2446{
2447 up_read(&mm->mmap_sem);
2448 VM_BUG_ON(!*hpage);
3b363692 2449
26234f36
XG
2450 return *hpage;
2451}
692e0b35
AA
2452#endif
2453
fa475e51
BL
2454static bool hugepage_vma_check(struct vm_area_struct *vma)
2455{
2456 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2457 (vma->vm_flags & VM_NOHUGEPAGE))
2458 return false;
2459
2460 if (!vma->anon_vma || vma->vm_ops)
2461 return false;
2462 if (is_vma_temporary_stack(vma))
2463 return false;
81d1b09c 2464 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
fa475e51
BL
2465 return true;
2466}
2467
26234f36
XG
2468static void collapse_huge_page(struct mm_struct *mm,
2469 unsigned long address,
2470 struct page **hpage,
2471 struct vm_area_struct *vma,
2472 int node)
2473{
26234f36
XG
2474 pmd_t *pmd, _pmd;
2475 pte_t *pte;
2476 pgtable_t pgtable;
2477 struct page *new_page;
c4088ebd 2478 spinlock_t *pmd_ptl, *pte_ptl;
26234f36
XG
2479 int isolated;
2480 unsigned long hstart, hend;
00501b53 2481 struct mem_cgroup *memcg;
2ec74c3e
SG
2482 unsigned long mmun_start; /* For mmu_notifiers */
2483 unsigned long mmun_end; /* For mmu_notifiers */
3b363692 2484 gfp_t gfp;
26234f36
XG
2485
2486 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2487
3b363692
MH
2488 /* Only allocate from the target node */
2489 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2490 __GFP_THISNODE;
2491
26234f36 2492 /* release the mmap_sem read lock. */
3b363692 2493 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
26234f36
XG
2494 if (!new_page)
2495 return;
2496
00501b53 2497 if (unlikely(mem_cgroup_try_charge(new_page, mm,
3b363692 2498 gfp, &memcg)))
ce83d217 2499 return;
ba76149f
AA
2500
2501 /*
2502 * Prevent all access to pagetables with the exception of
2503 * gup_fast later hanlded by the ptep_clear_flush and the VM
2504 * handled by the anon_vma lock + PG_lock.
2505 */
2506 down_write(&mm->mmap_sem);
2507 if (unlikely(khugepaged_test_exit(mm)))
2508 goto out;
2509
2510 vma = find_vma(mm, address);
a8f531eb
L
2511 if (!vma)
2512 goto out;
ba76149f
AA
2513 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2514 hend = vma->vm_end & HPAGE_PMD_MASK;
2515 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2516 goto out;
fa475e51 2517 if (!hugepage_vma_check(vma))
a7d6e4ec 2518 goto out;
6219049a
BL
2519 pmd = mm_find_pmd(mm, address);
2520 if (!pmd)
ba76149f 2521 goto out;
ba76149f 2522
4fc3f1d6 2523 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2524
2525 pte = pte_offset_map(pmd, address);
c4088ebd 2526 pte_ptl = pte_lockptr(mm, pmd);
ba76149f 2527
2ec74c3e
SG
2528 mmun_start = address;
2529 mmun_end = address + HPAGE_PMD_SIZE;
2530 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2531 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
ba76149f
AA
2532 /*
2533 * After this gup_fast can't run anymore. This also removes
2534 * any huge TLB entry from the CPU so we won't allow
2535 * huge and small TLB entries for the same virtual address
2536 * to avoid the risk of CPU bugs in that area.
2537 */
15a25b2e 2538 _pmd = pmdp_collapse_flush(vma, address, pmd);
c4088ebd 2539 spin_unlock(pmd_ptl);
2ec74c3e 2540 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f 2541
c4088ebd 2542 spin_lock(pte_ptl);
ba76149f 2543 isolated = __collapse_huge_page_isolate(vma, address, pte);
c4088ebd 2544 spin_unlock(pte_ptl);
ba76149f
AA
2545
2546 if (unlikely(!isolated)) {
453c7192 2547 pte_unmap(pte);
c4088ebd 2548 spin_lock(pmd_ptl);
ba76149f 2549 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2550 /*
2551 * We can only use set_pmd_at when establishing
2552 * hugepmds and never for establishing regular pmds that
2553 * points to regular pagetables. Use pmd_populate for that
2554 */
2555 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
c4088ebd 2556 spin_unlock(pmd_ptl);
08b52706 2557 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2558 goto out;
ba76149f
AA
2559 }
2560
2561 /*
2562 * All pages are isolated and locked so anon_vma rmap
2563 * can't run anymore.
