]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blame - mm/huge_memory.c
thp: consolidate code between handle_mm_fault() and do_huge_pmd_anonymous_page()
[mirror_ubuntu-zesty-kernel.git] / mm / huge_memory.c
CommitLineData
71e3aac0
AA
1/*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8#include <linux/mm.h>
9#include <linux/sched.h>
10#include <linux/highmem.h>
11#include <linux/hugetlb.h>
12#include <linux/mmu_notifier.h>
13#include <linux/rmap.h>
14#include <linux/swap.h>
97ae1749 15#include <linux/shrinker.h>
ba76149f
AA
16#include <linux/mm_inline.h>
17#include <linux/kthread.h>
18#include <linux/khugepaged.h>
878aee7d 19#include <linux/freezer.h>
a664b2d8 20#include <linux/mman.h>
325adeb5 21#include <linux/pagemap.h>
4daae3b4 22#include <linux/migrate.h>
43b5fbbd 23#include <linux/hashtable.h>
97ae1749 24
71e3aac0
AA
25#include <asm/tlb.h>
26#include <asm/pgalloc.h>
27#include "internal.h"
28
ba76149f
AA
29/*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
71e3aac0 36unsigned long transparent_hugepage_flags __read_mostly =
13ece886 37#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
ba76149f 38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
13ece886
AA
39#endif
40#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42#endif
d39d33c3 43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
79da5407
KS
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
ba76149f
AA
46
47/* default scan 8*512 pte (or vmas) every 30 second */
48static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49static unsigned int khugepaged_pages_collapsed;
50static unsigned int khugepaged_full_scans;
51static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52/* during fragmentation poll the hugepage allocator once every minute */
53static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54static struct task_struct *khugepaged_thread __read_mostly;
55static DEFINE_MUTEX(khugepaged_mutex);
56static DEFINE_SPINLOCK(khugepaged_mm_lock);
57static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58/*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65static int khugepaged(void *none);
ba76149f 66static int khugepaged_slab_init(void);
ba76149f 67
43b5fbbd
SL
68#define MM_SLOTS_HASH_BITS 10
69static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
ba76149f
AA
71static struct kmem_cache *mm_slot_cache __read_mostly;
72
73/**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83};
84
85/**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
2f1da642
HS
97};
98static struct khugepaged_scan khugepaged_scan = {
ba76149f
AA
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100};
101
f000565a
AA
102
103static int set_recommended_min_free_kbytes(void)
104{
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
f000565a 108
17c230af 109 if (!khugepaged_enabled())
f000565a
AA
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136}
137late_initcall(set_recommended_min_free_kbytes);
138
ba76149f
AA
139static int start_khugepaged(void)
140{
141 int err = 0;
142 if (khugepaged_enabled()) {
ba76149f
AA
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
911891af
XG
152
153 if (!list_empty(&khugepaged_scan.mm_head))
ba76149f 154 wake_up_interruptible(&khugepaged_wait);
f000565a
AA
155
156 set_recommended_min_free_kbytes();
911891af 157 } else if (khugepaged_thread) {
911891af
XG
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
637e3a27 161
ba76149f
AA
162 return err;
163}
71e3aac0 164
97ae1749 165static atomic_t huge_zero_refcount;
5918d10a 166static struct page *huge_zero_page __read_mostly;
97ae1749 167
5918d10a 168static inline bool is_huge_zero_page(struct page *page)
4a6c1297 169{
5918d10a 170 return ACCESS_ONCE(huge_zero_page) == page;
97ae1749 171}
4a6c1297 172
97ae1749
KS
173static inline bool is_huge_zero_pmd(pmd_t pmd)
174{
5918d10a 175 return is_huge_zero_page(pmd_page(pmd));
97ae1749
KS
176}
177
5918d10a 178static struct page *get_huge_zero_page(void)
97ae1749
KS
179{
180 struct page *zero_page;
181retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
5918d10a 183 return ACCESS_ONCE(huge_zero_page);
97ae1749
KS
184
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
4a6c1297 186 HPAGE_PMD_ORDER);
d8a8e1f0
KS
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
5918d10a 189 return NULL;
d8a8e1f0
KS
190 }
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
97ae1749 192 preempt_disable();
5918d10a 193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
97ae1749
KS
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
197 }
198
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
5918d10a 202 return ACCESS_ONCE(huge_zero_page);
4a6c1297
KS
203}
204
97ae1749 205static void put_huge_zero_page(void)
4a6c1297 206{
97ae1749
KS
207 /*
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
210 */
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
4a6c1297
KS
212}
213
97ae1749
KS
214static int shrink_huge_zero_page(struct shrinker *shrink,
215 struct shrink_control *sc)
4a6c1297 216{
97ae1749
KS
217 if (!sc->nr_to_scan)
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220
221 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
5918d10a
KS
222 struct page *zero_page = xchg(&huge_zero_page, NULL);
223 BUG_ON(zero_page == NULL);
224 __free_page(zero_page);
97ae1749
KS
225 }
226
227 return 0;
4a6c1297
KS
228}
229
97ae1749
KS
230static struct shrinker huge_zero_page_shrinker = {
231 .shrink = shrink_huge_zero_page,
232 .seeks = DEFAULT_SEEKS,
233};
234
71e3aac0 235#ifdef CONFIG_SYSFS
ba76149f 236
71e3aac0
AA
237static ssize_t double_flag_show(struct kobject *kobj,
238 struct kobj_attribute *attr, char *buf,
239 enum transparent_hugepage_flag enabled,
240 enum transparent_hugepage_flag req_madv)
241{
242 if (test_bit(enabled, &transparent_hugepage_flags)) {
243 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
244 return sprintf(buf, "[always] madvise never\n");
245 } else if (test_bit(req_madv, &transparent_hugepage_flags))
246 return sprintf(buf, "always [madvise] never\n");
247 else
248 return sprintf(buf, "always madvise [never]\n");
249}
250static ssize_t double_flag_store(struct kobject *kobj,
251 struct kobj_attribute *attr,
252 const char *buf, size_t count,
253 enum transparent_hugepage_flag enabled,
254 enum transparent_hugepage_flag req_madv)
255{
256 if (!memcmp("always", buf,
257 min(sizeof("always")-1, count))) {
258 set_bit(enabled, &transparent_hugepage_flags);
259 clear_bit(req_madv, &transparent_hugepage_flags);
260 } else if (!memcmp("madvise", buf,
261 min(sizeof("madvise")-1, count))) {
262 clear_bit(enabled, &transparent_hugepage_flags);
263 set_bit(req_madv, &transparent_hugepage_flags);
264 } else if (!memcmp("never", buf,
265 min(sizeof("never")-1, count))) {
266 clear_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else
269 return -EINVAL;
270
271 return count;
272}
273
274static ssize_t enabled_show(struct kobject *kobj,
275 struct kobj_attribute *attr, char *buf)
276{
277 return double_flag_show(kobj, attr, buf,
278 TRANSPARENT_HUGEPAGE_FLAG,
279 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
280}
281static ssize_t enabled_store(struct kobject *kobj,
282 struct kobj_attribute *attr,
283 const char *buf, size_t count)
284{
ba76149f
AA
285 ssize_t ret;
286
287 ret = double_flag_store(kobj, attr, buf, count,
288 TRANSPARENT_HUGEPAGE_FLAG,
289 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
290
291 if (ret > 0) {
911891af
XG
292 int err;
293
294 mutex_lock(&khugepaged_mutex);
295 err = start_khugepaged();
296 mutex_unlock(&khugepaged_mutex);
297
ba76149f
AA
298 if (err)
299 ret = err;
300 }
301
302 return ret;
71e3aac0
AA
303}
304static struct kobj_attribute enabled_attr =
305 __ATTR(enabled, 0644, enabled_show, enabled_store);
306
307static ssize_t single_flag_show(struct kobject *kobj,
308 struct kobj_attribute *attr, char *buf,
309 enum transparent_hugepage_flag flag)
310{
e27e6151
BH
311 return sprintf(buf, "%d\n",
312 !!test_bit(flag, &transparent_hugepage_flags));
71e3aac0 313}
e27e6151 314
71e3aac0
AA
315static ssize_t single_flag_store(struct kobject *kobj,
316 struct kobj_attribute *attr,
317 const char *buf, size_t count,
318 enum transparent_hugepage_flag flag)
319{
e27e6151
BH
320 unsigned long value;
321 int ret;
322
323 ret = kstrtoul(buf, 10, &value);
324 if (ret < 0)
325 return ret;
326 if (value > 1)
327 return -EINVAL;
328
329 if (value)
71e3aac0 330 set_bit(flag, &transparent_hugepage_flags);
e27e6151 331 else
71e3aac0 332 clear_bit(flag, &transparent_hugepage_flags);
71e3aac0
AA
333
334 return count;
335}
336
337/*
338 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
339 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
340 * memory just to allocate one more hugepage.
341 */
342static ssize_t defrag_show(struct kobject *kobj,
343 struct kobj_attribute *attr, char *buf)
344{
345 return double_flag_show(kobj, attr, buf,
346 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
347 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
348}
349static ssize_t defrag_store(struct kobject *kobj,
350 struct kobj_attribute *attr,
351 const char *buf, size_t count)
352{
353 return double_flag_store(kobj, attr, buf, count,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356}
357static struct kobj_attribute defrag_attr =
358 __ATTR(defrag, 0644, defrag_show, defrag_store);
359
79da5407
KS
360static ssize_t use_zero_page_show(struct kobject *kobj,
361 struct kobj_attribute *attr, char *buf)
362{
363 return single_flag_show(kobj, attr, buf,
364 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
365}
366static ssize_t use_zero_page_store(struct kobject *kobj,
367 struct kobj_attribute *attr, const char *buf, size_t count)
368{
369 return single_flag_store(kobj, attr, buf, count,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371}
372static struct kobj_attribute use_zero_page_attr =
373 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
71e3aac0
AA
374#ifdef CONFIG_DEBUG_VM
375static ssize_t debug_cow_show(struct kobject *kobj,
376 struct kobj_attribute *attr, char *buf)
377{
378 return single_flag_show(kobj, attr, buf,
379 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
380}
381static ssize_t debug_cow_store(struct kobject *kobj,
382 struct kobj_attribute *attr,
383 const char *buf, size_t count)
384{
385 return single_flag_store(kobj, attr, buf, count,
386 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
387}
388static struct kobj_attribute debug_cow_attr =
389 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
390#endif /* CONFIG_DEBUG_VM */
391
392static struct attribute *hugepage_attr[] = {
393 &enabled_attr.attr,
394 &defrag_attr.attr,
79da5407 395 &use_zero_page_attr.attr,
71e3aac0
AA
396#ifdef CONFIG_DEBUG_VM
397 &debug_cow_attr.attr,
398#endif
399 NULL,
400};
401
402static struct attribute_group hugepage_attr_group = {
403 .attrs = hugepage_attr,
ba76149f
AA
404};
405
406static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
407 struct kobj_attribute *attr,
408 char *buf)
409{
410 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
411}
412
413static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
414 struct kobj_attribute *attr,
415 const char *buf, size_t count)
416{
417 unsigned long msecs;
418 int err;
419
3dbb95f7 420 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
421 if (err || msecs > UINT_MAX)
422 return -EINVAL;
423
424 khugepaged_scan_sleep_millisecs = msecs;
425 wake_up_interruptible(&khugepaged_wait);
426
427 return count;
428}
429static struct kobj_attribute scan_sleep_millisecs_attr =
430 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
431 scan_sleep_millisecs_store);
432
433static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
434 struct kobj_attribute *attr,
435 char *buf)
436{
437 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
438}
439
440static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
441 struct kobj_attribute *attr,
442 const char *buf, size_t count)
443{
444 unsigned long msecs;
445 int err;
446
3dbb95f7 447 err = kstrtoul(buf, 10, &msecs);
ba76149f
AA
448 if (err || msecs > UINT_MAX)
449 return -EINVAL;
450
451 khugepaged_alloc_sleep_millisecs = msecs;
452 wake_up_interruptible(&khugepaged_wait);
453
454 return count;
455}
456static struct kobj_attribute alloc_sleep_millisecs_attr =
457 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
458 alloc_sleep_millisecs_store);
459
460static ssize_t pages_to_scan_show(struct kobject *kobj,
461 struct kobj_attribute *attr,
462 char *buf)
463{
464 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
465}
466static ssize_t pages_to_scan_store(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 const char *buf, size_t count)
469{
470 int err;
471 unsigned long pages;
472
3dbb95f7 473 err = kstrtoul(buf, 10, &pages);
ba76149f
AA
474 if (err || !pages || pages > UINT_MAX)
475 return -EINVAL;
476
477 khugepaged_pages_to_scan = pages;
478
479 return count;
480}
481static struct kobj_attribute pages_to_scan_attr =
482 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
483 pages_to_scan_store);
484
485static ssize_t pages_collapsed_show(struct kobject *kobj,
486 struct kobj_attribute *attr,
487 char *buf)
488{
489 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
490}
491static struct kobj_attribute pages_collapsed_attr =
492 __ATTR_RO(pages_collapsed);
493
494static ssize_t full_scans_show(struct kobject *kobj,
495 struct kobj_attribute *attr,
496 char *buf)
497{
498 return sprintf(buf, "%u\n", khugepaged_full_scans);
499}
500static struct kobj_attribute full_scans_attr =
501 __ATTR_RO(full_scans);
502
503static ssize_t khugepaged_defrag_show(struct kobject *kobj,
504 struct kobj_attribute *attr, char *buf)
505{
506 return single_flag_show(kobj, attr, buf,
507 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
508}
509static ssize_t khugepaged_defrag_store(struct kobject *kobj,
510 struct kobj_attribute *attr,
511 const char *buf, size_t count)
512{
513 return single_flag_store(kobj, attr, buf, count,
514 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
515}
516static struct kobj_attribute khugepaged_defrag_attr =
517 __ATTR(defrag, 0644, khugepaged_defrag_show,
518 khugepaged_defrag_store);
519
520/*
521 * max_ptes_none controls if khugepaged should collapse hugepages over
522 * any unmapped ptes in turn potentially increasing the memory
523 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
524 * reduce the available free memory in the system as it
525 * runs. Increasing max_ptes_none will instead potentially reduce the
526 * free memory in the system during the khugepaged scan.
