]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blame - mm/huge_memory.c
mm/vmstat.c: remove debug fs entries on failure of file creation and made extfrag_deb...
[mirror_ubuntu-artful-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
ba76149f
AA
15#include <linux/mm_inline.h>
16#include <linux/kthread.h>
17#include <linux/khugepaged.h>
878aee7d 18#include <linux/freezer.h>
a664b2d8 19#include <linux/mman.h>
71e3aac0
AA
20#include <asm/tlb.h>
21#include <asm/pgalloc.h>
22#include "internal.h"
23
ba76149f
AA
24/*
25 * By default transparent hugepage support is enabled for all mappings
26 * and khugepaged scans all mappings. Defrag is only invoked by
27 * khugepaged hugepage allocations and by page faults inside
28 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
29 * allocations.
30 */
71e3aac0 31unsigned long transparent_hugepage_flags __read_mostly =
13ece886 32#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 33 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
34#endif
35#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
36 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
37#endif
d39d33c3 38 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
ba76149f
AA
39 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
40
41/* default scan 8*512 pte (or vmas) every 30 second */
42static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
43static unsigned int khugepaged_pages_collapsed;
44static unsigned int khugepaged_full_scans;
45static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
46/* during fragmentation poll the hugepage allocator once every minute */
47static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
48static struct task_struct *khugepaged_thread __read_mostly;
49static DEFINE_MUTEX(khugepaged_mutex);
50static DEFINE_SPINLOCK(khugepaged_mm_lock);
51static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
52/*
53 * default collapse hugepages if there is at least one pte mapped like
54 * it would have happened if the vma was large enough during page
55 * fault.
56 */
57static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
58
59static int khugepaged(void *none);
60static int mm_slots_hash_init(void);
61static int khugepaged_slab_init(void);
62static void khugepaged_slab_free(void);
63
64#define MM_SLOTS_HASH_HEADS 1024
65static struct hlist_head *mm_slots_hash __read_mostly;
66static struct kmem_cache *mm_slot_cache __read_mostly;
67
68/**
69 * struct mm_slot - hash lookup from mm to mm_slot
70 * @hash: hash collision list
71 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
72 * @mm: the mm that this information is valid for
73 */
74struct mm_slot {
75 struct hlist_node hash;
76 struct list_head mm_node;
77 struct mm_struct *mm;
78};
79
80/**
81 * struct khugepaged_scan - cursor for scanning
82 * @mm_head: the head of the mm list to scan
83 * @mm_slot: the current mm_slot we are scanning
84 * @address: the next address inside that to be scanned
85 *
86 * There is only the one khugepaged_scan instance of this cursor structure.
87 */
88struct khugepaged_scan {
89 struct list_head mm_head;
90 struct mm_slot *mm_slot;
91 unsigned long address;
2f1da642
HS
92};
93static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
94 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
95};
96
f000565a
AA
97
98static int set_recommended_min_free_kbytes(void)
99{
100 struct zone *zone;
101 int nr_zones = 0;
102 unsigned long recommended_min;
103 extern int min_free_kbytes;
104
105 if (!test_bit(TRANSPARENT_HUGEPAGE_FLAG,
106 &transparent_hugepage_flags) &&
107 !test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
108 &transparent_hugepage_flags))
109 return 0;
110
111 for_each_populated_zone(zone)
112 nr_zones++;
113
114 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
115 recommended_min = pageblock_nr_pages * nr_zones * 2;
116
117 /*
118 * Make sure that on average at least two pageblocks are almost free
119 * of another type, one for a migratetype to fall back to and a
120 * second to avoid subsequent fallbacks of other types There are 3
121 * MIGRATE_TYPES we care about.
122 */
123 recommended_min += pageblock_nr_pages * nr_zones *
124 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
125
126 /* don't ever allow to reserve more than 5% of the lowmem */
127 recommended_min = min(recommended_min,
128 (unsigned long) nr_free_buffer_pages() / 20);
129 recommended_min <<= (PAGE_SHIFT-10);
130
131 if (recommended_min > min_free_kbytes)
132 min_free_kbytes = recommended_min;
133 setup_per_zone_wmarks();
134 return 0;
135}
136late_initcall(set_recommended_min_free_kbytes);
137
ba76149f
AA
138static int start_khugepaged(void)
139{
140 int err = 0;
141 if (khugepaged_enabled()) {
142 int wakeup;
143 if (unlikely(!mm_slot_cache || !mm_slots_hash)) {
144 err = -ENOMEM;
145 goto out;
146 }
147 mutex_lock(&khugepaged_mutex);
148 if (!khugepaged_thread)
149 khugepaged_thread = kthread_run(khugepaged, NULL,
150 "khugepaged");
151 if (unlikely(IS_ERR(khugepaged_thread))) {
152 printk(KERN_ERR
153 "khugepaged: kthread_run(khugepaged) failed\n");
154 err = PTR_ERR(khugepaged_thread);
155 khugepaged_thread = NULL;
156 }
157 wakeup = !list_empty(&khugepaged_scan.mm_head);
158 mutex_unlock(&khugepaged_mutex);
159 if (wakeup)
160 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
161
162 set_recommended_min_free_kbytes();
ba76149f
AA
163 } else
164 /* wakeup to exit */
165 wake_up_interruptible(&khugepaged_wait);
166out:
167 return err;
168}
71e3aac0
AA
169
170#ifdef CONFIG_SYSFS
ba76149f 171
71e3aac0
AA
172static ssize_t double_flag_show(struct kobject *kobj,
173 struct kobj_attribute *attr, char *buf,
174 enum transparent_hugepage_flag enabled,
175 enum transparent_hugepage_flag req_madv)
176{
177 if (test_bit(enabled, &transparent_hugepage_flags)) {
178 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
179 return sprintf(buf, "[always] madvise never\n");
180 } else if (test_bit(req_madv, &transparent_hugepage_flags))
181 return sprintf(buf, "always [madvise] never\n");
182 else
183 return sprintf(buf, "always madvise [never]\n");
184}
185static ssize_t double_flag_store(struct kobject *kobj,
186 struct kobj_attribute *attr,
187 const char *buf, size_t count,
188 enum transparent_hugepage_flag enabled,
189 enum transparent_hugepage_flag req_madv)
190{
191 if (!memcmp("always", buf,
192 min(sizeof("always")-1, count))) {
193 set_bit(enabled, &transparent_hugepage_flags);
194 clear_bit(req_madv, &transparent_hugepage_flags);
195 } else if (!memcmp("madvise", buf,
196 min(sizeof("madvise")-1, count))) {
197 clear_bit(enabled, &transparent_hugepage_flags);
198 set_bit(req_madv, &transparent_hugepage_flags);
199 } else if (!memcmp("never", buf,
200 min(sizeof("never")-1, count))) {
201 clear_bit(enabled, &transparent_hugepage_flags);
202 clear_bit(req_madv, &transparent_hugepage_flags);
203 } else
204 return -EINVAL;
205
206 return count;
207}
208
209static ssize_t enabled_show(struct kobject *kobj,
210 struct kobj_attribute *attr, char *buf)
211{
212 return double_flag_show(kobj, attr, buf,
213 TRANSPARENT_HUGEPAGE_FLAG,
214 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
215}
216static ssize_t enabled_store(struct kobject *kobj,
217 struct kobj_attribute *attr,
218 const char *buf, size_t count)
219{
ba76149f
AA
220 ssize_t ret;
221
222 ret = double_flag_store(kobj, attr, buf, count,
223 TRANSPARENT_HUGEPAGE_FLAG,
224 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
225
226 if (ret > 0) {
227 int err = start_khugepaged();
228 if (err)
229 ret = err;
230 }
231
f000565a
AA
232 if (ret > 0 &&
233 (test_bit(TRANSPARENT_HUGEPAGE_FLAG,
234 &transparent_hugepage_flags) ||
235 test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
236 &transparent_hugepage_flags)))
237 set_recommended_min_free_kbytes();
238
ba76149f 239 return ret;
71e3aac0
AA
240}
241static struct kobj_attribute enabled_attr =
242 __ATTR(enabled, 0644, enabled_show, enabled_store);
243
244static ssize_t single_flag_show(struct kobject *kobj,
245 struct kobj_attribute *attr, char *buf,
246 enum transparent_hugepage_flag flag)
247{
e27e6151
BH
248 return sprintf(buf, "%d\n",
249 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 250}
e27e6151 251
71e3aac0
AA
252static ssize_t single_flag_store(struct kobject *kobj,
253 struct kobj_attribute *attr,
254 const char *buf, size_t count,
255 enum transparent_hugepage_flag flag)
256{
e27e6151
BH
257 unsigned long value;
258 int ret;
259
260 ret = kstrtoul(buf, 10, &value);
261 if (ret < 0)
262 return ret;
263 if (value > 1)
264 return -EINVAL;
265
266 if (value)
71e3aac0 267 set_bit(flag, &transparent_hugepage_flags);
e27e6151 268 else
71e3aac0 269 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
270
271 return count;
272}
273
274/*
275 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
276 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
277 * memory just to allocate one more hugepage.