2564 */
08b52706 2565 anon_vma_unlock_write(vma->anon_vma);
ba76149f 2566
c4088ebd 2567 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
453c7192 2568 pte_unmap(pte);
ba76149f
AA
2569 __SetPageUptodate(new_page);
2570 pgtable = pmd_pgtable(_pmd);
ba76149f 2571
3122359a
KS
2572 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2573 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2574
2575 /*
2576 * spin_lock() below is not the equivalent of smp_wmb(), so
2577 * this is needed to avoid the copy_huge_page writes to become
2578 * visible after the set_pmd_at() write.
2579 */
2580 smp_wmb();
2581
c4088ebd 2582 spin_lock(pmd_ptl);
ba76149f
AA
2583 BUG_ON(!pmd_none(*pmd));
2584 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2585 mem_cgroup_commit_charge(new_page, memcg, false);
2586 lru_cache_add_active_or_unevictable(new_page, vma);
fce144b4 2587 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2588 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2589 update_mmu_cache_pmd(vma, address, pmd);
c4088ebd 2590 spin_unlock(pmd_ptl);
ba76149f
AA
2591
2592 *hpage = NULL;
420256ef 2593
ba76149f 2594 khugepaged_pages_collapsed++;
ce83d217 2595out_up_write:
ba76149f 2596 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2597 return;
2598
ce83d217 2599out:
00501b53 2600 mem_cgroup_cancel_charge(new_page, memcg);
ce83d217 2601 goto out_up_write;
ba76149f
AA
2602}
2603
2604static int khugepaged_scan_pmd(struct mm_struct *mm,
2605 struct vm_area_struct *vma,
2606 unsigned long address,
2607 struct page **hpage)
2608{
ba76149f
AA
2609 pmd_t *pmd;
2610 pte_t *pte, *_pte;
ca0984ca 2611 int ret = 0, none_or_zero = 0;
ba76149f
AA
2612 struct page *page;
2613 unsigned long _address;
2614 spinlock_t *ptl;
00ef2d2f 2615 int node = NUMA_NO_NODE;
10359213 2616 bool writable = false, referenced = false;
ba76149f
AA
2617
2618 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2619
6219049a
BL
2620 pmd = mm_find_pmd(mm, address);
2621 if (!pmd)
ba76149f 2622 goto out;
ba76149f 2623
9f1b868a 2624 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
ba76149f
AA
2625 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2626 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2627 _pte++, _address += PAGE_SIZE) {
2628 pte_t pteval = *_pte;
ca0984ca 2629 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
c1294d05
AA
2630 if (!userfaultfd_armed(vma) &&
2631 ++none_or_zero <= khugepaged_max_ptes_none)
ba76149f
AA
2632 continue;
2633 else
2634 goto out_unmap;
2635 }
10359213 2636 if (!pte_present(pteval))
ba76149f 2637 goto out_unmap;
10359213
EA
2638 if (pte_write(pteval))
2639 writable = true;
2640
ba76149f
AA
2641 page = vm_normal_page(vma, _address, pteval);
2642 if (unlikely(!page))
2643 goto out_unmap;
5c4b4be3 2644 /*
9f1b868a
BL
2645 * Record which node the original page is from and save this
2646 * information to khugepaged_node_load[].
2647 * Khupaged will allocate hugepage from the node has the max
2648 * hit record.
5c4b4be3 2649 */
9f1b868a 2650 node = page_to_nid(page);
14a4e214
DR
2651 if (khugepaged_scan_abort(node))
2652 goto out_unmap;
9f1b868a 2653 khugepaged_node_load[node]++;
309381fe 2654 VM_BUG_ON_PAGE(PageCompound(page), page);
ba76149f
AA
2655 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2656 goto out_unmap;
10359213
EA
2657 /*
2658 * cannot use mapcount: can't collapse if there's a gup pin.
2659 * The page must only be referenced by the scanned process
2660 * and page swap cache.