527 */
528static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
529 struct kobj_attribute *attr,
530 char *buf)
531{
532 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
533}
534static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 const char *buf, size_t count)
537{
538 int err;
539 unsigned long max_ptes_none;
540
3dbb95f7 541 err = kstrtoul(buf, 10, &max_ptes_none);
ba76149f
AA
542 if (err || max_ptes_none > HPAGE_PMD_NR-1)
543 return -EINVAL;
544
545 khugepaged_max_ptes_none = max_ptes_none;
546
547 return count;
548}
549static struct kobj_attribute khugepaged_max_ptes_none_attr =
550 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
551 khugepaged_max_ptes_none_store);
552
553static struct attribute *khugepaged_attr[] = {
554 &khugepaged_defrag_attr.attr,
555 &khugepaged_max_ptes_none_attr.attr,
556 &pages_to_scan_attr.attr,
557 &pages_collapsed_attr.attr,
558 &full_scans_attr.attr,
559 &scan_sleep_millisecs_attr.attr,
560 &alloc_sleep_millisecs_attr.attr,
561 NULL,
562};
563
564static struct attribute_group khugepaged_attr_group = {
565 .attrs = khugepaged_attr,
566 .name = "khugepaged",
71e3aac0 567};
71e3aac0 568
569e5590 569static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
71e3aac0 570{
71e3aac0
AA
571 int err;
572
569e5590
SL
573 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
574 if (unlikely(!*hugepage_kobj)) {
2c79737a 575 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
569e5590 576 return -ENOMEM;
ba76149f
AA
577 }
578
569e5590 579 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
ba76149f 580 if (err) {
2c79737a 581 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 582 goto delete_obj;
ba76149f
AA
583 }
584
569e5590 585 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
ba76149f 586 if (err) {
2c79737a 587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
569e5590 588 goto remove_hp_group;
ba76149f 589 }
569e5590
SL
590
591 return 0;
592
593remove_hp_group:
594 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
595delete_obj:
596 kobject_put(*hugepage_kobj);
597 return err;
598}
599
600static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
601{
602 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
603 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
604 kobject_put(hugepage_kobj);
605}
606#else
607static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
608{
609 return 0;
610}
611
612static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
613{
614}
615#endif /* CONFIG_SYSFS */
616
617static int __init hugepage_init(void)
618{
619 int err;
620 struct kobject *hugepage_kobj;
621
622 if (!has_transparent_hugepage()) {
623 transparent_hugepage_flags = 0;
624 return -EINVAL;
625 }
626
627 err = hugepage_init_sysfs(&hugepage_kobj);
628 if (err)
629 return err;
ba76149f
AA
630
631 err = khugepaged_slab_init();
632 if (err)
633 goto out;
634
97ae1749
KS
635 register_shrinker(&huge_zero_page_shrinker);
636
97562cd2
RR
637 /*
638 * By default disable transparent hugepages on smaller systems,
639 * where the extra memory used could hurt more than TLB overhead
640 * is likely to save. The admin can still enable it through /sys.
641 */
642 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
643 transparent_hugepage_flags = 0;
644
ba76149f
AA
645 start_khugepaged();
646
569e5590 647 return 0;
ba76149f 648out:
569e5590 649 hugepage_exit_sysfs(hugepage_kobj);
ba76149f 650 return err;
71e3aac0
AA
651}
652module_init(hugepage_init)
653
654static int __init setup_transparent_hugepage(char *str)
655{
656 int ret = 0;
657 if (!str)
658 goto out;
659 if (!strcmp(str, "always")) {
660 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
661 &transparent_hugepage_flags);
662 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
663 &transparent_hugepage_flags);
664 ret = 1;
665 } else if (!strcmp(str, "madvise")) {
666 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "never")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 }
678out:
679 if (!ret)
680 printk(KERN_WARNING
681 "transparent_hugepage= cannot parse, ignored\n");
682 return ret;
683}
684__setup("transparent_hugepage=", setup_transparent_hugepage);
685
b32967ff 686pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
71e3aac0
AA
687{
688 if (likely(vma->vm_flags & VM_WRITE))
689 pmd = pmd_mkwrite(pmd);
690 return pmd;
691}
692
3122359a 693static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
b3092b3b
BL
694{
695 pmd_t entry;
3122359a 696 entry = mk_pmd(page, prot);
b3092b3b
BL
697 entry = pmd_mkhuge(entry);
698 return entry;
699}
700
71e3aac0
AA
701static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
702 struct vm_area_struct *vma,
703 unsigned long haddr, pmd_t *pmd,
704 struct page *page)
705{
71e3aac0
AA
706 pgtable_t pgtable;
707
708 VM_BUG_ON(!PageCompound(page));
709 pgtable = pte_alloc_one(mm, haddr);
edad9d2c 710 if (unlikely(!pgtable))
71e3aac0 711 return VM_FAULT_OOM;
71e3aac0
AA
712
713 clear_huge_page(page, haddr, HPAGE_PMD_NR);
52f37629
MK
714 /*
715 * The memory barrier inside __SetPageUptodate makes sure that
716 * clear_huge_page writes become visible before the set_pmd_at()
717 * write.
718 */
71e3aac0
AA
719 __SetPageUptodate(page);
720
721 spin_lock(&mm->page_table_lock);
722 if (unlikely(!pmd_none(*pmd))) {
723 spin_unlock(&mm->page_table_lock);
b9bbfbe3 724 mem_cgroup_uncharge_page(page);
71e3aac0
AA
725 put_page(page);
726 pte_free(mm, pgtable);
727 } else {
728 pmd_t entry;
3122359a
KS
729 entry = mk_huge_pmd(page, vma->vm_page_prot);
730 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
71e3aac0 731 page_add_new_anon_rmap(page, vma, haddr);
6b0b50b0 732 pgtable_trans_huge_deposit(mm, pmd, pgtable);
71e3aac0 733 set_pmd_at(mm, haddr, pmd, entry);
71e3aac0 734 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1c641e84 735 mm->nr_ptes++;
71e3aac0
AA
736 spin_unlock(&mm->page_table_lock);
737 }
738
aa2e878e 739 return 0;
71e3aac0
AA
740}
741
cc5d462f 742static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
0bbbc0b3 743{
cc5d462f 744 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
0bbbc0b3
AA
745}
746
747static inline struct page *alloc_hugepage_vma(int defrag,
748 struct vm_area_struct *vma,
cc5d462f
AK
749 unsigned long haddr, int nd,
750 gfp_t extra_gfp)
0bbbc0b3 751{
cc5d462f 752 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
5c4b4be3 753 HPAGE_PMD_ORDER, vma, haddr, nd);
0bbbc0b3
AA
754}
755
756#ifndef CONFIG_NUMA
71e3aac0
AA
757static inline struct page *alloc_hugepage(int defrag)
758{
cc5d462f 759 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
71e3aac0
AA
760 HPAGE_PMD_ORDER);
761}
0bbbc0b3 762#endif
71e3aac0 763
3ea41e62 764static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
97ae1749 765 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
5918d10a 766 struct page *zero_page)
fc9fe822
KS
767{
768 pmd_t entry;
3ea41e62
KS
769 if (!pmd_none(*pmd))
770 return false;
5918d10a 771 entry = mk_pmd(zero_page, vma->vm_page_prot);
fc9fe822
KS
772 entry = pmd_wrprotect(entry);
773 entry = pmd_mkhuge(entry);
6b0b50b0 774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
fc9fe822 775 set_pmd_at(mm, haddr, pmd, entry);
fc9fe822 776 mm->nr_ptes++;
3ea41e62 777 return true;
fc9fe822
KS
778}
779
71e3aac0
AA
780int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783{
784 struct page *page;
785 unsigned long haddr = address & HPAGE_PMD_MASK;
71e3aac0 786
128ec037 787 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
c0292554 788 return VM_FAULT_FALLBACK;
128ec037
KS
789 if (unlikely(anon_vma_prepare(vma)))
790 return VM_FAULT_OOM;
791 if (unlikely(khugepaged_enter(vma)))
792 return VM_FAULT_OOM;
793 if (!(flags & FAULT_FLAG_WRITE) &&
794 transparent_hugepage_use_zero_page()) {
795 pgtable_t pgtable;
796 struct page *zero_page;
797 bool set;
798 pgtable = pte_alloc_one(mm, haddr);
799 if (unlikely(!pgtable))
ba76149f 800 return VM_FAULT_OOM;
128ec037
KS
801 zero_page = get_huge_zero_page();
802 if (unlikely(!zero_page)) {
803 pte_free(mm, pgtable);
81ab4201 804 count_vm_event(THP_FAULT_FALLBACK);
c0292554 805 return VM_FAULT_FALLBACK;
81ab4201 806 }
128ec037
KS
807 spin_lock(&mm->page_table_lock);
808 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
809 zero_page);
810 spin_unlock(&mm->page_table_lock);
811 if (!set) {
812 pte_free(mm, pgtable);
813 put_huge_zero_page();
edad9d2c 814 }
edad9d2c 815 return 0;
71e3aac0 816 }
128ec037
KS
817 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
818 vma, haddr, numa_node_id(), 0);
819 if (unlikely(!page)) {
820 count_vm_event(THP_FAULT_FALLBACK);
c0292554 821 return VM_FAULT_FALLBACK;
128ec037
KS
822 }
823 count_vm_event(THP_FAULT_ALLOC);
824 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
825 put_page(page);
c0292554 826 return VM_FAULT_FALLBACK;
128ec037
KS
827 }
828 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
829 mem_cgroup_uncharge_page(page);
830 put_page(page);
c0292554 831 return VM_FAULT_FALLBACK;
128ec037
KS
832 }
833
834 return 0;
71e3aac0
AA
835}
836
837int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
838 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
839 struct vm_area_struct *vma)
840{
841 struct page *src_page;
842 pmd_t pmd;
843 pgtable_t pgtable;
844 int ret;
845
846 ret = -ENOMEM;
847 pgtable = pte_alloc_one(dst_mm, addr);
848 if (unlikely(!pgtable))
849 goto out;
850
851 spin_lock(&dst_mm->page_table_lock);
852 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
853
854 ret = -EAGAIN;
855 pmd = *src_pmd;
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
858 goto out_unlock;
859 }
fc9fe822
KS
860 /*
861 * mm->page_table_lock is enough to be sure that huge zero pmd is not
862 * under splitting since we don't split the page itself, only pmd to
863 * a page table.