278 */
279static ssize_t defrag_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281{
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
284 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
285}
286static ssize_t defrag_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289{
290 return double_flag_store(kobj, attr, buf, count,
291 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
292 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
293}
294static struct kobj_attribute defrag_attr =
295 __ATTR(defrag, 0644, defrag_show, defrag_store);
296
297#ifdef CONFIG_DEBUG_VM
298static ssize_t debug_cow_show(struct kobject *kobj,
299 struct kobj_attribute *attr, char *buf)
300{
301 return single_flag_show(kobj, attr, buf,
302 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
303}
304static ssize_t debug_cow_store(struct kobject *kobj,
305 struct kobj_attribute *attr,
306 const char *buf, size_t count)
307{
308 return single_flag_store(kobj, attr, buf, count,
309 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
310}
311static struct kobj_attribute debug_cow_attr =
312 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
313#endif /* CONFIG_DEBUG_VM */
314
315static struct attribute *hugepage_attr[] = {
316 &enabled_attr.attr,
317 &defrag_attr.attr,
318#ifdef CONFIG_DEBUG_VM
319 &debug_cow_attr.attr,
320#endif
321 NULL,
322};
323
324static struct attribute_group hugepage_attr_group = {
325 .attrs = hugepage_attr,
ba76149f
AA
326};
327
328static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
329 struct kobj_attribute *attr,
330 char *buf)
331{
332 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
333}
334
335static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
336 struct kobj_attribute *attr,
337 const char *buf, size_t count)
338{
339 unsigned long msecs;
340 int err;
341
342 err = strict_strtoul(buf, 10, &msecs);
343 if (err || msecs > UINT_MAX)
344 return -EINVAL;
345
346 khugepaged_scan_sleep_millisecs = msecs;
347 wake_up_interruptible(&khugepaged_wait);
348
349 return count;
350}
351static struct kobj_attribute scan_sleep_millisecs_attr =
352 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
353 scan_sleep_millisecs_store);
354
355static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 char *buf)
358{
359 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
360}
361
362static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
363 struct kobj_attribute *attr,
364 const char *buf, size_t count)
365{
366 unsigned long msecs;
367 int err;
368
369 err = strict_strtoul(buf, 10, &msecs);
370 if (err || msecs > UINT_MAX)
371 return -EINVAL;
372
373 khugepaged_alloc_sleep_millisecs = msecs;
374 wake_up_interruptible(&khugepaged_wait);
375
376 return count;
377}
378static struct kobj_attribute alloc_sleep_millisecs_attr =
379 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
380 alloc_sleep_millisecs_store);
381
382static ssize_t pages_to_scan_show(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 char *buf)
385{
386 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
387}
388static ssize_t pages_to_scan_store(struct kobject *kobj,
389 struct kobj_attribute *attr,
390 const char *buf, size_t count)
391{
392 int err;
393 unsigned long pages;
394
395 err = strict_strtoul(buf, 10, &pages);
396 if (err || !pages || pages > UINT_MAX)
397 return -EINVAL;
398
399 khugepaged_pages_to_scan = pages;
400
401 return count;
402}
403static struct kobj_attribute pages_to_scan_attr =
404 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
405 pages_to_scan_store);
406
407static ssize_t pages_collapsed_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410{
411 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
412}
413static struct kobj_attribute pages_collapsed_attr =
414 __ATTR_RO(pages_collapsed);
415
416static ssize_t full_scans_show(struct kobject *kobj,
417 struct kobj_attribute *attr,
418 char *buf)
419{
420 return sprintf(buf, "%u\n", khugepaged_full_scans);
421}
422static struct kobj_attribute full_scans_attr =
423 __ATTR_RO(full_scans);
424
425static ssize_t khugepaged_defrag_show(struct kobject *kobj,
426 struct kobj_attribute *attr, char *buf)
427{
428 return single_flag_show(kobj, attr, buf,
429 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
430}
431static ssize_t khugepaged_defrag_store(struct kobject *kobj,
432 struct kobj_attribute *attr,
433 const char *buf, size_t count)
434{
435 return single_flag_store(kobj, attr, buf, count,
436 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
437}
438static struct kobj_attribute khugepaged_defrag_attr =
439 __ATTR(defrag, 0644, khugepaged_defrag_show,
440 khugepaged_defrag_store);
441
442/*
443 * max_ptes_none controls if khugepaged should collapse hugepages over
444 * any unmapped ptes in turn potentially increasing the memory
445 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
446 * reduce the available free memory in the system as it
447 * runs. Increasing max_ptes_none will instead potentially reduce the
448 * free memory in the system during the khugepaged scan.
449 */
450static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
451 struct kobj_attribute *attr,
452 char *buf)
453{
454 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
455}
456static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
457 struct kobj_attribute *attr,
458 const char *buf, size_t count)
459{
460 int err;
461 unsigned long max_ptes_none;
462
463 err = strict_strtoul(buf, 10, &max_ptes_none);
464 if (err || max_ptes_none > HPAGE_PMD_NR-1)
465 return -EINVAL;
466
467 khugepaged_max_ptes_none = max_ptes_none;
468
469 return count;
470}
471static struct kobj_attribute khugepaged_max_ptes_none_attr =
472 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
473 khugepaged_max_ptes_none_store);
474
475static struct attribute *khugepaged_attr[] = {
476 &khugepaged_defrag_attr.attr,
477 &khugepaged_max_ptes_none_attr.attr,
478 &pages_to_scan_attr.attr,
479 &pages_collapsed_attr.attr,
480 &full_scans_attr.attr,
481 &scan_sleep_millisecs_attr.attr,
482 &alloc_sleep_millisecs_attr.attr,
483 NULL,
484};
485
486static struct attribute_group khugepaged_attr_group = {
487 .attrs = khugepaged_attr,
488 .name = "khugepaged",
71e3aac0 489};
71e3aac0 490
569e5590 491static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 492{
71e3aac0
AA
493 int err;
494
569e5590
SL
495 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
496 if (unlikely(!*hugepage_kobj)) {
ba76149f 497 printk(KERN_ERR "hugepage: failed kobject create\n");
569e5590 498 return -ENOMEM;
ba76149f
AA
499 }
500
569e5590 501 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f
AA
502 if (err) {
503 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 504 goto delete_obj;
ba76149f
AA
505 }
506
569e5590 507 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f
AA
508 if (err) {
509 printk(KERN_ERR "hugepage: failed register hugeage group\n");
569e5590 510 goto remove_hp_group;
ba76149f 511 }
569e5590
SL
512
513 return 0;
514
515remove_hp_group:
516 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
517delete_obj:
518 kobject_put(*hugepage_kobj);
519 return err;
520}
521
522static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
523{
524 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
525 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
526 kobject_put(hugepage_kobj);
527}
528#else
529static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
530{
531 return 0;
532}
533
534static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
535{
536}
537#endif /* CONFIG_SYSFS */
538
539static int __init hugepage_init(void)
540{
541 int err;
542 struct kobject *hugepage_kobj;
543
544 if (!has_transparent_hugepage()) {
545 transparent_hugepage_flags = 0;
546 return -EINVAL;
547 }
548
549 err = hugepage_init_sysfs(&hugepage_kobj);
550 if (err)
551 return err;
ba76149f
AA
552
553 err = khugepaged_slab_init();
554 if (err)
555 goto out;
556
557 err = mm_slots_hash_init();
558 if (err) {
559 khugepaged_slab_free();
560 goto out;
561 }
562
97562cd2
RR
563 /*
564 * By default disable transparent hugepages on smaller systems,
565 * where the extra memory used could hurt more than TLB overhead
566 * is likely to save. The admin can still enable it through /sys.
567 */
568 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
569 transparent_hugepage_flags = 0;
570
ba76149f
AA
571 start_khugepaged();
572
f000565a
AA
573 set_recommended_min_free_kbytes();
574
569e5590 575 return 0;
ba76149f 576out:
569e5590 577 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 578 return err;
71e3aac0
AA
579}
580module_init(hugepage_init)
581
582static int __init setup_transparent_hugepage(char *str)
583{
584 int ret = 0;
585 if (!str)
586 goto out;
587 if (!strcmp(str, "always")) {
588 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
589 &transparent_hugepage_flags);
590 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
591 &transparent_hugepage_flags);
592 ret = 1;
593 } else if (!strcmp(str, "madvise")) {
594 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
595 &transparent_hugepage_flags);
596 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
597 &transparent_hugepage_flags);
598 ret = 1;
599 } else if (!strcmp(str, "never")) {
600 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
601 &transparent_hugepage_flags);
602 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
603 &transparent_hugepage_flags);
604 ret = 1;
605 }
606out:
607 if (!ret)
608 printk(KERN_WARNING
609 "transparent_hugepage= cannot parse, ignored\n");
610 return ret;
611}
612__setup("transparent_hugepage=", setup_transparent_hugepage);
613
614static void prepare_pmd_huge_pte(pgtable_t pgtable,
615 struct mm_struct *mm)
616{
617 assert_spin_locked(&mm->page_table_lock);
618
619 /* FIFO */
620 if (!mm->pmd_huge_pte)
621 INIT_LIST_HEAD(&pgtable->lru);
622 else
623 list_add(&pgtable->lru, &mm->pmd_huge_pte->lru);
624 mm->pmd_huge_pte = pgtable;
625}
626
627static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
628{
629 if (likely(vma->vm_flags & VM_WRITE))
630 pmd = pmd_mkwrite(pmd);
631 return pmd;
632}
633
634static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
635 struct vm_area_struct *vma,
636 unsigned long haddr, pmd_t *pmd,
637 struct page *page)
638{
71e3aac0
AA
639 pgtable_t pgtable;
640
641 VM_BUG_ON(!PageCompound(page));
642 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 643 if (unlikely(!pgtable))
71e3aac0 644 return VM_FAULT_OOM;
71e3aac0
AA
645
646 clear_huge_page(page, haddr, HPAGE_PMD_NR);
647 __SetPageUptodate(page);
648
649 spin_lock(&mm->page_table_lock);
650 if (unlikely(!pmd_none(*pmd))) {
651 spin_unlock(&mm->page_table_lock);
b9bbfbe3 652 mem_cgroup_uncharge_page(page);
71e3aac0
AA
653 put_page(page);
654 pte_free(mm, pgtable);
655 } else {
656 pmd_t entry;
657 entry = mk_pmd(page, vma->vm_page_prot);
658 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
659 entry = pmd_mkhuge(entry);
660 /*
661 * The spinlocking to take the lru_lock inside
662 * page_add_new_anon_rmap() acts as a full memory
663 * barrier to be sure clear_huge_page writes become
664 * visible after the set_pmd_at() write.