2661 */
2662 if (page_count(page) != 1 + !!PageSwapCache(page))
ba76149f 2663 goto out_unmap;
8ee53820
AA
2664 if (pte_young(pteval) || PageReferenced(page) ||
2665 mmu_notifier_test_young(vma->vm_mm, address))
10359213 2666 referenced = true;
ba76149f 2667 }
10359213 2668 if (referenced && writable)
ba76149f
AA
2669 ret = 1;
2670out_unmap:
2671 pte_unmap_unlock(pte, ptl);
9f1b868a
BL
2672 if (ret) {
2673 node = khugepaged_find_target_node();
ce83d217 2674 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2675 collapse_huge_page(mm, address, hpage, vma, node);
9f1b868a 2676 }
ba76149f
AA
2677out:
2678 return ret;
2679}
2680
2681static void collect_mm_slot(struct mm_slot *mm_slot)
2682{
2683 struct mm_struct *mm = mm_slot->mm;
2684
b9980cdc 2685 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2686
2687 if (khugepaged_test_exit(mm)) {
2688 /* free mm_slot */
43b5fbbd 2689 hash_del(&mm_slot->hash);
ba76149f
AA
2690 list_del(&mm_slot->mm_node);
2691
2692 /*
2693 * Not strictly needed because the mm exited already.
2694 *
2695 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2696 */
2697
2698 /* khugepaged_mm_lock actually not necessary for the below */
2699 free_mm_slot(mm_slot);
2700 mmdrop(mm);
2701 }
2702}
2703
2704static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2705 struct page **hpage)
2f1da642
HS
2706 __releases(&khugepaged_mm_lock)
2707 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2708{
2709 struct mm_slot *mm_slot;
2710 struct mm_struct *mm;
2711 struct vm_area_struct *vma;
2712 int progress = 0;
2713
2714 VM_BUG_ON(!pages);
b9980cdc 2715 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2716
2717 if (khugepaged_scan.mm_slot)
2718 mm_slot = khugepaged_scan.mm_slot;
2719 else {
2720 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2721 struct mm_slot, mm_node);
2722 khugepaged_scan.address = 0;
2723 khugepaged_scan.mm_slot = mm_slot;
2724 }
2725 spin_unlock(&khugepaged_mm_lock);
2726
2727 mm = mm_slot->mm;
2728 down_read(&mm->mmap_sem);
2729 if (unlikely(khugepaged_test_exit(mm)))
2730 vma = NULL;
2731 else
2732 vma = find_vma(mm, khugepaged_scan.address);
2733
2734 progress++;
2735 for (; vma; vma = vma->vm_next) {
2736 unsigned long hstart, hend;
2737
2738 cond_resched();
2739 if (unlikely(khugepaged_test_exit(mm))) {
2740 progress++;
2741 break;
2742 }
fa475e51
BL
2743 if (!hugepage_vma_check(vma)) {
2744skip:
ba76149f
AA
2745 progress++;
2746 continue;
2747 }
ba76149f
AA
2748 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2749 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2750 if (hstart >= hend)
2751 goto skip;
2752 if (khugepaged_scan.address > hend)
2753 goto skip;
ba76149f
AA
2754 if (khugepaged_scan.address < hstart)
2755 khugepaged_scan.address = hstart;
a7d6e4ec 2756 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2757
2758 while (khugepaged_scan.address < hend) {
2759 int ret;
2760 cond_resched();
2761 if (unlikely(khugepaged_test_exit(mm)))
2762 goto breakouterloop;
2763
2764 VM_BUG_ON(khugepaged_scan.address < hstart ||
2765 khugepaged_scan.address + HPAGE_PMD_SIZE >
2766 hend);
2767 ret = khugepaged_scan_pmd(mm, vma,
2768 khugepaged_scan.address,
2769 hpage);
2770 /* move to next address */
2771 khugepaged_scan.address += HPAGE_PMD_SIZE;
2772 progress += HPAGE_PMD_NR;
2773 if (ret)
2774 /* we released mmap_sem so break loop */
2775 goto breakouterloop_mmap_sem;
2776 if (progress >= pages)
2777 goto breakouterloop;
2778 }
2779 }
2780breakouterloop:
2781 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2782breakouterloop_mmap_sem:
2783
2784 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2785 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2786 /*
2787 * Release the current mm_slot if this mm is about to die, or
2788 * if we scanned all vmas of this mm.
2789 */
2790 if (khugepaged_test_exit(mm) || !vma) {
2791 /*
2792 * Make sure that if mm_users is reaching zero while
2793 * khugepaged runs here, khugepaged_exit will find
2794 * mm_slot not pointing to the exiting mm.