864 */
865 if (is_huge_zero_pmd(pmd)) {
5918d10a 866 struct page *zero_page;
3ea41e62 867 bool set;
97ae1749
KS
868 /*
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
871 * reference.
872 */
5918d10a 873 zero_page = get_huge_zero_page();
3ea41e62 874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
5918d10a 875 zero_page);
3ea41e62 876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
fc9fe822
KS
877 ret = 0;
878 goto out_unlock;
879 }
71e3aac0
AA
880 if (unlikely(pmd_trans_splitting(pmd))) {
881 /* split huge page running from under us */
882 spin_unlock(&src_mm->page_table_lock);
883 spin_unlock(&dst_mm->page_table_lock);
884 pte_free(dst_mm, pgtable);
885
886 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
887 goto out;
888 }
889 src_page = pmd_page(pmd);
890 VM_BUG_ON(!PageHead(src_page));
891 get_page(src_page);
892 page_dup_rmap(src_page);
893 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
894
895 pmdp_set_wrprotect(src_mm, addr, src_pmd);
896 pmd = pmd_mkold(pmd_wrprotect(pmd));
6b0b50b0 897 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
71e3aac0 898 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1c641e84 899 dst_mm->nr_ptes++;
71e3aac0
AA
900
901 ret = 0;
902out_unlock:
903 spin_unlock(&src_mm->page_table_lock);
904 spin_unlock(&dst_mm->page_table_lock);
905out:
906 return ret;
907}
908
a1dd450b
WD
909void huge_pmd_set_accessed(struct mm_struct *mm,
910 struct vm_area_struct *vma,
911 unsigned long address,
912 pmd_t *pmd, pmd_t orig_pmd,
913 int dirty)
914{
915 pmd_t entry;
916 unsigned long haddr;
917
918 spin_lock(&mm->page_table_lock);
919 if (unlikely(!pmd_same(*pmd, orig_pmd)))
920 goto unlock;
921
922 entry = pmd_mkyoung(orig_pmd);
923 haddr = address & HPAGE_PMD_MASK;
924 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
925 update_mmu_cache_pmd(vma, address, pmd);
926
927unlock:
928 spin_unlock(&mm->page_table_lock);
929}
930
93b4796d
KS
931static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
932 struct vm_area_struct *vma, unsigned long address,
3ea41e62 933 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
93b4796d
KS
934{
935 pgtable_t pgtable;
936 pmd_t _pmd;
937 struct page *page;
938 int i, ret = 0;
939 unsigned long mmun_start; /* For mmu_notifiers */
940 unsigned long mmun_end; /* For mmu_notifiers */
941
942 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
943 if (!page) {
944 ret |= VM_FAULT_OOM;
945 goto out;
946 }
947
948 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
949 put_page(page);
950 ret |= VM_FAULT_OOM;
951 goto out;
952 }
953
954 clear_user_highpage(page, address);
955 __SetPageUptodate(page);
956
957 mmun_start = haddr;
958 mmun_end = haddr + HPAGE_PMD_SIZE;
959 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
960
961 spin_lock(&mm->page_table_lock);
3ea41e62
KS
962 if (unlikely(!pmd_same(*pmd, orig_pmd)))
963 goto out_free_page;
964
93b4796d
KS
965 pmdp_clear_flush(vma, haddr, pmd);
966 /* leave pmd empty until pte is filled */
967
6b0b50b0 968 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
93b4796d
KS
969 pmd_populate(mm, &_pmd, pgtable);
970
971 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
972 pte_t *pte, entry;
973 if (haddr == (address & PAGE_MASK)) {
974 entry = mk_pte(page, vma->vm_page_prot);
975 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
976 page_add_new_anon_rmap(page, vma, haddr);
977 } else {
978 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
979 entry = pte_mkspecial(entry);
980 }
981 pte = pte_offset_map(&_pmd, haddr);
982 VM_BUG_ON(!pte_none(*pte));
983 set_pte_at(mm, haddr, pte, entry);
984 pte_unmap(pte);
985 }
986 smp_wmb(); /* make pte visible before pmd */
987 pmd_populate(mm, pmd, pgtable);
988 spin_unlock(&mm->page_table_lock);
97ae1749 989 put_huge_zero_page();
93b4796d
KS
990 inc_mm_counter(mm, MM_ANONPAGES);
991
992 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
993
994 ret |= VM_FAULT_WRITE;
995out:
996 return ret;
3ea41e62
KS
997out_free_page:
998 spin_unlock(&mm->page_table_lock);
999 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1000 mem_cgroup_uncharge_page(page);
1001 put_page(page);
1002 goto out;
93b4796d
KS
1003}
1004
71e3aac0
AA
1005static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1006 struct vm_area_struct *vma,
1007 unsigned long address,
1008 pmd_t *pmd, pmd_t orig_pmd,
1009 struct page *page,
1010 unsigned long haddr)
1011{
1012 pgtable_t pgtable;
1013 pmd_t _pmd;
1014 int ret = 0, i;
1015 struct page **pages;
2ec74c3e
SG
1016 unsigned long mmun_start; /* For mmu_notifiers */
1017 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1018
1019 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1020 GFP_KERNEL);
1021 if (unlikely(!pages)) {
1022 ret |= VM_FAULT_OOM;
1023 goto out;
1024 }
1025
1026 for (i = 0; i < HPAGE_PMD_NR; i++) {
cc5d462f
AK
1027 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1028 __GFP_OTHER_NODE,
19ee151e 1029 vma, address, page_to_nid(page));
b9bbfbe3
AA
1030 if (unlikely(!pages[i] ||
1031 mem_cgroup_newpage_charge(pages[i], mm,
1032 GFP_KERNEL))) {
1033 if (pages[i])
71e3aac0 1034 put_page(pages[i]);
b9bbfbe3
AA
1035 mem_cgroup_uncharge_start();
1036 while (--i >= 0) {
1037 mem_cgroup_uncharge_page(pages[i]);
1038 put_page(pages[i]);
1039 }
1040 mem_cgroup_uncharge_end();
71e3aac0
AA
1041 kfree(pages);
1042 ret |= VM_FAULT_OOM;
1043 goto out;
1044 }
1045 }
1046
1047 for (i = 0; i < HPAGE_PMD_NR; i++) {
1048 copy_user_highpage(pages[i], page + i,
0089e485 1049 haddr + PAGE_SIZE * i, vma);
71e3aac0
AA
1050 __SetPageUptodate(pages[i]);
1051 cond_resched();
1052 }
1053
2ec74c3e
SG
1054 mmun_start = haddr;
1055 mmun_end = haddr + HPAGE_PMD_SIZE;
1056 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1057
71e3aac0
AA
1058 spin_lock(&mm->page_table_lock);
1059 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1060 goto out_free_pages;
1061 VM_BUG_ON(!PageHead(page));
1062
2ec74c3e 1063 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1064 /* leave pmd empty until pte is filled */
1065
6b0b50b0 1066 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1067 pmd_populate(mm, &_pmd, pgtable);
1068
1069 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1070 pte_t *pte, entry;
1071 entry = mk_pte(pages[i], vma->vm_page_prot);
1072 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1073 page_add_new_anon_rmap(pages[i], vma, haddr);
1074 pte = pte_offset_map(&_pmd, haddr);
1075 VM_BUG_ON(!pte_none(*pte));
1076 set_pte_at(mm, haddr, pte, entry);
1077 pte_unmap(pte);
1078 }
1079 kfree(pages);
1080
71e3aac0
AA
1081 smp_wmb(); /* make pte visible before pmd */
1082 pmd_populate(mm, pmd, pgtable);
1083 page_remove_rmap(page);
1084 spin_unlock(&mm->page_table_lock);
1085
2ec74c3e
SG
1086 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1087
71e3aac0
AA
1088 ret |= VM_FAULT_WRITE;
1089 put_page(page);
1090
1091out:
1092 return ret;
1093
1094out_free_pages:
1095 spin_unlock(&mm->page_table_lock);
2ec74c3e 1096 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
b9bbfbe3
AA
1097 mem_cgroup_uncharge_start();
1098 for (i = 0; i < HPAGE_PMD_NR; i++) {
1099 mem_cgroup_uncharge_page(pages[i]);
71e3aac0 1100 put_page(pages[i]);
b9bbfbe3
AA
1101 }
1102 mem_cgroup_uncharge_end();
71e3aac0
AA
1103 kfree(pages);
1104 goto out;
1105}
1106
1107int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1108 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1109{
1110 int ret = 0;
93b4796d 1111 struct page *page = NULL, *new_page;
71e3aac0 1112 unsigned long haddr;
2ec74c3e
SG
1113 unsigned long mmun_start; /* For mmu_notifiers */
1114 unsigned long mmun_end; /* For mmu_notifiers */
71e3aac0
AA
1115
1116 VM_BUG_ON(!vma->anon_vma);
93b4796d
KS
1117 haddr = address & HPAGE_PMD_MASK;
1118 if (is_huge_zero_pmd(orig_pmd))
1119 goto alloc;
71e3aac0
AA
1120 spin_lock(&mm->page_table_lock);
1121 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1122 goto out_unlock;
1123
1124 page = pmd_page(orig_pmd);
1125 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
71e3aac0
AA
1126 if (page_mapcount(page) == 1) {
1127 pmd_t entry;
1128 entry = pmd_mkyoung(orig_pmd);
1129 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1130 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
b113da65 1131 update_mmu_cache_pmd(vma, address, pmd);
71e3aac0
AA
1132 ret |= VM_FAULT_WRITE;
1133 goto out_unlock;
1134 }
1135 get_page(page);
1136 spin_unlock(&mm->page_table_lock);
93b4796d 1137alloc:
71e3aac0
AA
1138 if (transparent_hugepage_enabled(vma) &&
1139 !transparent_hugepage_debug_cow())
0bbbc0b3 1140 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
cc5d462f 1141 vma, haddr, numa_node_id(), 0);
71e3aac0
AA
1142 else
1143 new_page = NULL;
1144
1145 if (unlikely(!new_page)) {
81ab4201 1146 count_vm_event(THP_FAULT_FALLBACK);
93b4796d
KS
1147 if (is_huge_zero_pmd(orig_pmd)) {
1148 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
3ea41e62 1149 address, pmd, orig_pmd, haddr);
93b4796d
KS
1150 } else {
1151 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1152 pmd, orig_pmd, page, haddr);
1153 if (ret & VM_FAULT_OOM)
1154 split_huge_page(page);
1155 put_page(page);
1156 }
71e3aac0
AA
1157 goto out;
1158 }
81ab4201 1159 count_vm_event(THP_FAULT_ALLOC);
71e3aac0 1160
b9bbfbe3
AA
1161 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1162 put_page(new_page);
93b4796d
KS
1163 if (page) {
1164 split_huge_page(page);
1165 put_page(page);
1166 }
b9bbfbe3
AA
1167 ret |= VM_FAULT_OOM;
1168 goto out;
1169 }
1170
93b4796d
KS
1171 if (is_huge_zero_pmd(orig_pmd))
1172 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1173 else
1174 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
71e3aac0
AA
1175 __SetPageUptodate(new_page);
1176
2ec74c3e
SG
1177 mmun_start = haddr;
1178 mmun_end = haddr + HPAGE_PMD_SIZE;
1179 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1180
71e3aac0 1181 spin_lock(&mm->page_table_lock);
93b4796d
KS
1182 if (page)
1183 put_page(page);
b9bbfbe3 1184 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
6f60b69d 1185 spin_unlock(&mm->page_table_lock);
b9bbfbe3 1186 mem_cgroup_uncharge_page(new_page);
71e3aac0 1187 put_page(new_page);
2ec74c3e 1188 goto out_mn;
b9bbfbe3 1189 } else {
71e3aac0 1190 pmd_t entry;
3122359a
KS
1191 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1192 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2ec74c3e 1193 pmdp_clear_flush(vma, haddr, pmd);
71e3aac0
AA
1194 page_add_new_anon_rmap(new_page, vma, haddr);
1195 set_pmd_at(mm, haddr, pmd, entry);
b113da65 1196 update_mmu_cache_pmd(vma, address, pmd);
97ae1749 1197 if (is_huge_zero_pmd(orig_pmd)) {
93b4796d 1198 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
97ae1749
KS
1199 put_huge_zero_page();
1200 } else {
93b4796d
KS
1201 VM_BUG_ON(!PageHead(page));
1202 page_remove_rmap(page);
1203 put_page(page);
1204 }
71e3aac0
AA
1205 ret |= VM_FAULT_WRITE;
1206 }
71e3aac0 1207 spin_unlock(&mm->page_table_lock);
2ec74c3e
SG
1208out_mn:
1209 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1210out:
1211 return ret;
2ec74c3e
SG
1212out_unlock:
1213 spin_unlock(&mm->page_table_lock);
1214 return ret;
71e3aac0
AA
1215}
1216
b676b293 1217struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
71e3aac0
AA
1218 unsigned long addr,
1219 pmd_t *pmd,
1220 unsigned int flags)
1221{
b676b293 1222 struct mm_struct *mm = vma->vm_mm;
71e3aac0
AA
1223 struct page *page = NULL;
1224
1225 assert_spin_locked(&mm->page_table_lock);
1226
1227 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1228 goto out;
1229
85facf25
KS
1230 /* Avoid dumping huge zero page */
1231 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1232 return ERR_PTR(-EFAULT);
1233
71e3aac0
AA
1234 page = pmd_page(*pmd);
1235 VM_BUG_ON(!PageHead(page));
1236 if (flags & FOLL_TOUCH) {
1237 pmd_t _pmd;
1238 /*
1239 * We should set the dirty bit only for FOLL_WRITE but
1240 * for now the dirty bit in the pmd is meaningless.