665 */
666 page_add_new_anon_rmap(page, vma, haddr);
667 set_pmd_at(mm, haddr, pmd, entry);
668 prepare_pmd_huge_pte(pgtable, mm);
669 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 670 mm->nr_ptes++;
71e3aac0
AA
671 spin_unlock(&mm->page_table_lock);
672 }
673
aa2e878e 674 return 0;
71e3aac0
AA
675}
676
cc5d462f 677static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 678{
cc5d462f 679 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
680}
681
682static inline struct page *alloc_hugepage_vma(int defrag,
683 struct vm_area_struct *vma,
cc5d462f
AK
684 unsigned long haddr, int nd,
685 gfp_t extra_gfp)
0bbbc0b3 686{
cc5d462f 687 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 688 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
689}
690
691#ifndef CONFIG_NUMA
71e3aac0
AA
692static inline struct page *alloc_hugepage(int defrag)
693{
cc5d462f 694 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
695 HPAGE_PMD_ORDER);
696}
0bbbc0b3 697#endif
71e3aac0
AA
698
699int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
700 unsigned long address, pmd_t *pmd,
701 unsigned int flags)
702{
703 struct page *page;
704 unsigned long haddr = address & HPAGE_PMD_MASK;
705 pte_t *pte;
706
707 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
708 if (unlikely(anon_vma_prepare(vma)))
709 return VM_FAULT_OOM;
ba76149f
AA
710 if (unlikely(khugepaged_enter(vma)))
711 return VM_FAULT_OOM;
0bbbc0b3 712 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 713 vma, haddr, numa_node_id(), 0);
81ab4201
AK
714 if (unlikely(!page)) {
715 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0 716 goto out;
81ab4201
AK
717 }
718 count_vm_event(THP_FAULT_ALLOC);
b9bbfbe3
AA
719 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
720 put_page(page);
721 goto out;
722 }
edad9d2c
DR
723 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
724 page))) {
725 mem_cgroup_uncharge_page(page);
726 put_page(page);
727 goto out;
728 }
71e3aac0 729
edad9d2c 730 return 0;
71e3aac0
AA
731 }
732out:
733 /*
734 * Use __pte_alloc instead of pte_alloc_map, because we can't
735 * run pte_offset_map on the pmd, if an huge pmd could
736 * materialize from under us from a different thread.
737 */
738 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
739 return VM_FAULT_OOM;
740 /* if an huge pmd materialized from under us just retry later */
741 if (unlikely(pmd_trans_huge(*pmd)))
742 return 0;
743 /*
744 * A regular pmd is established and it can't morph into a huge pmd
745 * from under us anymore at this point because we hold the mmap_sem
746 * read mode and khugepaged takes it in write mode. So now it's
747 * safe to run pte_offset_map().
748 */
749 pte = pte_offset_map(pmd, address);
750 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
751}
752
753int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
754 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
755 struct vm_area_struct *vma)
756{
757 struct page *src_page;
758 pmd_t pmd;
759 pgtable_t pgtable;
760 int ret;
761
762 ret = -ENOMEM;
763 pgtable = pte_alloc_one(dst_mm, addr);
764 if (unlikely(!pgtable))
765 goto out;
766
767 spin_lock(&dst_mm->page_table_lock);
768 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
769
770 ret = -EAGAIN;
771 pmd = *src_pmd;
772 if (unlikely(!pmd_trans_huge(pmd))) {
773 pte_free(dst_mm, pgtable);
774 goto out_unlock;
775 }
776 if (unlikely(pmd_trans_splitting(pmd))) {
777 /* split huge page running from under us */
778 spin_unlock(&src_mm->page_table_lock);
779 spin_unlock(&dst_mm->page_table_lock);
780 pte_free(dst_mm, pgtable);
781
782 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
783 goto out;
784 }
785 src_page = pmd_page(pmd);
786 VM_BUG_ON(!PageHead(src_page));
787 get_page(src_page);
788 page_dup_rmap(src_page);
789 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
790
791 pmdp_set_wrprotect(src_mm, addr, src_pmd);
792 pmd = pmd_mkold(pmd_wrprotect(pmd));
793 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
794 prepare_pmd_huge_pte(pgtable, dst_mm);
1c641e84 795 dst_mm->nr_ptes++;
71e3aac0
AA
796
797 ret = 0;
798out_unlock:
799 spin_unlock(&src_mm->page_table_lock);
800 spin_unlock(&dst_mm->page_table_lock);
801out:
802 return ret;
803}
804
805/* no "address" argument so destroys page coloring of some arch */
806pgtable_t get_pmd_huge_pte(struct mm_struct *mm)
807{
808 pgtable_t pgtable;
809
810 assert_spin_locked(&mm->page_table_lock);
811
812 /* FIFO */
813 pgtable = mm->pmd_huge_pte;
814 if (list_empty(&pgtable->lru))
815 mm->pmd_huge_pte = NULL;
816 else {
817 mm->pmd_huge_pte = list_entry(pgtable->lru.next,
818 struct page, lru);
819 list_del(&pgtable->lru);
820 }
821 return pgtable;
822}
823
824static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
825 struct vm_area_struct *vma,
826 unsigned long address,
827 pmd_t *pmd, pmd_t orig_pmd,
828 struct page *page,
829 unsigned long haddr)
830{
831 pgtable_t pgtable;
832 pmd_t _pmd;
833 int ret = 0, i;
834 struct page **pages;
835
836 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
837 GFP_KERNEL);
838 if (unlikely(!pages)) {
839 ret |= VM_FAULT_OOM;
840 goto out;
841 }
842
843 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
844 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
845 __GFP_OTHER_NODE,
19ee151e 846 vma, address, page_to_nid(page));
b9bbfbe3
AA
847 if (unlikely(!pages[i] ||
848 mem_cgroup_newpage_charge(pages[i], mm,
849 GFP_KERNEL))) {
850 if (pages[i])
71e3aac0 851 put_page(pages[i]);
b9bbfbe3
AA
852 mem_cgroup_uncharge_start();
853 while (--i >= 0) {
854 mem_cgroup_uncharge_page(pages[i]);
855 put_page(pages[i]);
856 }
857 mem_cgroup_uncharge_end();
71e3aac0
AA
858 kfree(pages);
859 ret |= VM_FAULT_OOM;
860 goto out;
861 }
862 }
863
864 for (i = 0; i < HPAGE_PMD_NR; i++) {
865 copy_user_highpage(pages[i], page + i,
0089e485 866 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
867 __SetPageUptodate(pages[i]);
868 cond_resched();
869 }
870
871 spin_lock(&mm->page_table_lock);
872 if (unlikely(!pmd_same(*pmd, orig_pmd)))
873 goto out_free_pages;
874 VM_BUG_ON(!PageHead(page));
875
876 pmdp_clear_flush_notify(vma, haddr, pmd);
877 /* leave pmd empty until pte is filled */
878
879 pgtable = get_pmd_huge_pte(mm);
880 pmd_populate(mm, &_pmd, pgtable);
881
882 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
883 pte_t *pte, entry;
884 entry = mk_pte(pages[i], vma->vm_page_prot);
885 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
886 page_add_new_anon_rmap(pages[i], vma, haddr);
887 pte = pte_offset_map(&_pmd, haddr);
888 VM_BUG_ON(!pte_none(*pte));
889 set_pte_at(mm, haddr, pte, entry);
890 pte_unmap(pte);
891 }
892 kfree(pages);
893
71e3aac0
AA
894 smp_wmb(); /* make pte visible before pmd */
895 pmd_populate(mm, pmd, pgtable);
896 page_remove_rmap(page);
897 spin_unlock(&mm->page_table_lock);
898
899 ret |= VM_FAULT_WRITE;
900 put_page(page);
901
902out:
903 return ret;
904
905out_free_pages:
906 spin_unlock(&mm->page_table_lock);
b9bbfbe3
AA
907 mem_cgroup_uncharge_start();
908 for (i = 0; i < HPAGE_PMD_NR; i++) {
909 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 910 put_page(pages[i]);
b9bbfbe3
AA
911 }
912 mem_cgroup_uncharge_end();
71e3aac0
AA
913 kfree(pages);
914 goto out;
915}
916
917int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
918 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
919{
920 int ret = 0;
921 struct page *page, *new_page;
922 unsigned long haddr;
923
924 VM_BUG_ON(!vma->anon_vma);
925 spin_lock(&mm->page_table_lock);
926 if (unlikely(!pmd_same(*pmd, orig_pmd)))
927 goto out_unlock;
928
929 page = pmd_page(orig_pmd);
930 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
931 haddr = address & HPAGE_PMD_MASK;
932 if (page_mapcount(page) == 1) {
933 pmd_t entry;
934 entry = pmd_mkyoung(orig_pmd);
935 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
936 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
937 update_mmu_cache(vma, address, entry);
938 ret |= VM_FAULT_WRITE;
939 goto out_unlock;
940 }
941 get_page(page);
942 spin_unlock(&mm->page_table_lock);
943
944 if (transparent_hugepage_enabled(vma) &&
945 !transparent_hugepage_debug_cow())
0bbbc0b3 946 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 947 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
948 else
949 new_page = NULL;
950
951 if (unlikely(!new_page)) {
81ab4201 952 count_vm_event(THP_FAULT_FALLBACK);
71e3aac0
AA
953 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
954 pmd, orig_pmd, page, haddr);
955 put_page(page);
956 goto out;
957 }
81ab4201 958 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 959
b9bbfbe3
AA
960 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
961 put_page(new_page);
962 put_page(page);
963 ret |= VM_FAULT_OOM;
964 goto out;
965 }
966
71e3aac0
AA
967 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
968 __SetPageUptodate(new_page);
969
970 spin_lock(&mm->page_table_lock);
971 put_page(page);
b9bbfbe3
AA
972 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
973 mem_cgroup_uncharge_page(new_page);
71e3aac0 974 put_page(new_page);
b9bbfbe3 975 } else {
71e3aac0
AA
976 pmd_t entry;
977 VM_BUG_ON(!PageHead(page));
978 entry = mk_pmd(new_page, vma->vm_page_prot);
979 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
980 entry = pmd_mkhuge(entry);
981 pmdp_clear_flush_notify(vma, haddr, pmd);
982 page_add_new_anon_rmap(new_page, vma, haddr);
983 set_pmd_at(mm, haddr, pmd, entry);
984 update_mmu_cache(vma, address, entry);
985 page_remove_rmap(page);
986 put_page(page);
987 ret |= VM_FAULT_WRITE;
988 }
989out_unlock:
990 spin_unlock(&mm->page_table_lock);
991out:
992 return ret;
993}
994
995struct page *follow_trans_huge_pmd(struct mm_struct *mm,
996 unsigned long addr,
997 pmd_t *pmd,
998 unsigned int flags)
999{
1000 struct page *page = NULL;
1001
1002 assert_spin_locked(&mm->page_table_lock);
1003
1004 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1005 goto out;
1006
1007 page = pmd_page(*pmd);
1008 VM_BUG_ON(!PageHead(page));
1009 if (flags & FOLL_TOUCH) {
1010 pmd_t _pmd;
1011 /*
1012 * We should set the dirty bit only for FOLL_WRITE but
1013 * for now the dirty bit in the pmd is meaningless.