2795 */
2796 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2797 khugepaged_scan.mm_slot = list_entry(
2798 mm_slot->mm_node.next,
2799 struct mm_slot, mm_node);
2800 khugepaged_scan.address = 0;
2801 } else {
2802 khugepaged_scan.mm_slot = NULL;
2803 khugepaged_full_scans++;
2804 }
2805
2806 collect_mm_slot(mm_slot);
2807 }
2808
2809 return progress;
2810}
2811
2812static int khugepaged_has_work(void)
2813{
2814 return !list_empty(&khugepaged_scan.mm_head) &&
2815 khugepaged_enabled();
2816}
2817
2818static int khugepaged_wait_event(void)
2819{
2820 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2821 kthread_should_stop();
ba76149f
AA
2822}
2823
d516904b 2824static void khugepaged_do_scan(void)
ba76149f 2825{
d516904b 2826 struct page *hpage = NULL;
ba76149f
AA
2827 unsigned int progress = 0, pass_through_head = 0;
2828 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2829 bool wait = true;
ba76149f
AA
2830
2831 barrier(); /* write khugepaged_pages_to_scan to local stack */
2832
2833 while (progress < pages) {
26234f36 2834 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2835 break;
26234f36 2836
420256ef 2837 cond_resched();
ba76149f 2838
cd092411 2839 if (unlikely(kthread_should_stop() || try_to_freeze()))
878aee7d
AA
2840 break;
2841
ba76149f
AA
2842 spin_lock(&khugepaged_mm_lock);
2843 if (!khugepaged_scan.mm_slot)
2844 pass_through_head++;
2845 if (khugepaged_has_work() &&
2846 pass_through_head < 2)
2847 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2848 &hpage);
ba76149f
AA
2849 else
2850 progress = pages;
2851 spin_unlock(&khugepaged_mm_lock);
2852 }
ba76149f 2853
d516904b
XG
2854 if (!IS_ERR_OR_NULL(hpage))
2855 put_page(hpage);
0bbbc0b3
AA
2856}
2857
2017c0bf
XG
2858static void khugepaged_wait_work(void)
2859{
2017c0bf
XG
2860 if (khugepaged_has_work()) {
2861 if (!khugepaged_scan_sleep_millisecs)
2862 return;
2863
2864 wait_event_freezable_timeout(khugepaged_wait,
2865 kthread_should_stop(),
2866 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2867 return;
2868 }
2869
2870 if (khugepaged_enabled())
2871 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2872}
2873
ba76149f
AA
2874static int khugepaged(void *none)
2875{
2876 struct mm_slot *mm_slot;
2877
878aee7d 2878 set_freezable();
8698a745 2879 set_user_nice(current, MAX_NICE);
ba76149f 2880
b7231789
XG
2881 while (!kthread_should_stop()) {
2882 khugepaged_do_scan();
2883 khugepaged_wait_work();
2884 }
ba76149f
AA
2885
2886 spin_lock(&khugepaged_mm_lock);
2887 mm_slot = khugepaged_scan.mm_slot;
2888 khugepaged_scan.mm_slot = NULL;
2889 if (mm_slot)
2890 collect_mm_slot(mm_slot);
2891 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2892 return 0;
2893}
2894
c5a647d0
KS
2895static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2896 unsigned long haddr, pmd_t *pmd)
2897{
2898 struct mm_struct *mm = vma->vm_mm;
2899 pgtable_t pgtable;
2900 pmd_t _pmd;
2901 int i;
2902
8809aa2d 2903 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
c5a647d0
KS
2904 /* leave pmd empty until pte is filled */
2905
6b0b50b0 2906 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2907 pmd_populate(mm, &_pmd, pgtable);
2908
2909 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2910 pte_t *pte, entry;
2911 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2912 entry = pte_mkspecial(entry);
2913 pte = pte_offset_map(&_pmd, haddr);
2914 VM_BUG_ON(!pte_none(*pte));
2915 set_pte_at(mm, haddr, pte, entry);
2916 pte_unmap(pte);
2917 }
2918 smp_wmb(); /* make pte visible before pmd */
2919 pmd_populate(mm, pmd, pgtable);
97ae1749 2920 put_huge_zero_page();
c5a647d0
KS
2921}
2922
e180377f
KS
2923void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2924 pmd_t *pmd)
71e3aac0 2925{
c4088ebd 2926 spinlock_t *ptl;
4897c765 2927 struct page *page = NULL;