1241 * And if the dirty bit will become meaningful and
1242 * we'll only set it with FOLL_WRITE, an atomic
1243 * set_bit will be required on the pmd to set the
1244 * young bit, instead of the current set_pmd_at.
1245 */
1246 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
8663890a
AK
1247 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1248 pmd, _pmd, 1))
1249 update_mmu_cache_pmd(vma, addr, pmd);
71e3aac0 1250 }
b676b293
DR
1251 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1252 if (page->mapping && trylock_page(page)) {
1253 lru_add_drain();
1254 if (page->mapping)
1255 mlock_vma_page(page);
1256 unlock_page(page);
1257 }
1258 }
71e3aac0
AA
1259 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1260 VM_BUG_ON(!PageCompound(page));
1261 if (flags & FOLL_GET)
70b50f94 1262 get_page_foll(page);
71e3aac0
AA
1263
1264out:
1265 return page;
1266}
1267
d10e63f2 1268/* NUMA hinting page fault entry point for trans huge pmds */
4daae3b4
MG
1269int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1270 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
d10e63f2 1271{
b32967ff 1272 struct page *page;
d10e63f2 1273 unsigned long haddr = addr & HPAGE_PMD_MASK;
4daae3b4 1274 int target_nid;
03c5a6e1 1275 int current_nid = -1;
b32967ff 1276 bool migrated;
d10e63f2
MG
1277
1278 spin_lock(&mm->page_table_lock);
1279 if (unlikely(!pmd_same(pmd, *pmdp)))
1280 goto out_unlock;
1281
1282 page = pmd_page(pmd);
4daae3b4 1283 get_page(page);
03c5a6e1
MG
1284 current_nid = page_to_nid(page);
1285 count_vm_numa_event(NUMA_HINT_FAULTS);
1286 if (current_nid == numa_node_id())
1287 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
4daae3b4
MG
1288
1289 target_nid = mpol_misplaced(page, vma, haddr);
b32967ff
MG
1290 if (target_nid == -1) {
1291 put_page(page);
4daae3b4 1292 goto clear_pmdnuma;
b32967ff 1293 }
4daae3b4 1294
b32967ff
MG
1295 /* Acquire the page lock to serialise THP migrations */
1296 spin_unlock(&mm->page_table_lock);
1297 lock_page(page);
4daae3b4 1298
b32967ff 1299 /* Confirm the PTE did not while locked */
4daae3b4 1300 spin_lock(&mm->page_table_lock);
b32967ff
MG
1301 if (unlikely(!pmd_same(pmd, *pmdp))) {
1302 unlock_page(page);
1303 put_page(page);
4daae3b4 1304 goto out_unlock;
b32967ff
MG
1305 }
1306 spin_unlock(&mm->page_table_lock);
4daae3b4 1307
b32967ff
MG
1308 /* Migrate the THP to the requested node */
1309 migrated = migrate_misplaced_transhuge_page(mm, vma,
340ef390
HD
1310 pmdp, pmd, addr, page, target_nid);
1311 if (!migrated)
1312 goto check_same;
b32967ff 1313
340ef390 1314 task_numa_fault(target_nid, HPAGE_PMD_NR, true);
b32967ff
MG
1315 return 0;
1316
340ef390
HD
1317check_same:
1318 spin_lock(&mm->page_table_lock);
1319 if (unlikely(!pmd_same(pmd, *pmdp)))
1320 goto out_unlock;
b32967ff 1321clear_pmdnuma:
d10e63f2
MG
1322 pmd = pmd_mknonnuma(pmd);
1323 set_pmd_at(mm, haddr, pmdp, pmd);
1324 VM_BUG_ON(pmd_numa(*pmdp));
1325 update_mmu_cache_pmd(vma, addr, pmdp);
d10e63f2
MG
1326out_unlock:
1327 spin_unlock(&mm->page_table_lock);
b32967ff 1328 if (current_nid != -1)
340ef390 1329 task_numa_fault(current_nid, HPAGE_PMD_NR, false);
d10e63f2
MG
1330 return 0;
1331}
1332
71e3aac0 1333int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
f21760b1 1334 pmd_t *pmd, unsigned long addr)
71e3aac0
AA
1335{
1336 int ret = 0;
1337
025c5b24
NH
1338 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1339 struct page *page;
1340 pgtable_t pgtable;
f5c8ad47 1341 pmd_t orig_pmd;
a6bf2bb0
AK
1342 /*
1343 * For architectures like ppc64 we look at deposited pgtable
1344 * when calling pmdp_get_and_clear. So do the
1345 * pgtable_trans_huge_withdraw after finishing pmdp related
1346 * operations.
1347 */
f5c8ad47 1348 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
025c5b24 1349 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
a6bf2bb0 1350 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
479f0abb
KS
1351 if (is_huge_zero_pmd(orig_pmd)) {
1352 tlb->mm->nr_ptes--;
1353 spin_unlock(&tlb->mm->page_table_lock);
97ae1749 1354 put_huge_zero_page();
479f0abb
KS
1355 } else {
1356 page = pmd_page(orig_pmd);
1357 page_remove_rmap(page);
1358 VM_BUG_ON(page_mapcount(page) < 0);
1359 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1360 VM_BUG_ON(!PageHead(page));
1361 tlb->mm->nr_ptes--;
1362 spin_unlock(&tlb->mm->page_table_lock);
1363 tlb_remove_page(tlb, page);
1364 }
025c5b24
NH
1365 pte_free(tlb->mm, pgtable);
1366 ret = 1;
1367 }
71e3aac0
AA
1368 return ret;
1369}
1370
0ca1634d
JW
1371int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1372 unsigned long addr, unsigned long end,
1373 unsigned char *vec)
1374{
1375 int ret = 0;
1376
025c5b24
NH
1377 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1378 /*
1379 * All logical pages in the range are present
1380 * if backed by a huge page.
1381 */
0ca1634d 1382 spin_unlock(&vma->vm_mm->page_table_lock);
025c5b24
NH
1383 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1384 ret = 1;
1385 }
0ca1634d
JW
1386
1387 return ret;
1388}
1389
37a1c49a
AA
1390int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1391 unsigned long old_addr,
1392 unsigned long new_addr, unsigned long old_end,
1393 pmd_t *old_pmd, pmd_t *new_pmd)
1394{
1395 int ret = 0;
1396 pmd_t pmd;
1397
1398 struct mm_struct *mm = vma->vm_mm;
1399
1400 if ((old_addr & ~HPAGE_PMD_MASK) ||
1401 (new_addr & ~HPAGE_PMD_MASK) ||
1402 old_end - old_addr < HPAGE_PMD_SIZE ||
1403 (new_vma->vm_flags & VM_NOHUGEPAGE))
1404 goto out;
1405
1406 /*
1407 * The destination pmd shouldn't be established, free_pgtables()
1408 * should have release it.
1409 */
1410 if (WARN_ON(!pmd_none(*new_pmd))) {
1411 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1412 goto out;
1413 }
1414
025c5b24
NH
1415 ret = __pmd_trans_huge_lock(old_pmd, vma);
1416 if (ret == 1) {
1417 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1418 VM_BUG_ON(!pmd_none(*new_pmd));
0f8975ec 1419 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
37a1c49a
AA
1420 spin_unlock(&mm->page_table_lock);
1421 }
1422out:
1423 return ret;
1424}
1425
cd7548ab 1426int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
4b10e7d5 1427 unsigned long addr, pgprot_t newprot, int prot_numa)
cd7548ab
JW
1428{
1429 struct mm_struct *mm = vma->vm_mm;
1430 int ret = 0;
1431
025c5b24
NH
1432 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1433 pmd_t entry;
1434 entry = pmdp_get_and_clear(mm, addr, pmd);
a4f1de17 1435 if (!prot_numa) {
4b10e7d5 1436 entry = pmd_modify(entry, newprot);
a4f1de17
HD
1437 BUG_ON(pmd_write(entry));
1438 } else {
4b10e7d5
MG
1439 struct page *page = pmd_page(*pmd);
1440
1441 /* only check non-shared pages */
1442 if (page_mapcount(page) == 1 &&
1443 !pmd_numa(*pmd)) {
1444 entry = pmd_mknuma(entry);
1445 }
1446 }
025c5b24
NH
1447 set_pmd_at(mm, addr, pmd, entry);
1448 spin_unlock(&vma->vm_mm->page_table_lock);
1449 ret = 1;
1450 }
1451
1452 return ret;
1453}
1454
1455/*
1456 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1457 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1458 *
1459 * Note that if it returns 1, this routine returns without unlocking page
1460 * table locks. So callers must unlock them.
1461 */
1462int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1463{
1464 spin_lock(&vma->vm_mm->page_table_lock);
cd7548ab
JW
1465 if (likely(pmd_trans_huge(*pmd))) {
1466 if (unlikely(pmd_trans_splitting(*pmd))) {
025c5b24 1467 spin_unlock(&vma->vm_mm->page_table_lock);
cd7548ab 1468 wait_split_huge_page(vma->anon_vma, pmd);
025c5b24 1469 return -1;
cd7548ab 1470 } else {
025c5b24
NH
1471 /* Thp mapped by 'pmd' is stable, so we can
1472 * handle it as it is. */
1473 return 1;
cd7548ab 1474 }
025c5b24
NH
1475 }
1476 spin_unlock(&vma->vm_mm->page_table_lock);
1477 return 0;
cd7548ab
JW
1478}
1479
71e3aac0
AA
1480pmd_t *page_check_address_pmd(struct page *page,
1481 struct mm_struct *mm,
1482 unsigned long address,
1483 enum page_check_address_pmd_flag flag)
1484{
71e3aac0
AA
1485 pmd_t *pmd, *ret = NULL;
1486
1487 if (address & ~HPAGE_PMD_MASK)
1488 goto out;
1489
6219049a
BL
1490 pmd = mm_find_pmd(mm, address);
1491 if (!pmd)
71e3aac0 1492 goto out;
71e3aac0
AA
1493 if (pmd_none(*pmd))
1494 goto out;
1495 if (pmd_page(*pmd) != page)
1496 goto out;
94fcc585
AA
1497 /*
1498 * split_vma() may create temporary aliased mappings. There is
1499 * no risk as long as all huge pmd are found and have their
1500 * splitting bit set before __split_huge_page_refcount
1501 * runs. Finding the same huge pmd more than once during the
1502 * same rmap walk is not a problem.