1014 * And if the dirty bit will become meaningful and
1015 * we'll only set it with FOLL_WRITE, an atomic
1016 * set_bit will be required on the pmd to set the
1017 * young bit, instead of the current set_pmd_at.
1018 */
1019 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1020 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1021 }
1022 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1023 VM_BUG_ON(!PageCompound(page));
1024 if (flags & FOLL_GET)
70b50f94 1025 get_page_foll(page);
71e3aac0
AA
1026
1027out:
1028 return page;
1029}
1030
1031int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1032 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1033{
1034 int ret = 0;
1035
025c5b24
NH
1036 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1037 struct page *page;
1038 pgtable_t pgtable;
1039 pgtable = get_pmd_huge_pte(tlb->mm);
1040 page = pmd_page(*pmd);
1041 pmd_clear(pmd);
1042 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1043 page_remove_rmap(page);
1044 VM_BUG_ON(page_mapcount(page) < 0);
1045 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1046 VM_BUG_ON(!PageHead(page));
1047 tlb->mm->nr_ptes--;
71e3aac0 1048 spin_unlock(&tlb->mm->page_table_lock);
025c5b24
NH
1049 tlb_remove_page(tlb, page);
1050 pte_free(tlb->mm, pgtable);
1051 ret = 1;
1052 }
71e3aac0
AA
1053 return ret;
1054}
1055
0ca1634d
JW
1056int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1057 unsigned long addr, unsigned long end,
1058 unsigned char *vec)
1059{
1060 int ret = 0;
1061
025c5b24
NH
1062 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1063 /*
1064 * All logical pages in the range are present
1065 * if backed by a huge page.
1066 */
0ca1634d 1067 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1068 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1069 ret = 1;
1070 }
0ca1634d
JW
1071
1072 return ret;
1073}
1074
37a1c49a
AA
1075int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1076 unsigned long old_addr,
1077 unsigned long new_addr, unsigned long old_end,
1078 pmd_t *old_pmd, pmd_t *new_pmd)
1079{
1080 int ret = 0;
1081 pmd_t pmd;
1082
1083 struct mm_struct *mm = vma->vm_mm;
1084
1085 if ((old_addr & ~HPAGE_PMD_MASK) ||
1086 (new_addr & ~HPAGE_PMD_MASK) ||
1087 old_end - old_addr < HPAGE_PMD_SIZE ||
1088 (new_vma->vm_flags & VM_NOHUGEPAGE))
1089 goto out;
1090
1091 /*
1092 * The destination pmd shouldn't be established, free_pgtables()
1093 * should have release it.
1094 */
1095 if (WARN_ON(!pmd_none(*new_pmd))) {
1096 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1097 goto out;
1098 }
1099
025c5b24
NH
1100 ret = __pmd_trans_huge_lock(old_pmd, vma);
1101 if (ret == 1) {
1102 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1103 VM_BUG_ON(!pmd_none(*new_pmd));
1104 set_pmd_at(mm, new_addr, new_pmd, pmd);
37a1c49a
AA
1105 spin_unlock(&mm->page_table_lock);
1106 }
1107out:
1108 return ret;
1109}
1110
cd7548ab
JW
1111int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1112 unsigned long addr, pgprot_t newprot)
1113{
1114 struct mm_struct *mm = vma->vm_mm;
1115 int ret = 0;
1116
025c5b24
NH
1117 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1118 pmd_t entry;
1119 entry = pmdp_get_and_clear(mm, addr, pmd);
1120 entry = pmd_modify(entry, newprot);
1121 set_pmd_at(mm, addr, pmd, entry);
1122 spin_unlock(&vma->vm_mm->page_table_lock);
1123 ret = 1;
1124 }
1125
1126 return ret;
1127}
1128
1129/*
1130 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1131 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1132 *
1133 * Note that if it returns 1, this routine returns without unlocking page
1134 * table locks. So callers must unlock them.
1135 */
1136int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1137{
1138 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1139 if (likely(pmd_trans_huge(*pmd))) {
1140 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1141 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1142 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1143 return -1;
cd7548ab 1144 } else {
025c5b24
NH
1145 /* Thp mapped by 'pmd' is stable, so we can
1146 * handle it as it is. */
1147 return 1;
cd7548ab 1148 }
025c5b24
NH
1149 }
1150 spin_unlock(&vma->vm_mm->page_table_lock);
1151 return 0;
cd7548ab
JW
1152}
1153
71e3aac0
AA
1154pmd_t *page_check_address_pmd(struct page *page,
1155 struct mm_struct *mm,
1156 unsigned long address,
1157 enum page_check_address_pmd_flag flag)
1158{
1159 pgd_t *pgd;
1160 pud_t *pud;
1161 pmd_t *pmd, *ret = NULL;
1162
1163 if (address & ~HPAGE_PMD_MASK)
1164 goto out;
1165
1166 pgd = pgd_offset(mm, address);
1167 if (!pgd_present(*pgd))
1168 goto out;
1169
1170 pud = pud_offset(pgd, address);
1171 if (!pud_present(*pud))
1172 goto out;
1173
1174 pmd = pmd_offset(pud, address);
1175 if (pmd_none(*pmd))
1176 goto out;
1177 if (pmd_page(*pmd) != page)
1178 goto out;
94fcc585
AA
1179 /*
1180 * split_vma() may create temporary aliased mappings. There is
1181 * no risk as long as all huge pmd are found and have their
1182 * splitting bit set before __split_huge_page_refcount
1183 * runs. Finding the same huge pmd more than once during the
1184 * same rmap walk is not a problem.
1185 */
1186 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1187 pmd_trans_splitting(*pmd))
1188 goto out;
71e3aac0
AA
1189 if (pmd_trans_huge(*pmd)) {
1190 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1191 !pmd_trans_splitting(*pmd));
1192 ret = pmd;
1193 }
1194out:
1195 return ret;
1196}
1197
1198static int __split_huge_page_splitting(struct page *page,
1199 struct vm_area_struct *vma,
1200 unsigned long address)
1201{
1202 struct mm_struct *mm = vma->vm_mm;
1203 pmd_t *pmd;
1204 int ret = 0;
1205
1206 spin_lock(&mm->page_table_lock);
1207 pmd = page_check_address_pmd(page, mm, address,
1208 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1209 if (pmd) {
1210 /*
1211 * We can't temporarily set the pmd to null in order
1212 * to split it, the pmd must remain marked huge at all
1213 * times or the VM won't take the pmd_trans_huge paths
2b575eb6 1214 * and it won't wait on the anon_vma->root->mutex to
71e3aac0
AA
1215 * serialize against split_huge_page*.
1216 */
1217 pmdp_splitting_flush_notify(vma, address, pmd);
1218 ret = 1;
1219 }
1220 spin_unlock(&mm->page_table_lock);
1221
1222 return ret;
1223}
1224
1225static void __split_huge_page_refcount(struct page *page)
1226{
1227 int i;
71e3aac0 1228 struct zone *zone = page_zone(page);
70b50f94 1229 int tail_count = 0;
71e3aac0
AA
1230
1231 /* prevent PageLRU to go away from under us, and freeze lru stats */
1232 spin_lock_irq(&zone->lru_lock);
1233 compound_lock(page);
e94c8a9c
KH
1234 /* complete memcg works before add pages to LRU */
1235 mem_cgroup_split_huge_fixup(page);
71e3aac0 1236
45676885 1237 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1238 struct page *page_tail = page + i;
1239
70b50f94
AA
1240 /* tail_page->_mapcount cannot change */
1241 BUG_ON(page_mapcount(page_tail) < 0);
1242 tail_count += page_mapcount(page_tail);
1243 /* check for overflow */
1244 BUG_ON(tail_count < 0);
1245 BUG_ON(atomic_read(&page_tail->_count) != 0);
1246 /*
1247 * tail_page->_count is zero and not changing from
1248 * under us. But get_page_unless_zero() may be running
1249 * from under us on the tail_page. If we used
1250 * atomic_set() below instead of atomic_add(), we
1251 * would then run atomic_set() concurrently with
1252 * get_page_unless_zero(), and atomic_set() is
1253 * implemented in C not using locked ops. spin_unlock
1254 * on x86 sometime uses locked ops because of PPro
1255 * errata 66, 92, so unless somebody can guarantee
1256 * atomic_set() here would be safe on all archs (and
1257 * not only on x86), it's safer to use atomic_add().
1258 */
1259 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1260 &page_tail->_count);
71e3aac0
AA
1261
1262 /* after clearing PageTail the gup refcount can be released */
1263 smp_mb();
1264
a6d30ddd
JD
1265 /*
1266 * retain hwpoison flag of the poisoned tail page:
1267 * fix for the unsuitable process killed on Guest Machine(KVM)
1268 * by the memory-failure.
1269 */
1270 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1271 page_tail->flags |= (page->flags &
1272 ((1L << PG_referenced) |
1273 (1L << PG_swapbacked) |
1274 (1L << PG_mlocked) |
1275 (1L << PG_uptodate)));
1276 page_tail->flags |= (1L << PG_dirty);
1277
70b50f94 1278 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1279 smp_wmb();
1280
1281 /*
1282 * __split_huge_page_splitting() already set the
1283 * splitting bit in all pmd that could map this
1284 * hugepage, that will ensure no CPU can alter the
1285 * mapcount on the head page. The mapcount is only
1286 * accounted in the head page and it has to be
1287 * transferred to all tail pages in the below code. So
1288 * for this code to be safe, the split the mapcount
1289 * can't change. But that doesn't mean userland can't
1290 * keep changing and reading the page contents while
1291 * we transfer the mapcount, so the pmd splitting
1292 * status is achieved setting a reserved bit in the
1293 * pmd, not by clearing the present bit.