e180377f 2928 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2929 unsigned long haddr = address & HPAGE_PMD_MASK;
2930 unsigned long mmun_start; /* For mmu_notifiers */
2931 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2932
2933 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2934
c5a647d0
KS
2935 mmun_start = haddr;
2936 mmun_end = haddr + HPAGE_PMD_SIZE;
750e8165 2937again:
c5a647d0 2938 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
c4088ebd 2939 ptl = pmd_lock(mm, pmd);
4897c765
MW
2940 if (unlikely(!pmd_trans_huge(*pmd)))
2941 goto unlock;
2942 if (vma_is_dax(vma)) {
2943 pmdp_huge_clear_flush(vma, haddr, pmd);
2944 } else if (is_huge_zero_pmd(*pmd)) {
c5a647d0 2945 __split_huge_zero_page_pmd(vma, haddr, pmd);
4897c765
MW
2946 } else {
2947 page = pmd_page(*pmd);
2948 VM_BUG_ON_PAGE(!page_count(page), page);
2949 get_page(page);
71e3aac0 2950 }
4897c765 2951 unlock:
c4088ebd 2952 spin_unlock(ptl);
c5a647d0 2953 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0 2954
4897c765
MW
2955 if (!page)
2956 return;
71e3aac0 2957
4897c765 2958 split_huge_page(page);
71e3aac0 2959 put_page(page);
750e8165
HD
2960
2961 /*
2962 * We don't always have down_write of mmap_sem here: a racing
2963 * do_huge_pmd_wp_page() might have copied-on-write to another
2964 * huge page before our split_huge_page() got the anon_vma lock.
2965 */
2966 if (unlikely(pmd_trans_huge(*pmd)))
2967 goto again;
71e3aac0 2968}
94fcc585 2969
e180377f
KS
2970void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2971 pmd_t *pmd)
2972{
2973 struct vm_area_struct *vma;
2974
2975 vma = find_vma(mm, address);
2976 BUG_ON(vma == NULL);
2977 split_huge_page_pmd(vma, address, pmd);
2978}
2979
94fcc585
AA
2980static void split_huge_page_address(struct mm_struct *mm,
2981 unsigned long address)
2982{
f72e7dcd
HD
2983 pgd_t *pgd;
2984 pud_t *pud;
94fcc585
AA
2985 pmd_t *pmd;
2986
2987 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2988
f72e7dcd
HD
2989 pgd = pgd_offset(mm, address);
2990 if (!pgd_present(*pgd))
2991 return;
2992
2993 pud = pud_offset(pgd, address);
2994 if (!pud_present(*pud))
2995 return;
2996
2997 pmd = pmd_offset(pud, address);
2998 if (!pmd_present(*pmd))
94fcc585
AA
2999 return;
3000 /*
3001 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3002 * materialize from under us.
3003 */
e180377f 3004 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
3005}
3006
e1b9996b 3007void vma_adjust_trans_huge(struct vm_area_struct *vma,
94fcc585
AA
3008 unsigned long start,
3009 unsigned long end,
3010 long adjust_next)
3011{
3012 /*
3013 * If the new start address isn't hpage aligned and it could
3014 * previously contain an hugepage: check if we need to split
3015 * an huge pmd.
3016 */
3017 if (start & ~HPAGE_PMD_MASK &&
3018 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3019 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3020 split_huge_page_address(vma->vm_mm, start);
3021
3022 /*
3023 * If the new end address isn't hpage aligned and it could
3024 * previously contain an hugepage: check if we need to split
3025 * an huge pmd.
3026 */
3027 if (end & ~HPAGE_PMD_MASK &&
3028 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3029 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3030 split_huge_page_address(vma->vm_mm, end);
3031
3032 /*
3033 * If we're also updating the vma->vm_next->vm_start, if the new
3034 * vm_next->vm_start isn't page aligned and it could previously
3035 * contain an hugepage: check if we need to split an huge pmd.
3036 */
3037 if (adjust_next > 0) {
3038 struct vm_area_struct *next = vma->vm_next;
3039 unsigned long nstart = next->vm_start;
3040 nstart += adjust_next << PAGE_SHIFT;
3041 if (nstart & ~HPAGE_PMD_MASK &&
3042 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3043 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3044 split_huge_page_address(next->vm_mm, nstart);
3045 }
3046}