1503 */
1504 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1505 pmd_trans_splitting(*pmd))
1506 goto out;
71e3aac0
AA
1507 if (pmd_trans_huge(*pmd)) {
1508 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1509 !pmd_trans_splitting(*pmd));
1510 ret = pmd;
1511 }
1512out:
1513 return ret;
1514}
1515
1516static int __split_huge_page_splitting(struct page *page,
1517 struct vm_area_struct *vma,
1518 unsigned long address)
1519{
1520 struct mm_struct *mm = vma->vm_mm;
1521 pmd_t *pmd;
1522 int ret = 0;
2ec74c3e
SG
1523 /* For mmu_notifiers */
1524 const unsigned long mmun_start = address;
1525 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
71e3aac0 1526
2ec74c3e 1527 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
1528 spin_lock(&mm->page_table_lock);
1529 pmd = page_check_address_pmd(page, mm, address,
1530 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1531 if (pmd) {
1532 /*
1533 * We can't temporarily set the pmd to null in order
1534 * to split it, the pmd must remain marked huge at all
1535 * times or the VM won't take the pmd_trans_huge paths
5a505085 1536 * and it won't wait on the anon_vma->root->rwsem to
71e3aac0
AA
1537 * serialize against split_huge_page*.
1538 */
2ec74c3e 1539 pmdp_splitting_flush(vma, address, pmd);
71e3aac0
AA
1540 ret = 1;
1541 }
1542 spin_unlock(&mm->page_table_lock);
2ec74c3e 1543 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
1544
1545 return ret;
1546}
1547
5bc7b8ac
SL
1548static void __split_huge_page_refcount(struct page *page,
1549 struct list_head *list)
71e3aac0
AA
1550{
1551 int i;
71e3aac0 1552 struct zone *zone = page_zone(page);
fa9add64 1553 struct lruvec *lruvec;
70b50f94 1554 int tail_count = 0;
71e3aac0
AA
1555
1556 /* prevent PageLRU to go away from under us, and freeze lru stats */
1557 spin_lock_irq(&zone->lru_lock);
fa9add64
HD
1558 lruvec = mem_cgroup_page_lruvec(page, zone);
1559
71e3aac0 1560 compound_lock(page);
e94c8a9c
KH
1561 /* complete memcg works before add pages to LRU */
1562 mem_cgroup_split_huge_fixup(page);
71e3aac0 1563
45676885 1564 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
71e3aac0
AA
1565 struct page *page_tail = page + i;
1566
70b50f94
AA
1567 /* tail_page->_mapcount cannot change */
1568 BUG_ON(page_mapcount(page_tail) < 0);
1569 tail_count += page_mapcount(page_tail);
1570 /* check for overflow */
1571 BUG_ON(tail_count < 0);
1572 BUG_ON(atomic_read(&page_tail->_count) != 0);
1573 /*
1574 * tail_page->_count is zero and not changing from
1575 * under us. But get_page_unless_zero() may be running
1576 * from under us on the tail_page. If we used
1577 * atomic_set() below instead of atomic_add(), we
1578 * would then run atomic_set() concurrently with
1579 * get_page_unless_zero(), and atomic_set() is
1580 * implemented in C not using locked ops. spin_unlock
1581 * on x86 sometime uses locked ops because of PPro
1582 * errata 66, 92, so unless somebody can guarantee
1583 * atomic_set() here would be safe on all archs (and
1584 * not only on x86), it's safer to use atomic_add().
1585 */
1586 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1587 &page_tail->_count);
71e3aac0
AA
1588
1589 /* after clearing PageTail the gup refcount can be released */
1590 smp_mb();
1591
a6d30ddd
JD
1592 /*
1593 * retain hwpoison flag of the poisoned tail page:
1594 * fix for the unsuitable process killed on Guest Machine(KVM)
1595 * by the memory-failure.
1596 */
1597 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
71e3aac0
AA
1598 page_tail->flags |= (page->flags &
1599 ((1L << PG_referenced) |
1600 (1L << PG_swapbacked) |
1601 (1L << PG_mlocked) |
e180cf80
KS
1602 (1L << PG_uptodate) |
1603 (1L << PG_active) |
1604 (1L << PG_unevictable)));
71e3aac0
AA
1605 page_tail->flags |= (1L << PG_dirty);
1606
70b50f94 1607 /* clear PageTail before overwriting first_page */
71e3aac0
AA
1608 smp_wmb();
1609
1610 /*
1611 * __split_huge_page_splitting() already set the
1612 * splitting bit in all pmd that could map this
1613 * hugepage, that will ensure no CPU can alter the
1614 * mapcount on the head page. The mapcount is only
1615 * accounted in the head page and it has to be
1616 * transferred to all tail pages in the below code. So
1617 * for this code to be safe, the split the mapcount
1618 * can't change. But that doesn't mean userland can't
1619 * keep changing and reading the page contents while
1620 * we transfer the mapcount, so the pmd splitting
1621 * status is achieved setting a reserved bit in the
1622 * pmd, not by clearing the present bit.
1623 */
71e3aac0
AA
1624 page_tail->_mapcount = page->_mapcount;
1625
1626 BUG_ON(page_tail->mapping);
1627 page_tail->mapping = page->mapping;
1628
45676885 1629 page_tail->index = page->index + i;
22b751c3 1630 page_nid_xchg_last(page_tail, page_nid_last(page));
71e3aac0
AA
1631
1632 BUG_ON(!PageAnon(page_tail));
1633 BUG_ON(!PageUptodate(page_tail));
1634 BUG_ON(!PageDirty(page_tail));
1635 BUG_ON(!PageSwapBacked(page_tail));
1636
5bc7b8ac 1637 lru_add_page_tail(page, page_tail, lruvec, list);
71e3aac0 1638 }
70b50f94
AA
1639 atomic_sub(tail_count, &page->_count);
1640 BUG_ON(atomic_read(&page->_count) <= 0);
71e3aac0 1641
fa9add64 1642 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
79134171 1643
71e3aac0
AA
1644 ClearPageCompound(page);
1645 compound_unlock(page);
1646 spin_unlock_irq(&zone->lru_lock);
1647
1648 for (i = 1; i < HPAGE_PMD_NR; i++) {
1649 struct page *page_tail = page + i;
1650 BUG_ON(page_count(page_tail) <= 0);
1651 /*
1652 * Tail pages may be freed if there wasn't any mapping
1653 * like if add_to_swap() is running on a lru page that
1654 * had its mapping zapped. And freeing these pages
1655 * requires taking the lru_lock so we do the put_page
1656 * of the tail pages after the split is complete.
1657 */
1658 put_page(page_tail);
1659 }
1660
1661 /*
1662 * Only the head page (now become a regular page) is required
1663 * to be pinned by the caller.
1664 */
1665 BUG_ON(page_count(page) <= 0);
1666}
1667
1668static int __split_huge_page_map(struct page *page,
1669 struct vm_area_struct *vma,
1670 unsigned long address)
1671{
1672 struct mm_struct *mm = vma->vm_mm;
1673 pmd_t *pmd, _pmd;
1674 int ret = 0, i;
1675 pgtable_t pgtable;
1676 unsigned long haddr;
1677
1678 spin_lock(&mm->page_table_lock);
1679 pmd = page_check_address_pmd(page, mm, address,
1680 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1681 if (pmd) {
6b0b50b0 1682 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
71e3aac0
AA
1683 pmd_populate(mm, &_pmd, pgtable);
1684
e3ebcf64
GS
1685 haddr = address;
1686 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
71e3aac0
AA
1687 pte_t *pte, entry;
1688 BUG_ON(PageCompound(page+i));
1689 entry = mk_pte(page + i, vma->vm_page_prot);
1690 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1691 if (!pmd_write(*pmd))
1692 entry = pte_wrprotect(entry);
1693 else
1694 BUG_ON(page_mapcount(page) != 1);
1695 if (!pmd_young(*pmd))
1696 entry = pte_mkold(entry);
1ba6e0b5
AA
1697 if (pmd_numa(*pmd))
1698 entry = pte_mknuma(entry);
71e3aac0
AA
1699 pte = pte_offset_map(&_pmd, haddr);
1700 BUG_ON(!pte_none(*pte));
1701 set_pte_at(mm, haddr, pte, entry);
1702 pte_unmap(pte);
1703 }
1704
71e3aac0
AA
1705 smp_wmb(); /* make pte visible before pmd */
1706 /*
1707 * Up to this point the pmd is present and huge and
1708 * userland has the whole access to the hugepage
1709 * during the split (which happens in place). If we
1710 * overwrite the pmd with the not-huge version
1711 * pointing to the pte here (which of course we could
1712 * if all CPUs were bug free), userland could trigger
1713 * a small page size TLB miss on the small sized TLB
1714 * while the hugepage TLB entry is still established
1715 * in the huge TLB. Some CPU doesn't like that. See
1716 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1717 * Erratum 383 on page 93. Intel should be safe but is
1718 * also warns that it's only safe if the permission
1719 * and cache attributes of the two entries loaded in
1720 * the two TLB is identical (which should be the case
1721 * here). But it is generally safer to never allow
1722 * small and huge TLB entries for the same virtual
1723 * address to be loaded simultaneously. So instead of
1724 * doing "pmd_populate(); flush_tlb_range();" we first
1725 * mark the current pmd notpresent (atomically because
1726 * here the pmd_trans_huge and pmd_trans_splitting
1727 * must remain set at all times on the pmd until the
1728 * split is complete for this pmd), then we flush the
1729 * SMP TLB and finally we write the non-huge version
1730 * of the pmd entry with pmd_populate.
1731 */
46dcde73 1732 pmdp_invalidate(vma, address, pmd);
71e3aac0
AA
1733 pmd_populate(mm, pmd, pgtable);
1734 ret = 1;
1735 }
1736 spin_unlock(&mm->page_table_lock);
1737
1738 return ret;
1739}
1740
5a505085 1741/* must be called with anon_vma->root->rwsem held */
71e3aac0 1742static void __split_huge_page(struct page *page,
5bc7b8ac
SL
1743 struct anon_vma *anon_vma,
1744 struct list_head *list)
71e3aac0
AA
1745{
1746 int mapcount, mapcount2;
bf181b9f 1747 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
71e3aac0
AA
1748 struct anon_vma_chain *avc;
1749
1750 BUG_ON(!PageHead(page));
1751 BUG_ON(PageTail(page));
1752
1753 mapcount = 0;
bf181b9f 1754 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1755 struct vm_area_struct *vma = avc->vma;
1756 unsigned long addr = vma_address(page, vma);
1757 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1758 mapcount += __split_huge_page_splitting(page, vma, addr);
1759 }
05759d38
AA
1760 /*
1761 * It is critical that new vmas are added to the tail of the
1762 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1763 * and establishes a child pmd before
1764 * __split_huge_page_splitting() freezes the parent pmd (so if
1765 * we fail to prevent copy_huge_pmd() from running until the
1766 * whole __split_huge_page() is complete), we will still see
1767 * the newly established pmd of the child later during the
1768 * walk, to be able to set it as pmd_trans_splitting too.