1294 */
71e3aac0
AA
1295 page_tail->_mapcount = page->_mapcount;
1296
1297 BUG_ON(page_tail->mapping);
1298 page_tail->mapping = page->mapping;
1299
45676885 1300 page_tail->index = page->index + i;
71e3aac0
AA
1301
1302 BUG_ON(!PageAnon(page_tail));
1303 BUG_ON(!PageUptodate(page_tail));
1304 BUG_ON(!PageDirty(page_tail));
1305 BUG_ON(!PageSwapBacked(page_tail));
1306
ca3e0214 1307
71e3aac0
AA
1308 lru_add_page_tail(zone, page, page_tail);
1309 }
70b50f94
AA
1310 atomic_sub(tail_count, &page->_count);
1311 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1312
79134171
AA
1313 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
1314 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1315
71e3aac0
AA
1316 ClearPageCompound(page);
1317 compound_unlock(page);
1318 spin_unlock_irq(&zone->lru_lock);
1319
1320 for (i = 1; i < HPAGE_PMD_NR; i++) {
1321 struct page *page_tail = page + i;
1322 BUG_ON(page_count(page_tail) <= 0);
1323 /*
1324 * Tail pages may be freed if there wasn't any mapping
1325 * like if add_to_swap() is running on a lru page that
1326 * had its mapping zapped. And freeing these pages
1327 * requires taking the lru_lock so we do the put_page
1328 * of the tail pages after the split is complete.
1329 */
1330 put_page(page_tail);
1331 }
1332
1333 /*
1334 * Only the head page (now become a regular page) is required
1335 * to be pinned by the caller.
1336 */
1337 BUG_ON(page_count(page) <= 0);
1338}
1339
1340static int __split_huge_page_map(struct page *page,
1341 struct vm_area_struct *vma,
1342 unsigned long address)
1343{
1344 struct mm_struct *mm = vma->vm_mm;
1345 pmd_t *pmd, _pmd;
1346 int ret = 0, i;
1347 pgtable_t pgtable;
1348 unsigned long haddr;
1349
1350 spin_lock(&mm->page_table_lock);
1351 pmd = page_check_address_pmd(page, mm, address,
1352 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1353 if (pmd) {
1354 pgtable = get_pmd_huge_pte(mm);
1355 pmd_populate(mm, &_pmd, pgtable);
1356
1357 for (i = 0, haddr = address; i < HPAGE_PMD_NR;
1358 i++, haddr += PAGE_SIZE) {
1359 pte_t *pte, entry;
1360 BUG_ON(PageCompound(page+i));
1361 entry = mk_pte(page + i, vma->vm_page_prot);
1362 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1363 if (!pmd_write(*pmd))
1364 entry = pte_wrprotect(entry);
1365 else
1366 BUG_ON(page_mapcount(page) != 1);
1367 if (!pmd_young(*pmd))
1368 entry = pte_mkold(entry);
1369 pte = pte_offset_map(&_pmd, haddr);
1370 BUG_ON(!pte_none(*pte));
1371 set_pte_at(mm, haddr, pte, entry);
1372 pte_unmap(pte);
1373 }
1374
71e3aac0
AA
1375 smp_wmb(); /* make pte visible before pmd */
1376 /*
1377 * Up to this point the pmd is present and huge and
1378 * userland has the whole access to the hugepage
1379 * during the split (which happens in place). If we
1380 * overwrite the pmd with the not-huge version
1381 * pointing to the pte here (which of course we could
1382 * if all CPUs were bug free), userland could trigger
1383 * a small page size TLB miss on the small sized TLB
1384 * while the hugepage TLB entry is still established
1385 * in the huge TLB. Some CPU doesn't like that. See
1386 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1387 * Erratum 383 on page 93. Intel should be safe but is
1388 * also warns that it's only safe if the permission
1389 * and cache attributes of the two entries loaded in
1390 * the two TLB is identical (which should be the case
1391 * here). But it is generally safer to never allow
1392 * small and huge TLB entries for the same virtual
1393 * address to be loaded simultaneously. So instead of
1394 * doing "pmd_populate(); flush_tlb_range();" we first
1395 * mark the current pmd notpresent (atomically because
1396 * here the pmd_trans_huge and pmd_trans_splitting
1397 * must remain set at all times on the pmd until the
1398 * split is complete for this pmd), then we flush the
1399 * SMP TLB and finally we write the non-huge version
1400 * of the pmd entry with pmd_populate.
1401 */
1402 set_pmd_at(mm, address, pmd, pmd_mknotpresent(*pmd));
1403 flush_tlb_range(vma, address, address + HPAGE_PMD_SIZE);
1404 pmd_populate(mm, pmd, pgtable);
1405 ret = 1;
1406 }
1407 spin_unlock(&mm->page_table_lock);
1408
1409 return ret;
1410}
1411
2b575eb6 1412/* must be called with anon_vma->root->mutex hold */
71e3aac0
AA
1413static void __split_huge_page(struct page *page,
1414 struct anon_vma *anon_vma)
1415{
1416 int mapcount, mapcount2;
1417 struct anon_vma_chain *avc;
1418
1419 BUG_ON(!PageHead(page));
1420 BUG_ON(PageTail(page));
1421
1422 mapcount = 0;
1423 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1424 struct vm_area_struct *vma = avc->vma;
1425 unsigned long addr = vma_address(page, vma);
1426 BUG_ON(is_vma_temporary_stack(vma));
1427 if (addr == -EFAULT)
1428 continue;
1429 mapcount += __split_huge_page_splitting(page, vma, addr);
1430 }
05759d38
AA
1431 /*
1432 * It is critical that new vmas are added to the tail of the
1433 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1434 * and establishes a child pmd before
1435 * __split_huge_page_splitting() freezes the parent pmd (so if
1436 * we fail to prevent copy_huge_pmd() from running until the
1437 * whole __split_huge_page() is complete), we will still see
1438 * the newly established pmd of the child later during the
1439 * walk, to be able to set it as pmd_trans_splitting too.
1440 */
1441 if (mapcount != page_mapcount(page))
1442 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1443 mapcount, page_mapcount(page));
71e3aac0
AA
1444 BUG_ON(mapcount != page_mapcount(page));
1445
1446 __split_huge_page_refcount(page);
1447
1448 mapcount2 = 0;
1449 list_for_each_entry(avc, &anon_vma->head, same_anon_vma) {
1450 struct vm_area_struct *vma = avc->vma;
1451 unsigned long addr = vma_address(page, vma);
1452 BUG_ON(is_vma_temporary_stack(vma));
1453 if (addr == -EFAULT)
1454 continue;
1455 mapcount2 += __split_huge_page_map(page, vma, addr);
1456 }
05759d38
AA
1457 if (mapcount != mapcount2)
1458 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1459 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1460 BUG_ON(mapcount != mapcount2);
1461}
1462
1463int split_huge_page(struct page *page)
1464{
1465 struct anon_vma *anon_vma;
1466 int ret = 1;
1467
1468 BUG_ON(!PageAnon(page));
1469 anon_vma = page_lock_anon_vma(page);
1470 if (!anon_vma)
1471 goto out;
1472 ret = 0;
1473 if (!PageCompound(page))
1474 goto out_unlock;
1475
1476 BUG_ON(!PageSwapBacked(page));
1477 __split_huge_page(page, anon_vma);
81ab4201 1478 count_vm_event(THP_SPLIT);
71e3aac0
AA
1479
1480 BUG_ON(PageCompound(page));
1481out_unlock:
1482 page_unlock_anon_vma(anon_vma);
1483out:
1484 return ret;
1485}
1486
78f11a25
AA
1487#define VM_NO_THP (VM_SPECIAL|VM_INSERTPAGE|VM_MIXEDMAP|VM_SAO| \
1488 VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1489
60ab3244
AA
1490int hugepage_madvise(struct vm_area_struct *vma,
1491 unsigned long *vm_flags, int advice)
0af4e98b 1492{
a664b2d8
AA
1493 switch (advice) {
1494 case MADV_HUGEPAGE:
1495 /*
1496 * Be somewhat over-protective like KSM for now!
1497 */
78f11a25 1498 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8
AA
1499 return -EINVAL;
1500 *vm_flags &= ~VM_NOHUGEPAGE;
1501 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1502 /*
1503 * If the vma become good for khugepaged to scan,
1504 * register it here without waiting a page fault that
1505 * may not happen any time soon.
1506 */
1507 if (unlikely(khugepaged_enter_vma_merge(vma)))
1508 return -ENOMEM;
a664b2d8
AA
1509 break;
1510 case MADV_NOHUGEPAGE:
1511 /*
1512 * Be somewhat over-protective like KSM for now!
1513 */
78f11a25 1514 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1515 return -EINVAL;
1516 *vm_flags &= ~VM_HUGEPAGE;
1517 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1518 /*
1519 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1520 * this vma even if we leave the mm registered in khugepaged if
1521 * it got registered before VM_NOHUGEPAGE was set.