1769 */
1770 if (mapcount != page_mapcount(page))
1771 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1772 mapcount, page_mapcount(page));
71e3aac0
AA
1773 BUG_ON(mapcount != page_mapcount(page));
1774
5bc7b8ac 1775 __split_huge_page_refcount(page, list);
71e3aac0
AA
1776
1777 mapcount2 = 0;
bf181b9f 1778 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
71e3aac0
AA
1779 struct vm_area_struct *vma = avc->vma;
1780 unsigned long addr = vma_address(page, vma);
1781 BUG_ON(is_vma_temporary_stack(vma));
71e3aac0
AA
1782 mapcount2 += __split_huge_page_map(page, vma, addr);
1783 }
05759d38
AA
1784 if (mapcount != mapcount2)
1785 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1786 mapcount, mapcount2, page_mapcount(page));
71e3aac0
AA
1787 BUG_ON(mapcount != mapcount2);
1788}
1789
5bc7b8ac
SL
1790/*
1791 * Split a hugepage into normal pages. This doesn't change the position of head
1792 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1793 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1794 * from the hugepage.
1795 * Return 0 if the hugepage is split successfully otherwise return 1.
1796 */
1797int split_huge_page_to_list(struct page *page, struct list_head *list)
71e3aac0
AA
1798{
1799 struct anon_vma *anon_vma;
1800 int ret = 1;
1801
5918d10a 1802 BUG_ON(is_huge_zero_page(page));
71e3aac0 1803 BUG_ON(!PageAnon(page));
062f1af2
MG
1804
1805 /*
1806 * The caller does not necessarily hold an mmap_sem that would prevent
1807 * the anon_vma disappearing so we first we take a reference to it
1808 * and then lock the anon_vma for write. This is similar to
1809 * page_lock_anon_vma_read except the write lock is taken to serialise
1810 * against parallel split or collapse operations.
1811 */
1812 anon_vma = page_get_anon_vma(page);
71e3aac0
AA
1813 if (!anon_vma)
1814 goto out;
062f1af2
MG
1815 anon_vma_lock_write(anon_vma);
1816
71e3aac0
AA
1817 ret = 0;
1818 if (!PageCompound(page))
1819 goto out_unlock;
1820
1821 BUG_ON(!PageSwapBacked(page));
5bc7b8ac 1822 __split_huge_page(page, anon_vma, list);
81ab4201 1823 count_vm_event(THP_SPLIT);
71e3aac0
AA
1824
1825 BUG_ON(PageCompound(page));
1826out_unlock:
08b52706 1827 anon_vma_unlock_write(anon_vma);
062f1af2 1828 put_anon_vma(anon_vma);
71e3aac0
AA
1829out:
1830 return ret;
1831}
1832
4b6e1e37 1833#define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
78f11a25 1834
60ab3244
AA
1835int hugepage_madvise(struct vm_area_struct *vma,
1836 unsigned long *vm_flags, int advice)
0af4e98b 1837{
8e72033f
GS
1838 struct mm_struct *mm = vma->vm_mm;
1839
a664b2d8
AA
1840 switch (advice) {
1841 case MADV_HUGEPAGE:
1842 /*
1843 * Be somewhat over-protective like KSM for now!
1844 */
78f11a25 1845 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
a664b2d8 1846 return -EINVAL;
8e72033f
GS
1847 if (mm->def_flags & VM_NOHUGEPAGE)
1848 return -EINVAL;
a664b2d8
AA
1849 *vm_flags &= ~VM_NOHUGEPAGE;
1850 *vm_flags |= VM_HUGEPAGE;
60ab3244
AA
1851 /*
1852 * If the vma become good for khugepaged to scan,
1853 * register it here without waiting a page fault that
1854 * may not happen any time soon.
1855 */
1856 if (unlikely(khugepaged_enter_vma_merge(vma)))
1857 return -ENOMEM;
a664b2d8
AA
1858 break;
1859 case MADV_NOHUGEPAGE:
1860 /*
1861 * Be somewhat over-protective like KSM for now!
1862 */
78f11a25 1863 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
a664b2d8
AA
1864 return -EINVAL;
1865 *vm_flags &= ~VM_HUGEPAGE;
1866 *vm_flags |= VM_NOHUGEPAGE;
60ab3244
AA
1867 /*
1868 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1869 * this vma even if we leave the mm registered in khugepaged if
1870 * it got registered before VM_NOHUGEPAGE was set.
1871 */
a664b2d8
AA
1872 break;
1873 }
0af4e98b
AA
1874
1875 return 0;
1876}
1877
ba76149f
AA
1878static int __init khugepaged_slab_init(void)
1879{
1880 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1881 sizeof(struct mm_slot),
1882 __alignof__(struct mm_slot), 0, NULL);
1883 if (!mm_slot_cache)
1884 return -ENOMEM;
1885
1886 return 0;
1887}
1888
ba76149f
AA
1889static inline struct mm_slot *alloc_mm_slot(void)
1890{
1891 if (!mm_slot_cache) /* initialization failed */
1892 return NULL;
1893 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1894}
1895
1896static inline void free_mm_slot(struct mm_slot *mm_slot)
1897{
1898 kmem_cache_free(mm_slot_cache, mm_slot);
1899}
1900
ba76149f
AA
1901static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1902{
1903 struct mm_slot *mm_slot;
ba76149f 1904
b67bfe0d 1905 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
ba76149f
AA
1906 if (mm == mm_slot->mm)
1907 return mm_slot;
43b5fbbd 1908
ba76149f
AA
1909 return NULL;
1910}
1911
1912static void insert_to_mm_slots_hash(struct mm_struct *mm,
1913 struct mm_slot *mm_slot)
1914{
ba76149f 1915 mm_slot->mm = mm;
43b5fbbd 1916 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
ba76149f
AA
1917}
1918
1919static inline int khugepaged_test_exit(struct mm_struct *mm)
1920{
1921 return atomic_read(&mm->mm_users) == 0;
1922}
1923
1924int __khugepaged_enter(struct mm_struct *mm)
1925{
1926 struct mm_slot *mm_slot;
1927 int wakeup;
1928
1929 mm_slot = alloc_mm_slot();
1930 if (!mm_slot)
1931 return -ENOMEM;
1932
1933 /* __khugepaged_exit() must not run from under us */
1934 VM_BUG_ON(khugepaged_test_exit(mm));
1935 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1936 free_mm_slot(mm_slot);
1937 return 0;
1938 }
1939
1940 spin_lock(&khugepaged_mm_lock);
1941 insert_to_mm_slots_hash(mm, mm_slot);
1942 /*
1943 * Insert just behind the scanning cursor, to let the area settle
1944 * down a little.
1945 */
1946 wakeup = list_empty(&khugepaged_scan.mm_head);
1947 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1948 spin_unlock(&khugepaged_mm_lock);
1949
1950 atomic_inc(&mm->mm_count);
1951 if (wakeup)
1952 wake_up_interruptible(&khugepaged_wait);
1953
1954 return 0;
1955}
1956
1957int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1958{
1959 unsigned long hstart, hend;
1960 if (!vma->anon_vma)
1961 /*
1962 * Not yet faulted in so we will register later in the
1963 * page fault if needed.
1964 */
1965 return 0;
78f11a25 1966 if (vma->vm_ops)
ba76149f
AA
1967 /* khugepaged not yet working on file or special mappings */
1968 return 0;
b3b9c293 1969 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
ba76149f
AA
1970 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1971 hend = vma->vm_end & HPAGE_PMD_MASK;
1972 if (hstart < hend)
1973 return khugepaged_enter(vma);
1974 return 0;
1975}
1976
1977void __khugepaged_exit(struct mm_struct *mm)
1978{
1979 struct mm_slot *mm_slot;
1980 int free = 0;
1981
1982 spin_lock(&khugepaged_mm_lock);
1983 mm_slot = get_mm_slot(mm);
1984 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
43b5fbbd 1985 hash_del(&mm_slot->hash);
ba76149f
AA
1986 list_del(&mm_slot->mm_node);
1987 free = 1;
1988 }
d788e80a 1989 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
1990
1991 if (free) {
ba76149f
AA
1992 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1993 free_mm_slot(mm_slot);
1994 mmdrop(mm);
1995 } else if (mm_slot) {
ba76149f
AA
1996 /*
1997 * This is required to serialize against
1998 * khugepaged_test_exit() (which is guaranteed to run
1999 * under mmap sem read mode). Stop here (after we
2000 * return all pagetables will be destroyed) until
2001 * khugepaged has finished working on the pagetables
2002 * under the mmap_sem.
2003 */
2004 down_write(&mm->mmap_sem);
2005 up_write(&mm->mmap_sem);
d788e80a 2006 }
ba76149f
AA
2007}
2008
2009static void release_pte_page(struct page *page)
2010{
2011 /* 0 stands for page_is_file_cache(page) == false */
2012 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2013 unlock_page(page);
2014 putback_lru_page(page);
2015}
2016
2017static void release_pte_pages(pte_t *pte, pte_t *_pte)
2018{
2019 while (--_pte >= pte) {
2020 pte_t pteval = *_pte;
2021 if (!pte_none(pteval))
2022 release_pte_page(pte_page(pteval));
2023 }
2024}
2025
ba76149f
AA
2026static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2027 unsigned long address,
2028 pte_t *pte)
2029{
2030 struct page *page;
2031 pte_t *_pte;
344aa35c 2032 int referenced = 0, none = 0;
ba76149f
AA
2033 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2034 _pte++, address += PAGE_SIZE) {
2035 pte_t pteval = *_pte;
2036 if (pte_none(pteval)) {
2037 if (++none <= khugepaged_max_ptes_none)
2038 continue;
344aa35c 2039 else
ba76149f 2040 goto out;
ba76149f 2041 }
344aa35c 2042 if (!pte_present(pteval) || !pte_write(pteval))
ba76149f 2043 goto out;
ba76149f 2044 page = vm_normal_page(vma, address, pteval);
344aa35c 2045 if (unlikely(!page))
ba76149f 2046 goto out;
344aa35c 2047
ba76149f
AA
2048 VM_BUG_ON(PageCompound(page));
2049 BUG_ON(!PageAnon(page));
2050 VM_BUG_ON(!PageSwapBacked(page));
2051
2052 /* cannot use mapcount: can't collapse if there's a gup pin */
344aa35c 2053 if (page_count(page) != 1)
ba76149f 2054 goto out;
ba76149f
AA
2055 /*
2056 * We can do it before isolate_lru_page because the
2057 * page can't be freed from under us. NOTE: PG_lock
2058 * is needed to serialize against split_huge_page
2059 * when invoked from the VM.
2060 */
344aa35c 2061 if (!trylock_page(page))
ba76149f 2062 goto out;
ba76149f
AA
2063 /*
2064 * Isolate the page to avoid collapsing an hugepage
2065 * currently in use by the VM.
2066 */
2067 if (isolate_lru_page(page)) {
2068 unlock_page(page);
ba76149f
AA
2069 goto out;
2070 }
2071 /* 0 stands for page_is_file_cache(page) == false */
2072 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2073 VM_BUG_ON(!PageLocked(page));
2074 VM_BUG_ON(PageLRU(page));
2075
2076 /* If there is no mapped pte young don't collapse the page */
8ee53820
AA
2077 if (pte_young(pteval) || PageReferenced(page) ||
2078 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2079 referenced = 1;
2080 }
344aa35c
BL
2081 if (likely(referenced))
2082 return 1;
ba76149f 2083out:
344aa35c
BL
2084 release_pte_pages(pte, _pte);
2085 return 0;
ba76149f
AA
2086}
2087
2088static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2089 struct vm_area_struct *vma,
2090 unsigned long address,
2091 spinlock_t *ptl)
2092{
2093 pte_t *_pte;
2094 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2095 pte_t pteval = *_pte;
2096 struct page *src_page;
2097
2098 if (pte_none(pteval)) {
2099 clear_user_highpage(page, address);
2100 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2101 } else {
2102 src_page = pte_page(pteval);
2103 copy_user_highpage(page, src_page, address, vma);
2104 VM_BUG_ON(page_mapcount(src_page) != 1);
ba76149f
AA
2105 release_pte_page(src_page);
2106 /*
2107 * ptl mostly unnecessary, but preempt has to
2108 * be disabled to update the per-cpu stats
2109 * inside page_remove_rmap().
2110 */
2111 spin_lock(ptl);
2112 /*
2113 * paravirt calls inside pte_clear here are
2114 * superfluous.
2115 */
2116 pte_clear(vma->vm_mm, address, _pte);
2117 page_remove_rmap(src_page);
2118 spin_unlock(ptl);
2119 free_page_and_swap_cache(src_page);
2120 }
2121
2122 address += PAGE_SIZE;
2123 page++;
2124 }
2125}
2126
26234f36 2127static void khugepaged_alloc_sleep(void)
ba76149f 2128{
26234f36
XG
2129 wait_event_freezable_timeout(khugepaged_wait, false,
2130 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2131}
ba76149f 2132
26234f36
XG
2133#ifdef CONFIG_NUMA
2134static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2135{
2136 if (IS_ERR(*hpage)) {
2137 if (!*wait)
2138 return false;
2139
2140 *wait = false;
e3b4126c 2141 *hpage = NULL;
26234f36
XG
2142 khugepaged_alloc_sleep();
2143 } else if (*hpage) {
2144 put_page(*hpage);
2145 *hpage = NULL;
2146 }
2147
2148 return true;
2149}
2150
2151static struct page
2152*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2153 struct vm_area_struct *vma, unsigned long address,
2154 int node)
2155{
0bbbc0b3 2156 VM_BUG_ON(*hpage);
ce83d217
AA
2157 /*
2158 * Allocate the page while the vma is still valid and under
2159 * the mmap_sem read mode so there is no memory allocation
2160 * later when we take the mmap_sem in write mode. This is more
2161 * friendly behavior (OTOH it may actually hide bugs) to
2162 * filesystems in userland with daemons allocating memory in
2163 * the userland I/O paths. Allocating memory with the
2164 * mmap_sem in read mode is good idea also to allow greater
2165 * scalability.
2166 */
26234f36 2167 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
cc5d462f 2168 node, __GFP_OTHER_NODE);
692e0b35
AA
2169
2170 /*
2171 * After allocating the hugepage, release the mmap_sem read lock in
2172 * preparation for taking it in write mode.
2173 */
2174 up_read(&mm->mmap_sem);
26234f36 2175 if (unlikely(!*hpage)) {
81ab4201 2176 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
ce83d217 2177 *hpage = ERR_PTR(-ENOMEM);
26234f36 2178 return NULL;
ce83d217 2179 }
26234f36 2180
65b3c07b 2181 count_vm_event(THP_COLLAPSE_ALLOC);
26234f36
XG
2182 return *hpage;
2183}
2184#else
2185static struct page *khugepaged_alloc_hugepage(bool *wait)
2186{
2187 struct page *hpage;
2188
2189 do {
2190 hpage = alloc_hugepage(khugepaged_defrag());
2191 if (!hpage) {
2192 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2193 if (!*wait)
2194 return NULL;
2195
2196 *wait = false;
2197 khugepaged_alloc_sleep();
2198 } else
2199 count_vm_event(THP_COLLAPSE_ALLOC);
2200 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2201
2202 return hpage;
2203}
2204
2205static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2206{
2207 if (!*hpage)
2208 *hpage = khugepaged_alloc_hugepage(wait);
2209
2210 if (unlikely(!*hpage))
2211 return false;
2212
2213 return true;
2214}
2215
2216static struct page
2217*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2218 struct vm_area_struct *vma, unsigned long address,
2219 int node)
2220{
2221 up_read(&mm->mmap_sem);
2222 VM_BUG_ON(!*hpage);
2223 return *hpage;
2224}
692e0b35
AA
2225#endif
2226
fa475e51
BL
2227static bool hugepage_vma_check(struct vm_area_struct *vma)
2228{
2229 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2230 (vma->vm_flags & VM_NOHUGEPAGE))
2231 return false;
2232
2233 if (!vma->anon_vma || vma->vm_ops)
2234 return false;
2235 if (is_vma_temporary_stack(vma))
2236 return false;
2237 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2238 return true;
2239}
2240
26234f36
XG
2241static void collapse_huge_page(struct mm_struct *mm,
2242 unsigned long address,
2243 struct page **hpage,
2244 struct vm_area_struct *vma,
2245 int node)
2246{
26234f36
XG
2247 pmd_t *pmd, _pmd;
2248 pte_t *pte;
2249 pgtable_t pgtable;
2250 struct page *new_page;
2251 spinlock_t *ptl;
2252 int isolated;
2253 unsigned long hstart, hend;
2ec74c3e
SG
2254 unsigned long mmun_start; /* For mmu_notifiers */
2255 unsigned long mmun_end; /* For mmu_notifiers */
26234f36
XG
2256
2257 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2258
2259 /* release the mmap_sem read lock. */
2260 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2261 if (!new_page)
2262 return;
2263
420256ef 2264 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
ce83d217 2265 return;
ba76149f
AA
2266
2267 /*
2268 * Prevent all access to pagetables with the exception of
2269 * gup_fast later hanlded by the ptep_clear_flush and the VM
2270 * handled by the anon_vma lock + PG_lock.
2271 */
2272 down_write(&mm->mmap_sem);
2273 if (unlikely(khugepaged_test_exit(mm)))
2274 goto out;
2275
2276 vma = find_vma(mm, address);
a8f531eb
L
2277 if (!vma)
2278 goto out;
ba76149f
AA
2279 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2280 hend = vma->vm_end & HPAGE_PMD_MASK;
2281 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2282 goto out;
fa475e51 2283 if (!hugepage_vma_check(vma))
a7d6e4ec 2284 goto out;
6219049a
BL
2285 pmd = mm_find_pmd(mm, address);
2286 if (!pmd)
ba76149f 2287 goto out;
6219049a 2288 if (pmd_trans_huge(*pmd))
ba76149f
AA
2289 goto out;
2290
4fc3f1d6 2291 anon_vma_lock_write(vma->anon_vma);
ba76149f
AA
2292
2293 pte = pte_offset_map(pmd, address);
2294 ptl = pte_lockptr(mm, pmd);
2295
2ec74c3e
SG
2296 mmun_start = address;
2297 mmun_end = address + HPAGE_PMD_SIZE;
2298 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ba76149f
AA
2299 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2300 /*
2301 * After this gup_fast can't run anymore. This also removes
2302 * any huge TLB entry from the CPU so we won't allow
2303 * huge and small TLB entries for the same virtual address
2304 * to avoid the risk of CPU bugs in that area.
2305 */
2ec74c3e 2306 _pmd = pmdp_clear_flush(vma, address, pmd);
ba76149f 2307 spin_unlock(&mm->page_table_lock);
2ec74c3e 2308 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ba76149f
AA
2309
2310 spin_lock(ptl);
2311 isolated = __collapse_huge_page_isolate(vma, address, pte);
2312 spin_unlock(ptl);
ba76149f
AA
2313
2314 if (unlikely(!isolated)) {
453c7192 2315 pte_unmap(pte);
ba76149f
AA
2316 spin_lock(&mm->page_table_lock);
2317 BUG_ON(!pmd_none(*pmd));
7c342512
AK
2318 /*
2319 * We can only use set_pmd_at when establishing
2320 * hugepmds and never for establishing regular pmds that
2321 * points to regular pagetables. Use pmd_populate for that
2322 */
2323 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
ba76149f 2324 spin_unlock(&mm->page_table_lock);
08b52706 2325 anon_vma_unlock_write(vma->anon_vma);
ce83d217 2326 goto out;
ba76149f
AA
2327 }
2328
2329 /*
2330 * All pages are isolated and locked so anon_vma rmap
2331 * can't run anymore.
2332 */
08b52706 2333 anon_vma_unlock_write(vma->anon_vma);
ba76149f
AA
2334
2335 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
453c7192 2336 pte_unmap(pte);
ba76149f
AA
2337 __SetPageUptodate(new_page);
2338 pgtable = pmd_pgtable(_pmd);
ba76149f 2339
3122359a
KS
2340 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2341 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
ba76149f
AA
2342
2343 /*
2344 * spin_lock() below is not the equivalent of smp_wmb(), so
2345 * this is needed to avoid the copy_huge_page writes to become
2346 * visible after the set_pmd_at() write.
2347 */
2348 smp_wmb();
2349
2350 spin_lock(&mm->page_table_lock);
2351 BUG_ON(!pmd_none(*pmd));
2352 page_add_new_anon_rmap(new_page, vma, address);
fce144b4 2353 pgtable_trans_huge_deposit(mm, pmd, pgtable);
ba76149f 2354 set_pmd_at(mm, address, pmd, _pmd);
b113da65 2355 update_mmu_cache_pmd(vma, address, pmd);
ba76149f
AA
2356 spin_unlock(&mm->page_table_lock);
2357
2358 *hpage = NULL;
420256ef 2359
ba76149f 2360 khugepaged_pages_collapsed++;
ce83d217 2361out_up_write:
ba76149f 2362 up_write(&mm->mmap_sem);
0bbbc0b3
AA
2363 return;
2364
ce83d217 2365out:
678ff896 2366 mem_cgroup_uncharge_page(new_page);
ce83d217 2367 goto out_up_write;
ba76149f
AA
2368}
2369
2370static int khugepaged_scan_pmd(struct mm_struct *mm,
2371 struct vm_area_struct *vma,
2372 unsigned long address,
2373 struct page **hpage)
2374{
ba76149f
AA
2375 pmd_t *pmd;
2376 pte_t *pte, *_pte;
2377 int ret = 0, referenced = 0, none = 0;
2378 struct page *page;
2379 unsigned long _address;
2380 spinlock_t *ptl;
00ef2d2f 2381 int node = NUMA_NO_NODE;
ba76149f
AA
2382
2383 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2384
6219049a
BL
2385 pmd = mm_find_pmd(mm, address);
2386 if (!pmd)
ba76149f 2387 goto out;
6219049a 2388 if (pmd_trans_huge(*pmd))
ba76149f
AA
2389 goto out;
2390
2391 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2392 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2393 _pte++, _address += PAGE_SIZE) {
2394 pte_t pteval = *_pte;
2395 if (pte_none(pteval)) {
2396 if (++none <= khugepaged_max_ptes_none)
2397 continue;
2398 else
2399 goto out_unmap;
2400 }
2401 if (!pte_present(pteval) || !pte_write(pteval))
2402 goto out_unmap;
2403 page = vm_normal_page(vma, _address, pteval);
2404 if (unlikely(!page))
2405 goto out_unmap;
5c4b4be3
AK
2406 /*
2407 * Chose the node of the first page. This could
2408 * be more sophisticated and look at more pages,
2409 * but isn't for now.
2410 */
00ef2d2f 2411 if (node == NUMA_NO_NODE)
5c4b4be3 2412 node = page_to_nid(page);
ba76149f
AA
2413 VM_BUG_ON(PageCompound(page));
2414 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2415 goto out_unmap;
2416 /* cannot use mapcount: can't collapse if there's a gup pin */
2417 if (page_count(page) != 1)
2418 goto out_unmap;
8ee53820
AA
2419 if (pte_young(pteval) || PageReferenced(page) ||
2420 mmu_notifier_test_young(vma->vm_mm, address))
ba76149f
AA
2421 referenced = 1;
2422 }
2423 if (referenced)
2424 ret = 1;
2425out_unmap:
2426 pte_unmap_unlock(pte, ptl);
ce83d217
AA
2427 if (ret)
2428 /* collapse_huge_page will return with the mmap_sem released */
5c4b4be3 2429 collapse_huge_page(mm, address, hpage, vma, node);
ba76149f
AA
2430out:
2431 return ret;
2432}
2433
2434static void collect_mm_slot(struct mm_slot *mm_slot)
2435{
2436 struct mm_struct *mm = mm_slot->mm;
2437
b9980cdc 2438 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2439
2440 if (khugepaged_test_exit(mm)) {
2441 /* free mm_slot */
43b5fbbd 2442 hash_del(&mm_slot->hash);
ba76149f
AA
2443 list_del(&mm_slot->mm_node);
2444
2445 /*
2446 * Not strictly needed because the mm exited already.