1522 */
a664b2d8
AA
1523 break;
1524 }
0af4e98b
AA
1525
1526 return 0;
1527}
1528
ba76149f
AA
1529static int __init khugepaged_slab_init(void)
1530{
1531 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1532 sizeof(struct mm_slot),
1533 __alignof__(struct mm_slot), 0, NULL);
1534 if (!mm_slot_cache)
1535 return -ENOMEM;
1536
1537 return 0;
1538}
1539
1540static void __init khugepaged_slab_free(void)
1541{
1542 kmem_cache_destroy(mm_slot_cache);
1543 mm_slot_cache = NULL;
1544}
1545
1546static inline struct mm_slot *alloc_mm_slot(void)
1547{
1548 if (!mm_slot_cache) /* initialization failed */
1549 return NULL;
1550 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1551}
1552
1553static inline void free_mm_slot(struct mm_slot *mm_slot)
1554{
1555 kmem_cache_free(mm_slot_cache, mm_slot);
1556}
1557
1558static int __init mm_slots_hash_init(void)
1559{
1560 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1561 GFP_KERNEL);
1562 if (!mm_slots_hash)
1563 return -ENOMEM;
1564 return 0;
1565}
1566
1567#if 0
1568static void __init mm_slots_hash_free(void)
1569{
1570 kfree(mm_slots_hash);
1571 mm_slots_hash = NULL;
1572}
1573#endif
1574
1575static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1576{
1577 struct mm_slot *mm_slot;
1578 struct hlist_head *bucket;
1579 struct hlist_node *node;
1580
1581 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1582 % MM_SLOTS_HASH_HEADS];
1583 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1584 if (mm == mm_slot->mm)
1585 return mm_slot;
1586 }
1587 return NULL;
1588}
1589
1590static void insert_to_mm_slots_hash(struct mm_struct *mm,
1591 struct mm_slot *mm_slot)
1592{
1593 struct hlist_head *bucket;
1594
1595 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1596 % MM_SLOTS_HASH_HEADS];
1597 mm_slot->mm = mm;
1598 hlist_add_head(&mm_slot->hash, bucket);
1599}
1600
1601static inline int khugepaged_test_exit(struct mm_struct *mm)
1602{
1603 return atomic_read(&mm->mm_users) == 0;
1604}
1605
1606int __khugepaged_enter(struct mm_struct *mm)
1607{
1608 struct mm_slot *mm_slot;
1609 int wakeup;
1610
1611 mm_slot = alloc_mm_slot();
1612 if (!mm_slot)
1613 return -ENOMEM;
1614
1615 /* __khugepaged_exit() must not run from under us */
1616 VM_BUG_ON(khugepaged_test_exit(mm));
1617 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1618 free_mm_slot(mm_slot);
1619 return 0;
1620 }
1621
1622 spin_lock(&khugepaged_mm_lock);
1623 insert_to_mm_slots_hash(mm, mm_slot);
1624 /*
1625 * Insert just behind the scanning cursor, to let the area settle
1626 * down a little.
1627 */
1628 wakeup = list_empty(&khugepaged_scan.mm_head);
1629 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1630 spin_unlock(&khugepaged_mm_lock);
1631
1632 atomic_inc(&mm->mm_count);
1633 if (wakeup)
1634 wake_up_interruptible(&khugepaged_wait);
1635
1636 return 0;
1637}
1638
1639int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1640{
1641 unsigned long hstart, hend;
1642 if (!vma->anon_vma)
1643 /*
1644 * Not yet faulted in so we will register later in the
1645 * page fault if needed.
1646 */
1647 return 0;
78f11a25 1648 if (vma->vm_ops)
ba76149f
AA
1649 /* khugepaged not yet working on file or special mappings */
1650 return 0;
78f11a25
AA
1651 /*
1652 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1653 * true too, verify it here.
1654 */
1655 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
ba76149f
AA
1656 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1657 hend = vma->vm_end & HPAGE_PMD_MASK;
1658 if (hstart < hend)
1659 return khugepaged_enter(vma);
1660 return 0;
1661}
1662
1663void __khugepaged_exit(struct mm_struct *mm)
1664{
1665 struct mm_slot *mm_slot;
1666 int free = 0;
1667
1668 spin_lock(&khugepaged_mm_lock);
1669 mm_slot = get_mm_slot(mm);
1670 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1671 hlist_del(&mm_slot->hash);
1672 list_del(&mm_slot->mm_node);
1673 free = 1;
1674 }
d788e80a 1675 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1676
1677 if (free) {
ba76149f
AA
1678 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1679 free_mm_slot(mm_slot);
1680 mmdrop(mm);
1681 } else if (mm_slot) {
ba76149f
AA
1682 /*
1683 * This is required to serialize against
1684 * khugepaged_test_exit() (which is guaranteed to run
1685 * under mmap sem read mode). Stop here (after we
1686 * return all pagetables will be destroyed) until
1687 * khugepaged has finished working on the pagetables
1688 * under the mmap_sem.
1689 */
1690 down_write(&mm->mmap_sem);
1691 up_write(&mm->mmap_sem);
d788e80a 1692 }
ba76149f
AA
1693}
1694
1695static void release_pte_page(struct page *page)
1696{
1697 /* 0 stands for page_is_file_cache(page) == false */
1698 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1699 unlock_page(page);
1700 putback_lru_page(page);
1701}
1702
1703static void release_pte_pages(pte_t *pte, pte_t *_pte)
1704{
1705 while (--_pte >= pte) {
1706 pte_t pteval = *_pte;
1707 if (!pte_none(pteval))
1708 release_pte_page(pte_page(pteval));
1709 }
1710}
1711
1712static void release_all_pte_pages(pte_t *pte)
1713{
1714 release_pte_pages(pte, pte + HPAGE_PMD_NR);
1715}
1716
1717static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1718 unsigned long address,
1719 pte_t *pte)
1720{
1721 struct page *page;
1722 pte_t *_pte;
1723 int referenced = 0, isolated = 0, none = 0;
1724 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1725 _pte++, address += PAGE_SIZE) {
1726 pte_t pteval = *_pte;
1727 if (pte_none(pteval)) {
1728 if (++none <= khugepaged_max_ptes_none)
1729 continue;
1730 else {
1731 release_pte_pages(pte, _pte);
1732 goto out;
1733 }
1734 }
1735 if (!pte_present(pteval) || !pte_write(pteval)) {
1736 release_pte_pages(pte, _pte);
1737 goto out;
1738 }
1739 page = vm_normal_page(vma, address, pteval);
1740 if (unlikely(!page)) {
1741 release_pte_pages(pte, _pte);
1742 goto out;
1743 }
1744 VM_BUG_ON(PageCompound(page));
1745 BUG_ON(!PageAnon(page));
1746 VM_BUG_ON(!PageSwapBacked(page));
1747
1748 /* cannot use mapcount: can't collapse if there's a gup pin */
1749 if (page_count(page) != 1) {
1750 release_pte_pages(pte, _pte);
1751 goto out;
1752 }
1753 /*
1754 * We can do it before isolate_lru_page because the
1755 * page can't be freed from under us. NOTE: PG_lock
1756 * is needed to serialize against split_huge_page
1757 * when invoked from the VM.
1758 */
1759 if (!trylock_page(page)) {
1760 release_pte_pages(pte, _pte);
1761 goto out;
1762 }
1763 /*
1764 * Isolate the page to avoid collapsing an hugepage
1765 * currently in use by the VM.
1766 */
1767 if (isolate_lru_page(page)) {
1768 unlock_page(page);
1769 release_pte_pages(pte, _pte);
1770 goto out;
1771 }
1772 /* 0 stands for page_is_file_cache(page) == false */
1773 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
1774 VM_BUG_ON(!PageLocked(page));
1775 VM_BUG_ON(PageLRU(page));
1776
1777 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
1778 if (pte_young(pteval) || PageReferenced(page) ||
1779 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
1780 referenced = 1;
1781 }
1782 if (unlikely(!referenced))
1783 release_all_pte_pages(pte);
1784 else
1785 isolated = 1;
1786out:
1787 return isolated;
1788}
1789
1790static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
1791 struct vm_area_struct *vma,
1792 unsigned long address,
1793 spinlock_t *ptl)
1794{
1795 pte_t *_pte;
1796 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
1797 pte_t pteval = *_pte;
1798 struct page *src_page;
1799
1800 if (pte_none(pteval)) {
1801 clear_user_highpage(page, address);
1802 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
1803 } else {
1804 src_page = pte_page(pteval);
1805 copy_user_highpage(page, src_page, address, vma);
1806 VM_BUG_ON(page_mapcount(src_page) != 1);
1807 VM_BUG_ON(page_count(src_page) != 2);
1808 release_pte_page(src_page);
1809 /*
1810 * ptl mostly unnecessary, but preempt has to
1811 * be disabled to update the per-cpu stats
1812 * inside page_remove_rmap().
1813 */
1814 spin_lock(ptl);
1815 /*
1816 * paravirt calls inside pte_clear here are
1817 * superfluous.
1818 */
1819 pte_clear(vma->vm_mm, address, _pte);
1820 page_remove_rmap(src_page);
1821 spin_unlock(ptl);
1822 free_page_and_swap_cache(src_page);
1823 }
1824
1825 address += PAGE_SIZE;
1826 page++;
1827 }
1828}
1829
1830static void collapse_huge_page(struct mm_struct *mm,
1831 unsigned long address,
ce83d217 1832 struct page **hpage,
5c4b4be3
AK
1833 struct vm_area_struct *vma,
1834 int node)
ba76149f 1835{
ba76149f
AA
1836 pgd_t *pgd;
1837 pud_t *pud;
1838 pmd_t *pmd, _pmd;
1839 pte_t *pte;
1840 pgtable_t pgtable;
1841 struct page *new_page;
1842 spinlock_t *ptl;
1843 int isolated;
1844 unsigned long hstart, hend;
1845
1846 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
0bbbc0b3 1847#ifndef CONFIG_NUMA
692e0b35 1848 up_read(&mm->mmap_sem);
ba76149f 1849 VM_BUG_ON(!*hpage);
ce83d217 1850 new_page = *hpage;
0bbbc0b3
AA
1851#else
1852 VM_BUG_ON(*hpage);
ce83d217
AA
1853 /*
1854 * Allocate the page while the vma is still valid and under
1855 * the mmap_sem read mode so there is no memory allocation
1856 * later when we take the mmap_sem in write mode. This is more
1857 * friendly behavior (OTOH it may actually hide bugs) to
1858 * filesystems in userland with daemons allocating memory in
1859 * the userland I/O paths. Allocating memory with the
1860 * mmap_sem in read mode is good idea also to allow greater
1861 * scalability.
1862 */
5c4b4be3 1863 new_page = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 1864 node, __GFP_OTHER_NODE);
692e0b35
AA
1865
1866 /*
1867 * After allocating the hugepage, release the mmap_sem read lock in
1868 * preparation for taking it in write mode.
1869 */
1870 up_read(&mm->mmap_sem);
ce83d217 1871 if (unlikely(!new_page)) {
81ab4201 1872 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217
AA
1873 *hpage = ERR_PTR(-ENOMEM);
1874 return;
1875 }
692e0b35
AA
1876#endif
1877
81ab4201 1878 count_vm_event(THP_COLLAPSE_ALLOC);
ce83d217 1879 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
692e0b35 1880#ifdef CONFIG_NUMA
ce83d217 1881 put_page(new_page);
692e0b35 1882#endif
ce83d217
AA
1883 return;
1884 }
ba76149f
AA
1885
1886 /*
1887 * Prevent all access to pagetables with the exception of
1888 * gup_fast later hanlded by the ptep_clear_flush and the VM
1889 * handled by the anon_vma lock + PG_lock.