2447 *
2448 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2449 */
2450
2451 /* khugepaged_mm_lock actually not necessary for the below */
2452 free_mm_slot(mm_slot);
2453 mmdrop(mm);
2454 }
2455}
2456
2457static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2458 struct page **hpage)
2f1da642
HS
2459 __releases(&khugepaged_mm_lock)
2460 __acquires(&khugepaged_mm_lock)
ba76149f
AA
2461{
2462 struct mm_slot *mm_slot;
2463 struct mm_struct *mm;
2464 struct vm_area_struct *vma;
2465 int progress = 0;
2466
2467 VM_BUG_ON(!pages);
b9980cdc 2468 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
ba76149f
AA
2469
2470 if (khugepaged_scan.mm_slot)
2471 mm_slot = khugepaged_scan.mm_slot;
2472 else {
2473 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2474 struct mm_slot, mm_node);
2475 khugepaged_scan.address = 0;
2476 khugepaged_scan.mm_slot = mm_slot;
2477 }
2478 spin_unlock(&khugepaged_mm_lock);
2479
2480 mm = mm_slot->mm;
2481 down_read(&mm->mmap_sem);
2482 if (unlikely(khugepaged_test_exit(mm)))
2483 vma = NULL;
2484 else
2485 vma = find_vma(mm, khugepaged_scan.address);
2486
2487 progress++;
2488 for (; vma; vma = vma->vm_next) {
2489 unsigned long hstart, hend;
2490
2491 cond_resched();
2492 if (unlikely(khugepaged_test_exit(mm))) {
2493 progress++;
2494 break;
2495 }
fa475e51
BL
2496 if (!hugepage_vma_check(vma)) {
2497skip:
ba76149f
AA
2498 progress++;
2499 continue;
2500 }
ba76149f
AA
2501 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2502 hend = vma->vm_end & HPAGE_PMD_MASK;
a7d6e4ec
AA
2503 if (hstart >= hend)
2504 goto skip;
2505 if (khugepaged_scan.address > hend)
2506 goto skip;
ba76149f
AA
2507 if (khugepaged_scan.address < hstart)
2508 khugepaged_scan.address = hstart;
a7d6e4ec 2509 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
ba76149f
AA
2510
2511 while (khugepaged_scan.address < hend) {
2512 int ret;
2513 cond_resched();
2514 if (unlikely(khugepaged_test_exit(mm)))
2515 goto breakouterloop;
2516
2517 VM_BUG_ON(khugepaged_scan.address < hstart ||
2518 khugepaged_scan.address + HPAGE_PMD_SIZE >
2519 hend);
2520 ret = khugepaged_scan_pmd(mm, vma,
2521 khugepaged_scan.address,
2522 hpage);
2523 /* move to next address */
2524 khugepaged_scan.address += HPAGE_PMD_SIZE;
2525 progress += HPAGE_PMD_NR;
2526 if (ret)
2527 /* we released mmap_sem so break loop */
2528 goto breakouterloop_mmap_sem;
2529 if (progress >= pages)
2530 goto breakouterloop;
2531 }
2532 }
2533breakouterloop:
2534 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2535breakouterloop_mmap_sem:
2536
2537 spin_lock(&khugepaged_mm_lock);
a7d6e4ec 2538 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
ba76149f
AA
2539 /*
2540 * Release the current mm_slot if this mm is about to die, or
2541 * if we scanned all vmas of this mm.
2542 */
2543 if (khugepaged_test_exit(mm) || !vma) {
2544 /*
2545 * Make sure that if mm_users is reaching zero while
2546 * khugepaged runs here, khugepaged_exit will find
2547 * mm_slot not pointing to the exiting mm.
2548 */
2549 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2550 khugepaged_scan.mm_slot = list_entry(
2551 mm_slot->mm_node.next,
2552 struct mm_slot, mm_node);
2553 khugepaged_scan.address = 0;
2554 } else {
2555 khugepaged_scan.mm_slot = NULL;
2556 khugepaged_full_scans++;
2557 }
2558
2559 collect_mm_slot(mm_slot);
2560 }
2561
2562 return progress;
2563}
2564
2565static int khugepaged_has_work(void)
2566{
2567 return !list_empty(&khugepaged_scan.mm_head) &&
2568 khugepaged_enabled();
2569}
2570
2571static int khugepaged_wait_event(void)
2572{
2573 return !list_empty(&khugepaged_scan.mm_head) ||
2017c0bf 2574 kthread_should_stop();
ba76149f
AA
2575}
2576
d516904b 2577static void khugepaged_do_scan(void)
ba76149f 2578{
d516904b 2579 struct page *hpage = NULL;
ba76149f
AA
2580 unsigned int progress = 0, pass_through_head = 0;
2581 unsigned int pages = khugepaged_pages_to_scan;
d516904b 2582 bool wait = true;
ba76149f
AA
2583
2584 barrier(); /* write khugepaged_pages_to_scan to local stack */
2585
2586 while (progress < pages) {
26234f36 2587 if (!khugepaged_prealloc_page(&hpage, &wait))
d516904b 2588 break;
26234f36 2589
420256ef 2590 cond_resched();
ba76149f 2591
878aee7d
AA
2592 if (unlikely(kthread_should_stop() || freezing(current)))
2593 break;
2594
ba76149f
AA
2595 spin_lock(&khugepaged_mm_lock);
2596 if (!khugepaged_scan.mm_slot)
2597 pass_through_head++;
2598 if (khugepaged_has_work() &&
2599 pass_through_head < 2)
2600 progress += khugepaged_scan_mm_slot(pages - progress,
d516904b 2601 &hpage);
ba76149f
AA
2602 else
2603 progress = pages;
2604 spin_unlock(&khugepaged_mm_lock);
2605 }
ba76149f 2606
d516904b
XG
2607 if (!IS_ERR_OR_NULL(hpage))
2608 put_page(hpage);
0bbbc0b3
AA
2609}
2610
2017c0bf
XG
2611static void khugepaged_wait_work(void)
2612{
2613 try_to_freeze();
2614
2615 if (khugepaged_has_work()) {
2616 if (!khugepaged_scan_sleep_millisecs)
2617 return;
2618
2619 wait_event_freezable_timeout(khugepaged_wait,
2620 kthread_should_stop(),
2621 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2622 return;
2623 }
2624
2625 if (khugepaged_enabled())
2626 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2627}
2628
ba76149f
AA
2629static int khugepaged(void *none)
2630{
2631 struct mm_slot *mm_slot;
2632
878aee7d 2633 set_freezable();
ba76149f
AA
2634 set_user_nice(current, 19);
2635
b7231789
XG
2636 while (!kthread_should_stop()) {
2637 khugepaged_do_scan();
2638 khugepaged_wait_work();
2639 }
ba76149f
AA
2640
2641 spin_lock(&khugepaged_mm_lock);
2642 mm_slot = khugepaged_scan.mm_slot;
2643 khugepaged_scan.mm_slot = NULL;
2644 if (mm_slot)
2645 collect_mm_slot(mm_slot);
2646 spin_unlock(&khugepaged_mm_lock);
ba76149f
AA
2647 return 0;
2648}
2649
c5a647d0
KS
2650static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2651 unsigned long haddr, pmd_t *pmd)
2652{
2653 struct mm_struct *mm = vma->vm_mm;
2654 pgtable_t pgtable;
2655 pmd_t _pmd;
2656 int i;
2657
2658 pmdp_clear_flush(vma, haddr, pmd);
2659 /* leave pmd empty until pte is filled */
2660
6b0b50b0 2661 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
c5a647d0
KS
2662 pmd_populate(mm, &_pmd, pgtable);
2663
2664 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2665 pte_t *pte, entry;
2666 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2667 entry = pte_mkspecial(entry);
2668 pte = pte_offset_map(&_pmd, haddr);
2669 VM_BUG_ON(!pte_none(*pte));
2670 set_pte_at(mm, haddr, pte, entry);
2671 pte_unmap(pte);
2672 }
2673 smp_wmb(); /* make pte visible before pmd */
2674 pmd_populate(mm, pmd, pgtable);
97ae1749 2675 put_huge_zero_page();
c5a647d0
KS
2676}
2677
e180377f
KS
2678void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2679 pmd_t *pmd)
71e3aac0
AA
2680{
2681 struct page *page;
e180377f 2682 struct mm_struct *mm = vma->vm_mm;
c5a647d0
KS
2683 unsigned long haddr = address & HPAGE_PMD_MASK;
2684 unsigned long mmun_start; /* For mmu_notifiers */
2685 unsigned long mmun_end; /* For mmu_notifiers */
e180377f
KS
2686
2687 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
71e3aac0 2688
c5a647d0
KS
2689 mmun_start = haddr;
2690 mmun_end = haddr + HPAGE_PMD_SIZE;
2691 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
71e3aac0
AA
2692 spin_lock(&mm->page_table_lock);
2693 if (unlikely(!pmd_trans_huge(*pmd))) {
2694 spin_unlock(&mm->page_table_lock);
c5a647d0
KS
2695 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2696 return;
2697 }
2698 if (is_huge_zero_pmd(*pmd)) {
2699 __split_huge_zero_page_pmd(vma, haddr, pmd);
2700 spin_unlock(&mm->page_table_lock);
2701 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2702 return;
2703 }
2704 page = pmd_page(*pmd);
2705 VM_BUG_ON(!page_count(page));
2706 get_page(page);
2707 spin_unlock(&mm->page_table_lock);
c5a647d0 2708 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
71e3aac0
AA
2709
2710 split_huge_page(page);
2711
2712 put_page(page);
2713 BUG_ON(pmd_trans_huge(*pmd));
2714}
94fcc585 2715
e180377f
KS
2716void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2717 pmd_t *pmd)
2718{
2719 struct vm_area_struct *vma;
2720
2721 vma = find_vma(mm, address);
2722 BUG_ON(vma == NULL);
2723 split_huge_page_pmd(vma, address, pmd);
2724}
2725
94fcc585
AA
2726static void split_huge_page_address(struct mm_struct *mm,
2727 unsigned long address)
2728{
94fcc585
AA
2729 pmd_t *pmd;
2730
2731 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2732
6219049a
BL
2733 pmd = mm_find_pmd(mm, address);
2734 if (!pmd)
94fcc585
AA
2735 return;
2736 /*
2737 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2738 * materialize from under us.
2739 */
e180377f 2740 split_huge_page_pmd_mm(mm, address, pmd);
94fcc585
AA
2741}
2742
2743void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2744 unsigned long start,
2745 unsigned long end,
2746 long adjust_next)
2747{
2748 /*
2749 * If the new start address isn't hpage aligned and it could
2750 * previously contain an hugepage: check if we need to split
2751 * an huge pmd.
2752 */
2753 if (start & ~HPAGE_PMD_MASK &&
2754 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2755 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2756 split_huge_page_address(vma->vm_mm, start);
2757
2758 /*
2759 * If the new end address isn't hpage aligned and it could
2760 * previously contain an hugepage: check if we need to split
2761 * an huge pmd.
2762 */
2763 if (end & ~HPAGE_PMD_MASK &&
2764 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2765 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2766 split_huge_page_address(vma->vm_mm, end);
2767
2768 /*
2769 * If we're also updating the vma->vm_next->vm_start, if the new
2770 * vm_next->vm_start isn't page aligned and it could previously
2771 * contain an hugepage: check if we need to split an huge pmd.
2772 */
2773 if (adjust_next > 0) {
2774 struct vm_area_struct *next = vma->vm_next;
2775 unsigned long nstart = next->vm_start;
2776 nstart += adjust_next << PAGE_SHIFT;
2777 if (nstart & ~HPAGE_PMD_MASK &&
2778 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2779 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2780 split_huge_page_address(next->vm_mm, nstart);
2781 }
2782}