1890 */
1891 down_write(&mm->mmap_sem);
1892 if (unlikely(khugepaged_test_exit(mm)))
1893 goto out;
1894
1895 vma = find_vma(mm, address);
1896 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1897 hend = vma->vm_end & HPAGE_PMD_MASK;
1898 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
1899 goto out;
1900
60ab3244
AA
1901 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
1902 (vma->vm_flags & VM_NOHUGEPAGE))
ba76149f
AA
1903 goto out;
1904
78f11a25 1905 if (!vma->anon_vma || vma->vm_ops)
ba76149f 1906 goto out;
a7d6e4ec
AA
1907 if (is_vma_temporary_stack(vma))
1908 goto out;
78f11a25
AA
1909 /*
1910 * If is_pfn_mapping() is true is_learn_pfn_mapping() must be
1911 * true too, verify it here.
1912 */
1913 VM_BUG_ON(is_linear_pfn_mapping(vma) || vma->vm_flags & VM_NO_THP);
ba76149f
AA
1914
1915 pgd = pgd_offset(mm, address);
1916 if (!pgd_present(*pgd))
1917 goto out;
1918
1919 pud = pud_offset(pgd, address);
1920 if (!pud_present(*pud))
1921 goto out;
1922
1923 pmd = pmd_offset(pud, address);
1924 /* pmd can't go away or become huge under us */
1925 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
1926 goto out;
1927
ba76149f
AA
1928 anon_vma_lock(vma->anon_vma);
1929
1930 pte = pte_offset_map(pmd, address);
1931 ptl = pte_lockptr(mm, pmd);
1932
1933 spin_lock(&mm->page_table_lock); /* probably unnecessary */
1934 /*
1935 * After this gup_fast can't run anymore. This also removes
1936 * any huge TLB entry from the CPU so we won't allow
1937 * huge and small TLB entries for the same virtual address
1938 * to avoid the risk of CPU bugs in that area.
1939 */
1940 _pmd = pmdp_clear_flush_notify(vma, address, pmd);
1941 spin_unlock(&mm->page_table_lock);
1942
1943 spin_lock(ptl);
1944 isolated = __collapse_huge_page_isolate(vma, address, pte);
1945 spin_unlock(ptl);
ba76149f
AA
1946
1947 if (unlikely(!isolated)) {
453c7192 1948 pte_unmap(pte);
ba76149f
AA
1949 spin_lock(&mm->page_table_lock);
1950 BUG_ON(!pmd_none(*pmd));
1951 set_pmd_at(mm, address, pmd, _pmd);
1952 spin_unlock(&mm->page_table_lock);
1953 anon_vma_unlock(vma->anon_vma);
ce83d217 1954 goto out;
ba76149f
AA
1955 }
1956
1957 /*
1958 * All pages are isolated and locked so anon_vma rmap
1959 * can't run anymore.
1960 */
1961 anon_vma_unlock(vma->anon_vma);
1962
1963 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 1964 pte_unmap(pte);
ba76149f
AA
1965 __SetPageUptodate(new_page);
1966 pgtable = pmd_pgtable(_pmd);
1967 VM_BUG_ON(page_count(pgtable) != 1);
1968 VM_BUG_ON(page_mapcount(pgtable) != 0);
1969
1970 _pmd = mk_pmd(new_page, vma->vm_page_prot);
1971 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
1972 _pmd = pmd_mkhuge(_pmd);
1973
1974 /*
1975 * spin_lock() below is not the equivalent of smp_wmb(), so
1976 * this is needed to avoid the copy_huge_page writes to become
1977 * visible after the set_pmd_at() write.
1978 */
1979 smp_wmb();
1980
1981 spin_lock(&mm->page_table_lock);
1982 BUG_ON(!pmd_none(*pmd));
1983 page_add_new_anon_rmap(new_page, vma, address);
1984 set_pmd_at(mm, address, pmd, _pmd);
35d8c7ad 1985 update_mmu_cache(vma, address, _pmd);
ba76149f 1986 prepare_pmd_huge_pte(pgtable, mm);
ba76149f
AA
1987 spin_unlock(&mm->page_table_lock);
1988
0bbbc0b3 1989#ifndef CONFIG_NUMA
ba76149f 1990 *hpage = NULL;
0bbbc0b3 1991#endif
ba76149f 1992 khugepaged_pages_collapsed++;
ce83d217 1993out_up_write:
ba76149f 1994 up_write(&mm->mmap_sem);
0bbbc0b3
AA
1995 return;
1996
ce83d217 1997out:
678ff896 1998 mem_cgroup_uncharge_page(new_page);
0bbbc0b3
AA
1999#ifdef CONFIG_NUMA
2000 put_page(new_page);
2001#endif
ce83d217 2002 goto out_up_write;
ba76149f
AA
2003}
2004
2005static int khugepaged_scan_pmd(struct mm_struct *mm,
2006 struct vm_area_struct *vma,
2007 unsigned long address,
2008 struct page **hpage)
2009{
2010 pgd_t *pgd;
2011 pud_t *pud;
2012 pmd_t *pmd;
2013 pte_t *pte, *_pte;
2014 int ret = 0, referenced = 0, none = 0;
2015 struct page *page;
2016 unsigned long _address;
2017 spinlock_t *ptl;
5c4b4be3 2018 int node = -1;
ba76149f
AA
2019
2020 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2021
2022 pgd = pgd_offset(mm, address);
2023 if (!pgd_present(*pgd))
2024 goto out;
2025
2026 pud = pud_offset(pgd, address);
2027 if (!pud_present(*pud))
2028 goto out;
2029
2030 pmd = pmd_offset(pud, address);
2031 if (!pmd_present(*pmd) || pmd_trans_huge(*pmd))
2032 goto out;
2033
2034 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2035 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2036 _pte++, _address += PAGE_SIZE) {
2037 pte_t pteval = *_pte;
2038 if (pte_none(pteval)) {
2039 if (++none <= khugepaged_max_ptes_none)
2040 continue;
2041 else
2042 goto out_unmap;
2043 }
2044 if (!pte_present(pteval) || !pte_write(pteval))
2045 goto out_unmap;
2046 page = vm_normal_page(vma, _address, pteval);
2047 if (unlikely(!page))
2048 goto out_unmap;
5c4b4be3
AK
2049 /*
2050 * Chose the node of the first page. This could
2051 * be more sophisticated and look at more pages,
2052 * but isn't for now.
2053 */
2054 if (node == -1)
2055 node = page_to_nid(page);
ba76149f
AA
2056 VM_BUG_ON(PageCompound(page));
2057 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2058 goto out_unmap;
2059 /* cannot use mapcount: can't collapse if there's a gup pin */
2060 if (page_count(page) != 1)
2061 goto out_unmap;
8ee53820
AA
2062 if (pte_young(pteval) || PageReferenced(page) ||
2063 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2064 referenced = 1;
2065 }
2066 if (referenced)
2067 ret = 1;
2068out_unmap:
2069 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2070 if (ret)
2071 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2072 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2073out:
2074 return ret;
2075}
2076
2077static void collect_mm_slot(struct mm_slot *mm_slot)
2078{
2079 struct mm_struct *mm = mm_slot->mm;
2080
b9980cdc 2081 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2082
2083 if (khugepaged_test_exit(mm)) {
2084 /* free mm_slot */
2085 hlist_del(&mm_slot->hash);
2086 list_del(&mm_slot->mm_node);
2087
2088 /*
2089 * Not strictly needed because the mm exited already.
2090 *
2091 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2092 */
2093
2094 /* khugepaged_mm_lock actually not necessary for the below */
2095 free_mm_slot(mm_slot);
2096 mmdrop(mm);
2097 }
2098}
2099
2100static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2101 struct page **hpage)
2f1da642
HS
2102 __releases(&khugepaged_mm_lock)
2103 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2104{
2105 struct mm_slot *mm_slot;
2106 struct mm_struct *mm;
2107 struct vm_area_struct *vma;
2108 int progress = 0;
2109
2110 VM_BUG_ON(!pages);
b9980cdc 2111 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2112
2113 if (khugepaged_scan.mm_slot)
2114 mm_slot = khugepaged_scan.mm_slot;
2115 else {
2116 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2117 struct mm_slot, mm_node);
2118 khugepaged_scan.address = 0;
2119 khugepaged_scan.mm_slot = mm_slot;
2120 }
2121 spin_unlock(&khugepaged_mm_lock);
2122
2123 mm = mm_slot->mm;
2124 down_read(&mm->mmap_sem);
2125 if (unlikely(khugepaged_test_exit(mm)))
2126 vma = NULL;
2127 else
2128 vma = find_vma(mm, khugepaged_scan.address);
2129
2130 progress++;
2131 for (; vma; vma = vma->vm_next) {
2132 unsigned long hstart, hend;
2133
2134 cond_resched();
2135 if (unlikely(khugepaged_test_exit(mm))) {
2136 progress++;
2137 break;
2138 }
2139
60ab3244
AA
2140 if ((!(vma->vm_flags & VM_HUGEPAGE) &&
2141 !khugepaged_always()) ||
2142 (vma->vm_flags & VM_NOHUGEPAGE)) {
a7d6e4ec 2143 skip:
ba76149f
AA
2144 progress++;
2145 continue;
2146 }
78f11a25 2147 if (!vma->anon_vma || vma->vm_ops)
a7d6e4ec
AA
2148 goto skip;
2149 if (is_vma_temporary_stack(vma))
2150 goto skip;
78f11a25
AA
2151 /*
2152 * If is_pfn_mapping() is true is_learn_pfn_mapping()
2153 * must be true too, verify it here.
2154 */
2155 VM_BUG_ON(is_linear_pfn_mapping(vma) ||
2156 vma->vm_flags & VM_NO_THP);
ba76149f
AA
2157
2158 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2159 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2160 if (hstart >= hend)
2161 goto skip;
2162 if (khugepaged_scan.address > hend)
2163 goto skip;
ba76149f
AA
2164 if (khugepaged_scan.address < hstart)
2165 khugepaged_scan.address = hstart;
a7d6e4ec 2166 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2167
2168 while (khugepaged_scan.address < hend) {
2169 int ret;
2170 cond_resched();
2171 if (unlikely(khugepaged_test_exit(mm)))
2172 goto breakouterloop;
2173
2174 VM_BUG_ON(khugepaged_scan.address < hstart ||
2175 khugepaged_scan.address + HPAGE_PMD_SIZE >
2176 hend);
2177 ret = khugepaged_scan_pmd(mm, vma,
2178 khugepaged_scan.address,
2179 hpage);
2180 /* move to next address */
2181 khugepaged_scan.address += HPAGE_PMD_SIZE;
2182 progress += HPAGE_PMD_NR;
2183 if (ret)
2184 /* we released mmap_sem so break loop */
2185 goto breakouterloop_mmap_sem;
2186 if (progress >= pages)
2187 goto breakouterloop;
2188 }
2189 }
2190breakouterloop:
2191 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2192breakouterloop_mmap_sem:
2193
2194 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2195 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2196 /*
2197 * Release the current mm_slot if this mm is about to die, or
2198 * if we scanned all vmas of this mm.
2199 */
2200 if (khugepaged_test_exit(mm) || !vma) {
2201 /*
2202 * Make sure that if mm_users is reaching zero while
2203 * khugepaged runs here, khugepaged_exit will find
2204 * mm_slot not pointing to the exiting mm.
2205 */
2206 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2207 khugepaged_scan.mm_slot = list_entry(
2208 mm_slot->mm_node.next,
2209 struct mm_slot, mm_node);
2210 khugepaged_scan.address = 0;
2211 } else {
2212 khugepaged_scan.mm_slot = NULL;
2213 khugepaged_full_scans++;
2214 }
2215
2216 collect_mm_slot(mm_slot);
2217 }
2218
2219 return progress;
2220}
2221
2222static int khugepaged_has_work(void)
2223{
2224 return !list_empty(&khugepaged_scan.mm_head) &&
2225 khugepaged_enabled();
2226}
2227
2228static int khugepaged_wait_event(void)
2229{
2230 return !list_empty(&khugepaged_scan.mm_head) ||
2231 !khugepaged_enabled();
2232}
2233
2234static void khugepaged_do_scan(struct page **hpage)
2235{
2236 unsigned int progress = 0, pass_through_head = 0;
2237 unsigned int pages = khugepaged_pages_to_scan;
2238
2239 barrier(); /* write khugepaged_pages_to_scan to local stack */
2240
2241 while (progress < pages) {
2242 cond_resched();
2243
0bbbc0b3 2244#ifndef CONFIG_NUMA
ba76149f
AA
2245 if (!*hpage) {
2246 *hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2247 if (unlikely(!*hpage)) {
2248 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ba76149f 2249 break;
81ab4201
AK
2250 }
2251 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f 2252 }
0bbbc0b3
AA
2253#else
2254 if (IS_ERR(*hpage))
2255 break;
2256#endif
ba76149f 2257
878aee7d
AA
2258 if (unlikely(kthread_should_stop() || freezing(current)))
2259 break;
2260
ba76149f
AA
2261 spin_lock(&khugepaged_mm_lock);
2262 if (!khugepaged_scan.mm_slot)
2263 pass_through_head++;
2264 if (khugepaged_has_work() &&
2265 pass_through_head < 2)
2266 progress += khugepaged_scan_mm_slot(pages - progress,
2267 hpage);
2268 else
2269 progress = pages;
2270 spin_unlock(&khugepaged_mm_lock);
2271 }
2272}
2273
0bbbc0b3
AA
2274static void khugepaged_alloc_sleep(void)
2275{
1dfb059b
AA
2276 wait_event_freezable_timeout(khugepaged_wait, false,
2277 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
0bbbc0b3
AA
2278}
2279
2280#ifndef CONFIG_NUMA
ba76149f
AA
2281static struct page *khugepaged_alloc_hugepage(void)
2282{
2283 struct page *hpage;
2284
2285 do {
2286 hpage = alloc_hugepage(khugepaged_defrag());
81ab4201
AK
2287 if (!hpage) {
2288 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
0bbbc0b3 2289 khugepaged_alloc_sleep();
81ab4201
AK
2290 } else
2291 count_vm_event(THP_COLLAPSE_ALLOC);
ba76149f
AA
2292 } while (unlikely(!hpage) &&
2293 likely(khugepaged_enabled()));
2294 return hpage;
2295}
0bbbc0b3 2296#endif
ba76149f
AA
2297
2298static void khugepaged_loop(void)
2299{
2300 struct page *hpage;
2301
0bbbc0b3
AA
2302#ifdef CONFIG_NUMA
2303 hpage = NULL;
2304#endif
ba76149f 2305 while (likely(khugepaged_enabled())) {
0bbbc0b3 2306#ifndef CONFIG_NUMA
ba76149f 2307 hpage = khugepaged_alloc_hugepage();
f300ea49 2308 if (unlikely(!hpage))
ba76149f 2309 break;
0bbbc0b3
AA
2310#else
2311 if (IS_ERR(hpage)) {
2312 khugepaged_alloc_sleep();
2313 hpage = NULL;
2314 }
2315#endif
ba76149f
AA
2316
2317 khugepaged_do_scan(&hpage);
0bbbc0b3 2318#ifndef CONFIG_NUMA
ba76149f
AA
2319 if (hpage)
2320 put_page(hpage);
0bbbc0b3 2321#endif
878aee7d
AA
2322 try_to_freeze();
2323 if (unlikely(kthread_should_stop()))
2324 break;
ba76149f 2325 if (khugepaged_has_work()) {
ba76149f
AA
2326 if (!khugepaged_scan_sleep_millisecs)
2327 continue;
1dfb059b
AA
2328 wait_event_freezable_timeout(khugepaged_wait, false,
2329 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
ba76149f 2330 } else if (khugepaged_enabled())
878aee7d
AA
2331 wait_event_freezable(khugepaged_wait,
2332 khugepaged_wait_event());
ba76149f
AA
2333 }
2334}
2335
2336static int khugepaged(void *none)
2337{
2338 struct mm_slot *mm_slot;
2339
878aee7d 2340 set_freezable();
ba76149f
AA
2341 set_user_nice(current, 19);
2342
2343 /* serialize with start_khugepaged() */
2344 mutex_lock(&khugepaged_mutex);
2345
2346 for (;;) {
2347 mutex_unlock(&khugepaged_mutex);
a7d6e4ec 2348 VM_BUG_ON(khugepaged_thread != current);
ba76149f 2349 khugepaged_loop();
a7d6e4ec 2350 VM_BUG_ON(khugepaged_thread != current);
ba76149f
AA
2351
2352 mutex_lock(&khugepaged_mutex);
2353 if (!khugepaged_enabled())
2354 break;
878aee7d
AA
2355 if (unlikely(kthread_should_stop()))
2356 break;
ba76149f
AA
2357 }
2358
2359 spin_lock(&khugepaged_mm_lock);
2360 mm_slot = khugepaged_scan.mm_slot;
2361 khugepaged_scan.mm_slot = NULL;
2362 if (mm_slot)
2363 collect_mm_slot(mm_slot);
2364 spin_unlock(&khugepaged_mm_lock);
2365
2366 khugepaged_thread = NULL;
2367 mutex_unlock(&khugepaged_mutex);
2368
2369 return 0;
2370}
2371
71e3aac0
AA
2372void __split_huge_page_pmd(struct mm_struct *mm, pmd_t *pmd)
2373{
2374 struct page *page;
2375
2376 spin_lock(&mm->page_table_lock);
2377 if (unlikely(!pmd_trans_huge(*pmd))) {
2378 spin_unlock(&mm->page_table_lock);
2379 return;
2380 }
2381 page = pmd_page(*pmd);
2382 VM_BUG_ON(!page_count(page));
2383 get_page(page);
2384 spin_unlock(&mm->page_table_lock);
2385
2386 split_huge_page(page);
2387
2388 put_page(page);
2389 BUG_ON(pmd_trans_huge(*pmd));
2390}
94fcc585
AA
2391
2392static void split_huge_page_address(struct mm_struct *mm,
2393 unsigned long address)
2394{
2395 pgd_t *pgd;
2396 pud_t *pud;
2397 pmd_t *pmd;
2398
2399 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2400
2401 pgd = pgd_offset(mm, address);
2402 if (!pgd_present(*pgd))
2403 return;
2404
2405 pud = pud_offset(pgd, address);
2406 if (!pud_present(*pud))
2407 return;
2408
2409 pmd = pmd_offset(pud, address);
2410 if (!pmd_present(*pmd))
2411 return;
2412 /*
2413 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2414 * materialize from under us.
2415 */
2416 split_huge_page_pmd(mm, pmd);
2417}
2418
2419void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2420 unsigned long start,
2421 unsigned long end,
2422 long adjust_next)
2423{
2424 /*
2425 * If the new start address isn't hpage aligned and it could
2426 * previously contain an hugepage: check if we need to split
2427 * an huge pmd.
2428 */
2429 if (start & ~HPAGE_PMD_MASK &&
2430 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2431 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2432 split_huge_page_address(vma->vm_mm, start);
2433
2434 /*
2435 * If the new end address isn't hpage aligned and it could
2436 * previously contain an hugepage: check if we need to split
2437 * an huge pmd.
2438 */
2439 if (end & ~HPAGE_PMD_MASK &&
2440 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2441 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2442 split_huge_page_address(vma->vm_mm, end);
2443
2444 /*
2445 * If we're also updating the vma->vm_next->vm_start, if the new
2446 * vm_next->vm_start isn't page aligned and it could previously
2447 * contain an hugepage: check if we need to split an huge pmd.
2448 */
2449 if (adjust_next > 0) {
2450 struct vm_area_struct *next = vma->vm_next;
2451 unsigned long nstart = next->vm_start;
2452 nstart += adjust_next << PAGE_SHIFT;
2453 if (nstart & ~HPAGE_PMD_MASK &&
2454 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2455 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2456 split_huge_page_address(next->vm_mm, nstart);
2457 }
2458}